Damping modeling strategy for naval ship system

Shin, Y. S.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/808
DAMPING MODELING STRATEGY FOR NAVAL SHIP SYSTEM

by

Professor Young S. Shin, Principal Investigator
Dr. Ilbae Ham

September 2003

Approved for public release; distribution is unlimited.

Prepared for: Naval Surface Warfare Center-Carderock Division
The damping modeling strategy for naval ship system is presented for ship shock transient time-domain analysis. The Complex Exponential Method is used for extraction of modal parameters in time-domain. Inverse Fourier Transform of Mobility form for general viscous damping model is used to verify the calculated modal parameters. Rayleigh damping parameters are calculated using modal frequency and modal damping ratios. The statistical characteristics of Rayleigh damping parameters are quantified and evaluated in each categorized area: keel, bulkhead and deck. Then the Rayleigh damping parameters are recommended for ship shock response prediction. The damping studies were conducted using 2000 ms data based on DDG 53 Ship Shock Trial.
This report was prepared by:

Young S. Shin
Professor of Mechanical Engineering

Ilbae Ham
Visiting Professor of Mechanical Engineering

Reviewed by: Released by:

______________________________ _______________________
Anthony J. Healey Leonard Ferrari
Chairman Associate Provost and
Dept. of Mechanical Engineering Dean of Research
ABSTRACT

The damping modeling strategy for naval ship system is presented for ship shock transient time-domain analysis. The Complex Exponential Method is used for extraction of modal parameters in time-domain. Inverse Fourier Transform of Mobility form for general viscous damping model is used to verify the calculated modal parameters. Rayleigh damping parameters are calculated using modal frequency and modal damping ratios. The statistical characteristics of Rayleigh damping parameters are quantified and evaluated in each categorized area: keel, bulkhead and deck. Then the Rayleigh damping parameters are recommended for ship shock response prediction. The damping studies were conducted using 2000 ms data based on DDG 53 Ship Shock Trial.
TABLE OF CONTENTS

I. INTRODUCTION

II. THEORY OF GENERAL VISCOSLY DAMPED SYSTEM
 A. FORCED RESPONSE ANALYSIS

III. PROCEDURE OF DAMPING CALCULATION FROM MEASURED DATA
 A. MODAL PARAMETER EXTRACTION
 1. Complex Exponential Method (CEM)
 2. Verification of Extracted Modal Parameters
 3. Calculation of Rayleigh Damping

IV. RESULTS OF MODAL PARAMETER EXTRACTION
 A. VERIFICATION RESULTS
 B. RESULTS OF RAYLEIGH DAMPING CALCULATION
 C. CURVE-FITTED RAYLEIGH DAMPING α AND β FOR EACH AREA

V. EFFECTS OF DAMPING TO SHIP SHOCK RESPONSES

VI. CONCLUSIONS

LIST OF REFERENCES

APPENDIX A. FIGURES OF THE RESULTS OF RAYLEIGH DAMPING CURVE-FITTING
 A. Results in the Athwartship Direction
 B. Results in the Vertical Direction

APPENDIX B. MODAL PARAMETER EXTRACTION PROGRAM LIST IN TIME DOMAIN

INITIAL DISTRIBUTION LIST
LIST OF FIGURES

Figure 1. Measured Data at A2001AI ..24
Figure 2. Synthesized Results at A2001A (between 125 msec and 1200 msec)25
Figure 3. Measured Data at A2004A ..25
Figure 4. Synthesized Results at A2004A (between 125 msec to 1200msec)25
Figure 5. Measured Data at A3506V ...26
Figure 6. Synthesized Results at A3506 (between 125 msec and 1200 msec)26
Figure 7. Modal Damping Ratio at Area 6, Athwartship Direction (Original)27
Figure 8. Modal Damping Ratio at Area 6, Athwartship Direction (Modified)28
Figure 9. Modal Damping Ratio at Area 6, Vertical Direction (Original)28
Figure 10. Modal Damping Ratio at Area 6, Vertical Direction (Modified)28
Figure 11. Transverse Frame Locations of the DDG 51 Class Destroyer29
Figure 12. Rayleigh Damping Coefficient α for Athwartship Direction on Deck 133
Figure 13. Rayleigh Damping Coefficient α for Vertical Direction on Deck 134
Figure 14. DDG 81 Coupled Fluid-Structure Model ..35
Figure 15. Model Generation and Simulation Flow Chart36
Figure 16. Rayleigh Damping Values (in Linear Scale)37
Figure 17. Rayleigh Damping Values (in Logarithmic Scale)38
Figure 18. Sample Vertical Velocity Response: Deck Sensor39
Figure 19. Sample Vertical Velocity Response: Deck Sensor39
Figure 20. Sample Vertical Velocity Response: Keel Sensor40
Figure 21. Sample Vertical Velocity Response: Bulkhead Sensor40
Figure 22. Russell’s Error Factor for Selected Sensors of DDG 81 Shot 242
Figure 23. Modal Damping Ratio at Area 1, Athwartship Direction (Original)46
Figure 24. Modal Damping Ratio at Area 1, Athwartship Direction (Modified)46
Figure 25. Modal Damping Ratio at Area 3, Athwartship Direction (Original)46
Figure 26. Modal Damping Ratio at Area 3, Athwartship Direction (Modified)47
Figure 27. Modal Damping Ratio at Area 6, Athwartship Direction (Original)47
Figure 28. Modal Damping Ratio at Area 6, Athwartship Direction (Modified)47
Figure 29. Modal Damping Ratio at Area 7, Athwartship Direction (Original)48
Figure 30. Modal Damping Ratio at Area 7, Athwartship Direction (Modified)48
Figure 31. Modal Damping Ratio at Area 8, Athwartship Direction (Original)48
Figure 32. Modal Damping Ratio at Area 8, Athwartship Direction (Modified)49
Figure 33. Modal Damping Ratio at Area 10, Athwartship Direction (Original)49
Figure 34. Modal Damping Ratio at Area 10, Athwartship Direction (Modified)49
Figure 35. Modal Damping Ratio at Area 11, Athwartship Direction (Original)50
Figure 36. Modal Damping Ratio at Area 11, Athwartship Direction (Modified)50
Figure 37. Modal Damping Ratio at Area 12, Athwartship Direction (Original)50
Figure 38. Modal Damping Ratio at Area 12, Athwartship Direction (Modified)51
Figure 39. Modal Damping Ratio at Area 15, Athwartship Direction (Original)51
Figure 40. Modal Damping Ratio at Area 15, Athwartship Direction (Modified)51
Figure 41. Modal Damping Ratio at Area 16, Athwartship Direction (Original)52
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.</td>
<td>Modal Damping Ratio at Area 16, Athwartship Direction (Modified) 52</td>
</tr>
<tr>
<td>43.</td>
<td>Modal Damping Ratio at Area 18, Athwartship Direction (Original) 52</td>
</tr>
<tr>
<td>44.</td>
<td>Modal Damping Ratio at Area 18, Athwartship Direction (Modified) 53</td>
</tr>
<tr>
<td>45.</td>
<td>Modal Damping Ratio at Area 19, Athwartship Direction (Original) 53</td>
</tr>
<tr>
<td>46.</td>
<td>Modal Damping Ratio at Area 19, Athwartship Direction (Modified) 53</td>
</tr>
<tr>
<td>47.</td>
<td>Modal Damping Ratio at Area 20, Athwartship Direction (Original) 54</td>
</tr>
<tr>
<td>48.</td>
<td>Modal Damping Ratio at Area 20, Athwartship Direction (Modified) 54</td>
</tr>
<tr>
<td>49.</td>
<td>Modal Damping Ratio at Area 28, Athwartship Direction (Original) 54</td>
</tr>
<tr>
<td>50.</td>
<td>Modal Damping Ratio at Area 28, Athwartship Direction (Modified) 55</td>
</tr>
<tr>
<td>51.</td>
<td>Modal Damping Ratio at Area 30, Athwartship Direction (Original) 55</td>
</tr>
<tr>
<td>52.</td>
<td>Modal Damping Ratio at Area 30, Athwartship Direction (Modified) 55</td>
</tr>
<tr>
<td>53.</td>
<td>Modal Damping Ratio at Area 31, Athwartship Direction (Original) 56</td>
</tr>
<tr>
<td>54.</td>
<td>Modal Damping Ratio at Area 31, Athwartship Direction (Modified) 56</td>
</tr>
<tr>
<td>55.</td>
<td>Modal Damping Ratio at Area 32, Athwartship Direction (Original) 56</td>
</tr>
<tr>
<td>56.</td>
<td>Modal Damping Ratio at Area 32, Athwartship Direction (Modified) 57</td>
</tr>
<tr>
<td>57.</td>
<td>Modal Damping Ratio at Area 33, Athwartship Direction (Original) 57</td>
</tr>
<tr>
<td>58.</td>
<td>Modal Damping Ratio at Area 33, Athwartship Direction (Modified) 57</td>
</tr>
<tr>
<td>59.</td>
<td>Modal Damping Ratio at Area 35, Athwartship Direction (Original) 58</td>
</tr>
<tr>
<td>60.</td>
<td>Modal Damping Ratio at Area 35, Athwartship Direction (Modified) 58</td>
</tr>
<tr>
<td>61.</td>
<td>Modal Damping Ratio at Area 37, Athwartship Direction (Original) 58</td>
</tr>
<tr>
<td>62.</td>
<td>Modal Damping Ratio at Area 37, Athwartship Direction (Modified) 59</td>
</tr>
<tr>
<td>63.</td>
<td>Modal Damping Ratio at Area 40, Athwartship Direction (Original) 59</td>
</tr>
<tr>
<td>64.</td>
<td>Modal Damping Ratio at Area 40, Athwartship Direction (Modified) 59</td>
</tr>
<tr>
<td>65.</td>
<td>Modal Damping Ratio at Area 41, Athwartship Direction (Original) 60</td>
</tr>
<tr>
<td>66.</td>
<td>Modal Damping Ratio at Area 41, Athwartship Direction (Modified) 60</td>
</tr>
<tr>
<td>67.</td>
<td>Modal Damping Ratio at Area 42, Athwartship Direction (Original) 60</td>
</tr>
<tr>
<td>68.</td>
<td>Modal Damping Ratio at Area 42, Athwartship Direction (Modified) 61</td>
</tr>
<tr>
<td>69.</td>
<td>Modal Damping Ratio at Area 43, Athwartship Direction (Original) 61</td>
</tr>
<tr>
<td>70.</td>
<td>Modal Damping Ratio at Area 43, Athwartship Direction (Modified) 61</td>
</tr>
<tr>
<td>71.</td>
<td>Modal Damping Ratio at Area 47, Athwartship Direction (Original) 62</td>
</tr>
<tr>
<td>72.</td>
<td>Modal Damping Ratio at Area 47, Athwartship Direction (Modified) 62</td>
</tr>
<tr>
<td>73.</td>
<td>Modal Damping Ratio at Area 48, Athwartship Direction (Original) 62</td>
</tr>
<tr>
<td>74.</td>
<td>Modal Damping Ratio at Area 48, Athwartship Direction (Modified) 63</td>
</tr>
<tr>
<td>75.</td>
<td>Modal Damping Ratio at Area 49, Athwartship Direction (Original) 63</td>
</tr>
<tr>
<td>76.</td>
<td>Modal Damping Ratio at Area 49, Athwartship Direction (Modified) 63</td>
</tr>
<tr>
<td>77.</td>
<td>Modal Damping Ratio at Area 50, Athwartship Direction (Original) 64</td>
</tr>
<tr>
<td>78.</td>
<td>Modal Damping Ratio at Area 50, Athwartship Direction (Modified) 64</td>
</tr>
<tr>
<td>79.</td>
<td>Modal Damping Ratio at Area 53, Athwartship Direction (Original) 64</td>
</tr>
<tr>
<td>80.</td>
<td>Modal Damping Ratio at Area 53, Athwartship Direction (Modified) 65</td>
</tr>
<tr>
<td>81.</td>
<td>Modal Damping Ratio at Area 54, Athwartship Direction (Original) 65</td>
</tr>
<tr>
<td>82.</td>
<td>Modal Damping Ratio at Area 54, Athwartship Direction (Modified) 65</td>
</tr>
<tr>
<td>83.</td>
<td>Modal Damping Ratio at Area 55, Athwartship Direction (Original) 66</td>
</tr>
<tr>
<td>84.</td>
<td>Modal Damping Ratio at Area 55, Athwartship Direction (Modified) 66</td>
</tr>
<tr>
<td>85.</td>
<td>Modal Damping Ratio at Area 56, Athwartship Direction (Original) 66</td>
</tr>
<tr>
<td>86.</td>
<td>Modal Damping Ratio at Area 56, Athwartship Direction (Modified) 67</td>
</tr>
</tbody>
</table>
Figure 132. Modal Damping Ratio at Area 15, Vertical Direction (Modified)83
Figure 133. Modal Damping Ratio at Area 16, Vertical Direction (Original)83
Figure 134. Modal Damping Ratio at Area 16, Vertical Direction (Modified)83
Figure 135. Modal Damping Ratio at Area 17, Vertical Direction (Original)84
Figure 136. Modal Damping Ratio at Area 17, Vertical Direction (Modified)84
Figure 137. Modal Damping Ratio at Area 18, Vertical Direction (Original)84
Figure 138. Modal Damping Ratio at Area 18, Vertical Direction (Modified)85
Figure 139. Modal Damping Ratio at Area 19, Vertical Direction (Original)85
Figure 140. Modal Damping Ratio at Area 19, Vertical Direction (Modified)85
Figure 141. Modal Damping Ratio at Area 20, Vertical Direction (Original)86
Figure 142. Modal Damping Ratio at Area 20, Vertical Direction (Modified)86
Figure 143. Modal Damping Ratio at Area 21, Vertical Direction (Original)86
Figure 144. Modal Damping Ratio at Area 21, Vertical Direction (Modified)87
Figure 145. Modal Damping Ratio at Area 22, Vertical Direction (Original)87
Figure 146. Modal Damping Ratio at Area 22, Vertical Direction (Modified)87
Figure 147. Modal Damping Ratio at Area 23, Vertical Direction (Original)88
Figure 148. Modal Damping Ratio at Area 23, Vertical Direction (Modified)88
Figure 149. Modal Damping Ratio at Area 24, Vertical Direction (Original)88
Figure 150. Modal Damping Ratio at Area 24, Vertical Direction (Modified)89
Figure 151. Modal Damping Ratio at Area 25, Vertical Direction (Original)89
Figure 152. Modal Damping Ratio at Area 25, Vertical Direction (Modified)89
Figure 153. Modal Damping Ratio at Area 26, Vertical Direction (Original)90
Figure 154. Modal Damping Ratio at Area 26, Vertical Direction (Modified)90
Figure 155. Modal Damping Ratio at Area 27, Vertical Direction (Original)90
Figure 156. Modal Damping Ratio at Area 27, Vertical Direction (Modified)91
Figure 157. Modal Damping Ratio at Area 28, Vertical Direction (Original)91
Figure 158. Modal Damping Ratio at Area 28, Vertical Direction (Modified)91
Figure 159. Modal Damping Ratio at Area 29, Vertical Direction (Original)92
Figure 160. Modal Damping Ratio at Area 29, Vertical Direction (Modified)92
Figure 161. Modal Damping Ratio at Area 30, Vertical Direction (Original)92
Figure 162. Modal Damping Ratio at Area 30, Vertical Direction (Modified)93
Figure 163. Modal Damping Ratio at Area 31, Vertical Direction (Original)93
Figure 164. Modal Damping Ratio at Area 31, Vertical Direction (Modified)93
Figure 165. Modal Damping Ratio at Area 32, Vertical Direction (Original)94
Figure 166. Modal Damping Ratio at Area 32, Vertical Direction (Modified)94
Figure 167. Modal Damping Ratio at Area 33, Vertical Direction (Original)94
Figure 168. Modal Damping Ratio at Area 33, Vertical Direction (Modified)95
Figure 169. Modal Damping Ratio at Area 34, Vertical Direction (Original)95
Figure 170. Modal Damping Ratio at Area 34, Vertical Direction (Modified)95
Figure 171. Modal Damping Ratio at Area 35, Vertical Direction (Original)96
Figure 172. Modal Damping Ratio at Area 35, Vertical Direction (Modified)96
Figure 173. Modal Damping Ratio at Area 36, Vertical Direction (Original)96
Figure 174. Modal Damping Ratio at Area 36, Vertical Direction (Modified)97
Figure 175. Modal Damping Ratio at Area 37, Vertical Direction (Original)97
Figure 176. Modal Damping Ratio at Area 37, Vertical Direction (Modified)97
Figure 222. Modal Damping Ratio at Area 61, Vertical Direction (Modified)113
Figure 223. Modal Damping Ratio at Area 62, Vertical Direction (Original)113
Figure 224. Modal Damping Ratio at Area 62, Vertical Direction (Modified)113
Figure 225. Modal Damping Ratio at Area 63, Vertical Direction (Original)114
Figure 226. Modal Damping Ratio at Area 63, Vertical Direction (Modified)114
Figure 227. Modal Damping Ratio at Area 64, Vertical Direction (Original)114
Figure 228. Modal Damping Ratio at Area 64, Vertical Direction (Modified)115
Figure 229. Modal Damping Ratio at Area 65, Vertical Direction (Original)115
Figure 230. Modal Damping Ratio at Area 65, Vertical Direction (Modified)115
Figure 231. Modal Damping Ratio at Area 66, Vertical Direction (Original)116
Figure 232. Modal Damping Ratio at Area 66, Vertical Direction (Modified)116
Figure 233. Modal Damping Ratio at Area 67, Vertical Direction (Original)116
Figure 234. Modal Damping Ratio at Area 67, Vertical Direction (Modified)117
LIST OF TABLES

Table 1. Rayleigh Damping Results for the Athwartship Direction by Area Group.....29
Table 2. Rayleigh Damping Results for the Vertical Direction by Area Group........30
Table 3. Weighted Mean of α...33
Table 4. Weighted Mean of β ...33
Table 5. Rayleigh Damping Coefficient for 4% & 8% Proportional Damping........37
Table 6. Russell’s Correlation Acceptance Criteria..38
Table 7. Comparison of Russell’s Error Factor for DDG 81Shot 2 (vertical direction)..41
Table 8. Relative % Change in RC for NPS Damping versus 4% Damping Case42
THIS PAGE INTENTIONALLY LEFT BLANK
ACKNOWLEDGMENTS

The authors are grateful for full sponsorship given by Naval Surface Warfare Center in both Carderock and Indian Head Division. The authors also extend their gratitude to Mr. Fredrick A. Costanzo in NSWC-CD and Mr. Gregory S. Harris in NSWC-IH for their supports and strong interests in ship system damping. Thanks are also due to LT Jake Didoszak, USN for his excellent job to make comparison of ship shock responses with various damping factors.
I. INTRODUCTION

Mechanical energy transforms into heat and dissipates in all vibrating systems. There are many energy dissipation mechanisms that contribute to the damping in the structure system. Some of these mechanisms are: fluid resistance and coupling, internal friction (material damping), and friction at a joint. All of these dissipation mechanisms have been shown to be a function of many variables, including a structure’s shape or geometry, its material properties, temperature, frequency, boundary conditions, and different excitation energy levels. Usually over 90 percent of the inherent damping associated with fabricated build-up structures originates in the mechanical joints (Beards and Woodwat, 1985). These mechanical joints are friction joints, which dissipate energy during the vibration of a structure. Reducing the contact force in bolted structural connections can reduce system vibration amplitudes by enhancing joint damping capacity (Shin et al., 1991).

Naval ship structure systems have mostly welded joints and all stiffeners are also welded to hull plates, decks and bulkheads. The ship system also has many energy dissipation sources such as long cable trays, hangers, snubbers, the surrounding fluid coupled with ship hull, etc. The ship system damping is measurable, but difficult to quantify (Rutgerson, 2002). In conjunction with ship-shock simulation based transient analysis, time-domain representation of system damping is desirable using the frequency-domain characteristics of damping. The damping studies used for analysis were conducted using 2 sec data from the DDG 53 Ship Shock Trials.

The goal of this study is to present the damping model in Rayleigh damping form of a naval ship system for ship shock transient time domain analysis. In this study, the Complex Exponential Method is used for extraction of modal parameters in the time domain. The Inverse Fourier Transform of Mobility form of the general viscous damping model verifies the calculated modal parameters. Two factors in the Rayleigh damping
model are calculated using modal frequency and modal damping ratios. The statistical characteristics of two Rayleigh factors are quantified in each categorized area. Then the spatially dependent Rayleigh damping model is investigated and a model to be used in shock transient analysis is recommended.
II. THEORY OF GENERAL VISCOUSLY DAMPED SYSTEM

The general equation of motion for a MDOF (Multi Degree Of Freedom) system with viscous damping and harmonic excitation is:

\[[M]\{\ddot{x}\} + [C]\{\dot{x}\} + [K]\{x\} = \{f\} \quad (1) \]

In the above equation, \([M]\) is the system mass matrix, \([K]\) is the system stiffness matrix, \([C]\) is the system damping matrix, \({x}\) is the system response vector and \({f}\) is the forcing vector.

We consider first the case where there is zero excitation in order to determine the natural modes of the system and to this end, we assume a solution to the equations of motion which has the form

\[\{x\} = \{x\} e^{st} \quad (2) \]

Substituting this into the appropriate equation of motion gives:

\[\left(s^2 [M] + s [C] + [K] \right) \{x\} = \{0\} \quad (3) \]

the solution of which constitutes a complex eigenvalue problem. In this case, there are 2N eigen values, \(s\), in complex conjugate pairs. (This is an inevitable result of the fact that all the coefficients in the matrices are real and thus any characteristic values, or roots, must either be real or occur in complex conjugate pairs.) There is an
eigenvector corresponding to each of these eigenvalues, but these also occur as complex conjugates. Hence we can describe the eigensolution as:

$$s_r, s_r^* \text{ and } \{s\}_r, \{s^*\}_r \quad r = 1, N$$

(4)

It is customary to express each eigenvalues s_r in the form

$$s_r = \omega_r (-\zeta_r + i\sqrt{1-\zeta_r^2})$$

(5)

where ω_r is the ‘natural frequency’ and ζ_r is the critical damping ratio for that mode. Sometimes, the quantity ω_r is referred to as the ‘undamped natural frequency’ but this is not strictly correct, except in the case of proportional damping (or, of course, of a single degree of freedom system).

The eigen solution possesses orthogonality. In order to examine these we must first note that any eigenvalue/eigenvector pair satisfies the equation

$$\left(s_r^2 [M] + s_r [C] + [K]\right) \{\psi\}_r = \{0\}$$

(6)

and then we pre-multiply this equation by $\{\psi\}_q^T$ so that we have:

$$\{\psi\}_q^T \left(s_r^2 [M] + s_r [C] + [K]\right) \{\psi\}_r = \{0\}$$

(7)
A similar expression to (6) can be produced by using λ_q and $\{\psi\}_q$:

$$\left(s_q^2 [M] + s_q [C] + [K]\right) \{\psi\}_q = \{0\}$$ \hspace{1cm} (8)

which can be transposed, taking account of the symmetry of the system matrices, to give:

$$\{\psi\}_q^T \left(s_q^2 [M] + s_q [C] + [K]\right) = \{0\}^T$$ \hspace{1cm} (9)

If we now post-multiply this expression by $\{\psi\}_r$ and subtract the result from that in Equation (7), we obtain:

$$\left(s_r^2 - s_q^2\right) \{\psi\}_q^T [M] \{\psi\}_r + \left(s_r - s_q\right) \{\psi\}_q^T [C] \{\psi\}_r = 0$$ \hspace{1cm} (10)

and provided s_r and s_q are different, this leads to the first of a pair of orthogonality equations:

$$\left(s_r + s_q\right) \{\psi\}_q^T [M] \{\psi\}_r + \{\psi\}_q^T [C] \{\psi\}_r = 0$$ \hspace{1cm} (11)

A second equation can be derived from the above expressions as follows:

Multiply (7) by s_q and (9) by s_r and subtract one from the other to obtain:
These two equations - (11) and (12) – constitute the orthogonality conditions of the system and it is immediately clear that they are far less simple. However, it is interesting to examine the form they take when the modes r and q are found as a complex conjugate pair. In this case, we have that

\[s_q = \omega_r (\zeta_r - i\sqrt{1 - \zeta_r^2}) \]

and also that,

\[\{\psi\}_q = \{\psi^*\}_r \]

Inserting these into Equation (11) gives

\[-2\omega_r \zeta_r \{\psi^*\}_r^T [M] \{\psi\}_r + \{\psi^*\}_r^T [C] \{\psi\}_r = 0 \]

from which we obtain:

\[2\omega_r \zeta_r \frac{\{\psi^*\}_r^T [C] \{\psi\}_r}{\{\psi^*\}_r^T [M] \{\psi\}_r} = \frac{c_r}{m_r} \]

Similarly, inserting (13) and (14) into (12) gives
\[\omega_r^2 \{\psi^*_r\}^T_r [M] \{\psi\}_r - \{\psi^*_r\}^T_r [K] \{\psi\}_r = 0 \]

(17)

from which

\[
\omega_r^2 = \frac{\{\psi^*_r\}^T_r [K] \{\psi\}_r}{\{\psi^*_r\}^T_r [M] \{\psi\}_r} = \frac{k_r}{m_r} \tag{18}
\]

In these expressions, \(m_r, k_r, \) and \(c_r \) may be described as modal mass, stiffness and damping parameters respectively although the meaning is slightly different to that used in the other systems.

A. FORCED RESPONSE ANALYSIS

Returning to Equation (1), and assuming a harmonic response:

\[\{x(t)\} = \{x\} e^{i\omega t} \tag{19} \]

we can write the forced response solution directly as

\[\{x\} = [\{K\} - \omega^2 [M] + i\omega [C]]^{-1} \{f\} \tag{20} \]
but this expression is not particularly convenient for numerical application. Define a new coordinate vector \(\{y\} \), which is of order 2N, and which contains both the displacements \(\{x\} \) and the velocities \(\{\dot{x}\} \):

\[
\{y\} = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}_{(2N\times1)}
\]

Equation (1) can then be written as:

\[
[C : M]_{N\times2N} \{\dot{y}\}_{2N\times1} + [K : 0] \{y\} = \{0\}_{N\times1}
\]

However, in this form we have N equations and 2N unknowns and so we add an identity equation of the type:

\[
[M : 0] \{\ddot{y}\} + [0 : -M] \{y\} = \{0\}
\]

which can be combined to form a set of 2N equations

\[
\begin{pmatrix} C & M \\ M & 0 \end{pmatrix} \{\ddot{y}\} + \begin{pmatrix} K & 0 \\ 0 & -M \end{pmatrix} \{y\} = \{0\}
\]

which can be simplified to:
These equations are now in a standard eigenvalue form and by assuming a trial solution of the form \(\{y\} = \{y\}e^{\lambda t} \), we can obtain the 2N eigenvalues and eigenvectors of the system, \(\lambda_r \) and \(\{\theta\}_r \), which together satisfy the general equation:

\[
(\lambda_r [A] + [B])\{\theta\}_r = \{0\}; \quad r = 1, 2N
\]

These eigen properties will, in general, be complex although for the same reasons as previously they will always occur in conjugate pairs. They possess orthogonality properties, which are simply stated as

\[
\{\theta\}^T [A] \{\theta\} = \begin{bmatrix} \cdots a_r, \cdots \end{bmatrix}
\]

\[
\{\theta\}^T [B] \{\theta\} = \begin{bmatrix} \cdots b_r, \cdots \end{bmatrix}
\]

and which have the usual characteristic that

\[
\lambda_r = -\frac{b_r}{a_r} \quad r = 1, 2N
\]

Now we may express the forcing vector in terms of the new coordinate system as:
\[\{P\}_{2N\times1} = \begin{bmatrix} f \\ 0 \end{bmatrix}\] \hspace{1cm} (29)

and assuming a similarly harmonic response and making use of the previous development of a series form expression of the response. We may write:

\[
\begin{bmatrix} x \\ i\omega x \end{bmatrix} = \sum_{r=1}^{2N} \frac{\{\theta\}_r^T \{p\} \{\theta\}_r}{a_r(i\omega - s_r)}
\] \hspace{1cm} (30)

However, because the eigenvalues and eigenvectors occur in complex conjugate pairs, this last equation may be written as:

\[
\begin{bmatrix} x \\ i\omega x \end{bmatrix} = \sum_{r=1}^{N} \left(\frac{\{\theta\}_r^T \{p\} \{\theta\}_r}{a_r(i\omega - s_r)} + \frac{\{\theta\}_r^*^T \{p\} \{\theta\}_r^*}{a_r^*(i\omega - s_r^*)} \right)
\] \hspace{1cm} (31)

At this stage, it is convenient to extract a single response parameter, say \(x_j\), resulting from a single force such as \(f_k\) - the receptance frequency response function, \(\alpha_j^k\), and in this case Equation (31) leads to:

\[
\frac{x_j}{f_k} = \alpha_j^k(\omega) = \sum_{r=1}^{N} \left(\frac{\theta_j r \theta_k}{a_r(i\omega - s_r)} + \frac{\theta_j^* r \theta_k^*}{a_r^*(i\omega - s_r^*)} \right)
\] \hspace{1cm} (32)

or,
\[
\alpha_j^k(\omega) = \sum_{r=1}^{N} \left(\frac{r A_{jk}}{(i\omega - s_r)} + \frac{r A_{jk}^*}{(i\omega - s_r^*)} \right)
\]

(34)

where, \(r A_{jk} = \frac{r \theta_j r \theta_k}{a_r} \), \(r A_{jk}^* = \frac{r \theta_j^* r \theta_k^*}{a_r^*} \)

Equation (34) describes the displacement response at ‘j’ degree of freedom under excitation at ‘k’ degree of freedom of general viscously damped system in frequency domain. If Fourier Transform is made onto Equation (34), we can get the Impulse Response Function \(h_{jk}(t) \) of this system.

\[
h_{jk}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sum_{r=1}^{N} \left(\frac{r A_{jk}}{(i\omega - s_r)} + \frac{r A_{jk}^*}{(i\omega - s_r^*)} \right) e^{i\omega t} d\omega
\]

(35)

If we let \((i\omega - s_r)\) as \(iz\), then, by Cauchy’s Integral Formula, it becomes:

\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{r A_{jk}}{(i\omega - s_r)} e^{i\omega t} d\omega = \frac{r A_{jk} e^{s_i t}}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{izt}}{z} dz = r A_{jk} e^{s_i t}
\]

(36)

and similarly,

\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{r A_{jk}^*}{(i\omega - s_r^*)} e^{i\omega t} d\omega = \frac{r A_{jk}^* e^{s_i^* t}}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{izt}}{z} dz = r A_{jk}^* e^{s_i^* t}
\]

(37)
From Equations (36) and (37), the Impulse Response Function of a general viscous damping system can be written as:

\[
h_{jk}(t) = \sum_{r=1}^{N} \left(r A_{jk} e^{\theta_{r,t}} + r A_{jk}^* e^{\bar{\theta}_{r,t}} \right) \tag{38}
\]

The forced response can then be calculated as Equation (39) in time domain.

\[
x_j = \int_{0}^{t} f_k(\tau) h_{jk}(t - \tau) d\tau \tag{39}
\]
III. PROCEDURE OF DAMPING CALCULATION FROM MEASURED DATA

A. MODAL PARAMETER EXTRACTION

In Equation (34), r_j, A_{jk}, A_{jk}^*, s_r, s_r^* are called modal parameters, r_j, A_{jk} are called modal constants, and eigenvalues s_r, s_r^* contain information of modal properties such as modal frequency ω_r and modal damping ratio ζ_r. Calculation of damping ratio from the measured shock trial data needs utilizing modal parameter extraction methods, the simple 3-dB (half power) bandwidth measurement or logarithmic decay rate calculation can be incorrect in real cases, because, in usual cases, real measurement data not only contain noise components but also have many closely coupled frequency components.

Basically there are two groups of techniques in the field of experimental modal analysis. One is related to frequency domain analysis methods that use Frequency Response Function of measured input and output data. This group of methods is widely used, from single degree of freedom circle fitting to complex multi-degree of freedom fitting methods. And the other is related to time domain analysis techniques that use Impulse Response Function as analysis data.

In this study, the time domain method is used because the measured useful shock trial data sets are too short in time to obtain sufficient frequency resolution in the frequency domain, and there is only one event, shot data, thus the averaging process cannot be done. Complex Exponential Method (CEM), one of the effective modal parameter extraction methods in the time domain, is used to extract modal parameters.

The 2 second long measured data has been used in this study and the effective frequency span is limited from 3 Hz to 250 Hz. The original measured data has been band-pass filtered from 2 Hz to 250 Hz to avoid long-term trends in low frequencies and to remove unwanted high frequency noise components.
1. Complex Exponential Method (CEM)

In the field of experimental modal analysis, a term Receptance is widely used to describe the ratio of displacement response to excitation force, and the term Mobility is used in describing the ratio of velocity response to excitation force. The Receptance (displacement/force) $\alpha(\omega)$ of a general viscously damped system, Equation (34), can be rewritten as Equation (40), complex eigenvalue s_r is as in Equation (40.a),

$$\alpha(\omega) = \sum_{r=1}^{N} \frac{A_r}{j\omega - s_r} + \frac{A_r^*}{j\omega - s_r^*} ; \quad s_r = -\omega_r\zeta_r + j\omega_r\sqrt{1-\zeta_r^2} \quad (40.a)$$

or,

$$\alpha(\omega) = \sum_{r=1}^{2N} \frac{A_r}{j\omega - s_r} ; \quad s_r \Rightarrow s_r^* , \quad A_r \Rightarrow A_r^* , \text{ for } r > N \quad (40.b)$$

we can get velocity $v = Ve^{j\omega t}$ by time differentiating displacement $x = Xe^{j\omega t}$, that is,

$$v = V(\omega)e^{j\omega t} = j\omega Xe^{j\omega t} \quad ()$$

and Mobility(velocity/force) $Y(\omega)$ can be related to $\alpha(\omega)$(displacement/force),
The corresponding Impulse Response Function (IRF) can be obtained by taking Inverse Fourier Transform (IFT) of the Receptance $\alpha(\omega)$ as Equations (35) through (38),

$$Y(\omega) = j\omega\alpha(\omega) \quad (41)$$

By time differentiating, the velocity form of IRF can be expressed as,

$$h(t) = \sum_{r=1}^{2N} A_r e^{s_r t} \quad (42)$$

Hereafter, the exponential term will be simplified using the following notation.

$$e^{s_r \Delta t} \rightarrow V_r \quad (45)$$

Thus for the j-th sample data, the Equation (43) becomes,
\[\dot{h}_j = \sum_{r=1}^{2N} A_r s_r V_r^j \]

(46)

which, when extended to the full data set of \(q \) samples \((j=1,2,\ldots,q)\), gives:

\[
\begin{align*}
\dot{h}_0 &= s_1 A_1 + s_2 A_2 + \cdots + s_{2N} A_{2N} \\
\dot{h}_1 &= V_1 s_1 A_1 + V_2 s_2 A_2 + \cdots + V_{2N} s_{2N} A_{2N} \\
\dot{h}_2 &= V_1^2 s_1 A_1 + V_2^2 s_2 A_2 + \cdots + V_{2N}^2 s_{2N} A_{2N} \\
&\vdots \\
\dot{h}_q &= V_1^q s_1 A_1 + V_2^q s_2 A_2 + \cdots + V_{2N}^q s_{2N} A_{2N}
\end{align*}
\]

(47)

Provided that the number of sample points \(q \) exceeds \(4N \), this equation can be used to set up an eigenvalue problem, the solution yields the complex natural frequencies contained in the parameters \(V_1, V_2, \ldots \).

Multiply each equation in (47) by a coefficient, \(\beta_j \) to form the following set of equations:

\[
\begin{align*}
\beta_0 \dot{h}_0 &= \beta_0 A_1 + \beta_0 A_2 + \cdots + \beta_0 A_{2N} \\
\beta_1 \dot{h}_1 &= \beta_1 V_1 A_1 + \beta_1 V_2 A_2 + \cdots + \beta_1 V_{2N} A_{2N} \\
\beta_2 \dot{h}_2 &= \beta_2 V_1^2 A_1 + \beta_2 V_2^2 A_2 + \cdots + \beta_2 V_{2N}^2 A_{2N} \\
&\vdots \\
\beta_q \dot{h}_q &= \beta_q V_1^q A_1 + \beta_q V_2^q A_2 + \cdots + \beta_q V_{2N}^q A_{2N}
\end{align*}
\]

(48)

Adding all equations in (48) vertically results in,
\[\sum_{i=0}^{q} \beta_i \dot{h}_i = \sum_{j=1}^{2N} (A_j \sum_{i=0}^{q} \beta_i V_{j,i}) \]
\[(49) \]

The coefficients \(\beta_i \) s are taken to be the coefficients in the polynomial equation,

\[\beta_0 + \beta_1 V + \beta_2 V^2 + \beta_3 V^3 + \cdots + \beta_q V^q = 0 \]
\[(50) \]

The roots are \(V_1, V_2, \cdots, V_q \).

Next, the values of the \(\beta \) coefficients are to be sought in order to determine the roots of Equation (50) - values of \(V_r \) - and hence the system natural frequencies. Now, recalling that \(q \) is the number of degrees of freedom of the system model. It is now convenient to set these two parameters to the same value, i.e. let \(q = 2N \).

If we find \(\beta \) coefficients that make Equation (50) fulfilled, then Equation (50) can be expressed as,

\[\sum_{j=0}^{2N} \beta_j V_r^j = 0 \quad ; \quad r = 1, 2N \]
\[(51) \]

And thus every term on the right-hand side of Equation (49) is zero.
Rearranging Equation (52), by moving the last term of left-hand side to right-hand side,

\[\sum_{i=0}^{2N} \beta_i \dot{h}_i = 0 \] (52)

\[\sum_{i=0}^{2N-1} \beta_i \dot{h}_i = -\dot{h}_{2N} \quad \text{by setting } \beta_{2N} = 1 \] (53)

Repeat the process from (44) to (53) using different set of IRF data points and further choose the new data set that overlaps considerably with the first set – In fact, for all but one item.

Successive applications of this procedure lead to a full set of 2N equations:

\[
\begin{bmatrix}
\dot{h}_0 & \dot{h}_1 & \dot{h}_2 & \ldots & \dot{h}_{2N-1} \\
\dot{h}_1 & \dot{h}_2 & \dot{h}_3 & \ldots & \dot{h}_{2N} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\dot{h}_{2N-1} & \dot{h}_{2N} & \dot{h}_{2N+1} & \ldots & \dot{h}_{4N-2}
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1 \\
\vdots \\
\beta_{2N-1}
\end{bmatrix}
= -
\begin{bmatrix}
\dot{h}_{2N} \\
\dot{h}_{2N+1} \\
\vdots \\
\dot{h}_{4N-1}
\end{bmatrix}
\] (54.a)

or,

\[\begin{bmatrix} \dot{h} \end{bmatrix}_{2N \times 2N} \{\beta\}_{2N \times 1} = -\{\dot{h}\}_{2N \times 1} \] (54.b)
The unknown coefficients \(\{\beta\} \) can be found from Equation (54). Now the values of \(V_1, V_2, \ldots, V_{2N} \) can be determined using Equation (50) and subsequently the system natural frequencies can be found using the following relationship.

\[
V_r = e^{s_r \Delta t}
\]

(55)

Using Equation (47), corresponding modal constants \(A_1, A_2, \ldots, A_{2N} \) can be calculated, this may be written as,

\[
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
V_1 & V_2 & V_3 & \cdots & V_{2N} \\
V_1^2 & V_2^2 & V_3^2 & \cdots & V_{2N}^2 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
V_1^{2N-1} & V_2^{2N-1} & V_3^{2N-1} & \cdots & V_{3}^{2N-1}
\end{bmatrix}
\begin{bmatrix}
A_1s_1 \\
A_2s_2 \\
A_3s_3 \\
\vdots \\
A_{2N}s_{2N}
\end{bmatrix}
=
\begin{bmatrix}
\dot{h}_0 \\
\dot{h}_1 \\
\dot{h}_2 \\
\vdots \\
\dot{h}_{2N-1}
\end{bmatrix}
\]

(56)

or

\[
[V] \{A\} = \{\dot{h}\}
\]

(57)
2. Verification of Extracted Modal Parameters

The modal parameters calculated according to the mentioned procedure can be verified by comparing synthesized time histories to the originally measured time histories. Mobilities can be determined by frequency differentiation, multiplied by \(j\omega \), from Equations (40) and (41),

\[
\hat{Y}(\omega) = \sum_{r=1}^{N} \frac{j\omega A_r}{j\omega - s_r} + \frac{j\omega A_r^*}{j\omega - s_r^*} ; \quad s_r = -\omega_r \zeta_r + j\omega_r \sqrt{1 - \zeta_r^2} \quad (58)
\]

or

\[
\hat{Y}(\omega) = \sum_{r=1}^{2N} \frac{j\omega A_r}{j\omega - s_r} ; \quad s_r \Rightarrow s_r^* , \quad A_r \Rightarrow A_r^* \quad \text{for} \quad r > N \quad (59)
\]

In Equations (58) and (59), extracted modal parameters \(A_r , A_r^* , s_r , s_r^* \) are used to calculate the synthesized Frequency Response Function in frequency domain. And by inverse Fast Fourier Transform (IFFT), taking the real part of the results, synthesized IRF can be calculated and compared to original time histories. Frequency bandwidth \(\Delta f \) should be multiplied during calculation procedure to generate band level.

\[
\{\hat{h}\} = \text{Real Part of Inverse FFT}(\Delta f \hat{Y}) \quad (60)
\]
3. Calculation of Rayleigh Damping

Rayleigh damping is a kind of general proportional damping model. It assumes that damping matrix \([C]\) in Equation (1) can be represented as linear combination of the mass matrix and stiffness matrix. Then the damping matrix can be easily decoupled to the modal damping matrix. Using the Rayleigh damping representation, the damping matrix can be represented as,

\[
[C] = \alpha[M] + \beta[K]
\] \hspace{1cm} (61)

or by using mass normalized modal matrix \([\varphi]\),

\[
[\varphi]^T [C] [\varphi] = [2\omega_r \zeta_r]_{diag} = \alpha I + \beta \omega_r^2
\] \hspace{1cm} (62)

By using Equation (62) for all \(2N\) modes, following \(2N\) equations can be set.

\[
\begin{align*}
\alpha + \beta \omega_1^2 &= 2\omega_1 \zeta_1 \\
\alpha + \beta \omega_2^2 &= 2\omega_2 \zeta_2 \\
\vdots \\
\alpha + \beta \omega_{2N}^2 &= 2\omega_{2N} \zeta_{2N}
\end{align*}
\] \hspace{1cm} (63)

or

\[
[W]_{2N \times 2} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = [Z]_{2N \times 1}
\] \hspace{1cm} (64)
If 2N is larger than 2, then Equation (64) becomes over-determined, with 2 unknowns and 2N equations. By post-multiplying the transpose matrix of [W] to both sides of Equation (64), we can get Equation (65).

\[
[W]_{{2\times 2N}}^T [W]_{{2N\times 2}} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = [W]_{{2\times 2N}}^T \{Z\}_{{2N\times 1}} \tag{65}
\]

Then two Rayleigh parameters \(\alpha \) and \(\beta \) are calculated as,

\[
\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = ([W]_{{2\times 2N}}^T [W]_{{2N\times 2}})^{-1} [W]_{{2\times 2N}}^T \{Z\}_{{2N\times 1}} \tag{66}
\]

As a final step, modal damping ratios for each vibration modes are calculated in each categorized area of ship.

\[
\zeta = \alpha \frac{1}{2\omega} + \beta \frac{\omega}{2} \tag{67}
\]
IV. RESULTS OF MODAL PARAMETER EXTRACTION

A. VERIFICATION RESULTS

Modal parameters for a total of 773 sets of measured data are calculated for each measuring position and direction.

The following figures show some results of the modal parameter extraction method according to the aforementioned procedure. Figure 1, Figure 3, and Figure 5 show the original measured data sets, while Figure 2, Figure 4, and Figure 6 show synthesized curves with the calculated modal parameters ω_r, ζ_r, and A_r. The black line shows parts of the original signal between the 125 msec point and the 1200 msec point. The red line stands for the synthesized curve of those parts. The 125 msec parts of each of the measured data sets are not included in analysis to avoid being mixed with the effect of excitation signal. Also the latter parts that contain the secondary excitation are not included in the analysis. This secondary excitation can be seen on Figure 1, Figure 3, and Figure 5 around the 1250 msec point.

Figure 1. Measured Data at A2001AI
Figure 2. Synthesized Results at A2001A (between 125 msec and 1200 msec)

Figure 3. Measured Data at A2004A

Figure 4. Synthesized Results at A2004A (between 125 msec to 1200msec)
B. RESULTS OF RAYLEIGH DAMPING CALCULATION

A total of 773 data sets were categorized into 67 area groups, based on the location of the measuring sensor installation, as well as by the direction of measurement, which were the athwartship and vertical directions of the ship.

Figure 7 through Figure 10 show some typical results of the Rayleigh Damping coefficients calculated according to the aforementioned procedure, using Equations (61) through (67). Each black square point is a mode. The red lines represent the regenerated modal damping ratio using α and β calculated in least-square sense.
Each figure tagged as ‘Original’ in caption is from the initial step results, whereas the others are of the final results, which have been modified by eliminating the unrealistic and noisy components. From the ‘Original’ figures, we can identify that some of the results are scattered and contain damping ratios, which cannot be regarded as reasonable against the physical sense. Some modifications to the above results have been made. The unreasonable damping data points have been removed from curve fitting α and β. The modes of which modal constants A_r are seriously less than one thousandth of the maximum value in each measuring position have been removed. The modes that contain damping ratios, which are greater than 0.5 have been removed. Likewise, the modes with damping ratios that contain a great deal of scattered from the initial curve-fitted have been also removed. The final results are shown in both of linear scales and logarithmic scales.

The figures presented in Appendix A illustrate the damping calculation results for the remaining areas that were studied.

Figure 7. Modal Damping Ratio at Area 6, Athwartship Direction (Original)
Figure 8. Modal Damping Ratio at Area 6, Athwartship Direction (Modified)

Figure 9. Modal Damping Ratio at Area 6, Vertical Direction (Original)

Figure 10. Modal Damping Ratio at Area 6, Vertical Direction (Modified)
C. CURVE-FITTED RAYLEIGH DAMPING α AND β FOR EACH AREA

The Curve-fitted Rayleigh damping coefficients, α and β, for each categorized area are presented in Table 1 and Table 2, for the athwartship and vertical directions, respectively. Figure 2 is a profile view of the DDG 51 Arleigh Burke Class Destroyer. This drawing shows the major transverse frame positions of the ship.

![Profile view of DDG 51 Arleigh Burke Class Destroyer](image)

Figure 11. Transverse Frame Locations of the DDG 51 Class Destroyer

| Area No. | Deck | Frame | Athwartship Position | α | β | Number of modes used in curvefitting α and β
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>56</td>
<td>4’p-2’s</td>
<td>2.05E+01</td>
<td>1.22E-06</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>126.5</td>
<td>CL-5’s</td>
<td>2.14E+01</td>
<td>4.69E-06</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>142</td>
<td>20’p-20’s</td>
<td>1.91E+01</td>
<td>5.08E-07</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>135</td>
<td>17’s</td>
<td>1.29E+01</td>
<td>1.11E-05</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>171.5</td>
<td>CL-15’s</td>
<td>2.09E+01</td>
<td>1.90E-06</td>
<td>61</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>37.5</td>
<td>5’p-CL</td>
<td>1.79E+01</td>
<td>1.04E-06</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>258</td>
<td>8’p</td>
<td>1.88E+01</td>
<td>5.74E-06</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>328</td>
<td>5’p-5’s</td>
<td>1.71E+01</td>
<td>4.23E-06</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>375</td>
<td>25’p-20’p</td>
<td>1.90E+01</td>
<td>3.07E-06</td>
<td>31</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>86.5</td>
<td>11’p-11’s</td>
<td>1.76E+01</td>
<td>1.34E-06</td>
<td>107</td>
</tr>
<tr>
<td>19</td>
<td>2.5</td>
<td>155</td>
<td>31’p-31’s</td>
<td>2.04E+01</td>
<td>2.44E-07</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>137</td>
<td>22’p-CL</td>
<td>1.91E+01</td>
<td>1.72E-06</td>
<td>35</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>70</td>
<td>6’s-10’s</td>
<td>2.03E+01</td>
<td>2.11E-06</td>
<td>31</td>
</tr>
<tr>
<td>30</td>
<td>2.5</td>
<td>355.5</td>
<td>10’p-11’s</td>
<td>1.95E+01</td>
<td>2.49E-07</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 1. Rayleigh Damping Results for the Athwartship Direction by Area Group
<table>
<thead>
<tr>
<th>Area No.</th>
<th>Deck</th>
<th>Frame</th>
<th>Athwartship Position</th>
<th>Alpha</th>
<th>Beta</th>
<th>Number of modes used in curvefitting α and β</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>2.5</td>
<td>398</td>
<td>CL-8's</td>
<td>1.67E+01</td>
<td>1.50E-05</td>
<td>11</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>192.5</td>
<td>6'p-23's</td>
<td>2.14E+01</td>
<td>2.63E-06</td>
<td>26</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>277</td>
<td>20'p-14's</td>
<td>1.98E+01</td>
<td>4.04E-06</td>
<td>53</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>129</td>
<td>6'p-14's</td>
<td>2.45E+01</td>
<td>5.90E-06</td>
<td>11</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>151</td>
<td>36'p-36's</td>
<td>1.76E+01</td>
<td>2.34E-06</td>
<td>59</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>331.5</td>
<td>3's-CL</td>
<td>1.84E+01</td>
<td>2.18E-05</td>
<td>11</td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>397.5</td>
<td>13's-CL</td>
<td>1.94E+01</td>
<td>1.39E-06</td>
<td>54</td>
</tr>
<tr>
<td>43</td>
<td>3.5</td>
<td>156</td>
<td>8'p-2's</td>
<td>2.00E+01</td>
<td>8.14E-07</td>
<td>125</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
<td>174</td>
<td>11'p-11's</td>
<td>1.35E+01</td>
<td>1.91E-06</td>
<td>21</td>
</tr>
<tr>
<td>49</td>
<td>4</td>
<td>232.5</td>
<td>6'p-CL</td>
<td>2.23E+01</td>
<td>-1.26E-08</td>
<td>33</td>
</tr>
<tr>
<td>53</td>
<td>5</td>
<td>280</td>
<td>CL</td>
<td>1.66E+01</td>
<td>1.16E-05</td>
<td>19</td>
</tr>
<tr>
<td>54</td>
<td>5</td>
<td>322.5</td>
<td>17'p-15's</td>
<td>1.90E+01</td>
<td>1.30E-06</td>
<td>75</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>150</td>
<td>CL</td>
<td>2.05E+01</td>
<td>3.75E-06</td>
<td>29</td>
</tr>
<tr>
<td>56</td>
<td>6</td>
<td>160</td>
<td>CL</td>
<td>1.97E+01</td>
<td>3.11E-06</td>
<td>21</td>
</tr>
<tr>
<td>57</td>
<td>7</td>
<td>150</td>
<td>CL</td>
<td>1.77E+01</td>
<td>1.30E-05</td>
<td>8</td>
</tr>
<tr>
<td>58</td>
<td>7.5</td>
<td>155.5</td>
<td>8's-CL</td>
<td>1.11E+01</td>
<td>8.42E-06</td>
<td>22</td>
</tr>
<tr>
<td>60</td>
<td>8</td>
<td>173.5</td>
<td>32'p-32's</td>
<td>1.40E+01</td>
<td>4.19E-06</td>
<td>63</td>
</tr>
<tr>
<td>61</td>
<td>9</td>
<td>168</td>
<td>CL</td>
<td>1.17E+01</td>
<td>2.69E-06</td>
<td>32</td>
</tr>
<tr>
<td>62</td>
<td>9</td>
<td>171.5</td>
<td>25'p-25's</td>
<td>1.27E+01</td>
<td>3.82E-06</td>
<td>33</td>
</tr>
<tr>
<td>64</td>
<td>10</td>
<td>174</td>
<td>6's-10's</td>
<td>1.93E+01</td>
<td>3.48E-06</td>
<td>17</td>
</tr>
<tr>
<td>65</td>
<td>11</td>
<td>181</td>
<td>CL</td>
<td>1.58E+01</td>
<td>7.18E-06</td>
<td>12</td>
</tr>
<tr>
<td>67</td>
<td>MD</td>
<td>281.5</td>
<td>4's-5's</td>
<td>2.02E+01</td>
<td>3.14E-06</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 2. Rayleigh Damping Results for the Vertical Direction by Area Group
<table>
<thead>
<tr>
<th>Area No.</th>
<th>Deck</th>
<th>Frame</th>
<th>Athwartship Position</th>
<th>Alpha</th>
<th>Beta</th>
<th>Number of modes used in curvefitting α and β</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>37.5</td>
<td>5'p-CL</td>
<td>2.04E+01</td>
<td>2.77E-07</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>258</td>
<td>8'p</td>
<td>2.41E+01</td>
<td>3.18E-05</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>312.5</td>
<td>6'p-19s</td>
<td>1.67E+01</td>
<td>5.24E-07</td>
<td>79</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>324</td>
<td>7'p-6p</td>
<td>1.96E+01</td>
<td>2.82E-06</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>328</td>
<td>5'p-5's</td>
<td>2.00E+01</td>
<td>4.19E-07</td>
<td>44</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>375</td>
<td>25'p-20p</td>
<td>1.79E+01</td>
<td>8.38E-07</td>
<td>129</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>218</td>
<td>28'p-CL</td>
<td>1.55E+01</td>
<td>1.91E-06</td>
<td>72</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>86.5</td>
<td>11'p-11's</td>
<td>1.85E+01</td>
<td>1.82E-06</td>
<td>69</td>
</tr>
<tr>
<td>19</td>
<td>2.5</td>
<td>155</td>
<td>31'p-31's</td>
<td>2.03E+01</td>
<td>-7.33E-08</td>
<td>42</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>137</td>
<td>22'p-CL</td>
<td>1.92E+01</td>
<td>7.08E-07</td>
<td>77</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>134</td>
<td>15's</td>
<td>1.63E+01</td>
<td>2.06E-06</td>
<td>22</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>161</td>
<td>12'p-3's</td>
<td>1.67E+01</td>
<td>3.18E-06</td>
<td>115</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>162</td>
<td>9's</td>
<td>2.06E+01</td>
<td>1.52E-06</td>
<td>39</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>306</td>
<td>4'p-7's</td>
<td>1.87E+01</td>
<td>1.53E-07</td>
<td>19</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>35</td>
<td>3'p-11's</td>
<td>2.23E+01</td>
<td>8.53E-07</td>
<td>34</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>452</td>
<td>6p</td>
<td>1.94E+01</td>
<td>3.00E-07</td>
<td>28</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>458.5</td>
<td>12's-22's</td>
<td>1.84E+01</td>
<td>2.20E-06</td>
<td>46</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>70</td>
<td>6's-10's</td>
<td>1.75E+01</td>
<td>1.48E-06</td>
<td>31</td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>75</td>
<td>12'p-3p</td>
<td>2.11E+01</td>
<td>2.17E-06</td>
<td>19</td>
</tr>
<tr>
<td>30</td>
<td>2.5</td>
<td>355.5</td>
<td>10'p-11's</td>
<td>1.88E+01</td>
<td>8.61E-07</td>
<td>38</td>
</tr>
<tr>
<td>31</td>
<td>2.5</td>
<td>398</td>
<td>CL-8's</td>
<td>2.07E+01</td>
<td>1.51E-06</td>
<td>67</td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>192.5</td>
<td>6p-23's</td>
<td>1.70E+01</td>
<td>3.62E-06</td>
<td>55</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>277</td>
<td>20'p-14's</td>
<td>2.00E+01</td>
<td>9.57E-07</td>
<td>99</td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>119.5</td>
<td>4p-6's</td>
<td>1.90E+01</td>
<td>1.02E-06</td>
<td>19</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>129</td>
<td>6'p-CL</td>
<td>1.96E+01</td>
<td>2.51E-06</td>
<td>40</td>
</tr>
<tr>
<td>36</td>
<td>3</td>
<td>149</td>
<td>19'p-16p</td>
<td>2.16E+01</td>
<td>3.84E-06</td>
<td>5</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>168</td>
<td>12's</td>
<td>2.22E+01</td>
<td>1.73E-06</td>
<td>19</td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>151</td>
<td>36p-36's</td>
<td>1.63E+01</td>
<td>9.65E-07</td>
<td>54</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>318-320</td>
<td>2'p-15's</td>
<td>2.22E+01</td>
<td>2.72E-07</td>
<td>65</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>331.5</td>
<td>3's-CL</td>
<td>2.07E+01</td>
<td>1.86E-06</td>
<td>47</td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>397.5</td>
<td>13p-CL</td>
<td>1.50E+01</td>
<td>2.77E-06</td>
<td>32</td>
</tr>
<tr>
<td>42</td>
<td>3.5</td>
<td>150</td>
<td>19p-6's</td>
<td>1.81E+01</td>
<td>1.63E-06</td>
<td>49</td>
</tr>
<tr>
<td>43</td>
<td>3.5</td>
<td>156</td>
<td>8p-2's</td>
<td>2.11E+01</td>
<td>1.50E-06</td>
<td>49</td>
</tr>
<tr>
<td>44</td>
<td>3.5</td>
<td>147</td>
<td>16p-15'0</td>
<td>1.80E+01</td>
<td>2.82E-06</td>
<td>59</td>
</tr>
<tr>
<td>46</td>
<td>4</td>
<td>150</td>
<td>15's</td>
<td>2.23E+01</td>
<td>1.49E-06</td>
<td>31</td>
</tr>
<tr>
<td>47</td>
<td>4</td>
<td>156</td>
<td>3'p-CL</td>
<td>2.12E+01</td>
<td>1.27E-07</td>
<td>14</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
<td>174</td>
<td>11'p-11's</td>
<td>1.90E+01</td>
<td>2.65E-07</td>
<td>25</td>
</tr>
<tr>
<td>49</td>
<td>4</td>
<td>232.5</td>
<td>6'p-CL</td>
<td>1.84E+01</td>
<td>1.01E-06</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>292</td>
<td>CL</td>
<td>1.66E+01</td>
<td>2.13E-06</td>
<td>16</td>
</tr>
<tr>
<td>51</td>
<td>4</td>
<td>78</td>
<td>2'p</td>
<td>1.77E+01</td>
<td>3.45E-06</td>
<td>7</td>
</tr>
<tr>
<td>Area No.</td>
<td>Deck</td>
<td>Frame</td>
<td>Athwartship Position</td>
<td>Alpha</td>
<td>Beta</td>
<td>Number of modes used in curvefitting α and β</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>----------------------</td>
<td>---------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>52</td>
<td>4</td>
<td>96</td>
<td>CL</td>
<td>2.00E+01</td>
<td>2.52E-05</td>
<td>12</td>
</tr>
<tr>
<td>53</td>
<td>5</td>
<td>280</td>
<td>CL</td>
<td>2.04E+01</td>
<td>-5.41E-08</td>
<td>42</td>
</tr>
<tr>
<td>54</td>
<td>5</td>
<td>322.5</td>
<td>17°p-15's</td>
<td>1.91E+01</td>
<td>3.35E-06</td>
<td>26</td>
</tr>
<tr>
<td>55</td>
<td>6</td>
<td>150</td>
<td>CL</td>
<td>2.25E+01</td>
<td>3.10E-07</td>
<td>17</td>
</tr>
<tr>
<td>56</td>
<td>6</td>
<td>160</td>
<td>CL</td>
<td>2.03E+01</td>
<td>5.66E-05</td>
<td>12</td>
</tr>
<tr>
<td>57</td>
<td>7</td>
<td>150</td>
<td>CL</td>
<td>2.35E+01</td>
<td>5.21E-06</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>8</td>
<td>173.5</td>
<td>32°p-32's</td>
<td>1.01E+01</td>
<td>6.16E-06</td>
<td>10</td>
</tr>
<tr>
<td>61</td>
<td>9</td>
<td>168</td>
<td>CL</td>
<td>1.90E+01</td>
<td>9.63E-06</td>
<td>10</td>
</tr>
<tr>
<td>62</td>
<td>9</td>
<td>171.5</td>
<td>25°p-25's</td>
<td>2.09E+01</td>
<td>4.86E-07</td>
<td>89</td>
</tr>
<tr>
<td>63</td>
<td>10</td>
<td>174</td>
<td>3°s-CL</td>
<td>2.29E+01</td>
<td>-1.24E-07</td>
<td>16</td>
</tr>
<tr>
<td>65</td>
<td>11</td>
<td>181</td>
<td>CL</td>
<td>2.01E+01</td>
<td>4.57E-06</td>
<td>15</td>
</tr>
<tr>
<td>66</td>
<td>HOLD</td>
<td>433</td>
<td>2°p</td>
<td>1.29E+01</td>
<td>1.24E-05</td>
<td>10</td>
</tr>
<tr>
<td>67</td>
<td>MD</td>
<td>281.5</td>
<td>4°s-5's</td>
<td>2.02E+01</td>
<td>2.84E-05</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3 shows the weighted mean value of α for each of the directions of motion. The weighting factor, shown in the rightmost column of Table 1, is defined as the number of modes used in the curve-fitting α and β. Thus, it can be concluded that weighted mean values of α are similar in both directions.

Table 4 shows the weighted mean value of β for each direction of motion, the weighting factor is the rightmost column of Table 2, the number of modes used in curve-fitting α and β. It can be concluded that weighted mean values in athwartship direction are slightly larger than those of the vertical direction. Equation 68 is used to calculate the mean α coefficient,

\[
\alpha_{\text{mean}} = \frac{\sum_{i=1}^{M} \alpha_i N_i}{\sum_{i=1}^{M} N_i}
\]

(68)
where the variable M stand for the of areas to be considered.

Table 3. Weighted Mean of α

<table>
<thead>
<tr>
<th>Athwartship Direction</th>
<th>Vertical Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4</td>
<td>19.2</td>
</tr>
</tbody>
</table>

Table 4. Weighted Mean of β

<table>
<thead>
<tr>
<th>Athwartship Direction</th>
<th>Vertical Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.82E-06</td>
<td>2.09E-06</td>
</tr>
</tbody>
</table>

Figure 12. Rayleigh Damping Coefficient α for Athwartship Direction on Deck 1
Figure 13. Rayleigh Damping Coefficient α for Vertical Direction on Deck 1
V. EFFECTS OF DAMPING TO SHIP SHOCK RESPONSES

In the 1994, the USS JOHN PAUL JONES (DDG 53) was chosen as the representative ship of the DDG 51 Arleigh Burke Class Destroyer and subsequently subjected to a series of shock trials. Some seven years later in the summer of 2001, similar ship shock trials were conducted on the USS WINSTON S. CHURCHILL (DDG 81). This latter series of live fire tests was performed on the 31st ship in the same class due to the significant design changes incorporated into the Flight IIA version of this ship. Some of the significant changes that were found in DDG 81 included an extension in the ship’s overall length and the additional of two helicopter hangers.

Starting with a highly complex finite element model of the ship and the surrounding fluid mesh, shown in Figure 14, the shock response velocity was calculated for various locations throughout the ship using the modeling and simulation process outlined in Figure 15 [4].

Figure 14. DDG 81 Coupled Fluid-Structure Model
The results of this process were compared with the actual ship shock trial sensor data obtained during the 2001 Live Fire Testing and Evaluation.

Additionally the shock velocity response plots obtained from the aforementioned process were compared against the earlier conducted simulations that used the Rayleigh Damping Coefficients previously used in the DDG 53 modeling and simulation effort, which occurred during the mid 1990’s at the Naval Postgraduate School. The values for these coefficients are listed in Table 5.
Table 5. Rayleigh Damping Coefficient for 4% & 8% Proportional Damping

<table>
<thead>
<tr>
<th>Damping Value</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>4%</td>
<td>2.64</td>
<td>4.99E-5</td>
</tr>
<tr>
<td>8%</td>
<td>4.93</td>
<td>9.89E-5</td>
</tr>
</tbody>
</table>

In this case the Rayleigh parameters (α, β) were based on evaluation of the damping values at two given points, 5 Hz and 250 Hz, which cover the range of data which was required for subsequent comparisons.

Figure 16. Rayleigh Damping Values (in Linear Scale)
The following series of velocity response plots compares the Rayleigh damping coefficients, α and β, presented in Tables 3 and 4 with coefficients that were used in previous studies conducted on the DDG 53 and DDG 81, which appear in Table 5.

Russell’s Error Factor [5-7] was chosen as a means of comparing the velocity response data against the actual ship shock trial data. For the purpose of this study, an established set of acceptance criteria was taken from the work accomplished in 2003 on the DDG 81 Ship Shock Simulation [4]. These values are presented in Table 6.

<table>
<thead>
<tr>
<th>RC</th>
<th>Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 0.15</td>
<td>Excellent</td>
</tr>
<tr>
<td>$0.15 < RC < 0.28$</td>
<td>Good</td>
</tr>
<tr>
<td>≥ 0.28</td>
<td>Poor</td>
</tr>
</tbody>
</table>
Figure 18. Sample Vertical Velocity Response: Deck Sensor

Figure 19. Sample Vertical Velocity Response: Deck Sensor
Figure 20. Sample Vertical Velocity Response: Keel Sensor

Figure 21. Sample Vertical Velocity Response: Bulkhead Sensor
As the velocity response plot comparisons in Figure 18 through Figure 21 show, there is a much better correlation between the NPS damping values and the ship shock trial data, than with the fixed 4% damping. For the sensors examined of which the approximate location of each is indicated on the time history plots by a red dot, a Russell’s Comprehensive (RC) error correlation factor was computed. The mean RC for the 4% Damping cases was 0.25 while in comparison when the new NPS damping values from Table 3 and Table 4 were used, the mean RC value was only 0.18. Recalling that by Russell’s correlation criteria, a value below 0.15 is considered an excellent correlation, the simulations using the new NPS damping values consistently show better overall correlation and an average reduction of approximately 25% in deviation from the recorded ship shock trial data versus those using the fixed 4% damping. Table 7 illustrates a sampling of the supporting data.

Table 7. Comparison of Russell’s Error Factor for DDG 81Shot 2 (vertical direction)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Node</th>
<th>Mounting Type</th>
<th>Location (in)*</th>
<th>Shock Trial Data vs. 4% Damping (LS-DYNA/USA DATA (<250HZ))</th>
<th>Shock Trial Data vs. NPS Damping (LS-DYNA/USA DATA (<250HZ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2002V</td>
<td>142481</td>
<td>Deck</td>
<td>4656 24 85</td>
<td>0.1974 0.2175 0.2975</td>
<td>0.0679 0.2175 0.2019</td>
</tr>
<tr>
<td>V2008V</td>
<td>210894</td>
<td>Deck</td>
<td>4004 176 171</td>
<td>0.1207 0.2068 0.256</td>
<td>0.1260 0.1932 0.2016</td>
</tr>
<tr>
<td>V2035V</td>
<td>330769</td>
<td>Keel</td>
<td>1152 135 193</td>
<td>0.1643 0.1849 0.2192</td>
<td>0.0009 0.1692 0.15</td>
</tr>
<tr>
<td>V2125V</td>
<td>222436</td>
<td>Bulkhead</td>
<td>3504 375 390</td>
<td>0.1651 0.1936 0.2255</td>
<td>0.0214 0.1914 0.1707</td>
</tr>
</tbody>
</table>

Russell Error Correlation
- >0.25 Poor
- <0.15 Excellent

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Node</th>
<th>Mounting Type</th>
<th>Location (in)*</th>
<th>Shock Trial Data vs. 4% Damping (LS-DYNA/USA DATA (<250HZ))</th>
<th>Shock Trial Data vs. NPS Damping (LS-DYNA/USA DATA (<250HZ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2002V</td>
<td>142481</td>
<td>Deck</td>
<td>4656 24 85</td>
<td>0.1974 0.2175 0.2975</td>
<td>0.0679 0.2175 0.2019</td>
</tr>
<tr>
<td>V2008V</td>
<td>210894</td>
<td>Deck</td>
<td>4004 176 171</td>
<td>0.1207 0.2068 0.256</td>
<td>0.1260 0.1932 0.2016</td>
</tr>
<tr>
<td>V2035V</td>
<td>330769</td>
<td>Keel</td>
<td>1152 135 193</td>
<td>0.1643 0.1849 0.2192</td>
<td>0.0009 0.1692 0.15</td>
</tr>
<tr>
<td>V2125V</td>
<td>222436</td>
<td>Bulkhead</td>
<td>3504 375 390</td>
<td>0.1651 0.1936 0.2255</td>
<td>0.0214 0.1914 0.1707</td>
</tr>
</tbody>
</table>

* Referenced to the G&C NASTRAN Model coordinate origin located at the stern. In the Y-direction, port is positive from the centerline.

Figure 22 is a graphical representation of the data presented in Table 7. Notice that the Russell’s Comprehensive correlation factor for the simulations using the NPS damping values are all in the excellent or highly acceptable range, while the results from the simulations performed using the fixed 4% damping values are only marginally acceptable or fall outside of the acceptable range all together. Note as well that there is considerable improvement in the accuracy of the magnitude component of the Russell’s correlation in the simulations using the NPS damping values, as demonstrated by the grouping of points nearer the ordinate.
Figure 22. Russell’s Error Factor for Selected Sensors of DDG 81 Shot 2

In this small but representative sampling of data points from various locations throughout the ship, comparison of the Russell’s error correlation shows that using the NPS damping values tends to improve the accuracy of the simulation from 20% to 30%. These results are presented in Table 8.

Table 8. Relative % Change in RC for NPS Damping versus 4% Damping Case

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Node</th>
<th>Ship Compartment Location</th>
<th>Percent Relative Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2008VI</td>
<td>210894</td>
<td>4th Deck</td>
<td>32.13%</td>
</tr>
<tr>
<td>V2002V</td>
<td>142489</td>
<td>4th Deck</td>
<td>21.86%</td>
</tr>
<tr>
<td>V2035V</td>
<td>330769</td>
<td>3rd Deck</td>
<td>31.57%</td>
</tr>
<tr>
<td>V2125V</td>
<td>222436</td>
<td>1st Deck</td>
<td>24.30%</td>
</tr>
<tr>
<td>Average Improvement in Correlation</td>
<td></td>
<td></td>
<td>27.47%</td>
</tr>
</tbody>
</table>
VI. CONCLUSIONS

Rayleigh damping representation for modeling ship system damping has been investigated based on the ship shock trial data. Based on the results of studies, a set of Rayleigh damping parameters (α and β) are recommended for ship shock response predictions. The results of investigation also indicate that (i) the system damping is largely affected by mass driven (α[M]), and (ii) the damping decreases as frequency increases as we commonly understood.
LIST OF REFERENCES

APPENDIX A. FIGURES OF THE RESULTS OF RAYLEIGH DAMPING CURVE-FITTING

A. Results in the Athwartship Direction

Figure 23. Modal Damping Ratio at Area 1, Athwartship Direction (Original)

Figure 24. Modal Damping Ratio at Area 1, Athwartship Direction (Modified)

Figure 25. Modal Damping Ratio at Area 3, Athwartship Direction (Original)
Figure 26. Modal Damping Ratio at Area 3, Athwartship Direction (Modified)

Figure 27. Modal Damping Ratio at Area 6, Athwartship Direction (Original)

Figure 28. Modal Damping Ratio at Area 6, Athwartship Direction (Modified)
Figure 29. Modal Damping Ratio at Area 7, Athwartship Direction (Original)

(in Linear Scale) (in Logarithmic Scale)

Figure 30. Modal Damping Ratio at Area 7, Athwartship Direction (Modified)

Figure 31. Modal Damping Ratio at Area 8, Athwartship Direction (Original)
Figure 32. Modal Damping Ratio at Area 8, Athwartship Direction (Modified)

Figure 33. Modal Damping Ratio at Area 10, Athwartship Direction (Original)

Figure 34. Modal Damping Ratio at Area 10, Athwartship Direction (Modified)
Figure 35. Modal Damping Ratio at Area 11, Athwartship Direction (Original)

Figure 36. Modal Damping Ratio at Area 11, Athwartship Direction (Modified)

(in Linear Scale) (in Logarithmic Scale)

Figure 37. Modal Damping Ratio at Area 12, Athwartship Direction (Original)
Figure 38. Modal Damping Ratio at Area 12, Athwartship Direction (Modified)

Figure 39. Modal Damping Ratio at Area 15, Athwartship Direction (Original)

Figure 40. Modal Damping Ratio at Area 15, Athwartship Direction (Modified)
Figure 41. Modal Damping Ratio at Area 16, Athwartship Direction (Original)

Figure 42. Modal Damping Ratio at Area 16, Athwartship Direction (Modified)

Figure 43. Modal Damping Ratio at Area 18, Athwartship Direction (Original)
Figure 44. Modal Damping Ratio at Area 18, Athwartship Direction (Modified)

Figure 45. Modal Damping Ratio at Area 19, Athwartship Direction (Original)

Figure 46. Modal Damping Ratio at Area 19, Athwartship Direction (Modified)
Figure 47. Modal Damping Ratio at Area 20, Athwartship Direction (Original)

Figure 48. Modal Damping Ratio at Area 20, Athwartship Direction (Modified)

Figure 49. Modal Damping Ratio at Area 28, Athwartship Direction (Original)
Figure 50. Modal Damping Ratio at Area 28, Athwartship Direction (Modified)

Figure 51. Modal Damping Ratio at Area 30, Athwartship Direction (Original)

Figure 52. Modal Damping Ratio at Area 30, Athwartship Direction (Modified)
Figure 53. Modal Damping Ratio at Area 31, Athwartship Direction (Original)

(in Linear Scale) (in Logarithmic Scale)

Figure 54. Modal Damping Ratio at Area 31, Athwartship Direction (Modified)

Figure 55. Modal Damping Ratio at Area 32, Athwartship Direction (Original)
Figure 56. Modal Damping Ratio at Area 32, Athwartship Direction (Modified)

Figure 57. Modal Damping Ratio at Area 33, Athwartship Direction (Original)

Figure 58. Modal Damping Ratio at Area 33, Athwartship Direction (Modified)
Figure 59. Modal Damping Ratio at Area 35, Athwartship Direction (Original)

Figure 60. Modal Damping Ratio at Area 35, Athwartship Direction (Modified)

Figure 61. Modal Damping Ratio at Area 37, Athwartship Direction (Original)
Figure 62. Modal Damping Ratio at Area 37, Athwartship Direction (Modified)

Figure 63. Modal Damping Ratio at Area 40, Athwartship Direction (Original)

Figure 64. Modal Damping Ratio at Area 40, Athwartship Direction (Modified)
Figure 65. Modal Damping Ratio at Area 41, Athwartship Direction (Original)

Figure 66. Modal Damping Ratio at Area 41, Athwartship Direction (Modified)

Figure 67. Modal Damping Ratio at Area 42, Athwartship Direction (Original)
Figure 68. Modal Damping Ratio at Area 42, Athwartship Direction (Modified)

Figure 69. Modal Damping Ratio at Area 43, Athwartship Direction (Original)

Figure 70. Modal Damping Ratio at Area 43, Athwartship Direction (Modified)
Figure 71. Modal Damping Ratio at Area 47, Athwartship Direction (Original)

Figure 72. Modal Damping Ratio at Area 47, Athwartship Direction (Modified)

Figure 73. Modal Damping Ratio at Area 48, Athwartship Direction (Original)
Figure 74. Modal Damping Ratio at Area 48, Athwartship Direction (Modified)

Figure 75. Modal Damping Ratio at Area 49, Athwartship Direction (Original)

Figure 76. Modal Damping Ratio at Area 49, Athwartship Direction (Modified)
Figure 77. Modal Damping Ratio at Area 50, Athwartship Direction (Original)

Figure 78. Modal Damping Ratio at Area 50, Athwartship Direction (Modified)

(in Linear Scale) (in Logarithmic Scale)

Figure 79. Modal Damping Ratio at Area 53, Athwartship Direction (Original)
Figure 80. Modal Damping Ratio at Area 53, Athwartship Direction (Modified)

Figure 81. Modal Damping Ratio at Area 54, Athwartship Direction (Original)

Figure 82. Modal Damping Ratio at Area 54, Athwartship Direction (Modified)
Figure 83. Modal Damping Ratio at Area 55, Athwartship Direction (Original)

Figure 84. Modal Damping Ratio at Area 55, Athwartship Direction (Modified)

Figure 85. Modal Damping Ratio at Area 56, Athwartship Direction (Original)
Figure 86. Modal Damping Ratio at Area 56, Athwartship Direction (Modified)

Figure 87. Modal Damping Ratio at Area 57, Athwartship Direction (Original)

Figure 88. Modal Damping Ratio at Area 57, Athwartship Direction (Modified)
Figure 89. Modal Damping Ratio at Area 58, Athwartship Direction (Original)

Figure 90. Modal Damping Ratio at Area 58, Athwartship Direction (Modified)

Figure 91. Modal Damping Ratio at Area 59, Athwartship Direction (Original)
Figure 92. Modal Damping Ratio at Area 59, Athwartship Direction (Modified)

Figure 93. Modal Damping Ratio at Area 60, Athwartship Direction (Original)

Figure 94. Modal Damping Ratio at Area 60, Athwartship Direction (Modified)
Figure 95. Modal Damping Ratio at Area 61, Athwartship Direction (Original)

Figure 96. Modal Damping Ratio at Area 61, Athwartship Direction (Modified)

Figure 97. Modal Damping Ratio at Area 62, Athwartship Direction (Original)
Figure 98. Modal Damping Ratio at Area 62, Athwartship Direction (Modified)

Figure 99. Modal Damping Ratio at Area 64, Athwartship Direction (Original)

Figure 100. Modal Damping Ratio at Area 64, Athwartship Direction (Modified)
Figure 101. Modal Damping Ratio at Area 65, Athwartship Direction (Original)

(in Linear Scale) (in Logarithmic Scale)

Figure 102. Modal Damping Ratio at Area 65, Athwartship Direction (Modified)

Figure 103. Modal Damping Ratio at Area 67, Athwartship Direction (Original)
Figure 104. Modal Damping Ratio at Area 67, Athwartship Direction (Modified)
B. Results in the Vertical Direction

Figure 105. Modal Damping Ratio at Area 1, Vertical Direction (Original)

Figure 106. Modal Damping Ratio at Area 1, Vertical Direction (Modified)

Figure 107. Modal Damping Ratio at Area 3, Vertical Direction (Original)
Figure 108. Modal Damping Ratio at Area 3, Vertical Direction (Modified)

Figure 109. Modal Damping Ratio at Area 4, Vertical Direction (Original)

Figure 110. Modal Damping Ratio at Area 4, Vertical Direction (Modified)
Figure 111. Modal Damping Ratio at Area 5, Vertical Direction (Original)

Figure 112. Modal Damping Ratio at Area 5, Vertical Direction (Modified)

Figure 113. Modal Damping Ratio at Area 6, Vertical Direction (Original)
Figure 114. Modal Damping Ratio at Area 6, Vertical Direction (Modified)

Figure 115. Modal Damping Ratio at Area 7, Vertical Direction (Original)

Figure 116. Modal Damping Ratio at Area 7, Vertical Direction (Modified)
Figure 117. Modal Damping Ratio at Area 8, Vertical Direction (Original) (in Linear Scale)

Figure 118. Modal Damping Ratio at Area 8, Vertical Direction (Modified) (in Logarithmic Scale)

Figure 119. Modal Damping Ratio at Area 9, Vertical Direction (Original)
Figure 120. Modal Damping Ratio at Area 9, Vertical Direction (Modified)

Figure 121. Modal Damping Ratio at Area 10, Vertical Direction (Original)

Figure 122. Modal Damping Ratio at Area 10, Vertical Direction (Modified)
Figure 123. Modal Damping Ratio at Area 11, Vertical Direction (Original)

Figure 124. Modal Damping Ratio at Area 11, Vertical Direction (Modified)

Figure 125. Modal Damping Ratio at Area 12, Vertical Direction (Original)
Figure 126. Modal Damping Ratio at Area 12, Vertical Direction (Modified)

Figure 127. Modal Damping Ratio at Area 13, Vertical Direction (Original)

Figure 128. Modal Damping Ratio at Area 13, Vertical Direction (Modified)
Figure 129. Modal Damping Ratio at Area 14, Vertical Direction (Original)

Figure 130. Modal Damping Ratio at Area 14, Vertical Direction (Modified)

Figure 131. Modal Damping Ratio at Area 15, Vertical Direction (Original)
Figure 132. Modal Damping Ratio at Area 15, Vertical Direction (Modified)

Figure 133. Modal Damping Ratio at Area 16, Vertical Direction (Original)

Figure 134. Modal Damping Ratio at Area 16, Vertical Direction (Modified)
Figure 135. Modal Damping Ratio at Area 17, Vertical Direction (Original)

Figure 136. Modal Damping Ratio at Area 17, Vertical Direction (Modified)

Figure 137. Modal Damping Ratio at Area 18, Vertical Direction (Original)
Figure 138. Modal Damping Ratio at Area 18, Vertical Direction (Modified)

Figure 139. Modal Damping Ratio at Area 19, Vertical Direction (Original)

Figure 140. Modal Damping Ratio at Area 19, Vertical Direction (Modified)
Figure 141. Modal Damping Ratio at Area 20, Vertical Direction (Original)

(in Linear Scale)

Figure 142. Modal Damping Ratio at Area 20, Vertical Direction (Modified)

(in Logarithmic Scale)

Figure 143. Modal Damping Ratio at Area 21, Vertical Direction (Original)
Figure 144. Modal Damping Ratio at Area 21, Vertical Direction (Modified)

(in Linear Scale) (in Logarithmic Scale)

Figure 145. Modal Damping Ratio at Area 22, Vertical Direction (Original)

Figure 146. Modal Damping Ratio at Area 22, Vertical Direction (Modified)

(in Linear Scale) (in Logarithmic Scale)
Figure 147. Modal Damping Ratio at Area 23, Vertical Direction (Original)

Figure 148. Modal Damping Ratio at Area 23, Vertical Direction (Modified)

Figure 149. Modal Damping Ratio at Area 24, Vertical Direction (Original)
Figure 150. Modal Damping Ratio at Area 24, Vertical Direction (Modified)

Figure 151. Modal Damping Ratio at Area 25, Vertical Direction (Original)

Figure 152. Modal Damping Ratio at Area 25, Vertical Direction (Modified)
Figure 153. Modal Damping Ratio at Area 26, Vertical Direction (Original)

Figure 154. Modal Damping Ratio at Area 26, Vertical Direction (Modified)

Figure 155. Modal Damping Ratio at Area 27, Vertical Direction (Original)
Figure 156. Modal Damping Ratio at Area 27, Vertical Direction (Modified)

Figure 157. Modal Damping Ratio at Area 28, Vertical Direction (Original)

Figure 158. Modal Damping Ratio at Area 28, Vertical Direction (Modified)
Figure 159. Modal Damping Ratio at Area 29, Vertical Direction (Original)

Figure 160. Modal Damping Ratio at Area 29, Vertical Direction (Modified)

Figure 161. Modal Damping Ratio at Area 30, Vertical Direction (Original)
Figure 162. Modal Damping Ratio at Area 30, Vertical Direction (Modified)

Figure 163. Modal Damping Ratio at Area 31, Vertical Direction (Original)

Figure 164. Modal Damping Ratio at Area 31, Vertical Direction (Modified)
Figure 165. Modal Damping Ratio at Area 32, Vertical Direction (Original)

Figure 166. Modal Damping Ratio at Area 32, Vertical Direction (Modified)

(in Linear Scale) (in Logarithmic Scale)

Figure 167. Modal Damping Ratio at Area 33, Vertical Direction (Original)
Figure 168. Modal Damping Ratio at Area 33, Vertical Direction (Modified)

Figure 169. Modal Damping Ratio at Area 34, Vertical Direction (Original)

Figure 170. Modal Damping Ratio at Area 34, Vertical Direction (Modified)
Figure 171. Modal Damping Ratio at Area 35, Vertical Direction (Original)

Figure 172. Modal Damping Ratio at Area 35, Vertical Direction (Modified)

(in Linear Scale) (in Logarithmic Scale)

Figure 173. Modal Damping Ratio at Area 36, Vertical Direction (Original)
Figure 174. Modal Damping Ratio at Area 36, Vertical Direction (Modified)

Figure 175. Modal Damping Ratio at Area 37, Vertical Direction (Original)

Figure 176. Modal Damping Ratio at Area 37, Vertical Direction (Modified)
Figure 177. Modal Damping Ratio at Area 38, Vertical Direction (Original)

Figure 178. Modal Damping Ratio at Area 38, Vertical Direction (Modified)

Figure 179. Modal Damping Ratio at Area 39, Vertical Direction (Original)
Figure 180. Modal Damping Ratio at Area 39, Vertical Direction (Modified)

Figure 181. Modal Damping Ratio at Area 40, Vertical Direction (Original)

Figure 182. Modal Damping Ratio at Area 40, Vertical Direction (Modified)
Figure 183. Modal Damping Ratio at Area 41, Vertical Direction (Original)

Figure 184. Modal Damping Ratio at Area 41, Vertical Direction (Modified)

(in Linear Scale) (in Logarithmic Scale)

Figure 185. Modal Damping Ratio at Area 42, Vertical Direction (Original)
Figure 186. Modal Damping Ratio at Area 42, Vertical Direction (Modified)

Figure 187. Modal Damping Ratio at Area 43, Vertical Direction (Original)

Figure 188. Modal Damping Ratio at Area 43, Vertical Direction (Modified)
Figure 189. Modal Damping Ratio at Area 44, Vertical Direction (Original)

Figure 190. Modal Damping Ratio at Area 44, Vertical Direction (Modified)

Figure 191. Modal Damping Ratio at Area 45, Vertical Direction (Original)
Figure 192. Modal Damping Ratio at Area 45, Vertical Direction (Modified)

Figure 193. Modal Damping Ratio at Area 46, Vertical Direction (Original)

Figure 194. Modal Damping Ratio at Area 46, Vertical Direction (Modified)
Figure 195. Modal Damping Ratio at Area 47, Vertical Direction (Original)

Figure 196. Modal Damping Ratio at Area 47, Vertical Direction (Modified)

Figure 197. Modal Damping Ratio at Area 48, Vertical Direction (Original)
Figure 198. Modal Damping Ratio at Area 48, Vertical Direction (Modified)

Figure 199. Modal Damping Ratio at Area 49, Vertical Direction (Original)

Figure 200. Modal Damping Ratio at Area 49, Vertical Direction (Modified)
Figure 201. Modal Damping Ratio at Area 50, Vertical Direction (Original)

(in Linear Scale)

Figure 202. Modal Damping Ratio at Area 50, Vertical Direction (Modified)

(in Logarithmic Scale)

Figure 203. Modal Damping Ratio at Area 51, Vertical Direction (Original)
Figure 204. Modal Damping Ratio at Area 51, Vertical Direction (Modified)

Figure 205. Modal Damping Ratio at Area 52, Vertical Direction (Original)

Figure 206. Modal Damping Ratio at Area 52, Vertical Direction (Modified)
Figure 207. Modal Damping Ratio at Area 53, Vertical Direction (Original)

Figure 208. Modal Damping Ratio at Area 53, Vertical Direction (Modified)

Figure 209. Modal Damping Ratio at Area 54, Vertical Direction (Original)
Figure 210. Modal Damping Ratio at Area 54, Vertical Direction (Modified)

Figure 211. Modal Damping Ratio at Area 55, Vertical Direction (Original)

Figure 212. Modal Damping Ratio at Area 55, Vertical Direction (Modified)
Figure 213. Modal Damping Ratio at Area 56, Vertical Direction (Original)

Figure 214. Modal Damping Ratio at Area 56, Vertical Direction (Modified)

Figure 215. Modal Damping Ratio at Area 57, Vertical Direction (Original)
Figure 216. Modal Damping Ratio at Area 57, Vertical Direction (Modified)

Figure 217. Modal Damping Ratio at Area 59, Vertical Direction (Original)

Figure 218. Modal Damping Ratio at Area 59, Vertical Direction (Modified)
Figure 219. Modal Damping Ratio at Area 60, Vertical Direction (Original)

Figure 220. Modal Damping Ratio at Area 60, Vertical Direction (Modified)

Figure 221. Modal Damping Ratio at Area 61, Vertical Direction (Original)
Figure 222. Modal Damping Ratio at Area 61, Vertical Direction (Modified)

Figure 223. Modal Damping Ratio at Area 62, Vertical Direction (Original)

Figure 224. Modal Damping Ratio at Area 62, Vertical Direction (Modified)
Figure 225. Modal Damping Ratio at Area 63, Vertical Direction (Original)

Figure 226. Modal Damping Ratio at Area 63, Vertical Direction (Modified)

Figure 227. Modal Damping Ratio at Area 64, Vertical Direction (Original)
Figure 228. Modal Damping Ratio at Area 64, Vertical Direction (Modified)

Figure 229. Modal Damping Ratio at Area 65, Vertical Direction (Original)

Figure 230. Modal Damping Ratio at Area 65, Vertical Direction (Modified)
Figure 231. Modal Damping Ratio at Area 66, Vertical Direction (Original)

Figure 232. Modal Damping Ratio at Area 66, Vertical Direction (Modified)

Figure 233. Modal Damping Ratio at Area 67, Vertical Direction (Original)
Figure 234. Modal Damping Ratio at Area 67, Vertical Direction (Modified)
APPENDIX B. MODAL PARAMETER EXTRACTION PROGRAM LIST IN TIME DOMAIN

This program uses IMSL libraries that are included in Microsoft Power Station.

use msimslmd
implicit double precision (a-h, o-z)
dimension tt(4000), vv(4000), hh(4000,200), hh2n(4000), betaq(201), coeff(201), &
 coefre(0:201), coefim(0:201), rootre(200), rootim(200)
dimension hht(200,4000), hhtth(200,200), hht2n(200)
double complex root(200), freg(6000), vvregm(6000)
dimension xr(200), wr(200), vvreg(4000), vvregi(4000)
dimension arn(200), nonq(1000)
double complex aai(4000,200), aaat(200,4000), ah(4000), aaatah(200), &
 aaataaa(200,200), cmodal(201), ar(201), cw
character*25 ifiles(1000), pfiles(1000), gfiles(1000), sensor(1000), sensorid
LOGICAL COMPL

pi=4.0d0*datan(1.0d0)
tfinal=2000.0d0
nf=773 ! no. of data sets 774
! nq=170 ! total mode no. to be considered
open(unit=1, file='modifieddat.lst') ! input time data file list
do 1881 ifl=1,nf
 read(1,*) sensor(ifl), nonq(ifl)
 ifiles(ifl)=trim(sensor(ifl))//'_2ms.dat'
pfiles(ifl)=trim(sensor(ifl))//'_modal.dat'
gfiles(ifl)=trim(sensor(ifl))//'_regen.dat'
1881 continue
do 8888 ifl=467,nf
 mm=1500 ! data points to be used for calculation
 ng=nonq(ifl)
 write(*,*), ifl, ' --> ', ifiles(ifl)
 open(unit=3, file=ifiles(ifl), err=8888)
 open(unit=4, file=pfiles(ifl))
 open(unit=6, file=gfiles(ifl))
!
! Velocity Data input, time is in miliseconds.
!
do j=1,mm
 read(3,*) tt(j), vv(j)
 if(tt(j).ge.tfinal) goto 1788
enddo
1788 mm=j-1
!
 dt=(tt(mm)-tt(1))/dfloat(mm-1)/1000.0d0 ! time interval in seconds
 write(*,*), dt
!
! Calculate [H]{beta}={h}
!
m2=mm-ng-1
do i=1,m2
 ii=i-1
 hh2n(i)=-vv(ii+ng+1)
do j=1,ng
 hh(i,j)=vv(ii+j)
enddo
enddo
\begin{verbatim}
 hht(1:nq,1:m2)=transpose(hh(1:m2,1:nq))
 hhthh(1:nq,1:nq)=matmul(hht(1:nq,1:m2),hh(1:m2,1:nq))
 hht2n(1:nq)=matmul(hht(1:nq,1:m2),hh2n(1:m2))
 CALL DLSARG (nq, hhthh, 200, hht2n, 1, betaq)

 betaq(nq+1)=1.0d0
 compl=.FALSE.
 coefre(0:nq)=betaq(1:nq+1)
 CALL BAUPOL(coefre,coefim,nq,COMPL,ROOTRE,ROOTIM,NUMIT)
 root(1:nq)=dcmplx(rootre(1:nq), rootim(1:nq))

 do i=1,nq
 sr(i)=cdlog(root(i))/dt
 wr(i)=cdabs(sr(i))
 xr(i) = -dble(sr(i))/wr(i)
 enddo

 cmodal=dcmplx(0.0d0,0.0d0)
 m2=mm-1
 do i=1,m2
 ah(i)=vv(i)
 do j=1,nq
 aaa(i,j)=root(j)**dfloat(i-1)
 enddo
 enddo
 aaat(1:nq,1:m2)=transpose(aaa(1:m2,1:nq))
 aaataaa(1:nq,1:nq)=matmul(aaat(1:nq,1:m2),aaa(1:m2,1:nq))
 aaatah(1:nq)=matmul(aaat(1:nq,1:m2),ah(1:m2))
 CALL DLSACG (nq, aaataaa, 200, aaatah, 1, cmodal)

 sensorid=sensor(ifl)
 do i=1,nq
 cmodal(i)=cmodal(i)/sr(i)
 enddo

 armax=0.0d0
 arn=0.0d0
 do i=1,nq
 if(cdabs(cmodal(i)).gt.armax) armax=cdabs(cmodal(i))
 enddo
 arn(1:nq)=cdabs(cmodal(1:nq))/armax

 sensorid=sensor(ifl)
 do i=1,nq
 cmodal(i)=cmodal(i)/sr(i)
 enddo

 fspan=1.0d0/dt/2.0d0
 wspan=2.0d0*pi*fspan
 dw=wspan/(dfloat(mm/2)-1.0d0)
 freg=dcmplx(0.0d0,0.0d0)
 do i=2,mm/2+1
 w=dfloat(i-1)*dw
 cw=dcmplx(0.0d0,w)
\end{verbatim}
do j=1,nq
 freg(i)=freg(i)+cmodal(j)*cw/(cw-sr(j))
enddo

do i=2, mm/2
 ii=mm-i+2
 freg(ii)=dconjg(freg(i))
enddo

freg=freg*dw/(2.0d0*pi)
!
! Calculate synthesized time history by inverse FFT
!
CALL DFPTCB (mm, freg, vvregm)
vvregr=0.0
do i=2,mm
 ii=mm-i+1
 vvregr(i)=dble(vvregm(i))
 vvregi(i)=dimag(vvregm(i))
enddo
!
! Output synthesized time histories
!
do i=2,mm/2
 write(6,200) tt(i), vvregr(i),vvregi(i), vv(i)
200 format(5(1x,e15.7))
enddo
!
! Sort and Output all modal parameters
!
call sortmodal(nq, wr, xr, cmodal, arn)
do i=1,nq
 write(4,100) i, wr(i)/(2.0d0*pi), xr(i), cmodal(i), arn(i)
100 format(1i5, 5(1x, e14.6))
enddo
close(unit=3)
close(unit=4)
close(unit=6)
8888 continue
877 format(5(1x,e15.7))
400 format(5(1x,e15.7))
close(unit=1)
close(unit=2)
close(unit=5)
stop
end
!
!--
! Subroutine to calculate damping curve and standard deviation
!--
!
Subroutine meansd nto, totalfreq, totaldamp, rayleigh, raywgt, &
 ffreq, fdamp1, fdamp2, sdray, sdwgt)
implicit double precision (a-h,o-z)
dimension totalfreq(2000), totaldamp(2000), ffreq(250), fdamp1(250), &
 fdamp2(250)
dimension rayleigh(2), raywgt(2)
pi=4.0d0*datan(1.0d0)
sdray=0.0d0
sdwgt=0.0d0
do i=1,nto
 w=2.0d0*pi*totalfreq(i)
 x=rayleigh(1)/2.0d0/w+rayleigh(2)/2.0d0*w
 sdray=sdray+(totaldamp(i)-x)**2.0d0
 x=raywgt(1)/2.0d0/w+raywgt(2)/2.0d0*w
 sdwgt=sdwgt+(totaldamp(i)-x)**2.0d0
enddo
sdray=sdray/nto
sdwgt=sdwgt/nto
do i=1,250
 f=dfloat(i)
 ffreq(i)=f
 w=2.0d0*pi*f
 fdamp1(i)=rayleigh(1)/2.0d0/w+rayleigh(2)/2.0d0*w
 fdamp2(i)=raywgt(1)/2.0d0/w+raywgt(2)/2.0d0*w
enddo
return
end
!
!--
! Sort total
!--
!
subroutine sorttotal(itt, ffreq, ddamp, ar)
!
implicit double precision (a-h,o-z)
ntt=itt
do i=1,ntt-1
 do j=i+1, ntt
 if(ffreq(i).gt.ffreq(j)) then
 ddum=ffreq(i)
 ffreq(i)=ffreq(j)
 ffreq(j)=ddum
 ddum=ddamp(i)
 ddamp(i)=ddamp(j)
 ddamp(j)=ddum
 ddum=ar(i)
 ar(i)=ar(j)
 ar(j)=ddum
 endif
 enddo
enddo
return
end
!
!--
subroutine sortmodal(nq, wr, xr, cmodal, arn)
!
implicit double precision (a-h,o-z)
double complex cmodal(2000), cdum
do i=1,nq-1
 do j=i+1, nq
 if(wr(i).gt.wr(j)) then
 cdum=wr(i)
 wr(i)=wr(j)
 wr(j)=cdum
 cdum=xr(i)
 xr(i)=xr(j)
 xr(j)=cdum
 cdum=arn(i)
 arn(i)=arn(j)
 arn(j)=cdum
 endif
 enddo
enddo
return
end
ddum=wr(i)
 wr(i)=wr(j)
 wr(j)=ddum
 ddum=xr(i)
 xr(i)=xr(j)
 xr(j)=ddum
 ddum=arn(i)
 arn(i)=arn(j)
 arn(j)=ddum
 cdum=cmodal(i)
 cmodal(i)=cmodal(j)
 cmodal(j)=cdum
 endif
 enddo
enddo
return
end
!
!--
subroutine FindAr(nq,mm,dt,vv,sr,cmodal)
!--
! to find modal constants with frequency domain least square method
implicit double precision (a-h,o-z)
dimension vv(2000)
double complex sr(201),cmodal(201),t(2000),ss(2000,200), &
 st(200,2000),stf(200),sts(200,200),ff(2000),wi
pi=4.0d0*datan(1.0d0)
do i=1,mm
 t(i)=dcmplx(vv(i),0.0d0)
enddo
CALL DFFTCF (mm, t, ff)
m=mm/2
df=1.0d0/(dt*dfloat(mm-1))
dw=2.0d0*pi*df
ff(1:mm)=ff(1:mm)/dfloat(mm)
do i=1,m+1
 w=dfloat(i-1)*dw
 wi=dcmplx(0.0d0,w)
 do j=1,nq
 ss(i,j)=wi/(wi-sr(j))*df
 enddo
endo
do i=mm,m+2,-1
 w= dfloat(mm-i+1)*dw
 wi=dcmplx(0.0d0,-w)
 do j=1,nq
 ss(i,j)=wi/(wi-sr(j))*df
 enddo
endo
st(1:nq,1:mm)=transpose(ss(1:mm,1:nq))
stf(1:nq)=matmul(st(1:nq,1:mm),ff(1:mm))
sts(1:nq,1:nq)=matmul(st(1:nq,1:mm),ss(1:mm,1:nq))
CALL DLSACG (nq, sts, 100, stf, 1, cmodal)
return
end
!
!--
SUBROUTINE BAUPOL(COEFFRE, COEFIM, N, COMPL, ROOTRE, ROOTIM, NUMIT)

!***
! Without knowing any approximations of the roots, this
! SUBROUTINE finds N approximate values Z(I), I=1, ..., N for
! the N zeros of a polynomial PN of degree N with real or
! complex coefficients.
! The polynomial is described as follows:
! PN(Z)=COEF(0)+COEF(1)*Z+COEF(2)*Z**2+...+COEF(N)*Z**N,
! with COEF(I) = (COEFRE(I),COEFIM(I)) for I=0, ..., N (complex
! coefficients).

! INPUT PARAMETERS:

! COEFS : (N+1)-vector COEFS(0:N) containing the real
! part of each coefficient of the polynomial PN in
! DOUBLE PRECISION.
! COEFIM : (N+1)-vector COEFIM(0:N) containing the imaginary
! part of each coefficient of the polynomial PN in
! DOUBLE PRECISION.
! N : degree of the polynomial PN.
! COMPL : boolean variable :
! COMPL=.TRUE. , if the coefficients are COMPLEX.
! COMPL=.FALSE. , if the coefficients are REAL.

! OUTPUT PARAMETERS:

! ROOTRE : N-vector ROOTRE(1:N) containing the approximate
! real parts of the computed zeros of PN in
! DOUBLE PRECISION.
! ROOTIM : N-vector ROOTIM(1:N) containing the approximate
! imaginary parts of the computed zeros of PN in
! DOUBLE PRECISION.
! NUMIT : maximum number of iteration steps.

! Initializing the iteration step counter NUMIT and the error
! bound GAMMA.
NUMIT=0
GAMMA=5.0D-18
IF(N .EQ. 1) THEN

CALL CDIV(-COEFFRE(0), -COEFIM(0), COEFFRE(1), COEFIM(1))
RETURN
ELSE
 N1=N+1
!
! Scaling via SCALFC.
!
 DO 10 I=1,N1
 E(I)=ABSCOM(COEFRE(N1-I),COEFIM(N1-I))
 10 CONTINUE
 CALL MCONST(FMACHP,INFINY,SMALNO,BASE)
 BND=SCALFC(N1,E,FMACHP,INFINY,SMALNO,BASE)
 IF(BND .EQ. 1.0D0) THEN
!
! Normalizing, in case scaling by SCALFC did not normalize the coefficients.
!
 MAX=0.0D0
 MIN=1.0D+300
 DO 20 I=N,0,-1
 X=ABSCOM(COEFRE(I),COEFIM(I))
 IF(X .GT. MAX) MAX=X
 IF(X .LT. MIN .AND. X .NE. 0.0D0) MIN=X
 20 CONTINUE
 BND=DSQRT(MAX*MIN)
 BND=1.0D0/BND
 END IF
 DO 30 K=1,N1
 B(2*K-1)=COEFRE(N1-K)*BND
 B(2*K)=0.0D0
 IF(COMPL) B(2*K)=COEFIM(N1-K)*BND
 30 CONTINUE
!
! Calculating the I-th zero of PN.
!
 X0=0.0D0
 Y0=0.0D0
 DO 40 I=1,N
 L=2*(N+2-I)
 DO 50 K=1,L
 A(K)=B(K)
 50 CONTINUE
!
 CALL BAUZRO(X0,Y0,N+1-I,GAMMA,XNEW,YNEW,NUMIT,A,B,C)
 ROOTRE(I)=XNEW
 ROOTIM(I)=YNEW
 X0=XNEW
 Y0=-YNEW
 40 CONTINUE
END IF
RETURN
END
!
SUBROUTINE BAUZRO(X0,Y0,N,GAMMA,XNEW,YNEW,NUMIT,A,B,C)
!
!**
! *
! This SUBROUTINE calculates a zero of a polynomial PN with *
! complex coefficients. *
! We solve the equation PN(Z)/PN'(Z)=0 *
!
via Newton's method with spiralization and extrapolation to improve convergence. The initial approximation \((X_0 + iY_0)\) can be chosen arbitrarily.

INPUT PARAMETERS:

- \(X_0\): real part of the initial approximation.
- \(Y_0\): imaginary part of the initial approximation.
- \(N\): degree of the polynomial \(P_N\).
- \(\Gamma\): error bound.

OUTPUT PARAMETERS:

- \(X_{NEW}\): real part of the computed zero of \(P_N\).
- \(Y_{NEW}\): imaginary part of the zero of \(P_N\).
- \(NUM\): maximum number of iteration steps.

INPUT PARAMETERS:

```
IMPLICIT DOUBLE PRECISION (a-h,o-z)
DIMENSION A(500),B(500),C(500)
LOGICAL ENDIT
```

```fortran
IF(N .EQ. 2) THEN

! Solving the remaining 2nd degree polynomial exactly.

CALL CDIV(A(3),A(4),A(1),A(2),P1RE,P1IM)
CALL CDIV(A(5),A(6),A(1),A(2),Q1RE,Q1IM)
P12RE=-P1RE/2.0D0
P12IM=-P1IM/2.0D0
RA1RE=P12RE*P12RE-P12IM*P12IM
RA1IM=2.0D0*P12RE*P12IM
RARE=RA1RE-Q1RE
RAIN=RA1IM-Q1IM
IF(RAIN .EQ. 0.0D0) THEN
  IF(RARE .LT. 0.0D0) THEN
    ! Purely imaginary root.
    RTIM=DSQRT(-RARE)
    RTRE=0.0D0
    XNEW=P12RE
    YNEW=P12IM+RTIM
    RETURN
  ELSE
    ! Real root.
    RTRE=DSQRT(RARE)
    RTIM=0.0D0
    XNEW=P12RE+RTRE
    YNEW=P12IM
    RETURN
  END IF
ELSE
  !
END IF
```

ELSE
! Complex root.
!
RABE=ABSCOM(RARE,RAIM)
IF(RARE .GT. 0.0D0) THEN
RTRE=DSQRT(0.5D0*(RABE+RARE))
IF(RAIM .LT. 0.0D0) RTRE=-RTRE
RTIM=0.5D0*RAIM/RTRE
ELSE
RTIM=DSQRT(0.5D0*(RABE-RARE))
RTRE=0.5D0*RAIM/RTIM
END IF
XNEW=P12RE+RTRE
YNEW=P12IM+RTIM
RETURN
END IF
ELSE IF(N .EQ. 1) THEN
!
! Polynomial of 1st degree.
!
XNEW=P12RE-RTRE
YNEW=P12IM-RTIM
RETURN
ELSE
I=0
ENDIT=.FALSE.
RHO=DSQRT(GAMMA)
BETA=10.0D0*GAMMA
QR=0.1D0
QI=0.9D0
XNEW=X0
YNEW=Y0
CALL COMHOR(XNEW,YNEW,N,GAMMA,UNEW,VNEW,UDNEW,VDNEW, &
UDDNEW,VDDNEW,BD,BDD,A,B,C)
NUMIT=NUMIT+1
PN=ABSCom(UNEW,VNEW)
IF(PN .LE. BD) THEN
RETURN
ELSE
PBOLD=2.0D0*PN
DZMIN=BETA*(RHO+ABSCom(XNEW,YNEW))
10 PSB=ABSCom(UDNEW,VDNEW)
!
! Spiralization.
!
IF(PN .LT. PBOLD) THEN
DZMAX=1.0D0+ABSCom(XNEW,YNEW)
NUMIT=NUMIT+1
H1=UDNEW*UDDNEW+VDNEW*VDDNEW
H2=2.0D0*UDNEW*VDNEW-UNEW*UDDNEW+VNEW*VDDNEW
IF(PSB .GT. 10.0D0*BD .AND. &
ABSCom(H1,H2) .GT. 100.0D0*BD*BD) THEN
!
! Applying Newton's method.
!
I=I+1
IF(I .GT. 2) I=2
U=UNEW*UDNEW-VNEW*VDNEW
V = UNEW*VNEW+VNEW*UNEW
CALL CDIV(-U,-V,H1,H2,DX,DY)
IF (ABSCOM(DX,DY) .GT. DZMAX) THEN
 H = DZMAX/ABSCOM(DX,DY)
 DX = DX*H
 DY = DY*H
 I = 0
END IF
IF (I .EQ. 2 .AND. ABSCOM(DX,DY) .LT. DZMIN/RHO .AND. & ABSCOM(DX,DY) .GT. 0.0D0) THEN
 ! Extrapolation.
 I = 0
 CALL CDIV(XNEW-XOLD,YNEW-YOLD,DX,DY,H3,H4)
 H3 = 1.0D0+H3
 H1 = H3*H3-H4*H4
 H2 = 2.0D0*H3*H4
 CALL CDIV(DX,DY,H1,H2,H3,H4)
 IF (ABSCOM(H3,H4) .LT. 50.0D0*DZMIN) THEN
 DX = DX+H3
 DY = DY+H4
 END IF
END IF
XOLD = XNEW
YOLD = YNEW
PBOLD = PBNEW
ELSE
 ! In a neighborhood of a saddle point.
 I = 0
 H = DZMAX/PBNEW
 DX = H*UNEW
 DY = H*VNEW
 XOLD = XNEW
 YOLD = YNEW
 PBOLD = PBNEW
 CALL COMHOR(XNEW+DX,YNEW+DY,N,GAMMA,U,V,H,H1, & H2,H3,H4,H5,A,B,C)
 IF (DABS(ABSCOM(U,V)/PBNEW-1.0D0) .LE. RHO) THEN
 DX = 2.0D0*DX
 DY = 2.0D0*DY
 GOTO 20
 END IF
END IF
ELSE
 I = 0
 NUMIT = NUMIT+1
 H = QR*DX-QI*DY
 DY = QR*DY+QI*DX
 DX = H
END IF
IF (ENDIT) THEN
 IF (ABSCOM(DX,DY) .LT. 0.1D0*BDZE) THEN
 XNEW = XNEW+DX
 YNEW = YNEW+DY
 END IF
CALL COMHOR(XNEW, YNEW, N, GAMMA, UNEW, VNEW, UDDNEW, VDDNEW, BD, BDD, A, B, C)
RETURN
ELSE
XNEW=XOLD+DX
YNEW=YOLD+DY
DZMIN=BETA*(RHO+ABS(XNEW, YNEW))
CALL COMHOR(XNEW, YNEW, N, GAMMA, UNEW, VNEW, UDDNEW, VDDNEW, BD, BDD, A, B, C)
PBNEW=ABS(UNEW, VNEW)
IF(PBNNEW .EQ. 0.0D0) THEN
RETURN
ELSE IF(ABS(DX, DY) .GT. DZMIN .AND. &
PBNNEW .GT. BD) THEN
GOTO 10
ELSE
ENDIF
END IF
END IF
ENDIF
ENDER SUBROUTINE COMHOR(X, Y, N, GAMMA, U, V, UD, UD, UDD, VDD, BDP, BDPD, A, B, C)

IMPLICIT DOUBLE PRECISION (a-h,o-z)
DIMENSION A(500),B(500),C(500)
C(1)=A(1)
B(1)=A(1)
C(2)=A(2)
B(2)=A(2)
BDPD=ABSCOM(A(1),A(2))
BDP=BDPD
MS=N-1
M=N
J=N
NM2P1=N*2+1
DO 10 K=3,NM2P1,2
 J=J-1
 H1=X*B(K-2)-Y*B(K-1)
 H2=Y*B(K-2)+X*B(K-1)
 B(K)=A(K)+H1
 B(K+1)=A(K+1)+H2
 H3=ABSCOM(A(K),A(K+1))
 H4=ABSCOM(H1,H2)
 H=H3
 IF(H3 .LT. H4) H=H4
 IF(H .GT. BDP) THEN
 BDP=H
 M=J
 END IF
END IF
IF(K .EQ. NM2P1) THEN
 GOTO 20
ELSE
 H1=X*C(K-2)-Y*C(K-1)
 H2=Y*C(K-2)+X*C(K-1)
 C(K)=B(K)+H1
 C(K+1)=B(K+1)+H2
 H3=ABSCOM(B(K),B(K+1))
 H4=ABSCOM(H1,H2)
 H=H3
 IF(H3 .LT. H4) H=H4
 IF(BDPD .LT. H) THEN
 BDPD=H
 MS=J-1
 END IF
END IF
10 CONTINUE
20 CONTINUE
U=B(2*N+1)
V=B(2*N+2)
UD=C(2*N-1)
VD=C(2*N)
H=ABSCOM(X,Y)
IF(H .NE. 0.0D0) THEN
 BDP=BDP*FLOAT(M+1)*H**M
 BDPD=BDPD*FLOAT(MS+1)*H**MS
ELSE
 BDP=ABSCOM(U,V)
 BDPD=ABSCOM(UD,VD)
ENDIF
BDP=BDP*GAMMA
BDPD=BDPD*GAMMA
IF(N .GT. 1) THEN
 H1=C(1)
 H2=C(2)
 NM2M3=N*2-3
 DO 30 K=3,NM2M3,2
 H=C(K)+X*H1-Y*H2
 H2=C(K+1)+Y*H1+X*H2
 H1=H
 30 CONTINUE
 UDD=2.0D0*H1
 VDD=2.0D0*H2
 RETURN
ELSE
 UDD=0.0D0
 VDD=0.0D0
 RETURN
ENDIF
END

DOUBLE PRECISION FUNCTION ABSCOM(X,Y)
!
!**
! This FUNCTION-subroutine calculates the absolute value of a *
! complex number (X+I*Y). *
! *
! INPUT PARAMETERS: *
! ================= *
! X : real part of the complex number. *
! Y : imaginary part of the complex number. *
! *
! OUTPUT PARAMETER: *
! ================= *
! ABSCOM : absolute value of the complex number. *
!
!
IMPLICIT DOUBLE PRECISION (a-h,o-z)

IF(X .NE. 0.0D0 .OR. Y .NE. 0.0D0) THEN
 IF(DABS(X) .GE. DABS(Y)) THEN
 ABSCOM=DABS(X)*DSQRT(Y/X/Y/X+1.0D0)
 RETURN
 ELSE
 ABSCOM=DABS(Y)*DSQRT(X/Y/Y+1.0D0)
 RETURN
 END IF
ELSE
 ABSCOM=0.0D0
 RETURN
END IF
END

SUBROUTINE MCONST(FMACHP, INFINY, SMALNO, BASE)

!**
!* *
!* This subroutine sets up some constants that are machine *
!* dependent. *
!* *
!* OUTPUT PARAMETERS: *
!* ================== *
!* FMACHP : machine constant for DOUBLE PRECISION. *
!* INFINY : largest representable floating-point number. *
!* SMALNO : smallest representable floating-point number. *
!* BASE : base of the floating-point number system used to *
!* represent machine numbers. *
!* *
!* Description of the auxiliary variables: *
!* =========== *
!* I : number of digits of the floating-point mantissa *
!* of DOUBLE PRECISION numbers. *
!* M : largest allowed exponent. *
!* N : smallest allowed exponent. *
!* *
!* IMPLICIT DOUBLE PRECISION (a-h,o-z)
!* DOUBLE PRECISION INFINY
!* BASE=8.0D0
!* I=29
!* M=322
!* N=293
!* FMACHP=1.0D0
!* 10 FMACHP=0.5D0*FMACHP
!* IF(1.0D0 .LT. 1.0D0+FMACHP) GOTO 10
!* FMACHP=2.0D0*FMACHP
!* INFINY=BASE*(1.0D0-BASE**(-I))*BASE**(M-1)
!* SMALNO=(BASE**(N+3))/BASE**3
!* RETURN
!* END
DOUBLE PRECISION FUNCTION SCALFC(NN, PT, FMACHP, INFINY, SMALNO, BASE)

This FUNCTION-subroutine calculates a scaling factor which is used to scale the polynomial coefficients.

INPUT PARAMETERS:

- NN : 1 + the degree of the polynomial.
- PT : nn-vector PT(1:NN) containing the absolute values of the polynomial's coefficients.
- FMACHP : machine constant for DOUBLE PRECISION.
- INFINY : largest representable floating-point number.
- SMALNO : smallest representable floating-point number.
- BASE : base for the floating-point number system used by the machine.

OUTPUT PARAMETER:

- SCALFC : scaling factor.

IMPLICIT DOUBLE PRECISION (a-h,o-z)
DIMENSION PT(NN)
DOUBLE PRECISION MAX, MIN , INFINY
HI=DSQRT(INFINY)
LO=SMALNO/FMACHP
MAX=0.0D0
MIN=INFINY
DO 10 I=1,NN
 X=PT(I)
 IF(X .GT. MAX) MAX=X
 IF(X .NE. 0.0D0 .AND. X .LT. MIN) MIN=X
10 CONTINUE
SCALFC=1.0D0
IF(MIN .GE. LO .AND. MAX .LE. HI) THEN
 RETURN
ELSE
 X=LO/MIN
 IF(X .GT. 1.0D0) THEN
 SC=X
 IF(INFINY/SC .GT. MAX) SC=1.0D0
 ELSE
 SC=1.0D0/(DSQRT(MAX) * DSQRT(MIN))
 END IF
 L=DLOG(SC)/DLOG(BASE)+0.5D0
 SCALFC=BASE**L
 END IF
RETURN
END
SUBROUTINE CDIV(A,B,C,D,X,Y)

!***
! This SUBROUTINE performs a complex division
!(X+I*Y) := (A+I*B)/(C+I*D).
!***

INPUT PARAMETERS:
A : real part of the numerator.
B : imaginary part of the numerator.
C : real part of the denominator.
D : imaginary part of the denominator.

OUTPUT PARAMETERS:
X : real part of the quotient.
Y : imaginary part of the quotient.

NOTE: If the denominator's real and imaginary parts are both equal to zero, the program is aborted with a detailed error message.

IMPLICIT DOUBLE PRECISION (a-h,o-z)
IF(C .NE. 0.0D0 .OR. D .NE. 0.0D0) THEN
 IF(A .NE. 0.0D0 .OR. B .NE. 0.0D0) THEN
 IF(DABS(A) .GT. DABS(B)) THEN
 U=A
 AM=1.0D0
 AN=B/A
 ELSE
 U=B
 AM=A/B
 AN=1.0D0
 END IF
 IF(DABS(C) .GT. DABS(D)) THEN
 V=C
 P=1.0D0
 Q=D/C
 ELSE
 V=D
 P=C/D
 Q=1.0D0
 END IF
 F=U/V
 V=P*P+Q*Q
 U=(AM*P+AN*Q)/V
 X=U*F
 U=(-AM*Q+AN*P)/V
 Y=U*F
 ELSE
 X=(A/C+B/D)*AM
 Y=(B/C-A/D)*AN
 END IF
ELSE
 X=A/C
 Y=B/C
END IF
RETURN
ELSE
 X=0.0D0
 Y=0.0D0
 RETURN
END IF
ELSE
 WRITE(*,*) 'DIVISION BY ZERO IN SUBROUTINE CDIV'
 STOP
END IF
END
INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 8725 John J. Kingman Rd., STE 0944
 Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, CA 93943

3. Mechanical Engineering Department Chairman, Code ME
 Naval Postgraduate School
 Monterey, CA 93943

4. Naval/Mechanical Engineering Curriculum Code 34
 Naval Postgraduate School
 Monterey, CA 93943

5. Professor Young S. Shin, Code ME/Sg
 Department of Mechanical Engineering
 Naval Postgraduate School
 Monterey, CA 93943
 yshin@nps.navy.mil

6. Visiting Professor Ilbae Ham
 Department of Mechanical Engineering
 Naval Postgraduate School
 Monterey, CA 93943

7. Frederick A. Costanzo
 Underwater Explosion Research Department (UERD)
 Naval Surface Warfare Center - Carderock Division
 9500 MacArthur Blvd.
 West Bethesda, MD 20817 - 5700
 CostanzoFA@nswccd.navy.mil

8. Steven E. Rutgerson
 Underwater Explosion Research Department (UERD)
 Naval Surface Warfare Center - Carderock Division
 9500 MacArthur Blvd.
 West Bethesda, MD 20817 - 5700
 RutgersonSE@nswccd.navy.mil
9. Greg Harris
 Code 440A
 Indian Head Division
 Naval Surface Warfare Center
 101 Strauss Ave
 Indian Head MD 20640-5035
 HarrisGS@ih.navy.mil