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ABSTRACT 
 
 
 
Recent developments in post-stall maneuverability and thrust vectoring have 

opened up new possibilities in the field of air combat maneuvering.  High angle of attack 

maneuvers like the Cobra, Herbst Reversal, and Chakra demonstrate that today’s cutting 

edge fighters are capable of exploiting the post-stall flight regime for very dynamic and 

unconventional maneuvers.  With the development and testing of Unmanned Combat 

Aerial Vehicles, even greater maneuvering ability is expected.  However, little work has 

been done to make use of this increased ability by optimizing a wide range of combat 

maneuvers.  The goal of this thesis was to begin that process by finding several time-

optimal air combat maneuvers that could be employed by current and future high 

performance fighter aircraft. 

The aircraft used for this study were the Navion, F-18 HARV and UCAV-X (a 

fictitious aircraft based on the X-31 EFM).  Extremely detailed physical and aerodynamic 

models were developed for all three aircraft, including thrust vectoring data on the latter 

two.  Different methods of coding the aerodynamic data (including look-up tables and 

curve-fitting) were experimented with to determine what provided the best balance of 

accuracy and efficiency.  The optimization program used was DIDO, which is a 

MATLAB-based application package for solving dynamic optimization problems 

developed at the Naval Postgraduate School.  The “aircraft code” that interfaces with 

DIDO (originally written by a previous thesis student) was modified to function with the 

HARV and UCAV-X.  Further modifications were added to improve numerical stability 

and decrease run times.  Finally, time-optimal maneuvers developed by DIDO were 

compared to 1) similar maneuvers performed by other test aircraft, 2) optimal maneuvers 

derived in other studies, and 3) current air combat maneuvers. 
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I. BACKGROUND  

A. AIR-TO-AIR COMBAT 

Over the past eighty years, aerial combat has evolved radically to keep up with 

the rapidly improving technology of weapons systems, fighter aircraft, and aviation in 

general.  The development and refining of turbojet and turbofan engines have led to the 

development of fighters capable of thrust-to-weight (T/W) ratios greater than one.    

Airfoil designs have improved dramatically with extensive wind tunnel testing, as well as 

computational fluid dynamics (CFD)–based airfoil modeling.  These improved designs 

have resulted in wings with better lifting characteristics, reduced drag penalties, and 

increased performance over large ranges of speed and angle of attack (AOA).  Digital fly-

by-wire control systems have replaced purely mechanical systems, allowing a pilot to 

command a flight condition as opposed to a single control surface deflection.  Numerous 

other advances have played an important role in the development of aviation and fighter 

aircraft, including supercritical airfoils, area ruling, canards, all-moving stabilators, 

thrust-vectoring, and advanced flight simulators.  The result is that fighters, in general, 

have become faster, more maneuverable, and more deadly. 

Weapons systems have undergone similar transformations:  the original air-to-air 

weapon, a pilot’s service pistol, was replaced by fixed .30-cal machine guns by the end of 

World War I, .50-cal machine guns by World War II, and 20mm to 40mm cannons by the 

early 1950’s.  The last major development in air-to-air guns was the M61 “Gatling-gun” 

cannon in 1957, capable of firing 0.22lb explosive rounds at an amazing rate of 6,000 

rounds/min.  [Ref. 1]  The highly increased lethality of this weapon system over its 

predecessors is a function of the increased rate of fire, increased muzzle velocity, 

increased projectile weight, and use of explosive projectiles.  In addition to improved air-

to-air guns, the advent of guided air-to-air missiles (AAM’s) following World War II has 

significantly changed the science of aerial combat.  Weapons systems like the AIM-54 

Phoenix and its AWG-9 radar can detect and engage multiple targets at ranges greater 

than 100nm.  Modern AAM’s can track targets with passive, semi-active or active 

homing systems, and travel at speeds greater than Mach 4.  Complementing these potent 
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weapons are very sophisticated targeting systems, using computer graphics and heads-up 

displays (HUD’s) to quickly relay pertinent data to the pilot.  In brief, weapons systems 

have become more lethal and more pilot-friendly. 

These improved aircraft and weapons capabilities require a reassessment of air-to-

air combat and air combat maneuvering (ACM).  The scope of this thesis is not to address 

this issue in its entirety, but to examine a small portion of it.  Namely, to find several 

time-optimal maneuvers that could be implemented by current or future fighter aircraft to 

obtain an advantage in short range, primarily one-versus-one air combat.  The first step in 

this search will be to start with some characteristics of short range air combat observed 

and predicted by previous studies. 

An excellent paper by Herbst [Ref. 2] discusses the combat and design 

implications of some of the afore-mentioned technological advances, in particular the 

development of all-aspect guns, and short and medium range AAM’s.  His conclusions 

about the first two are of primary relevance: 

[Short range] combat with rear aspect weapons was characterized by 
sustained turns.  Conversion to a firing solution was a matter of sustained 
turn rate margin vs. the opponent.  ...With all-aspect weapons, however, 
combat effectiveness proves to be significantly less sensitive to classic 
energy maneuverability parameters and more sensitive to attained 
unsteady performance.  [Ref. 2: p. 594] 

According to Herbst, the first variety of combat was played out in most simulated 

engagements by the two dueling aircraft first maneuvering into a head-on situation.  If the 

subsequent weapons exchange was unsuccessful, both aircraft then attempted to reverse 

course as quickly as possible for another exchange.  Hence the fighter with the better turn 

rate was able to maneuver for a shot before his opponent, and was more likely to win the 

engagement.  Put in another way, the fighter that was able to reverse his velocity vector 

faster was more likely to win the engagement.  Of the second variety of combat, Herbst 

notes that “The ability to aim the aircraft fuselage independently of the flight path 

provides a very effective way of solving the gun snap shooting problem...”  [Ref. 2]  

Therefore, the key to winning this engagement is changing the aircraft’s orientation, as 

opposed to the aircraft’s velocity vector.  The latter involves managing energy between 
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turning, climbing and accelerating, in order to maneuver into a firing position in 

minimum time (without losing so much energy that escape or reengagement is 

impossible).  The former, however, involves achieving a decisive positional advantage in 

minimum time, with the possible expense of some energy. 

 Another excellent source of air combat characteristics is Shaw’s text [Ref. 1].  

While his text will be referenced more extensively in Chapter II, there are some general 

comments that can be made for the purposes of this section.  Shaw refers to “...basic 

fighter maneuvers (BFM’s) [as] the building blocks of fighter tactics.”  [Ref. 1]  BFM’s 

that he further classifies as “relative” (i.e. “performed in relation to another aircraft” [Ref. 

1]) are of primary importance in ACM.  One such maneuver is the nose-to-nose turn.  

The nose-to-nose turn is similar to the air combat with rear aspect weapons that Herbst 

described, except that it is limited to the horizontal plane. 

 
Figure 1.   Nose-to-Nose Turn (From: Ref. 1, pp. 78) 

 

For this maneuver, it can be seen from the figure above that a defender with a smaller 

turn radius than his opponent would be able to shoot first, as opposed to the increased 

turn rate needed to win in Herbst’s scenario. 

 Another relative BFM is a pursuit curve.  Pursuit curves (lead, pure and lag) are 

similar to the air combat with all-aspect weapons that Herbst described, except they are 

again limited to the horizontal plane.  As with the Herbst scenario, though, the goal of the 

maneuver is to aim the fuselage at the target. 
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Figure 2.   Lead and Lag Pursuit Curves (After: Ref. 1, pp. 63-5) 

 

In lead pursuit, the fuselage of the attacker is actually aimed ahead of the target.  The 

attacker is able to close on a faster target, but will require an increasingly smaller turn 

radius, and an increasingly faster turn rate to maintain his positional advantage.  [Ref. 1]  

In lag pursuit, the fuselage of the attacker is aimed behind the target.  The attacker is able 

to avoid overshooting the target, but it can be difficult to obtain the position necessary for 

a shot opportunity.  [Ref. 1] 

 Based on these two references, it can be seen that success in short range air 

combat will likely be based on any combination of the below characteristics:  turn radius, 

turn rate, velocity, acceleration, climb performance, energy management, and fuselage 

reorientation.  These performance criteria will be examined more thoroughly in Chapter 

II; the rest of this chapter will study some other aspects of aerial combat that will play a 

large role in finding time-optimal maneuvers. 

 

B. POST-STALL FLIGHT 

 The post-stall region has been a source of considerable interest and research in the 

aviation community over the past two decades.  It is characterized by separated and 

reverse flow over the wing, loss of lift, and a steep increase in drag.  As can be seen in 

Figure 3, stall occurs at 
maxLC .  [Ref. 3]  The AOA range past that point is the post-stall 

region.   Notice,  though,  that  while  CL  decreases  significantly  after the airfoil or wing  
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stalls, it doesn’t plummet to zero.  It actually begins to increase again, and for a fighter 

aircraft with swept wings, it may increase to a second, smaller peak before finally 

tapering off. 

 
Figure 3.   Maximum Lift Coefficient (From: Ref. 3, pp. 282) 

 

What the previous two observations mean is that an aircraft can still be flyable in 

the post-stall region provided that several criteria are met: 

1. The aircraft has enough thrust to overcome the huge drag increase. 

2. The aircraft has controls that will not be rendered ineffective by separated 

flow over the wings and tail. 

3. CL remains great enough in post-stall to overcome the aircraft’s weight. 

Hence the reason that the post-stall region has only been a fairly recent area of study:  

T/W ratios needed to increase, 
maxLC  values needed to increase, and non-aerodynamic 

controls (such as TV) had to be developed before an aircraft would be capable of 

controlled flight in this very adverse aerodynamic region.  Now that these advances have 

taken place, both simulation and flight test studies are being performed in this new flight 

regime. 

 NASA took a leading role in this testing in the mid 1980’s by creating the High 

AOA Technology Program (HATP).  The goals of the program were to “…provide flight-

validated aircraft design tools and to improve the maneuverability of aircraft at high 
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angles of attack.”  [Ref. 4]  This was done through wind-tunnel testing, CFD modeling, 

and flight testing; results were shared at conferences hosted by NASA every two years 

between 1990 and 1996.  (More detailed information concerning the HATP can be found 

in Ref. 5-7.)  NASA was not the only organization to venture into the study of high AOA 

and post-stall maneuverability:  the Air Force and Navy both joined with NASA for 

different projects, MBB in Germany conducted extensive research on the subject, and 

TsAGI in Russia performed extensive flight testing.  The next subsection will discuss 

some of what has been learned about post-stall flight by these various groups, and the 

possible implications that operating in the post-stall regime will have on time-optimal air 

combat maneuvers. 

 

1. Supermaneuverability 

Herbst (of MBB) first coined the term supermaneuverability.  In his words, it is 

...a term for combined post-stall (PST) and direct force (DFM) capability.  
PST represents the ability of the aircraft to perform controlled tactical 
maneuvers beyond maximum lift angle of attack up to at least 70 deg; 
DFM represents the ability of the aircraft to yaw and pitch independently 
of the flight path, or to maneuver at constant fuselage attitude.  [Ref. 8: p. 
564] 

Herbst made the assertion in his 1980 paper that supermaneuverability would be one of 

the key enabling technologies for future fighter aircraft.  This claim was partly based on 

the results of extensive manned and unmanned flight simulations performed at MBB, 

which observed the following advantages of a supermaneuverable fighter (SF) over a 

conventional opponent: 

1. “Exchange ratio of 2:1 with missiles 

2. Exchange ratio of 10:1 with guns 

3. Exchange ratio of 3:1 with guns and missiles 

4. 5 wins out of 6 fights (hits without counter hits) 

5. Withstands two conventionally equal threats”  [Ref. 8: p. 566] 
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Based on these results, and Herbst’s description of an example supermaneuver 

now commonly known as a Herbst Reversal [Ref. 8], it is obvious that 

supermaneuverability should be an essential capability of any new fighter aircraft.  The 

dynamic maneuvers possible in the post-stall region, the freedom from purely 

aerodynamic control surfaces, and the ability to aim the aircraft’s fuselage and weapons 

independent of the direction of flight combine to make a SF extremely lethal in the short 

range air combat arena.   For these reasons, time-optimal air combat maneuvers will 

likely be faster, and very different in appearance when performed by a SF. 

The feasibility of this supermaneuverability concept was demonstrated 

independently, and around the same time, by two different organizations:  NASA in the 

US (through the HATP program), and TsAGI in Russia.  Analytic research of post-stall 

flight was started at TsAGI in the early 1980’s, shortly after the possibility of 

supermaneuverability was first discovered.  [Ref. 9]  In 1987, after several years of 

research, Yu. N. Zhelnin proposed that a “short duration...dynamic maneuver” [Ref. 9] 

could be performed by a standard Su-27 or MiG-29.  TsAGI collaborated with the P.O. 

Sukhoi design office and the Flight Research Institute to perform the necessary testing 

and preparation.  Su-27 test pilot Victor Pugachev first publicly performed the 

supermaneuver in May, 1989.  Now commonly known as the “Pugachev’s Cobra,” the 

maneuver has been performed at international air shows around the world by many pilots 

in both the Su-27 and MiG-29. 

For NASA’s program, a McDonnell Douglas F-18 was selected as the test bed 

aircraft for supermaneuverability, and was named the High Alpha Research Vehicle 

(HARV).  [Ref. 4]  After several years of research in the mid 1980’s, and extensive 

reassembling of the aircraft, the HARV took its first flight on April 2, 1987 [Ref. 4]; this 

began a nine-year career of flight testing, resulting in numerous successful 

demonstrations of post-stall maneuverability and controllability.  Both the NASA and 

TsAGI programs showed the tremendous combat potential of a SF or STVF, in terms of 

fuselage pointing, maneuvering beyond the stall AOA, and performing supermaneuvers 

like   the   Cobra   and   Herbst   Reversal.    They   also  identified  areas  requiring  more  
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development to fully exploit the post-stall region, the most significant of which was the 

area of controls.  Controllability is a major issue in the post-stall regime, and will be 

discussed more in the next section. 

 

C. THRUST VECTORING 

The goal of TV is to partially redirect the thrust of an aircraft up or down to 

induce pitch, left or right to induce yaw, and (for two engine aircraft) asymmetrically up 

and down to induce roll.  There are two primary application for this technology:  the first 

is to increase the agility of a conventional fighter aircraft by pairing TV with standard 

aerodynamic control surfaces to improve the aircraft’s ability to rapidly change its 

orientation.  The second, and arguably more important application, is to use TV on a SF 

to provide primary control of the aircraft at high AOA, where conventional control 

surfaces are rendered ineffective by flow separation. 

This second type of TV equipped fighter is classified by Gal-Or as a Partially 

Vectored Aircraft [Ref. 10].  Gal-Or discusses another type of fighter (which he names a 

Pure Vectored Aircraft [Ref. 10]) that uses only TV for control of the aircraft, and has no 

conventional control surfaces (i.e. no rudder, ailerons, elevator, or flaps).  For this 

theoretical aircraft, 

...the flight-control forces generated by the conventional, 
aerodynamically-affected, external control surfaces of the aircraft, are 
replaced by the stronger, internal, thrust forces of the jet engine(s).  These 
forces may be simultaneously, or separately, directed in all directions, i.e., 
in the yaw, pitch, roll, thrust-reversal, and forward thrust coordinates of 
the aircraft.  [Ref. 10: p. 29] 

In short, a pure vectoring fighter (PVF) would have a similar or greater advantage over a 

supermaneuverable, TV fighter (STVF) than a SF has (and has demonstrated) over a 

conventional fighter (CF).  The primary reason for that advantage is very straightforward:  

the SF or STVF remains controllable in the post-stall region, and can therefore perform 

maneuvers that a CF cannot; hence the combat advantages enumerated in the previous 

section.  Likewise, while a SF or STVF is controllable in post-stall, a PVF theoretically 

would have the same control power in the post-stall region as it does in conventional 
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flight (since its controls are independent of the external air flow).  Therefore, it would be 

able to outperform a SF or STVF in post-stall, and consequently would be the most 

capable fighter aircraft possible until a breakthrough in engine technology comes along. 

 For the purpose of this study, the PVF will not be used for analyzing time-optimal 

maneuvers, because there is no data available for such an aircraft.  However, it can be 

expected that a PVF would be able to perform even faster and more dynamic maneuvers 

than are currently possible.  So, concerning aircraft that are currently in existence, or at 

some stage of testing or development, partial TV is the key to achieving 

supermaneuverability.  The table below lists most of the significant TV equipped aircraft 

that have been developed to date: 

 
Table 1.   Thrust Vectoring Aircraft 

(Test flights) Experimental Aircraft 

1987-96 F-18 HARV (High Alpha Research Vehicle) 

1990- X-31 EFM (Enhanced Fighter Maneuverability) 

1993-95 F-16 MATV (Multi-Axis Thrust Vectoring) 

1996- 
F-15 ACTIVE (Advanced Control Technology for 

Integrated VEhicle) 

(First flight) Testing Phase Aircraft 

1996 Su-37 Super Flanker 

(Enter service) Production Aircraft 

2005 F-22 Raptor 

 

While very little data is available on the more recent aircraft like the Raptor and the 

Super  Flanker,  a  wealth  of  information  is  available on the earlier TV projects like the  
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HARV and EFM.  For this reason, and because both aircraft are extremely capable (but 

very different) STVF’s, the HARV and EFM will both be used in this study for time-

optimal maneuver simulations. 

 

D. UNMANNED COMBAT AERIAL VEHICLES 

Although UAV’s have been in production for quite some time, even those that are 

designed for military combat roles (like the Predator) are typically only used as 

reconnaissance or strike weapon delivery systems.  However, there is research and testing 

being done now to develop a true combat UAV.  The Navy, for example, has contracted 

Boeing to develop a UCAV that is currently designated the X-45.  [Ref. 11]  

Unfortunately, development of the X-45 is not at a point where it could be included in 

this study.  Also, it is not known at this time whether or not the X-45 is being developed 

with air-to-air combat in mind.  However, there is definitely potential that a 

supermaneuverable UCAV designed for short range air combat would out-fly even the 

most advanced air superiority fighters currently being produced. 

One advantage of a UCAV over a manned fighter, of course, is that load factor (n) 

is only a structural consideration.  However, some studies have shown that there is a 

relaxation of n when performing supermaneuvers in the post-stall region.  [Ref. 8]  

(Likely due to the sharp decrease in speed that is very characteristic of a  number of 

supermaneuvers.)  Even if that is the case, there are other potential advantages that a 

UCAV could bring to air combat.  For one, while n may not be a problem for manned 

aircraft in post-stall flight, n&  may still be a limitation.  Also, the slightly smaller size of 

UCAV’s would lead to smaller moments of inertia, and hence faster roll, pitch and yaw 

rates; this increased agility would be an even greater advantage when coupled with 

supermaneuverability, as it would allow very fast pointing of the fuselage independent of 

the aircraft’s velocity vector.  (Which, if that pointing could be done faster by a UCAV 

than a manned aircraft, would translate to less energy lost in a post-stall maneuver, and 

increased ability of the UCAV to continue the fight or engage another opponent.)  Also, a  
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UCAV would be the ideal platform for a PVF:  without the need for a cockpit, the UCAV 

could be an engine mounted on a flying wing, with a design that would take full 

advantage of pure TV. 

Gal-Or discusses the potential benefits of a supermaneuverable UCAV in his text.  

He also lists possible roles that such an aircraft would be perfectly suited for, including 

helicopter killer, UAV killer, and ship protector, all of which would take advantage of the 

amazing post-stall maneuverability of such an aircraft.  [Ref. 10] 

The important fact about UCAV’s for the purpose of this study is as follows:  

while UCAV’s will most likely be remotely piloted, their air-to-air combat potential 

could be significantly increased if they were preprogrammed with a “library” of time-

optimal maneuvers.  That is, during air-to-air combat, the UCAV could detect a hostile 

aircraft at a certain position, and based on that position and its rate of change, a maneuver 

may be selected from its electronic library that corresponds to a minimum time maneuver 

to get the UCAV into a firing position.  Or at the very least, a study of time-optimal 

maneuvers could be made with a simulation of the UCAV (like the ones that will be used 

in this study), and hundreds of time-optimal maneuvers could be calculated and used as 

training tools for UCAV operators.  In any case, the process of categorizing and finding 

time-optimal maneuvers could definitely be applied to the emerging field of UCAV’s. 
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II. AIR COMBAT MANEUVERING 

A. DISCUSSION 

As previously stated, the goal of this thesis is to develop several time-optimal air 

combat maneuvers.  The primary application for these maneuvers is in the field of air 

combat maneuvering (ACM), which for this study will be defined specifically as the 

positioning and orienting of a fighter aircraft to attack an opponent or evade an 

opponent’s attack.  These two elements of ACM (position and orientation) are related to 

different air combat tactics, which Shaw calls the “energy” and “angles” fights.  [Ref. 1]  

The goal of the energy fight is to develop an energy advantage over an opponent that can 

be used to maneuver into a firing position.  The goal of the angles fight is to achieve a 

positional advantage from which a shot (or snapshot) can be made.  In addition to the 

obvious goal of giving the attacker the first firing opportunity, both tactics have a 

secondary goal of denying that opportunity to an opponent.  However, in this study only 

the attacker is considered, and therefore the maneuvers developed will not be “extended” 

combat maneuvers that are functions of the opponent’s response to the attacker.  Instead, 

they will be “instantaneous” maneuvers that can be employed by the attacker as soon as 

the conditions of the engagement match those of the maneuver. 

For the optimization process that will be discussed in Chapter V, these 

instantaneous maneuvers must be defined mathematically in terms of the change, or delta, 

they affect on an aircraft’s flight condition.  The important flight condition variables for 

most maneuvers will be the aircraft’s position, velocity, and orientation.  (These variables 

are discussed in more detail in Chapter III, on page 26 and following.)  For example, a 

minimum time climb from 10,000 to 11,000 ft would be expressed as a H∆  of 1000 ft.  

If the goal of the maneuver was not only to climb 1000 ft, but to complete the maneuver 

at the aircraft’s initial velocity (i.e., the velocity at the beginning of the maneuver), that 

additional constraint would be expressed as a V∆  of 0 fps.  The maneuver could be made 

even more specific by adding additional constraints, or it could be made more general by 

“relaxing” constraints.  For example, instead of saying that the velocity at the end of the 

maneuver must be equal to the initial velocity, the final velocity could be set equal to the 
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initial velocity ±20 fps.  Once  a maneuver is completely defined in this way, the 

optimization code will calculate the flight path and control inputs necessary to achieve 

that delta in minimum time. 

The majority of this chapter will be spent analyzing current air combat 

maneuvers, and translating them into the mathematical delta expressions as described 

above.  Extended combat maneuvers will be broken into phases so that they can be 

defined in the same way.  Once several maneuvers have been analyzed, similar delta 

expressions will be categorized into “families” of air combat maneuvers.  Additional 

families will be included based on maneuvers described in other references.  From this 

final list, four families of maneuvers will be selected for optimization. 

 

B. PERFORMANCE CRITERIA 

Shaw does a very thorough analysis of fighter aircraft performance in the 

appendix of his text.  [Ref. 1]  This section will briefly discuss some of the terms that he 

defines there, some of which have already been mentioned in the “Air-to-Air Combat” 

section of Chapter I.  The main purpose of this section, though, is to define three general 

ACM metrics.  These three metrics will be used to help explain why the three test aircraft 

in this study perform maneuvers differently, and why one aircraft may be able to perform 

certain maneuvers much faster than one or both of the others. 

The first ACM metric is “maneuverability,” which will be defined as the ability to 

change the aircraft’s velocity vector.  Some terms that are commonly related to 

maneuverability are turn radius and turn rate.  The latter is a measure of how much time 

is required to complete a turn, and the former is a measure of how much distance is 

required to complete a turn.  For non-level turns (i.e. turns that involve maneuvering in 

both the horizontal and vertical plane), the turn radius term can be replaced with “turn 

volume,” which defines the volume of space required to complete the turn.  All three 

terms are strongly influenced by velocity:  in general, slower speeds minimize turn radius 

and turn volume, while higher subsonic speeds near an aircraft’s corner velocity 

maximize turn rate.  A balance between turn rate and turn (or maneuvering) volume will 

maximize an aircraft’s maneuverability. 
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The next metric that will be used to study and compare the three test aircraft is 

“agility.”  This will be defined quite simply as the ability of an aircraft to change its 

orientation, or equivalently, its ability to pitch, roll and yaw.  Agility is largely a function 

of the aircraft’s control power and moments of inertia.  For example, an aircraft with a 

large yaw moment of inertia (IZ) will inherently have a low yaw rate due to the mass that 

has to be rotated about the aircraft’s z-axis.  However, that low yaw rate can be 

compensated for with sufficient rudder power (
rnC

δ
), or by adding an additional yaw 

control device like TV.  In general, a TV equipped aircraft will be more agile than a 

similar aircraft without TV due to the extra control power for pitch, yaw, and in some 

cases, roll.  (This increased agility will be even more pronounced in the post-stall region.)  

Also, an aircraft with smaller moments of inertia, like a UCAV, will typically be more 

agile than another aircraft of comparable technology. 

The last ACM metric is “available power.”  This term is closely related to specific 

excess power  (PS), which is defined as the rate of change of energy normalized by the 

aircraft’s weight [Ref. 12].  (See the equations below:) 

 S
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W
−
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As can be seen from the second equation, PS can either be converted into a change in 

altitude or a change in velocity.  Available power, then, will be defined as the ability of 

an aircraft to climb or accelerate.  This metric will be very important for comparing how 

well different fighters can maneuver in the vertical plane, and how well different fighters 

could re-engage or escape from a fight after performing a maneuver that resulted in a 

large loss of energy.  A high T/W ratio will greatly improve an aircraft’s available power.  

(Which can be seen by separating terms in the first equation.) 
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C. SAMPLE MANEUVERS 

The format of this section will be to take each maneuver in turn, describe and 

illustrate the maneuver, and then translate the maneuver into a mathematical delta.  As 

previously mentioned, extended maneuvers will be broken into phases that could be 

considered instantaneous maneuvers, and one or more of those phases will be expressed 

as a mathematical delta. 

 

1. Split-S 

The Split-S is a maneuver performed in the vertical plane that reverses the 

heading of an aircraft.  The maneuver is essentially the second half of a loop:  the pilot 

rolls the aircraft until inverted, pulls the aircraft into a dive, and then pulls the aircraft out 

of the dive and back to straight and level flight. 

 
Figure 4.   Split-S 

 

This maneuver could be expressed very simply as a minimum time heading change 

( 180ψ∆ = o ) that is completed with essentially no down range or cross range 

displacement from the starting point ( 0X∆ =  and 0Y∆ = ).  There is, however, a loss in 

altitude ( H∆ ), which is traded for increased airspeed ( V∆ ).  The primary application for 
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this particular maneuver would be following a head-to-head pass with a lower opponent, 

where the loss in altitude would not be compromising. 

 

2. Low Yo-Yo 

The low yo-yo is an out-of-plane maneuver that can be used to turn inside of an 

opponent.  The dive at the beginning of the maneuver reduces the component of velocity 

in the forward direction, reducing the attacker’s turning radius.  The climb at the end of 

the maneuver reduces velocity sufficiently so that the attacker doesn’t overshoot the 

bogey while aiming for a shot.  (For the high yo-yo, on the other hand, the attacker 

climbs first to prevent overshoot, turns inside the bogey due to his lower speed, and 

regains speed at the end of the maneuver by diving towards the bogey for a shot.) 

 
Figure 5.   Low Yo-Yo  (From: Ref. 1, pp. 74) 

 

This is essentially a two-phase maneuver:  the first phase (from point 1 to 2) is the 

dive, and the second phase (from point 2 to 3) is the climb.  The reason the attacker 

performs this maneuver in the first place is because he is unable to turn quickly enough in 

the horizontal plane to maintain his lag pursuit position.  Therefore, the first phase of this 

maneuver could be considered a minimum time 90º turn ( 90ψ∆ = o ).  This can be seen 

by comparing the change in the bogey’s heading angle from point 1 to 2, with that of the 

attacker:  the bogey completes a 90º turn at point 2, while the attacker has turned 90º 

roughly two-thirds of the way between point 1 and 2.  (In fact, if the attacker were still in 
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the same plane as the bogey at the end of his 90º turn, or were able to rapidly pitch his 

nose up, he would have a good snapshot opportunity.) 

 

3. Rolling Scissors 

The rolling scissors is an extended maneuver characterized by the two fighter 

aircraft involved spiraling around each other in an attempt to maneuver into a good firing 

position (typically above and behind the opposing fighter).  This is done by one of the 

fighters pulling up to climb and reduce speed, so that they cross above the flight path of 

the opposing fighter (see the defender’s position at time 3 and 4 in the figure below).  The 

high fighter then pulls down and towards the opposing fighter as quickly as possible to 

get into a firing position.  If a shot is not possible for the diving fighter (or unsuccessful), 

then the roles of the fighters reverse.  (Compare the attacker’s position at times 4 and 5 to 

the defender’s position at times 3 and 4.)  This cycle would then continue until one of the 

fighters either has a successful shot, or disengages from the maneuver and escapes. 

 
Figure 6.   Rolling Scissors (From: Ref. 1, pp. 89) 

 

The two phases of this maneuver that will be analyzed are the defender’s 

movement from time 2 to 3 and from time 3 to 4.  During this time, both aircraft are 

committed to the rolling scissors, and the defender is attempting to position for a shot.  

The goal of the defender during the first phase is essentially to reduce his velocity so that 

he will be positioned behind his opponent after their next pass.  (If the necessary 
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reduction was to cut his forward speed in half, for instance, the maneuver would be 

expressed as 0.5 iV V∆ = − ⋅ , where Vi is the defender’s initial velocity.)  The goal of the 

second phase is to point the aircraft at the target.  In the rolling scissors, since the 

defender has climbed above his opponent in the first phase, this phase involves a pitch 

down (or up if the aircraft is inverted) and some rudder input to yaw the aircraft towards 

his opponent.  ( 30θ∆ = − o  and 30ψ∆ = o , for instance.) 

 

4. Cobra 

The Cobra is a classic post-stall maneuver that has been demonstrated in the Su-

27 and MiG-29.  The two primary characteristics of this maneuver are 1) a rapid pitch-up 

to near 90º AOA and 2) a rapid decrease in velocity by 50-75%.  (The latter is due to the 

fact that the aircraft is flying through the air on its tail when at 90º AOA, and therefore is 

incurring a huge drag penalty.)  The maneuver also results in an increase in altitude due 

to the lift generated at AOA values greater than zero. 

 
Figure 7.   Cobra Maneuver 

 

Although the Cobra is not a combat maneuver per se, there are certainly elements 

of the maneuver that could be applied to ACM.  First, the rapid velocity decrease 

( 0.5 iV V∆ = − ⋅ ) could be used to either avoid overshooting an opponent, or to evade an 

opponent by making him overshoot.  Second, the rapid pitch-up ( 110θ∆ = o ) could be 

paired with a roll or yaw to quickly point the aircraft at an opponent without taking the 

time to change the aircraft’s velocity vector.  (In fact, a more recently demonstrated 

maneuver called the Chakra has shown that an aircraft could theoretically shoot an 

opponent directly behind them by extending the Cobra past 90º to 180º.  The maneuver 
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resembles a somersault, and the aircraft actually pitches all the way from 0º to 360º AOA 

while flying in a nearly straight line – except for the altitude increase, as before with the 

Cobra.  This maneuver has been performed by the latest generation Flanker, the Su-37, 

and is pictured below.) 

 
Figure 8.   Chakra Maneuver 

 
5. Herbst Reversal 

The Herbst Maneuver, or Herbst Reversal, is another classic post-stall maneuver.  

The goal of the maneuver is quite simply to reverse the aircraft’s heading angle 

( 180ψ∆ = o ), and to complete the reversal at the same point and velocity that the 

maneuver was started from (i.e. 0X∆ = , 0Y∆ = , 0H∆ =  and 0V∆ = ).  The maneuver 

typically resembles the one illustrated in the following figure:  the aircraft pitches to a 

high AOA to stop the forward component of its velocity, puts in rudder at the top of the 

climb to point the aircraft down, and then dives to regain speed as it returns to the starting 

point.   
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Figure 9.   Herbst Reversal (max AOA = 30º) 

 

Alternatively, if the aircraft can fly to a high enough AOA, it can fly the maneuver in a 

nearly straight line by pitching up until it is almost on its back, rolling so the aircraft is 

right-side-up again, and then diving to return to its initial velocity and position. 

 
Figure 10.   Herbst Reversal (max AOA = 90º) 
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In general, an aircraft that can operate at higher AOA can perform this maneuver 

with less displacement in the X and Y directions, which minimizes the maneuvering 

space and typically reduces the time necessary to complete the maneuver.  The primary 

application for this maneuver is following an unsuccessful head-to-head to pass, where 

both aircraft need to reverse heading quickly in order to fire again. 

 

D. FAMILIES OF MANEUVERS 

After analyzing the five sample maneuvers from the previous section, it is 

apparent that there are several delta expressions that would be worth finding time-optimal 

solutions for: 

◊ 180ψ∆ = o   (This delta is the primary goal of both the Split-S and the 

Herbst Reversal; the former has the additional constraints of 0X∆ =  

and 0Y∆ = , and the latter has those constraints and two others:  

0H∆ =  and 0V∆ = .) 

◊ 90ψ∆ = o   (The goal of the first phase of the low yo-yo:  to turn faster 

than the opponent.) 

◊ θ∆  & ψ∆   (These two deltas represent pointing the aircraft at an 

opponent, which is the goal of the second phase of the rolling scissors, 

and one of the goals of the Cobra.) 

◊ 0.5 iV V∆ = − ⋅   (Braking the aircraft is the other goal of the Cobra, and 

the goal of the first phase of the rolling scissors.) 

These delta expressions will be generically referred to as “reversal,” “turning,” 

“pointing,” and “braking” maneuvers.  Each expression represents an entire family of 

maneuvers:  the reversal, for instance, when additionally constrained by 0X∆ =  and 

0Y∆ =  (but unconstrained in altitude and velocity) may result in a time-optimal 

maneuver similar to the Split-S.  When different constraints are added to the primary 

expression of 180ψ∆ = o , completely different maneuvers may result. 
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A 1982 paper by Well, Faber and Berger [Ref. 13] adds an additional two families 

of maneuvers to those listed above:  “evasive” and “slicing” maneuvers.  The goal of the 

evasive maneuvers was to make the attacking aircraft overshoot the defender; since this 

study is limited in scope to only one aircraft, this family of maneuvers is not a candidate 

for optimization.  However, the braking maneuver in the first phase of the rolling scissors 

has the same goal as the evasive maneuvers, and the Cobra is generally considered an 

evasive maneuver designed to turn the defender into the attacker; therefore this family 

would be indirectly studied by optimizing the braking maneuvers.  The goal of the slicing 

maneuvers was essentially to execute two reversals back to back, with no constraints on 

velocity, altitude, or final position.  Again, this family would be indirectly studied by 

optimizing an unconstrained reversal. 

Another family of maneuvers that could be studied are minimum time climbs.  

For a given increase in altitude, different constraints on (primarily) final position and 

velocity would result in multiple time-optimal maneuvers.  However, the primary 

application for those types of maneuvers would be for missions other than air-to-air 

combat, so they won’t be analyzed in this study.  Other families of maneuvers could be 

identified by studying a more extensive list of combat, acrobatic and post-stall 

maneuvers.  Ashley [Ref. 14] makes use of such a list for his study, choosing from a total 

of 62 combat and post-stall maneuvers a select few to analyze in detail.  However, the 

seven families of maneuvers identified in this section are a very good representation of 

the types of maneuvers most commonly seen in short range air-to-air combat. 

Based on the preceding paragraphs, the four families of maneuvers that will be 

optimized in this study are the reversal, turning, pointing and braking maneuver.  

However, these families will not be studied exhaustively, as there are too many possible 

combinations of constraints.  Two common combinations that will be used on the 

selected families of maneuvers are an “energy” constraint and a “displacement” 

constraint.  The energy constraint dictates that the altitude and velocity at the end of the 

maneuver must be the same as at the beginning of the maneuver ( 0H∆ =  and 0V∆ = ).  

This ensures that the aircraft has the same available energy, but hopefully a better 

position, as a result of the maneuver.  The displacement constraint minimizes the distance 

the aircraft travels in the horizontal plane from its starting point.  (In this case, X∆  and 
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Y∆  can be set equal to 0ft, 100ft, 500ft, etc.)  In a minimum time turn, for instance, this 

will tend to minimize the turn radius as well as the maneuver time.  These chosen 

maneuvers will be discussed in more detail when the coding is discussed in Chapter V. 
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III. EQUATIONS OF MOTION 

Equation Chapter 1 Section 1 
A. INTRODUCTION 

The goal of this chapter is to develop the six-degree-of-freedom (6DOF) 

equations of motion for an aircraft.  However, this will be a very succinct treatment of the 

subject, since the system of final equations are really what is most relevant to the rest of 

this study.  For a more thorough derivation of these equations, there are excellent texts 

available by Etkin [Ref. 15], Schmidt [Ref. 16] and others that will fill any gaps that exist 

in this chapter.  Also, many of these texts begin by deriving a set of equations for a point 

mass model, which will not be done here because this study is only concerned with the 

application of these equations to a (theoretically) physical aircraft. 

The primary reference used for the derivations that follow was a research paper 

published by NATO’s Advisory Group for Aerospace Research & Development 

(AGARD).  [Ref. 17]  Nearly all of the equations in this chapter come from that 

document, or were derived from more general expressions contained in the document.  

To jump ahead somewhat, the complete aircraft 6DOF equations of motion are a system 

of twelve coupled, nonlinear, ordinary differential equations.  Those equations will be 

derived in essentially a two step process:  first, the state variables in the aircraft problem 

will be identified and described; second, each of those variables will be evaluated in 

order to develop an equation governing how that variable changes over time.  Also, the 

twelve state variables can be classified into four equal groups that define the aircraft’s 

position, velocity, body rates and Euler angles; the next two sections of this chapter will 

follow that organization. 

The final topics of this chapter will be the aircraft stability and control derivatives 

and aircraft controls, each of which has a very large influence on the aircraft equations of 

motion.  Both topics will be discussed in general terms, while specific details about each 

topic will be addressed for each test aircraft in Chapter IV. 
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B. STATES 

1. Position 

The aircraft’s position is defined by the distances X (down range), Y (cross range) 

and H (altitude), which are all measured from an arbitrary point on the earth’s surface.  

These three terms are the first three state variables.  If the aircraft is directly above the 

arbitrary point facing down range, then these three distances are aligned with the body 

axes of the aircraft:  the x-direction going forward through the nose of the aircraft, the y-

direction going out the right wing of the aircraft, and the z-direction going down.  (The 

origin of this system is at the aircraft’s CG.)  Careful attention must be paid to sign 

convention:  the z-direction is positive going down in order to create a right-handed 

coordinate system; however, altitude is measured in the negative z-direction, creating a 

left-handed system. 

 
Figure 11.   Body-Axis Coordinate System (From: Ref. 12, pp. 2) 

 
2. Velocity 

The velocity of the aircraft that is being evaluated in the following equations is 

what the AGARD text refers to as “wind-relative velocity.”  [Ref. 17]  That is, the 

velocity of the aircraft relative to the surrounding air.  This velocity can be expressed in 

two ways:  using Cartesian coordinates or spherical coordinates.  In Cartesian 

coordinates, the velocity terms are u, v and w, and they are aligned with the x, y and z-

axes respectively.  In spherical coordinates, the velocity terms are V, α , and β , where V 

is the magnitude of the velocity vector, α  is the AOA, and β  is the sideslip angle.  
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These two systems are related by Equations (1.1), (1.2), and (1.3), and depicted 

graphically in Figure 12.   

 2 2 2V u v w= + +  (1.1) 
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 (1.3) 

 
Figure 12.   Wind-Relative Velocity Terms (From: Ref. 17, pp. 19) 

 

The spherical coordinates are more relevant for this study, and therefore V, α , 

and β  will be the second set of state variables.  However, it will be useful in the next 

section to use the Cartesian system to simplify some of the equations, so Equations (1.3) 

will be used to put our final equations in terms of our velocity state variables. 

 

3. Body Rates 

The next set of state variables defines the rotation of the aircraft about its 

principal axes:  p is the roll rate, q is the pitch rate, and r is the yaw rate.  They 

correspond to rotations about the x, y and z-axis, respectively.  Sign convention follows 

the right-hand rule:  positive roll corresponds to right wing down, positive pitch 

corresponds to nose up, and positive yaw corresponds to nose right – see Figure 11.   
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4. Euler Angles 

The familiar Euler angles of φ , θ , and ψ  are the last three state variables for the 

aircraft equations of motion.  They define the orientation of the aircraft with respect to 

earth.  They are also the basis for transforming a vector from earth-fixed axes to the 

aircraft’s body axes (where the earth-fixed axes are defined as x pointing north, y 

pointing east, and z pointing down).  As seen in the example below (Equation (1.4)), 

where Ve is an arbitrary vector in earth-fixed coordinates, the vector is transformed to the 

aircraft’s body axes by three consecutive rotations:  first by the angle ψ  around the z-

axis, second by the angle θ  around the new y2-axis, and lastly by the angle φ  around the 

new x3-axis. 

 
1 0 0 cos 0 sin cos sin 0
0 cos sin 0 1 0 sin cos 0
0 sin cos sin 0 cos 0 0 1

b eV V
θ θ ψ ψ

φ φ ψ ψ
φ φ θ θ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (1.4) 
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e

V
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φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

=

−⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 (1.5) 

The product of the three rotation matrices, which is written out in Equation (1.5), 

will be referred to as the transformation matrix.  This matrix and its inverse will be used 

in the upcoming section to transform certain state variables back and forth between the 

earth-fixed and body axes. 

 

C. SIX-DEGREE-OF-FREEDOM EQUATIONS OF MOTION 

Now that the state variables for the aircraft equations of motion have been 

identified, the four groups of variables will be analyzed in turn to develop equations for 

how these variables change over time. 
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1. Position Equations 

The equations describing the change in aircraft position with respect to time are 

very straightforward:  the velocity vector components (u, v and w) are transformed from 

the body axes to earth-fixed axes using the inverse of the matrix from Equation (1.5).  

The result of this transformation is Equations (1.6).  NOTE:  In these equations it is 

assumed that there is no wind.  Additional terms could be added to account for 

components of the wind blowing from the three earth-fixed coordinate directions (north, 

east and up). 
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Since the spherical velocity terms are being used in this study, the Cartesian terms 

u, v and w can simply be replaced with their counterparts as listed in Equations (1.3) in 

order to obtain the final position state variable equations. 
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2. Velocity Equations 

The derivation of the velocity equations starts by simply differentiating Equations 

(1.1),  (1.2),  and (1.3).  This results in Equations (1.8).  However, there are terms in these  
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equations that need to be defined in order to make them useful in our complete system of 

equations for aircraft motion.  In order to do this, the forces acting on an aircraft need to 

be analyzed. 

 2 2

2 2

2 2 2 2 2 2
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a. Forces 

In this section two sets of equations for the forces acting on an aircraft will 

be derived; both will be used to further develop the equations of motion for the velocity 

state variables.  The first set of equations is based on the principal of linear momentum.  

In Equation (1.9), F is the external applied force, m is the mass of the aircraft, and V
v

 is 

the velocity vector (with components u, v and w). 

 ( )dF mV
dt

=
v

 (1.9) 

Transforming that equation to the rotating body-axis system results in Equation (1.10); ω  

in this equation is the angular velocity vector, with components p, q and r. 

 ( ) ( )F mV mV
t
δ ω
δ

= + ×
v v

 (1.10) 

Assuming that mass is constant, the above expression can be evaluated to come up with 

the first set of force equations - (1.11).  NOTE:  Constant mass is very reasonable for this 

study, because the maneuvers being analyzed should only last a few seconds, and 

therefore the change in mass from burning fuel will be insignificant. 
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The second set of force equations come from the external forces that are 

acting on the aircraft.  These external forces include aerodynamic forces, forces due to 

gravity (and the weight of the aircraft), and the thrust produced by the aircraft.  The 

aerodynamics forces are summarized in Equation (1.12), where q  is the dynamic 

pressure, s is the reference wing area, and Cx, Cy and Cz are the coefficients of x, y and z 

force.  (These coefficients will be discussed more in the next section.)  The gravity forces 

are summarized in Equation (1.13). 
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Adding these two equations together (plus a term for thrust) results in the second set of 

force equations - (1.14).  NOTE:  The terms FX, FY and FZ in these equations are 

equivalent to those found in Equations (1.11); i.e. in both instances the terms refer to the 

external forces acting on the aircraft.  Therefore, the right hand side of these two sets of 

expressions could be set equal to each other. 

 
sin
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cos cos
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 (1.14) 

 

Now that we have the necessary expressions for the forces acting on the 

aircraft, Equations (1.8) can be modified to a useable form.  First, the variables u& , v&  and 

w&  will be replaced with their equivalent values from the first set of force equations - 

(1.11).  This will replace those undefined variables with terms that are known, or can be 

solved for:  the initial velocity vector (defined in this case by the Cartesian terms u, v and 

w), the initial angular velocity vector, and the initial external applied force.  This 

substitution results in Equation (1.15): 
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The final velocity state variable equations are found by replacing the external force terms 

with their equivalent expressions from the second set of force equations - (1.14). 
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NOTE:  The terms CL and CD that appear in this equation are related to the CX and CZ 

terms in Equation (1.14) by Equation (1.17).  Instead of being aligned with the body axes 

of the aircraft, CL and CD are aligned with the stability axes of the aircraft, which is the 

reference frame that will be used to analyze the stability and control derivatives. 
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3. Body Rate Equations 

The body rates of the aircraft are highly dependent on the aircraft’s principal 

moments of inertia, IX, IY and IZ.  For example, an aircraft with a large roll moment of 
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inertia (IX) – perhaps an aircraft with large external stores on the tips of its wings – will 

not be able to roll quickly.  Similar illustrations would apply to the other moments of 

inertia.  Therefore, it is not surprising that the equations of motion that govern the change 

in body rates with respect to time are largely functions of the moments of inertia.  In 

order to develop these equations, the moments acting on an aircraft will be analyzed. 

 

a. Moments 

In this section two sets of equations for the moments acting on an aircraft 

will be derived; both will be used to develop the equations of motion for the body rate 

state variables.  The first set of equations is based on the principal of angular momentum.  

In Equation (1.18), M is the external applied moment, and h is the angular moment vector 

(both about the CG).  The angular moment is defined in Equation (1.19).  (The matrix in 

that equation is the inertia tensor [Ref. 17]; the diagonal elements in the matrix will be 

recognized as the principal moments of inertia that were discussed earlier.  Not all of the 

terms in the inertia tensor are applicable to an aircraft, but they will all be retained for the 

moment.) 
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Transforming that Equation (1.18) to the rotating body-axis system results in Equation 

(1.20); ω  is the angular velocity vector, with components p, q and r. 

 ( )M h h
t
δ ω
δ

= + ×  (1.20) 

Assuming that mass and the inertia tensor are constant, the above expression can be 

evaluated to come up with the first set of moment equations - (1.21). 
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The second set of moment equations come from the external moments that 

are acting on the aircraft.  These external moments are caused by the aerodynamic effects 

that tend to roll, pitch and yaw the aircraft.  The aerodynamics moments are summarized 

in Equation (1.22), where q  is the dynamic pressure, s is the wing reference area, b is the 

reference wingspan, c is the reference wing chord, and Cl, Cm and Cn are the coefficients 

of roll, pitch and yaw moment.  (These coefficients will be discussed more in the next 

section.) 
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NOTE:  As before, the terms MX, MY and MZ in Equations (1.21) and (1.22) are 

equivalent; i.e. in both instances the terms refer to the external moments acting on the 

aircraft.  Therefore, the right hand side of these two sets of expressions can be set equal 

to each other. 

 

Now that we have the necessary expressions for the moments acting on the 

aircraft, we can develop an equation governing the change of the body rates over time by 

setting the two moment equations equal to each other.  This results in Equation (1.23). 
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However, it would be helpful if these equations could be uncoupled so that there is a 

separate equation governing each body rate.  This will be done by first eliminating terms 

from the inertia tensor that are negligible for our aircraft study:  IXY and IYZ.  (IXZ will be 

retained, although it is usually an order of magnitude smaller than the principal moment 
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of inertia terms for a typical aircraft shape.)  This results in a separate equation for q& , and 

two equations with p&  and r& .  These two equations can be solved simultaneously to find 

separate expressions for p&  and r& .  This process results in the final body rate state 

variable equations: 
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4. Euler Angle Equations 

The derivation of the equations governing the change in Euler angles with respect 

to time is similar to the earlier derivation of the position equations.  For those equations, 

while velocity is normally defined as the rate of change of position with respect to time, 

the aircraft’s velocity vector had to be transformed from the body axes to the earth-fixed 

axes that position is measured in.  Likewise, while the body rates are defined as the rate 

of change of Euler angles with respect to time (when bank angle and pitch angle equal 

zero), they must first be converted to same coordinate system as the Euler angle rates.  

This will be done in reverse order, and then the resulting transformation matrix will be 

inverted to obtain the necessary expression. 

Unfortunately, the coordinate system of the Euler angle rates is not orthogonal.  

[Ref. 17]  Recall the order of rotations in Equation (1.4):  the first rotation was by the 

angle ψ  around the earth-fixed z-axis, therefore ψ&  will have to be rotated by the angles 

θ  and φ  to be transformed to the aircraft’s body axes.  The second rotation was by the 
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angle θ  around the new y2-axis, therefore θ&  will have to be rotated by the angle φ .  The 

third rotation was by the angle φ  around the new x3-axis; since this axis is identical to the 

body’s x-axis, φ&  is already in the body axis coordinate system.  Equation (1.25) 

summarizes these rotations. 
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Finally, the Euler angle state variable equations are given by inverting the 

previous equation. 

 
tan sin tan cos

cos sin
cos sec sin sec

p q r

q r
r q

φ θ φ θ φ

θ φ φ
ψ φ θ φ θ

= + +

= −
= +

&

&

&

 (1.26) 

 

5. Complete Equations 

The table on the following page summarizes the complete 6DOF equations of 

motion for an aircraft in flight.  These equations assume non-relativistic mechanics, a 

rigid vehicle, no wind, constant aircraft mass, constant inertia tensor, negligible cross 

products of inertia IXY and IYZ, and thrust that acts along the x-axis.  The choice of 

spherical velocity terms creates singularities at V=0 and 90β = ± o , and there is an 

additional singularity at 90θ = ± o .  [Ref. 17] 
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Table 2.   Complete Six-Degree-of-Freedom Equations of Motion 

Position Equations 

Velocity Equations 

Body Rate Equations 

Euler Angle Equations 

 

 

D. STABILITY AND CONTROL DERIVATIVES 

In the 6DOF equations of motion, there were six terms that were described as 

force and moment coefficients:  CL, CD, CY, Cl, Cm and Cn.  Each of these coefficients, in 

turn, is a function of non-dimensional terms called stability and control (S&C) 

derivatives.  For this study, the force and moment coefficients will be expressed as the 

sum of these derivatives, following the format of this equation: 
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0 2qL L L L L

c
V

C C C C q C
α δ
α δ⎛ ⎞

⎜ ⎟
⎝ ⎠

= + + +  

In the equation, 
0LC , LC

α
, 

qLC  and LC
δ

 are all S&C derivatives.  
0LC  is the 

“baseline” lift coefficient, which is the lift coefficient at zero AOA with no control 

surfaces deflected.  LC
α

 is the change in lift coefficient due to AOA; this coefficient is 

multiplied by the AOA to calculate the incremental increase or decrease in lift coefficient 

due to AOA.  
qLC  (the change in lift coefficient due to pitch rate) functions in the same 

way, with one difference:  the pitch rate must be non-dimensionalized by the semi-chord 

over the velocity: 

 1 deg
2 deg sec secqL
c ft none
V ft

C q ⎛ ⎞⎛ ⎞ → ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(Schmidt explains the reason for using the semi-chord instead of the chord as a 

convention from thin-airfoil theory.  [Ref. 16])  Finally, the LC
δ

 term represents the 

change in lift coefficient due to a control deflection, and can be several terms depending 

on how many control surfaces the aircraft has that affect lift.  Assuming for this example 

that the aircraft has only one control surface to effect lift, LC
δ

 is simply multiplied by 

that control surface’s angular deflection to calculate the increment change in lift 

coefficient.  The sum of these terms at a given instant in flight give the total lift 

coefficient needed in the aircraft equations of motion. 

 As observed in the example of lift coefficient, there are several “categories” of 

S&C derivatives:  baseline values (
0LC ), control terms ( LC

δ
), stability terms ( LC

α
), and 

what are referred to as damping terms (
qLC ).  In general, the longitudinal coefficients 

(CL, CD, and Cm) have baseline values, while the lateral-directional coefficients (CY, Cl 

and Cn) do not.  Also, baseline values are not to be confused with bias values, which 

AGARD describes as “linear extrapolation[s] from the average α and δ  of the maneuver 

to the zero point.”  [Ref. 17]  (Although bias values are added to their respective 

coefficients in the same way that the baseline terms are.)  The stability terms are 
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derivatives of the force and moment coefficients with respect to α  (for longitudinal 

terms) and β  (for lateral-directional terms).  The damping terms are derivatives of the 

force and moment coefficients with respect to q (for longitudinal terms) and p and r (for 

lateral-directional terms).  Finally, the control terms are derivatives with respect to 

control surface deflections, which will be discussed in the next section.  More detailed 

analyses of the S&C derivatives and the physics behind them can be found in the texts by 

Etkin and Schmidt referenced earlier.  

An important fact about the S&C derivatives is that they are functions of the 

aircraft and the aircraft’s state.  Therefore, for a given aircraft, there is a different set of 

S&C derivatives for any flight condition.  However, the non-dimensional S&C 

derivatives depend primarily on the variables of AOA, altitude and velocity.  For this 

study, altitude change during any of the time-optimal maneuvers will not be enough to 

significantly affect the S&C derivatives, so that variable can be eliminated.  Velocity 

change will definitely be a factor, especially since a sharp velocity drop is very 

characteristic of post-stall maneuvers; however, that data was not available for HARV, so 

the S&C derivatives for that aircraft will be calculated for a reference speed of Mach 0.4, 

which should be a very reasonable and accurate approximation due to the short duration 

of any low speeds.  AOA change will be taken into consideration by expressing the S&C 

derivatives as functions of AOA.  (This will also cause some of the force and moment 

coefficients to be nonlinear since, for example, ( )LC
α
α α⋅  is not linear.)  More specific 

information about the S&C derivatives will be discussed for each test aircraft in the next 

chapter. 

 

E. CONTROLS 

The aircraft controls are a pilot’s feedback system into the equations of motion.  

Control inputs affect the force and moment coefficients, and hence allow a pilot to affect 

the state of the aircraft.  Physically, nearly all control surfaces on aircraft today function 

by affecting the flow of air over the aircraft to induce a force or moment in the desired 

direction.  TV is the exception to this rule.  As mentioned in the last section, a control’s 

influence on the force and moment coefficients is calculated by multiplying a control 
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derivative by the corresponding control surface deflection.  This deflection is the angular 

displacement of the control surface from a reference position.  The sign convention 

followed in this study will be that trailing edge down (TED) and trailing edge left (TEL) 

are positive deflections.  For anti-symmetric controls, the displacement will be measured 

as the left side position minus the right side position (i.e. with the left aileron five degrees 

TED and the right aileron five degrees TEU, the aileron deflection will be a positive ten 

degrees.) 

There is a long list of control surfaces that are in use by current conventional 

aircraft, and the three test aircraft of this study will use most of those.  For longitudinal 

control, the primary controls will be the elevator, stabilators, and canards.  Secondary 

controls include pitch TV, TEF’s, LEF’s, symmetric aileron deflection, and speedbrakes.  

For lateral-directional control, the primary controls will be the ailerons and rudder.  

Secondary controls include yaw TV and differential (or anti-symmetric) stabilator 

deflection. 

One last note on controls before describing the test aircraft:  controls are limited 

by a physical maximum deflection (positive and negative), and a mechanical maximum 

deflection rate.  Both of these limits will be incorporated into the aerodynamic models 

described in the next chapter. 
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IV. AERODYNAMIC MODELS 

A. SELECTED TEST AIRCRAFT 

Three different aircraft were used in this study.  The first of these aircraft, the 

Navion, was used to “calibrate” the aircraft optimization code.  It is a very basic airplane 

with conventional control surfaces, and therefore was a good candidate to use for 

debugging the code and running new maneuvers.  The other two aircraft are of primary 

interest for finding time-optimized combat maneuvers:  the F-18 HARV and the UCAV-

X (based on the X-31 EFM).  Both are STVF’s, and are representative of the current 

capability of fighter aircraft.  However, the two aircraft are different in almost every other 

aspect.  The F/A-18 Hornet that the HARV is modified from is a two-engine multi-role 

strike fighter, while the UCAV-X is a single-engine fighter designed specifically for air-

to-air combat.  Hence, they will likely perform differently when given the same 

maneuver.  The next sections describe each aircraft in turn, as well as how the aircraft 

data was coded. 

 

B. NAVION 

 
Figure 13.   Navion 

 
1. General Description 

The NA-154 Navion was built by North American Aviation, Inc. following World 

War II, and was first flown in April, 1946.  A prototype was created for the United States 

Army  Air  Force  and  designated  the L-17A.  Several other variants of this aircraft were  
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produced for the US Air Force over the next twenty years, and were used for training and 

personnel transport, among other missions.  Currently, many individuals own and fly the 

Navion as a personal airplane.  [Ref. 18] 

The physical and aerodynamic data for the Navion was found in an appendix of 

Schmidt’s text [Ref. 16], and was coded into a MATLAB script file titled 

LoadAircraft1.m.  The script file creates a single array in the MATLAB environment, and 

every element of that array stores a different piece of information about the Navion:  

wing chord, wing span, mass, etc.  When the optimization code runs the script file, all of 

the data about the aircraft is made available for calculating the equations of motion and 

solving for a time-optimal maneuver.  (This process will be discussed in more detail in 

the second section of Chapter V.)  LoadAircraft1.m is included in Appendix A for 

reference. 

 

2. Physical Parameters 

The Navion is a simple propeller-driven airplane that can seat four people in most 

configurations.  It is fairly small when compared to the other aircraft in this study, and 

definitely much lighter.  It has low-mounted rectangular wings with some built-in 

dihedral and a very small amount of taper.  It has the conventional control surfaces of an 

elevator, a pair of ailerons, and a rudder to control pitch, roll and yaw, respectively.  The 

maximum deflection of these control surfaces was estimated (as were the AOA and load 

factor limits), and no deflection rate limits were included in the aerodynamic model.  The 

lack of rate limits means that the controls can deflect instantaneously from one setting to 

another, which is of course unrealistic.  On the other hand, this greatly simplifies the 

model.  Since the purpose of the Navion is to validate and test the optimization code, this 

unfaithfulness to the reality of a Navion is acceptable.  Lastly, “cruise thrust” was 

calculated by setting drag (at the reference altitude and velocity) equal to thrust; this was 

then defined as 80% of max thrust.  (Some of the pertinent data for the Navion is listed in 

the table on the following page.) 
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Table 3.   Summary of Navion Physical Data 

Navion (general aviation aircraft) 

length: 27.5 ft reference altitude: sea level 

wing span: 33.4 ft 

weight: 2,753 lb 

reference velocity: 176 fps 

M = 0.16 

max AOA: 20º T/W (at altitude): 0.15 

longitudinal controls: Elevator 

lateral-directional “ : ailerons, rudder 

 

3. Aerodynamic Characteristics 

The aerodynamic characteristics of an aircraft are described by that aircraft’s 

S&C derivatives.  For the Navion, these derivatives are all constant values, which can be 

seen by looking at the LoadAircraft1.m file in Appendix A.  As mentioned in the 

previous chapter, however, S&C derivatives are actually functions of the following state 

variables:  AOA, altitude and velocity.  The flight condition these S&C derivatives are 

valid for, then, is when the Navion is at zero AOA, and flying at the reference altitude 

and velocity that are listed in the above table.  (Since the Navion can’t fly at sea level, a 

starting altitude of 1000 or 2000 ft will be used instead; the difference should not be a 

source of error.) 

During the course of most maneuvers, though, the Navion will at some point be 

flying at speeds and AOA other than the reference values.  Any speed difference from the 

reference value should not be a source of major error, for the following reasons:  first, the 

velocity range the Navion can fly at (from stall speed to perhaps Mach 0.2 in a dive) is 

very small, and therefore the difference from the reference velocity will never be an 

extremely large value.  Second, at low subsonic speeds and small AOA, a velocity 

difference of less than Mach 0.2 will not produce a significant change in the S&C 

derivatives; since the entire velocity range of the Navion is smaller than Mach 0.2, it is 
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fair to claim that the constant values used for the S&C derivatives are representative of 

the Navion flying at any speed.  Differences in AOA from the reference value of zero is a 

different story, as a 10º difference can make a noticeable change in the S&C derivatives.  

This is a small sacrifice in accuracy that has to made for an aerodynamic model as neat 

and simple as the Navion. 

 

C. F-18 HARV 

 
Figure 14.   F-18 HARV 

 
1. General Description 

The F/A-18 Hornet was built by the McDonnell Douglas Corporation for the 

Navy and Marine Corps, and first flew in November 1978.  As a strike fighter it can 

perform both air-to-air and air-to-ground missions, including escort, interdiction, close air 

support, etc.  Until recently, two squadrons of Hornets were stationed about every US 

Aircraft Carrier; currently the Navy’s Hornet squadrons are in the process of being 

replaced with the newest variant of the aircraft, the F/A-18E and F Super Hornet. 

The HARV was modified from a pre-production F-18, and hence had not yet been 

designated as an F/A-18.  It was only the sixth full-scale Hornet produced by McDonnell 

Douglas (Number 160780), and was used by the Naval Air Test Center at Patuxent River, 

MD for high AOA and spin testing.  In 1984, the Navy delivered the aircraft to the 

NASA Dryden Flight Research Center in Edwards, CA.  After extensive reconstruction 

and  rewiring,  the HARV officially became NASA test aircraft #840, and was nicknamed  
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the “Silk Purse.”  The HARV had a distinguished nine year career with NASA from 1987 

to 1996, completing 385 test flights and demonstrating controlled maneuvers at high 

AOA.  [Ref. 4] 

The primary sources of data on the HARV were two NASA Technical Papers 

written in 1997 and 1999 by Iliff and Wang [Ref. 19-20].  The primary goal of these 

papers was to determine the S&C derivatives of the HARV at high AOA.  (This will be 

discussed more in the appropriate section below.)  Those papers also included detailed 

physical and control data on the HARV.  Three other documents were needed in order to 

create a complete aerodynamic model of the HARV:  a West Virginia University (WVU) 

report sponsored by NASA [Ref. 21] and the original McDonnell Douglas Corporation 

(MDC) aerodynamic datasets on the F/A-18 [Ref. 22-23].  The data from these five 

sources was coded into the MATLAB file LoadAircraft2.m, which is included in 

Appendix A. 

 

2. Physical Parameters 

The HARV is a single-seat, twin-engine fighter easily recognized by its twin 

vertical stabilizers that are canted outward from the centerline.  Its wings are swept and 

tapered, and connected to the body with leading-edge extensions.  In place of elevators, 

the HARV has all-moving horizontal stabilators; when deflected simultaneously they 

affect pitch, but they can also be deflected differentially like ailerons in order to affect 

roll (and to a much smaller extent, yaw).  The TEF’s can likewise be deflected 

differentially, but they were not flight-tested and analyzed in this configuration in the Iliff 

and Wang reports, therefore in this model they will only be used for longitudinal (pitch) 

control.  In addition to the list of controls in the table below, the HARV is equipped with 

LEF’s and a speedbrake located between the vertical stabilizers; as little to no data was 

available on the effects of these controls in Ref. 19-23, they are not included in the 

aerodynamic model.  (This should not affect the accuracy of the model very much as they 

are not primary controls in the longitudinal or lateral-directional channel.) 

The TV system on the HARV is comprised of three vanes circling the edge of 

each engine.  These vanes can be deflected in concert to achieve an equivalent “pitch 
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vane” or “yaw vane” deflection.  (The moment arm between the engines is not large 

enough to create a rolling moment by deflecting thrust asymmetrically.)  While more 

detailed information on the TV system can be found in the Iliff and Wang reports, the 

important information necessary for the HARV aerodynamic model was the following: 

the control derivatives associated with the pitch and yaw vanes, the maximum and 

minimum pitch and yaw vane deflections, as well as the maximum deflection rate of the 

vanes. 

Unlike the Navion, the deflection limits and deflection rate limits for all control 

surfaces of the HARV were taken directly from the Iliff and Wang reports.  Therefore the 

HARV model should have the same control power and physical limitations as the actual 

aircraft.  The weight used in the model was the weight of the aircraft in its Phase II and 

Phase III flight test configuration:  60% fuel, TV system installed, pilot and support 

equipment included.  The maximum available thrust was calculated using a program 

named GASTURB:  all of the information for the General Electric F404-GE-400 engine 

that powers the HARV was entered into the program, as well as the reference altitude and 

Mach number.  While each engine produces 16,000 lb of force on a test stand at sea level, 

GASTURB calculated that they only each produce 6,173 lb of force at the specified flight 

condition.  The resulting T/W ratio and other pertinent physical data are listed in the table 

below. 

 
Table 4.   Summary of F-18 HARV Physical Data 

F-18 HARV (Navy fighter converted by NASA) 

length: 56 ft reference altitude: 30,000 ft 

wing span: 37.4 ft 

weight: 36,099 lb 

reference velocity: 398 fps 

M = 0.4 

max AOA: 70º T/W (at altitude): 0.34 

longitudinal controls: stabilator, TEF’s, symmetric ailerons, pitch TV 

lateral-directional “ : ailerons, rudder, differential stabilator, yaw TV 
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3. Aerodynamic Characteristics 

The S&C derivatives for the HARV were calculated at or near the altitude and 

Mach number listed in the table above.  They were analyzed from 10º AOA to 60 or 70º 

AOA, in 10º increments.  Unfortunately this is a very large interval, especially at high 

AOA where S&C derivative values can change noticeably in less than 5º.  Nevertheless, 

while the data may be sparse, it is still very good, and certainly the best high AOA flight 

test data available for the HARV. 

Originally this data was coded into a separate file named SCTables2.m as look-up 

tables for each S&C derivative; the first version of LoadAircraft2.m would take the 

current AOA, access the look-up table file, and calculate the value for each S&C 

derivative at that specified AOA.  For AOA values between those stored in the look-up 

tables, MATLAB would interpolate the appropriate value using a cubic curve-fit.  This 

curve-fit resulted in S&C derivative plots, or curves, that very closely matched Iliff and 

Wang’s fairings in the case of every derivative.  For AOA values outside the range of 

those in the look-up tables (0-10º, and in some cases 60-70º), MATLAB would 

extrapolate the appropriate value, again using a cubic curve-fit.  As extrapolation can lead 

to notoriously bad results, every S&C derivative plot was analyzed (42 in the case of the 

HARV):  for those that departed to unrealistic values at zero AOA, a zero AOA value 

was chosen for that derivative and inserted into the look-up table.  This process resulted 

in a look-up table that produced very good values for S&C derivatives throughout the 

AOA regime of the HARV that was desired for this study, 0-70º. 

The WVU report provided all of the axial force derivatives.  The Iliff and Wang 

report on longitudinal S&C derivatives [Ref. 19] only contained normal force and 

pitching moment derivatives; in order to calculate the lift and drag, both normal and axial 

derivatives were needed.  (Normal and axial force coefficients are related to lift and drag 

coefficients by the equations below.) 

 N Z

A X

C C
C C

= −
= −
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The axial derivatives from the WVU report were on nearly the same scale as those in the 

Iliff and Wang reports; i.e. 10-60º AOA in 10º increments.  Unfortunately, very little 

information was contained in the report about what flight condition the derivatives were 

calculated from.  This was solved by comparing derivatives that appeared in both the 

WVU report and the Iliff and Wang reports:  based on the similarities, it is likely that the 

two reports used exactly the same flight data.  Therefore, no errors were incurred by 

using information from both sources in the same aerodynamic model. 

The MDC documents provided the baseline S&C derivatives, which were not 

included in the Iliff and Wang reports: 
0DC , 

0LC  and 
0mC .  (These baseline derivatives 

are the same for the HARV as they are for the standard F/A-18, and were obtained 

through wind tunnel testing.)  The derivatives were plotted for different Mach numbers, 

which unfortunately did not include Mach 0.4 (the reference velocity for the other 

reports).  The values of the derivatives at Mach 0.6 were chosen as an acceptable 

alternative. 

One final note about the aerodynamic model for the HARV:  while the table look-

up file worked, it had the unacceptable side effect of drastically increasing the amount of 

time it took to optimize a maneuver (run times will be discussed extensively in the next 

chapter).  For that reason, the look-up tables were replaced by 4th or 5th order polynomial 

functions of AOA using the MATLAB curve-fitting command, “polyfit.”  These curves 

were compared against those produced by the table look-up file, and no serious 

discrepancies existed.  (As the table look-up plots are estimates as well, the important test 

of the accuracy for the curve-fitted plots was whether or not they captured most of the 

flight tested data points.  Only five of the 42 S&C derivatives “missed” more than two of 

the seven test points:  , , , ,
rr dsm n nY lC C C C C

δα β
.  This was generally due to a “double 

peak” that was difficult for a 4th or 5th order polynomial to imitate [higher order 

polynomials triggered a “badly conditioned” warning in MATLAB].  In spite of this, 

even those five derivatives matched the trends predicted by Iliff and Wang and by 

MATLAB’s interpolation routine, and were close enough in value to retain in the 

aerodynamic model without modification.)  Both the first (table look-up) and second 

(curve-fit) versions of LoadAircraft2.m are included in Appendix A for comparison. 



49

D. UCAV-X 

 
Figure 15.   X-31 EFM and X-45 UCAV 

 
1. General Description 

The UCAV-X is a fictitious aircraft based primarily on the physical and 

aerodynamic characteristics of the X-31 Enhanced Fighter Maneuverability aircraft.  The 

Boeing X-45 pictured next to the X-31 in the figure above is one possible design for the 

UCAV-X.  (More information can be found on the X-45 at Boeing’s website [Ref. 11] or 

the Navy’s UAV website [Ref. 24].)  The X-31 was a joint venture between the US and 

Germany:  DARPA funded NASA’s contribution to the project through NavAir, while 

the Germany Ministry of Defense directly funded MBB’s contribution.  Two aircraft 

were built for the program in 1990, and several hundred hours of test flights were carried 

out over the next several years at the Naval Air Test Center.  [Ref. 25]  Unlike the HARV 

program, which was a study of the feasibility and controllability of post-stall flight, the 

EFM program was a study about the military application and combat effectiveness of 

post-stall flight.  The X-31 was designed, in essence, to be the ultimate dogfighter in both 

short and medium range air-to-air combat. 

The primary sources of X-31 data were three technical documents published by 

Rockwell Aerospace (which was purchased by the Boeing Company in 1996).  The first 

of these documents, the system manual [Ref. 26], contained general information about 

the EFM program, details on the construction and operating limits of the aircraft, as well 

as control data.  The other two documents, the aerodynamic datasets [Ref. 27-28], 
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contained a complete listing of the longitudinal and lateral-directional S&C derivatives 

for the X-31 (respectively).  The datasets were generated by extensive wind tunnel 

testing, and calculated S&C derivatives at eight different Mach numbers (0, 0.2, 0.5, 0.8, 

0.9, 0.95, 1.2, 1.6) and for AOA values ranging from –20º to 90º (at intervals of 2º).  The 

density of data created an excellent database for the UCAV-X model, and will be 

discussed more in the appropriate section.  Data for the UCAV-X was coded into the file 

LoadAircraft3.m, as before.  (As some of the X-31 data in this file is proprietary, it is not 

included in Appendix A.) 

 

2. Physical Parameters 

The physical design of the X-31 was based largely on the findings of Herbst and 

other researches at MBB between 1972 and 1980.  (See Ref. 8, as well as that article’s 

bibliography.)  As a result, the X-31 has a distinctive shape, with a narrow fuselage, low 

mounted delta wings, canards, and a trio of TV vanes attached to the end of the engine.  

(The configuration of these vanes is very similar to those on the HARV:  one larger vane 

at the 12 o’clock position, and two smaller vanes at the 4 and 8 o’clock positions.  The 

vanes can be deflected in concert to achieve an equivalent “pitch vane” or “yaw vane” 

deflection, and a corresponding pitching or yawing moment.  The deflection also creates 

a small lift or side force.) 

The X-31 has six sets of control surfaces (in addition to its TV system), as listed 

in the table at the end of this section.  Primary longitudinal control is provided by the 

canards, secondary control by a pair of inboard TEF’s and pitch TV, and tertiary control 

by a speedbrake and two pairs of LEF’s.  (The inboard and outboard LEF’s were coded 

as one control surface in the UCAV-X model, as they were always deflected in concert in 

the longitudinal aerodynamic dataset.)  Roll control was provided by a pair of ailerons 

(also referred to as outboard TEF’s), and yaw control was provided by a rudder and TV.  

Deflection limits and rate limits were included in the UCAV-X model to increase its 

fidelity. 

The flight test weight of the X-31 was used for the UCAV-X, although the 

UCAV-X in reality could be 2-3,000 lb lighter (and have a correspondingly higher T/W 
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ratio).  The X-31 is powered by the same engine as the HARV (the General Electric 

F404-GE-400), and so the maximum available thrust for the UCAV-X was calculated 

with GASTURB in the same manner as before.  9321 lb of thrust are available at the 

selected flight condition, giving the UCAV-X at altitude twice the T/W ratio of the 

HARV at altitude.  Significant data from the X-31 that was utilized in the UCAV-X 

model is listed in the table below. 

 
Table 5.   Summary of X-31 EFM Physical Data 

X-31 EFM (NASA / MBB experimental aircraft) 

length: 43 ft reference altitude: 20,000 ft 

wing span: 22.8 ft 

weight: 15,600 lb 

reference velocity: 518 fps 

M = 0.5 

max AOA: 90º T/W (at altitude): 0.60 

longitudinal controls: canard, LEF’s, TEF’s, speedbrake, pitch TV 

lateral-directional “ : ailerons, rudder, yaw TV 

 

3. Aerodynamic Characteristics 

The reference altitude and velocity of 20,000 ft and Mach 0.5 were chosen in part 

because they were close to the flight condition of the HARV, and in part because they 

represent a reasonable flight condition for dogfighting, the X-31’s raison d’être.  (Also, 

Mach 0.5 was one of the velocities used in the aerodynamic datasets.)  As already 

mentioned, the S&C derivatives were exhaustively listed in the two aerodynamic datasets 

for AOA values ranging all the way from -20º to 90º.  Due to the range of the data, no 

extrapolation was needed for the table look-up file SCPlots3.m.  Also, due to the density 

of the data, even the interpolation could have been done away with by rounding AOA at 

any point during a maneuver to the nearest even degree. 

However, even though the X-31 data is very conducive to being used in a table 

look-up file, the table look-up simply slows down run times too much.  So, as with the 
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HARV, the X-31 S&C derivatives were curve-fitted with 4th and 5th order functions of 

AOA.  The two versions of LoadAircraft3.m (table look-up and curve-fit) are in exactly 

the same format as the load files for the HARV.  For this reason, and because some of the 

X-31 data is proprietary, the UCAV-X load files are not included in Appendix A. 

 

E. EXPECTED RESULTS 

In general terms, the optimal maneuvers performed by the HARV and the UCAV-

X should be similar in appearance, as they have comparable ability levels.  The optimal 

maneuvers performed by the Navion, on the other hand, should be less dynamic and more 

similar in appearance to conventional air combat maneuvers like the “Immelman” or 

“wingover.”  Also, for a given maneuver, the UCAV-X and HARV should complete the 

maneuver in less time than the Navion.  (However, the Navion will have two unrealistic 

advantages over the other two aircraft models:  first, it has no control surface deflection 

rates, as discussed on page 42.  Second, it has constant S&C derivative values, so its 

control power and stability at max AOA will be somewhat better than they would in 

reality.) 

One reason for the increased performance of the HARV and UCAV-X of course, 

is TV.  TV allows for controlled flight in the post-stall region, effectively increasing the 

flyable AOA range (or flight envelop) for both these aircraft.  So while the Navion only 

has an AOA range of 30º, the HARV has a range of 70º, and the UCAV-X has a range of 

110º.  These expanded flight envelops should correspond to smaller turn volumes, and 

hence better maneuverability.  When TV is used in conjunction with either aircraft’s 

conventional control surfaces, more control power is available in the conventional flight 

regime, which increases agility.  (The aircrafts’ moments of inertia are also related to 

agility:  since the UCAV-X has moments that are each approximately an order of 

magnitude less than those of the HARV, it will likely be the more agile of those two.  

While the Navion has the smallest moments, this is offset by its extremely limited control 

power; i.e., only three control surfaces, no TV, no fly-by-wire system, etc.) 

Another reason for the high performance levels of the HARV and UCAV-X are 

their T/W ratios.  At sea level in their test configuration, these two aircraft have ratios of 
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0.89 and 1.03, respectively.  Even though these ratios drop significantly at the test 

altitudes in this study, both aircraft still have very good “available power” levels for 

accelerating and maneuvering in the vertical plane.  When performing conventional 

maneuvers, this will mean that both aircraft can climb quickly…when performing 

unconventional maneuvers, this will mean that following a sharp velocity drop incurred 

by flying at high AOA, both aircraft can quickly accelerate back to their cruising speeds.  

Both of these capabilities will play an important role in performing time-optimal air 

combat maneuvers. 

Finally, the maneuvers calculated in this study will hopefully demonstrate 

“unconventional” (or “dynamic”) tactics by utilizing extremely high AOA to reduce 

maneuvering time.  These maneuvers will then be compared with 1) the “conventional”, 

or “standard,” maneuvers performed by the Navion, and 2) the time-optimal maneuvers 

calculated by previous studies.  (This will all be done in Chapter VI.)  The results of the 

HARV will be focused on in particular, as it represents an actual military aircraft (albeit 

modified), and has been modeled by other authors for studying time-optimal maneuvers. 
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V. OPTIMIZING MANEUVERS WITH DIDO 

A. INTRODUCTION TO DIDO 

DIDO is a MATLAB-based application package for solving dynamic 

optimization problems.  According to the authors, “The basic idea behind the solution 

method is to approximate integrals by quadratures and derivatives by finite dimensional 

differentiation matrices that arise in pseudospectral approximation methods.”  [Ref. 29]  

Thankfully for the user (and in particular the author), no knowledge of quadratures or 

pseudospectral methods is required in order to use this program.  In fact, very little 

knowledge of optimal control theory at all is required to use this program.  The most 

important prerequisite for using DIDO is being able to write down a mathematical 

formulation of the problem.  This formulation must include the following three elements: 

1. A system of differential equations. 

2. An independent variable to minimize. 

3. Boundary conditions for the problem to be solved. 

For the study of time-optimal aircraft maneuvers, the problem formulation was 

both written down and initially coded by Scott Josselyn (who is profusely thanked in the 

Acknowledgments for all of his work and assistance).  In this problem formulation, the 

system of differential equations are the 6DOF equations of motion that were derived in 

Chapter III…the independent variable, of course, is time, and the boundary conditions are 

specified by the LoadManeuver.m file (to be described more completely in the next 

section).  Once the problem had been expressed in a way that DIDO could be applied to 

it, all that remained was to code the problem in MATLAB. 

A few general comments about the format of the MATLAB script files that are 

necessary to run DIDO:  first, extensive use is made of structure arrays.  One such array 

that has already been mentioned is the global variable CRAFT created by 

LoadAircraft.m.  In this array, CRAFT.m, CRAFT.Ix, and CRAFT.b all correspond to 

different data about the aircraft being used in the problem (mass, roll moment of inertia 

and wing span, respectively).  Likewise, DIDO stores the time history of all variables 
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during an optimization run in a single structure array called primal.  This array is 

composed of primal.states, primal.controls, primal.nodes, and primal.statedots, each 

of which are matrices of various sizes (depending on the number of state variables and 

controls).  The length (number of columns) of each array is defined by the number of 

nodes selected for that particular optimization run; a higher number of nodes corresponds 

to a better defined solution due to the increased density of analysis points along the flight 

path.  (For reference, the nodes used are the Legendre-Gauss-Lobatto (LGL) points.)  The 

width (number of rows) of primal.states and primal.statedots are always the same, as 

they are both defined by the number of state variables (usually twelve in this study).  The 

width of primal.nodes is one, and the width of primal.controls varies for each aircraft; 

for the Navion the width is four, corresponding to the controls of elevator, aileron, rudder 

and thrust. 

Another important format consideration is the use of vectorization.  In order to 

make the code run smoothly and quickly in the MATLAB environment, nearly all 

variables are both expressed as vectors (in arrays), and operated on as vectors (instead of 

using loops, for instance).  The primary reason for this is that MATLAB is very efficient 

at manipulating vectors and matrices, but very slow when it comes to running loops.  

(NOTE:  Improvements in MATLAB 6.5 have started to accelerate loop performance, but 

only for certain data types.  In general, MathWorks still recommends vectorization.) 

The downside to using vectors is that sometimes variables are not stored in an 

intuitive fashion.  For example, there are four categories of boundary conditions (BC’s) 

used in DIDO:  state variable bounds, control bounds, path bounds and event bounds.  

Each of these BC’s include upper and lower bounds; however, instead of the upper and 

lower bounds being stored together in a two column matrix, they are stored as separate 

vectors for each category in the structure arrays bounds.lower and bounds.upper (where 

the structure array bounds is very similar to primal).  Future versions of DIDO, though, 

may not require vectorization, in which case there would be more latitude in naming 

variables. 

Understanding DIDO’s use of vectorization, nodes and structure arrays (in 

particular primal and bounds) will greatly help in reading through the description of the 
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aircraft maneuver optimization code.  More detailed information on the functioning of 

DIDO in general can be found in the authors’ user manual [Ref. 29].  With the preceding 

concepts in mind, the next section will discuss the MATLAB script files necessary to run 

DIDO. 

 

B. AIRCRAFT MANEUVER OPTIMIZATION CODE 

1. Format 

The aircraft maneuver optimization code (hereafter referred to simply as the 

“code”), is the collection of MATLAB script files necessary to interface with and run 

DIDO.  It also includes the files used to analyze the results that DIDO produces.  There 

are a total of fifteen files, which are listed by type in the table below.  (Indented files are 

either functions or subfunctions of the file they are listed beneath.) 

 
Table 6.   DIDO Maneuver Optimization Files 

Program Data Files 

Main.m LoadUnits.m 

 LoadAircraft.m 

           -- SCTables.m 

 LoadManeuver.m 
  

DIDO Functions Analysis Scripts 

AircraftCostFunction.m Analysis.m 

AircraftDynamicsEquations.m Propagator.m 

          -- EOM.m Validation.m 

AircraftEventConditions.m FlyAircraft.m 

AircraftPathConstraints.m           -- DrawAircraft.m 

 

A few comments about the different categories of files before describing the files 

themselves:  the program file includes a basic user interface and runs the other files and 

functions necessary to optimize a maneuver.  It calls DIDO and also saves the output of 
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the optimization.  The three load files, when run by Main.m, put the appropriate data on 

the aircraft and maneuver being studied into MATLAB’s workspace.  The four DIDO 

functions are MATLAB functions used directly by DIDO, and therefore follow the 

format prescribed by DIDO’s authors.  (The subfunction EOM.m was added due to the 

complexity of the dynamics equations used in the aircraft code, in order to keep the 

function AircraftDynamicsEquations.m clean and simple.)  Lastly, the analysis files are 

used separately from Main.m to examine the results of an optimization run. 

 

2. File Descriptions 

Main.m starts out by loading the necessary data for the optimization run into the 

MATLAB workspace by running the three load files.  It then defines the boundary event 

times, which the authors of DIDO call “knots.”  Recalling that nodes are analysis points 

along the flight path, knots are the simply the first and last nodes, and hence are the 

analysis points at the beginning and end of the maneuver.  They are significant because 

there is always a higher density of nodes near these points than in the middle of the 

maneuver.  Main.m also establishes four sets of BC’s that define the “solution space” of 

the optimization:  state variable bounds, control bounds, path bounds and event bounds.  

The event bounds define the maneuver to be performed, and they are coded into 

LoadManeuver.m.  The path bounds are optional, but can be used to constrain a variable 

throughout a maneuver (load factor is a good example).  Control bounds define the 

minimum and maximum deflections of the selected aircraft’s control surfaces, and they 

are coded into LoadAircraft.m.  State variable bounds minimize the range of values that 

DIDO will search through during the optimization routine; they also preclude DIDO from 

using a physically unrealistic value (like a sideslip angle of 45°) in a solution.  They are 

listed in the table on the following page for conciseness.  (NOTE:  AOA bounds vary by 

aircraft; those listed in the table are for the Navion.  Also, the normalized [and 

dimensionless] values of the BC’s will be described in LoadUnits.m.). 
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Table 7.   State Variable Boundary Conditions 

State Variable Min, Max Normalized 

X -50000 ft, 50000 ft -25, 25 

Y -50000 ft, 50000 ft -25, 25 

H 0 ft, 30000 ft 0, 15 

V 10 fps, 2000 fps 0.05, 10 

α  0°, 20° 0, 0.349 

β  -30°, 30° -0.524, 0.524 

p -360°/sec, 360°/sec -31.42, 31.42 

q -360°/sec, 360°/sec -31.42, 31.42 

r -360°/sec, 360°/sec -31.42, 31.42 

φ  -180°, 180° -3.142, 3.142 

θ  -175°, 175° -3.054, 3.054 

ψ  -180°, 180° -3.142, 3.142 

 

The user interface portion of Main.m asks the user if they want to “bootstrap” 

from a previous solution, and how many nodes they want to use.  The more nodes that are 

used, the more refined (and in general, the more accurate) the solution will be.  However, 

there is a significant penalty in run time that is incurred by using more nodes.  

(Bootstrapping is a way of minimizing that penalty, and will be discussed in detail in a 

subsequent section.)  Following those inputs from the user, Main.m then calls DIDO to 

run the optimization.  The run is timed, and the results of the run are saved in the file 

output.mat. 
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LoadUnits.m is a very short script file whose purpose is to normalize the code’s 

state variables so that they are on the same, or nearly the same, order of magnitude.  The 

three dimensions of primary interest are distance, velocity and time, and they are 

normalized by 2000 ft, 200 fps and 5 sec.  For example, in a given maneuver the Navion 

travels 6000 ft downrange and turns 90° in a maneuver lasting 20 sec.  When the 

maneuver is being optimized, though, those three values become 3 units of distance, 1.57 

units of angle (radians), and 4 units of time.  The fact that all three values are the same 

order of magnitude means that there will be no numerical instability during the 

optimization caused by dealing with decimals and numbers in the tens of thousands. 

LoadAircraft.m creates the global variable CRAFT, which stores all of the 

necessary data about the aircraft being studied:  moments of inertia, wing dimensions, 

S&C derivatives, control limits, AOA limits, etc.  (For a complete list of data, look at one 

of the LoadAircraft.m files included in Appendix A.)  The S&C derivatives will be in one 

of three formats:  analytic (constant values), table look-up, or curve-fitted.  With analytic 

derivatives, as in the case of the Navion, the values are entered directly into the 

LoadAircraft.m file.  For table look-up derivatives, the function SCTables.m is used.  The 

function contains rows of S&C derivatives at different AOA values, and when the 

function is called by LoadAircraft.m, it gives values for all S&C derivatives based on the 

current AOA.  For AOA values between those loaded into SCTables.m, the function 

interpolates the appropriate S&C derivatives using MATLAB’s cubic curve-fit.  For 

AOA values outside the range of those loaded into SCTables.m, the function extrapolates 

the appropriate S&C derivatives, again using a cubic curve-fit.  (More detailed 

information on the table look-up functions for the HARV and UCAV-X can be found in 

the appropriate “Aerodynamic Characteristics” subsections of Chapter IV.)  Lastly, for 

curve-fitted derivatives, the 4th or 5th order polynomial (of AOA) was written directly into 

the LoadAircraft.m file.  So, as with the table look-up derivatives, whenever a new AOA 

is reached during a simulation, the curve-fitted derivatives are recalculated. 

LoadManeuver.m defines the initial and final conditions of the maneuver in terms 

of the code’s state variables.  (The difference between these initial and final conditions is 

the delta expression that was first mentioned in Chapter II.)  The file also creates what are 

called event (or maneuver) BC’s.  These BC’s allow for a range of values to be an 



61

acceptable initial or final condition.  For example, the Navion performs a maneuver with 

an initial altitude of 1000 ft, and a final altitude of 1500 ft.  If the minimum and 

maximum bounds for the final altitude are 1200 ft and 1800 ft, respectively, then the code 

will attempt to finish the maneuver at 1500 ft, but will consider any final altitude between 

1200 and 1800 ft to be acceptable.  For initial conditions, equality bounds are always 

used; i.e. for the initial altitude of 1000 ft in the previous example, the minimum and 

maximum bounds would both be equal to 1000 ft, forcing the Navion to start the 

maneuver at exactly that altitude.  In fact, the initial conditions are not only set exactly, 

but are the same for every maneuver.  (The only difference being that the three test 

aircraft have different initial altitudes and velocities.)  Examples of LoadManeuver.m can 

be seen in Appendix B. 

AircraftCostFunction.m is one of the DIDO functions, and it simply identifies the 

independent variable (or cost) to be minimized during the optimization.  For this study, 

that variable was time.  Given a different problem formulation, the cost could be 

something else entirely, like fuel consumption.  (NOTE:  The format of the cost function 

was a Lagrange integral.) 

AircraftDynamicsEquations.m is the DIDO function that dictates how the state 

variables change over time.  The subfunction EOM.m does most of this work by 

analyzing the equations of motion, calculating the force and moment coefficients that go 

into the equations of motion, etc.  The new primal.statedots variables that are calculated 

by EOM.m are sent to AircraftDynamicsEquations.m and in turn sent on to DIDO. 

AircraftEventConditions.m describes the end points of the maneuver:  the initial 

and final conditions.  In that respect it is similar in format to LoadManeuver.m. 

AircraftPathConstraints.m is the last of the four MATLAB functions, and is 

actually not required to run DIDO correctly.  However, it was kept in the code because of 

its usefulness:  unlike event bounds, which can only constrain initial and final values, 

variables entered as path constraints are limited throughout the maneuver.  So, as already 

mentioned, load factor is one good example of a path constraint, in particular for the 

Navion and HARV.  Another example of a path constraint would be setting Y=0, which 

would constrain a maneuver to the vertical plane.  One final example are two path 
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constraints that had to be added for the HARV:  two of the control surfaces on the HARV 

(ailerons and horizontal stabilator) can be deflected symmetrically or asymmetrically for 

longitudinal or lateral control.  So, each control surface was coded as two separate 

controls; to ensure that those control surfaces weren’t being deflected symmetrically and 

asymmetrically at the same time, the following path constraints were created, ensuring 

that at least one deflection was equal to zero. 

0
0

s ds
a sa

δ δ
δ δ

⋅ =
⋅ =

 

Analysis.m takes the results of a DIDO solution, makes them dimensional again, 

and plots the time history of those results on a series of figures.  The first four figures 

show the four different groups of state variables:  position, velocity, body rates and Euler 

angles.  Figures five and six plot the controls and control rates, respectively, while figure 

seven plots the load factor.  The last two plots display the Hamiltonian and the costates, 

both of which can be used to analyze the quality of the results obtained from DIDO’s 

optimization.  In addition to the plots, Analysis.m summarizes some of the important 

information about the optimization run:  number of nodes used, total number of iterations 

run, time for DIDO to complete the optimization, and time to fly the maneuver. 

Propagator.m is used in conjunction with Analysis.m to test the feasibility of the 

solution (a concept that will be discussed more in the last section of this chapter – 

“Optimality”).  Propagator.m takes the control history from a DIDO solution and 

propagates it forward using MATLAB’s Runge-Kutta based “ode45” algorithm.  The 

algorithm uses the differential equations from EOM.m, the time interval defined by the 

DIDO solution’s node interval, and creates a new time history of the state variables.  

These new state variables are then plotted against those calculated by DIDO’s solution. 

Validation.m uses the costates from a DIDO solution to further test the optimality 

of that solution.  The costates (and other variables) are coded into a series of equations to 

calculate the partial derivatives of the Hamiltonian with respect to each control.  These 

partial derivatives are then plotted to verify that their values are approximately zero.  (To 

be discussed in more detail in the “Optimality” section.) 
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FlyAircraft.m is the last tool used to analyze a DIDO solution.  Once a successful 

optimization run has been completed, and verified by Analysis.m, Propagator.m and 

Validation.m, FlyAircraft.m can be used to get a better visualization of the maneuver.  

Instead of the bird’s-eye view and side view of the maneuver provided by Analysis.m, 

FlyAircraft.m creates a three-dimensional view of the trajectory, with a polygon-based 

aircraft pictured along the flight path to display orientation.  The aircraft is created by the 

function DrawAircraft.m; this very clever script file defines half a dozen triangles in the 

aircraft’s body axes, and then renders them as two-dimensional colored solids using 

MATLAB’s “patch” command.  Each “piece” of the aircraft is then moved to the current 

position along the aircraft’s trajectory, and rotated to the current orientation using the 

Direction Cosine Matrix.  The scale of the aircraft can also be modified so that it is large 

enough to easily distinguish orientation throughout a maneuver.  Furthermore, the file can 

continue if requested and save a movie of the trajectory as an “.avi” file. 

 

C. NUMERICAL CONSIDERATIONS 

During the course of doing optimization runs on various maneuvers, a number of 

numerical issues sprang up.  Most of these issues had the same root cause:  namely, that 

the dynamics of aircraft motion (governed by twelve coupled, nonlinear, ordinary 

differential equations) are quite complex.  As a contrast between the twelve EOM that are 

listed on page 37, the example problem from the authors’ user manual [Ref. 29] (which 

minimizes fuel expended for a moon-landing) consists of the following three equations: 
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Obviously as an example it was designed to be straight forward, but the aircraft problem 

is still more complex than the typical problem to which DIDO is applied.  There are two 

principal reasons for this:  first, as alluded to by mentioning the EOM, the aircraft 

problem is a 6DOF problem, allowing for translation along and rotation around three 

different axes.  (The example moon-lander problem, on the other hand, is a 1DOF 

problem, and 3DOF problems are more common to DIDO.)  Second, the aircraft is a 



64

physically “realistic” model with dimensions, moments of inertia, aerodynamic 

characteristics, etc.  (As opposed to something simpler like a rudimentary “point-mass” 

model.)  All that being said, the numerical issues that came up ranged from the 

debilitating (locking up or crashing DIDO) to the inconvenient (finding a time-optimal 

maneuver that, upon closer inspection, was physically impossible.) 

 This chapter will identify and organize the major numerical considerations that 

had to be addressed in order for the aircraft code to run well.  Not all of these 

considerations were solved to the satisfaction of the author, but the progress that was 

made will be explained and verified by numerical results.  (Potential improvements in 

any area will be addressed in the conclusion of this report.)  In general, there were four 

major “areas of concern” that caused or were impacted by numerical issues.  Taken 

chronologically, those areas were: 

1. Problem formulation 

2. DIDO setup 

3. Run time 

4. Fidelity of results 

Problem formulation refers to the aircraft code in general, but more specifically to issues 

like setting BC’s on a maneuver, and refining the aircraft models.  The first two 

subsections, “State Variable Constraints” and “Control Rate Limits,” deal with these 

issues.  DIDO setup refers to making choices about options that DIDO gives when doing 

an optimization run; see “Node Selection” and “Bootstrapping.”  Run time is an issue that 

really deserves its own chapter – when first doing runs on the HARV and UCAV-X, for 

instance, run times soared to the point that fixing them became the one and only task for 

well over two months.  The highlights of that work will be discussed in the last two 

subsections, “Table Look-Up” and “Curve-Fitting.” 

 The last area, fidelity of results, is of course the most important.  Once the code 

was tweaked, DIDO was initialized correctly, and run times were mitigated, results could 

actually be obtained and analyzed on a consistent basis.  While the tools for analyzing 

DIDO runs have already been discussed (Analysis.m, Propagator.m & FlyAircraft.m), 
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how to determine the quality of results from those tools has not.  This will be the subject 

of the last section of this chapter, “Optimality.” 

 

1. State Variable Constraints 

For each optimization run performed with the aircraft code, the two most 

important user “inputs” are to define the maneuver and to describe the aircraft.  This is 

done using the LoadManeuver.m and LoadAircraft.m files, and the issue that will be 

discussed in this section refers to the first of those files.  (It will be helpful to refer to the 

sample file for the Wingover that is in Appendix B.) 

The first several lines of the file describe the maneuver to be performed by 

expressing it as a “delta” of two state variable (as described at the beginning of Chapter 

II).  For the Wingover, the two delta expressions are 1000Y ft∆ =  and 180ψ∆ = o .  This 

can also be seen by comparing the maneuver’s initial and final conditions – the only 

difference between the two is the cross range distance (0 ft versus 1000 ft) and heading 

angle (0° versus 180°).  The problem area with LoadManeuver.m is in the second half of 

the file, which defines the upper and lower boundaries (or the constraints) for the initial 

and final values of the state variables.  First of all, there are two different kinds of 

constraints:  equality and “bounded” constraints.  For a generic state variable “U”, with 

upper and lower boundaries Umax and Umin, the following two equations demonstrate 

equality and “bounded” constraints: 

 min max

min max

U U U
U U U

= =
< <

 

In LoadManeuver.m, the BC’s for the initial state variable values are all equality 

constraints:  this specifies an exact starting condition for the Navion that can be used for 

all maneuvers.  (Starting conditions for the other test aircraft will be defined in a similar 

fashion, but with their respective reference altitudes and velocities.) 

 The numerical trouble lies in the BC’s for the final state variable values.  On the 

one hand, specifying the BC’s with equality constraints would definitely produce the 

intended maneuver; however, this also tends to “over-constrain” the problem for DIDO, 
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and it’s unable to find a solution perfect enough.  On the other hand, “relaxing” the 

constraints on all the final state variables will give DIDO more possible solutions, but 

cause the following two undesirable results, as well:  first, the desired final condition for 

the maneuver may not be achieved, due to overly lax constraints on the state variables 

associated with the maneuver’s delta expression.  Second:  although unintuitive, DIDO 

may actually take longer to reach a solution, because the solution space for the problem 

has been enlarged by relaxing the constraints. 

 Balancing the two issues listed above became quite a project.  With a dozen state 

variables, and a wide range of distances, angles and rates to set boundaries on, the 

number of possible BC settings was enormous.  (For a listing of the minimum and 

maximum unconstrained values of all state variables, see Table 7 on page 59.)  This 

being the case, it was necessary to find an organized but efficient method of determining 

what BC settings maximized result quality but minimized DIDO run time.  Naturally the 

Navion, being the simplest aircraft model, was used for this experiment, as were are all 

four standard maneuvers.  Each maneuver was studied in turn by dozens of DIDO runs – 

each with slightly different BC settings.  The results were recorded in a log and analyzed 

to see if any trends appeared from constraining or relaxing different state variables by 

different amounts. 

 The numerical problem that arose out of setting these final condition state variable 

constraints was that even small changes had dramatic effects on both run time and result 

quality.  Not only that, but in some cases constraining state variables decreased run 

times, and in other cases it increased run times; likewise, in some cases result quality 

improved, and in other cases result quality was degraded.  (The same four scenarios 

occurred when relaxing state variables, as well.)  For some examples, refer to the first 

page of Appendix C, which contains a few excerpts from the log “DIDO Run History.”  

In the log, all state variables that are “constrained” are limited by equality constraints, 

and all those that are “unconstrained” are bounded above and below their final value by 

the amount listed.  (To review the final values for the Wingover, refer to its 

LoadManeuver.m file in Appendix B.) 
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 First of all, notice that going from run #1 to run #2 tightened the constraint on the 

final values of X and Y from ±500 ft to ±100 ft.  The result was an increase in result 

quality (“fair” to “good”) and a decrease in run time – a perfect combination.  (Although 

not listed, further constraints on the final values of X and Y yielded no benefits.  Neither 

did more relaxed constraints, like ±200 ft.  Therefore ±100 ft was kept as the “optimal” 

constraint on the state variables X and Y.)  Changing the constraint on H from ±100 ft to 

an equality constraint in run #3 didn’t improve result quality, but it did significantly 

reduce run time. 

In the next two runs, state variable BC’s were relaxed instead of constrained.  For 

run #4, the final values of AOA and sideslip were allowed to vary from zero by ±2°.  As 

in the previous run, there was no change to result quality, but in this case run time 

increased by a significant amount.  In the last example run, AOA and sideslip are reset to 

equality constraints, while the body rate variables are relaxed by ±2°/sec.  Even though 

this slightly increased run time (by about six seconds), result quality increased from 

“good” to “great,” which is a good trade.  (Different BC’s for the body rate variables 

were tested to see if their was a value that improved result quality and decreased run 

time.  However, values of ±5°/sec and ±10°/sec failed to improve on run time or result 

quality, and so the BC of ±2°/sec was retained as the optimal constraint for the body rate 

state variables.)  

 These examples from “DIDO Run History” demonstrate several things.  First, 

they demonstrate the methodology of “tuning” DIDO results by systematically modifying 

final state variable BC’s.  The important steps in that process are listed below:  

1. Start with predominately equality constraints (in particular on variables 

that have a final value of zero) and a few relaxed bounded constraints. 

2. Tighten bounded constraints first, and one at a time.  Then relax equality 

constraints, either one at a time or in groups (i.e. body rates, Euler angles, 

etc.). 
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3. When a positive result is achieved (i.e. better result quality or faster run 

time) by modifying a variable’s BC, perform several more runs with 

slightly different BC values to determine the “optimal” setting of that BC. 

4. When a variable’s optimal BC setting is determined, retain it and continue 

on to the next variable. 

Also, while not obvious from the small selection of runs listed in Appendix C, priority 

was given to determine the best BC’s for certain “critical” state variables over other 

“non-critical” state variables.  The critical state variables were identified in Chapter II as 

being those that generally “defined” a maneuver (which would be the variables used in a 

maneuver’s delta expression):  position (X, Y and H), velocity (V) and orientation 

(principally ψ ).  These are important variables to set BC’s on, because different BC’s 

will likely change what the maneuver looks like. 

 Unfortunately, the examples from “DIDO Run History” also demonstrated that 

there was no obvious correlation between changing BC’s and affecting result quality or 

DIDO run time.  Not only could constraining and relaxing BC settings affect the results 

and run time for better or for worse, but slightly different BC values could produce 

wildly different results.  In the end, it was determined by scores of trial runs that for each 

maneuver, there was a relatively unique set of BC’s that elicited the best results.  For this 

reason, it could be said that the relationship between BC settings and DIDO results is, at 

best, extremely nonlinear.  Hence the necessity for a good system to fine tune DIDO 

results – as described above. 

NOTE:  Only the standard maneuvers performed by the Navion were fine tuned to 

the degree described in this section.  Due to longer DIDO run times for the optimal 

maneuvers, and significantly longer run times for maneuvers flown by the HARV and 

UCAV-X, it was simply not possible to perform the dozens of runs necessary to fine tune 

each of those 15+ aircraft/maneuver combinations.  However, as a minimum, the critical 

state variable BC’s were analyzed for each maneuver. 
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2. Control Rate Limits 

As stated in the previous section, the two most important user “inputs” to the 

aircraft code are to define the maneuver and to describe the aircraft.  This section will 

deal with the latter of those two:  the aircraft model.  One of the important elements of 

that model, of course, is to define the aircraft’s control surfaces, and to set the maximum 

positive and negative deflection angles.  The Navion’s control surfaces consist of an 

elevator, rudder and pair of ailerons.  The deflection limits for those control surfaces 

(which can also be found in LoadAircraft.m) are as follows:  the elevator can deflect 15° 

TED or TEU, the rudder can deflect 15° TEL or TER, and the ailerons can deflect for a 

combined 10° (in hindsight a rather small angle). 

While this was a great model to test the aircraft code with, it became evident after 

analyzing a number of DIDO results that it would be necessary to improve the controls 

for the HARV and UCAV-X models.  The problem was not with the control deflections, 

but with the impossibly high frequency of control deflections.  For example, one of the 

outputs created by Analysis.m is a time history of the aircraft controls; for a large number 

of Navion results, this plot showed controls “switching” multiple times per second. While 

the switching (going from maximum to minimum deflection) was a good sign, the 

frequency was not.  On a physical airplane, even fly-by-wire controls can only deflect at 

a rate of about 100°/sec…the Navion model, on the other hand, was demonstrating 

control rates in excess of 200°/sec.  The two plots in the following figure show the 

control history and the control rate history for a Reversal (the latter plot was added to 

Analysis.m to study this particular issue): 
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Figure 16.   Control History (No Rate Limits) 

 

(NOTE:  Thrust is not included in the plots above because of the discrepancy in units and 

order of magnitude with the other aircraft controls.  In Analysis.m it is actually plotted on 

a separate chart.  Also, while there is a rate limit for how quickly thrust can be increased 

or decreased, it was neither researched nor included in the aircraft model for the 

following reason:  99% of all time-optimal maneuvers produced by DIDO used 

maximum thrust for the duration of the maneuver.) 

Fortunately, the numerical issue of unrealistic control rates is one that was 

possible to address directly, unlike the previous issue of state variable constraints.  All 

that was needed were deflection rate limits for every control, and since the Navion was 

used for this experiment, that meant only three rate limits.  Two different options were 

studied for limiting control rates:  the first used path constraints; the second assigned 

control rates to be the aircraft controls, while control deflections became state variables. 
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The path constraint method was very straight forward.  Control rates, like load 

factor, were defined in the AircraftPathConstraints.m file with the use of previously 

defined variables (namely the control deflections and time).  Then a limit was assigned to 

each control rate in the appropriate section of Main.m.  The limits used for the Navion 

were based on those of the HARV, but reduced by about 10°/sec to somewhat account for 

the difference in technology levels between the two aircraft.  That translated to the 

following rate limits:  90°/sec for the aileron, 30°/sec for the elevator and 70°/sec for the 

rudder.  When the Navion flew the Reversal with those three path constraints in place, 

DIDO produced the following results: 
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Figure 17.   Control History (Path Constraint Rate Limits) 

 

Obviously there is a marked improvement between the plots in Figure 17 and those in 

Figure 16.  However, the control rates still exceed their max values, and there is still a lot 

more “switching” than would realistically occur in a maneuver.  Therefore the second 

option was studied. 
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 By assigning the control rates to be the aircraft’s “controls,” the limits were 

guaranteed to be followed, and much more realistic control behavior was expected.  

Unfortunately, by making the control deflections new state variables, almost every single 

file in the aircraft code had to be overhauled, and what resulted was a new set of files for 

a Navion with control rate limits.  (A similar process was performed to develop a set of 

files for the HARV and for the UCAV-X.)  When that task was finally completed, the 

Navion flew the Reversal again, with the following results: 
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Figure 18.   Control History (State Variable Rate Limits) 

 

This time the control history and control rate history were right on track.  Switches 

occurred frequently but not at an impossible rate, and the controls generally went from 

maximum positive to negative values, exhibiting the “bang-bang” pattern characteristic in 

optimal control theory.  Based on those results, the “rate limit model” was adopted for the 

HARV and UCAV-X. 
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One last study was done on the Navion’s rate limit model, and that was 

comparing run times using that model with run times using the standard model.  Each 

maneuver was performed once by each model, and the DIDO run time and total number 

of iterations were recorded in “DIDO Run History” (see page two of Appendix C).  The 

major points of interest from this study were the two trends noted in “DIDO Run 

History”:  one, that all four “standard” maneuvers increased in total iterations and run 

time when the rate limit model was used, and two, that three out of four “optimal” 

maneuvers decreased in total iterations and run time when the rate limit model was used.  

Unfortunately there’s no obvious reason why this was the case, and neither was there a 

correlation between the change in the number of iterations and the change in run time 

(i.e., a greater decrease in iterations corresponding to a greater time savings).  On top of 

that, one maneuver had an increased number of iterations when using the rate limit 

model, but had a decreased run time. 

Despite all that, these results were taken as a good sign for the use of the rate limit 

model on the HARV and UCAV-X.  For one, the model reduced run times more often 

(and by more time) than it increased them – the average time savings being 11%.  Also, 

very importantly, the model’s effect on the optimal maneuvers was that it always 

decreased run times, and almost always decreased iterations.  Since studying those four 

families of maneuvers is the principal goal of this paper, anything that generally improves 

or expedites their analysis is a good thing.  So in conclusion, the rate limit model (as 

demonstrated by the Navion) not only improves the fidelity of the aircraft being studied, 

but generally decreases DIDO run time. 

 

3. Node Selection 

One of the best things about DIDO is how few parameters need to be set in order 

to use the program.  Of those that are needed though, choosing the correct number of 

nodes and a good initial guess (to be discussed in the next section) are both extremely 

important.  The difficulty when choosing the number of nodes for a DIDO run is trying to 

balance run time with result quality.  (In this case quality would be better described as 

“resolution,” because the number of nodes defines the density of analysis points along the 



74

flight path, and therefore determines how detailed the results are.)  This balancing act 

between run time and resolution was done in two steps.  First, for each of the standard 

maneuvers (again performed by the Navion), an initial number of nodes was selected 

based on past experience running the code.  Then, each maneuver was run several more 

times with 10 or 20 nodes more or less than the initial value. 

The results of four runs for each maneuver were recorded in “DIDO Run History” 

(see page 3 of Appendix C).  For each run the number of nodes, major iterations and total 

iterations, as well as run time, were recorded.  The comments on the far right side of each 

entry were short-hand notes to describe how good the results looked.  As it says in 

Appendix C, the best result was based on “a smooth flight path, propagated results that 

match DIDO’s results, and a flat Hamiltonian.”  While this identified the node value for 

each maneuver that produced the best result quality (or resolution), there was still the 

issue of run time to be factored in. 

As expected, the results in Appendix C show that in (almost) every case, 

increasing the number of nodes increases run time.  However, it doesn’t always increase 

result quality.  Increasing the nodes for the Wingover from 60 to 70, for instance, added 

another two minutes onto the run time, but had no appreciable effect on the results.  

Going from 60 to 70 nodes for the Straight Climb had a similar time penalty, but actually 

decreased the result quality.  For those two maneuvers, it was easy to pick 60 nodes as 

the optimum choice for both run time and result quality. 

The node values that gave the best results for the Level Turn and Climbing Turn 

were 90 and 110, respectively.  However, both maneuvers had prohibitively long run 

times at those node values.  Looking at other options for the Level Turn that had “ok” 

results, 70 nodes was the obvious choice as it reduced the run time by 38% from the 90 

node solution.  Picking an alternate node value for the Climbing Turn was quite easy, 

because only the 90 node solution didn’t have any problems with it.  This solution also 

resulted in a significant 58% time savings from the 110 node solution, without making 

too great a sacrifice in result quality. 

Obviously the method described in the preceding paragraphs is one of trial and 

error; however, if done correctly, the optimum node value can be found very efficiently.  
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The priority is to examine the results of a maneuver performed over a wide range of node 

values (perhaps 60 nodes at intervals of 10 nodes).  Once the “best” solution is found, 

compare it to any solutions that were nearly as good to see if any significant time savings 

can be found.  After that’s done, and the best balance of run time and result quality is 

found, that optimum node value should be used for all future work to be done with that 

maneuver.  (Keeping in mind that a higher node value can always be used at a later date, 

when analysis time is not a pressing issue and the best possible result quality is desired.) 

Some final, general comments on nodes and node selection:  for the aircraft code, 

20 nodes is the absolute minimum resolution needed to get a rough “sketch” of a 

maneuver (this will be extremely important in the next section).  Along those same lines, 

node values closer to 100 (as seen in Appendix C) are much more common.  Lastly, 10 

nodes was chosen to be the smallest “increment” of analysis for two reasons.  First, with 

such large node values needed to achieve acceptable resolution, node deviations of one or 

two were not expected to make a significant difference.  The second, and overriding 

reason for using 10 nodes, was that there was simply not the time to compare results for 

every maneuver at forty or sixty different node values.  Hopefully in the future a more 

comprehensive study of node selection (as it pertains to the aircraft code) can be made.  

(See the section on improvements at the conclusion of this report.) 

 

4. Bootstrapping 

Bootstrapping is directly related to providing an initial guess of the solution to 

DIDO.  This initial guess of what the time-optimal maneuver will be is created using the 

structural array guess, which is described as follows.  The structure contains the 

following three elements:  guess.states, guess.controls, and guess.time.  The first two of 

these are matrices with rows corresponding to the number of state variables and aircraft 

controls (just like primal.states and primal.controls).  The third is a vector that is very 

similar to primal.nodes – it stores the times during the “guessed” maneuver that 

correspond to the values in guess.states and guess.controls.  Just as using more nodes for  
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an actual DIDO run increases the resolution, using more values for the guess structure 

can have a positive impact on result quality and (especially) run time.  This is where 

bootstrapping comes in. 

The default guess for the aircraft code is a straight line trajectory from the 

aircraft’s initial to final conditions.  The two points in this trajectory are defined 

explicitly by the aircraft code’s global variables INIT and FINAL.  In terms of maneuver 

resolution, this would be like running DIDO with only two nodes.  However, since the 

trajectory is feasible (if not practical), this is a very efficient way to generate a guess and 

start analyzing a maneuver.  The difficulty with the aircraft code is that there is a huge 

disparity in resolution between a guess (two points) and the final time-optimal maneuver 

(roughly 100 points).  Bootstrapping is used to bridge that gap. 

Now that the guess structure has been explained, bootstrapping can be defined as 

“using a previous solution as a guess for a subsequent, higher resolution run.”  For 

instance, if 60 nodes is not enough to get a good solution for a maneuver, the maneuver 

can be run again with 80 nodes and with the 60 node solution as the initial guess.  Since 

the 60 node solution is very close to what the 80 node solution will be, it will take fewer 

iterations and (most importantly) less run time for DIDO to arrive at that solution than if 

it had used the default two point guess.  The difficult part (for this study) was 

determining what the optimum starting node value was; in other words, what node value 

saved the most time when its result was bootstrapped to a higher resolution run.  A 

relatively short study was done on this topic, the results of which were saved in “DIDO 

Run History.” 

The Navion was again used as the test aircraft for this “bootstrapping time” study, 

and the Reversal was chosen as the test maneuver.  The maneuver was run at 20 node 

intervals from 20 nodes to 100 nodes, as can be seen in the table below.  The original run 

times are listed in the far left column, and the run times from bootstrapping with different 

values of nodes fill the rest of the table.  The percentages listed in the table are a measure 

of how much faster the runs were completed by bootstrapping.  For example, 20 nodes 

bootstrapped to 60 nodes takes 2.5 min + 2.7 min, whereas 60 nodes by itself takes 9.6 

min.  So the “bootstrapping time” is equal to 5.2/9.6 or 54% of the “original time.”  The 
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time-improvement ratio, or TIR (a shorthand term for “how much faster” that will be 

used in the next two sections) is the inverse of that (9.6/5.2), or 1.85.  

 
Table 8.   Effect of Bootstrapping on Run Time 

0 20 40 60 80 100

2.9 2.7 9.5 16.5
60% 54% 47% 15%

0.5 2.8 4.7 8.8
381% 123% 54% 14%

0.8 1.8 119.0 79.3
416% 127% 508% 72%

0.6 2.6 3.7 12.9
1036% 310% 302% 31%

0.5 2.8 1.7 3.6
4941% 1398% 1299% 500%

80 25.3

100 123.0

Bootstrapped # of Nodes

O
ri

gi
na

l #
 o

f N
od

es

20 2.5

40 9.0

60 9.6

 

 

There were three important facts gleaned out of this experiment.  First, never, 

never bootstrap to a lower node value.  This was actually known before the experiment, 

which is why the definition for bootstrapping included the two key words “higher 

resolution.”   However, it was included as part of the experiment for completeness.  

Second:  a greater difference between the original node value and the bootstrapped node 

value results in a greater time savings.  For instance, bootstrapping the 20 node solution 

to 60 nodes takes 54% of the original run time, while bootstrapping it to 80 nodes takes 

only 47% of the original time, and bootstrapping all the way to 100 nodes takes a meager 

15% of the original time.  Thirdly, and lastly, smaller original node values like 20 or 40 

show the best time improvement (at least for the range of nodes tested in this 

experiment). 

As mentioned in the last section, 20 nodes is the absolute minimum resolution 

needed to get a rough “sketch” of a maneuver.  Based on this section’s experiment, it is 

also the optimum starting node value for the aircraft code:  for final node values ranging 

from 60 to 100, bootstrapping from 20 nodes reduced DIDO run times by an average 
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56%.  However, it is interesting to note that as the final node values increase, 40 nodes 

appears to become a better starting value.  In point of fact:  bootstrapping from 20 nodes 

instead of 40 nodes saves 6.6 min when the final value is 60 nodes, but only 1.7 min 

when the final value is 80 nodes, and it takes 1.2 min longer when the final value is 100 

nodes.  Expanding this experiment to 120 nodes might show an even better improvement 

from using 40 nodes, and going beyond that to 180 or 200 nodes might show that 60 or 

80 nodes would be a better starting node value at those levels.  As with the previous 

section, hopefully a more comprehensive study of node selection can be made in the 

future.  In the meantime, bootstrapping all results from an initial run of 20 nodes was an 

excellent way to save a lot of run time. 

 

5. Data Table Look-Up 

Just as a reminder, the function SCTables.m was added to the aircraft 

aerodynamic models in order to update the S&C derivatives during a maneuver.  A very 

thorough description of how the tables work can be found in Chapter IV’s section on the 

HARV under “Aerodynamic Characteristics” (on page 47), and under the same heading 

in Chapter IV’s section on the UCAV-X (on page 51).  (A summary of the function can 

also be found in the “File Descriptions” subsection earlier in this chapter on page 60.)  

Since the format and purpose of the table look-up functions have already been explained, 

this section will discuss the following topics:  developing and improving the tables, 

creating S&C derivative plots from the tables, and comparing run times between different 

aircraft models and tables.  These run time comparisons are the most important part of 

this section, as they were critical in determining the need to make further improvements 

to the S&C derivative models of the HARV and UCAV-X. 

The Navion, with its constant S&C derivative values, had no need for a look-up 

table, but one was made for it in order to test the theory and format of SCTables.m.  The 

Navion’s constant values were entered at 10° AOA increments, with MATLAB’s cubic 

“interp1” and “extrap” commands used to calculate the S&C derivatives at AOA values 

between those data points.  Also, because AOA is a state variable, and therefore not a 

scalar but a vector, SCTables.m had to analyze a set of S&C derivatives for every value 
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of AOA.  This was originally done using loops, which turned out to be very inefficient 

due to MATLAB’s current inability to quickly manipulate them.  (See the note on page 

56.)  Two improvements were then tested to reduce the table’s run time:  the first was 

preallocating a matrix to store the S&C derivative values (a good MATLAB habit), and 

the second was replacing the table’s loops with vectors.  These improvements were tested 

separately and together, and compared against the original version of SCTables.m for 

different numbers of nodes and iterations.  Results are shown and discussed below: 
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Figure 19.   Table Look-Up Run Time vs. Number of Nodes 

 

The plot above shows how the four different versions of SCTables.m were 

affected by different node values (for a constant 365 iterations):  both versions of the 

function that used vectors had practically the same run time with 1 node as with 140 

nodes (4.7 sec versus 5.9 sec).  On the other hand, the two versions that used loops had 

run times that increased dramatically as the number of nodes increased (going from 4.7 

sec to 604 sec).  Also, looking more closely at the run times of the versions that used 

preallocation, it became apparent that they were consistently a fraction of a second faster 

than their conventional loop and vector counterparts.  In conclusion, the resulting TIR 

between the original and improved version of SCTables.m increased linearly from 1.0 to 

104; for the common node values used with the aircraft code, the TIR varied between 50 

and 80 (a huge time savings). 
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The next plot shows how the four different versions of SCTables.m were affected 

by different numbers of iterations (this time for a constant 7 nodes).  Note that the 

iterations in this plot are not the same as the iterations counted by DIDO.  For instance, 

one iteration of DIDO could access the SCTables.m function twenty times; the iterations 

in this plot represent that second number.  As with the previous plot, the two versions that 

used loops had nearly identical run times, as did the two versions that used vectors.  Also, 

the loop versions again had noticeably longer run times.  However, unlike the previous 

plot, the TIR between the original and improved version of SCTables.m stayed constant 

as iterations increased, which is pictured very well in the logarithmic plot.  Also pictured 

well in the plot is the fact that run times for all versions increased proportionally with the 

increased number of iterations:  the original version took 8.4 sec for 100 iterations, 84 sec 

for 1000 iterations and 852 sec for 10,000 iterations; likewise, the improved version took 

1.3 sec, 13 sec and 130 sec for those same number of iterations.  In conclusion, the 

resulting TIR of 6.5 was solely a function of choosing to use 7 nodes, and high numbers 

of iterations are going to have an inescapable, significant impact on run times. 
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Figure 20.   Table Look-Up Run Time vs. Number of Iterations 

 

With the format of SCTables.m decided upon, the HARV and UCAV-X versions 

of the function were modified to include the same improvements.  The functions 

SCPlots2.m and SCPlots3.m were then coded to print out plots of all the S&C derivatives 
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for the HARV and UCAV-X, respectively.  These plots were used in the case of the 

HARV to determine when zero AOA corrections were needed, to compare the 

interpolated values to the Iliff and Wang fairings [Ref. 19-20], and to compare the 

relative strength of each derivative on the six force and moment coefficients.  They are 

included in Appendix D for reference. 

 

a. Analytic vs. Table Look-Up Navion Models 

This first comparison was recorded in “DIDO Run History,” and compares 

the run times of actual maneuvers as flown by the Navion with three different 

aerodynamic models:  the original, analytic model, the loop-based table look-up model, 

and the vector-based table look-up model.  (These results are listed in the table below.)  

Two important ratios were developed from this comparison study:  one was the ratio of 

run times with the loop-based model to run times with the vector-based model; this ratio 

(for each maneuver) was compared to the predicted TIR derived from Figure 19.  

Another important ratio was the run times with the vector-based model over the run times 

with the analytic model; these values for each maneuver gave an impression of how much 

longer it takes DIDO to converge on a solution when using a table look-up model. 

 
Table 9.   Analytic vs. Table Look-Up Run Times (Navion) 

Maneuver 1.  Analytic 
2.  Table 

Look-up 

Ratio     

(#2 / #1) 

3.  Table w/ 

Vectors 

Ratio     

(#3 / #1) 

Ratio     

(#2 / #3)

Straight Climb    

(60N, 2531 iter.) 
4.826 min 564.3 min 116.9 16.56 min 3.43 34.1 

Wingover         

(60N, 4375 iter.) 
4.586 min 415.8 min 90.7 13.22 min 2.88 31.5 

Level Turn       

(80N, 2450 iter.) 
21.89 min 2185 min 99.9 57.77 min 2.65 37.8 

Climbing Turn   

(90N, 5126 iter.) 
14.86 min 1250 min 84.1 32.52 min 2.19 38.4 
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As can be seen, the first ratio (Time 2/3) ranged from 31.5 for the 60 node 

Wingover to 38.4 for the 90 node Climbing Turn.  The TIR’s predicted for those 

particular node values were 49 and 71; however, it was not surprising that they were 

somewhat less when used in the actual aircraft code.  The second ratio (Time 3/1) 

averaged out to 2.8, implying that it takes DIDO approximately three times as long to 

converge on a solution when using a table look-up model. 

 

b. Navion vs. HARV vs. UCAV-X Table Look-Up Models 

This second run time comparison was for all three test aircraft.  The goal 

of the experiment was to determine if it took longer to access the look-up tables for the 

HARV and UCAV-X than it did to access the Navion’s look-up table, and if so, by how 

much.  Run times to access all three look-up tables are listed in the table below for a wide 

range of nodes and iterations. 

 

Table 10.   Navion vs. HARV vs. UCAV-X Table Look-Up Run Times 

# Nodes # Iterations 1.  Navion 2.  HARV 
Ratio     

(#2 / #1) 3. UCAV-X 
Ratio     

(#3 / #1)

20 500 6.33 sec 15.11 sec 2.39 13.06 sec 2.06 

20 1,000 13.09 sec 30.14 sec 2.30 25.99 sec 1.99 

20 2,000 25.19 sec 59.80 sec 2.37 51.74 sec 2.05 

20 4,000 50.67 sec 120.3 sec 2.38 104.0 sec 2.05 

20 8,000 101.7 sec 141.6 sec 2.38 208.6 sec 2.05 

20 10,000 204.2 sec 482.8 sec 2.36 417.2 sec 2.04 

60 1,000 14.47 sec 32.98 sec 2.28 28.64 sec 1.98 

60 2,000 28.68 sec 66.36 sec 2.31 57.31 sec 2.00 

60 4,000 56.68 sec 132.1 sec 2.33 114.0 sec 2.01 
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The more complex look-up tables for the HARV and UCAV-X did, as 

expected, take longer to access than the Navion’s look-up table.  This is not surprising 

due to both the larger number of S&C derivatives for those models, and the fact that the 

derivatives are not all the same value (as they are for the Navion).  It was also not 

surprising that the HARV table took longer to access than the UCAV-X table, because 

for one, the HARV data is a lot more sparse and therefore requires more interpolation.  

Also, the HARV data is provided from multiple sources at different ranges of AOA, 

complicating the look-up table.  In conclusion, the HARV and UCAV-X look-up tables 

take approximately 2.3 and 2.0 times as long to access as the Navion’s.  Based on the 

results of this and the previous run time comparison, it was estimated that maneuvers 

flown by the HARV and UCAV-X (with look-up tables) would take about six times as 

long to converge as maneuvers flown by the Navion (without look-up tables). 

In conclusion, look-up tables were a good method of accessing more 

complex S&C data.  For the HARV and UCAV-X, vectors stored data points of S&C 

derivatives at different angles of attack, and interpolation was used to determine S&C 

derivative values between those data points.  This not only guaranteed that certain angles 

of attack would yield exactly the correct S&C values, but for models with a high density 

of data points (like the UCAV-X), this guaranteed extremely accurate results throughout 

the AOA regime.  Unfortunately, the table look-up models also incurred run time 

penalties.  While the factor of six discussed in the previous paragraph would be 

acceptable, that number was based on certain conditions remaining constant that, for the 

HARV and UCAV-X, did not.  The two most significant of those conditions were the 

number of state variables and the number of iterations.  While the number of state 

variables for the Navion was twelve, the number for the HARV and UCAV-X (which 

both have eight control deflection states) was twenty.  Also, for an unknown reason, the 

number of iterations for a typical maneuver with the HARV were five to ten times greater 

than for the Navion.  These effects combined to make run times unacceptably high, and 

led for the need to “speed up” the aerodynamic model. 
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6. Curve-Fitting 

Curve-fitting was the technique used to reduce run times for the HARV and 

UCAV-X to an acceptable level (i.e. an hour or less for a fully converged solution).  The 

specific goal of curve-fitting was to eliminate the need for both the large data tables of 

the UCAV-X, and the all the interpolation required by the data tables of the HARV.  This 

was done by replacing the function SCTables.m with simple polynomials for each S&C 

derivative.  (See the description of this process in Chapter IV’s section on the HARV 

under “Aerodynamic Characteristics” [on page 47], and under the same heading in 

Chapter IV’s section on the UCAV-X [on page 51].)  This section will discuss the results 

of curve-fitting the HARV and UCAV-X aerodynamic models, and compare the resulting 

S&C derivatives with those obtained from the table look-up models.  As with the last 

section, though, the focus of this section will be on comparing run times between 

different aircraft aerodynamic models.  The results of these comparisons will demonstrate 

whether or not curve-fitting adequately reduced run times for the HARV and UCAV-X. 

Some initial testing was done to determine what order polynomials were needed 

to best reproduce the S&C derivatives.  After experimenting with a few derivatives for 

the UCAV-X, it was obvious that higher order polynomials were better able to capture 

the sometimes irregular patterns of the derivatives.  That being established, each S&C 

derivative for the HARV was curve-fitted with different order polynomials to determine 

the best fit before triggering a “badly conditioned” warning in MATLAB.  (This resulted 

in 4th order polynomials for 24 derivatives, and 5th order polynomials for the remaining 

19 derivatives.)  The resulting curve-fitted plots are included in Appendix E for 

reference. 

The plots are an excellent indication of the accuracy of curve-fitting, because the 

actual data points are included on the plots for comparison.  Also, the accuracy of the 

HARV curve-fitting was further verified by comparing the plots to the fairings produced 

by Iliff and Wang.  (The HARV curve-fitted plots can also be compared to the table look-

up plots in Appendix D.)  The UCAV-X had too many data points for them to all be 

captured by curve-fitting, but the trends matched.  (Also, matching the exact values of the 

X-31 S&C derivatives with the UCAV-X curve-fittings was not a priority since the 
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aircraft being modeled is a theoretical one.)  One final note on the curve-fittings for both 

the HARV and UCAV-X:  as mentioned earlier, even higher order polynomials were 

unable to imitate the “double-peak” exhibited by many of the S&C derivatives.  In most 

cases the curve split the two peaks, as demonstrated in the figure below.  Overall, though, 

the curve-fitted derivatives very accurately reproduced the S&C data for both the HARV 

and UCAV-X. 
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Figure 21.   Example of Curve-Fitting a “Double Peak” 

 
a. Table Look-Up vs. Curve-Fit HARV Models 

Continuing from the previous section on the “Data Table Look-Up” 

models, this is actually the third run time comparison test.  Like the first test, this one 

compares run times using different aerodynamic models of the same aircraft (in this case 

the HARV).  The models being compared were the improved table look-up file from the 

previous section (SCTables2.m) and the curve-fitted S&C derivative equations (as coded 

directly into LoadAircraft2c.m).  The times needed to run these models for a variety of 

nodes and iterations are listed in the table below.  NOTE:  The times listed in this and 

every  other  table  in  this  section  will  be  noticeably greater than run times listed in the  

previous section or “DIDO Run History.”  The reason is that these tests were done on a 

slower computer – a 1998 Pentium II (versus a 2002 Pentium IV).  However, the results 

are still valid because the ratios are of primary importance, not the run times. 
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Table 11.   Table Look-Up vs. Curve-Fit Run Times (HARV) 

# Nodes # Iterations 
1.  Table 

Look-Up 

2.  Curve 

Fitting 

Ratio     

(#2 / #1) 

1 200 36.97 sec 0.58 sec 63.75 

10 200 38.83 sec 1.67 sec 23.21 

20 200 39.52 sec 1.84 sec 21.51 

40 200 41.19 sec 2.67 sec 15.44 

60 200 41.85 sec 2.72 sec 15.40 

100 200 43.64 sec 3.01 sec 14.48 

150 200 53.65 sec 5.81 sec 9.24 

20 100 19.25 sec 0.91 sec 21.23 

20 1,000 1079 sec 49.31 sec 21.90 

20 2,000 2185 sec 100.8 sec 21.68 

20 4,000 4371 sec 201.8 sec 21.66 

20 10,000 13573 sec 607.9 sec 22.33 

 

Looking at the bottom half of the table, it’s apparent that increased 

iterations proportionally increased run times for both the table look-up and curve-fit 

models.  However, increasing the number of nodes from one to 150 only increased run 

time for the table look-up model by 45%, while run time for the curve-fit model went up 

by almost 1000%.  (Most likely due to the time consuming calculations of large vectors 

in polynomial equations.)  Unfortunately this meant that the greatest TIR’s were at node 

values that were too small to be used in this study.  However, even at the node values 

most commonly used in this study (40 to 100), the TIR of using curve-fitting over table 

look-up was still about 15 (and as high as 23 when using 20 nodes). 
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b. Table Look-Up vs. Curve-Fit UCAV-X Models 

This fourth run time comparison repeated the procedure of the previous 

test for the UCAV-X.  Run times for the table look-up model (SCTables3.m) and the 

curve-fit derivative equations (coded directly into LoadAircraft3c.m) are listed in the 

table below (continuing on to the following page) for a range of node values and 

iterations.  (NOTE:  Ideally, both this and the previous test would have compared not 

only the run times of the two different models, but the run times of actual DIDO 

maneuvers flown using the two models [as in the first run time comparison].  However, it 

would have taken far too much time to perform a comparison of actual maneuvers.  The 

theoretical TIR’s calculated in this and the previous table should closely match those that 

would be found with actual DIDO results.) 

 

 
Table 12.   Table Look-Up vs. Curve-Fit Run Times (UCAV-X) 

# Nodes # Iterations 
1.  Table 

Look-Up 

2.  Curve 

Fitting 

Ratio     

(#2 / #1) 

1 200 32.66 sec 0.64 sec 51.28 

10 200 34.26 sec 1.63 sec 21.02 

20 200 34.25 sec 1.89 sec 18.12 

40 200 36.05 sec 2.67 sec 13.49 

60 200 36.96 sec 2.65 sec 13.93 

100 200 38.29 sec 3.05 sec 12.54 

150 200 47.18 sec 6.67 sec 7.07 

20 100 17.39 sec 0.98 sec 17.80 

20 1,000 1173 sec 63.24 sec 18.54 

20 2,000 1953 sec 109.2 sec 17.87 
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20 4,000 3877 sec 211.7 sec 18.32 

20 10,000 9786 sec 535.9 sec 18.26 

 

As with the previous test, the TIR from using curve-fitting over table look-

up stayed constant with increasing iterations, but dropped quickly as the number of nodes 

increased.  For the UCAV-X, the TIR stabilized out at 13 for node values of 40 to 100, 

and went up to 18 when using 20 nodes.  As an aside, the increased TIR for both the 

HARV and UCAV-X at 20 nodes proved very beneficial since most maneuvers were run 

multiple times at 20 nodes in order to fine tune the solution before going to a higher 

resolution run. 

 

c. Navion vs. HARV & UCAV-X Curve-Fit Models 

This final run time comparison was for all three test aircraft.  (The title is 

misleading because there was no curve-fitted model for the Navion – the title is referring 

to the original, analytic version of LoadAircraft1.m.)  As stated at the beginning of this 

section, the goal of curve-fitting the S&C derivatives for the HARV and UCAV-X was to 

reduce their run times.  The previous two sections have shown this was accomplished by 

calculating the TIR’s of the curve-fit models over the table look-up models.  This section 

will show just how successful curve-fitting was by comparing run times of the curve-fit 

models with run times of the Navion’s original aerodynamic model (the simplest and 

fastest model used in this study). 

 
Table 13.   Navion vs. HARV & UCAV-X Curve-Fit Run Times 

# Nodes # Iterations 1.  Navion 2.  HARV 
Ratio     

(#2 / #1) 3. UCAV-X 
Ratio     

(#3 / #1) 

1 2,000 1.50 sec 5.78 sec 3.85 5.91 sec 3.94 

10 2,000 1.55 sec 18.03 sec 11.66 16.84 sec 10.89 

20 2,000 1.45 sec 17.72 sec 12.14 18.12 sec 12.41 
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40 2,000 1.56 sec 24.58 sec 15.79 26.03 sec 16.72 

60 2,000 1.90 sec 26.11 sec 13.76 28.13 sec 14.83 

100 2,000 1.47 sec 30.04 sec 20.39 31.92 sec 21.67 

150 2,000 2.31 sec 57.54 sec 24.94 62.58 sec 27.12 

20 1,000 0.76 sec 8.87 sec 11.67 8.91 sec 11.72 

20 4,000 2.86 sec 34.91 sec 12.19 36.49 sec 12.74 

20 10,000 7.04 sec 88.46 sec 12.56 90.48 sec 12.85 

 

At a node value of one, the HARV and UCAV-X curve-fit models 

performed extremely well compared to the Navion’s analytic model – both took less than 

four times as long as the Navion model to run.  Unfortunately, by 20 nodes that ratio had 

increased to 12, and for node values between 40 and 100 that ratio was 15 to 20.  On the 

plus side, a ratio of 12 for a 20 node solution with curve-fitting is certainly much better 

than a ratio of 352 (12 x 21) or 216 (12 x 18) for a 20 node solution with the HARV or 

UCAV-X look-up tables. 

In conclusion, the curve-fitted S&C derivatives for the HARV and 

UCAV-X significantly reduced run times for those aerodynamic models, without 

sacrificing accuracy.  While access times for those aerodynamic models weren’t reduced 

to the level of the original Navion model, they were dramatically improved – only taking 

10 to 20 times as long to access versus 200 to 400 times as long to access the look-up 

tables.  (There’s an additional time savings to using the curve-fitting over the look-up 

tables that wasn’t calculated in this section:  the curve-fitted derivatives don’t require 

calling the function SCTables.m because they are written directly into LoadAircraft.m.  

While a function call probably only takes a fraction of a second, that fraction multiplied 

by 1000 or 10,000 iterations can add up to a lot of time.)  Since nearly all Navion 

maneuvers took between 5 and 15 minutes for a fully converged solution (when 

bootstrapping and running on a fast computer), it’s possible (based on these results) that 
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under similar conditions a fully converged solution for the HARV or UCAV-X could 

take the desired time of approximately one hour.  (Actual run times will be discussed in 

the next chapter.) 

 

D. OPTIMALITY 

1. Definition 

For the aircraft code, optimality is simply the minimum time for an aircraft to get 

from its initial to final condition, as determined by DIDO.  DIDO arrives at this time by 

determining the “state-control function pair {x(.), u(.)}, design parameters p, and the 

‘clock times’ 0τ  and fτ  that minimize the Bolza cost functional 

0
0 0 0[ ( ), ( ), , ; ] ( ( ), ( ), , ; ) ( ( ), ( ), ; )f

f f fJ x u p E x x p F x u p d
τ

τ
τ τ τ τ τ τ τ τ τ τ⋅ ⋅ = + ∫ .” 

[Ref. 29]  However, even a maneuver that is returned by DIDO as “optimal” is still 

verified by several analysis tools in the aircraft code before being accepted as a genuine 

time-optimal maneuver.  This section discusses the criteria that were used to determine 

whether or not a maneuver was time-optimal, as well as how different analysis tools were 

used to verify optimality. 

 

2. Conditions for a Valid Maneuver 

Six different criteria were used to test both the optimality and feasibility of 

maneuvers generated by DIDO.  They are listed and discussed below in rough order of 

precedence (the first three relating to optimality and the next three to feasibility).  For 

instance, if the DIDO output from a maneuver stated that the result was not “locally 

optimal,” it would have been dropped right then without any further analysis, and tried 

again with different BC’s.  However, for various reasons, certain maneuvers that did not 

meet all six criteria were retained and included in this report; such maneuvers were 

simply annotated as “non-optimal” solutions.  In conclusion, those maneuvers that pass 

the rigorous set of criteria described below are referred to in this report as “optimal 

solutions” with a great deal of confidence. 
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a. DIDO Output 

Naturally, the first condition for optimality is that the output from a DIDO 

run states that the solution is optimal.  The most common DIDO outputs (and some of the 

associated comments) are listed below: 

1. “Locally Optimal”  (However, check the following:  Hamiltonian, dual 

variables, states and controls, and cost.) 

2. “No Solution”  (While a result was calculated, there are most likely 

singularities in the functions.  Number of nodes could also be too small.) 

3. “Infeasible”  (Usually due to incorrect problem formulation or incorrect 

coding.  Also check for over-specified BC’s, redundant constraints, etc.) 

The desired output, of course, for this and any other study, was the first 

one on the list – “locally optimal.”  This indicated that in the solution space defined by 

the user (an important qualification), the maneuver generated by DIDO was the optimal 

way to achieve the final flight conditions specified.  On the other hand, a result labeled by 

DIDO as “infeasible” had to be reworked in order to get any kind of state and control 

history for the maneuver.  Results between those two extremes, as previously mentioned, 

were generally discarded:  the maneuver would be run again with different final state 

variables or different final BC’s until a “locally optimal” result was achieved, and 

analysis could continue.  (For more information on how, specifically, DIDO defines a 

maneuver as “locally optimal” versus “infeasible,” etc., please refer to the author’s user 

manual [Ref. 29].) 

 

b. Hamiltonian 

Optimal control theory states that the Hamiltonian should be constant for 

the type of maneuvers being analyzed in this study.  Also, according to the original 

author of the aircraft code, “since this minimum time problem was formulated as a 

Lagrange cost (and thus the Hamiltonian is not an explicit function of time) the expected 

value of the Hamiltonian is zero.”  [Ref. 30]  Fortunately, both of these conditions were 
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easy to verify using Analysis.m.  Take, for example, the following figure produced by 

Analysis.m for a Level Turn flown by the Navion: 
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Figure 22.   Sample Hamiltonian 

 

It is immediately obvious by inspecting the time history (and mean value) 

of the Hamiltonian that the optimality criteria of a flat, near zero Hamiltonian is satisfied.  

The only inconsistency is in the spikes that occur at the endpoints of the maneuver; while 

no good explanation for the spikes can be offered, they are characteristic of almost every 

maneuver that was run with the aircraft code.  Fortunately, in most cases the peak value 

of the spikes are of an order <<1.  With the exception of the spikes, then, any other 

noticeably jagged appearance of the Hamiltonian was associated with non-optimality.  

(This was usually supported by several other criteria not being met, as well.) 

 

c. Dual Variables 

The dual variables (or costates) are a very useful set of values that DIDO 

stores the time history of in the array dual.states.  While these variables have no physical 

meaning, they were used to test another criteria for optimization.  That criteria states that 

the partial derivative of the Hamiltonian with respect to each of the controls must be zero.  

For the Navion, in other words, 
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The partial derivatives of the Hamiltonian were developed implicitly by using aircraft 

data, state variables and dual variables.  A sample printout of these partial derivatives, 

created by Validation.m for a Level Turn flown by the Navion, is included below: 
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Figure 23.   Sample ‘Validation.m’ Plot 

 

Obviously this maneuver satisfied the “partial derivative” condition, as the 

largest value of the partial derivatives pictured above is on the order of 10-5.  For a 

maneuver that passed this criteria and the previous two (like the Level Turn), first order 

optimality is well established.  The remaining three criteria will establish the feasibility of 

the maneuver. 

 

d. Propagated Solution 

Propagator.m is a great tool for testing whether a maneuver produced by 

DIDO can really be performed.  In general terms, it takes the control history from a 

DIDO maneuver, “flies” the test aircraft with those control inputs, and stores the resulting 

maneuver.  If that “propagated” maneuver matches the original DIDO maneuver, then the 

maneuver is feasible.  (For a more detailed discussion of how Propagator.m works, refer 
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back to the initial description of the file on page 62.)  In order to verify that the 

maneuvers matched, the propagated results were plotted alongside the original results on 

the first four Analysis.m figures that correspond to the aircraft’s position, velocity, Euler 

angle and body rate terms.  The body rates were usually the most difficult to match, so 

that figure is pictured below as an example (again for a Level Turn flown by the Navion): 
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Figure 24.   Sample ‘Propagator.m’ Plot 

 

In the figure, the solid lines are the propagated values and the circles are 

the original values.  As can be seen, the propagated values were an excellent match at the 

beginning and end of the maneuver, running right through the center of just about all the 

original data points.  However, there were a few roll rate terms between 4.5 and 6 sec that 

weren’t captured by the propagated results, and a few yaw rate terms between 1.5 and 3 

sec.  On the whole though, the propagated results did a very good job of matching the 

relatively high frequency body rates – they also perfectly matched the position, velocity 

and Euler angle terms.  Based on all that, the first and most important criteria for the 

feasibility of this particular maneuver was considered to be met. 
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e. States & Controls 

This criteria is much more subjective than the others that have been 

discussed.  Essentially it is just a common sense check to make sure that the state variable 

history and control history are reasonable.  This check, for instance, brought to light the 

need for control rate limits to be added to the aircraft models.  This was also a good point 

to check for things like path constraints not being followed, BC’s being violated, etc.  

While most maneuvers passed this criteria, occasionally one would come up that didn’t 

behave correctly in some area, and the LoadManeuver.m file would have to be 

manipulated until the problem went away. 

 

f. Result & Cost 

As with the previous criteria, this one is also rather subjective.  The 

purpose of it is to examine the DIDO solution for accuracy – to make sure that the 

maneuver finished at the correct position, speed, and orientation, and that it finished in a 

reasonable time.  For instance, if an aircraft was supposed to travel 1000 ft cross range, 

±200 ft, and it in fact traveled 1400 ft, then DIDO’s result did not solve the specified 

maneuver.  (The usual problem in such a situation was that another BC made it 

impossible to solve the particular BC that was violated.)  Maneuver time was a more 

difficult matter to check, but if the test aircraft averaged about 200 fps during a 

maneuver, then it was possible to compare distance with time and make sure the ratio 

matched that average velocity.  So, assuming a maneuver finished as it was designed to 

and in a reasonable time, this final condition for feasibility was met, and the maneuver 

could be declared “optimal.” 

As a conclusion to this section on optimality, the six different criteria that 

were used to test optimality and feasibility of maneuvers generated by DIDO are listed 

below.  Maneuvers that passed these criteria will be referred to in the results of the study 

as optimal. 

1. DIDO output of “locally optimal” 

2. Flat, near zero Hamiltonian 
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3. Partial derivative of Hamiltonian with respect to controls equals zero 

4. Propagated results match DIDO results 

5. State variable and control histories are reasonable 

6. Result and maneuver time are accurate 
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VI. RESULTS 

A. NAVION 

The main purpose of the Navion was to prove the validity of the aircraft code, 

which it did quite well (as these next few subsections will demonstrate).  The Navion 

model was also a test bed for changes that had to be made to the aircraft code for it to be 

compatible with the HARV and UCAV-X.  A number of these changes (control rate 

limits, bootstrapping, table look-up, etc.) were discussed in the previous chapter.  The 

third and final goal for the Navion was to demonstrate conventional air combat 

maneuvers.  As discussed at the end of Chapter II, optimal maneuvers performed by the 

Navion were expected to closely resemble typical air combat maneuvers like the 

Immelman, Split-S, and low yo-yo.  After analyzing the eight Navion maneuvers 

included for this study, they will be compared to maneuvers like those just mentioned to 

verify that prediction. 

NOTE:  MATLAB plots summarizing the results of each maneuver are included 

in Appendix F, along with other pertinent data such as time to complete the maneuver, 

number of nodes used, etc.  The maneuvers are listed in Appendix F in the order they will 

be discussed in this section; the appendix should be followed closely while reading this 

section as the figures were not reproduced here.  (For reference, the order of the figures is 

as follows:  3D trajectory, position, velocity, body rates, Euler angles, control deflections, 

load factor, Hamiltonian and the derivative of the Hamiltonian with respect to controls.) 

 

1. “Standard” Maneuvers 

The first four Navion maneuvers were dubbed “standard” maneuvers because the 

delta expressions and BC’s were designed to produce four very specific, simple, non-

dynamic maneuvers.  (As opposed to the normal procedure of simply picking a delta 

expression and seeing what the optimal maneuver looks like.)  However, while the 

maneuvers are very conventional, they are all optimal, minimum-time maneuvers. 

The first of these maneuvers, “Straight Climb,” was a minimum-time climb from 

1000 ft to 2000 ft, with the added constraint that the final velocity be equal to the initial 



98

velocity.  (See Appendix F, page 183.)  As expected, the maneuver was characterized by 

a rapid pitch-up, a straight climb, and a push-over at the end of the maneuver to regain 

airspeed.  The pitch-up was accomplished by a max deflection of the elevator (15° TED), 

which resulted in a momentary pitch rate of 25°/sec.  The elevator was then relaxed to 

maintain a 4° AOA climb.  Since the max AOA for the Navion is 20°, the climb was 

probably thrust-limited.  (Note the drop in airspeed from 176 fps to 132 fps.)  The zero 

values for aileron and rudder deflection, roll and yaw, beta and lateral displacement (Y) 

all match the expected appearance of this maneuver.  The initial spike in load factor is of 

course from the very rapid pitch-up, and the spike at the end of the maneuver is from 

pulling up out of the 0.8g push-over. 

This maneuver was an excellent example of optimality.  The DIDO result was 

“locally optimal,” the Hamiltonian was a perfect flat line at zero (except for the peaks of 

0.75 and 0.21), and the partial derivatives of the Hamiltonian ranged from 10-10 to 10-5.  

The feasibility was excellent as well:  the propagated values on the position, velocity, 

body rate and Euler angle plots (marked by a solid line) almost perfectly matched the 

DIDO output.  In addition, the two subjective criteria of reasonable state variable and 

control histories and accurate results were both met. 

Some final thoughts:  while the maneuver took just over two and half minutes to 

complete, the Navion actually hit the target altitude of 2000 ft 123 sec into the maneuver.  

Therefore if the final velocity was unconstrained, the maneuver time should be reduced 

by about 20%.  Also, it could be verified that the climb was thrust-limited by arbitrarily 

increasing the Navion’s max thrust and re-running the maneuver with all other conditions 

the same.  The result should be a higher AOA climb. 

The second standard maneuver was a “Level Turn,” which was designed to 

change the Navion’s heading angle by 90° with little to no change in altitude during the 

maneuver.  (See Appendix F, page 185.)  In order to do this, the final displacement of the 

Navion was set to approximately 1000 ft in the X and Y directions, and the energy 

constraint was used ( 0H∆ =  and 0V∆ = ).  While the controls chatter quite a bit, it’s 

obvious the maneuver starts with max right roll aileron, max rudder (15° TER) and max 

elevator (15° TEU).  The ailerons deflect long enough to get about 60° angle of bank, 
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then reset to zero until deflecting the opposite way at the end of the maneuver to return to 

wings level.  For this particular maneuver, the Euler angle plot is a good picture of what’s 

happening:  a steady increase in heading angle from 0 to 90°, a bank angle of 60° for 

most of the maneuver, and a pitch angle that switches from positive to negative at the 

midpoint of the maneuver.  (Due to the bank angle, elevator deflection during this 

maneuver mostly helps to change the Navion’s heading.)  The AOA peaks at 1.0 and 7.8 

sec correspond to the load factor peaks, and are preceded by peaks in beta (probably due 

to starting a climb/descent while steeply banked). 

The DIDO output for this maneuver was “locally optimal,” and not only was the 

Hamiltonian flat and zero, but the peaks at the beginning and end of the maneuver only 

reached values of –0.02 and –0.06.  Hamiltonian partials were all near zero, with the 

largest being 10-5.  Propagated values matched perfectly except in the case of the body 

rates, where a few points weren’t captured due to the rapid oscillations of the DIDO-

produced rates.  In spite of that, the feasibility criteria was considered to be met.  Lastly, 

while the controls switch from max to min values at an unrealistic rate, that was a known 

limitation of the Navion model, so this control history was considered reasonable. 

Some final thoughts:  the 80 ft climb at the midpoint of the Level Turn was not 

considered a significant change in altitude.  However, if a perfectly level turn was 

desired, a path constraint could be entered to hold the altitude throughout the maneuver to 

1000 ft.  This would most likely result in a reduced bank angle, larger turn radius, and 

longer maneuver time.  Also, as with the last maneuver, the Navion actually hit the target 

heading of 90° 7.6 sec into the 8.5 sec maneuver.  In this case, the last 0.9 sec was spent 

rolling to wings level and pulling the nose up to zero AOA. 

The next maneuver, a “Climbing Turn,” was quite simply a combination of the 

previous two:  climbing 1000 ft and turning 90°.  Different values for X and Y 

displacement were experimented with to produce the smoothest trajectory.  (See 

Appendix F, page 187.)  As expected, the maneuver strongly resembled the previous two, 

but predominately the Straight Climb.  In fact, the only noticeable differences between 

the two sets of results are the plot of ψ  (which increases to 90° for the Climbing Turn) 

and the plots of Y and the ground track (which reflect traveling in the X and Y 
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directions).  The ailerons barely deflect (less than 2°), and the bank angle through the 

entire maneuver is less than 3°.  Also, the climb AOA is 4° and velocity drops to 132 fps, 

just like the Straight Climb. 

The maneuver definitely satisfies the criteria for optimality:  “locally optimal” 

DIDO output, Hamiltonian flat and near zero (with small peaks on the ends), partial 

derivatives of the Hamiltonian also near zero.  Propagated values are an excellent match, 

and the state variable histories are reasonable. 

The last standard maneuver was a “Wingover,” which was a heading reversal with 

an energy constraint and a lateral displacement of 1000 ft (to make the maneuver look 

like a classic Wingover…see Appendix F, page 189.)  The maneuver turned out to be 

very smooth and symmetric, inscribing a neat semicircle over the ground.  It was started 

with a quick bank and climb, and the progression of the maneuver can be seen very 

clearly from the control history:  max aileron for right roll at the beginning of the 

maneuver, and max aileron for left roll at the end (to right the aircraft); there was also 

some left roll aileron applied between six and twelve seconds into the maneuver that 

started to reduce the bank angle.  The rudder followed the same pattern of max TER at 

the beginning and max TEL at the end (to straighten the aircraft on its new heading).  

Elevator started at max TEU to climb the aircraft, but after that, elevator deflection was 

slightly unintuitive.  Pitch angle decreased linearly from three to eleven seconds, but 

elevator deflection (TEU) increased and then decreased in a parabola during that same 

period.  The reason for using the elevator in the middle of the maneuver was to continue 

to change heading while in a highly banked position with little rudder authority (note the 

lack of rudder use from seven to twelve seconds).  Finally, max rudder at the end of the 

maneuver brought the airplane from its nose down position back to level flight. 

The Wingover was “locally optimal,” had a perfectly flat Hamiltonian except for 

a peak at the end of 0.1, and had near zero partial derivatives of the Hamiltonian.  

Propagated values matched very well, and the state and control histories were reasonable 

– even the controls only chattered slightly during the maneuver, and for the most part 

went from max to min. 
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2. Optimal Maneuvers 

The maneuvers that will be discussed in this subsection include one example of 

each of the four families of maneuvers defined at the end of Chapter II:  the reversal, 

turning, pointing and braking maneuvers.  A description of the BC’s chosen for each 

maneuver will be included in the discussion, as well as listed in the appropriate section of 

Appendix F.  (Predominately the “energy” and “displacement” constraints were used.) 

The first maneuver was a reversal, which was very similar to the Wingover except 

that no lateral displacement was included.  This particular example of a reversal included 

both the energy constraint and the displacement constraint.  With these BC’s, the 

maneuver met all the same requirements as the Herbst Reversal, and was expected to 

look very similar (which it did…see Appendix F, page 191).  The maneuver was much 

more dynamic than the Wingover was, even with the performance limitations of the 

Navion:  AOA was maxed out at 20° for over half the maneuver, β  values reached 30°, 

velocity dropped to 34 fps, and both pitch and bank angles reached values as high as 82°. 

The maneuver started out with a slightly banked left turn and a short 12° AOA 

climb (note the 3+ g’s between zero and two seconds into the maneuver).  The Navion 

then actually leveled off before starting an incredibly steep climb and turn that totally 

reversed its direction.  During this part of the maneuver the Navion ended up nearly 

standing on its tail, and then on its right wing (see the trajectory view in Appendix F).  

The Euler angles and the middle part of the control history are a good picture of what 

happened during this maneuver…note in particular the max deflections of the ailerons, 

rudder and elevator from 8-11 sec, 7-12 sec and 3-16 sec, respectively.  (The elevator, for 

instance, remains deflected even after the Navion starts descending because it’s acting 

like a rudder when the airplane’s on its side.  In the same way, the rudder helps pitch the 

nose down when deflected TER in this orientation.) 

Optimality is not as obvious with this maneuver; certain criteria are easily met 

(like a “locally optimal” output from DIDO), but others (like the Hamiltonian and control 

history) are not.  The plot of the Hamiltonian is very jagged, but the mean value (and 

peak values) are so small that it’s safe to claim the maneuver is optimal.  Supporting that 

claim are the values of the partial derivatives of the Hamiltonian, which range from 10-7 
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to 10-3.  Propagated results for the reversal actually matched very well, with the exception 

of the plot for the body rates, which “chattered” quite a bit at the beginning of the 

maneuver and a little again at the end.  This chatter matches the high frequency control 

deflections at the beginning and end of the maneuver, while the body rates and control 

deflections in the middle are well-behaved.  All in all the results satisfactorily 

demonstrate feasibility. 

Some final thoughts:  while this maneuver actually took longer to complete than 

the Wingover (19 sec vs. 14 sec), the heading reversal was actually accomplished 13 sec 

into the maneuver; the remainder of the maneuver was spent diving to regain speed, and 

in the process returning to the initial altitude and position. 

The second maneuver was the turning maneuver, which was a 90° heading change 

limited by the displacement and energy constraints.  (See Appendix F, page 193.)  The 

maneuver turned out to be a near-perfect figure eight when viewed from above, with each 

loop characterized by a banking climb, a turn, and then a descent to recover airspeed.  

Notice the two peaks in altitude, dips in airspeed and dips in load factor (<1 g) that occur 

at 6 and 17 sec into the maneuver, upon reaching the “top” of each loop.  The peaks in 

load factor are another good indication of what’s happening during the maneuver:  they 

occur at approximately 1, 11 and 23 sec, when the Navion is climbing into its first and 

second loops and pulling up out of its final descent.  Unfortunately, the body rates and 

control deflections chatter far too much to derive anything of use from them (in fact, the 

incredibly high frequency control deflections at the end of the turning maneuver are 

probably the cause for the rapid oscillations in load factor during the last 5 sec of the 

turn). 

The optimality of this maneuver is extremely similar to that of the reversal:  

“locally optimal” with near zero (but jagged) Hamiltonian and near zero partial 

derivatives of the Hamiltonian.  Feasibility is also similar, because the results are 

excellent but the body rates (and control deflections) chatter a lot.  As with the reversal, 

the turning maneuver sufficiently met the criteria to be considered an optimal maneuver. 

The next maneuver was the pointing maneuver, which for the Navion was defined 

as 30θ∆ = o  and 30ψ∆ = o .  (For the HARV and UCAV-X, more aggressive angles of 
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60° were used.)  For this maneuver, the final values of the position variables were all 

unconstrained by ±1000 ft (effectively defining the allowable maneuvering space as a 

cube 2000 ft per edge).  More restrictive BC’s were experimented with, and some very 

interesting maneuvers were produced, but this set was chosen because it resulted in the 

kind of rapid reorientation that was the purpose of the pointing maneuver (i.e. to rapidly 

point weapons at an opponent during ACM without taking the time to gain a typical 

positional advantage).  The result of this maneuver was a straight forward push-over 

followed by a rapid pull-up and turn to the right.  (See Appendix F, page 195.)  The 

Navion reached almost 200 fps in its dive, and flew at maximum positive and negative 

AOA on the way down and the way up (respectively).  Perfectly matching the AOA was 

the load factor, which was a sustained –1 g for the push-over and a sustained 4.5 g for the 

pull-up.  (This would be pretty hard on a pilot, in particular going from –1 g to 4.5 g in 

half a second.) 

Due to the simple nature of the maneuver, the Analysis.m results were excellent.  

All three optimality criteria were met, and the state variable histories and propagated 

values were perfect matches all around – even the body rate history matched was easy to 

read.  The control deflection history was a great example of the “bang-bang” appearance 

of optimal controls, showing very distinct switching from max to min.  In conclusion, a 

very well-behaved optimal maneuver. 

Some final thoughts:  although unrelated to the maneuver itself, it’s interesting to 

note that this four second maneuver took over 80,000 iterations and two hours (without 

bootstrapping) for DIDO to solve.  (The pointing and braking maneuvers were similarly 

time-consuming for DIDO.) 

The last of the Navion maneuvers was the braking maneuver, which was a 

minimum time maneuver to reduce velocity by 50%.  Like the pointing maneuver, this 

one had the final values of all position variables unconstrained by ±1000 ft.  The 

maneuver resulted in a simple 20° AOA, 4 g climb of a little over 300 ft (see Appendix F, 

page 197).  AOA was maxed out (as expected), and was accompanied by a steady drop in  
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airspeed.  This maneuver is also somewhat unique in that it is the only maneuver where 

thrust was not set to max (it was actually set to min – probably to assist with bleeding off 

airspeed). 

The braking maneuver easily met all the criteria for optimality and feasibility:  

near zero Hamiltonian and partial derivatives of the Hamiltonian (10-11), and good state 

variable history that was perfectly matched by the propagated results.  Also, just like the 

pointing maneuver, this maneuver displayed excellent control deflection characteristics. 

 

3. Comparing to Current Air Combat Maneuvers 

The reversal can be compared to several different maneuvers, and this section will 

start with the Wingover.  Both maneuvers reverse the aircraft’s heading and maintain the 

aircraft’s energy level; the biggest difference between the two is that for an extra 5 sec, 

the reversal returns the aircraft to its starting position, which, depending on the air 

combat scenario, may be worthwhile.  A maneuver more similar to the Navion’s reversal 

is the “Hammerhead,” which involves a steep climb to a vertical attitude, full rudder 

input to swing from nose up to nose down, and then diving to regain speed.   The main 

difference between these two being that the Navion (possibly due to control power) 

doesn’t reverse direction in the vertical, but inscribes a tight (300 ft diameter), high AOA, 

highly banked turn to reverse its direction.  It’s possible that a specific set of BC’s could 

cause the Navion to perform a Hammerhead, at which point the maneuvering time 

between the two could be compared to see which maneuver was faster.  Without that 

information, it’s assumed from this report that the “locally optimal” reversal is the fastest 

way to return to the same point with the same speed and an opposite heading.  Lastly, the 

Navion’s reversal is, by definition, an example of a Herbst Maneuver (although it’s not a 

post-stall maneuver since the Navion retains aerodynamic control authority). 

The turning maneuver can be compared to the high yo-yo, or more accurately, 

two high yo-yo maneuvers back to back.  The primary similarity between the two 

maneuvers is the use of the vertical plane to minimize turn radius.  In the high yo-yo, 

using the vertical plane also enables the attacker to avoid overshooting his target, while 

retaining energy.  The turning maneuver also retained energy, by diving at the end of its 
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two turns to regain speed while returning to its initial altitude.  Obviously certain nuances 

of the high yo-yo (like the attacker keeping his nose ahead of his target) can’t be 

compared to the turning maneuver since it is a single airplane maneuver.  However, the 

general appearance of a highly banked climbing turn followed by a dive is certainly 

common to both. 

The pointing maneuver (partly due to its short duration) is not reminiscent of a 

particular maneuver.  However, the pattern of diving and then pulling the aircraft’s nose 

up and to the left or right is similar to that of the low yo-yo.  (The difference being that in 

the low yo-yo, the attacker uses a climb after diving and turning to reduce the forward 

component of his velocity to get into a good attacking position.  The pointing maneuver 

attempts to simply pull the nose of the aircraft into firing position while the attacker is 

still below the target.)  Lastly, the braking maneuver looks like a tame version of the 

Cobra that doesn’t enter the post-stall region.  It’s also a simple example of trading 

airspeed for altitude. 

So in conclusion, many similarities could be drawn between the optimal 

maneuvers performed here by the Navion and conventional air combat maneuvers.  There 

were also some interesting differences, such as the optimal reversal performed by the 

Navion versus a Wingover or Hammerhead.  Each maneuver was informative though, 

and served as a good baseline for studying the HARV and UCAV-X maneuvers. 

 

B. HARV 

The HARV was the most important aircraft for this study for several reasons:  

first of all, it had an excellent set of aerodynamic data derived from extensive flight 

testing.  Also, since the aircraft is essentially an F/A-18 Hornet with a TV unit installed, 

the maneuvers in this section are a good indication of the enhanced performance that 

current Navy fighters would be capable of if they could operate in the post-stall regime.  

Finally, since the HARV has been used in several other time-optimal studies, it makes it 

possible to compare DIDO and the aircraft code to other optimization tools.  With that in 

mind, the goals of the HARV were as follows:  to demonstrate dynamic post-stall 

maneuvers (which will be discussed in the first two subsections), to prove DIDO’s 
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capability to generate unconventional maneuvers, and to show that the HARV model, 

aircraft code and DIDO compare favorably to the tools used in other studies (to be 

discussed in the third and final subsection). 

NOTE:  As before, MATLAB plots summarizing the results of each maneuver are 

included in Appendix G.  For this study, four maneuvers were included, and they are 

listed in Appendix G in the order they will be discussed in this section; the appendix 

should be followed closely while reading this section as the figures were not reproduced 

here.  (The figures for the HARV maneuvers are the same as those included for the 

Navion maneuvers, with two exceptions:  a plot of control deflection rates was added, 

and a plot of the derivative of the Hamiltonian with respect to controls was removed.) 

 

1. Comments on DIDO and the HARV 

Before presenting the HARV maneuvers, there are two shortcomings with the 

HARV and UCAV-X results that need to be explained.  The first is the lack of 

propagated results:  for both aircraft, trying to run Propagator.m on any DIDO maneuver 

produced the following warning in MATLAB: 

Warning: Failure at t=4.242761e-001.  Unable to meet integration 
tolerances without reducing the step size below the smallest value allowed 
(1.507331e-015) at time t. 

Although the exact time of the fault was not always the same, it was always at the very 

beginning of the maneuver; hence, little to no useful propagated data was available on the 

position, velocity, Euler angle and body rate plots.  Since the aircraft code is 

fundamentally the same for all three test aircraft (see note), there was no obvious reason 

why the Propagator.m file did not work for the HARV and UCAV-X maneuvers.  Even 

for infeasible Navion maneuvers, the file had no problem plotting the propagated results:  

the example on the following page was an early 40 node incarnation of the Straight 

Climb, and was probably the most blatant example from this entire study of propagated 

results that did not match DIDO’s results.   

 (NOTE:  The only structural differences between the Navion code and the HARV 

or UCAV-X code were the addition of state variables for each control surface, and using 
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deflection rates as the actual controls.  Both changes were tested on the Navion [see page 

69], and the modified code functioned as well as the original.  In particular, no error 

messages were generated when running Propagator.m.) 
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Figure 25.   Example of Infeasible Propagated Results 

 

 While the above example is an extreme case of infeasibility, in a more typical 

example the propagated results would closely match DIDO’s, and then diverge towards 

the end of the maneuver.  This usually occurred when insufficient node values were used.  

(In some cases, however, the maneuver was still valid:  i.e. if the propagated final state 

variables did not violate any BC’s).  In addition to correctly propagating infeasible 

results, the Navion code also correctly propagated non-optimal results.  An excellent 

example of that was a non-optimal braking maneuver:  the Hamiltonian for the maneuver 

spiked to values on the order of 109, but the propagated results matched DIDO’s results 

exactly.  Since Propagator.m worked for both non-optimal and infeasible Navion results, 

it was unlikely that it failed to work for the HARV and UCAV-X because their results 

were either non-optimal or infeasible.  Also, since it failed to work for any HARV or 

UCAV-X maneuver, it was very unlikely that the problem was related to the quality of 

the results at all. 

 That being said, the only difference noted between the Navion code and the 

HARV or UCAV-X codes was software related…  DIDO uses a third-party software 
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called TOMLAB/SOL.  According to the company’s website (www.tomlab.biz), “the 

TOMLAB/SOL toolbox efficiently integrates the well-known solvers developed by the 

Stanford Systems Optimization Laboratory (SOL) with MATLAB and TOMLAB.”  

Included in the toolbox is the sparse general nonlinear solver SNOPT, which is the 

primary component used by DIDO.  For the HARV and UCAV-X maneuver 

optimization, a new version of TOMLAB/SOL was used (v4.2).  (The older version of 

TOMLAB that was used for the Navion could no longer be used because the license had 

expired.)  Unfortunately, there were some compatibility issues between DIDO and the 

new version of TOMLAB, including (for lack of other cause) failure of the Propagator.m 

file. 

 The solution to this problem was finding another way to verify that the control 

inputs for any given maneuver were realistic and would in fact produce the maneuver 

described by DIDO.  The first part of that was easily taken care of by adding a control 

rate plot to all HARV and UCAV-X results.  In fact, the control rate limits for the HARV 

and UCAV-X just about guaranteed realistic control inputs.  They also dramatically 

improved the likelihood that the control inputs, if propagated forward, would produce a 

maneuver that matched DIDO’s output.  The reason being that every Navion maneuver 

that didn’t have good propagated results also had very “choppy” controls.  While the 

controls for the HARV and UCAV-X could still oscillate slightly, they certainly were 

never as erratic as the controls for an infeasible Navion maneuver.  Hence, including the 

control rate plots should adequately replace the feasibility test of Propagator.m. 

 The second problem was more subjective, but it is fairly obvious (especially for 

certain maneuvers) that the HARV and UCAV-X trajectories are not as smooth as the 

Navion trajectories were.  This is particularly apparent when watching video clips of a 

maneuver, but can also be seen by noting sharp angles on a trajectory plot line.  

Fortunately the cause of the problem was quickly determined by comparing trajectory 

plots for a number of different Navion, HARV and UCAV-X solutions of varying node 

values.  Take the following trajectory, for example: 
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Figure 26.   80 Node Navion Trajectory 

 

First of all, the trajectory is very smooth:  the Navion inscribes a nice semi-circle at the 

top of the maneuver, and the last three snapshots curve together perfectly.  Also, there are 

no two sequential snapshots that look like they are missing a step between them (although 

that is not surprising for this maneuver as there are no rapid reorientations). 

 
Figure 27.   20 Node Navion Trajectory 

 

The trajectory pictured above is for exactly the same maneuver, but only an initial 20 

node solution.  Notice that there are several points at the top of the maneuver and in the 

descent where the trajectory line forms an angle instead of a curve.   The reason for this is 
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simply that the maneuver was only analyzed at 20 discrete points, and values between 

those points were just derived by interpolation. 

After making the above comparison, it was easy to see that most of the HARV 

and UCAV-X solutions had the same “jagged” appearance that most 20 node Navion 

solutions had.  (Although in some cases they were more extreme, because those 

maneuvers were more dynamic than the Navion maneuvers, and therefore suffered more 

from not having a sufficient number of nodes.)  The reason for this problem was that 

bootstrapping any HARV or UCAV-X maneuver from a “locally optimal” 20 node 

solution to any higher node solution (40, 80, 160, etc.) always resulted in a DIDO output 

of “no solution.”  Even though the results would look good, and would not violate any 

BC’s, DIDO would always term it a non-solution.  So, all of the HARV and UCAV-X 

results presented in this study are, in actuality, 20 node solutions.  While the results are 

still valid, they are just not as refined as a full 80-120 node solution would be.  For 

example, the Navion reversal had a slightly different trajectory with 80 nodes than it did 

with 20 nodes (as previously discussed), and the maneuvering time was 19.0 sec versus 

18.2 sec.  Besides that, the two solutions are just different resolutions of the same time-

optimal maneuver. 

Now despite the fact that the HARV and UCAV-X maneuvers would not 

correctly bootstrap to a higher number of nodes, all solutions in this study were 

bootstrapped to 80 nodes.  This was done to increase the density of points in all of the 

Analysis.m plots, and make them easier to read.  However, these additional points are just 

interpolations between the original 20 nodes.  Also, since any maneuver that was 

bootstrapped to 80 nodes was considered a non-solution by DIDO, the Hamiltonian 

would increase from a peak value on the order of 10-1 to a peak value on the order of 102.  

(See the example Hamiltonian on the following page, from an 80 node HARV solution.) 
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Figure 28.   Example of a “No Solution” Hamiltonian 

 

For this reason, the 20 node Hamiltonian will be displayed with the rest of the 80 node 

results for each HARV and UCAV-X maneuver.  Since each result is really a 20 node 

solution, analyzing that Hamiltonian will give an accurate assessment of the optimality of 

the maneuver. 

In conclusion, the reason that the HARV and UCAV-X maneuvers failed to 

bootstrap beyond 20 nodes is more than likely the same reason that Propagator.m failed 

to work:  i.e. software incompatibility between TOMLAB/SOL v4.2 and DIDO 2003b.  

While a very unsatisfying reason, there is no other explanation for why these two 

problems occurred with every HARV and UCAV-X maneuver.  Had the problems been 

limited to just one aircraft model or only certain maneuvers, another reason would be 

more likely, but that was not the case.  However, in spite of these problem, the solutions 

that were presented in this section should allow the HARV and UCAV-X maneuvers to 

be studied in as much detail as the Navion maneuvers. 

 

2. Optimal Maneuvers 

The maneuvers that will be discussed in this subsection include one example of 

each of the four families of maneuvers defined at the end of Chapter II:  the reversal, 

turning, pointing and braking maneuvers.  To simplify discussion, a descriptive name was 
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given to each maneuver.  In addition, the BC’s chosen for each maneuver will be 

mentioned in the discussion, as well as listed in the appropriate section of Appendix G.  

(As with the Navion, the “energy” and “displacement” constraints were the most 

commonly used.) 

The first HARV maneuver was the “Classic Herbst” – a reversal.  Both the energy 

and displacement constraints were used, and the maneuver resembled the Herbst as 

expected.  (See Appendix G, page 199.)  AOA maxed out at an impressive 63° during 

this maneuver, and sideslip values reached 30° (the maximum allowed by the aircraft 

code’s state variable BC’s).  At 5.3 sec into the maneuver the HARV hit its peak altitude 

of 30,700 ft, as well as its max AOA and min velocity (344 fps).  The min velocity was 

surprising high – only about 50 fps slower than the entry airspeed for this maneuver.  

Along the same lines, it was surprising that the HARV only climbed 700 ft while it 

traveled over 1600 ft down range.  Due to the significant AOA values during the 

maneuver, a more “vertical” appearance was expected.  Lateral displacement was limited 

to less than 300 ft either side of centerline, although the maneuver became somewhat 

jagged at the points of max lateral deflection.  Finally, load factor was another surprise, 

peaking out at a very mild 3 g’s at the beginning of the climb. 

The “Classic Herbst” 20 node solution was evaluated as “locally optimal” by 

DIDO, and the Hamiltonian peaked out at +1 and –3 (with a mean value very near zero).  

The control rate history was extremely well-behaved, and deflection rates for each 

control surface stayed at or below their coded limits.  Due to the control rate history, 

there was no chattering in the control deflection history, and most controls oscillated 

between their max and min deflection angles.  The rest of the state variables were also 

well-behaved, and the final cost was reasonable – enough evidence to consider the 

maneuver time-optimal. 

The second HARV maneuver was the “Falcon Turn” (see Appendix G, page 201).  

The energy constraint was used for this version of the turning maneuver, but not the 

displacement constraint:  final values of X and Y were allowed to vary from –1000 ft to 

1000 ft.  The result was a very interesting maneuver that used a slightly canted loop to 

accomplish the desired 90° turn.  Velocity peaked out at 482 fps in the dive preceding the 
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loop, and AOA peaked twice during the maneuver:  once in the loop (53°), and once at 

the end of the maneuver to bleed off airspeed (58°).  Body rates were typical, with the 

exception of p, which spiked to almost 300°/sec at the beginning of the maneuver (note 

the corresponding switch in phi from –148° to 111°).  The extent of the dive preceding 

the loop was surprising, because the HARV finished the loop with excess speed and 

altitude, necessitating a short braking maneuver.  (See the discussion on the “Maverick” 

braking technique on page 117.)  Finally, the “Falcon Turn” was another very low g 

maneuver, with n values ranging from about –0.5 to 2.5. 

The “Falcon Turn” 20 node solution was evaluated as “locally optimal” by DIDO, 

and the Hamiltonian peaked out at +2.5 (with a mean value very near zero).  The control 

rate history was extremely well-behaved, and there was no chattering in the control 

deflection history.  The rest of the state variables were also well-behaved, and the final 

cost was reasonable – enough evidence to consider the maneuver time-optimal. 

Some final thoughts:  adding the displacement constraint to the turning maneuver 

resulted in the trajectory depicted below.  The major differences between it and the 

“Falcon Turn” are that the latter exhibited slightly more dynamic maneuvering, had a 

better Hamiltonian, and was 0.7 sec faster.  However, the alternate maneuver was an 

equally valid time-optimal maneuver for its specific BC’s. 

 
Figure 29.   Alternate HARV Turning Maneuver 
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The third HARV maneuver was simply called the “Point & Shoot B” maneuver, 

since it followed the same format as the first pointing maneuver in this study (which was 

performed by the Navion).  Position variables X, Y and H were all unconstrained by 

±3000 ft, giving the HARV a large volume of space to maneuver in.  Velocity was also 

unconstrained by plus of minus 100 fps, since the goal of this maneuver was to rapidly 

reorient the aircraft so it could put weapons on target (versus gaining a positional 

advantage on an opponent, where energy management would be more of a priority).  The 

appearance of the maneuver, as already mentioned, was unsurprising (see Appendix G, 

page 203):  a rapid pitch-up to achieve the commanded θ , and then a bank and turn to the 

right to achieve the commanded ψ .  The control inputs perfectly matched those 

movements:  nearly full deflection of the stabilator, TEF’s and pitch TV from 2 sec 

through the end of the maneuver, and short, max deflections of the rudder, ailerons and 

yaw TV at the end of the maneuver.  In addition, max saδ  is used to help pitch the 

aircraft at the beginning of the maneuver, and the max dsδ  is used to help yaw the 

aircraft at the end of the maneuver. 

Max AOA during this maneuver was 62°, and an AOA greater than 30° was held 

for almost 2 sec.  Also, velocity decreased to the minimum allowed value of 298 fps.  

Based on these observations, increasing the velocity tolerance to ±200 fps would 

probably allow the HARV to sustain a high AOA during more of the maneuver, which 

would take one or two seconds off the maneuvering time.  On the other hand, 

constraining velocity to exactly 398 fps resulted in the maneuver depicted on the 

following page, which took an additional 9.4 sec to complete.  (The HARV had to 

accelerate to almost 550 fps in the dive in order to complete the maneuver at the required 

airspeed.) 
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Figure 30.   Alternate HARV Pointing Maneuver 

 

The “Point & Shoot B” 20 node solution was evaluated as “locally optimal” by 

DIDO, and the Hamiltonian peaked out at –1.9 at the end of the maneuver (mean value 

approximately 0.2).  As discussed above, the controls performed very well – in general 

switching from max to min at their maximum deflection rates.  Other state variables were 

well-behaved, with no high frequency chatter in the Euler angles or body rates (the usual 

suspects).  Final cost was excellent, but believable:  the HARV achieved a θ∆  and ψ∆  

of 60° in 6.7 sec (the Navion took 3.9 sec for delta’s of only 30°).  In conclusion, a good 

time-optimal maneuver. 

Some final thoughts:  looking at the Euler angle plot for this maneuver revealed 

that the HARV actually hit its desired attitude much earlier than 6.7 sec.  The pitch angle 

was greater than 60° after 3.3 sec, and the yaw angle was greater than 60° after 4.9 sec.  

However, while θ  was stabilized at about 80° (until dropping to 60° at the very end of 

the maneuver), ψ oscillated almost constantly from 4.9 to 6.7 sec.  (Checking the body 

rate values revealed that the average yaw rate was positive or negative 35°/sec during that 

last 2.8 sec of the maneuver.) 

The last HARV maneuver recorded for this study was a braking maneuver (see 

Appendix G, page 205).  The expected outcome of this maneuver was a rapid transition 

to a high AOA, holding that attitude with the help of TV, and then recovering to straight 
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and level flight after airspeed had dropped by 75% (which, for the HARV, meant slowing 

from 398 fps to only 100 fps).  However, the actual result was not that straight forward, 

and due to the rather bewildering appearance of the maneuver it was called the “Crazy 

Straw.”  There are essentially four parts to the maneuver:  two climbs and two descents. 

The two climbs decelerate the HARV quite effectively, at rates of approximately 

–14.3 and –16.7 ft/sec2.  A large part of that deceleration is due to the fact that the HARV 

climbs at a nearly vertical attitude, and is even angled beyond the vertical plane at the 

peak of each climb.  (In fact, the HARV spends almost 66% of this maneuver at an AOA 

greater than 30°, and a full 33% of the maneuver is flown at greater than 50°.)  The 

descents, however, are counter intuitive:  in each descent the HARV loses almost 1500 ft 

of altitude and (more importantly) gains almost 100 fps in airspeed.  The most likely 

explanation for them is that the HARV is gaining energy needed to complete the 

maneuver at the specified final conditions.  (A difficult thing to do since the last third of 

the maneuver is flown below stall speed, and at altitude the HARV doesn’t have enough 

thrust to maintain a steep climb without some kinetic energy stored up.) 

All in all an unusual maneuver, and based on how long the maneuver took (49 

sec), it was not surprising to find that the “Crazy Straw” was not a time-optimal 

maneuver.  Even though it met DIDO’s criteria of “locally optimal,” the Hamiltonian was 

just too large.  In fact, its average value was greater than the peak values of any previous 

maneuver.  In spite of that, examining the feasibility of the maneuver revealed that the 

control and state variable histories were well-behaved.  Even though the HARV went 

through some unusual attitudes, body rates were very small (typically around 20°/sec), 

and none of the Euler angles exceeded their maximum values.  Also, control inputs 

logically matched the HARV’s movement and orientation (note the max deflections of 

the stabilator and TEF’s at the beginning of each climb, for example).  In conclusion, 

while the “Crazy Straw” was not a time-optimal maneuver, the results demonstrate that 

the HARV could actually perform it. 

A good example of what a time-optimal braking maneuver would probably look 

like is the “Maverick.”  This technique was used by the HARV at the end of both the 

“Falcon Turn” and the “Classic Herbst,”  and is pictured on the following page: 
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Figure 31.   “Maverick” Braking Technique 

 

It is similar in appearance to a mild version of the “Cobra” maneuver.  One very 

interesting difference, though, is that the “Maverick” isn’t a strictly two-dimensional 

maneuver:  the HARV rolls 48° left wing down at the beginning of the maneuver, and 

then rolls to 28° right wing down about halfway through the maneuver.  The primary 

result of these bank angles is that the HARV traveled slightly to the left, and as a result 

did not gain as much altitude as it would have otherwise.  (This would be important for a 

‘defender becoming the attacker’ scenario:  if the defender did a braking maneuver but 

gained too much altitude to immediately take a shot at his attacker, the attacker may have 

time to maneuver into a better position or bug out.)  Some sample data on the Maverick 

(taken from the “Falcon Turn” results) is listed in the table below: 

 
Table 14.   “Maverick” Data 

Time (sec) H (ft) V (fps) α  (deg) 

8.8 29,854 454 2 

10.1 29,904 448 43 

11.4 29,962 403 58 

11.8 29,984 394 32 

12.3 29,996 394 6 
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 Trends that are characteristic of both the “Maverick” and “Cobra” include the 

rapid pitch-up (56° in 2.6 sec), and the rapid deceleration (–20.0 ft/sec2).  Note the 

improved deceleration of the “Maverick” over the “Crazy Straw” – at this new rate it 

would take approximately 15 sec to complete a full braking maneuver.  Presumably, with 

the right delta expression and BC’s, DIDO would be able to calculate a time-optimal 

braking maneuver for the HARV that utilized the “Maverick” technique. 

 

3. Comparing to Navion Maneuvers 

The general prediction for the HARV maneuvers was that they would be faster, 

flown at higher AOA, and demonstrate more unusual attitudes than the Navion 

maneuvers (thanks largely to the HARV’s TV unit).  This section will compare and 

contrast the two sets of maneuvers in terms of general appearance, maneuvering time, 

control inputs, etc. 

The reversal maneuvers performed by the Navion and HARV looked very similar 

to the two versions of the Herbst maneuver presented in Chapter II (see Figures 9 and 10, 

respectively, on page 21).  Both aircraft climbed about half the distance they traveled 

downrange, and hit their peak altitude, minimum velocity and max AOA at the same 

relative time – halfway through the maneuver.  However, while the pattern of the 

maneuvers was the same, the results were not.  For one, the bird’s-eye view of the two 

maneuvers reveal that the HARV inscribed a much narrower path than the Navion did (as 

predicted).  Also, the HARV did not lose as much airspeed as the Navion:  its velocity 

had only dropped by 14% at the peak of the maneuver, while the Navion’s velocity had 

decreased by a significant 84%.  This last difference is almost certainly due to the fact 

that the HARV was flying at AOA values up to 63°, which would have eliminated the 

aircraft’s forward component of velocity without necessitating a drastic reduction in total 

velocity.  (Note the extensive use of pitch TV when the HARV is flying at high AOA.)  

In conclusion, the HARV completes the maneuver in 11.8 sec, a full 7.2 sec faster than 

the Navion. 

Unlike the reversal, the Navion and HARV turning maneuvers were markedly 

different.  (BC’s were slightly different as well:  the HARV did not use the displacement 
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constraint, while the Navion did.)  While both took advantage of maneuvering in the 

vertical plane to minimize distance traveled (and therefore maneuvering time), they did 

so to different degrees.   The Navion used full elevator deflection for almost the entire 

climbing portion of the maneuver, flying at or near its max AOA of 20°.  However, even 

with that configuration it took 16.7 sec to reach its peak altitude, and 28.4 sec for the 

entire maneuver.  The HARV, on the other hand, accomplished its direction change in an 

almost purely vertical loop that only took 7 sec, and finished the maneuver by 12.8 sec.  

(Note the full deflection of all longitudinal controls between approximately 4 and 6 sec, 

when entering the loop.  In addition, pitch TV was used throughout almost the entire 

maneuver.)  In conclusion, the HARV’s post-stall control authority allowed it to rapidly 

accomplish a 90° heading change while minimizing the effective turning radius. 

The pointing maneuvers for the Navion and HARV were nearly identical.  Two 

versions were made of each:  one with the constraint that f iV V= , and another where 

50 50i f iV V V− ≤ ≤ +  (where 50 fps was used for the Navion and 100 fps was used for 

the HARV).  Only one version of each was recorded in the Appendices, but both versions 

will be discussed here.  For the first version (velocity constrained), both aircraft pushed 

over into a dive before climbing and turning to the correct pitch and yaw angles (30° for 

the Navion, 60° for the HARV).  The Navion achieved 200 fps in the dive, and the 

HARV an impressive 550 fps; final times were 3.9 sec and 16.1 sec.  Without the 

velocity constraint, both aircraft immediately climbed – the HARV completed the 

maneuver in 6.7 sec at its minimum allowable airspeed (298 fps), while the Navion only 

decelerated to 155 fps and finished in 2.5 sec.  While the time differences aren’t 

indicative of performance (due to the different delta expressions), it is interesting to note 

some other differences:  the Navion almost hit its max positive and negative g-limits, 

while the HARV experienced very few g’s (despite its much greater g-tolerance).  Also, 

the Navion only slowed down 21 fps (12% of Vi) to reach its desired attitude, while the 

HARV slowed by 200 fps (50% of Vi). 

The braking maneuvers of the Navion and HARV can not really be compared 

since the HARV solution was not a time-optimal maneuver.  However, there were some 

similarities that can be noted between the Navion braking maneuver and the climbing 
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portions of the “Crazy Straw” maneuver.  Both were performed at max or near max 

AOA, and both utilized full deflection of an effective control surface (elevator for the 

Navion, predominately pitch TV for the HARV).  Also, the deceleration rates were very 

similar:  –15.4 ft/s2 for the Navion, and –14.3 to –16.7 ft/s2 for the HARV.  (As already 

mentioned, for a time-optimal braking maneuver for the HARV, a better rate would be 

expected.) 

 

4. Comparing to Previous Optimal Maneuver Studies 

There have been a number of excellent studies on maneuver optimization 

published in the last sixteen years.  Six of these papers (published between 1989 and 

2002) were singled out to be included in this study for comparison with the HARV model 

and DIDO.  These papers represent several different optimization techniques, and utilize 

three different aircraft (to include the F-18 HARV).  Also, due to the span of time 

covered by these papers, they illustrate the increased complexity of analysis that is now 

possible, versus what was possible sixteen years ago.  This increased complexity is due in 

large part to increased computational ability:  i.e. computers can now handle more 

complete EOM and much more detailed aircraft aerodynamic data.  Based on this, both 

aircraft models and optimization tools have improved dramatically, allowing for more 

realistic simulation of air combat maneuvers. 

The primary goals of this section are as follows:  to compare DIDO with the 

optimization routines used in each paper, to compare the HARV model with the aircraft 

models developed for each paper, and (where applicable) to compare results.  The two 

most recent papers will be analyzed first in detail.  The other four papers will then be 

analyzed selectively, with specific characteristics about their code or model being 

highlighted for comparison.  Also, additional papers that were considered applicable, but 

were not included in this study, will be listed for reference.  In conclusion, the 

comparisons made in this section should demonstrate that the performance of DIDO and 

the aircraft code are on par with other techniques currently being used in the field of 

maneuver optimization. 
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a. Komduur & Visser 

Komduur and Visser’s 2002 paper titled “Optimization of Vertical Plane 

Cobralike Pitch Reversal Maneuvers” [Ref. 31] was one of the very first to study 

maneuver optimization using the full 6DOF EOM.  That, combined with the fact that the 

F-18 HARV was used as the test aircraft, made this paper an excellent benchmark for 

comparing DIDO and the aircraft code against.  To start with, Komduur and Visser’s 

HARV model was in most respects very similar to the one developed in this study:  it was 

a rigid body model complete with dimensions and moments of inertia; deflection and rate 

limits were included for every control surface, and the AOA regime was restricted to 

values for which aerodynamic data was available.  Most of this data was found in Iliff 

and Wang’s papers [Ref. 19-20]; however, Komduur and Visser only reference one of 

these papers (surprisingly not the one containing longitudinal S&C data, which would be 

the most relevant for a vertical plane maneuver).  While this was most likely just an 

omission, none of their HARV references contain any drag data.  Based on their results, 

drag certainly was not left out, but without knowing where the data came from, it is 

questionable how accurately their aerodynamic model simulates the HARV. 

There were two other major differences between Komduur and Visser’s 

HARV model and the one developed in this study.  The first was simply that they chose 

to use max thrust with afterburner for their model, vs. max dry thrust.  (Afterburner was 

not used for this study because the data was not available for calculating an accurate wet 

thrust at altitude.)  While this would certainly affect the results (noticeable velocity and 

maneuvering time), both approaches are legitimate.  The other difference between the 

two HARV models was the use of control surfaces.  For one, neither LEF’s, TEF’s, dsδ , 

saδ  nor the speedbrake were used in Komduur and Visser’s model.  Secondly, ailerons, 

rudder and yaw TV were only used to test the feasibility of the maneuver, which meant 

that the stabilator and pitch TV were the only controls included in the actual optimization 

process.  Lastly, those two controls were linked during the optimization, so they were in 

effect a single control (a design that the authors admitted was simplistic, but useful for 

their purposes). 



122

Moving onto Komduur and Visser’s code, one thing in particular that 

stood out was their problem formulation:  first, they chose a specific family of maneuvers 

to be optimized (in this case vertical plane pitch reversals).  Second, they very clearly 

defined BC’s (like the horizontal distance, final velocity and pointing constraints) to 

describe four distinct maneuvers.  This methodology was very similar to the one used for 

this study:  in place of vertical plane pitch reversals, a broader family of braking 

maneuvers was studied, and the velocity and distance constraints were very similar to this 

study’s energy and displacement constraints.  In addition to good problem formulation, 

Komduur and Visser also used a good program for their optimization:  a nonlinear 

programming and collocation technique called DOVNLPAC.  Another strong point of 

their code was that following optimization, the results were verified by a 6DOF simulator 

that used a nonlinear inversion closed-loop control technique.  However, unlike the 

aircraft code’s Propagator.m file (which verifies the feasibility of DIDO’s control 

history), their 6DOF simulator has to develop its own (sub-optimal) control history. 

The biggest drawback to Komduur and Visser’s code actually had nothing 

to do with the code itself, but rather with their decision to constrain their pitch reversals 

to the vertical plane, and simplify their EOM from 6DOF to 3DOF.  While a perfectly 

valid decision for the purpose of their study, their resulting maneuvers are consequently 

only time-optimal given a very specific set of BC’s.  Also, because their maneuvers were 

optimized with only 3DOF, the results of their study give no indication of the ability of 

their program DOVNLPAC to optimize a 6DOF maneuver.  According to the authors, the 

program can handle “about 1000 variables plus boundary conditions” [Ref. 31: p. 699].  

However, it is uncertain how those variables are counted, since the authors also state 

The step size for the optimization was chosen as small as possible…to 
capture the fast dynamics of the maneuvers.  Too large a step size would 
result in spiky behavior of pitch rate and control variables.  Decreasing 
step size means increasing the time needed for computations and 
increasing the total number of variables and boundary conditions.  [Ref. 
31: p. 699] 

Decreasing the step size in DOVNLPAC obviously has the same effect as increasing the 

number of nodes in DIDO:  higher definition results but longer run times.  Apparently 

DOVNLPAC has an additional limiting factor in how many variables it can handle with a 
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given step size.  Lastly, some other data that would be nice to compare with DIDO is how 

long run times were for DOVNLPAC and the 6DOF simulator, and what kind of 

computer the runs were performed on. 

Unfortunately, Komduur and Visser’s results can not be directly compared 

to DIDO’s results, as the HARV braking maneuver was not a time-optimal solution.  

Also, their problem formulation was slightly different…their first case, pictured below, 

used a “horizontal distance constraint” of 0 1000f fX V t= − , while the delta expression 

for the braking maneuver (expressed in similar terms) was 0 0.25fV V= ⋅ . 

 
Figure 32.   Vertical Plane Pitch Reversal (From: Ref. 31, pp. 695) 

 

However, the maneuver does share some commonalities with the Navion and UCAV-X 

braking maneuvers:  a rapid pitch-up, a gradual velocity decrease, and a generally two-

dimensional appearance.  Comparing specifically with the Navion, Komduur and Visser’s 

HARV takes 11.5 sec to complete the maneuver vs. the Navion’s 5.7 sec…the HARV’s 

final velocity is 47.5% of V0, practically identical to the Navion’s velocity decrease of 

50%…and  lastly,  the HARV’s trajectory is not as steep as the Navion’s.  (No comments  
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on performance should be drawn from the above comparisons as the maneuvers had 

different goals.)  The following figure shows the HARV’s control history for the 

maneuver just discussed. 

 
Figure 33.   Pitch TV Control History (From: Ref. 31, pp. 701) 

 

Similar to what the results of Propagator.m look like for certain maneuvers, the 6DOF 

simulator does not exactly match the control inputs calculated during optimization.  

However, since the two plots are relatively close, Komduur and Visser’s HARV should 

be able to fly something very similar to their calculated optimal maneuver 

 

b. Lichtsinder, Kreindler & Gal-Or 

In 1998 Lichtsinder, Kreindler and Gal-Or published a paper titled 

“Minimum-Time Maneuvers of Thrust-Vectored Aircraft” [Ref. 32].  The focus of their 

study was minimum-time pitch and yaw reversals, as performed by a TV-equipped F-

15B.  Before presenting their results, though, Lichtsinder et. al. made two very significant 

observations.  The first was noting the relative effectiveness of aerodynamic vs. TV 

control in different flight regimes (as defined by velocity, altitude and AOA).  

Specifically, they made an excellent graphical representation of the effectiveness of the 

elevator and pitch TV on the F-15B, which is pictured on the following page: 
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Figure 34.   Aerodynamic vs. TV Effectiveness (From: Ref. 32, pp. 245) 

 

It’s evident from this figure that TV benefits are maximized during high AOA and low 

speed maneuvers.  While this generality was already known, the graph above provides a 

much clearer picture of the exact relationship between the afore-mentioned variables.  

Lichtsinder et. al. also made a very convincing case for the necessity of using a full 

6DOF model for aircraft maneuver optimization:  at the beginning of their paper they 

discussed the results of performing a pitch reversal without any lateral-directional 

controls.  During the simulation, the F-15B experienced significant (and undesirable) 

heading change and roll.  They concluded that due to “asymmetrical forebody vortices” 

[Ref. 32: p. 245] it was imperative that a full set of aerodynamic and TV controls be 

utilized for realistic maneuver optimization. 

The 6DOF F-15B model created for their study was very thorough:  

ailerons, rudder, stabilator, pitch and yaw TV and even dsδ  were all included with both 

deflection and rate limits.  While the physical aspects of the model were not discussed at 

length, it is assumed that accurate moments of inertia and other important data was 

included.  Aerodynamic data was developed in almost exactly the same manner that the 

HARV and UCAV-X aerodynamic models were created.  According to the authors, the 

S&C derivatives were 
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…nonlinear functions of state and control variables…represented as 
multidimensional polynomials of up to ninth order.  These polynomials 
were data fitted from empirical results…  [Ref. 32: p. 247] 

In conclusion, a well-designed and realistic model. 

While the F-15B model was very detailed, this caused some problems with 

the optimization process.  In short, Lichtsinder et. al. had to make several simplifications 

to the problem in order to handle the complexity of the 6DOF aircraft and EOM.  Some 

of these were minor, such as formulating the problem as two steps (a “to target” phase 

and a  “recovery” phase)  Other were more significant:  for instance, Lichtsinder et. al. 

replaced their only two state constraints (which defined min and max values for θ  and 

ψ ) with a “weighted criterion of time and square errors” [Ref. 32: p. 248].  In the end, 

they settled on a sub-optimal solution to the problem. 

Compromising between a detailed aircraft model and high quality 

optimization is a theme seen in every single paper on maneuver optimization.  Typically 

the twelve coupled, nonlinear EOM are too complicated to have both, so the quality of 

one has to slightly sacrificed.  In the case of Lichtsinder et. al. it was optimization…in the 

case of Komduur and Visser it was the aircraft model, which was reduced to 3DOF.  

(These two options are, in fact, the most common workarounds.)  One of the goals of this 

study was to show that it was possible to have both. 

Lichtsinder et. al. calculated at the conclusion of the their paper that their 

TV F-15B could perform an 80° pitch reversal in 5.2 sec.  (The trajectory is pictured on 

the following page.) 
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Figure 35.   80° Pitch Reversal (From: Ref. 32, pp. 249) 

 

While the maneuvering time seems unrealistically fast, the problem formulation is 

slightly different than Komduur and Visser’s definition of a pitch reversal, or this study’s 

definition of a braking maneuver, which may be a factor.  However, the lack of state 

variable BC’s (in particular a max pitch rate) could have noticeably reduced maneuvering 

time.  Also, considering the rapid reorientation around the y-axis, it would be interesting 

to see what value of IY was used for the F-15B model.  Finally, as already mentioned this 

result was a sub-optimal maneuver, and as the authors succinctly conclude, “one never 

knows [how close the result is to optimum] unless the optimal solution is available.”  

[Ref. 32: p. 250] 

 

c. Other Studies 

Komduur and Visser’s work was largely based on two other studies:  one 

published in 2000 by Horie and Conway [Ref. 33], and the other published in 1997 by 

Murayama and Hull [Ref. 34].  Both papers will be discussed briefly, and in light of their 

similarity in subject matter to each other and Komduur and Visser’s paper, comparing the 

three studies should provide an excellent description of recent progress in the field of 

maneuver optimization. 
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To start with, Horie and Conway used a code very similar to Komduur and 

Visser’s, called DCNLP (direct collocation with nonlinear programming).  However, 

while the optimization method was the same, Komduur and Visser’s analysis was likely 

more detailed than the 20 nodes Horie and Conway used.  Another similarity between the 

two was problem formulation, and the use of various terminal constraints to define 

several different cobra-like maneuvers.  The two biggest detractors to Horie and 

Conway’s work were their 3DOF EOM (also used by Komduur and Visser) and their 

aircraft model.  Their model was an F-16 like aircraft equipped with TV…however, it 

was a very basic:  1) It was a point-mass model with no moments of inertia.  2) Only lift 

and drag data was included for aerodynamic information.  3) The T/W ratio was 

arbitrarily set to 1.0.  Obviously, replacing this model with a rigid, 6DOF model was 

Komduur and Visser’s most significant contribution to the “minimum-time Cobra” 

problem. 

Murayama and Hull’s paper was published only three years prior to Horie 

and Conway’s, so much of their work was unchanged.  Their aircraft model, in particular, 

was exactly the same, and their problem formulation and method of using terminal 

constraints was also closely followed.  The biggest difference between the two was their 

optimization technique:  Murayama and Hull used a 4th order Runge-Kutta method and 

“sequential quadratic programming” [Ref. 34: p. 340] with 11 nodes and a convergence 

tolerance of 10-4.  Horie and Conway, on the other hand, used 20 nodes and a tolerance of 

10-8 (among other improvements).  So, as Komduur and Visser had improved on Horie 

and Conway’s work with a better aircraft model, Horie and Conway improved on 

Murayama and Hull’s work with better optimization. 

To sum up, these three papers illustrate the progression of the “minimum-

time Cobra” problem.  While the problem has yet to be conclusively solved with a 6DOF 

model and optimization, it is very close.  Hopefully in the next year DIDO and the 

aircraft code can make that last step.  (For comparison, times for various cobra-like 

maneuvers from all three studies are listed in the table on the following page.) 
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Table 15.   Results of Minimum-Time Cobra Studies 

Constraints: 

Murayama & 

Hull (1997) 

Horie & 

Conway (2000)

Komduur & 

Visser (2002) 

(Key to 

Constraints) 

HD 8.3 sec 8.3 sec 11.5 sec 

HD, fγ  9.3 sec 9.0 sec ==//== 

HD = horizontal 
distance  

[Ref. 31: p. 694] 

HD, fγ , Vf 13.7 sec ==//== ==//== 

HD, fγ , Vf, Hf 16.3 sec 13.6 sec ==//== 

  TD = total 
distance 

[Ref. 31: p. 695]

P ==//== 8.2 sec ==//== 

P, Vf ==//== 10.0 sec ==//== 

P = pointing 

[Ref. 31: p. 695]

P, Vf, fγ  ==//== 12.0 sec ==//== 0fγ =  

TD, P ==//== ==//== 13.1 sec 
0fV V=  

TD, P, Vf ==//== ==//== 14.9 sec 
0fH H=  

TD, P, Vf, fγ  ==//== ==//== 17.3 sec ==//== 

 

The 1993 paper published by Bocvarov, Lutze and Cliff [Ref. 35] is 

unique in that it is one of few time-optimal maneuver studies that does not examine 

cobra-like pitch reversals.  Instead, Bocvarov et. al. studied minimum-time reorientation 

maneuvers.  Interestingly, in their analysis they reduced the EOM to 3DOF by 

eliminating translational variables (i.e. X, Y and H) entirely.  This meant their EOM and 

aircraft model (which was based on the HARV) only contain roll, pitch and yaw data.  

Unfortunately, while their study was very well presented, the results would be impossible 

to compare to reorientation maneuvers performed by DIDO due to the lack of 

translational data.  In spite of that, Bocvarov et. al. perform a very instructional analysis 

on the control authority of the HARV, as well as calculating what benefits were gained 

from TV.  In their own words, 
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The results for two classes of reorientation maneuvers suggest that it is 
worth enhancing the [F-18] with thrust-vectoring capability.  The savings 
in maneuvering time are about 20-30%.  [Ref. 35: p. 239] 

Stalford and Hoffman’s 1989 paper [Ref. 36] was probably the first to use 

the HARV as a test aircraft.  In fact, their study was published only two years after 

NASA had started test flights with the HARV.  As with most studies that were published 

in the next decade, Stalford and Hoffman used a 3DOF model and EOM.  For 

optimization they used Pontryagin’s maximum principle to solve a two-point boundary 

value problem…this method was replaced four years later by Bocvarov et. al. with a 

homotopy method and a multipoint boundary value problem (MPBVP).  More recently, 

nonlinear programs like DCNLP [Ref. 33], DOVNLPAC [Ref. 31] and DIDO have 

become the preferred method of optimization.  Nonetheless, with the model and tools that 

they had, Stalford and Hoffman calculated 9.1 sec for a pitch-up to 90° AOA using just 

the stabilator, and an impressive 1.8 sec with the stabilator and pitch TV. 

In conclusion, hopefully the various papers discussed in these last few 

pages have illustrated the following points:  first, that the study of aircraft maneuver 

optimization has progressed significantly in the past decade and a half.  Second, that the 

HARV model developed for this study is as realistic as any model that has been used for 

maneuver optimization to date, and dramatically better than most.  Third, that DIDO (in 

addition to its many other benefits) has proved more capable than any other optimization 

tool currently in use due to its successful optimization of aircraft maneuvers with 6DOF 

EOM.  Also, while the papers discussed in this section were considered to be the best 

studies of aircraft maneuver optimization, a number of related papers were very 

informative as well.  This papers are listed in the table on the following page for 

reference. 
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Table 16.   Additional References on Maneuver Optimization 

Year Author(s) Title (Publishing Information) 

1997 Ericsson & Martin “Conceptual Fluid/Motion Coupling in the Herbst 
Supermaneuver” (JA, Vol. 34, No. 3) 

1996 Weiss, Friehmelt, 
Plaetschke & Rohlf 

“X-31A System Identification Using Single-Surface 
Excitation at High AOA” (JA, Vol. 33. No.3) 

1995 Alcorn,  
Croom & Francis 

“The X-31 Experience:  Aerodynamic Impediments to 
Post-Stall Agility” (AIAA 95-0362) 

1995 Fan, Lutze & Cliff “Time-Optimal Lateral Maneuvers of an Aircraft” 
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C. UCAV-X 

The UCAV-X represented an opportunity to selectively choose the physical and 

aerodynamic characteristics for a test aircraft.  In fact, based on the results of this study, 

further changes will be made to the model in an effort to find what characteristics 

consistently produce the best post-stall results.  For this initial version of the UCAV-X, 

the most significant differences between it and the HARV are as follows:  AOA range 
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expanded by 50°, almost twice the T/W ratio at altitude, smaller moments of inertia, and 

control surfaces more conducive to high AOA maneuvering (i.e. canards vs. a stabilator).  

For this study, the goal of the UCAV-X was very clear-cut:  to demonstrate dynamic 

post-stall maneuvers that could be compared to those performed by the HARV. 

NOTE:  As before, MATLAB plots summarizing the results of each maneuver are 

included in Appendix H.  For this study, four maneuvers were included, and they are 

listed in Appendix H in the order they will be discussed in this section; the appendix 

should be followed closely while reading this section as the figures were not reproduced 

here.  (The figures for the UCAV-X maneuvers are the same as those included for the 

HARV maneuvers; also, the points made about DIDO on page 106 and following apply 

equally to the UCAV-X.) 

 

1. Optimal Maneuvers 

The maneuvers that will be discussed in this subsection include one example of 

each of the four families of maneuvers defined at the end of Chapter II:  the reversal, 

turning, pointing and braking maneuvers.  To simplify discussion, a descriptive name was 

given to each maneuver.  In addition, the BC’s chosen for each maneuver will be 

mentioned in the discussion, as well as listed in the appropriate section of Appendix G.  

(As with the Navion and HARV, the “energy” and “displacement” constraints were the 

most commonly used.) 

The first UCAV-X maneuver was the “Lazy Eight,” which was a reversal that met 

the same criteria as the Herbst, but was very different in appearance (see Appendix H, 

page 207).  The maneuver started with a 1000 ft descent before going into a steep loop 

that reversed the aircraft’s direction, and even made it fly inverted for several seconds.  In 

point of fact, AOA during the loop was over 50° for almost 4 sec, and peaked out at 89°.  

The velocity extremes during the maneuver were 524 fps after the initial descent, and 279 

fps at the top of the loop.  The reason that 518 fps was not used as the initial and final 

velocity for this maneuver was because DIDO (for whatever reason) could not compute a 

good, optimal trajectory with that velocity.  So, while 518 fps worked as an entry velocity 

for the other UCAV-X maneuvers, for the “Lazy Eight” that speed was reduced by 25% 
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to 384 fps.  Body rates were minimal during the maneuver, with the exception of roll rate 

(a situation that proved to be typical of both the HARV and UCAV-X).  Finally, while no 

large positive g’s were pulled during the maneuver, almost –3 g’s were experienced about 

7 sec into the maneuver.  (Note the abrupt change in Y at that time – the UCAV-X was 

on its right side and essentially put the “stick” full forward to execute a left turn.) 

The 20 node solution for the “Lazy Eight” was “locally optimal,” and the mean 

value of the Hamiltonian was –0.3 (although the Hamiltonian itself was quite jagged, 

with peaks of 2, –5, 4 and –4).  Control history looked very good for this maneuver, in 

particular the longitudinal controls – almost all controls were at max or min deflection 

during the entire maneuver, with a few breaks to switch from one to the other.  The other 

state variables were well-behaved, and the final cost (while not as good as had been 

hoped for) was a reasonable 24.1 sec.  In conclusion, both an optimal and feasible 

maneuver. 

Some final thoughts:  increasing the entry velocity for this maneuver by even 15 

fps dramatically changed the appearance of the maneuver.  Not only that, but the alternate 

trajectory (pictured below) is almost exactly what a 90° max AOA Herbst was predicted 

to look like in Chapter II.  However, while the maneuver looks very efficient, it actually 

takes 3.5 sec longer to complete than the “Lazy Eight.” 

 
Figure 36.   Alternate UCAV-X Reversal Maneuver 
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The next UCAV-X maneuver was the “Cloverleaf,” a turning maneuver 

resembling a freeway off-ramp.  (The energy constraint was used for this maneuver, but 

X and Y were unconstrained by ±2000 ft.  Results are listed in Appendix H, page 209.)  

The first part of the maneuver was an 8 sec, 2000 ft climb that slowed the UCAV-X from 

512 fps to 425 fps.  The aircraft started turning 90° left towards the top of the climb, and 

began an increasingly steeper descent.  Notice at approximately 15 sec (where Y is 

almost 4000 ft) that the aircraft is up-side down ( 180φ = o ) and pointing almost straight 

down ( 85θ = − o ):  at this point the aircraft reverses its direction in the vertical, which can 

be seen by ψ  rapidly switching from approximately –100° to +100°.  Pulling out of this 

nose-down attitude was accompanied by the max positive load factor experienced during 

this maneuver, 3.5 g’s.  On a similar note, there were four separate times during this 

maneuver where load factor was between  –2 and –3 g’s, and at every one of those times 

the UCAV-X was inverted.  Positive AOA during the maneuver was typically only 20-

30°, with a maximum of 48°, while negative AOA was frequently maxed out at –20°.  

Lastly, minimum thrust was used for almost the entire maneuver, possibly to keep the 

UCAV-X within the allowed maneuvering space. 

The 20 node solution for the “Cloverleaf” was evaluated as “locally optimal” by 

DIDO.  The Hamiltonian had a very small mean value of –0.06, with max positive and 

negative values of 1.2 and –2.6 (the latter occurring at the very end of the maneuver).  

Control deflections alternated between max and min values for the most part, but the 

oscillations were more frequent.  (Note the higher control rate values for this maneuver as 

compared to the “Lazy Eight.”)  However, deflection limits remained within their 

allowable values, as did the other state variables.  Final cost was reasonable (albeit 

somewhat slow) at 22.2 sec, and based on all of the above the maneuver was considered a 

time-optimal solution. 

The third UCAV-X maneuver was the “Point and Shoot C,” which followed the 

same general pattern as the Navion and HARV pointing maneuvers (see Appendix H, 

page 211).  Due to the increased velocity of the UCAV-X over the HARV, the 

maneuvering space was enlarged to a cube of ±5000 ft centered on the aircraft’s starting 

position.  Final velocity was unconstrained by 200 fps, but surprisingly the UCAV-X 
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finished the maneuver at 468 fps (versus the minimum allowable airspeed of 312 fps).  

Appearance closely matched the previous pointing maneuvers, with the exception of a 

slight detour to the left at the beginning of the climb.  Control deflections were just as 

expected, with max deflection of nearly all longitudinal controls for the duration of the 

maneuver, and some rudder inputs at the beginning and end of the maneuver.  Load 

factor was minimal, and AOA values were extremely small – the maximum positive and 

negative values were 6° and –9°, respectively.  Body rates were typical, with the 

exception of high roll rates corresponding to two miniature aileron rolls at 3 sec and 11 

sec. 

The 20 node solution for the “Point and Shoot C” was “locally optimal,” and had 

a relatively flat Hamiltonian with a peak value of only 0.9.  As already mentioned, the 

control deflections for this maneuver were excellent:  max and min deflections of most 

longitudinal controls, and switching from max to min for the lateral controls.  The Euler 

angle plots were extremely smooth, as were the velocity and other state variable plots.  In 

conclusion, a time optimal and feasible maneuver. 

Some final thoughts:  for the Navion and HARV pointing maneuvers, 

constraining final velocity to equal initial velocity significantly changed the appearance 

of the maneuver.  Both aircraft had to descend and gain airspeed before they were able to 

make the climb to the required pitch and yaw angles.  The UCAV-X, on the other hand, 

accelerated in level flight for about 4 sec and immediately went into the climb.  Also, this 

alternate pointing maneuver (see figure) only took 2 sec longer to complete than the 

“Point and Shoot C” maneuver. 
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Figure 37.   Alternate UCAV-X Pointing Maneuver 

 

The final UCAV-X maneuver was the “Vertical Cobra,” which was an excellent 

example of a post-stall braking maneuver.  The delta for the maneuver was a 75% 

reduction in velocity, and as with the pointing maneuver, all position variables were 

unconstrained by ±5000 ft.  (See Appendix H, page 213.)  The maneuver started with a 

rapid climb, and within 6 sec the UCAV-X had passed through 22,000 ft and was at its 

max allowable pitch angle of 85°.  The key part of this maneuver started at about 8 sec:  

first, the aircraft rolls in the vertical to a bank angle of –180° (so the top of the aircraft is 

now facing “forward”).  Then, the UCAV-X sets thrust to minimum and pulls its nose 

back down to the horizon; the aircraft travels vertically in this max AOA (“belly-up”) 

position for almost 4 sec before righting itself and finishing the maneuver in its normal 

cruise attitude.  (Max load factor of 2 g’s occurred during the transition from a vertical to 

an inverted attitude.) 

There are several impressive characteristics about this maneuver, one of which is 

symmetry.  The “Vertical Cobra” is essentially two 90° pitch-up maneuvers performed 

back-to-back:  the first pitches the aircraft to a vertical attitude, and starts to bleed off 

airspeed by gravity.  The second pitches the aircraft to a level, inverted attitude, and 

bleeds off airspeed by both gravity and drag.  (Both pitch-up maneuvers are similar in 

appearance to “Cobra” maneuvers that are limited to a max AOA and pitch angle of 90°.)  
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Secondly, the rate at which the UCAV-X decelerates is also impressive:  the aircraft 

slows to its target airspeed in 15.3 sec, a rate of –34 ft/s2.  Lastly, AOA was greater than 

it had been for any previous maneuver in this study:  it was over 50° for 4.0 sec, over 70° 

for 2.7 sec, and was actually pegged at 90° for 1.3 sec. 

The 20 node solution to the “Vertical Cobra” was “locally optimal” with a very 

flat Hamiltonian.  (The average value was –0.07, and the max and min values of 0.9 and 

–1.4 occurred at the very beginning and end of the maneuver, respectively.)  Control 

history was excellent, with controls deflections either at their max or min values or 

switching between them.  (Also, notice that every single one of the control surfaces are in 

transit from 8-10 sec when the UCAV-X is moving from a vertical to an inverted 

attitude.)  The other state variable plots were smooth and well-behaved; even the body 

rates, which had roll rates that peaked out at 350°/sec and –212°/sec.  All in all, the 

maneuver was a fine example of post-stall maneuverability, and certainly met the criteria 

of a feasible, time-optimal maneuver. 

 

2. Comparing to HARV Maneuvers 

The HARV and UCAV-X maneuvers were expected to be similar in appearance 

since the two aircraft were of comparable performance:  high AOA maneuverability, 

post-stall control authority (TV), good T/W ratios, etc.  In actuality, only the pointing 

maneuvers looked similar; the other maneuvers differed both in appearance and 

maneuvering time.  This section will highlight those differences, and make some 

comments about why the two aircraft performed the way they did. 

The HARV reversal was a good (if somewhat jagged) example of a Herbst 

maneuver, while the UCAV-X reversal was something completely different.  Instead of 

climbing into a tight, high AOA turn like the “Classic Herbst,” the “Lazy Eight” has the 

UCAV-X descend and execute a high AOA loop in order to reverse direction.  While the 

technique was interesting, the result was somewhat disappointing:  the maneuver took 

24.1 sec to complete, as compared to the 11.7 sec needed for the HARV maneuver.  The 

simplest explanation for the difference in maneuvering time is that the UCAV-X traveled  
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a lot farther:  3450 ft in the x-direction versus 1650 ft, and 1200 ft in the z-direction 

versus 700 ft.  That being said, determining why the UCAV-X trajectory was so much 

longer was a more difficult question. 

For one, both aircraft typically used their control surfaces at max deflection (in 

particular the longitudinal controls for the UCAV-X and the lateral-directional controls 

and TEF’s for the HARV).  Also, both aircraft utilized almost their full range of AOA – 

the HARV peaked at 63° and the UCAV-X at 89°.  However, even though the max AOA 

for the UCAV-X was almost 30° greater than it was for the HARV, the average AOA for 

the UCAV-X was actually 5° less.  Looking at the AOA plot for the “Lazy Eight” shows 

that the UCAV-X flew at approximately zero AOA for almost half the maneuver – even 

when flying in a negative pitch attitude the UCAV-X did not fly at max negative AOA, 

which would have reduced its forward component of velocity and made its high AOA 

control devices more effective. 

This brings up what was likely the primary detractor to the performance of the 

UCAV-X:  due to an error in the aerodynamic model, the values for rudder and aileron 

deflection were linked (which is why the control deflection plot only shows one line for 

those two controls).  This significantly limited the lateral-directional control authority of 

the UCAV-X, because any rudder input had to be tempered so it did not cause unwanted 

roll (likewise for aileron deflection and yaw).  In addition to that, the rudder and ailerons 

had different max deflection limits, so with the controls linked the smaller of the two 

limits (±30°) was used for both.  Finally, notice that the control deflection plot for the 

ailerons and rudder oscillates back and forth, and only comes close to max deflection 

once during the entire maneuver (trying to balance the needed rudder and aileron inputs).  

However, while the UCAV-X reversal and turning maneuvers were certainly hindered by 

the coding bug, the results were still well worth investigating, and made for an interesting 

contrast to the HARV maneuvers. 

The HARV and UCAV-X turning maneuvers – the “Falcon Turn” and the 

“Cloverleaf” – were also very different.  Oddly enough, for these two maneuvers it was 

the HARV that used a loop, and the UCAV-X that executed a high AOA climbing turn.  

However, the results were similar to those of the reversal maneuvers:  1) As before, the 
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UCAV-X traveled significantly farther than the HARV during the course of the maneuver 

(max ∆X, Y & H of 2900 ft, 4000 ft & 2800 ft, versus 1600 ft, 2100 ft & 600 ft).  2) The 

UCAV-X also had a proportionally slower maneuvering time:  22.2 sec versus the 

HARV’s 12.8. 

The problem of linked rudder and ailerons can easily be seen from the control 

deflection plot, and the constant oscillation of those controls between ±20° is a good 

indication that the UCAV-X was lacking in control authority for this maneuver.  This was 

expected since a turning maneuver, by definition, will tend to need more lateral-

directional control inputs than a reversal.  For example, note the almost constant max 

deflection of the ailerons and rudder for the HARV’s “Falcon Turn.”  Likewise, the yaw 

TV on the UCAV-X (which is an excellent example of optimal control) is either at, or 

switching to, max or min deflection for the entire “Cloverleaf” maneuver.  As far as AOA 

goes, the max for the UCAV-X was 48° (versus 58° for the HARV), but it frequently 

flew at or near its min AOA of –20°.  These min AOA values always coincided with phi 

values of plus or minus approximately 180° (instances of “adverse roll” caused by 

yawing the aircraft).  They are also probably the reason for the low positive AOA values.  

So, as with the reversal, the UCAV-X turning maneuver was intriguing but not nearly as 

efficient as the corresponding HARV maneuver. 

As already mentioned, the UCAV-X pointing maneuver was essentially the same 

maneuver that the Navion and HARV both performed.  (With the caveat that the required 

deltas for the UCAV-X turning maneuver were 60° for theta and psi, as they were for the 

HARV.)  For the velocity unconstrained version of this maneuver, both aircraft flew level 

for a second or two and then went into a climb (notice the slight increase and then steady 

drop in velocity, and the max or near-max deflection of the longitudinal controls for both 

aircraft).  Final times for the two aircraft were 6.8 sec for the HARV and 13.0 sec for the 

UCAV-X.  The likely cause of the difference between the two was that the HARV 

pointing maneuver allowed the aircraft to slow by 80 fps (or 20% of V0), while the 

UCAV-X only slowed by about 50 fps (or 10% of V0).  On the other hand, for the 

velocity constrained versions of the pointing maneuver the UCAV-X finished in 15.0 sec 

– 1.1 sec faster than the HARV, and surprisingly only 2.0 sec slower than the velocity 
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unconstrained version.  Whether due to a higher T/W ratio or better longitudinal control 

authority, the UCAV-X certainly handled well in the vertical plane.  (In fact, it had a 

climb rate of 380 fps, or 22,800 fpm.  The HARV had an excellent climb rate as well, just 

not as impressive:  225 fps, or 13,500 fpm.)  This vertical capability was put to excellent 

use in the next maneuver. 

The UCAV-X braking maneuver, the “Vertical Cobra,” was definitely the 

aircraft’s best example of post-stall maneuverability (at least from the maneuvers 

developed for this study).  In addition to that, since the HARV reversal was not an 

optimal solution, this maneuver filled in that blank and demonstrated what a time-optimal 

braking maneuver could look like for a post-stall fighter.  Although already discussed, the 

maneuver was a nice mix of something instantly recognizable as a post-stall maneuver 

(the “Cobra” maneuver) with something new (performing a Cobra-like maneuver in the 

vertical).  Also, since the maneuver was performed in a nearly 2D plane, not a lot of 

lateral-directional control inputs were necessary, allowing the UCAV-X to perform at its 

max potential.  Like the UCAV-X, the HARV flew in a nearly vertical attitude during its 

braking maneuver, but was unable to transition from that attitude to the ending BC’s for 

the maneuver (hence the need for a second dive and a second climb).  Hopefully in the 

future a different set of BC’s will produce a time-optimal braking maneuver for the 

HARV, which could then be compared in detail to the UCAV-X “Vertical Cobra,” as 

well as the traditional “Cobra.” 
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VII. CONCLUSIONS 

The primary goal of this thesis was to develop several time-optimal air combat 

maneuvers.  The last chapter described eight such maneuvers in detail – four flown by the 

HARV and four flown by the UCAV-X.  Three of those maneuvers in particular 

demonstrated excellent post-stall characteristics:  the Classic Herbst, the Falcon Turn and 

the Vertical Cobra.  Each one took full advantage of a generous AOA range, good T/W 

ratio, and multi-axis TV to maintain controlled flight through the post-stall region.  

Common traits among the above maneuvers included roll rates in excess of 300°/sec, 

AOA pegged near or at limits, 30° of β , and extensive use of TV control surfaces.  In 

general terms, the maneuvers were a nice mix of techniques both new (the Falcon Turn) 

and familiar (the Herbst and elements of the Cobra).  This chapter will briefly review 

some of the necessary elements that were developed to create these maneuvers:  the 

aircraft models, aircraft code, and DIDO. 

After much coding and testing, the aircraft models for the HARV and UCAV-X 

were impressively realistic.  Accurate physical data, complete sets of S&C derivatives, 

and effective limits on control rates make them arguably two of the most complete 

models that have been used in maneuver optimization to date.  (The F-15B model created 

by Lichtsinder et. al. was the only model out of 18 papers researched for this thesis that 

had the same level of detail and accuracy.)  Curve-fitting the S&C derivatives for those 

aircraft proved by far the most efficient means of coding the aerodynamic data – not quite 

as accurate as a table look-up, but significantly less time consuming.  (On average it was 

about 15 times faster; see Tables 11 and 12 on pages 86-87.)  The accuracy of the curve-

fitting can be examined by comparing the plotted results in Appendix E to the table look-

up plots in Appendix D.  (See also Figure 21 on page 85.) 

The basic format of the aircraft code went largely unchanged from the way it was 

originally written by Scott Josselyn.  However, the code had to be rewritten for both the 

HARV and UCAV-X, and some major changes had to be made to incorporate the rate 

limit model discussed on page 69 and following.  As with the original version of the 

code, though, state variables were scaled to improve numerical stability, and 
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bootstrapping was used to improve the guess structure in Main.m.  Extensive testing 

found that bootstrapping from an initial 20 node solution reduced run times by an average 

56% (see Table 8 on page 77).  Minimizing run times was a major challenge during the 

course of this thesis, but between curve-fitting, bootstrapping, and selectively choosing 

state variable constraints, run times for a fully converged HARV or UCAV-X maneuver 

were reduced to less than two hours.  (Note that the times listed in Appendices G and H 

are from the 1998 computer, and are approximately 4-6 times longer than they would be 

on the primary 2002 computer.) 

While the aircraft code was important framework for developing time-optimal 

maneuvers, the optimization code DIDO was what really made this entire study possible.  

The numerous advantages of DIDO include its minimum operating requirements (a 

standard home PC, MATLAB and TOMLAB), its ease of use, its ability to optimize 

6DOF maneuvers and handle complicated aerodynamic data, and its ability to 

independently create unique, time-optimal maneuvers.  Ease of use was a much 

appreciated quality of DIDO, as only a basic understanding of optimal control theory was 

required to take advantage of DIDO’s capabilities.  The next two advantages were 

demonstrated in detail last chapter by contrasting DIDO with programs from previous 

optimal maneuver studies (see the section starting on page 120).  However, the greatest 

strength of DIDO is really summarized in the last advantage listed above:  namely, that 

DIDO’s format requires only loose parameters from the user, leaving DIDO considerable 

flexibility in deriving optimal maneuvers.  This attribute allowed for the format utilized 

in this study of simply defining maneuvers as deltas of aircraft state variables. 

Besides successfully developing several time-optimal maneuvers with the HARV 

and UCAV-X, a major accomplishment of this thesis was developing a methodology for 

discovering, analyzing and categorizing such maneuvers.  In this study, maneuvers were 

classified into one of four families, and further defined by energy, displacement, and 

other state variable constraints.  (On the latter, see the discussion starting on page 65.)  

After a minimal outline by the user of initial and final conditions, DIDO then did the 

work of integrating the complete time history of an optimal maneuver.  The tools built 

into the aircraft code completed the process by thoroughly analyzing DIDO’s maneuver 

for optimality and feasibility, and creating graphics to summarize the results. 
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All told, the method developed in this thesis can take a maneuver from concept to 

finished product in as little as four hours.  Hopefully this will enable the future 

development of more maneuvers like the Classic Herbst, Falcon Turn and Vertical Cobra.  

Even more importantly, it is hoped that this tool will encourage a continued, thorough 

study of time-optimal air combat maneuvers. 

 

A. FUTURE IMPROVEMENTS 

As with any project this size, there are still several areas that could be improved 

upon.  The few that will be looked at here are the aircraft models, aircraft code and 

software (i.e. DIDO/TOMLAB).  This section will talk about those areas, make 

recommendations, and also discuss potential future work on this project. 

To start with, there are a few minor improvements to be made to the aircraft 

models.  Most importantly, the ailerons and rudder need to be unlinked in the UCAV-X 

model, and the UCAV-X needs to be run through this study’s optimal maneuvers again.  

(In particular the turning and pointing maneuvers, which would reap the greatest 

improvement from the additional lateral-directional control.)  Also, once that correction 

is made, it would be very informative to study how changes to the UCAV-X (different 

moments of inertia, control derivatives, etc.) affected the aircraft’s performance of the 

four optimal maneuvers developed in this study.  In fact, this technique could allow a set 

of optimal maneuvers to be used to “optimize” an aircraft.  (Obviously a larger set of 

optimal maneuvers will result in a better airplane.)  The HARV model, on the other hand, 

has no real errors to correct, but could be made less conservative with the following two 

changes:  first, the aircraft could be flown at a lower altitude to give it a greater T/W 

ratio.  Second, a time-limited afterburner model could be added to the aircraft’s 

performance data. 

One thing that was missing from the aircraft code was a Validation.m file for the 

HARV and UCAV-X maneuvers.  While this optimality test was replaced with another 

good analysis tool (the control rate plots), it would be very useful to develop a version 

that would work for the HARV and UCAV-X.  This next recommendation is geared more 

towards simplifying (and improving) the actual operation of the code:  removing node 
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selection from the list of user inputs.  One way to accomplish this would be to use the 

results of this study’s analysis of node selection to choose optimum initial and 

bootstrapped node values for the user.  (Refer to the Node Selection and Bootstrapping 

sections starting on  page 73, and Table 8 in particular.)  Another possibility is that node 

selection could be integrated into DIDO itself; either method would alleviate the user 

from the trial and error process of selecting the best node values to balance run times and 

result quality. 

The only software issue that needs to be worked out is the incompatibility 

between DIDO and TOMLAB, discussed in detail in Chapter VI (see page 106).  At a 

minimum, either a newer version of DIDO or an older version of TOMLAB will be 

needed to fix the problem.  It is also likely that some minor rewriting of the aircraft code 

will be necessary to properly interact with the new DIDO/TOMLAB.  However, when 

resolved there will be numerous benefits evident in the HARV and UCAV-X results:  1) 

the maneuvers will correctly bootstrap to their full 80-100 node solutions, 2) propagated 

results will be available for those solutions, and 3) video files and plotted trajectories will 

smooth out. 

Finally, there are two areas relating to this study that are prime candidates for 

future research and development:  the first is an improved user interface for the aircraft 

code, and the second is the more ambitious design of a two-aircraft maneuver 

optimization code.  The greatest advantage of the former is that it would make the code 

much more efficient.  Currently, while the code does its job very well, operating it is 

rather cumbersome:  each run requires multiple files to be copied, edited, saved or 

renamed.  Ideally, a very basic GUI construct with a few menus and spaces for data entry 

could accomplish all of those tasks.  That kind of single-point interface would then both 

save time and simplify operation of the aircraft code. 

Designing a two-aircraft code would be the logical (albeit somewhat elusive) 

follow-on to what was accomplished in this thesis.  The basic framework of such a code 

would be very similar to the aircraft code in terms of format, aircraft models, 6DOF 

EOM, etc.  The following key differences, though, would need to be fleshed out:  
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1. A set of variables describing the geometry between two opposing aircraft 

(including appropriate limits). 

2. A system of equations governing those variables, predominately defined 

by the state variables of both aircraft. 

3. Criteria for a “kill” expressed mathematically as final conditions.  (These 

criteria should be based on realistic weapon engagement envelopes for 

guns and short range missiles.) 

While this short list would just be a beginning, it covers the most important aspect 

of developing code:  problem formulation.  Along with that, one of the great things about 

DIDO is that if your problem formulation is sound, it will translate very quickly and 

easily into code.  In spite of this fact, there will still undoubtedly be challenges to 

overcome simply due to the complexity of the problem.  For instance, developing a file 

structure that will handle not only two copies of the aircraft code, but the additional two-

aircraft EOM.  On a practical note, keeping straight the 40-50 variables that would be 

active in such a code.  On a related note, finding a way to limit the solution space so that 

DIDO can successfully manipulate all of those variables.  Then, of course, there is the 

“physical” consideration of what kind of computing power would be necessary to handle 

all the required calculations.  However, the incredible potential of such a code certainly 

warrants a concerted attempt to make it a reality. 

So in conclusion, this thesis has just begun the task of creating a catalog of time-

optimal maneuvers, and more importantly, has developed the methodology and tools 

needed to accomplish that task.  As these last three pages have shown, though, there is 

still room for improvement…and, of course, plenty of room for more post-stall 

maneuvers to be discovered. 
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APPENDIX A: SAMPLE AIRCRAFT DATA 

This Appendix contains the following MATLAB files:  LoadAircraft1a.m 

(analytic version of the Navion), LoadAircraft2.m (table look-up version of the HARV), 

LoadAircraft2c.m (curve-fit version of the HARV), and SCTables1.m (look-up table for 

the Navion). 

 
%Load Aircraft #1a (original version) 
%Contains physical data & operating limits for the Navion 
%(One of 3 load files for MAIN.M) 
%========================================================================= 
 
global CRAFT 
 
%Sources of Aircraft Data: 
%   Physical:  Schmidt, "Into to Flight Dynamics" 
%   S&C Derivatives:  Schmidt, "Into to Flight Dynamics" 
%   Control Limits:  estimated (ThrustTrim = Drag @ 176fps) 
%   Load Factor Limits:  T-34C NATOPS 
%   AOA Limits:  estimated 
 
%Physical Data 
CRAFT.Ix = 1048;                %MOI (slug-ft^2) 
CRAFT.Iy = 3000; 
CRAFT.Iz = 3530; 
CRAFT.Ixz = 0; 
CRAFT.s = 180;                  %wing reference area (ft^2) 
CRAFT.b = 33.4;                 %span (ft) 
CRAFT.c = 5.7;                  %chord (ft) 
CRAFT.AR = CRAFT.b^2/CRAFT.s;   %aspect ratio (for reference) 
CRAFT.cg = 0.29*CRAFT.c;        %c.g. location (for reference) 
CRAFT.m = 85.5;                 %mass (slugs) 
 
CRAFT.rho = 0.002377;           %density, SSL (slugs/ft^3) 
CRAFT.g = 32.2;                 %gravity (ft/sec^2) 
 
%Stability & Control Derivatives 
%------------------------------------------------------------------------- 
%Longitudinal 
CRAFT.CD0 = 0.051; 
CRAFT.CDa = 0.330; 
CRAFT.CL0 = 0.415; 
CRAFT.CLa = 4.44; 
CRAFT.CLq = 3.8; 
CRAFT.CLde = 0.355; 
CRAFT.Cma = -0.683; 
CRAFT.Cmadot = -4.46;   %(for reference) 
CRAFT.Cmq = -9.96; 
CRAFT.Cmde = -0.889; 
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%Lateral, Directional 
CRAFT.CYb = -0.564; 
CRAFT.CYdr = 0.157; 
CRAFT.Clb = -0.074; 
CRAFT.Clp = -0.410; 
CRAFT.Clr = 0.107; 
CRAFT.Clda = 0.134; 
CRAFT.Cldr = 0.012; 
CRAFT.Cnb = 0.070; 
CRAFT.Cnp = -0.058; 
CRAFT.Cnr = -0.125; 
CRAFT.Cnda = -0.003; 
CRAFT.Cndr = -0.072; 
%------------------------------------------------------------------------- 
 
%Limits on Controls 
CRAFT.daMax = 10*DtoR; 
CRAFT.deMax = 15*DtoR; 
CRAFT.drMax = 15*DtoR; 
CRAFT.ThrustTrim = 338; 
CRAFT.ThrustMax = CRAFT.ThrustTrim/0.80;   %422 lb 
CRAFT.ThrustMin = CRAFT.ThrustMax*0.70;    %295 lb 
 
%Limits on Load Factor 
CRAFT.LoadFactorMax = 4.5; 
CRAFT.LoadFactorMin = -2.3; 
 
%Limits on Angle of Attack 
CRAFT.AlphaMax = 20*DtoR; 
CRAFT.AlphaMin = -10*DtoR; 
%========================================================================= 
 
 
%Load Aircraft #2 (data table version) 
%Contains physical data & operating limits for the F-18 HARV 
%(One of 3 load files for MAIN.M) 
%========================================================================= 
 
global CRAFT 
 
%Sources of Aircraft Data: 
%   Physical:  NASA TP 206573 
%   S&C Derivatives:  NASA TP 206539 & 206573, WVU Report, MDC A7247 
%   Control Limits:  NASA TP 206573 
%   Load Factor Limits:  estimated 
%   AOA Limits:  based on available data range (+10, -10 deg) 
 
%Physical Data 
CRAFT.Ix = 22789;               %MOI (slug-ft^2) 
CRAFT.Iy = 176809; 
CRAFT.Iz = 191744; 
CRAFT.Ixz = -2305; 
CRAFT.s = 400;                  %wing reference area (ft^2) 
CRAFT.b = 37.4;                 %span (ft) 
CRAFT.c = 11.52;                %chord (ft) 
CRAFT.AR = 3.5;                 %aspect ratio (for reference) 
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CRAFT.cg = 0.238*CRAFT.c;       %c.g. location (for reference) 
CRAFT.m = 36099/32.2;           %mass (slugs) 
 
CRAFT.rho = 0.0008907;          %density, 30k ft (slugs/ft^3) 
CRAFT.g = 32.2;                 %gravity (ft/sec^2) 
 
%Stability & Control Derivatives 
%------------------------------------------------------------------------- 
if exist('alpha') == 1 
    SCDeriv = SCTables(alpha); 
else 
    alpha = 0; 
    SCDeriv = SCTables(alpha); 
end 
 
%Longitudinal 
CRAFT.CD0 =    SCDeriv(1,:); 
CRAFT.CDa =    SCDeriv(2,:); 
%CRAFT.CDq =   SCDeriv(3,:); 
CRAFT.CDds =   SCDeriv(4,:); 
CRAFT.CDdtf =  SCDeriv(5,:); 
CRAFT.CDdsa =  SCDeriv(6,:); 
CRAFT.CDdPV =  SCDeriv(7,:); 
CRAFT.CL0 =    SCDeriv(8,:); 
CRAFT.CLa =    SCDeriv(9,:); 
%CRAFT.CLq =   SCDeriv(10,:); 
CRAFT.CLds =   SCDeriv(11,:); 
CRAFT.CLdtf =  SCDeriv(12,:); 
CRAFT.CLdsa =  SCDeriv(13,:); 
CRAFT.CLdPV =  SCDeriv(14,:); 
CRAFT.Cm0 =    SCDeriv(15,:); 
CRAFT.Cma =    SCDeriv(16,:); 
CRAFT.Cmq =    SCDeriv(17,:); 
CRAFT.Cmds =   SCDeriv(18,:); 
CRAFT.Cmdtf =  SCDeriv(19,:); 
CRAFT.Cmdsa =  SCDeriv(20,:); 
CRAFT.CmdPV =  SCDeriv(21,:); 
 
%Lateral, Directional 
CRAFT.CY0 =    SCDeriv(22,:); 
CRAFT.CYb =    SCDeriv(23,:); 
CRAFT.CYda =   SCDeriv(24,:); 
CRAFT.CYdr =   SCDeriv(25,:); 
CRAFT.CYdds =  SCDeriv(26,:); 
CRAFT.CYdYV =  SCDeriv(27,:); 
CRAFT.Cl0 =    SCDeriv(28,:); 
CRAFT.Clb =    SCDeriv(29,:); 
CRAFT.Clp =    SCDeriv(30,:); 
CRAFT.Clr =    SCDeriv(31,:); 
CRAFT.Clda =   SCDeriv(32,:); 
CRAFT.Cldr =   SCDeriv(33,:); 
CRAFT.Cldds =  SCDeriv(34,:); 
CRAFT.CldYV =  SCDeriv(35,:); 
CRAFT.Cn0 =    SCDeriv(36,:); 
CRAFT.Cnb =    SCDeriv(37,:); 
CRAFT.Cnp =    SCDeriv(38,:); 
CRAFT.Cnr =    SCDeriv(39,:); 
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CRAFT.Cnda =   SCDeriv(40,:); 
CRAFT.Cndr =   SCDeriv(41,:); 
CRAFT.Cndds =  SCDeriv(42,:); 
CRAFT.CndYV =  SCDeriv(43,:); 
%------------------------------------------------------------------------- 
 
%Limits on Controls 
CRAFT.dsMax = 10.5*DtoR;    % Stabilator rate limit: 40 deg/sec 
CRAFT.dsMin = -24.0*DtoR; 
CRAFT.dtfMax = 45*DtoR;     % TEF rate limit: 18 deg/sec 
CRAFT.dtfMin = -8*DtoR; 
CRAFT.dsaMax = 45*DtoR;     % Aileron rate limit: 100 deg/sec 
CRAFT.dsaMin = -24*DtoR; 
CRAFT.dPVMax = 70*DtoR;     % TV vane rate limit: 80 deg/sec 
CRAFT.dPVMin = -70*DtoR; 
CRAFT.daMax = 69*DtoR; 
CRAFT.daMin = -69*DtoR; 
CRAFT.drMax = 30*DtoR;      % Rudder rate limit: 82 deg/sec 
CRAFT.drMin = -30*DtoR; 
CRAFT.ddsMax = 34.5*DtoR; 
CRAFT.ddsMin = -34.5*DtoR; 
CRAFT.dYVMax = 17.5*DtoR; 
CRAFT.dYVMin = -17.5*DtoR; 
CRAFT.ThrustMax = 6173;     % Calculated in GASTURB @ 30k ft, M=0.4 
CRAFT.ThrustMin = 4939;     % 80% of Max (~ cruise thrust) 
 
%Limits on Load Factor 
CRAFT.LoadFactorMax = 9; 
CRAFT.LoadFactorMin = -6; 
 
%Limits on Angle of Attack 
CRAFT.AlphaMax = 70*DtoR; 
CRAFT.AlphaMin = 0; 
%========================================================================= 
 
 
%Load Aircraft #2c (analytic version, curve-fit derivatives) 
%Contains physical data & operating limits for the F-18 HARV 
%(One of 3 load files for MAIN.M) 
%========================================================================= 
 
global CRAFT 
 
%Sources of Aircraft Data: 
%   Physical:  NASA TP 206573 
%   S&C Derivatives:  NASA TP 206539 & 206573, WVU Report, MDC A7247 
%   Control Limits:  NASA TP 206573 
%   Load Factor Limits:  estimated 
%   AOA Limits:  based on available data range (+10, -10 deg) 
 
%Physical Data 
CRAFT.Ix = 22789;               %MOI (slug-ft^2) 
CRAFT.Iy = 176809; 
CRAFT.Iz = 191744; 
CRAFT.Ixz = -2305; 
CRAFT.s = 400;                  %wing reference area (ft^2) 
CRAFT.b = 37.4;                 %span (ft) 
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CRAFT.c = 11.52;                %chord (ft) 
CRAFT.AR = 3.5;                 %aspect ratio (for reference) 
CRAFT.cg = 0.238*CRAFT.c;       %c.g. location (for reference) 
CRAFT.m = 36099/32.2;           %mass (slugs) 
 
CRAFT.rho = 0.0008907;          %density, 30k ft (slugs/ft^3) 
CRAFT.g = 32.2;                 %gravity (ft/sec^2) 
 
%Stability & Control Derivatives 
%------------------------------------------------------------------------- 
if exist('alpha') == 1 
    a = alpha*180/pi; 
else a = 0; 
end 
 
%Longitudinal 
CRAFT.CD0 =    1.5896e-010*a.^5 + 9.0505e-008*a.^4 - 2.5567e-005*a.^3 +... 
               1.6981e-003*a.^2 + 1.5341e-003*a    + 8.8616e-003; 
CRAFT.CDa =   -3.9591e-008*a.^5 + 5.5626e-006*a.^4 - 2.9322e-004*a.^3 +... 
               8.6964e-003*a.^2 - 1.6503e-001*a    + 2.1904e-003; 
CRAFT.CDds =  -5.6342e-007*a.^4 + 8.6895e-005*a.^3 - 4.8912e-003*a.^2 +... 
               1.0646e-001*a    - 8.0641e-001; 
CRAFT.CDdtf =  1.5182e-007*a.^4 - 2.5310e-005*a.^3 + 1.3188e-003*a.^2 -... 
               2.1993e-002*a    + 8.1848e-002; 
CRAFT.CDdsa = -1.1356e-008*a.^5 + 1.8033e-006*a.^4 - 1.0530e-004*a.^3 +... 
               2.7133e-003*a.^2 - 2.7786e-002*a    - 2.5164e-004; 
CRAFT.CDdPV =  1.1311e-006*a.^4 - 1.5051e-004*a.^3 + 7.0816e-003*a.^2 -... 
               1.4281e-001*a    + 6.7403e-001; 
CRAFT.CL0 =   -2.9961e-010*a.^5 + 1.4665e-007*a.^4 - 1.1840e-005*a.^3 -... 
               8.9395e-004*a.^2 + 9.0443e-002*a    - 1.2526e-002; 
CRAFT.CLa =   -3.4948e-008*a.^5 + 7.7588e-006*a.^4 - 5.6949e-004*a.^3 +... 
               1.7293e-002*a.^2 - 2.8261e-001*a    + 5.1531e+000; 
CRAFT.CLds =   1.0239e-007*a.^4 - 8.4156e-006*a.^3 + 2.5567e-004*a.^2 -... 
               1.1848e-002*a    + 6.7073e-001; 
CRAFT.CLdtf = -1.4052e-007*a.^4 + 2.3214e-005*a.^3 - 9.3371e-004*a.^2 -... 
               1.1890e-002*a    + 8.0659e-001; 
CRAFT.CLdsa =  1.8612e-008*a.^5 - 2.8741e-006*a.^4 + 1.5824e-004*a.^3 -... 
               3.4917e-003*a.^2 + 1.3289e-002*a    + 4.5900e-001; 
CRAFT.CLdPV = -1.2158e-006*a.^4 + 1.7069e-004*a.^3 - 8.1980e-003*a.^2 +... 
               1.3632e-001*a    + 3.6692e-001; 
CRAFT.Cm0 =    1.5777e-009*a.^5 - 3.0875e-007*a.^4 + 1.8428e-005*a.^3 -... 
               3.1021e-004*a.^2 - 7.3489e-003*a    + 3.8385e-002; 
CRAFT.Cma =    8.5944e-008*a.^5 - 1.3537e-005*a.^4 + 7.4951e-004*a.^3 -... 
               1.7324e-002*a.^2 + 1.3970e-001*a    - 2.7842e-001; 
CRAFT.Cmq =   -1.8750e-005*a.^4 + 2.9306e-003*a.^3 - 1.4146e-001*a.^2 +... 
               2.3308e+000*a    - 1.5000e+001; 
CRAFT.Cmds =   2.6857e-007*a.^4 - 4.9404e-005*a.^3 + 3.0389e-003*a.^2 -... 
               6.7330e-002*a    - 3.5571e-001; 
CRAFT.Cmdtf =  2.0054e-008*a.^5 - 3.0959e-006*a.^4 + 1.6644e-004*a.^3 -... 
               3.6260e-003*a.^2 + 2.6870e-002*a    + 2.9789e-002; 
CRAFT.Cmdsa = -6.6845e-009*a.^5 + 1.0830e-006*a.^4 - 6.1680e-005*a.^3 +... 
               1.4031e-003*a.^2 - 7.2818e-003*a    - 1.4348e-001; 
CRAFT.CmdPV =  2.2381e-007*a.^4 - 2.7819e-005*a.^3 + 1.3095e-003*a.^2 -... 
               2.3187e-002*a    - 6.0280e-001; 
 
%Lateral, Directional 
CRAFT.CY0 =   -4.0135e-007*a.^4 + 5.7639e-005*a.^3 - 2.7649e-003*a.^2 +... 
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               5.1019e-002*a    - 2.9235e-001; 
CRAFT.CYb =   -1.5357e-008*a.^5 + 2.5985e-006*a.^4 - 1.5072e-004*a.^3 +... 
               3.2580e-003*a.^2 - 1.2246e-002*a    - 8.6330e-001; 
CRAFT.CYda =   3.3501e-007*a.^4 - 5.7540e-005*a.^3 + 3.2434e-003*a.^2 -... 
               6.4101e-002*a    + 3.1716e-001; 
CRAFT.CYdr =  -1.1258e-007*a.^4 + 1.5439e-005*a.^3 - 6.1431e-004*a.^2 +... 
               3.9319e-003*a    + 2.3621e-001; 
CRAFT.CYdds =  3.2044e-007*a.^4 - 4.9740e-005*a.^3 + 2.4692e-003*a.^2 -... 
               4.0870e-002*a    + 1.5539e-001; 
CRAFT.CYdYV = -8.0260e-007*a.^4 + 1.1623e-004*a.^3 - 5.9102e-003*a.^2 +... 
               1.2227e-001*a    - 1.4332e+000; 
CRAFT.Cl0 =   -2.5604e-008*a.^4 + 3.9623e-006*a.^3 - 2.0410e-004*a.^2 +... 
               4.0433e-003*a    - 2.3970e-002; 
CRAFT.Clb =    8.2309e-008*a.^4 - 1.5772e-005*a.^3 + 1.0031e-003*a.^2 -... 
               2.3417e-002*a    + 1.1850e-002; 
CRAFT.Clp =   -2.5861e-009*a.^5 + 2.4347e-007*a.^4 - 5.0306e-006*a.^3 +... 
               4.8376e-005*a.^2 + 8.9702e-003*a    - 5.0675e-001; 
CRAFT.Clr =    1.0384e-008*a.^5 - 9.1066e-007*a.^4 - 1.7926e-005*a.^3 +... 
               2.9609e-003*a.^2 - 6.5118e-002*a    + 4.1285e-001; 
CRAFT.Clda =   6.4740e-008*a.^4 - 1.1321e-005*a.^3 + 7.2251e-004*a.^2 -... 
               2.0491e-002*a    + 2.6838e-001; 
CRAFT.Cldr =   1.0165e-009*a.^5 - 1.6145e-007*a.^4 + 8.4635e-006*a.^3 -... 
               1.5815e-004*a.^2 + 2.0824e-004*a    + 2.3080e-002; 
CRAFT.Cldds = -5.5665e-008*a.^5 + 9.7770e-006*a.^3 - 5.7644e-004*a.^2 +... 
               1.1935e-002*a    + 6.2956e-003; 
CRAFT.CldYV = -7.0767e-006*a.^4 + 9.6398e-004*a.^3 - 4.4453e-002*a.^2 +... 
               7.9746e-001*a    - 4.4896e+000; 
CRAFT.Cn0 =   -1.0043e-008*a.^4 + 2.5937e-006*a.^3 - 1.6377e-004*a.^2 +... 
               3.5237e-003*a    - 2.1952e-002; 
CRAFT.Cnb =    5.7139e-009*a.^4 + 2.9619e-006*a.^3 - 4.2322e-004*a.^2 +... 
               9.7820e-003*a    + 8.6820e-003; 
CRAFT.Cnp =   -2.9866e-008*a.^5 + 4.5629e-006*a.^4 - 2.2470e-004*a.^3 +... 
               3.8544e-003*a.^2 - 8.4827e-003*a    - 1.9894e-001; 
CRAFT.Cnr =    3.7109e-008*a.^5 - 5.2469e-006*a.^4 + 2.3384e-004*a.^3 -... 
               3.1041e-003*a.^2 - 1.8686e-002*a    + 1.8305e-002; 
CRAFT.Cnda =  -3.8052e-008*a.^4 + 6.0376e-006*a.^3 - 2.9961e-004*a.^2 +... 
               4.7598e-003*a    - 1.5341e-002; 
CRAFT.Cndr =   1.0377e-008*a.^4 - 1.2360e-006*a.^3 + 2.2668e-005*a.^2 +... 
               1.6279e-003*a    - 8.3614e-002; 
CRAFT.Cndds = -1.6548e-008*a.^4 + 2.6548e-006*a.^3 - 1.1075e-004*a.^2 -... 
               9.3077e-004*a    + 2.3226e-002; 
CRAFT.CndYV =  3.4956e-006*a.^4 - 5.5119e-004*a.^3 + 3.1614e-002*a.^2 -... 
               7.6194e-001*a    + 1.7877e+001; 
%------------------------------------------------------------------------- 
 
%Limits on Controls 
CRAFT.dsMax = 10.5*DtoR;    % Stabilator rate limit: 40 deg/sec 
CRAFT.dsMin = -24.0*DtoR; 
CRAFT.dtfMax = 45*DtoR;     % TEF rate limit: 18 deg/sec 
CRAFT.dtfMin = -8*DtoR; 
CRAFT.dsaMax = 45*DtoR;     % Aileron rate limit: 100 deg/sec 
CRAFT.dsaMin = -24*DtoR; 
CRAFT.dPVMax = 70*DtoR;     % TV vane rate limit: 80 deg/sec 
CRAFT.dPVMin = -70*DtoR; 
CRAFT.daMax = 69*DtoR; 
CRAFT.daMin = -69*DtoR; 
CRAFT.drMax = 30*DtoR;      % Rudder rate limit: 82 deg/sec 
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CRAFT.drMin = -30*DtoR; 
CRAFT.ddsMax = 34.5*DtoR; 
CRAFT.ddsMin = -34.5*DtoR; 
CRAFT.dYVMax = 17.5*DtoR; 
CRAFT.dYVMin = -17.5*DtoR; 
CRAFT.ThrustMax = 6173;     % Calculated in GASTURB @ 30k ft, M=0.4 
CRAFT.ThrustMin = 4939;     % 80% of Max (~ cruise thrust) 
 
%Limits on Load Factor 
CRAFT.LoadFactorMax = 9; 
CRAFT.LoadFactorMin = -6; 
 
%Limits on Angle of Attack 
CRAFT.AlphaMax = 70*DtoR; 
CRAFT.AlphaMin = 0; 
%========================================================================= 
 
 
function [SCDeriv] = SCTables(alpha) 
%Stability & Control Derivative calculations for LoadAircraft1.m 
%Contains look-up tables for the Navion as a proof of concept 
%========================================================================= 
 
alpha = alpha * 180/pi;   %(Tables list derivatives vs deg) 
x = length(alpha); 
SCDeriv = zeros(21,x); 
 
%Longitudinal 
%Control Surfaces: elevator(e) 
%------------------------------------------------------------------------- 
ar1 = 10:10:60;   %Alpha range 1 
 
CD0         =   [ 0.051  0.051  0.051  0.051  0.051  0.051]; 
CDa         =   [ 0.33   0.33   0.33   0.33   0.33   0.33 ]; 
 
CL0         =   [ 0.415  0.415  0.415  0.415  0.415  0.415]; 
CLa         =   [ 4.44   4.44   4.44   4.44   4.44   4.44 ]; 
CLq         =   [ 3.8    3.8    3.8    3.8    3.8    3.8  ]; 
CLde        =   [ 0.355  0.355  0.355  0.355  0.355  0.355]; 
 
Cma         =   [-0.683 -0.683 -0.683 -0.683 -0.683 -0.683]; 
Cmq         =   [-9.96  -9.96  -9.96  -9.96  -9.96  -9.96 ]; 
Cmde        =   [-0.889 -0.889 -0.889 -0.889 -0.889 -0.889]; 
 
SCDeriv(1,1:x)  =   interp1(ar1,CD0,alpha(1:x),'cubic','extrap'); 
SCDeriv(2,1:x)  =   interp1(ar1,CDa,alpha(1:x),'cubic','extrap'); 
SCDeriv(3,1:x)  =   interp1(ar1,CL0,alpha(1:x),'cubic','extrap'); 
SCDeriv(4,1:x)  =   interp1(ar1,CLa,alpha(1:x),'cubic','extrap'); 
SCDeriv(5,1:x)  =   interp1(ar1,CLq,alpha(1:x),'cubic','extrap'); 
SCDeriv(6,1:x)  =   interp1(ar1,CLde,alpha(1:x),'cubic','extrap'); 
SCDeriv(7,1:x)  =   interp1(ar1,Cma,alpha(1:x),'cubic','extrap'); 
SCDeriv(8,1:x)  =   interp1(ar1,Cmq,alpha(1:x),'cubic','extrap'); 
SCDeriv(9,1:x)  =   interp1(ar1,Cmde,alpha(1:x),'cubic','extrap'); 
%------------------------------------------------------------------------- 
 
 
%Lateral, Directional 
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%Control Surfaces: ailerons (a), rudder (r) 
%------------------------------------------------------------------------- 
ar2 = [0:10:50];   %Alpha range 2 
 
CYb         =   [-0.564 -0.564 -0.564 -0.564 -0.564 -0.564]; 
CYdr        =   [ 0.157  0.157  0.157  0.157  0.157  0.157]; 
 
Clb         =   [-0.074 -0.074 -0.074 -0.074 -0.074 -0.074]; 
Clp         =   [-0.41  -0.41  -0.41  -0.41  -0.41  -0.41 ]; 
Clr         =   [ 0.107  0.107  0.107  0.107  0.107  0.107]; 
Clda        =   [ 0.134  0.134  0.134  0.134  0.134  0.134]; 
Cldr        =   [ 0.012  0.012  0.012  0.012  0.012  0.012]; 
 
Cnb         =   [ 0.07   0.07   0.07   0.07   0.07   0.07 ]; 
Cnp         =   [-0.058 -0.058 -0.058 -0.058 -0.058 -0.058]; 
Cnr         =   [-0.125 -0.125 -0.125 -0.125 -0.125 -0.125]; 
Cnda        =   [-0.003 -0.003 -0.003 -0.003 -0.003 -0.003]; 
Cndr        =   [-0.072 -0.072 -0.072 -0.072 -0.072 -0.072]; 
 
SCDeriv(10,1:x) =   interp1(ar2,CYb,alpha(1:x),'cubic','extrap'); 
SCDeriv(11,1:x) =   interp1(ar2,CYdr,alpha(1:x),'cubic','extrap'); 
SCDeriv(12,1:x) =   interp1(ar2,Clb,alpha(1:x),'cubic','extrap'); 
SCDeriv(13,1:x) =   interp1(ar2,Clp,alpha(1:x),'cubic','extrap'); 
SCDeriv(14,1:x) =   interp1(ar2,Clr,alpha(1:x),'cubic','extrap'); 
SCDeriv(15,1:x) =   interp1(ar2,Clda,alpha(1:x),'cubic','extrap'); 
SCDeriv(16,1:x) =   interp1(ar2,Cldr,alpha(1:x),'cubic','extrap'); 
SCDeriv(17,1:x) =   interp1(ar2,Cnb,alpha(1:x),'cubic','extrap'); 
SCDeriv(18,1:x) =   interp1(ar2,Cnp,alpha(1:x),'cubic','extrap'); 
SCDeriv(19,1:x) =   interp1(ar2,Cnr,alpha(1:x),'cubic','extrap'); 
SCDeriv(20,1:x) =   interp1(ar2,Cnda,alpha(1:x),'cubic','extrap'); 
SCDeriv(21,1:x) =   interp1(ar2,Cndr,alpha(1:x),'cubic','extrap'); 
%------------------------------------------------------------------------- 
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APPENDIX B: SAMPLE MANEUVERS 

This Appendix contains the following MATLAB files:  LoadManeuver2.m (load 

file for the Wingover – only the Navion version), and LoadManeuver01.m (load file for 

the Reversal – both the Navion and HARV versions). 

 
%Load Maneuver #2 (Navion) 
%Contains the initial, final & boundary conditions for a "Wingover" 
%(Delta: Y[1000 ft], psi[180 deg]) 
%(One of 3 load files for MAIN.M) 
%========================================================================= 
 
global INIT FINAL 
 
%Initial & Final Condition Terms: 
%   Position (X & Y-coordinates, altitude) 
%   Velocity (true airspeed, angle of attack, sideslip angle) 
%   Body rates (roll, pitch & yaw rates) 
%   Euler angles (phi, theta, psi) 
 
%Initial Conditions 
INIT.X = 0; 
INIT.Y = 0; 
INIT.H = 1000; 
INIT.V = 176; 
INIT.alpha = 0; 
INIT.beta = 0; 
INIT.p = 0; 
INIT.q = 0; 
INIT.r = 0; 
INIT.phi = 0; 
INIT.theta = 0; 
INIT.psi = 0; 
 
%Final Conditions 
FINAL.X = 0; 
FINAL.Y = 1000; 
FINAL.H = 1000; 
FINAL.V = 176; 
FINAL.alpha = 0; 
FINAL.beta = 0; 
FINAL.p = 0; 
FINAL.q = 0; 
FINAL.r = 0; 
FINAL.phi = 0; 
FINAL.theta = 0; 
FINAL.psi = pi; 
 
tfGuess = 15; %seconds 
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%Boundary Conditions 
MyEventBounds = [ 
        0, 0;                                       %X0 bounds 
        0, 0;                                       %Y0 bounds 
        INIT.H/UNITS.dist, INIT.H/UNITS.dist;       %H0 bounds 
         
        INIT.V/UNITS.vel, INIT.V/UNITS.vel;         %V0 bounds 
        0, 0;                                       %alpha0 bounds 
        0, 0;                                       %beta0 bounds 
                 
        0, 0;                                       %p0 bounds 
        0, 0;                                       %q0 bounds 
        0, 0;                                       %r0 bounds 
         
        0, 0;                                       %phi0 bounds 
        0, 0;                                       %theta0 bounds 
        0, 0;                                       %psi0 bounds 
         
        -100/UNITS.dist, 100/UNITS.dist;            %Xf bounds 
        900/UNITS.dist, 1100/UNITS.dist;            %Yf bounds 
        FINAL.H/UNITS.dist, FINAL.H/UNITS.dist;     %Hf bounds 
         
        FINAL.V/UNITS.vel, FINAL.V/UNITS.vel;       %Vf bounds 
        0, 0;                                       %alphaf bounds 
        0, 0;                                       %betaf bounds 
                
        (-pi/90)*UNITS.time, (pi/90)*UNITS.time;    %pf bounds 
        (-pi/90)*UNITS.time, (pi/90)*UNITS.time;    %qf bounds 
        (-pi/90)*UNITS.time, (pi/90)*UNITS.time;    %rf bounds 
         
        0, 0;                                       %phif bounds 
        0, 0;                                       %thetaf bounds 
        FINAL.psi, FINAL.psi;                       %psif bounds 
                                 ]; 
%========================================================================= 
 
 
%Load Maneuver #01 (Navion) 
%Contains the initial, final & boundary conditions for a "Reversal" 
%(Delta: X,Y,H[0 ft], V[0 fps], psi[180 deg]) 
%(One of 3 load files for MAIN.M) 
%========================================================================= 
 
global INIT FINAL 
 
%Initial & Final Condition Terms: 
%   Position (X & Y-coordinates, altitude) 
%   Velocity (true airspeed, angle of attack, sideslip angle) 
%   Body rates (roll, pitch & yaw rates) 
%   Euler angles (phi, theta, psi) 
 
%Initial Conditions 
INIT.X = 0; 
INIT.Y = 0; 
INIT.H = 1000; 
INIT.V = 176; 
INIT.alpha = 0; 
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INIT.beta = 0; 
INIT.p = 0; 
INIT.q = 0; 
INIT.r = 0; 
INIT.phi = 0; 
INIT.theta = 0; 
INIT.psi = 0; 
 
%Final Conditions 
FINAL.X = 0; 
FINAL.Y = 0; 
FINAL.H = 1000; 
FINAL.V = 176; 
FINAL.alpha = 0; 
FINAL.beta = 0; 
FINAL.p = 0; 
FINAL.q = 0; 
FINAL.r = 0; 
FINAL.phi = 0; 
FINAL.theta = 0; 
FINAL.psi = pi; 
 
tfGuess = 20; %seconds 
 
%Boundary Conditions 
MyEventBounds = [ 
        0, 0;                                       %X0 bounds 
        0, 0;                                       %Y0 bounds 
        INIT.H/UNITS.dist, INIT.H/UNITS.dist;       %H0 bounds 
         
        INIT.V/UNITS.vel, INIT.V/UNITS.vel;         %V0 bounds 
        0, 0;                                       %alpha0 bounds 
        0, 0;                                       %beta0 bounds 
                 
        0, 0;                                       %p0 bounds 
        0, 0;                                       %q0 bounds 
        0, 0;                                       %r0 bounds 
         
        0, 0;                                       %phi0 bounds 
        0, 0;                                       %theta0 bounds 
        0, 0;                                       %psi0 bounds 
         
        0/UNITS.dist, 0/UNITS.dist;                 %Xf bounds 
        0/UNITS.dist, 0/UNITS.dist;                 %Yf bounds 
        FINAL.H/UNITS.dist, FINAL.H/UNITS.dist;     %Hf bounds 
         
        FINAL.V/UNITS.vel, FINAL.V/UNITS.vel;       %Vf bounds 
        0, 0;                                       %alphaf bounds 
        0, 0;                                       %betaf bounds 
                 
        0, 0;                                       %pf bounds 
        0, 0;                                       %qf bounds 
        0, 0;                                       %rf bounds 
         
        0, 0;                                       %phif bounds 
        0, 0;                                       %thetaf bounds 
        FINAL.psi, FINAL.psi;                       %psif bounds 
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                                 ]; 
%========================================================================= 
 
 
%Load Maneuver #01 (HARV) 
%Contains the initial, final & boundary conditions for a "Reversal" 
%(Delta: X,Y,H[0 ft], V[0 fps], psi[180 deg]) 
%(One of 3 load files for MAIN.M) 
%========================================================================= 
 
global INIT FINAL 
 
%Initial & Final Condition Terms: 
%   Position (X & Y-coordinates, altitude) 
%   Velocity (true airspeed, angle of attack, sideslip angle) 
%   Body rates (roll, pitch & yaw rates) 
%   Euler angles (phi, theta, psi) 
%   Controls (listed in Boundary Conditions) 
 
%Initial Conditions 
INIT.X = 0; 
INIT.Y = 0; 
INIT.H = 30000; 
INIT.V = 398; 
INIT.alpha = 0; 
INIT.beta = 0; 
INIT.p = 0; 
INIT.q = 0; 
INIT.r = 0; 
INIT.phi = 0; 
INIT.theta = 0; 
INIT.psi = 0; 
 
%Final Conditions 
FINAL.X = 0; 
FINAL.Y = 0; 
FINAL.H = 30000; 
FINAL.V = 398; 
FINAL.alpha = 0; 
FINAL.beta = 0; 
FINAL.p = 0; 
FINAL.q = 0; 
FINAL.r = 0; 
FINAL.phi = 0; 
FINAL.theta = 0; 
FINAL.psi = pi; 
 
tfGuess = 20; %seconds 
 
%Boundary Conditions 
MyEventBounds = [ 
        0, 0;                                       %X0 bounds 
        0, 0;                                       %Y0 bounds 
        INIT.H/UNITS.dist, INIT.H/UNITS.dist;       %H0 bounds 
         
        INIT.V/UNITS.vel, INIT.V/UNITS.vel;         %V0 bounds 
        0, 0;                                       %alpha0 bounds 
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        0, 0;                                       %beta0 bounds 
                 
        0, 0;                                       %p0 bounds 
        0, 0;                                       %q0 bounds 
        0, 0;                                       %r0 bounds 
         
        0, 0;                                       %phi0 bounds 
        0, 0;                                       %theta0 bounds 
        0, 0;                                       %psi0 bounds 
         
        0, 0;                                       %ds0 bounds 
        0, 0;                                       %dtf0 bounds 
        0, 0;                                       %dsa0 bounds 
        0, 0;                                       %dPV0 bounds 
        0, 0;                                       %da0 bounds 
        0, 0;                                       %dr0 bounds 
        0, 0;                                       %dds0 bounds 
        0, 0;                                       %dYV0 bounds 
 
        0/UNITS.dist, 0/UNITS.dist;                 %Xf bounds 
        0/UNITS.dist, 0/UNITS.dist;                 %Yf bounds 
        FINAL.H/UNITS.dist, FINAL.H/UNITS.dist;     %Hf bounds 
         
        FINAL.V/UNITS.vel, FINAL.V/UNITS.vel;       %Vf bounds 
        0, 0;                                       %alphaf bounds 
        0, 0;                                       %betaf bounds 
                 
        0, 0;                                       %pf bounds 
        0, 0;                                       %qf bounds 
        0, 0;                                       %rf bounds 
         
        0, 0;                                       %phif bounds 
        0, 0;                                       %thetaf bounds 
        FINAL.psi, FINAL.psi;                       %psif bounds 
 
        -24*(pi/180), 10.5*(pi/180);                %dsf bounds 
        -8*(pi/180), 45*(pi/180);                   %dtff bounds 
        -24*(pi/180), 45*(pi/180);                  %dsaf bounds 
        -70*(pi/180), 70*(pi/180);                  %dPVf bounds 
        -69*(pi/180), 69*(pi/180);                  %daf bounds 
        -30*(pi/180), 30*(pi/180);                  %drf bounds 
        -34.5*(pi/180), 34.5*(pi/180);              %ddsf bounds 
        -17.5*(pi/180), 17.5*(pi/180);              %dYVf bounds 
                                         ]; 
%========================================================================= 
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APPENDIX C: DIDO RUN HISTORY 

NAVION    //    Standard Maneuvers    //    Wingover  (LoadManeuver2.m) 
 
 
DELTA ∆Y  =  1000 ft 
  ∆ψ  =  180° 
 
1. Constrained: α, β, p, q, r, φ, θ = 0 V = V(0) a) 5.7366 min 40 iter fair 
   ψ = 180°  b) 5.440 min 40 iter fair 
 Unconstrained: X, Y  (500 ft) H  (100ft) c) 5.4572 min 40 iter fair 
 
2. Constrained: α, β, p, q, r, φ, θ = 0 V = V(0) a) 4.7843 min 38 iter good 
   ψ = 180°  b) 4.8100 min 38 iter good 
 Unconstrained: X, Y  (100 ft) H  (100ft) 
 
3. Constrained: α, β, p, q, r, φ, θ = 0 V = V(0) a) 2.9611 min 23 iter good 
   ψ = 180° H = H(0) b) 3.0125 min 23 iter good 
 Unconstrained: X, Y  (100 ft) 
 
4. Constrained: α, β, p, q, r = 0 V = V(0) a) 4.0185 min 31 iter good 
   ψ = 180° H = H(0) b) 3.9395 min 31 iter good 
 Unconstrained: X, Y  (100 ft) φ, θ  (2°) 
 
5. Constrained: p, q, r, φ, θ = 0 V = V(0) a) 4.1448 min 32 iter good 
   ψ = 180° H = H(0) b) 4.1044 min 32 iter good 
 Unconstrained: X, Y  (100 ft) α, β  (2°) 
 
6. Constrained: α, β, φ, θ = 0 V = V(0) a) 3.1140 min 23 iter great 
   ψ = 180° H = H(0) b) 3.0871 min 23 iter great 

 Unconstrained: X, Y  (100 ft) p, q, r  (2°/sec) 

 
FINAL X (100 ft) 
  Y  (900–1000 ft) 
  p, q, r  (2°/sec) 
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NAVION    //    Standard & Optimal Maneuvers    //    Control Rate Limits 
 
 
 Standard Navion model*  Navion w/ rate control limits* 
 (maneuver) (min) (#iter)  (maneuver) (min) (#iter) 
 
Standard Maneuvers 
  1 0.56 348   1 0.74 353 
  2 0.87 879   2 1.35 1176 
  3 0.99 901   3 1.14 1818 
  4 0.99 636   4 1.27 660 
 
Optimal Maneuvers 
  5 2.40 2427   5 1.56 3053 
  6 3.29 4056   6 1.21 3804 
  7 5.13 5375   7 1.14 2419 
  8 8.08 8656   8 4.58 5617 
 
 
 
 
Trends: 1. 4 out of 4 standard maneuvers increased in run times and total 
   iterations by using control rate limits. 
  2. 3 out of 4 optimal maneuvers decreased in run times and total 
   iterations by using control rate limits. 
 
Correlation between changes in iterations & run time?  Not directly. 
 
     (#iter)   (run time, min) 
 
   Maneuver #7: 2419/5375 = 0.45 1.14/5.13 = 0.22 
   Maneuver #8: 5617/8656 = 0.65 4.58/8.08 = 0.57 
   Maneuver #6: 3804/4056 = 0.94 1.21/3.29 = 0.37 
   Maneuver #5: 3053/2427 = 1.26 1.56/2.40 = 0.65 
 
   Maneuver #1:   353/  348 = 1.01 0.74/0.56 = 1.32 
   Maneuver #4:   660/  636 = 1.04 1.27/0.99 = 1.28 
   Maneuver #2: 1176/  879 = 1.34 1.35/0.87 = 1.55 
   Maneuver #3: 1818/  901 = 2.02 1.14/0.99 = 1.15 
 
 
*  All of these runs were done with only 20 nodes.  The only variable (for each Navion 
model) was the maneuver being performed. 
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NAVION    //    Standard Maneuvers    //    Nodes 
 
 
1. Straight Climb 
 
  70 Nodes 45 major iter. 2,877 total iter.  6.3245 min Good. 
 -- 60 Nodes 48 major iter. 2,531 total iter.  4.5325 min Great. 
  50 Nodes 51 major iter. 1,362 total iter.  3.2804 min High H @ ends. 
  40 Nodes 45 major iter. 1,231 total iter.  2.0847 min Jagged β, q, θ, n. 
 
 
2. Wingover 
 
  70 Nodes 31 major iter. 4,350 total iter.  6.0229 min Ok. 
 -- 60 Nodes 34 major iter. 4,375 total iter.  4.2166 min Ok. 
  50 Nodes 34 major iter. 5,634 total iter.  3.2874 min Jagged controls. 
  40 Nodes 70 major iter. 5,168 total iter.  3.9821 min Jagged. 
 
 
3. Level Turn 
 
  90 Nodes 34 major iter. 9,318 total iter.  17.8278 min Good. 
 -- 80 Nodes 65 major iter. 2,450 total iter.  21.9902 min Ok. 
  70 Nodes 77 major iter. 3,375 total iter.  11.1024 min Ok. 
  60 Nodes 60 major iter. 3,446 total iter.  6.7112 min Jagged H. 
 
 
4. Climbing Turn 
 
  110 Nodes 64 major iter. 10,076 total iter. 36.0996 min Good. 
 -- 100 Nodes 43 major iter. 4,601 total iter.  18.6036 min Bad H. 
  90 Nodes 47 major iter. 5,126 total iter.  14.9884 min Ok. 
  80 Nodes 67 major iter. 3,358 total iter.  13.3034 min Prop. depart. 
 
 
 
 
 *  Initial estimates were done with the number of nodes marked by the dash. 
 
 *  The node values in bold were selected for each maneuver as the best balance of run time and 
result quality. 
 
 *  The underlined node values displayed the best results for each maneuver within the range of 
node values that were tested.  (Best result is based on a smooth flight path, propagated results that 
match DIDO’s results, and a flat Hamiltonian.) 
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APPENDIX D: TABLE LOOK-UP PLOTS 

The first part of this Appendix contains plots of the HARV S&C derivatives 

calculated in SCTables2.m.  The circles are actual flight test data points, while the lines 

are the values calculated by MATLAB’s “interp1” and “extrap” commands.  Each 

derivative is plotted versus AOA (measured in degrees along the x-axis).  S&C 

derivatives are grouped by force and moment coefficients.  (For an explanation of the 

axial and normal force derivatives, see the discussion of the WVU report on page 47.)  

Note the units label on the y-axes, as some S&C derivatives are plotted per degree and 

others are plotted per radian. 

The second part of this Appendix contains summary plots of the HARV S&C 

derivatives that compare the relative influence that each derivative has on its respective 

force or moment coefficient.  (These plots, as with the previous plots, were created by the 

script file SCPlots2.m.)  For these plots, the axial and normal derivatives were converted 

to drag and lift derivatives, as those were the terms used in the aircraft code.  Note that 

certain derivatives (in particular the baseline values) had to be scaled down to fit on the 

plots with the other derivatives. 
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APPENDIX E: CURVE-FITTING PLOTS 

This Appendix contains plots of the HARV S&C derivatives calculated by curve-

fitting.  The circles are actual flight test data points, while the lines are the values 

calculated by the fourth and fifth order functions of AOA calculated by MATLAB’s 

“polyfit” command.  Each derivative is plotted versus AOA (measured in degrees along 

the x-axis).  S&C derivatives are grouped by force and moment coefficients, and the units 

for all derivatives are per radian. 

NOTE:  Not all S&C derivatives in this Appendix can be compared to the 

derivatives in Appendix D.  For one, this Appendix includes drag and lift derivatives, 

while Appendix D included axial and normal derivatives (for comparison with fairings 

done by Iliff and Wang).  Also, while all derivatives in this Appendix are in units of per 

radian, most derivatives in Appendix D are in units of per degree; trends will therefore be 

the same, but not values. 
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APPENDIX F: NAVION RESULTS 

A. STRAIGHT CLIMB 

Delta: ∆H  =  1000 ft 60 Nodes (not bootstrapped) 
 ∆X  =  10000 ft  
  # of Iterations: 2531 
Unconstrained: X  (0–50k ft) Total Run Time: 4.52 min 
 p, q, r  (0 ± 2°/sec)  
  Maneuver Time: 152.8 sec 

 

 

 

NOTE:  Due to the scale of this particular maneuver, 

a 3D trajectory view was not included.  Both the 

flight path and orientation of the aircraft can easily be 

determined from the first and fourth DIDO plots, respectively. 
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B. LEVEL TURN 

Delta: ∆ψ  =  90° 90 Nodes (not bootstrapped)  
 ∆X  =  1000 ft  
 ∆Y  =  1000 ft # of Iterations: 9318 
  Total Run Time: 17.83 min 
Unconstrained: X, Y  (700–1300 ft)  
 φ, θ  (0 ± 2°) Maneuver Time: 8.52 sec 
 p, q, r  (0 ± 2°/sec)  
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C. CLIMBING TURN 

Delta: ∆ψ  =  90° 110 Nodes (not bootstrapped) 
 ∆H  =  1000 ft  
 ∆X  =  15000 ft # of Iterations: 10076 
 ∆Y  =  10000 ft Total Run Time: 36.10 min 
   
Unconstrained: X, Y  (0–30k ft) Maneuver Time: 152.6 sec 
 φ, θ  (0 ± 2°) (Aircraft scale 10:1 in figure below.) 
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D. WINGOVER 

Delta: ∆ψ  =  180° 60 Nodes (not bootstrapped) 
 ∆Y  =  1000 ft  
  # of Iterations: 4375 
Unconstrained: X  (0 ± 100 ft) Total Run Time: 4.22 min 
 Y  (900-1100 ft)  
 p, q, r  (0 ± 2°/sec) Maneuver Time: 13.91 sec 
   

 

0 5 10 15
-500

0

500

1000

time (sec)

X 
an

d 
Y

 (
ft)

X
Y

-200 0 200 400 600 800

0

200

400

600

800

X (ft)

Y
 (

ft)

Ground Track

0 5 10 15
900

1000

1100

1200

1300

time (sec)

A
lti

tu
de

 (
ft)

 

0 2 4 6 8 10 12 14
100

150

200

V
el

oc
ity

 (
ft/

s)

0 2 4 6 8 10 12 14
-10

0

10

20

A
O

A
 (

de
g)

0 2 4 6 8 10 12 14
-5

0

5

time (sec)

S
id

es
lip

 (
de

g)

 

 



190

 

0 2 4 6 8 10 12 14
-40

-30

-20

-10

0

10

20

30

40

50

time (sec)

B
od

y 
R

at
es

 (
de

g/
s)

p
q
r

 
0 2 4 6 8 10 12 14

-50

0

50

100

150

200

time (sec)

E
ul

er
 A

ng
le

s 
(d

eg
)

phi
theta
psi

 

0 2 4 6 8 10 12 14
-20

-10

0

10

20

C
on

tr
ol

s 
D

ef
le

ct
io

ns
 (

de
g)

da
de
dr

0 2 4 6 8 10 12 14
421.5

422

422.5

423

423.5

time (sec)

Th
ru

st
 (

lb
s)

 
0 2 4 6 8 10 12 14

0.5

1

1.5

2

2.5

3

3.5

4

time (sec)

Lo
ad

 F
ac

to
r 

(g
)

 

0 0.5 1 1.5 2 2.5 3
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

node position

Hamiltonian

H
mean(H)

 

0 1 2 3
-2

-1

0

1

2
x 10

-8

node position

dH
 /

 d
da

0 1 2 3
-1.5

-1

-0.5

0

0.5

1
x 10

-7

node position

dH
 /

 d
de

0 1 2 3
-2

-1

0

1

2
x 10

-7

node position

dH
 /

 d
dr

0 1 2 3
-1

-0.5

0

0.5

1
x 10

-5

node position

dH
 /

 d
dT

 

 



191

 

E. REVERSAL MANEUVER 

Delta: ∆ψ  =  180° 80 Nodes (not bootstrapped) 
 ∆H  =  0 ft  
 ∆V  =  0 fps # of Iterations: 6239 
 ∆X  =  0 ft Total Run Time: 25.30 min 
 ∆Y  =  0 ft  
  Maneuver Time: 19.05 sec 
Unconstrained: (None)  
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F. TURNING MANEUVER 

Delta: ∆ψ  =  90° 80 Nodes (not bootstrapped) 
 ∆H  =  0 ft  
 ∆V  =  0 fps # of Iterations: 22679 
 ∆X  =  0 ft Total Run Time: 72.08 min 
 ∆Y  =  0 ft  
  Maneuver Time: 28.36 sec 
Unconstrained: (None)  
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G. POINTING MANEUVER 

Delta: ∆θ  =  30° 60 Nodes (not bootstrapped) 
 ∆ψ  =  30°  
  # of Iterations: 84154 
Unconstrained: X, Y  (0 ± 1000 ft) Total Run Time: 122.49 min 
 H  (1000-3000 ft)  
  Maneuver Time: 3.92 sec 
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H. BRAKING MANEUVER 

Delta: ∆V  =  -50%  (-88 fps) 60 Nodes (not bootstrapped) 
   
Unconstrained: X, Y  (0 ± 1000 ft) # of Iterations: 29307 
 H  (1000-3000 ft) Total Run Time: 42.36 min 
   
  Maneuver Time: 5.74 sec 

 

0 2 4 6
-200

0

200

400

600

800

time (sec)

X 
an

d 
Y

 (
ft)

X
Y

200 400 600

-200

-100

0

100

200

X (ft)

Y
 (

ft)

Ground Track

0 2 4 6
1900

2000

2100

2200

2300

2400

time (sec)

A
lti

tu
de

 (
ft)

 

0 1 2 3 4 5 6
50

100

150

200

V
el

oc
ity

 (
ft/

s)

0 1 2 3 4 5 6
-20

0

20

A
O

A
 (

de
g)

0 1 2 3 4 5 6
-20

0

20

time (sec)

S
id

es
lip

 (
de

g)

 

 



198

 

0 1 2 3 4 5 6
-60

-40

-20

0

20

40

60

time (sec)

B
od

y 
R

at
es

 (
de

g/
s)

p
q
r

 
0 1 2 3 4 5 6

-30

-20

-10

0

10

20

30

40

50

60

time (sec)

E
ul

er
 A

ng
le

s 
(d

eg
)

phi
theta
psi

 

0 1 2 3 4 5 6
-20

-10

0

10

20

C
on

tr
ol

s 
D

ef
le

ct
io

ns
 (

de
g)

da
de
dr

0 1 2 3 4 5 6
295

296

297

298

299

time (sec)

Th
ru

st
 (

lb
s)

 
0 1 2 3 4 5 6

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

time (sec)

Lo
ad

 F
ac

to
r 

(g
)

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

node position

Hamiltonian

H
mean(H)

 

0 0.5 1 1.5
-5

0

5

10
x 10

-11

node position

dH
 /

 d
da

0 0.5 1 1.5
-5

0

5

10
x 10

-5

node position

dH
 /

 d
de

0 0.5 1 1.5
-6

-4

-2

0

2
x 10

-9

node position

dH
 /

 d
dr

0 0.5 1 1.5
-15

-10

-5

0

5
x 10

-4

node position

dH
 /

 d
dT

 

 



199

APPENDIX G: HARV RESULTS 

A. “CLASSIC HERBST” 

Delta: ∆ψ  =  180° 100 Nodes (bootstrapped from 20) 
 ∆H  =  0 ft  
 ∆V  =  0 fps # of Iterations: 32312 
 ∆X  =  0 ft Total Run Time: 444.76 min 
 ∆Y  =  0 ft  
  Maneuver Time: 11.75 sec 
Unconstrained: δ (min-max deflection)  
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B. “FALCON TURN” 

Delta: ∆ψ  =  90° 80 Nodes (bootstrapped from 20) 
 ∆H  =  0 ft  
 ∆V  =  0 fps # of Iterations: 24383 
  Total Run Time: 237.73 min 
Unconstrained: X, Y  (0 ± 1000 ft)   
 δ (min-max deflection) Maneuver Time: 12.84 sec 
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C. “POINT AND SHOOT B” 

Delta: ∆θ  =  60° 80 Nodes (bootstrapped from 20) 
 ∆ψ  =  60°  
  # of Iterations: 14053 
Unconstrained: X, Y  (0 ± 3000 ft) Total Run Time: 456.02 min 
 H  (27k-33k ft)  
 V  (398 ± 100 fps) Maneuver Time: 6.68 sec 
 δ (min-max deflection) 
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D. “CRAZY STRAW” 

Delta: ∆V  =  -75%  (-298 fps) 80 Nodes (bootstrapped from 20) 
   
Unconstrained: X, Y  (0 ± 3000 ft) # of Iterations: 22523 
 H  (27k-33k ft) Total Run Time: 151.53 min 
 δ (min-max deflection)  
  Maneuver Time: 48.99 sec 
  (Aircraft scale 2:1 in figure below.) 
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APPENDIX H: UCAV-X RESULTS 

A. “LAZY EIGHT” 

Delta: ∆ψ  =  180° 80 Nodes (bootstrapped from 20) 
 ∆H  =  0 ft  
 ∆V  =  0 fps # of Iterations: 11630 
 ∆X  =  0 ft Total Run Time: 102.59 min 
 ∆Y  =  0 ft  
  Maneuver Time: 24.08 sec 
Unconstrained: δ (min-max deflection) (Aircraft scale 1.5:1 in figure below.) 
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B. “CLOVERLEAF” 

Delta: ∆ψ  =  90° 80 Nodes (bootstrapped from 20) 
 ∆H  =  0 ft  
 ∆V  =  0 fps # of Iterations: 34501 
  Total Run Time: 716.24 min 
Unconstrained: X, Y  (0 ± 2000 ft)   
 δ (min-max deflection) Maneuver Time: 22.18 sec 
  (Aircraft scale 2:1 in figure below.) 
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C. “POINT AND SHOOT C” 

Delta: ∆θ  =  60° 80 Nodes (bootstrapped from 20) 
 ∆ψ  =  60°  
  # of Iterations: 8687 
Unconstrained: X, Y  (0 ± 5000 ft) Total Run Time: 101.97 min 
 H  (25k-35k ft)  
 V  (518 ± 200 fps) Maneuver Time: 13.00 sec 
 δ (min-max deflection) (Aircraft scale 3:1 in figure below.) 
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D. “VERTICAL COBRA” 

Delta: ∆V  =  -75%  (-388 fps) 80 Nodes (bootstrapped from 20) 
   
Unconstrained: X, Y  (0 ± 5000 ft) # of Iterations: 26662 
 H  (25k-35k ft) Total Run Time: 274.27 min 
 δ (min-max deflection)  
  Maneuver Time: 18.30 sec 
  (Aircraft scale 2:1 in figure below.) 
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