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THESIS ABSTRACT 
 
Josef Gordon 
 
Master of Science 
 
Department of Geography 
 
September 2013 
 
Title: Comparative Geospatial Analysis of Twitter Sentiment Data during the 2008 and 

2012 U.S. Presidential Elections 
 
 

The goal of this thesis is to assess and characterize the representativeness of 

sampled data that is voluntarily submitted through social media.  The case study vehicle 

used is Twitter data associated with the 2012 Presidential election, which were in turn 

compared to similarly collected 2008 Presidential election Twitter data in order to 

ascertain the representative statewide changes in the pro-Democrat bias of sentiment-

derived Twitter data mentioning either of the Republican or Democrat Presidential 

candidates. 

The results of the comparative analysis show that the mean absolute error 

lessened by nearly half – from 13.1% in 2008 to 7.23% in 2012 – which would initially 

suggest a less biased sample.  However, the increase in the strength of the positive 

correlation between tweets per county and population density actually suggests a much 

more geographically biased sample. 
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CHAPTER I 

INTRODUCTION 

 

The overarching goal of this thesis is to assess and characterize the 

representativeness of sampled data that is voluntarily submitted through social media.  

The case study vehicle used is Twitter data associated with the 2012 Presidential election.  

More specifically, those data were compared to similarly collected 2008 Presidential 

election Twitter data in order to ascertain the representative statewide changes from 2008 

to 2012 in the pro-Democrat bias of sentiment-derived Twitter data mentioning either of 

the Republican or Democrat Presidential candidates.  Additionally, representativeness is 

inferred from a change between 2008 and 2012 in the correlative strength of overall 

Twitter use and population density per county.   

2012 data were collected for the comparative analysis during the nine weeks 

leading up to Election Day, November 6th, 2012, and the 2008 data are referenced from 

the results of a separate study conducted by Gayo-Avello (2011).  The states of interest 

for the 2012 comparative analysis are California, Florida, Indiana, Missouri, North 

Carolina, Ohio, and Texas, as originally chosen by Gayo-Avello for his 2008 study.  

California and Texas were chosen as being representative of Democrat- and Republican-

leaning states, respectively, and the rest were chosen due to their characterization as 

swing states.  In 2008, Gayo-Avello’s findings suggested a strong pro-Democrat sample 

bias in Twitter sentiment relative to candidate mentions, which he suggests is due in large 

part to the self-selection of urban and young voters favoring Obama. 
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The measure of sample bias for Gayo-Avello’s study (and repeated again for the 

2012 comparative analysis) is derived from the attribution of “votes” to Twitter users, 

which are then compared with election results.  Twitter “votes” are attributed by the 

sentiment of individual tweets mentioning Obama or Romney (or McCain in 2008), and 

then aggregated to individual users.  Sentiment is measured by counting the number of 

positive or negative words appearing in conjunction with a candidate’s name.  For both 

this thesis and the comparative analysis by Gayo-Avello (2011), the positive and negative 

words used in the sentiment analysis are sourced from a previously published subjectivity 

lexicon (Wilson 2005). 

Based on the 2008 Presidential election Twitter data analysis, Gayo-Avello 

(2011) concludes that Twitter data results in a biased sampling that cannot reliably 

predict Presidential election outcomes.  These results provide a foundation for 

comparative analysis.  By conducting a similar study, this thesis can document the extent 

to which the pro-Democrat sample bias lessened or increased relative to the 2008 study, 

as evidenced by a change in the mean absolute error (MAE) between statewide actual 

election results and Twitter sentiment-derived results, as well as a change in the 

correlative strength of overall Twitter use and population density per county.  This thesis 

is driven by two central research questions. 

1. What is the extent to which geographic information 

volunteered through social media has diffused from 

2008 through 2012? 
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2. What are the relative urban and rural patterns of 

geographic information volunteered through social 

media in 2012? 

Although the predictivity of social media relative to mass events is an important 

component of the comparative analysis, the central conceptual issue at hand is the extent 

of participation, or rather, the diffusion of use of the technological means of data 

production (in this case, Twitter) from 2008 to 2012, whereby the Presidential elections 

simply represent convenient and much-discussed occurrences, rather than events of 

primary interest. 

 The results of the comparative analysis show that the MAE lessened by nearly 

half – from 13.1% in 2008 to 7.23% in 2012 – which would initially suggest a less biased 

sample.  However, the increase in the strength of the positive correlation between tweets 

per county and population density actually suggests a much more geographically biased 

sample.  In all likelihood, the lessening of the MAE is due to increased electoral 

contestation, although the effect of the diffusion of use into pro-Republican demographic 

sectors cannot be ruled out. 

 Increased geographic bias, trending toward a concentration of use in high-density 

urban areas is also documented and not surprising in light of the sheer magnitude of 

overall increased use of Twitter – from 20,000 users collected over 6 months in 2008 to 

490,000 users collected over 2 months in 2012 – as well as in light of the relative 

newness of the technology in 2008. 
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CHAPTER II 

BACKGROUND 

 

 GIS has benefited in the last few decades from the advent of internet and mobile 

technologies, which have in turn helped facilitate the growth of participatory GIS in the 

1990s, volunteered geographic information (VGI) alongside Web 2.0 at the turn of the 

century, and currently the popular field of Big Data research.  This very general 

developmental trend has been paralleled by a critical interest in the democratization of 

GIS and the process of data production. 

 Three fundamental questions have arisen throughout the development of 

geospatial and data production technologies, namely (1) who takes part, (2) how does this 

participation occur, and (3) what are the motivating factors for the participants in terms of 

data production? 

 

Participatory GIS and Citizen Science 

 

Participatory GIS has its roots in citizen science, and throughout much of its 

development has been acted out in the sphere of academic and public agency research, 

where the use of GIS has been facilitated or fostered by traditionally expert knowledge-

holders.  The focused and well-planned recruitment of participants on the part of 

researchers has often been central to participatory GIS projects, and has been motivated 

in part by the desire to both democratize the process of data production and promote civic 

engagement.  Through the democratization of the traditionally top-down expert-oriented 



5 
 

process of data production, the fulfillment of public interest via participatory GIS may be 

strengthened by the inclusion of local citizen knowledge. 

In the case of Weiner’s study (1995) in South Africa, 100 village elders were 

recruited to provide localized geographic and cultural information for a GIS-based land 

reform project, which was largely an attempt to allow alternative voices to contribute to 

the traditionally top-down development planning process.  Guided by the primary 

stakeholders, Weiner was able to identify important data, goals, and decisions that may 

not have been illuminated without community participation. Similarly, Jordan’s study 

(2002) recruited locals in Nepal to help inform assessments of forestry-related issues 

regarding conflict resolution, access to resources, and biodiversity preservation. 

In both instances, although the empowerment of local community members 

alongside the democratization of development processes via data production were explicit 

goals of the participatory GIS projects, the recruitment of individuals was also predicated 

upon the idea that the locals simply had a better idea of what was actually happening on 

the ground, and thus the data would be of higher quality and subsequent policy decisions 

would be more informed. 

Historically, as geospatial tools developed, the methods of recruitment and means 

of data production (e.g., online surveys, smartphone apps) lent themselves toward greater 

flexibility of the application of participatory GIS projects, ranging from public online 

surveys of attendants of U.S. National Parks (Brown 2011), to citizen-based noise studies 

of cityscapes with mobile phones (Kanjo 2009 and Maisonneuve 2009) to smartphone 

transportation analyses based on bicycle commuter routes (Kessler 2011). 
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Web 2.0 and VGI 

 

The same development of geospatial and internet technologies that diversified the 

spectrum of research in participatory GIS also brought about the proliferation of newer, 

less solicited types of data production, which have generally been referred to as 

volunteered geographic information (VGI).  The lines between participatory GIS and 

VGI blend, and sometimes distinctions of levels and types of participation/solicitation 

become meaningless, but essentially, the general mode of data production in VGI centers 

around more open-ended and unsolicited avenues of voluntary participation, as compared 

with the more focused or guided studies that have comprised much of participatory GIS. 

The advent of Web 2.0 has created an active rather than a passive Internet society, 

where users produce rather than simply consume data.  The bulk of citizen-based data 

production has in recent years shifted away from targeted participatory studies, which is 

not to say that participatory GIS has waned, but rather that the means (e.g., smartphone) 

and ends (e.g., FourSquare check-ins) of unsolicited VGI production have grown in 

popularity in day-to-day lives.  Parallel to the recent rise of social media, the magnitude 

and variety of unsolicited types of data production have rapidly increased (e.g., 

Facebook, Yelp, TripAdvisor, Flickr, and Twitter).  Over the past decade, it has become 

normalized for individuals to catalog and publish daily activities, emotions, and opinions, 

resulting in an immeasurable amount of publicly available, freely volunteered (and 

geographic) Big Data. 
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Big Data 

 

Understandably, the increased magnitude of citizen-based data production has 

garnered interest in a wide range of Big Data and social media research, including studies 

on demographics (Mislove 2011), online information diffusion (Van Liere 2010), internet 

geographies (Takhteyev 2012), sentiment analysis (Thelwall 2011), ethics and privacy 

(Henderson 2012), emergency response (Starbird 2011), health and epidemiology 

(Signorini 2011), citizen journalism (Murthy 2011), media discussions (Bruns 2012), 

urban and transportation analysis (Ueno 2012), financial and market trends (Bollen 

2011), social activism (Vallina-Rodriguez 2012), and mass events ranging from movie 

premieres (Asur 2010) to elections (Gayo-Avello 2011).  Nonetheless, despite the topical 

and technological novelty, the excitement around Big Data is mitigated by the intellectual 

need to address the questions of who participates, how, and why they participate.  

Considerations of the nature of participation implicitly reference the idea that large 

internet-based digital repositories simply reflect population distributions, and thus show 

us pictures of only urban life while underrepresenting rural or unconnected areas.  Due to 

the necessary technological facilitation of participation, the issue of access has been 

inextricably intertwined with citizen-based data production since its beginnings in 

participatory GIS and VGI, where despite the fact that access has generally “expanded for 

the most advantaged users, at the bottom of the digital divide relatively little has 

changed” (Elwood 2006: 694). 

The advent of cheaper and more advanced technologies may serve to eventually 

lessen the digital divide by providing a wider range of users access to the means of data 
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production, as has been argued with the potential of cheap smartphones to connect the 

developing world (Boyera 2007, Jensen 2012).  In opposition, there are claims that 

smartphone ubiquity is a myth, as in the case of the United States, where nearly 16% are 

left out of the data production process due to poverty (Pernisco 2011).  Furthermore, as 

the growing interests of government, academia and industry focus upon the potential of 

citizen-based data to provide meaningful insights into societal trends or environmental 

conditions, Big Data research should be approached with the critical understanding that 

new technologies may inadvertently widen the “’digital divide’ between those 

adopting/having the technology and those avoiding/lacking it” (Newman 2012: 301).  

Perhaps the most meaningful part of Newman’s statement is that it’s not always about 

access, but also about choice, which is central to the issue of the types of participation 

that occur in the very general realm of Big Data.  In other words, not every person with a 

smartphone chooses to put their thoughts, opinions, or ideas up for public consumption. 

Likewise, with regards to any responsible analysis of Twitter data, access to the 

means of data production is certainly an issue, as evidenced by Twitter’s reflectance of 

overall patterns of internet use globally (i.e., the disproportionate presence of U.S. and 

Europe) and nationally (i.e., the disproportionate presence of highly populated areas).  

However, access alone is not the only reason people use Twitter; participation is 

characterized by age and culture demographics.  While some demographics may 

currently be the primary contributors to publically generated data via social media, the 

demographic composition will likely change over time, as has been evidenced by the 

continued dissemination of Facebook out of the initial college-aged users.  For the time 
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being, however, the majority of Twitter users are under 30, and they continue to be the 

fastest growing demographic (Smith 2012). 

Despite the uneven representation of sample populations, the attractiveness of 

citizen-based Big Data is understandable, due in part to its unprecedented size, as well as 

to its potential reactivity to real-world events.  One of the obvious low-hanging fruits in 

Big Data research, and in Twitter research particularly, is political analysis.  The 

predictive capacity of Twitter data has been a popular topic in recent years, both 

internationally and in the United States, and so far there has been mixed reviews 

regarding accurate Twitter-based election predictions. 

 

Twitter Elections 

 

Initial studies often presented optimistic results regarding the predictive capacity 

of Twitter data relative to election results.  Some researchers had found that the volume 

of candidate or party mentions alone reflected election results.  In the case of Spanish 

elections, Borondo (2012) found that votes and tweets correlated closely and predicted a 

Zapatero victory in 2004 and a Partido Popular victory in 2011.  In the 2010 Brazilian 

Presidential election, Dilma was the predicted winner, by virtue of single tweet mentions, 

over Serra and Marina respectively, with a mean absolute error of 4.07% (Trumper 

2011).  Perhaps most famous, the 2009 German federal elections were found to have 

incredibly high correlations between party tweet mentions and election results, with a 

mean absolute error of 1.65% among six parties (Tumasjan 2010 and 2011).   

Other studies have found that although volume of tweets alone are predictive, 

these measures are supplemented by the sentiment of tweets affiliated with mentions 
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(Bermingham 2011, Cummings 2010).  Additionally, another vein of election-oriented 

Twitter research has focused solely upon the efficacy of sentiment analysis (Ceron 2012, 

Lampos 2012, and Sang 2012). 

 In an attempt to draw out some of the complexities of Twitter data, further 

research has shed light on the effect that temporal and user sampling has on the 

predictivity of tweets.  One study presents varying degrees of predictivity according to 

aggregation of types of users (i.e., high or low frequency of use), as differentiated by 

magnitude of tweets (Chen 2012).  Another explores temporally segmented samples prior 

to election (Bermingham 2011). 

Despite the perceived general optimism, contrarians are skeptical about the 

veracity of studies that promote the predictive capacity of Twitter data.  Some of this 

skepticism relates to the issue of transparency, simplicity, and replicability of methods, 

especially of those studies whose findings are based upon word counts (Gayo-Avello 

2012 and Jungherr 2011). 

Combined with skepticism regarding methodology, other studies have found weak 

correlations between election-oriented Twitter data and real-world election results, and 

thus serve as empirical refutations of positive results.  O’Connor’s (2008) study found 

that, although sentiment correlated with Obama’s job approval ratings, it did not show 

meaningful positive correlations with electoral predictions, as derived from the polarity 

lexicon OpinionFinder (O’Connor 2010).  Similar results were found in Gayo-Avello’s 

2008 study of the U.S. Presidential election, and were attributed in part to the issue of the 

ineffectiveness of simplistic sentiment analyses, in which tweets were mislabeled as 

positive or negative due to subtleties or linguistic complexities (Gayo-Avello 2011). 
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 Another 2008 study found that sentiment analysis of time-series data too volatile to 

predict future opinions in the U.S. Presidential election (Bravo-Marquez 2012).  In the 

2010 U.S. Senate special election in Massachusetts, Chung (2011) found that neither 

volume of tweet mentions nor sentiment analysis accurately predicted the winner. 

Additional skepticism surrounds the inherent issue of uncorrected sample bias 

(Gayo-Avello 2012, Metaxas 2011 and 2012).  Gayo-Avello flatly states that “until 

Social Media becomes regularly used by the vast majority of people, its users cannot be 

considered a representative sample and forecasts from such data will be of questionable 

value at best” (2011: 14).  Some studies have recently begun to model results using age-

based corrections, though some assumptions are required due to uncertainty regarding the 

age of the subset of Twitter users who take part in election-oriented discussions (Choy 

2011, Choy 2012). 

 

Thesis Data Baseline 

 

 The findings and conclusions from Gayo-Avello’s 2008 research (2011) serve as 

the baseline for the 2012 comparative analysis.  At the time of publication, this study was 

one of the more critical refutations of the optimism originally associated with Twitter 

data’s predictive capacity.  He noted several fundamental flaws in the previous research.  

One of his criticisms was that simple word counts of candidate mentions in the tweeted 

body of text alone did not provide evidence of the actual meaning of the tweet.  In turn, 

deriving meaning or opinion from the tweet by way of simple sentiment analysis – such 

as counting words associated with other words (i.e., positive or negative words associated 
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with Obama or McCain) – was also inadequate for Twitter data analysis due to the 

shortness of the tweets and the inability to parse linguistic subtleties.   

After testing four types of sentiment analysis, and comparing the results of these 

against a subset of tweets for which he knew the user’s true voting intent – as published 

on TwitVote – Gayo-Avello found that all of the analyses performed poorly.  Nonetheless 

and without an alternative, Gayo-Avello chose to proceed with the least poor form of 

sentiment analysis, the polarity lexicon associated with OpinionFinder (Wilson 2005), 

with the knowledge in hand that tweets themselves are often too short and, for many 

infrequent users, too few, to provide meaningful aggregate user sentiment.  Again, this is 

no slight against the polarity lexicon itself, but rather an issue with the structure and 

content of the tweets. 

Overall, the study’s results found that Twitter sentiment largely over-predicted 

Obama wins in all seven states of interest.  He suggests the young age and urban 

geographic bias skewed the apparently pro-Democrat sample. 
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CHAPTER III 

METHODOLOGY 

 

 In order to make a comparative analysis between the available 2008 data from 

Gayo-Avello (2011) and the 2012 data gathered in this current study, similar methods 

were applied.  Though, these methods were extended for this study to investigate spatial 

patterns associated with the 2012 Presidential election tweets.  The following section 

documents methods associated with the 2012 data collection and analysis.  

 

Twitter Streaming API, Amazon Web Services, and Hive 

 

Twitter data were collected for nine weeks prior to the 2012 U.S. Presidential 

Election – from 12:00 a.m. on Tuesday, September 4th until 11:59 p.m. on Tuesday, 

November 6th.  The method of collection entailed the use of Twitter’s Streaming API, 

which was accessed using a cURL command with Mac OS X Terminal.  Irrespective of 

location, Twitter data was collected by tracking the keywords “Obama” or “Romney”. 

The nine weeks of tweets mentioning “Obama” or “Romney” were uploaded to 

Amazon Web Services (AWS) S3 storage servers using the Import/Export option.  The 

Import/Export option entailed delivering a hard drive to AWS, whereupon the data were 

directly uploaded to pre-existing user-specified data buckets.  Although more expensive 

than using an internet connection, the Import/Export option was quicker. 

The subsequent computation was run with an interactive Hive session, which 

parsed the Twitter data located on S3 servers.  The interactive Hive session was set up 

using Elastic Compute Cloud (EC2) and Elastic MapReduce (EMR) tools. 
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In order to parse the Twitter data, one tweet at a time – with each tweet stored as a 

single line of text – a JSON Serde was needed.  A JSON Serde essentially functions as a 

means of identifying and then accessing different types of data within nested JSON files, 

where some of the data is embedded within parent data formats (e.g., array, map, struct).  

These nested data types populated the fields that would comprise the tabular/spatial GIS 

database in the subsequent steps.  The particular Serde that worked best for the nested 

JSON files was downloaded from GitHub (github.com/mattbornski/Hive-

Demo/tree/master/exercises/lib).  The two previous versions of this Serde (e.g., 0.1 and 

0.2) did not entirely work with the complicated nested structure of Twitter data, and 

would sometimes return NULL values even when the data entries were known to exist.  

The third version of the Serde (e.g., 0.3) was able to extract the necessary fields. 

 The extracted fields included the tweet text, unique tweet ID (i.e., numeric and 

string format), longitude, latitude, timestamp, default profile place settings (i.e., city, 

state, and/or country), user ID (i.e., numeric and string format), and self-identified user 

location, which was typed in by the user and varied in levels of specificity.  In order to 

facilitate the comma-separated importation of text data into tabular format, commas were 

stripped from three fields – including the tweet, the place full name (i.e., city, state, 

and/or country), and user location. 

Due to the compartmentalized storage of files on S3 servers, single chunks of data 

(e.g. original Twitter JSON files) are not allowed to exceed a specified file size.  This 

compartmentalization of data was mirrored in the final product of the Elastic MapReduce 

job, where each chunk of JSON data resulted in an individual comma-separated text file, 
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resulting in hundreds of small output files that were downloaded and joined for the 

subsequent sentiment and geospatial analysis. 

 

Parsing Locations from Tweets 

 

 Location data were extracted from four fields in the raw JSON files.  Two of the 

fields were geotagged and contained longitude and latitude, respectively, while the other 

two fields contained semantic user locations, which included reference to individual cities 

and states.  Most (approximately 90%) of the geographically-referenced tweets were 

identified based on the user location field, which was typed into the profile by the user.   

 The geotagged tweets (i.e., containing lat/long information) were identified and 

extracted with Hive and the JSON Serde by detecting the presence of longitude and 

latitude coordinates.  These tweets were then brought into ArcGIS by importing a CSV 

file into ArcMap as an XY Event Layer, a process which references the appropriate 

coordinate fields.  These tweets were then cross-referenced against U.S. Census data in 

order to attribute them with county names. 

Other locations were extracted by identifying tweets that contained a location 

reference – either in the user location field or the place full name field – to the seven 

states of interest.  Subsequent analysis at the county level was done by matching 

mentions of census places (e.g., cities, townships, villages) within either the user location 

or place full name field. 

 The process of matching mentions of census places within the user location or 

place full name fields of the tweet involved developing a Python script that would match 

place names within substrings of tweet location descriptions.  The need to identify 
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substrings was due in part to the messy nature of the user location field, which could 

hypothetically include any variation of individually customizable location references (i.e., 

Upper East Side Indianapolis, or +254 Fort Wayne In).  The script required two CSV 

inputs – a file containing the tweets themselves, and a file containing a list of Census 

places. 

 In order for the location parsing process to work, the list of Census place names 

needed to have their categorical descriptors stripped from within the name field (e.g., 

city, village, and township).  The Python script matched the Census place name with any 

mention of it in the location description field of the tweet, and then extracted the 

matching place name from within the tweet’s location fields and wrote the place name to 

a new field.  The final result of the location parsing process was an individual CSV file 

for each state, which was then joined back into a GIS database containing the Census 

place name field, and analyzed in ArcMap as points (i.e., centroids of Census places). 

 

Sentiment Analysis 

 

The polarity lexicon published by Wilson (2005) is comprised of positive and 

negative words, and the sentiment analysis for both 2008 and 2012 simply measured the 

ratio of positive and negative words in a single tweet that appeared in conjunction with 

the mention of a Republican or Democrat candidate’s name.  A vote was determined for 

each tweet according to its sentiment, or ratio of positive and negative words, and these 

individual “tweet votes” were aggregated to the user IDs in order to determine a user’s 

overall sentiment toward the candidates, thus inferring a user’s individual vote.  This 
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method mitigated the effect of varying degrees of user participation, where 1% of users 

contributed approximately 25% of tweets. 

The sentiment analysis involved using a Python script similar to the one used in 

the aforementioned location analysis process.  The script required three CSV inputs – one 

containing the Twitter data and one list each of positive and negative words from the 

polarity lexicon.  The Python script detected, extracted, and counted any matching words 

from the polarity lexicon corpus with any matching words in the body of the tweets 

themselves. 

 

Comparison with Election Data 

 

Once all of the tweets were georeferenced, the analysis of correlations between 

Twitter vote sentiment, Census, and election data was done in ArcMap and Excel.  

Twitter points were aggregated to Census county polygons.  2012 Presidential election 

results were sourced from CSV files downloaded from the individual state-level 

Huffington Post election websites (http://elections.huffingtonpost.com/2012/results). 

The CSV files containing election results were brought into ArcMap and joined 

with the feature layer that contained both the Twitter results and Census data.  From 

there, statewide and county level tabular correlations were calculated for total amounts of 

Twitter use, Twitter sentiment results, Census population statistics, and actual 2012 

Presidential election results. 
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CHAPTER IV 

RESULTS 

 

 Following a report of the overall sentiment analysis, this section organizes the 

results by each of the two research questions. 

 

Sentiment Analysis 

 

Approximately 1/3 of the 3.6 million tweets that contained both location 

information and candidate mentions were discarded due a neutral categorization by the 

sentiment analysis.  Neutral categorization is not caused solely by a lack of sentiment in 

the tweets, but also because of the limitations of the polarity lexicon, which, for instance, 

does not contain the word voted, and thus the term – I voted Romney because I’m 

Republican – is categorized as neutral, when it is an obvious endorsement.  Likewise, the 

phrase - once again the media treated Obama with kid gloves during WH news 

conference – despite being implicitly critical of Obama, or at least critical of an uncritical 

media, is considered neutral due to the lack of any explicitly negative words.  Also, 

tweets that contain the same amount of positive and negative words are understandably 

considered neutral, as in the case of the phrase - best thing about driving from Dallas is 

reading the ridiculous anti-Obama billboards – where best and ridiculous cancel each 

other out.   

Although revelations surrounding the limitations of simple sentiment analysis are 

far from novel, full disclosure is warranted nonetheless – which Gayo-Avello (2011) 

points out, as well – that without sufficient regard to linguistic complexities and implied 
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meanings, the method of counting positive and negative words is a significant source of 

undetermined error and omission. 

 By measuring candidate mentions alone, the topical bias is more pronounced than 

sentiment-derived bias, as shown in Table 1.  This difference is likely due in part to the 

twofold effect of incumbency, where Obama is referenced in non-election tweets, simply 

as a side-effect of being the acting President, and also because the overall rhetoric of the 

election is often situated around the performance of the defending incumbent. 

 
Table 1: Possibly an effect of incumbency, the statewide percentages of Twitter mentions 
of Obama outweigh the percentages of sentiment-derived Twitter “votes” for Obama. 

 

Actual % 
Obama Votes

Twitter % 
Obama "Votes"

Twitter % 
Obama Mentions

California 60.2 55.6 56.6
Florida 50.1 54.7 60.5
Indiana 43.9 53.8 60
Missouri 44.4 53.8 60.8

N. Carolina 48.4 55.1 59.3
Ohio 50.7 53.9 59
Texas 41.4 53.5 63.5  

 
 

Research Question One: What Is the Extent to Which Geographic Information 

Volunteered through Social Media Has Diffused from 2008 through 2012? 

 

The predictive capacity of the 2012 Twitter-derived sentiment data showed a fair 

improvement over the 2008 results of Gayo-Avello’s study, with a Mean Absolute Error 

(MAE) of 7.23% in 2012, as compared with 13.1% in 2008.  Table 2 compares the results 

by state and shows a lessening in 2012 of Twitter error in every state except California.  
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One possible inference from the lessened MAE is that the pro-Democrat bias 

evidenced in 2008 lessened in 2012.  The effect of a lessened bias, however, cannot be 

entirely differentiated from the conflating effect of Twitter users simply changing 

opinions, or in other words, the difference in MAE may simply suggest a more contested 

election. 

 
Table 2: Comparison of 2008 and 2012 U.S. Presidential Elections using sentiment 
derived from tweets which mentioned either Obama or Romney.  The pro-Democrat bias 
from 2008 has lessened according to the MAE. 
 

State
2008 % Actual 
Obama Votes

2008 % 
Twitter Votes 2008 Twitter Error

2012 % Actual 
Obama Votes

2012 % 
Twitter Votes 2012 Twitter Error

California 62.28 62.70 0.42 60.24 55.62 -4.62
Florida 51.42 66.20 14.78 50.10 54.69 4.59
Indiana 50.50 64.70 14.20 43.93 53.84 9.91
Missouri 50.07 68.10 18.03 44.38 53.76 9.38
N. Carolina 50.16 66.60 16.44 48.35 55.07 6.72
Ohio 52.31 59.80 7.49 50.67 53.94 3.27
Texas 44.06 64.40 20.34 41.38 53.53 12.15

MAE 13.10 MAE 7.23 
 
 

The influence of greater electoral contestation, as opposed to the possibility of a 

lessening of pro-Democrat bias, is supported by the lessening of percentages of actual 

Obama votes for each state.  Additionally, as shown in Table 3, the general lessening of 

the strength of the correlation between the Democrat vote percentages and population 

density by county suggests a more contested election in the traditionally urban 

strongholds that supported Obama in 2008.  On the other hand, as the blatant exception to 

the trend, the increase of the positive correlation in Missouri between Democrat vote 

percentages and population density conversely suggests an increased geographic 

polarization of political opinion within that state. 
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Table 3:  A general lessening between 2008 and 2012 of the positive correlation 
(Pearson’s r) for Democratic vote percentage and population density. 
 

2008 Democrat Vote % 
vs Population Density

2012 Democrat Vote % 
vs Population Density

California 0.4069 0.407
Florida 0.474 -0.4858
Indiana 0.5452 0.4894
Missouri 0.5239 0.7104

N. Carolina 0.3968 0.2288
Ohio 0.5676 0.5245
Texas 0.4789 0.2755  

 
In terms of pro-Democrat Twitter bias, the most telling correlation is between 

Twitter use and population density by county, as shown in Table 4.  With the exception 

of California, the positive correlation between Twitter use and population density 

increased substantially in the 2012 election, which shows that the issue of geographic 

sample bias is currently more pronounced than it was in 2008.  Perhaps unsurprisingly, 

Twitter use is growing along existing patterns of population distribution. 

 
Table 4:  A general increase between 2008 and 2012 of the positive correlation 
(Pearson’s r) for number of Twitter users and population density. 
 

2008 Twitter Users 
vs Population Density

2012 Twitter Users 
vs Population Density

California 0.9452 0.6435
Florida 0.1768 0.6465
Indiana 0.2956 0.9239
Missouri -0.0079 0.7998

N. Carolina 0.5425 0.8366
Ohio 0.6343 0.9099
Texas -0.0535 0.8699  
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Research Question Two: What Are the Relative Urban and Rural Patterns of 

Geographic Information Volunteered through Social Media in 2012? 

 

 Based on the available data from the Gayo-Avello (2011) results from the 2008 

election, only gross geographic patterns can be compared.  But, the data gathered for the 

current study, provide a more detailed look at current urban and rural trends in the use of 

social media to share volunteered geographic information.   

The geographic bias toward areas of increased urban density is highlighted when 

we look at only the counties that have statistically representative Twitter samples, as seen 

in Table 5.  The vast majority of tweets come from a subsection of counties that contain 

high popoulation density and overall high proportion of state populations.  For example, 

in Texas 97.2% of the overall Twitter sample comes from approximately 1/3 of the 

state’s counties, which in turn contain 88.1% of the state’s total population.  In another 

example, 94.7% of the overall Twitter sample in North Carolina comes from 2/5 of the 

state’s counties, which in turn contain 77.6% of the state’s total population. 

 The fairly low threshhold of counties with statistically representative Twitter 

samples, as compared with the high percent of population living in those counties, points 

out the unequal spatial distribution of Twitter, and the general undersampling of less 

populated areas. 

 Essentially, except for California and Florida, the other five states in question 

show an oversampling of heavily populated counties, as evidenced by the difference 

between the percentage of Twitter users from these counties and the percentage of the 

state’s total population that these counties comprise.  The fact that Twitter use mirrors 
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population distribution, as shown in Table 4, is not surprising, but the oversampling of 

heavily populated areas is an important consideration in election analysis, where distinct 

correlations also exist between voting trends and population distributions.  

 
Table 5: Where the percentage of tweets outweighs the percentage of population (from 
counties with statistically representative Twitter samples), high population counties are 
being disproportionately weighted. 

 

% of Twitter Users from 
Counties with Statistically 

Representative Twitter 
Samples

% of Counties with 
Statistically Representative 

Twitter Samples

% of Population from 
Counties with Statistically 

Representative Twitter 
Samples

California 99.5 66.7 98
Florida 99.1 53.7 94.5
Indiana 91.3 28.7 69.7
Missouri 87.8 13 60.1

N. Carolina 94.7 40 77.6
Ohio 96.8 53.4 86.3
Texas 96.8 21.7 84.9
Total 97.2 33.2 88.1

 

 

Another way to understand the effect that oversampling heavily populated areas 

has on potential election-oriented Twitter sentiment, as shown in Table 6, is to show that 

the counties with statistically representative Twitter samples also tend to have higher 

Democrat vote percentages in the 2012 election. 

In other words, most of the Twitter data are being sourced from counties with 

increased average percentages of Obama voters.  Although the difference in statewide 

percentages in Table 6 are not enormous, the increased average Democrat voting results 

in heavily populated counties, in combination with the oversampling of Twitter data from 

those counties, serves as a possible means of inflation of pro-Democrat Twitter 

sentiment. 
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Table 6: The counties with statistically representative Twitter samples also have higher 
Democrat vote percentages. 
 

% Actual Obama 
Vote for All Counties 

(Mean)

% Actual Obama Vote for 
Counties with Statistically 
Representative Twitter 

Samples (Mean)
California 52.6 56.1
Florida 39.9 45
Indiana 38 43.2
Missouri 33.7 42.7

N. Carolina 44.5 44.7
Ohio 43.1 46.7
Texas 28.3 34.4
Total 36.8 44.3  

 
Twitter’s pro-Democrat geographic bias toward heavily populated counties is 

readily apparent when displayed cartographically, as seen in Figure 1.  High 

concentrations of tweeters visibly stand out in the heavily populated counties that voted 

for Obama in the 2012 election.  The pro-Democrat geographic bias is especially visible 

in California and Florida, where all of the counties with high total populations (shown in 

black) are also counties that contained high amounts of Twitter users, which in turn voted 

for Obama in the 2012 Presidential election (shown in dark blue), with the exception of 

Orange County, California (shown in dark red).  Again, in Indiana, the same pro-

Democrat geographic bias is apparent, where the only county with high population levels, 

Marion County (shown in gray), is also simultaneously a place with high amounts of 

Twitter users and a pro-Democrat election result (shown in dark blue).   

The pro-Democrat geographic bias is also evident in North Carolina and Ohio, as 

seen in Figure 2, where all of the counties that have high populations (shown in gray or 

black) also have high amounts of Twitter users and pro-Democrat election results (shown  



25 
 

 

California     Florida 

 

 

Indiana     Missouri 

 

Figure 1: For California, Florida, and Indiana, counties with high amounts of Twitter 
users (shown in dark blue or red) also tend to have high total populations (shown in 
grayscale), which in turn tend to vote Democrat (shown in dark blue). 
 

in dark blue).  Texas is similar in its display of Twitter’s pro-Democrat geographic bias, 

although there are some exceptions in counties around Dallas.  These exceptions to the 

trend, as also evidenced in Missouri around Kansas City (seen in Figure 1), show that 
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geography is only a part of the story.  Despite having high amounts of Twitter users in 

highly populated counties that voted for Romney (shown in dark red), the demographic 

composition of Twitter use in these pro-Romney counties in Texas and Missouri is likely 

to be young, urban, and pro-Democrat. 

 

North Carolina    Ohio 

 

Texas 

 

Figure 2: For North Carolina, Ohio and Texas, counties with high amounts of Twitter 
users (shown in dark blue or red) also tend to have high total populations (shown in 
grayscale), which in turn tend to vote Democrat (shown in dark blue). 
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CHAPTER V 
 

CONCLUSION 

 

 The lessening of the MAE of the sentiment-derived Twitter election results from 

13.1% in 2008 to 7.23% in 2012 would initially suggest that (1) Twitter is more 

predictive in 2012 than it was in 2008, because (2) Twitter’s pro-Democrat bias had 

lessened due to a diffusion of use over the previous four years.  Though, in actuality, the 

lessening of the MAE is likely due in large part to a more contested election in 2012, as 

evidenced primarily by closer statewide election results, and also by the lessening of the 

correlation between actual Democrat votes and population density. 

 The likelihood that the lessened MAE does not actually provide evidence of a 

greater diffusion of Twitter use is also statistically corroborated by the exponential 

increase in magnitude of use – from 20,000 users over six months in 2008 to 490,000 

users over two months in 2012 – alongside the strong increase in positive correlation 

between Twitter use and population density.  The increased correlation between Twitter 

use and population density shows that Twitter use in 2012 is more geographically biased, 

which would suggest that Twitter use in 2008 was at an early stage of demographic 

maximization, and that the concentrated utilization of Twitter in urban areas had yet to 

fully materialize. 

 Because of Twitter’s tendency to closely follow lines of population distribution, 

and in combination with the current tendency in national politics to show a positive 

correlation between population density and counties with pro-Democrat election results, 

there is also a natural correlation between high levels of Twitter use and counties with 
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pro-Democrat election results.  Perhaps more interestingly, however, Twitter data tend to 

slightly oversample highly-populated counties, which in turn tend to further weight the 

importance of counties with pro-Democrat election results. 

 Nonetheless, despite strong evidence of geographic bias in Twitter use, and a 

prevalence of Twitter to slightly statistically overweight areas of greater population with 

pro-Democrat voting results, geography alone does not explain the pro-Democrat bias, as 

evidenced in part by the anomalous counties in Texas and Missouri that show high 

amounts of Twitter use in highly populated counties that voted for Romney in 2012. 

 One very prevalent non-spatial consideration, of course, is that Twitter use in 

2012 has steadily increased among young people, as evidenced by the Pew Research 

Institute (Smith 2012).  Another perhaps more elusive and non-spatial reason for the pro-

Democrat bias, in the specific case study of Twitter, is related to cultural factors of 

participation, where urban areas have a greater lifestyle predilection toward internet and 

social media use than rural areas.  This might also be due, in part, to simple issues of 

infrastructural capacity and access to the means of participation (e.g., internet, cellphone 

networks). 

Sample bias in social media along lines of population distribution are not 

surprising, and pro-Democrat bias in Twitter in particular is also understandable, as 

evidenced by the aforementioned results and conclusions, but it should also be 

understood that, in a manner of speaking, these types of Big Data studies can make 

mountains out of molehills.  The “votes” in this study are often based upon individual 

users’ few casual observations of candidates over a period of months, the “sentiment” of 

which is being derived by arbitrarily counting positive and negative words.  The link is 
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tenuous at best, and the method runs the risk of over-valuing otherwise offhanded and 

reactive moments in time.  The primary difference between analyzing unsolicited Twitter 

data (as it pertains to political sentiment) and analyzing political surveys, is that the 

respondents of traditional surveys are (hopefully) thoughtfully engaging in explicit 

questions referencing the extent of their approval of the candidates.  A tweet, on the other 

hand, hypothetically, may simply be a negative response to a poorly designed jingle or 

montage in a candidate’s ad, and the polarity lexicon might very well mistake the 

meaning anyway. 

 Nonetheless, Big Data research will likely continue to grow in popularity as more 

data and means of analysis become available, and the arguments toward infrastructural 

proliferation of the means of data production will also probably bear fruit in the long run.  

The less urban areas will likely become more represented over time.  For now, it is safe 

to say that Big Data, or at least big Twitter data, as Gayo-Avello originally found in his 

2008 study (2011), is too biased a sample of urban and young people to be used for 

general purposes of electoral prediction, and more importantly, Twitter is more 

geographically biased now than it was in 2008. 
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APPENDIX 

CODE ASSOCIATED WITH THESIS 

 

The cURL command used to call on Twitter’s Streaming API 

• curl -u username:password 

"https://stream.twitter.com/1/statuses/filter.json?track=Romney,Obama" > 

$(date +%Y_%m_%d_%H_%M_%S).json 

The HiveQL statements used to parse the data on AWS 

• ADD JAR s3://gordonjar/hive-json-serde-0.3.jar ; 

• CREATE EXTERNAL TABLE tweets ( 

text string, id_str string, id bigint, coordinates_type string, 

coordinates_long float, 

coordinates_lat float, created_at string, country_code string, country 

string, full_name string, name string, user_id_str string, user_id bigint, 

user_location string 

) 

ROW FORMAT SERDE 

'org.apache.hadoop.hive.contrib.serde2.JsonSerde' 

WITH SERDEPROPERTIES ( 

"text" = "$.text", 

"id_str" = "$.id_str", 

"id" = "$.id", 

"coordinates_type" = "$.coordinates.type", 
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"coordinates_long" = "$.coordinates.coordinates[0]", 

"coordinates_lat" = "$.coordinates.coordinates[1]", 

"created_at" = "$.created_at", 

"country_code" = "$.place.country_code", 

"country" = "$.place.country", 

"full_name" = "$.place.full_name", 

"name" = "$.place.name", 

"user_id_str" = "$.user.id_str", 

"user_id" = "$.user.id", 

"user_location" = "$.user.location" 

) 

LOCATION 's3://gordontweets/twitter/' ; 

• CREATE EXTERNAL TABLE tweetsexport ( 

text string, id_str string, id bigint, coordinates_type string, 

coordinates_long float, coordinates_lat float, created_at string, 

country_code string, country string, full_name string, name string, 

user_id_str string, user_id bigint, user_location string 

) 

row format delimited fields terminated by ',' 

STORED AS TEXTFILE LOCATION 's3://gordontweets/twitter/' ; 

• FROM tweets 

INSERT OVERWRITE TABLE tweetsexport select regexp_replace(text, 

",", "") as text, id_str, id, coordinates_type, coordinates_long, 
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coordinates_lat, created_at, country_code, country, 

regexp_replace(full_name, ",", "") as full_name, name, user_id_str, 

user_id, regexp_replace(user_location, ",", "") as user_location ; 

 
The Python script used for the sentiment analysis 

• # somewhere to hold the hit words in memory 

scoreDictionary = {} 

# read the dictionary file and store all entries with the given value 

def initDictionary(filename, value): 

  file = open(filename,"r") 

  for line in file: 

   # drop the new line from the end 

   word = line.strip().lower() 

   # store the word in the dictionary with given value 

   scoreDictionary[word] = value 

  file.close() 

def parseLine(line): 

  plusScore = 0 

  plusWord = "" 

  minusScore = 0 

  minusWord = "" 

  words = line.strip().split(",")[0].split(" ") 

  for word in words: 

   score = observeWord(word.lower()) 
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   if score > 0: 

    plusWord+=";"+word 

    plusScore+=score 

   elif score < 0: 

    minusWord+=";"+word 

    minusScore+=score 

return 

plusWord+","+str(plusScore)+","+minusWord+","+str(minusScore)+","+s

tr(plusScore+minusScore) 

def observeWord(word): 

  if scoreDictionary.has_key(word): 

   return scoreDictionary[word] 

  return 0 

def processTextFile(filename): 

  # input data 

  file = open(filename,"r") 

  # where the output will go 

  output = open(filename+"-output.csv","w") 

  # write the header line to the output file 

output.write(file.next().rstrip()+",plusWords,plusCount,minusWords,minu

sCount,totalScore\n") 

 for line in file: 

  output.write(line.rstrip()+","+parseLine(line)+"\n") 
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 output.close() 

initDictionary("polarity_positive.csv",1) 

initDictionary("polarity_negative.csv",-1) 

processTextFile("Points.csv") 

The Python script used to parse Census place names from Twitter location fields 

• # somewhere to hold the hit words in memory 

scoreDictionary = {} 

# read the dictionary file and store all entries with the given value 

def initDictionary(filename, value): 

  file = open(filename,"r") 

  for line in file: 

   # drop the new line from the end 

   word = line.strip() 

   # store the word in the dictionary with given value 

   scoreDictionary[word] = value 

  file.close() 

def parseLine(line): 

  placeScore = 0 

  placeWord = "" 

  for word in scoreDictionary: 

   if word in line: 

    # do real stuff 

    placeWord+=word 
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    placeScore+=scoreDictionary[word] 

    #print word 

  return placeWord+","+str(placeScore) 

def processTextFile(filename): 

  # input data 

  file = open(filename,"r") 

  # where the output will go 

  output = open(filename+"-output_places_indi.csv","w") 

  # write the header line to the output file 

  output.write(file.next().rstrip()+",placeWords,placeCount\n") 

  for line in file: 

   output.write(line.rstrip()+","+parseLine(line)+"\n") 

  output.close() 

initDictionary("indiana_places.csv",1) 

processTextFile("indiana_geo.csv") 
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