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INTRODUCTION

What is the life of a mathematician? Is it a collection of

isolated theorems and proofs? A list of awards won and articles

published? A series of amusing personal anecdotes? An ideal

biography would include all of these. However, in the recent past the

biographies of many female mathematicians have concentrated on a

woman's struggles to succeed in such a male-dominated subject.

While these travails are extremely important sociologically, a

biography which concentrates on these social and political aspects of

a female mathematician's life tends to completely ignore her actual

mathematical work and achievements, or, at best, only gives them a

cursory look.

I intend to remedy this situation in the case of one female

mathematician. Sophie Germain was an important person in the

history of mathematics, not just an important woman. Her work in

number theory has been the foundation for the works of countless

mathematicians. She was the first to make a bold step into the

theory of elasticity, and inspired others to venture into this

relatively unexplored realm. Without her work, the mathematical

world would have suffered.

Even with this goal in mind, one cannot completely ignore her

gender. The fact that she was a woman did greatly affect her life, as

.she was denied access to resources that could have allowed her
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mathematical abilities to develop even farther. Her parents tried to

discourage her from her studies, she was never given a tutor, and

she could not attend an institute of higher learning. Even after her

abilities were recognized by the academic world, her gender kept her

in the position of an outsider, a lone genius who could not

significantly interact with the people who should be her peers.

While her status as an outsider allowed her to achieve

greatness in the area of number theory, it was extremely detrimental

when she tried to work in the area of applied mathematics. The

mathematical theory of elasticity was just beginning to develop when

Germain began her work; as others became interested in the subject,

they left Germain behind. She could not keep up with the latest

developments because she did not have access to the ever-growing

set of knowledge, or even the benefit of professional academic

conversation.

From the time she was thirteen years old, Sophie Germain

wanted to be a mathematician. Most biographies have focused on

her womanhood. By studying her actual work as well as her

struggles, we honor her in the way she probably would have wished:

as a mathematician.
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IN THE BEGINNING

On April 1, 1776, in a house on the Rue St. Denis in Paris, Marie­

Sophie Germain was born. Her parents, Ambrose-Fran<;ois and

Marie-Madeleine Germain, were moderately wealthy members of the

bourgeois. Sophie Germain was financially supported by them

throughout her life, as she did not marry and was unable to secure a

professional academic position due to her sex. They were prosperous

enough so that Sophie did not have to worry about a means of

support, even during times of shifting politics. Ambrose-Fran<;ois

was somewhat active in the political events that led up to the French

Revolution, and served as a deputy to the States-General as a

representative of the Third Estate. He also helped to transform that

body into the Constituent Assembly) In some of the speeches that

he gave in this position, he fought against "the bankers and all the

men who call themselves businessmen" and also stated that he

"always professed publicly to regard speculation as a crime of the

state".2 He also proposed a project concerning the Caisse d'Escompte,

1Marilyn B. Ogilvie, Women in Science: Antiquity Through the Nineteenth
Century: A Biographical Dictionary with Annotated Bibliography (Cambridge:
MIT Press, 1986), p. 90.

2 Both quotes from Hippolyte Stupuy, "Notice sur Sophie Germain" in Oeubres
philosophiques de Sophie Germain (Paris: Paul Ritti, 1879), p. 9. The first
quote is "les banquiers et tous ces messieurs qu'on appelle faiseurs d'affaires,"
from a speech given to the Constituent Assembly October 8, 1790. He had
"toujours fait profession publique de regarder l'agiotage comme un crime
d'Etat" from a speech May 5, 1791.



4
the national bank of France at this time.3 He describes himself as a

merchant in one of his speeches, and it is known that he dealt in silk.

Later in his life, he became one of the directors of the Bank of

France.4

Marie-Madeleine came from a wealthy family, the Gruguelus.

Little else is known of her. Also in the family was an older sister,

named Marie-Madeleine after their mother. Her son Armand­

Jacques Lherbette was Sophie Germain's literary executor. Germain

also had a younger sister, Angelique-Ambroise. Angelique married

Rene-Claude Geoffroy, a doctor, around 1816. The entire Germain

family moved into the Geoffroy's town house after this, thus

improving their living conditions from modest to grand.S

Sophie Germain was educated at home. Luckily, her father had an

extensive library so she was able to read about subjects that

normally she, as a female, would not have had access to. In 1789,

when Germain was thirteen years old, she came to this library to find

something to divert her mind from the Revolution going on

practically outside her door. She began reading Histoire de

Mathematigues by Jean-Etienne Montuc1a and came to the

accomplishments of Archimedes. Montuc1a stated that Archimedes

was so involved in mathematics that he "would forget food and

3Stupuy, p. 9.

4Charles Coulston Gillispie, editor, Dictionary of Scientific Biography (New
York: Scribner, [1970-1980]), p. 375.

SLouis L. Bucciarelli and Nancy Dworsky, Sophie Germain: An Essay in the
History of the Theory of Elasticity (Dordrecht, Holland: D. Dreidel Publishing
Co., 1980), p. 9. The house still exists at 4 Rue du Braque in Paris.
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drink. His servants would have to remember them for him and

would almost have to force him to satisfy these human needs."6

Even more dramatic is the account of his death. During the siege of

Syracruse, Archimedes was so engrossed in a geometry problem he

was working out in the sand that he failed to notice the approach of a

Roman soldier. He was so absorbed that he did not answer the

questions of the soldier, and was subsequently slain. Germain was

fascinated at the idea that mathematics was so engaging that it could

wipe away all other cares. At this moment, she decided upon the

direction she wanted her life to take: she wanted to be a

mathematician.

Germain's family was by no means supportive of this decision. As

Germain's passion for mathematics grew, she devoured every book

her father's library had on the subject. Her parents grew concerned

for her mental and physical health, as at the time it was common

knowledge that girls who were too studious turned wild, and, as

evidenced by the popular play Les Femmes Savantes by Moliere,

could not truly become intellectuals anyway. As Germain was from

the bourgeois class, this studying seemed even more useless as she

could not converse with educated aristocratic women in the salon

circles. When she refused to stop her quest for knowledge, her

parents kept her from studying during the day. During the night, in

order to force her to sleep, they denied her heat and light for her

bedroom and confiscated her clothes. Germain pretended to follow

their authoritarian rulings, but after her parents were in bed for the

6Bucciarelli and Dworsky, p. 10. Translation from Montuc1a, Histoire des
mathematigues, 2 vol. (Paris: c.A. lambert, 1758).
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night, she would wrap herself in quilts, light the candle stubs she had

hidden away, and work at her books the entire night. One morning,

they woke to find her asleep at her desk, her slate covered with

calculations and her ink frozen in the ink horn. Upon this discovery,

her parents decided to relent in their opposition, but without giving

her any encouragement.

Although she was still alone and without a tutor, Germain was

finally able to pursue her love in peace. She began with Etienne

Bezout's standard mathematics text, Traite d'ArithmetiQ.ue, a book

commonly found on the bookshelves of educated people of the time,

and then moved on to much more difficult material.7 After reading a

text on differentiation by Jacques Antoine-Joseph Cousin, Le Cakul

Differential, she fell in love with the relatively new science of

calculus.8 She taught herself Latin in order to read the works of

Isaac Newton and Leonhard Euler, as these were the next logical step

in her study of this subject.9 In 1794, just as she was beginning to

exhaust the resources of her father's library, the Ecole centrale des

travaux publics, later called the Ecole polytechnique, opened in Paris.

It seemed to be the perfect opportunity for a budding young

mathematician (Germain was eighteen at this time), but the school,

blindly following the dictates of social custom, did not admit females.

However, Germain had become a serious student, and still had the

7Amy Dahan Dalmedico, "Sophie Germain" in Scientific American, vol. 265,
n.6, December 1991, p. 117.

8Stupuy, p. 14

9She also taught herself Greek.
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determination that had previously allowed her to conquer her

parent's objections to her studies. She was able to obtain copies of

the lecture notes of various courses, including a chemistry course

taught by Antoine-Franc;:ois Fourcroy and, more importantly to her

career in mathematics, a course in analysis taught by Joseph-Louis

Lagrange. lO At the end of the course students were to hand in

written observations to the professor. Germain wanted to submit a

paper, but could not do so under her real name. There was a

student at the school by the name of Antoine-August LeBlanc, who

had grown up in Paris as well. It is unknown exactly how Germain

was acquainted with him, especially as she was rather reclusive

socially. Using his name as a pseudonym, she sent her paper on

analysis to Lagrange. Lagrange was impressed by its originality and

publicly praised the paper. He searched for its author, and found

that his brilliant Monsieur LeBlanc was in reality a Mademoiselle

Germain. He immediately became her sponsor and mathematical

mentor, and provided support for years to come.

The discovery of such a mathematical talent in a young woman

apparently was something of a sensation in the intellectual circles in

Paris. Several superior scientists and mathematicians made

Germain's acquaintance. Many of these exchanges were made

through correspondence, doubtless because of the difficulty in

arranging a socially proper meeting with a young, unmarried woman.

Although these savants took a definite interest in Germain's talent

and clearly wanted to aid in her education, their help was not a

lOStupuy, p. 19.
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substitute for an ordered, more conventional education from a

university. The problems that they discussed were interesting but

somewhat random. A letter from Gaspard Monge discusses the

equilibrium of a lever, where a finite weight located at a finite

distance from the fulcrum can be moved by an infinitely small

weight located at an infinite distance from the fulcrum. Others

discussed mathematical paradoxes, which were interesting but

somewhat isolated examples and did not lead to further study.

Cousin requested a meeting with Germain and offered his resources

for her use.

While the vast majority of intellectuals were supportive of

Germain's talent, she had a minor feud with Joseph-Jerome Lalande,

the famous astronomer. He visited her in 1797, paying his respects

much like any of the other savants who visited her during this time

period. However, this meeting turned into a incident in which

Lalande grossly underestimated her mathematical abilities and

insulted her. According to Lalande's note of apology for the incident,

they had been discussing Pierre-Simon Laplace's Systeme du Monde.

Lalande suggested that she could not possibly understand this work

without first reading his own book on astronomy. Astronomie des

Dames, however, was a short text written for "the education of

women," a greatly simplified course that was clearly far too primary

for someone of Germain's standing in the academic world. She was

greatly angered at this suggestion and took it as a professional insult.

Despite his letter of apology, Germain never forgave Lalande for

lumping her in the category of the intended audience for his book.

Some time later, an invitation for a dinner from Alexander Tessier

-
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shows that their dispute was widely known. Tessier encourages her

to come by tempting her with a description of the delicious meal, a

promise of safe transportation (a social necessity as Germain was an

unmarried woman), and the fact that many people of importance

would be there, except for Lalande as she had "not yet reconciled

with him."ll

Germain was well known not only in the scientific circles of the

time, but to other intellectuals as well. In 1802, a Greek scholar,

d'Ansse de Villoison, wrote two poems in which Germain was one of

the main figures. However, Germain was not pleased with this

poetic praise of her talents. At her request, Villoison destroyed the

Greek poem, but the Latin one, a birthday poem for Lalande, was

already in the process of being published. An English translation of

the section involving Germain shows that the poem was quite

flattering of her talents.

Ariadne, by whom skilled Germain's visage is already envied,
Sees and dislikes what she sees, yielding her crown.
"What new Epigone enters the starry realm?"
She cries. "Most boldly she tries to enter
Our house, Gods stop her flight:
While you can, rein in this Icarian girl;
For her burning efforts will conquer giants.
This ambitious woman already wanders in LaPlace's realm!
And drinks the airy fires with greedy gulps!"l2

According to the letters of apology that Villoison wrote to her and

her mother, this displeasure with the poetry was linked with

llLetter from Alex.-H. Tessier, 1741-1837. "Point de M***, puisque vous ne
vous etes pas encore raccommodee avec lui." Published in Oeuvres
Philosophigues de Sophie Germain, p. 289.

l2Bucciarelli and Dworsky, p. 15.
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Germain's social timidity: the poems had "wounded [her] excessive

modesty."13 It is also likely that she did not care to have her actions

published in such a manner that would detract from the seriousness

of her work. Germain probably resented having her name associated

with Lalande as well, especially since the poem seems to refer to the

reason for their discord. Whatever her reasons, they were not fully

understood by Villoison, and he comments on this in a post-script to

his letter of apology.

.. .if you are the only young woman who possesses such a superior
knowledge of mathematics, you are also the only who has known
and feared the danger of a Greek poem,14

In 1798, Adrien Marie Legendre published his work Essai sur la

Theorie des Nombres. Germain studied it diligently, and began a

correspondence with Legendre, submitting some of her own work

that had stemmed from her observations of his text. Years later, he

used some of these proofs in the second edition of his book and

mentions her most famous theorem in his monograph "Sur Ie

Theoreme de Fermat."

She also studied Gauss' Disguisitiones Arithmeticae, published in

1802, and wrote her first letter to him November 21, 1804. She once

again assumes the name M. LeBlanc, fearing that Gauss would not

take her letter seriously if he knew she were a woman. She even

goes so far as to have Gauss send his replies to a member of the First

13Letter from D'Ansse de Villoison, July 12, 1802. "...cette piece qui a pu
blesser l'excessive modestie de mademoiselle votre fille." Q.£." p. 294.

14Same, in a letter dated July 14, 1802. "...si vous etes la seule demoiselle qui
possede si superieurement les mathematiques, vous etes aussi la seule qui ait
connu et redoute Ie danger d'un poeme grec." Q.£." p. 295.
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Class, M. Silvestre de Sacy (after her true identity is revealed, Gauss

sends her letters to her father's address).ls In her letter, she

demonstrates a generalization of one of his equations, and states that

one of his methods could also be applied to a special case. She also

discusses a proof of Fermat's Last Theorem for n = p-l, where p is a

prime of the form 8k + 7. She calls herself an "amateur enthusiast."

Gauss responded enthusiastically to her letter and they began a

rather extensive correspondence.

Gauss was extremely impressed with this young mathematician,

so much so that he even praised her in letters to others. He wrote to

Heinrich Wilhelm Matthias GIbers, a German physician and

astronomer, on December 7, 1804, that

Recently I had the pleasure to receive a letter from LeBlanc, a
young geometer in Paris, who made himself enthusiastically
familiar with higher mathematics and showed how deeply he
penetrated into my Disqu. Arithm...l6

He also entrusted her with business matters. He discussed the

difficulty of having one's work published, and when he had problems

with a publisher in Paris who had not paid him any royalties,

Germain researched the matter for him. I?

ISThe First Class was the "official center for scientific exchange" in Paris at
the time, according to Bucciarelli and Dworsky. It met weekly to hear papers,
set up competitions for difficult problems, and review scientific progress
throughout the world.

I6W.K. Buhler, Gauss: A Biographical Study (New York: Springer-Verlag,
1981), p. 53. At this time, "geometer" simply means a pure mathematician.

I?Letter from Gauss, June 16, 1806. According to Gray, the publisher had
declared bankruptcy, so Gauss never received the money owed him.
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Gauss did not discover the true identity of his correspondent until

1807. Napoleon's troops were in the process of invading Prussia,

including the area near Gauss' home. Germain remembered the fate

of Archimedes at the hands of Roman soldiers, and feared for Gauss'

safety. She was acquainted with General Pernety, the man in charge

of besieging Breslau, as he was a friend of her father,18 She asked

him to send an emissary to Gauss' home to check that he was safe

and healthy. General Pernety sent an officer named Chantel to his

house, but upon encountering Gauss and his wife, a great deal of

confusion ensued,19 Officer Chantel knew only that he was offering

assistance in the name of a Mademoiselle Germain in Paris, but the

only woman Gauss believed he knew in Paris was Madame Lalande.

Gauss thanked the officer, but did not solve the mystery until

Germain cleared up the situation herself. She writes a letter

confessing that

...I am not as completely unknown to you as you might believe,
but that fearing the ridicule attached to a female scientist, I have
previously taken the name of M. LeBlanc in communicating to
you.. .1 hope that the information that I have today confided to you
will not deprive me of the honor you have accorded me under a
borrowed name..,2o

Gauss was understandably surprised upon finding out that she was

female, but there was no way he could devalue her mathematical

abilities that he had already witnessed. He wrote to her, saying

18Marie-Louise Dubreil-Jacotin, "Figures de Mathematiciennes" in Les grands
courants de la t>ensee mathematique (Paris: Albert Blanchard, 1962), p. 261.

19Gauss' wife was Johanna Elisabeth Rosina Ostoff.

20Bucciarelli and Dworsky, pp. 24-25.
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But how to describe to you my admiration and astonishment at
seeing my esteemed correspondent M. LeBlanc metamorphose
himself into this illustrious personage who gives such a brilliant
example of what I would find difficult to believe. A taste for the
abstract sciences in general and above all the mysteries of
numbers is excessively rare...when a person of the sex which,
according to our customs and prejudices, must encounter infinitely
more difficulties than men to familiarize herself with these thorny
researches, succeeds nevertheless in surmounting these obstacles
and penetrating the most obscure parts of them, then without
doubt she must have the noblest courage, quite extraordinary
talents and a superior genius. Indeed nothing could prove to me
in so flattering and less equivocal manner that the attractions of
this science, which has enriched my life with so many joys, are not
chimerical, as the predilection with which you have honored it.21

Clearly this letter goes beyond a courteous thank-you for her

concern. He also read the mathematics she had enclosed in her

previous letter and comments on a proposition that she had

suggested.22 It is becomes even more clear that this is not merely

polite flattery when we read another letter he wrote to Olvers, on

March 24, 1807.

Recently, I was greatly surprised on account of my Disq. Arithm.
Did I not repeatedly write you of a correspondent in Paris, one M.
LeBlanc, who had perfectly understood all my investigations? You
will certainly be surprised as I was when you hear that LeBlanc is
the assumed name of a young woman, Sophie Germain.23 ·

Unfortunately, quite soon after the discovery of her true identity,

their correspondence came to a halt. Gauss had received a position

21E. T. Bell, Men QfMathematics (New YQrk: SimQn and Schuster, 1937), p. 262.

22See my pages 55-57 fQr further discussiQn.

23Buhler, p. 53.
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as professor of astronomy in Gottingen, and thus had reached a

professional position which allowed him to concentrate more fully on

his work and to publish without much difficulty. He usually took

several months to respond to her letters, and with his new position

his time became even more limited. He essentially became too busy

to take the time to correspond with Germain. His last letter to her is

flattering and warm, but he does not discuss the mathematical proofs

she had sent him. He writes

Pardon me that this time I have not extended myself any farther
on the beautiful demostration of my mathematical theorems. I
admire the sagacity with which you have been able to arrive at
them in so little time...Always be happy, my dear friend...and
continue from time to time to renew the sweet assurance that I
can count myself among the number of your friends, a title of
which I will always be proud.24

Germain continued to write to him, but he never again responded.

They had at least one more instance of communication through Jean­

Baptiste Delambre, Perpetual Secretary of the First Class. In 1810,

Gauss was presented a medal worth 500 francs for his astronomical

work. Gauss did not want to accept any money from France for

political reasons, so instead wanted that the money be used to buy a

pendulum clock for his wife. He requests that Delambre ask Germain

24Letter from Gauss, January 19, 1808. "Vous me pardonnerez que cette fois je
ne puis m'etendre davantage sur la belle demonstration de mes theoremes
arithmetiques. J'admire la sagacite avec laquelle vous avez pu en si peu de
temps y parvenir...Soyez toujours aussi heureuse, rna chere arnie, que vos rares
qualites d'esprit et de coeur Ie meritent, et continuez de temps en temps de me
renouveler la douce assurance que je puis me compte parmi Ie nombre de vos
amis, titre duquel je serai toujours orgueilleux." Q..£", pp. 320-321.



to choose it for him. Germain agreed, and the clock was used in

Gauss' home until he died.25

25Bucciarelli and Dworsky states that "we ·cannot know" how Germain
responded to the request, but Dunnington, a biographer of Gauss, puts this
ending on the story.

15
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ELASTICITY

In the fall of 1808, a German scholar named Ernst Florens

Freidrich Chladni came to Paris to demonstrate a simple, beautiful,

and astonishing experiment to the members of the First Class of the

Institute. He would take a glass plate, sprinkle it with fine sand, hold

it with two fingers on opposite sides of the plate, and draw a bow

across the edge. If done correctly, a pure tone would be emitted.

The sand would move to the sections of the plate that were not

Vibrating, the nodes, and form symmetrical shapes. The patterns

could be preserved by transferring the sand to a wet sheet of paper.

A pattern could be reproduced if the conditions were duplicated, and

if the conditions were varied by changing the number of supports,

the shape of the plate, or where and how hard the bow was drawn,

different patterns would appear.

This phenomenon had never been seen before, and thus,

naturally, there were no explanations for why certain parts of the

plate moved and others remained at rest. The Emperor Napoleon,

who was interested in advancing France's scientific achievements as

well as its military ones, supported a system of prizes designed to

promote new scholarship. Chladni performed the experiment for
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Figure 1. Diagrams of Chladni patterns produced on round plates)

Napoleon, and apparently he was rather impressed. These vibrations

seemed to be an ideal subject for such a prize, and in April of 1809

the contest was announced:

His Majesty the Emperor and King...being struck by the impact
that the discovery of a rigorous theory explaining all
phenomena rendered sensible by these experiments would
have on the progress of physics and analysis, desires that the
Class make this the subject of a prize...The Class has thus
proposed, for the subject of the prize, the development of a
mathematical theory of the vibration of elastic surfaces, and a
comparison of this theory with experiments.2

The deadline for entries was set for October 1, 1811, and if no entry

was deemed acceptable, the prize would not be awarded.

The excitement of the experiments and the resulting prix

extraordinaire caught the attention of Germain. Later, she writes

IAn illustration in the 1809 edition of Chladni's Traite d'Acoustique. From
Dalmedico, p. 119.

2Bucciarelli and Dworsky, p.3S. The announcement was published in the
. appendix to Chladni's Traite d'acoustig,ue, pp. 353-357.
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As soon as I learned of the first experiments of M.

Chladni, it seemed to me that analysis could determine the laws
by which they were governed. But I happened to learn from a
great geometer [Lagrange] ...that this question contained the
difficulties that I had not suspected. I ceased to think about it.

During M. Chladni's visit to Paris, viewing his experiments
excited my curiosity anew. I studied Euler's memoir on the
linear case, certainly not with the intention to compete for the
prize that the Institute had proposed, but only with the desire
to appreciate the difficulties that the terms of the program
brought to my mind.3

Many other mathematicians were put off by Lagrange's remark as

well. While it is unknown what his exact comment was, it is

conjectured that he pointed out that a solution to the plate problem

would involve considering two spatial dimensions, a situation that

analysis of the time did not encompass.4 It is likely that Germain,

with her limited and spotty education, did not fully recognize the

difficulties that would arise from this "new" calculus, so was not as

daunted by Lagrange's warning as other mathematicians. However,

at this time, she did not intend to find a solution but merely to

understand the question. She corresponded extensively with

Legendre, using his knowledge to help in her study of Euler's work in

the one dimensional, linear case.

3Sophie Germain, Recherches sur la Theorie des Surfaces ElastiQues (Paris:
Mme. Ve. Courcier, 1826), p. v. "Aussit6t que les premieres experiences de M.
Chladni me furent connues, il me parut que l'analyse pouvait determiner les
lois auxquelles elles sont assujetties. Mais j'eus occasion d'apprendre d'un
grand geometre...que cette question contenait des difficultes que je n'avais pas
meme soupc;:onnees. ]e cessai d'y penser. A l'epoque du sejour aParis de M.
Chladni, la vue de ses experiences excita de nouveau ma curiosite. j'etudiai Ie
Memoire d'Euler sur Ie cas lineaire, non pas certainement dans l'intention de
concourir au prix extraordinaire que l'Institut proposa alors, mais avec
l'unique desir d'apprecier les difficultes dont les termes memes du programme
me renouvelaient l'idee."

4Bucciarelli and Dworsky, p. 41.
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Euler considered the forces acting on a horizontal beam that

was experiencing small displacements in the vertical direction Q, but

none in the horizontal P (see Figure 2). He was concerned with the

motions that moved each point along the beam in a simple harmonic

motion, and sought solutions that would describe the movement of

the beam as a whole. These solutions were described by the

following equation:

y(s,t) = sin (~+ t~2g/k Haes/ f + ~e-s/f + ysin(s/f) + ocos(s/f)}

where s is the position of the beam, t is the time, a, ~,y, 0 are

parameters that fix the node shapes, and f is related to the frequency

of vibration ~2g/k, by

1/f2 = constant· ~2g/k.

In order to find the possible values of f and establish the four

parameters, one needs to know the conditions at the ends of the

beam. The case in which Germain was most interested was the one

in which both ends of the beam, E and F, are restrained by hinges to

prohibit movement, and there is an additional hinge or stylus at

some point along the beam which prohibits displacement but not

rotation. If the beam is of length a, the hinge is located at a point o· a

along the beam. Euler provided solutions for the case 0 =1/2, when

the stylus is at the midpoint of the beam, and Germain attempted to

solve for any rational 0 .
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Figure 2. Beam ends are E and F; forces are P and Q,5

Germain corresponded with Legendre extensively about this

problem. As she grew to understand it more and more, she came to

believe that the plate problem could be solved by a method

analogous to this special case. Euler suggested that a force of

elasticity at a point along the beam is proportional to the curvature

of the beam at that point. Germain suggested that for the plate

problem, the force of elasticity is proportional to the sum of the

major curvatures at that point. Now completely captivated by the

problems of elasticity, she worked for the next eight months to

complete a paper to submit to the contest.

Selected to be on the judging panel were Legendre, Laplace,

Lagrange, Silvestre-Fran<;ois Lacroix, and Etienne Malus. All entries

were to be secret. In order to identify each entry, the author was to

write a quotation or saying on the first page of his or her memoir,

and attach a sealed envelope that contained that quotation and the

SAdapted from an illustration in Bucciarelli and Dworsky, p. 42.
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author's name. This envelope was only to be opened if the essay

won the prize.6 However, Germain was the only person to submit an

entry to this contest; all others had been frightened away by

Lagrange's warning. Germain asked Legendre if her paper had been

received; obviously he figured out that she was the author of the

single entry. He writes

Your memoir is not lost; it is the only one that has been
received concerning the problem of the vibration of surfaces..J
have said nothing, I advise you, as well, to keep silent until a
definite judgment is made.7

Clearly the rules governing secrecy were taken with a grain of salt.

While Legendre did not publicize his knowledge, he did not

disqualify himself as a judge either. It is extremely unlikely that he

believed that her memoir was useless and thus his knowledge did no

harm, as his letters evidence that he spent a considerable amount of

time helping her in her endeavors. This reveals instead a degree of

friendship between the two that went beyond a purely professional,

intellectual relationship. Also, this bending of the rules may have

been common; it is only because of Germain's status as a woman that

this letter exists. Men could see each other easily and make such a

communication orally, leaving no incriminating evidence behind.

6Germain's first entry used the following quotation from Newton as
identification: "Effectuum naturalium ejusdem generis eaedem sunt causae."

7Letter from Legendre, October 22, 1811. "Votre memoire n'est pas perdu; il est
Ie seul qu'on ait re<;u sur Ia question des vibrations des surfaces...le n'ai rien
dit, je vous conseille egalement de garder Ie silence jusqu'au jugement
definitif." Q..,£., p. 334.
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Her memoir did not win the prize. She used as her basis an

equation that was analogous to Euler's equation for the vibrating

beam:
fdzdy fPds + fdzdxfQds - 2fdxdyfRds = V((l/r) + (l/r' )).

This was to represent equilibrium for a point (x, y, z) of the plate,

where P, Q, and R are the external forces acting in the x, y, and z

direction respectively. On the right hand side, the constant V refers

to the elasticity of the material of the plate. As rand r' are the two

principal radii of curvature of the deformed plate, the term (l/r) +

(l/r' ) represents the mean curvature. This mean curvature of the

surface was proportional to the movement of the plate. Using the

above equation, she differentiated four times with respect to x and y

and, assuming that in time the behavior of the plate would be

harmonic so that the equation is not dependent on time, came up

with the following:

f6 ( d6z d6Z)
z(x,y) = 2 dx4dy2 + dy4dx2

Unfortunately, this derivation is wrong. Germain's lack of expertise

in the realm of analysis caused her to commit some computational

errors. Legendre writes:

Your principal equation is not correct, even assuming the
hypothesis that the elasticity at each point can be represented
by (l/r) + (l/r' )...Your error seems to arise from the manner
with which you tried to deduce the equation of a vibrating
surface from the equation of a simple lamina; you became
confused with the double integrals.8

8Letter from Legendre, December 4,1811. "...votre equation principale n'est
pas exacte, meme admettant I'hypothese que l'elasticite en chaque point peut
etre represente par (l/r) + (l/r') ...La source de votre erreur parait etre dans Ia
maniere dont vous avez cru pouvoir deduire l'equation de Ia surface vibrante



d4z d4Z)
dx2dy2 + dy4 = O.

23
However faulty her basic mathematical skills, the judges did not

immediately dismiss her entry. Lagrange took her hypothesis and

applied the variational method from his own Mecanigue Analytigue,

a book Germain had not mastered. Using these derivations, and

assuming that z, the amplitude of vibration, is small, he found the

equation

d 2z 2(d4
Z

dt2 + k dx4 + 2

where k is a constant, t is time, and x and y represent points on the

surface. This equation, which Legendre reported to Germain in a

letter, is correct. Bucciarelli and Dworsky claim it is the same

equation used today as the basis for analyzing elastic plates after it is

supplemented with the appropriate boundary conditions, but

Skudrzyk tempers this statement by referring to it as part of "classic

plate theory," pointing out that it is adequate only for lower

frequencies, when the wave length is greater than five times the

thickness of the plate.9,10

As there had been only one entry for the contest, and it was

not judged to be sufficient enough to win the prize, the Class decided

to extend the contest. New entries would be received until October

of 1813, so Germain had almost two years to improve her work. She

believed in her hypothesis, but needed to exhibit the correct

de l'equation d'une simple lame; c'est dans les doubles integrales que vous vous
etes egaree." .Q..£", p. 337.

9Bucciarelli and Dworsky, p. 55.

lOEugen Skudrzyk, Simple and Complex vibratory Systems (USA: Pennsylvania
State University Press, 1968), pp. 488,500. There does exist a more complex and
precise modern theory that will approximate the behavior of a plate for
higher frequencies.
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derivation for the equation found by Lagrange, and be more exact in

her justification of this equation based upon physical evidence.

Germain did not fully understand the method by which Lagrange had

derived this equation from her hypothesis, and, judging from her

later entries and lack of correspondence, did not receive any help

from Lagrange himself.

Even though Lagrange died in April of 1813, so he was not

even to be one of the judges of her new work, Germain began to fear

that his opinion about the difficulty of the problem would affect the

other judges. She thought that perhaps the judges would not

recognize the correct equation since they doubted that one could be

found. She states in a letter written October, 1813 that

Without doubt, the problem has been abandoned only because
this grand geometer judged it difficult. Possibly this same
prejudgment will mean a condemnation of my work without a
reflective examination... [T]he notion that the problem is
difficult...might prevent one from devoting any effort to the
examination of a memoir condemned once before... l1

She submitted her memoir on September 21,1813. Once again it

was the only submission. The judges this time were Laplace, Lacroix,

Legendre, Lazare Carnot, and Simeon-Denis Poisson, who had just

recently been elected to the First Class.

In the first section of her hundred-page memoir, she attempts

to derive the plate equation stated above. Her starting point was as

in her first paper, and she eventually obtained the correct equation

by the end, but the method of her analysis in between these two

l1Germain, letter to unknown recipient, October 1813. From Bucciarelli and
Dworsky, p. 61.



25
points was full of errors. After this, she then worked on establishing

appropriate boundary conditions in order to obtain more particular

solutions. These were based upon Euler's examination of the

vibrating beam, and were applicable to the plate problem,12 Finally,

she compared Chladni's results with the predictions of her equations.

Her results predicted the nodal lines and frequency ratios of these

lines in both square and rectangular plates. The judges, while

understandably not satisfied by her derivation of the equation, were

impressed with this correspondence between mathematical theory

and real-life experimentation. Despite the mistakes in her analysis,

the equation was recognized as correct and her memoir was

rewarded with an honorable mention. However, as there was still no

correct derivation for the equation, the contest was again renewed,

with the new entry deadline being October 1815.

It is at this point that academic politics began to rear its ugly

head. On August 1, 1814, during a session of the First Class, Poisson

began presenting a memoir on the subject of vibrating elastic

surfaces. This was highly improper. Not only were members of the

First Class not to compete for prizes that they themselves had

established, but Poisson was actually a judge for a prize of this same

subject! Legendre interrupted the reading to object, and a

committee was formed to discuss the matter, but this committee was

never again mentioned and Poisson was allowed to continue his

reading.

12Bucciarelli and Dworsky, p. 63.
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Not surprisingly, the equation Poisson derives in his paper is

exactly the same as the equation Germain had derived in her own

memoir. When this equation was first presented by Lagrange, it was

merely the outcome of her hypothesis using the correct mathematics.

It was of little merit until Germain had demonstrated in her second

memoir that it corresponded to Chladni's experiments in several

cases. Germain's work had not been made public as it had not won

the prize but only received an honorable mention; Poisson used his

privileged position as a judge to obtain this equation. As he believed

that the equation was correct, he set about deriving the equation

rigorously, a feat Germain had not acconlplished.

This paper presented by Poisson also revealed another aspect

of academic politics: the paradigm. The scientific elite of this time

believed wholeheartedly in the corpuscular hypothesis, or "molecular

mentality." This belief system thought of matter not as a continuum,

but as a collection of discrete particles. A theory of elasticity should,

therefore, deal with the displacement of these particles and the

forces in between them. This is quite different than the modern

view of elasticity, which involves a continuous piece of matter

through which stress and strain are distributed. In order to explain

how elasticity fits into this conceptualization, Laplace writes in 1809

that

In order to determine the equilibrium and motion of a
naturally straight, elastic lamina, bent along some arbitrary
curve, it has been assumed that at each point its spring is
inversely proportional to the radius of curvature. But this law
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is only secondary and derives from the attractive and repulsive
action between molecules.13

Laplace was Poisson's main patron. Poisson based his work in

elasticity upon this conceptual scheme, believing that he was

working with basic truths and not a particular view of the world.

Poisson's analysis is based on an abstract plane and the

relationship of molecules to one another in that plane. When the

surface was stretched or bent in some way, the distances between

the molecules would change, and these changes produced a force

which would return the surface to its original shape. His analysis

created the following equation:
2 2 (1+92 d 2p 1+p2 d 2p _ PdP _ PdP kP(P2_4Q)]

n C k d.x2 + k dy2 P d.x q dy + 2

= Z - pX -qY -kP1t.

Here, P = (l/r) + (l/r') and Q = 1/rr' , functions of the principal radii

of curvature. If Poisson had not known the equation he was setting

out to prove, there is no apparent way he could have arrived the

correct equation through the process of linearization that he used.

Bucciarelli and Dworsky state that this is a "frightening equation,

fraught with nonlinearities."14 Basically, Poisson took the correct

equation, made it conform to the hypothesis he believed to be right,

and worked backwards so everything seemed to be correct.

While the actual equation involves the bending of the plate,

this molecular model does not take into account the redistribution of

molecules during the bending process, the fact that the molecules

13Bucciarelli and Dworsky, p. 71.

14Bucciarelli and Dworsky, p. 74.
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would stretch apart at the outer surface of the curve and come closer

together at the inner surface. Also, it would be close to impossible to

find boundary conditions using this model. In his memoir, Poisson

postponed determining the boundary conditions. Germain later

writes that

It seems to me...that in admitting the existence of repulsive
forces [between molecules] one will be led to suppose that the
plane is infinite. Moreover, the able geometer [Poisson], against
whose principles I regretfully combat, has not concealed the
difficulties that are presented in the study of the conditions of
the extremes.. .! have waited a long time for the author to
publish the determination of the question here; I had desired,
in the interest of the question, that he develop all the
consequences of the hypothesis that he had adopted,15

Germain senses that the problem lies in Poisson's hypothesis, but as

he does not discuss the matter further, she cannot use this to prove

his work definitively wrong. She is only able to assert that her

hypothesis may be the better of the two as hers does not present

such a difficulty.

After the presentation of this memoir to the First Class, Poisson

had it published in the Bulletin des Sciences. par la Societe

Philomatig,ue de Paris, a journal for which he worked as the

mathematical editor. An extract was also published in

Correspondance l'Ecole Polytechnig,ue under the guise of being "very

15Germain, Recherches, pp. 9-10. "11 m'a paru...qu'en admettant l'existence
des forces repulsives, on serait mene a supposer infinie la surface plane. Au
reste, l'habile geometre dont je combats a regret les principes, n'a pas
dissimule les difficultes que presenterait la recherche des conditions des
extremites...]'ai long-temps attendu que l'auteur publi,lt la determination dont
il s'agit ici; j'aurait desire, dans l'interet de la question, qu'il developp,lt lui­
meme toutes les consequences de l'hypothese qu'il a adoptee."
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useful to those young geometers who compete for the prize."16

However, Poisson's derivation was completely adequate for his fellow

molecular thinkers. There were no "young geometers" working on

the prize other than Germain, and she was thirty-nine at this time.

Even if she were to enter, Poisson would most likely be one of the

judges, and as her hypothesis was entirely different from his, it

would be questionable whether her paper would be given the

attention it deserved.

However, there was still the question of propriety. Poisson

should not have presented his solution to a contest that he was

ineligible to enter, and he probably should not have used parts of

Germain's work without a thorough acknowledgment of her efforts.

It is postulated that an oral agreement was reached between

Germain, Legendre (who had objected to Poisson's first reading),

Poisson, and any other relevant party, that the contest would be

continued and the prize would be awarded to Germain if her memoir

was at all worthy)? Germain would then be able to finish her

memoir without the fear of hostile judgment. Whatever the case, we

know the following: the prize was continued, Germain submitted the

only entry, and she was awarded the prize.

In this third paper, Germain looks briefly at Poisson's work.

The fact that they both presented the same equation apparently

increased her belief in her own work. She writes

16Bucciarelli and Dworsky, p. 75.

l?Bucciarelli, p. 79.
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I may have entirely renounced [my] research...if I hadn't
learned...that the equation obtained by a different hypothesis
than the one I had proposed gave the same result as mine. In
effect, I see each day some new reasons to regard my
hypothesis as incontestable...l8

Lagrange had derived the equation from her hypothesis, and now the

equation was generally accepted as being correct. This seemed to

validate the hypothesis from which the equation originally came.

She also attempted to extend her work. Rather than limit her

equation to planar surfaces, she studied initially curved surfaces as

well. In order to do this, she needed to remove some of the

ambiguity from concepts in her basic hypothesis, a task she needed

to take on anyway. Previously, she had considered the geometry of

four points on the surface in order to justify her hypothesis that

elastic force is proportional to the change in curvature, a definition

that was unsatisfactory. This time, she stated that the elastic force is

proportional to the difference between the undeformed and

deformed surface. Since shape is determined by curvature, elastic

force is proportional to difference in curvature. In the case of the

beam, this curvature can only be represented by one radius of

curvature, but in the case of a surface there are many possible

choices of curvatures through any given point. In order to express

this curvature in a specific, concrete form, she associated the

curvature with two particular perpendicular planes, one containing

18Germain, third entry. "J'aurais meme entierement renonce aux
recherches...si je n'avais appris,...que l'equation obtenue dans une hypothese
differente de celIe que j'avais proposee, resulterais egalement de cette
derniere hypothese. En effet je voyais chaque jour de nouvelles raisons de
regarder mon hypothese comme incontestable..." From Bucciarelli and
Dworsky, p. 79.
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the maximum curvature, the other containing the minimum. On each

of these planes, the curve can be approximated by a circle tangent to

the curve. The curvature is then equal to the sum of the inverses of

the radii of the circles. Once these two curvatures are known, all

other curves can be obtained from them.

Figure 3. Approximating the curve of a surface.l 9

By setting the two principal curvatures of the undeformed, "natural"

surface equal to R and R' , and the two of the deformed, "elastic"

19Based on an illustration in Dalmedico, p. 120.
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surface equal to rand r' , the elastic force is proportional to the

following:

(~ + ~)- (i + i )
the difference between the curvature of the elastic surface and that

of the natural surface.2o

She also describes some experiments she had been trying with

these initially curved surfaces to show that her generalized equation

was as accurate as the plate equation. Just as Chladni had made the

node patterns visible on flat plates, she wanted to exhibit the

patterns of cylindrical surfaces. Chladni's technique did not translate

well to curved surfaces, and the results of these experiments were

only partially successful.

It is on the basis of these new experiments that she was

awarded the prize, as her demonstration of the equation was still

incorrect. Her demonstration still suffered from a lack of rigor, but

she fulfilled the second part of the contest, which was to show that

her equation could predict the nodal lines, and her new work on

cylindrical surfaces was impressive if not entirely successful. The

judges this time were Poisson, Laplace, Legendre, Louis Poinsot, and

Jean-Baptiste Biot. The announcement of the winner included the

fact that

The differential equation given by the author is correct
although it has not resulted from the demonstration. Yet the
manner in which the particular integrals satisfying it have
been discussed, the comparison made with the results observed
by M. Chladni and finally the new experiments attempted on

20"Natural" and "elastic" are the terms Germain uses in her work.
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plane and curved surfaces in order to test the indications of the
analysis appear to merit the award of the prize..)1

Germain was the first woman ever to have won an award of this

importance from the Institute. There was a good deal of public

interest in this, mostly due to the novelty of a successful female

scientist, but Germain did not attend the prize ceremony.

As the announcement of the prize stated that there were still

some problems with the memoir, Germain desired to know what the

difficulties were. She did not believe that her mistake was in the

way in which the equation was deduced from the hypothesis, where

indeed it was, but rather that the judges did not believe her

hypothesis to be sufficiently justified. She wrote a letter to Poisson

after the prize had been awarded in an attempt to engage him in a

dialogue on this subject. In this letter, she gives the chain of

reasoning that led to her hypothesis; it explains why she uses the

sum of the principal curvatures in her work and gives a valuable

insight into how she came to construct her theory.

Whatever the nature of the forces considered, they are
proportional to the effect they produce or tend to produce.

The forces of elasticity tend to destroy the differences
between the natural shape of the bodies endowed with this
force and the shape that those same bodies are forced to take
by an external cause.

The forces of elasticity acting in any elastic body are
therefore measured by the difference in the natural shape of
the body and the shape that an external force would cause it to
take.

The effect produced by a force is implicitly or explicitly
the sum of the effects produced by that same force: explicitly,

21Bucciarelli and Dworsky, p. 82. From a transcript of the Public Session of the
Institut de France First Class, January 8, 1816.
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if one successively considers all the diverse effects without
taking into account their interdependence; implicitly, if the
connection existing between these same effects permits them
to be considered as a single thing.

The effect of the forces of elasticity that act on a surface
is to destroy the difference between the natural curvature of
the surface and the curvature that the same surface is forced to
take through the action of an exterior cause. But the question
of curvature of a surface cannot be answered simply: it is
composed of the group of questions relative to the curvature of
curves resulting from sectioning the same surface in all
directions and under every possible inclination.

The sum of the differences between the curvatures of the
curves formed by the various sections of the surface,
considered before and after the action of the exterior force, is
therefore explicitly the measure of the forces of elasticity
acting on this surface.

There exists between the curvatures of the curves
formed by the various sections of the surface a relationship
such that it is permissible to express their sum by that of the
principal sections only.

The effect of the forces of elasticity is then implicitly
expressed by the sum of the differences between the principal
curvatures of the surface, considered before and after the
action of the external cause.22

22Germain, letter to Poisson, January, 1816. "QueUes que soient les forces que
l'on considere, eUes sont proportionneUes a l'effet qu'eUes produisent ou
tendent a produire. Les forces d'elasticite tendent a detruire la difference
entre la forme natureUe des corps qui en sont douees et la forme que les memes
corps ont ete forces de prendre par l'action d'une cause exterieure. Les forces
d'elasticite qui agissent sur un corps elastique que1conque, ont done pour
mesure la difference, entre la forme natureUe de ce corps et la forme qu'une
cause exterieure la force de prendre. L'effet produit par une force est
explicitement ou implicitement l'ensemble des effets produits par Ie meme
force. Explicitement si on considere successivement tous les divers effets sans
exprimer qu'ils dependent les uns des autres; implicitement, si la liaison qui
existe entre les memes effets permet de les considerer comme un fait unique.
L'effet des forces d'elasticite qui agissent sur une surface est de detruire la
difference entre la courbure naturelle de la surface et la courbure que la
meme surface a ete forcee de prendre par l'action d'une cause exterieure.
Mais la question sur la courbure d'une surface n'est pas susceptible d'une
reponse simple; elle se compose de l'ensemble des questions relatives ala
courbure des courbes resultantes de sections de la meme surface faites dans
toutes les directions et sous toutes les inclinasions possibles. L'ensemble des
differences entre les courbures des courbes resultantes des diverses sections
de la surface, considerees avant et apres l'action de la cause exterieure, est
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There is no fault in this line of reasoning, as Poisson admits politely

but somewhat grudgingly in his reply. He does not answer her

questions, but instead simply sends a brief note:

The reproach the commission made concerns not so much the
hypothesis as the manner in which you applied the calculus to
the hypothesis. The result to which these calculations have led
you do not agree with mine except in the single case wherein
the surface extends itself infinitely little from a plane, be it in a
state of equilibrium or of movement. My memoir will be
printed shortly and I am considering offering you a copy, as
soon as the printing is finished.

Permit then, Mademoiselle, that we adjourn this
discussion until the time when you will have been able to
compare my results with yours.23

It is clear that he does not feel her work merits a professional

discussion. There is no evidence that he ever discussed the problem

further with her. Five years later, in another memoir, she again

makes an effort to engage Poisson in some sort of discussion:

One can easily understand with what repugnance I had decided
to contradict the principles of an author whose talents inspire
in me the highest esteem. If he does not disdain to respond to

donc explicitement la mesure des forces d'elasticite, qui agissent sur cette
surface. II existe entre les courbures des courbes formees par les diverses
sections de la surface une liaison telle qu'il est permis d'exprimer leur somme
par celIe des seules sections principales. L'effet des forces d'elasticite est donc
implicitement exprime par la somme des seules differences entre les courbures
principales de la surface, considerees avant et apres l'action de la cause
exterieure." Q.E.., pp. 344-346.

23Letter from Poisson, January 15, 1816. "Le reproche que la commission lui a
fait porte moins sur l'hypothese dont vous etes partie que sur la maniere dont
vous avez applique Ie calcul acette hypothese. Le resultat auquel ce calcul
vous a conduit ne s'accorde avec Ie mien que dans Ie seul cas OU la surface
s'ecarte infiniment peu d'un plan, soit dans l'etat d'equilibre, soit dans l'etat
de mouvement. On imprime succinctement mon memoire, et je me propose de
vous en offrir un exemplaire, aussit6t que l'impression sera achevee.
Permettez donc, mademoiselle, que nous ajournions la discussion a l'epoque OU
vous aurez pu comparer mes resultats aux v6tres."
.Q.,£., pp. 347-348.
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my objections, I will be eager to retract the errors that he
points out.24

Despite her flattery and continued desire to discuss their mutual

theories, she never received the requested criticism.

Up to this time, none of Germain's work in elasticity had been

published. Legendre had suggested that she publish her second

memoir, and after her third memoir had won the prize she again

considered this option. Without publication of her theory, the only

view that would be preserved is that of Poisson. While his work still

had the stamp of authority, Germain did not believe that hers was

without true merit. She writes

...there still remain, between the doctrine of this savant author
[Poisson] and my own, some differences too essential for me to
not need to refer the choice to the mathematicians.

I tried in vain to renounce the hypothesis that I had
adopted; it resisted all of the objections with which I attempted
to fight it.25

She does not believe in Poisson's hypothesis, but she must defer to

his authority in this field. She is continually aware of this fact in her

writing. If the other hypothesis had come from an obscure author,

she says

...I would have limited myself to expose the question as I
conceived of it. Far from this, the geometer with whom I have

24Germain, Recherches, p. x. "On concevra aisement avec quelle repugnance
j'ai dli me decider a contredire Ies principes d'un auteur dont Ies talens
m'inspirent Ia plus haute estime. S'il ne dedaigne pas de repondre ames
objections, je m'empresserai de retracter Ies erreurs qu'il aura signalees."

25Germain, Recherches, p. ix. "...il reste encore, entre Ia doctrine de ce savant
auteur et Ia mienne, des differences trop essentielles pour que je ne croie pas
devoir en deferer Ie choix aux geometres. Je tentais vainement de renoncer a
I'hypothese que j'avais adoptee; elle resistait a toutes Ies objections pas
Iesquelles j'essayais de Ia combattre."
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the misfortune to be in disagreement has a right to this
confidence, as the authority attached to his name halts my own
judgment. I believe I would have hidden from the reader the
strongest objection one could make against my hypothesis if I
did not confess that it differed entirely from that of the savant
author.26

Indeed, her hypothesis was better than Poisson's by any modern

standards and the principles behind her work were very solid; it was

only her troubles with analysis and the variational technique of

Lagrange that kept her from true genius. Unfortunately, no one was

willing to give her instruction in these areas, or even tell her the

severity of her problems. As a result, her memoir is filled with

mathematical errors.

Germain published her work, Recherches sur la Theorie des

Surfaces Elastig,ues, in July 1821 at her own expense. It was not

endorsed by the Academy, but she sent copies to several members,

and it was added to the library of the Academy. She received letters

of congratulations and praise from Legendre, Delambre, Augustin­

Louis Cauchy, and Claude Navier.

The memoir begins with a statement of her basic hypothesis,

that the force of elasticity on a point on an initially curved surface is

proportional to (~ + i)- (~ + i) She states that Poisson's memoir

(apparently he did actually send her a copy as promised) uses the

quantity; - ~ as proportional to the force, rather than adding

26Germain, Recherches, p. ix. "S'il s'agissait d'un auteur obscur, je me
bornerais a exposer la question telle que je la con<;ois. Loin de la, Ie geometre
dont j'ai Ie malheur de ne pas partager l'opinion, a un tel droit propre
jugement. Je croirais donc avoir cache au lecteur la plus forte objection que
l'on puisse faire contre mon hypothese, si je ne lui avouais pas qu'elle differe
entierement de celIe de ce savant auteur."
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these two numbers as Germain does. She argues that this essentially

makes no difference, as the two are proportional. This result is

correct, but her general reasoning is not an adequate explanation.27

She then discusses the problem of boundary conditions,

asserting that her hypothesis is superior to Poisson's because it

avoids any difficulty with this particular subject. She has a concrete

example of why her hypothesis works better. The problem is as

follows: take an elastic plate such as Chladni used, perform the basic

experiment, then remove the portion of the plate between one of the

nodal lines and the nearest edge. Replace this section with a non­

elastic material of the same weight. Perform the experiment again,

and the tone emitted and the nodal lines are the same as before the

substitution took place. The only difference is that the intensity of

the sound diminishes and the nodal lines become somewhat wider.

Germain says that this is easy to explain under her hypothesis:

...for as each of the material points that compose the plaque are
endowed with a force of their own, in virtue of which they tend
to resume their natural situation, it suffices that these points
remain submitted to the same exterior conditions in order for
them to continue to move in the same manner. The relative
position of the material points is conserved.. .28

Each point on the elastic portion of the plaque moves the same way

as before; there is no "molecular force" which would cause a change

27Isaac Todhunter and Karl Pearson, A History of the Theory of Elasticity and
of the Strength of Materials (Cambridge, England: Cambridge University
Press, 1886), p. 150.

28Germain, Recherches, p. 11. "...car chacun des points materials qui
composent la plaque, etant doue d'une force propre , en vertu de laquelle ils
tendent a reprendre leur situation naturelle, il suffit que ces points restent
soumis aux memes conditions exterieures; pour qu'ils continuent ase mouvoir
de la meme maniere. La position relative des points materiels conserves.. "
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when a portion of the plaque is removed. The differences in

intensity of tone and width of lines are due to the weakening of the

movement of vibration.

Germain also spends some time discussing the problem of an

elastic ring. The equation here is an extension of her equation for

the vibrating plate. In her attempt to integrate it and make some

numerical deductions, her lack of training undermines her work. On

page 37 of her 96-page memoir, she makes a mistake in determining

the constants in one of her equations; Todhunter says

It is not too much to say that the whole rest of the work is
ruined by these mistakes, as almost every formula will have to
be corrected...The lady does not appear to have paid that
attention to the Calculus of Variations which might have been
expected from the pupil and friend of its great inventor
Lagrange.29

This rather harsh comment exemplifies why Germain has not yet

received the respect she deserves. She was as much a pupil of

Lagrange as a pupil of Euler, who was dead by the time she was four.

She taught herself from books and correspondence. Neither

Lagrange nor anyone else ever filled the role of teacher for her; she

was left to struggle on her own with no coach, only sideline cheers.

Her lack of a solid background in analysis caused her to commit

errors that allow others to disregard her work. Granted, there is no

denying that these errors exist, but the reason for these errors is

usually either misunderstood or ignored.

After her published paper, Germain did not give up on the

subject of elasticity. She attempted to extend her research, and

29Todhunter and Pearson, p. 156.



-

40
submitted a paper to the Academy in 1824. Once again, her work

was filled with errors, and the Academy basically ignored it. The

commission set up to read it included Poisson, Laplace, and Gaspard

Riche de Prony. They did not report its errors to her, or give her any

sort of critique. Poisson read it, then gave it to Prony, who did not

even bother to return her paper. Memoire sur l'emploi de l'epaisseur

dans la theorie des surfaces elastigues was discovered in his estate

after his death and was published in 1880.30 In 1826 she submitted

yet another memoir to the Academy. However, she published it first,

then sent it for them to review,31 Cauchy was designated to go over

her work and make a verbal report. There is no evidence of what he

said in this report, or even if he gave her a critique. It is likely that

they refrained from giving her the criticism she needed simply

because she was a woman and not a "professional" mathematician;

they probably felt that they were being polite.

In any case, Germain was definitely out of touch with the

subject of elasticity by this time. The mathematical community had

become interested in this subject, and Germain did not have access to

others' memoirs, sessions at the Academy, or even regular

professional conversation. Her isolation as much as her lack of a

solid background in analysis kept her from achieving anything more

in this area. The quest for a theory of elasticity was begun by

30This is one year after the publication of Oeuvres Philosophigues, which
contained Germain's philosophical works and Stupuy's biography of Germain.

31This was 21 pages in length and was published under the title Remargues sur
la nature, les bornes et l'etendue de la guestion des surfaces elastigues, et
, guation generale de ces surfaces.
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Germain, but as soon as her work was shown to be at least somewhat

successful, the men of science latched onto it and pushed her away.

Poisson was not the only other party interested in elasticity.

Joseph Fourier wrote a short essay on a solution technique for the

plate equation in 1818. Navier was more intrigued by the subject; he

desired to study the practical problem of a floor slab, supported at

the edges and loaded with weight. In order to do this, he needed to

establish boundary conditions as clearly a tloor would not be

infinitely large. His process, using the methods of Lagrange's

Analytic Mechanigue, succeeded in deriving Lagrange's plate

equation and a set of boundary conditions. His grasp of analysis

allowed him to succeed where Germain had failed. He presented this

memoir to the Academy in August, 1820, and yet another memoir

nine months later. Cauchy, one of the readers for his memoir, was

interested in the subject too, and delayed the review of Navier's

memoir so he could pursue his own investigations on the subject. He

wrote his own article on the subject, presented it to the Academy in

1822, and had an abstract published in 1823. In this work, he made

a definite advance towards the modern view of elasticity, defining

stress, strain, and deriving equations in relation to these two

concepts.32 Poisson wrote a massive work in 1828, still working

within the molecular model. In the abstract published in the

Annales de Chimie, he basically cites only ancient achievements in

his historical introduction and ignores all recent work other than his

own. His failure to mention Navier's work prompted a string of

32Bucciarelli and Dworsky, p. 102.
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angry correspondence between the two, all published in the

journal.33

Unlike Poisson, who obviously had a problem with proper

acknowledgments, others mentioned and even praised Germain's

work in their writings. In the abstract of his memoir in 1820, Navier

writes:

The research that was awarded the prize was founded on an
ingenious hypothesis, namely, that flexure gave birth, at each
point of an elastic plate, to a force proportional to the sum of
the inverse values of the two radii of principle curvature.
Mademoiselle Germain gave the differential equation of
equilibrium and movement of an elastic plane and some
integrals of these equations...34

Even though Germain's work is recognized in the introductions to

these writings, today it is rare to find her work mentioned in

textbooks. Often they cite only Poisson, Navier, and Cauchy as being

responsible for the emerging theory of elasticity at this time. But if

Germain had not blazed the trail, it is unlikely that their works

would have developed at the time they did, if at all.

33These are contained in Annales de Chimie, 1828-1829, vol 37-39.

34Bucciarelli and Dworsky, p. 104.
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NUMBER THEORY

Although her work in elasticity was not altogether successful,

Germain's work in number theory was and still is very important.

Her proofs were admired by Gauss, and Legendre published some of

her results in his book Theorie des nombres. Her most famous

theorem, which is called "Sophie Germain's Theorem," is included in

many number theory textbooks published today. Germain's

achievements in this area are not spoiled by a lack of accuracy; thus

we can discuss them in a more rigorous, mathematical tone.

Notation

alb

alb

a == b (mod m)

a i= b (mod m)

gcd(a, b) = m

n!

Is Read As

a divides b

a does not divide b

a is congruent to b modulo m

a is not congruent to b modulo m

the greatest common denominator
ofa and b is m

n factorial

-

Con2ruence

Congruence is a commonly used concept in basic number theory.

It was introduced in the early nineteenth century by Gauss as a new
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language to use when dealing with integers. Thus we begin with his

definition as given on the first page of DisQ.uisitiones Arithmeticae.

If a number a divides the difference of the numbers band c,
b and c are said to be congruent relative to a; if not, b and care
noncongruent. The number a is called the modulus. If the
numbers band c are congruent, each of them is called a residue of
the other. If they are noncongruent they are called nonresidues.l

In order to fully understand this concept, it is necessary to first have

a precise definition of divisibility.

Let a and b be integers, with a -:/: O. Then a divides b if there is an
integer c such that b = ac. If a divides b, then we write a I b.

The symbol" ==" is read as "is congruent to." Using this notation, we

give another definition of congruence.

Let m, a, and b be integers with m > 1. Then a == b (mod m) if
m I (a-b).

For example, 7 == 2 (mod 5), as 5 I (7 - 2). If a is divisible by m,

then a == 0 (mod m), as m I (a - 0). A slightly different way of

looking at congruences is that if a == b (mod m), a and b have the

same remainder when divided by m. In the above example of

7 == 2 (mod 5), we see that 7 divided by 5 is 1 remainder 2, and 2

divided by 5 is 0 remainder 2.

Some important properties of congruences are as follows:

A. Ret1exive property. If a is an integer, then a == a (mod m).

B. Symmetric property. If a and b are integers so that a == b

(mod m), then b == a (mod m).

lCarl Friedrich Gauss, DisQuisitiones Arithmeticae (Leipzig: G. Fleischer, 1801),
p. 1. Translated by Arthur A. Clarke, S.].
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C. Transitive property. If a, b, and c are integers with a == b

(mod m) and b == c (mod m), then a == c (mod m).

D. If a == b (mod m) and c is any integer, then

a + c == b + C (mod m), and ac == bc (mod m).

E. If ac == bc (mod m) and gcd(c, m) = 1, then a == b (mod m).

The only one of these which may be difficult to understand is

Property E. The proof of this uses the Fundamental Theorem of

Arithmetic, the statement that every positive integer greater than

one can be written uniquely, up to the order of the factors, as the

product of primes.

Proof of E.

If ac == bc (mod m), then m I (ac - bc) = c(a - b). But as c and m

have no common factors greater than one, the Fundamental Theorem

of Arithmetic shows that all of the primes in the prime factorization

of m must be contained in (a - b). Thus m I (a - b), so

a == b (mod m). •

The following fact is used in the proof of Sophie Germain's

theorem. It also relies on the Fundamental Theorem of Arithmetic.

Theorem A

Let rand s be relatively prime integers. If rs is an nth power,

then rand s must both be nth powers.

Proof

First, assume that rand s are relatively prime and that rs=tn . We

can assume that r > 1 and s > 1, as if either were equal to one then
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the theorem would obviously be true. The prime factorizations of r,

s, and t can be shown as follows:
r - pal paz pau

- 1 2' • • u,

and
t q blqbz qbk

- 1 2' •• k.

Since rand s are relatively prime, the primes occurring in their

factorizations are distinct. Since rs=tn,

Pal paz paUpaU+lpaU+Z pay qnblqnbz qnbk
1 2' •• u u+l u+2' • • v = 1 2' •• k •

By the Fundamental Theorem of Arithmetic, the primes occurring on

the two sides of the equation are the same. Therefore, v = k, and

after reindexing the primes qi, we may assume that Pi = qi for all i.

Their exponents must match, so then ai = nbj. Thus every exponent

ai is an nth power, and so ai/n is an integer. We may then see that

r=gn and s=hn, where g and h are the integers

Pal Inpaz In pau Ing= 1 2 ••• u

and

h PaU+I Inpau+z In pay In
= u+l u+2' •• v •

Hence rand s are both nth powers. •

--- -

The theorem for which Sophie Germain is most famous concerns

Fermat's Last "Theorem" (hereafter referred to as FLT), the

statement made by Pierre de Fermat that xP + yP = zp is impossible

in positive integers where p> 2. This is usually divided into two

cases. Case 1 of FLT is the statement that xP + yP = zp is impossible

in integers that are not divisible by p. Case 2 is the same, except that

p divides one of x, y, or z. It is not necessary to look at cases where
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two or three of x, y, or z are divisible by p. If two of the three are,

then the third must be as well; if all three are divisible by p, the p

can be factored out of the equation without changing its correctness.

Thus, without loss of generality, it can be assumed that x, y, and z are

pairwise relatively prime, as in a counterexample any common factor

could be divided out without changing the result. In order to prove

FLT, it is sufficient to prove it for p = 4 and all prime exponents

p ~ 3, as all possible exponents can be constructed from these.

The theorem that Germain proved in 1823 is as follows:

If P is an odd prime such that 2p + 1 is also a prime, then Case
1 of FLT holds for p.

Germain undoubtedly became interested in finding a proof for FLT

because the Academy had established a contest for this in 1816 and

again in 1818. At this time, there were only proofs for the cases of

n = 4, which was proved by Fermat himself, and n = 3, which was

proved by Euler. Legendre was interested in the problem as well,

and was in the process of creating a proof for the case n = 5 around

this time. It is quite possible that Germain began the outline of her

proof in this case as well, where p = 5 and 2p + 1 = 11, and expanded

it from there.

Today, due to the expansions of this theorem to include primes p

such that one of the following is a prime: 2p + 1, 4p + 1, 8p + 1, and

other combinations, the theorem is usually stated in the following

manner. After the proof of this more popular version, I will show

how p and 2p + 1 satisfy its requirements, and then discuss some of

the more recent generalizations.
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Sophie Germain's Theorem

Let p be an odd prime. If there is an aUxiliary prime q with the
properties that

1. xP + yP + zp =0 (mod q) implies x = 0 or y = 0 or z = 0
(mod q), and

2. aP =p (mod q) is impossible for any integer a,
then Case I of Fermat's Last Theorem is true for p.

Proof

FLT can be reformulated as the statement that xP + yP + zp = 0 is

impossible in nonzero integers since p is odd. This is possible since

xP + yP = zp is the same as xP + yP - zp = xP + yP + (-z)P = O. Suppose,

contrary to Case I of FLT, that p and q satisfy the conditions of the

theorem and that x, y, z are integers, none divisible by p, such that

xP + yP + zp = O. These assumptions will lead to a contradiction.

Assume that x, y, and z are pairwise relatively prime (this causes

no loss of generality). We start with the equation

(-x)P = yP + zp = (y + z) (yp-l - yp-2z + yp-3z2 - + zp-l).

This shows that (y + z) and (yp-l - yp-2z + yp-3z2 - + zp-l) are

relatively prime, as if n were a prime which divided them both,

y + z = 0 (mod n)

and

(yp-l - yp-2z + yp-3z2 - ... + zp-l) == 0 (mod n),

so then

y =-z (mod n). [2]

By combining [1] and [2],

(yp-l - yp-2(_y) + yp-3(_y)2 - ... + (_y)p-l) == pyp-l == 0 (mod n).

This implies that either p == 0 (mod n) or y == 0 (mod n). The first

cannot be true, since p and n are both primes and this statement

would say that p = n. This would be contradictory to the assumption



x = -au
y = -b~

z = -cy.
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that none of x, y, or z is divisible by p as if p I yP + zp, then p I (-x)P

so pix. Thus the second statement should be true. But if

y == 0 (mod n), then n would divide both y and (y + z), but y and z

have no common factors. As neither of these can be true, there is no

prime factor which divides both (y + z) and

(yp-l - yp-2z + yp-3z2 - ... + zp-l).

Since the factors are relatively prime, they are both pth powers

by Theorem A above. The equations (-y)P = (xP + zP) and

(-z)P = (xP + yP) can be factored the same way. From this, it follows

that there must be integers a, b, c, u, ~, and ysuch that

y + z = aP yp-l - yp-2z + yp-3z2 - + zp-l = uP
z + x = bP zp-l - zp-2x + zp-3x2 - + xp-l = ~p

x + Y = cP xP-1 - xp-2y + xP-3y2 - + yp-l = "p

Now consider arithmetic modulo q. Since xP + yP + zp == 0 (mod q),

the first condition on q in the theorem implies that x, y, or z must be

zero mod q. Assume, without loss of generality, that x == 0 (mod q).

Then

2x = x + x = bP + cP + -(z + y) = bP + cP + (-a)P == 0 (mod q)

and, again by the first condition on q, it follows that a, b, or c must be

zero (mod q). If b or c is 0 (mod q), then

y= -b~ == 0 (mod q)

or

z = -cy== 0 (mod q).

This, together with the fact that x == 0 (mod q), implies that at least

two of x, y, and z are divisible by q, which contradicts the

assumption that x, y, and z are pairwise relatively prime. Therefore,
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as neither b nor c is congruent to 0 mod q, a == 0 (mod q). Then,

since y + z = aP, this implies that

y == -z (mod q).

So

aP = yp-l - yp-2z + yp-3z2 - ... + zp-l == pyp-l (mod q)

as before and, since x == 0 (mod q),

yP = xp-l - xp-2y + xp-3y2 - ... + yp-l == yp-l (mod q).

Putting these together gives

aP == pyP (mod q). [3]

Since y is not congruent to 0 (mod q), there is an integer g such that

yg == 1 (mod q),

as every element not congruent to zero must have a multiplicative

inverse mod q. We can thus insert a factor of (yg)P on the left side of

[3] without changing the result, so

(ayg)P == PYP (mod q).

By canceling the factor of yP, we reach

(ag)P == p (mod q),

which is contrary to the second assumption on q. Thus, by this final

contradiction, Sophie Germain's theorem is proved. •

Now it remains to show that p and q = (2p + 1) satisfy the

hypotheses of the theorem. In order to do this, we must first discuss

two other concepts: Fermat's Little Theorem and the Legendre

symbol.

Fermat's Little Theorem

If P is prime and a is a positive integer with p A' a, then ap-l == 1
(mod p).
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Proof

Consider the integers a, 2a, ..., (p - 1)a. None of these p - 1

integers is divisible by p, because if p I aj, then p I j, as we know

gcd(a, p) =1 and p %a, so we can use Property E of congruences. But

as j is a number between 1 and p - 1, it cannot possibly be divisible

by p. Thus none of these is divisible by p. Also, no two of these

integers are congruent mod p. If we assume that ja == ka (mod p) for

some j and k such that 1 ~ j < k ~ (p - 1), then, again from Property

E, we have j == k. But as j and k are different positive integers, both

less than p, this is impossible.

Since the integers a, 2a, ... , (p - l)a are a set of p - 1 integers with

no two congruent mod p, and all incongruent to zero mod p, we know

that each ia is congruent to one of the integers 1,2, ..., (p - 1),

although we do not know which. Even so, a result of this is that the

product of the integers a, 2a, ..., (p - l)a is congruent mod p to the

product of 1,2, "', (p - 1). Written out, this is

a·2a ... (p - l)a == 1·2 ... (p - 1) (mod p).

Hence,

ap-l (p - I)! == (p - I)! (mod p).

Since gcd((p - I)! , p). = 1, we can cancel (p - I)! and reach the

equation

ap-l == 1 (mod p). •

In order to understand the Legendre symbol, a notation

developed by Legendre, first we must discuss quadratic residues and

nonresidues. We have the following definition.
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Definition

If m is a positive integer, we say that the integer a is a quadratic
residue of m if gcd(a, m) = 1 and the congruence x2 == a (mod m)
has a solution. If this congruence has no solution, then a is a
quadratic nonresidue of m.

Using this, we can thus define the Legendre symbol.

Definition

Let p be an odd prime and a an integer not divisible by p. The

Legendre symbol (~}s defined by

(
a) { 1 if a is a quadratic residue of p
p = -1 if a is a quadratic nonresidue of p .

The following criterion is used to demonstrate properties of the

Legendre symbol. It is usually used to decide whether an integer is

a quadratic residue of a prime number. We will use it in a different

manner.

Euler's Criterion

Let p be an odd prime and let a be a positive integer not divisible
by p. Then

(~)" a(p-l)12 (mod pl.

Proof

First, consider the case when (:) = 1. Then the congruence

x2 == a (mod p) has a solution, say x = XQ. By using Fermat's Little

Theorem, we know
a(p-l)/2 = (x~)(P-l)/2 = xg-l == 1 (mod p).

Thus we know that (~)" a(p-l)12 (mod p) when (~)~ 1.
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Now look at the case when (~)= -1. This means that the

congruence x2 == a (mod p) has no solutions. For each integer i such

that 1 ~ i ~ P - 1, there is a unique integer j with 1 ~ j ~ p - 1, such

that ij == a (mod p).2 Since x2 == a (mod p) has no solutions, we know

that i 1= j. We can thus group the integers 1, 2, ... , (p - 1) into pairs,

each with a product congruent to a (mod p). Since there are (p-l)/2

of these pairs, multiplying them together gives

(p - I)! == a(p-1)12 (mod p).

According to Wilson's Theorem, (p - I)! == -1 (mod p).3 Thus

-1 == a(p-1)/2 (mod p).

So as (~) ~ -1 in this case, and we once again have

(~)", alp-l)/2 (modp). •

Using the above information, we can show that Germain's p and

q = (2p + 1) satisfy the requirements of the more general theorem.

For the first condition, suppose that xP + yP + zp == 0 (mod q) and q

does not divide x, y, or z. Since p = (q-l)/2, Fermat's Little Theorem

implies that

2Theorem from Kenneth H. Rosen, Elementary Number Theory and Its
Applications (USA: Addison-Wesley Publishing Company, 1993), p. 20: Let a, b,
and m be integers with m > 0 and gcd(a, m) = d. If d If b, then ax == b (mod m)
has no solutions. If d I b, then ax == b (mod m) has exactly d incongruent
solutions mod m. In this case, d = 1 as i and j are relatively prime to p. Thus,
there is a unique solution.

3The first proof of this theorem was given by Lagrange, but it is named for
John Wilson, who conjectured this result but did not prove it.
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xP == ±1 (mod q),

yP == ±1 (mod q),

zp == ±1 (mod q).

Thus, 0 = xP + yP + zp == ±1 ±1 ±1 (mod q), which is clearly

impossible; one of x, y, or z must be divisible by q and thus

congruent to 0 (mod q). For the second condition, if p == aP (mod q),

computing the Legendre symbol yields

±1 ~ (~J" a(q-l)/2 ~ a(2p+l-l)/2 ~ aP " p (mod q)

so p == ±1 (mod q), and this too is impossible. •

In 1823, Germain shared this theorem with Legendre, who

presented it to the Institut de France for her. She had found

auxilIary primes q for all primes p < 100, except for 2, of course.

Legendre extended the theorem to include cases where the auxilliary

prime q was equal to 4p + 1, 8p + 1, lOp + 1, 14p + 1, or 16p + 1. He

also proved that Germain's theorem could not use an auxilliary prime

q = (mn + 1) if m was divisible by 3.4 For example, q = 12p + 1 does

not work. Using this information, auxilIary primes q were found for

all primes p < 197, thus proving Case 1 for all of these primes. This

happened before a proof existed for p = 5, and clearly showed that

Case 2 was the place to focus attention.

4Leonard Eugene Dickson, History of the Theory of Numbers (New York: G. E.
Stechert, 1934), p. 735.
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In 1908, Leonard Eugene Dickson used Germain's generalized

theorem to prove Case 1 for all primes n < 7000. ]. Barkley Rosser

used it to prove Case 1 for all primes n < 41,000,000 in 1940.

Germain's theorem has been expanded by more recent

mathematicians as well. In 1940, M. Krasner proved the theorem:

Assume p is an odd prime, and h is an integer such that
1. q = 2hp + 1 is a prime,
2. 3 doesn't divide h,
3. 3h/ 2 < 2hp + 1,
4. 22h "i= 1 (mod q).

Then Case 1 holds for p.

And in 1951, P. Denes proved:

Let p be an odd prime, h an integer less than or equal to 55 and
not divisible by 3. If q = 2hp + 1 is a prime, then Case 1 holds for
p.

While the proofs of these theorems involve more complex concepts

than those used to prove Germain's theorem, it is clear that the end

results are very similar to the conclusion that Germain reached.s

Another theorem appears at first to be different from Germain's, but

the result is still the same. E. Wendt proved in 1894 the following:

Wendt's Theorem

Let p J= 2 and let q = 2hp + 1 (h ~ 1) be primes. If q A W2h and
p2h "i= 1 (mod q), then the first case of Fermat's Theorem holds for
the exponent p.

This sounds rather reasonable until one discovers that Wn is the

determinant of the n x n matrix:

SPaulo Ribenboim, 13 Lectures on Fermat's Last Theorem (New York:
Springer-Verlag, 1979), p. 57. Both Krasner's and Denes' theorems are
mentioned here.
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1 (~) (~) (n~l)

(n~l) 1 (~) (n~2)

(~) (~) (~) ... 1
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Obviously, this would be a rather unwieldly calculation for a large n.

It is easy to see why so many textbooks refer to Germain's theorem

as elegant and clever.

Germain's work extends beyond this very important theorem.

Her work is also used by others as a basis for their own work. For

example, in 1909 A. Fleck proved this theorem:

Assume p is an odd prime and x, y, and z are nonzero pairwise
relatively prime integers satisifying the equation xP + yP + zp = O.
If P does not divide x, then xp-1 == 1 (mod p3).

He needed the following result by Germain to do so.

Theorem B

Assume that p is an odd prime and x, y, and z are nonzero
pairwise relatively prime integers satisfying the equation
xP + yP + zp = O. If P does not divide x, y, or z, then
<X == 1 (mod p2), ~ == 1 (mod p2), and y == 1 (mod p2), where <x, ~,

and yare as in the proof of Sophie Germain's Theorem.

Proof6

For this proof, we need to remember that

6Ribenboim, 13 Lectures, p. 58. Follows the proof given by Perez-Cacho in
1958.
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y+z=aP
z + x = bP

x+y=cP

yp-1 - yp-2z + yp-3z2 - + Zp-1 = aP
Zp-1 - Zp-2X+ Zp-3X2 - + Xp-1 = ~P

Xp-1 - Xp-2y + Xp-3y2 - + yp-1 = yP

x = -aa

y = -b~

z=-cy.
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These equations relied only on the fact that x, y, and z were

relatively prime and satisfied xP + yP + zp = 0; we do not need an

auxilliary prime q. To prove this theorem, we must only prove that

a == 1 (mod p2); the rest follows by symmetry. It is enough to show

that if q is any prime dividing a, then q == 1 (mod p2).

So assume that q is a prime such that q I a. It follows that q I x ,

but q l' yz. As we proved earlier that (y + z) and

(yp-1 - yp-2z + yp-3z2 - ... + zp-1) are relatively prime, the

gcd (a, a) = 1, so then we have that q l' (y + z). Since q I x, then

x == 0 (mod q) so we see that the equation

zp-1 - zp-2x + zp-3x2 - ... + xp-1 = ~P

becomes

zp-1 == ~p (mod q)

and for the same reason we also have

yp-1 == yP (mod q).

Since q I -(xP), q I yP + ZP. Thus,

o == yP + zp = y(yp-1) + z(zp-1) == yyP + z~P (mod q)

so -yyP == z~P (mod q).

As q I yP + zp and q l' y + z, then q == 1 (mod p).7 So p I q - 1,

hence (q-1)/p is an integer. We then raise each side of -yyP == z~P

(mod q) to the power of (q-l)/p. Thus

(_y)(q-1)/p(y(q-1)/p)p == z(q-1)/p(~ (q-1)/p)p (mod q). [4]

7Ribenboim, 13 Lectures, p. 52. If P I an + bn but P A am + bm for every proper
divisor m of n, then P == 1 (mod n).
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But by Fermat's Little Theorem, 'fl.-1 and aq-1 are both congruent to 1

(mod q), and so [4] yields that

(_y)(q-1)/p == z(q-1)/p (mod q).

However, ify' is such that y'y == -1 (mod q), then from

zp == -yP (mod q), we can insert a factor of (y' )P with the result that

(zy')P == 1 (mod q). However, if (zy')n == 1 (mod q) for an integer n,

then n is divisible by the order of zy' (mod q).8 Since p is prime and

thus only divisible by 1 and p, the order of zy' must be either 1 or p.

As z 1= -y (mod q), the order of zy' cannot be 1. Thus, the

multiplicative order of zy' (mod q) is equal to p.

Also, since z(q-1)/p == (_y)(q-1)/p (mod q), inserting a factor of

(y' )(q-1)/p on each side yields that (zy' )(q-1)/p == 1 (mod p). Thus, as

we know that the order of zy' is p, we know that p divides (q-1)/p.

But this means that p2 I q-1, that is, that q == 1 (mod p2), as it was

required to show. •

Germain communicated many of her discoveries in number theory

to Gauss. Many of the problems she worked on were based on

discussions in Gauss' Disg,uisitiones Arithmeticae. Gauss valued her

results, as evidenced by the following letter he wrote to Olbers.

...the two test theorems (for what primes 2 is a cubic or a
biquadratic residue), which I also communicated to [Lagrange]
some time ago, he considers "among the most beautiful things and

8The order of an element is the least power an element must be raised to so it is
equal to the identity, 1; to put it another way, if g is the element, the order is
the smallest positive integer n such that gn == 1. Also, if grn == 1, then the
order of g divides m.
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among the most difficult to prove." But Sophie Germain has sent
me the proofs of these...9

These theorems concern finding odd primes p such that one or both

of the congruences x3 = 2 (mod p) and x4 =2 (mod p) are solvable.

He writes to Germain that her new proof"...was very fine, although it

seems to be isolated and cannot be applied to other numbers."l0 The

following chart helps to give more solid understanding of why this

problem may be interesting.

x x3
x3 mod p, where p is
3 5 7 11 13

x4 mod p, where p is
3 5 7 11 13

,------

1 1 1 1 1 1 1 1 1 1 1 1 1
2 8 2 3 1 8 8 16 1 1 2 5 3
3 27 0 2 6 5 1 81 0 1 4 4 3
4 64 1 4 1 9 12 256 1 1 4 3 9
5 125 2 0 6 4 8 625 1 0 2 9 1
6 216 0 1 6 7 8 1296 0 1 1 9 9
7 343 1 3 0 2 5 2401 1 1 0 3 9
8 512 2 2 1 6 5 4096 1 1 1 4 1
9 729 0 4 1 3 1 6561 0 1 2 5 9
10 1000 1 0 6 10 12 10000 1 0 4 1 3
11 1331 2 1 1 0 5 14641 1 1 4 0 3
12 1728 0 3 6 1 12 20736 0 1 2 1 1
13 2197 1 2 6 8 0 28561 1 1 1 5 0

Looking down the columns reveals a rather interesting fact. All

columns have a cyclic pattern, and some primes never have a 2 in

their column.

9Bell, p. 262. Letter dated July 21, 1807.

lOLetter from Gauss, June 16, 1806. "...votre nouvelle demonstration pour les
nombres premiers, dont 2 est residue ou nonresidue, m'a extrement plu; elle est
tres fine, quoiqu'elle semble etre isolee etne pouvoir s'appliquer a d'autres
nombres." .Q..£.., p. 303.
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Since Gauss states that her proofs do not seem applicable to other

numbers, the search for an historically accurate proof is difficult. In

most modern number theory books there exists a very general

theorem and proof for similar problems. The theorem is the

following:

Let m be a positive integer with a primitive root. If k is a positive
integer and a is an integer relatively prime to m, then the
congruence xk == a (mod m) has a solution if and only if
a<1>(m)/d == 1 (mod m), where d = gcd(k,<I>(m)).11,12

It is easy to see how a proof for x3 == 2 (mod p) would use this

theorem. Since m = p, a prime, then a primitive root exists, and

<I>(p) = p - 1. Also, set k = 3, a = 2, and d = gcd(p - 1, 3). Thus we

would know that a prime p has 2 as a cubic residue if 2p-l/d == 1

(mod p), a simple calculation. However, we know that Germain's

proofs did not seem applicable to other numbers, so clearly they

were not of a form very similar to this. Otherwise, surely either she

or Gauss would have noticed that they could be expanded.

Bits and pieces of some of Germain's other discoveries appear in

her correspondence. For example, a letter from Euler to Goldbach

mentions the problem of factoring p4 + 4q4; Germain found that one

could factor this into p2 ± 2pq + 2q2. 13 Another time, upon reading

a memoir that Lagrange had written, she encountered the term

llRosen, p. 301.

12The Euler phi function, <1>(n), is defined as the number of positive integers
less than n that are relatively prime to n. For any prime p, <1>(p) = p-1. An
integer has a primitive root if there exists a number n with order <1>(n). All
prime numbers have a primitive root.

13Dickson, p. 382.
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s10 - 11 (s8 - 4s6r2 + 7s4r4 - Ss2r6 + r8). She writes to Gauss that she

"saw with astonishment" that Lagrange had not reduced the term to

the much simpler t2 -11 u 2, although she does not reveal the

substitution scheme in the body of her letter,14

Germain also completed a proof for a very special case of Fermat's

Last Theorem. In a letter to Gauss, she proved it held for n = p - 1,

where p is a prime of the form 8k + 7,15 However, this proof was

contained only in the mathematical papers she sent along with her

letter and has never been published.16

In the area of number theory, Germain's name has been

preserved in a different manner as well. E. Dubouis defined a

"sophien" of a prime n to be a prime p of the form (kn + 1), where n

is such that xn == yn + 1 (mod p) is impossible in integers relatively

prime to p. Pepin proved that 3 has a finite number of sophiens, but

it is not known that any prime n has a finite number of sophiens,17

14Germain, letter to Gauss November 21, 1804.

15lbid.

16Mary W. Gray, "Sophie Germain" in Women of Mathematics: A Bibliographic
Sourcebook (Westport, Connecticut: Greenwood Press, Inc., 1987), p. 51.

17Gray, p. 51, states that Dubouis proved that this is true, but neither Dickson's
History of the Theory of Numbers or Ribenboim's Book of Prime Number
Records mentions this and I doubt its validity.
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PHILOSOPHY

Although mathematics was Germain's first love, she was

interested in a variety of other subjects as well. As previously

mentioned, she obtained lecture notes from Fourcroy's chemistry

course as well as Lagrange's analysis course. She read poetry and

was interested in music. Also, she wrote two philosophical works.

The first, Pensees Diverses, is a collection of short thoughts on

different subjects, such as the nature of mathematicians and

scientists. The other, Considerations generales sur l'etat des sciences

et des lettres aux differentes epog,ues de leur culture. is a more

unified, scholarly work. In it, she traces the history of human

intellectual development in order to discuss the nature of society and

the connections between science and art. What follows is an

overview of the ideas expressed in Considerations. While some of

her propositions are definitely debatable, I will not discuss the

relative merits of her ideas, but merely present them.

Germain begins by discussing the similarities between artistic

works and scientific ones. While it is undeniable that the impression

produced by an artistic presentation is different than that produced

by the study of a mathematical text, there are still underlying rules

which both science and art must follow in order to be thought great

or beautiful. Genius and eloquence are pleasing to us because they
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reveal important relations between subjects that we had not

previously seen. It is to this unexpected order that we respond,!

People recognize easily that literature has style and eloquence, but

the language of mathematics has this as well. The choice of

characters corresponds to the choice of words, the choice of formulas

to the choice of phrases. Just as in literature, all mathematical

authors do not write with the same degree of perfection; those who

are knowledgeable about mathematics find a charm in good writing.

Good writers use their innate sense of style in order to write

mathematical texts with finesse. 2

Thus, although calculus and poetry seem on the surface to be

quite unlike, they have strong similarities between them. They are

both inspired by a sense of order and of proportion, and employ

style to present their message in a pleasing manner. While their

superficial differences tend to suggest that there is a real separation

between them, the spirit which created them is the same.3 Science

and art are inspired by the search for universal truth. All of our

efforts in these subjects are directed towards order, simplicity, and

unity of conception.4

After this introduction, Germain discusses the beginnings of

human intellectual activity. At first, literature/storytelling and art

lSophie Germain, "Considerations sur l'etat des sciences et lettres aux
differentes epoques de leur culture" in Oeuvres philosophiQues, p. 100.

2Ibid. pp. 106-107.

3Ibid. p. 108.

4Ibid. p. 110.
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were nothing more than exact copies of actual events. As they

developed, the "man of genius" (l'homme de genie) could use his

imagination and the stories he had heard from others and combine

them into new tales. However, in order to create a successful story,

this person must have an abstract notion of order. Without unity of

action, unity of interest, and clarity of exposition, his story would

faiLs Once he achieved a sense of order, the problem became how to

classify the world around him. Governing all of this was a strong

sense of analogy. First came the sense of individuality; using this, he

personified other beings, both inanimate and intellectual. There was

thus a profound sentiment of a common bond between all beings in

this first epoch of intellectual culture.6 At this time, there was no

separation between science and art. There was the need to explain

events, but these explanations were as poetic as any literature. The

marvels of nature united the two.

Using this sense of science, humans began to see that acts of

nature seemed to have an order and a succession that seemed to

work toward a determined goal. Man could not conceive of any of

this happening without supposing that this action must be caused by

some sort of intelligent being. As he could not see anyone, this being

must be invisible. Thus he imagined gods, demi-gods, and spirits,

each having human traits such as passion, affection, varied interests,

and dislikes. They were made in his own image, only immaterial.

Since man considered his own existence to be the same type as all

SIbid. p. 112.

6Ibid. p. 112.
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other beings, he then searched for something comparable within

himself. If the spirits exist and have knowledge and will, yet are

immaterial, there must exist within humans something immaterial

as well, since humans also have knowledge and will. Thus the soul

was created.7

Germain asserts that this outline of what happened shows the

origin of many of the ideas which were produced after this first era

of human history. Literature preserved the fictions that were once

regarded as truths; the physical sciences collected the observations

which the fictions had explained; philosophy took its systems from

the sciences; and religions found the elements of their beliefs.8

However, human knowledge marched on. The observation that

celestial bodies followed a set of unchanging laws posed a problem.

People's wills are varied and constantly changing; as concepts of

divine beings were based upon this, their wills were similar. In

order to have a set of immutable laws, there must be a single being

which governs the universe, a being whose will is unchanging. Thus,

God must exist.9

As people have a beginning, by analogy the universe must also

have a beginning; as God created the universe, he must have existed

before the universe. This concept pushes the limit of analogies, as

suddenly man is faced with the concept of the infinite. He names

this concept the eternal. As God has no beginning, by symmetry he

7Ibid. pp. 114-115.

8Ibid. p. 115.

9Ibid. p. 116.
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has no end. The physical human body clearly had a beginning and

an end, but humans had also appropriated spirituality in the form of

the soul. This immaterial soul becomes our own means of everlasting

life. Different religions have interpreted this in different manners,

but there is still a prevailing idea of human immortality.

Germain also explains the manner in which people came to believe

that all existence relates directly to that of humankind. Man knew

facts about the universe, and tried to establish relations between

them. He did this by a method of cause and effect, but he did not

know all of the facts, and there was still the question of why things

happened in the first place. Due to his own self-love, man believed

himself to be the model of all other beings, to be essentially the

center of the universe. Thus, everything happens for him. The sun

and moon are there in order to light his villages. Animals and plants

are there to feed him. In searching for a sense of order and unity, he

conceived of imaginary relations between things. At first this was

merely an error of judgment, but his own egotism sanctioned this

error, and religions consecrated it. lO

Two examples of this egotism are the false sciences of alchemy

and astrology. Alchemy taught that the human body was the

epitome of the universe, and named substances according to the

organs which they resembled. It also searched for unity in the form

of a universal solvent. Astrology taught that the stars influenced

each and every individual. Germain shows how egotistical this belief

is:

lOIbid. p. 123.
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Man, persuaded of his own importance, believed himself to be
menaced by the apparition of comets. The giants of the earth,
cherishing through egotism their fellow man, could not see any
event more remarkable than their own death. Also, they did not
doubt that their death would be announced by these vagabond .
stars, who certainly would not have taken the pain to visit the
earth if they were not directed to warn the habitants of such a
grand misfortune. 11

Both alchemy and astrology had been renounced by scientists, but

they give an important and easy example of the self-centeredness of

humankind. There is still the habit to judge nature by what is

understandable in relation to humankind; propositions are affirmed

and denied based on whether we can conceive of their existence. 12

However, innate within us is a model of truth. For example, if

when first studying a circle we are distracted by sines and cosines,

we would demand why such things take place. Since we are looking

at only part of the subject, we are not content. Once we step back

and look at the whole equation of the circle, our curiosity is satisfied,

as we have defined the essence of a circle and see it in its true

state. 13 We would sense the truth in this, and our sense of unity and

of order would be fulfilled.

Why then, if humankind is endowed with a sense of innate truth,

have we committed so many errors of judgment? Germain attributes

llIbid. p. 125. "L'homme persuade de son importance, se croyait menace par
l'apparition des cometes. Les grands de la terre, rencherissant sur l'amour­
propre de leurs semblables ne voyaient par d'evenements plus remarquables
que leur propre mort. Aussi ne doutaient-ils pas qu'elle ne fut annoncee par
ces astres vagabonds, qui bien certainement n'auraient pas pris la peine de
visiter la terre s'ils n'eussent ete charges d'avertir les habitants d'un aussi
grand malheur."

12Ibid. p. 125.

13Ibid. p. 135.
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this to a lack of absolutism in our intellectual pursuits; at the base of

this problem is the nature of language,14 Language was invented for

common communication, for talking about things that were either

present or perfectly known. As humankind developed, however, this

same language was used to express and discuss abstract ideas. The

difficulty arises when new words are invented to discuss these new

concepts; they cannot be precisely defined. Technical expressions are

interpreted in a thousand different ways, following the opinions of

people searching for a support for their own beliefs. Two people can

say the same thing and yet still have vastly different opinions,15

The only type of language which avoided such confusion was

mathematics. The first people to study this subject looked at simple

geometric figures and general properties of numbers. It was

impossible to attribute any properties to these objects that they did

not have. Signs were then created to express these properties

exactly, and thus mathematics offered to the human spirit the

realization of truth,16

In other subjects, such as scientific, religious, and political, there

was not this kind of precision. There were thousands of different

doctrines and hypotheses, all contradicting one another and

disguising the spirit under which the original ideas were created.

This began to change when Descartes essentially reconstructed the

universe and created a new epoch of reason. He reunited algebra

14Ibid. p. 141.

15Ibid. pp. 141-142.

16Ibid. p. 143.
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and geometry and gave the language of mathematics a new use.

Newton was able to use the language of mathematics to describe and

measure the movement of celestial bodies. The order and unity of

the universe came closer to our reach. Mathematics was reunited

with physical science. Subjects such as mechanics and

hydrodynamics, whose theory and practice were known before this

time, suddenly became measurable by calculus)7 The study of

mathematics became much more widespread as people discovered it

could express the laws of the heavens. Less than a century before,

algebra had seemed to be a barbarous and indecipherable language;

suddenly it could explain all sorts of diverse happenings.

Unfortunately, philosophy still could not be expressed in as an

exact a manner as mathematics and science. The philosophers

observed all that was happening to unite areas of mathematics and

physical science, and thus had to find a way to explain this

connection between the two. Rather than studying the causes of

.phenomena, as they had previous to this time, they began to consider

the phenomena themselves. The question changed from "why?" to

"how?" and "how much?"18 They made positive observations and

renounced the satisfaction of explaining them, confident that liaisons

between their observations would be found at a later date.

This was the beginning of the epoch of true knowledge of

nature)9 Scientific progress established relations between events

17Ibid. pp. 146-147.

18Ibid. p. 150-151.

19Ibid. p. 151.
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that were previously thought to be isolated; we began to envision

these events as merely different parts of the same existence.20

Germain explains this further:

The more one reflects, the more one acknowledges that necessity
governs the world. At each new progress of science, that which
seemed contingent is recognized as being necessary. Multiple
relations are established between the branches that we had
thought to be separate; we observe laws where we had thought
there were only accidental events. We approach more and more
the unity of being...21

This unity of being is the truth, and is inseparable from our

existence. Notions of the good and the beautiful are derived from

our innate sense of truth.

Germain clearly has a deep love and respect for mathematics; she

returns to the subject again. She asserts that one day it may be

possible to express moral, political, and metaphysical questions in the

language of calculations. The special nature of the question would be

represented by a constant, and the propositions related to each

subject would be functions. This proposition is supported by an

example. In calculus, phenomena generally have a tendency to be

regular, and this is expressed in their formulas. Terms which

express irregularity tend to disappear after a short time. Similar to

this, in the area of morality the effects of fraud, lies, and injustices

last for only a short time, while truth and justice tend to triumph

20Ibid. p. 160.

21 Ibid. p. 164. "Plus on reflechit, plus aussi on reconnait que la necessite
gouverne Ie monde. Achaque proges nouveau des sciences, ce qui passait pour
contingent est reconnu comme etant necessaire. II s'etablit el nos yeux des
liaisons multipliees entre des branches qu'on avait cru separees; on observes
des lois lel oil on n'avait encore vu que des faits accidentels. Nous approchons
de plus en plus de l'unite d'etre..."
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over obstacles which oppose them. In politics, when looking at

events that act on the system, one distinguishes between those which

are accidental and soon cease, and those which are well known and

must predominate. In the matter of taste, the fashion of the moment

tends to disappear quickly. In any case, actions which disturb the

natural order tend to come to nothing.22

She also gives an analogy between mechanics and politics

concerning the equilibrium of a situation. In mechanics, the

equilibrium between many forces comes when the forces on one side

are equivalent to the forces they oppose. If an exterior cause acts

upon the system, the equilibrium reestablishes itself by the means of

oscillations, whose amplitude diminishes quickly. However, this new

equilibrium is different than the old. In society, a state of repose is

maintained if there is an equilibrium of political forces. The natural

tendency of people is to remain in this state of tranquillity. But if

the government doesn't observe changes in the social climate, they

can maintain this tranquillity only as long as no event agitates the

spirits of the people. It is impossible to maintain the equilibrium for

any length of time if they do not keep the center of gravity, the

opinion of the people, at their base. The society will seem to move as

one force against the government; a revolution results and the state

of equilibrium is changed.23

Music is another point of discussion. Just like mathematics, it too

is a language, employing sounds, phrases, periods, and rules. Yet it is

22Ibid. pp. 174-175.

23Ibid. pp. 175-179.
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a purely metaphysical language. It can only express emotions, but it

is extremely powerfu1.24

The work ends by restating the connection between all the

seemingly different aspects of science and the humanities. We see

them as being different only because we have "created" the universe

according to our own wills rather than seeing how it really is. The

analogies that can be drawn between science and art reflect the

unity of the universe.

Considerations was praised by Auguste Comte, the founder of

positive philosophy. His views are similar to many of her ideas. In

his Course on the Positive Philosophy, first published in 1830, he

searches for a set of laws which governed human history. He breaks

history into three stages: the theological stage, in which man invents

gods in order to explain the world around him and eventually moves

towards the idea of a single god as more order is posed on the

community; the metaphysical stage, in which intellect deifies itself,

human reason becomes supreme, and the principle of authority is

challenged and replaced with notions of equality; and the final

positive stage, in which there is a true certainty of belief, providing a

basis for reorganization of society, rationalism, and moral

regeneration. He also believed in a unity of the sciences, that "the

various sciences are branches from a single trunk; and thereby

giving a character of unity to the variety of special studies that are

24Ibid. p. 212.
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now scattered abroad in a fatal dispersion."25 It is easy to see the

similarities between this general description of Comte's work and

Germain's own theories.

The similarities are so great that Stupuy asserts that perhaps

Germain is the true founder of sociology, as

she did not distinguish between the logical processes which are
owned by each category of knowledge; while asserting the organic
similiarity of the asthetic and the scientific genius, she did not
indicate the different destinations of art and science, and her
work is devoid of all metaphyics.26

Sociology, or social physics as Comte referred to it, supposedly

completes the body of philosophy. Through the study of history in a

scientific manner, its purpose is to show the unity between all of the

sciences, a purpose Germain clearly worked toward.

Germain never published her philosophical works. Pensees has

the same personal feel as journal writings, and Considerations was

likely never finished, judging from the relatively non-conclusive

ending. Her writings were compiled and printed by her nephew,

Armand-Jacques Lherbette, in 1833, in honor of her memory. In

1879 they were republished in Oeuvres philosophig,ues de Sophie

Germain, which contained these works, some correspondence, and a

biography by Hippolyte Stupuy.

25Frank N. Magill, editor, Masterpieces of World Philosophy in SummalY Form
(New York: Harper and Row, 1961), pp. 590-591.

26Stupuy, p. 69. "...elle ne distingue pas entre les procedes logique celui qui est
propre achaque categorie de la connaissance; elle n'indique pas, tout en
constatant la similitude organique du genie esthetique et du genie scientifique,
la destination differente de l'art et de la science, et son oeuvre n'est pas
exempte de toute metaphysique."
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TOWARDS THE END

Despite the fact that she had won a great honor with her

memoir in elasticity and her continuing professional contact with

members of the First Class such as Legendre, Germain still had

difficulties gaining entrance to public meetings of the First Class. At

one time she requested a ticket from Delambre, the Permanent

Secretary of the First Class until 1822. He responded with a letter

discussing the difficulties of getting tickets to such an event, as

A number of these tickets are reserved for grand functionaries
and celebrated foreigners, so that at each meeting of our
Academy I have at most ten such tickets. I make it a rule to
distribute them to those of my fellow members who want them
for their wives. l

Her professional standing had little sway here. However, Germain's

friend and colleague Fourier was elected to be the next Permanent

Secretary in November of 1822. By the end of May 1823, he sent

her the following official letter.

I have the honor of informing you that every time you wish to
attend the public meetings of the Institute you will be
admitted to one of the reserved seats in the center of the hall.
The Academy of Sciences wishes to demonstrate, by this
distinction, all the interest that you mathematical works

lBucciarelli and Dworsky, p. 90. Letter from Delambre, July 25, 1821.
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inspire, especially the scientific research that it has crowned
through the award to you of one of its annual, grand prizes.2

Finally Germain was accorded a position that she well deserved. She

was the first woman to attend the sessions who was not the wife of a

member of the First Class.

At the age of 53, Sophie Germain contracted breast cancer.3

She continued her work in mathematics and elasticity and

completed retrospective papers on both number theory and on the

curvature of surfaces, as well composing her philosophical work

Considerations. After two years of painful suffering, she died on

June 27,1831. In 1837, honorary doctorates were conferred to

several persons at the centenary celebration of the University of

Gottingen. Gauss regretted that she was not alive to receive one; he

said that Germain "proved to the world that even a woman can

accomplish something worthwhile in the most rigorous and abstract

of the sciences and for that reason would have well deserved an

honorary degree."4 They would have met in person for the first time

at the ceremony.

2Letter from Fourier, May 30, 1823. "J'ai l'honneur de vous prevenir que
toutes les fois que vous vous proposerez d'assister aux seances publiques de
l'Institut, vous y serez admise dans l'une des places reserves au centre de la
salle. L'Academie des sciences desire temoigner par cette distinction tout
l'interet que lui inspirent vos ouvrages mathematiques et specialement les
savantes recherches qu'elle a couronnees en vous decernant un de ses grands
prix annuels." Q.E.., p. 363. In addition to this official notice, Fourier also sent
a personal letter of congratulations.

30ne of her biographers, Coolidge, states that she died of tuberculosis; I have
not found any other corroboration of this statement and sincerely doubt its
validity. Stupuy states only that she died of cancer, but Bucciarelli and
Dworsky, Dahlmedico, Gray, and Perl all specifically mention breast cancer.

4Guy Waldo Dunnington, Carl Frederick Gauss. Titan of Science: A Study of His
Life and Work (New York: Exposition Press, 1955), p. 68.
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Germain was buried in the Cimetiere du Pere Lachaise. The

inscription on her headstone reads

ICI REPOSE
DEMOISELLE

MARIE-SOPHIE GERMAIN
NEE A PARIS

LE l ER AVRIL 1776
DECEDEE EN LA DITE VILLE

LE 27 JOIN 1831

On her death certificate, she is listed not as a mathematician, but as a

"rentiere," a person of private means. The house in which she died,

at 13 rue de Savoie in Paris, is now designated an historical

landmark and has a commemorative plaque. She has two other

monuments in Paris, the Ecole Sophie Germain and the Rue Sophie

Germain.
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