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Abstract. We present a novel method for the unsupervised estimation
of a primitive unit cell, i.e. a unit cell that can’t be further simplified,
from a crystal image. Significant peaks of the projective standard devia-
tions of the image serve as candidate lattice vector angles. Corresponding
fundamental periods are determined by clustering local minima of a pe-
riodicity energy. Robust unsupervised selection of the number of clusters
is obtained from the likelihoods of multi-variance cluster models induced
by the Akaike information criterion. Initial estimates for lattice angles
and periods obtained in this manner are refined jointly using non-linear
optimization. Results on both synthetic and experimental images show
that the method is able to estimate complex primitive unit cells with
sub-pixel accuracy, despite high levels of noise.

1 Introduction

The analysis and classification of the symmetry of crystalline structures is a
fundamental necessity in various scientific fields, such as biology, chemistry and
materials science [7,12,13,20]. Experimental analyses are often based on diffrac-
tion patterns, e.g. from X-rays [15] or electrons [21]. The most common technique
for symmetry extraction from crystalline images is the classification of the Bragg
reflections [3], i.e. relating the positions of image peaks in Fourier space with the
lattice vectors of the crystal. This direct relation is the foundation for a variety
of image processing techniques aimed at analyzing crystals or removing artifacts
from corresponding images [14].

Recently, real-space methods have proven to be very powerful for a wide range
of processing tasks on crystal images, such as grain segmentation [2], crystal de-
fect localization [10], noise reduction [16] and sample drift correction [19]. All of
these methods have in common that they exploit the (average) crystal symmetry
in some way or another. Thus, they require prior knowledge on the geometry of
the corresponding (perfect) crystals. Typically, the necessary crystal lattice pa-
rameters are estimated either manually or using Fourier-based techniques, which
often also requires manual assessment in order to correct errors due to image
distortion, noise and ambiguities. Thus, an entirely unsupervised use of these
otherwise automated processing methods is usually not possible.

http://link.springer.com/chapter/10.1007%2F978-3-319-24947-6_9
http://link.springer.com/chapter/10.1007%2F978-3-319-24947-6_9


2 Niklas Mevenkamp, Benjamin Berkels.

In [19], Sang and LeBeau proposed a new real-space method for lattice angle
estimation based on projective standard deviations (PSD). While the method
outperforms Fourier methods in accuracy and robustness to noise, it still needs
manual input to relate PSD peaks with the corresponding lattice directions.

The goal of this paper is to overcome the necessity for manual input in crystal
lattice extraction from images. To this end, we propose a novel unsupervised real-
space method to estimate primitive unit cells from crystal images. In particular,
we show how fundamental periods can be estimated robustly from 1D signals.

2 Methods

A crystal can be characterized by the positions and types of its elements, i.e.
C ⊂ Rd × R. In case d = 3, the elements are typically atoms and their type is
given by the atomic number. An important property of crystals is their symme-
try. It allows for a decomposition of C into a unit cell U = {v1, . . . ,vd} ⊂ Rd,
which defines the repeating pattern of the crystal, and the corresponding motif
M = MC (U) = {(m1, c1), . . . , (mnU , cnU )} ⊂ Rd×R, which defines the relative
positions and types of the nU ∈ N elements within the unit cell U . This results
in the following representation of the crystal:

C (U,M) =
{(

mj +
∑d
i=1zivi, cj

) ∣∣∣ zi ∈ Z for 1 ≤ i ≤ d, 1 ≤ j ≤ nU
}
. (1)

Note that this decomposition is not unique. For any given crystal C ,

UC = {U ⊂ Rd |#(U) = d ∧ ∃M ⊂ Rd × R : #(M) <∞∧ C (U,M) = C } (2)

denotes the set of all of its unit cells. Then

UpC = {U ∈ U |#(MC (U)) = min
U ′∈UC

#(MC (U ′))} (3)

is the set of primitive unit cells. The Bravais lattice

VC =
{∑d

i=1zivi

∣∣∣ {v1, . . . ,vd} ∈ UpC , z1, . . . , zd ∈ Z
}

(4)

is called crystal lattice, i.e. its elements are lattice points. Since 0 ∈ VC , any
v ∈ VC can be interpreted as a vector connecting two lattice points. Such a
vector is called lattice vector. For an introduction to this terminology from a
mineral science point of view, we refer to [18]; for an illustration see Figure 1.
UC can also be characterized by

UC = {{v1, . . . ,vd} ⊂ VC |v1, . . . ,vd linear independent } . (5)

Furthermore, {v1, . . . ,vd} ∈ UC is primitive if and only if the parallelepiped (or
a parallelogram in two dimensions) spanned by v1, . . . ,vd contains no lattice
point v ∈ VC other than its corner points.

In this paper, we discuss how to extract a primitive unit cell from a two-
dimensional experimental image of a projected crystal. The original crystal is
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Fig. 1. Left: crystal lattice (red dots) with a minimal motif of size two (pairs of blue
dots); Right: illustration of the points Pδ(p) in the image projected onto the line `p

three dimensional and during acquisition its orientation is manually refined until
the desired projection - orthogonal to one of its unit cell vectors - is retrieved.
This results in a crystal C ⊂ R2 × R. In the following, we assume that the
projection and the modality of the crystal image retain a unique identification
of the elements in the crystal C and a unique relation to the image intensities.

Then, in an ideal setting, such an image f : Ω = (0, 1)2 → R fulfills

f(x+ z1v1 + z2v2) = f(x) ∀x ∈ Ω ∀z1, z2 ∈ Z : x+ z1v1 + z2v2 ∈ Ω (6)

for any two lattice vectors v1,v2 ∈ VC . Thus, lattice vectors are minimizers (in
the ideal setting also roots) of the following energy:

E(v1,v2) =
∑

(z1,z2)∈Z

∫
x∈Ω̃

(f(x)− f(x+ z1v1 + z2v2))
2

dx , (7)

where Z = {(1, 0), (0, 1), (1, 1)} and Ω̃ ⊂ Ω has to be chosen in a suitable way for
the desired lattice vectors, which will be addressed later. In other words, v1,v2 ∈
VC ⇔ E(v1,v2) = 0. Moreover, the following non-parallel lattice vectors

(v1,v2) ∈ arg min
(u1,u2)∈{E=0}∩{u1×u2 6=0}

|u1|+ |u2| (8)

form a primitive unit cell, since the parallelogram spanned by two shortest lattice
vectors cannot contain any lattice points other than its corner points.

While obtaining a primitive unit cell may seem trivial at this point, it turns
out to be very challenging in practice without manual input. Noise, image dis-
tortions and crystal defects result in the energy E being non-zero except for
v1,v2 = 0 or |v1|, |v2| > diamΩ. Nevertheless, due to the regularity imposed by
the integration, {v1,v2} ∈ UC still implies ∇E(v1,v2) = 0. However, the reverse
implication is not true in general. Figure 2 illustrates one potential pitfall. There
are two types of local minima. The one with larger energy corresponds to the
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Fig. 2. Left: artificial crystal lattice (magenta dots) with a motif of size two (a
magenta/blue dot pair is a motif copy). Right: normalized energy (7) for v1 =
t(cosα, sinα)T ,v2 = 0 as a function of t with α = −61.95◦ (green vector)

spacing between diagonally neighboring atoms, but the actual lattice points skip
one row and belong to twice the spacing, i.e. the minima with smaller energy.

Furthermore, ∇E(v1,v2) = 0 implies ∇E(n1v1, n2v2) = 0 for all n1, n2 ∈ Z.
Thus, it is likely that minimization of E converges to a local minimum that
either does not correspond to a unit cell at all, or not to a primitive one.

In the following, we will discuss a method that allows for an efficient esti-
mation of primitive lattice vectors from E based on a sophisticated strategy for
finding the desired local minima. The strategy is split into three parts: approxi-
mation of 1) lattice vector angles and 2) fundamental periods, and 3) refinement
of the resulting approximate primitive unit cell.

2.1 Real-space Analysis of Lattice Vector Angles

Any α ∈ [0, 2π] such that there is a t ∈ (0,∞) with teα = t(cosα, sinα)T ∈ VC

is called lattice vector angle. In the following, we briefly recall a recent real-
space method to estimate lattice vector angles by Sang and LeBeau [19]. Let
πδ(x) = (x1 cos δ + x2 sin δ) eδ be the projection of a point x ∈ Ω onto the line
`δ(p) = peδ and Pδ(p) = π−1δ (p) the points in Ω that are projected onto `δ(p)
(see Figure 1). Then, the average intensity of the image projected onto `δ(p) is

Aδ(p) = −
∫
Pδ(p)

f dx for |Pδ(p)| > 0 and zero else . (9)

Here, for B ⊂ Rd, −
∫
B
f dx = 1

|B|
∫
B
f dx is the integral mean. Let xc1 = (0, 0)T ,

xc2 = (0, 0)T , xc3 = (1, 0)T , xc4 = (1, 1)T denote the corners of Ω = (0, 1)2 and
pmin = mini=1,...,4 π(xci ), pmax = maxi=1,...,4 π(xci ) the lower and upper bounds
of their projections onto `δ. Then, using the interval [pmin, pmax] as a bound for



Unsupervised Extraction of Primitive Unit Cells from Crystal Images. 5

0 50 100 150
0.00

0.05

0.10

0.15

∆ @°D

ps
dH

∆
L

∆=90.0°

∆=26.5° ∆=153.0°

∆=135.0°∆=45.0°

Fig. 3. Left: hex lattice with vacancies, vectors Tαieαi , i = 1, . . . , 5 (blue, purple,
green, red, cyan), primitive unit cell (purple/red box); Right: psd for δ ∈ [0, π]

the support of Aδ, we define the projective standard deviation as (cf. [19])

psd(δ) =

√
−
∫ pmax

pmin

(Aδ(p)− µδ)2 dp, µδ = −
∫ pmax

pmin

Aδ(p) dp . (10)

Significant peaks (δ1, . . . , δn) of the signal psd : [0, 2π] → R≥0 are indicators
that the image f is periodic along the perpendicular directions, i.e. αi = δi + π

2 ,
i = 1, . . . , n are lattice vector angles: As in the 3D case, projecting a 2D crystal
along any of its lattice vectors, i.e. onto a line perpendicular to the lattice vector,
yields a periodic signal, which is of high standard deviation.

Let us point out that the psd alone does not suffice to select two lattice vec-
tor angles. Consider the example shown in Figure 3. Selecting the two highest
peaks yields the lattice vector angles α1 = 180◦ (green vector) and α2 = 116.5◦

(blue vector) or α2 = 243◦ (cyan vector). Lattice vectors pointing in these di-
rections cannot form a primitive unit cell. Possible pairs resulting in primitive
unit cells in this case are the blue & purple, purple & green, green & red, red
& cyan and purple & red vectors, while only the latter results in a primitive
unit cell satisfying (8). Since Sang and LeBeau [19] do not address this issue,
we propose to select a suitable pair of lattice vector angles in an unsupervised
fashion by finding one that satisfies (8). However, this requires knowledge of the
corresponding fundamental periods.

2.2 Real-space Analysis of Fundamental Periods

For any lattice vector angle α, let Tα = {t ∈ (0,∞) | teα ∈ VC }. Then, the
fundamental period is Tα = min Tα. In the following, we props a method to
estimate Tα from an image f of the corresponding crystal C .

We consider the one-dimensional energy

Eα(t) = −
∫
Ωα(t)

(f(x+ teα)− f(x))
2

dx , (11)
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where Ωα(t) = {x ∈ Ω |x + teα ∈ Ω}. Assuming that f is exactly periodic
along the direction eα yields Tα = E−1α (0) \ {0}. Thus, in an ideal situation,
we have Tα = min(E−1α (0) \ {0}). In practice, however, distortions and noise in
the image f , as well as errors in the angle α prohibit such a classification of the
fundamental period. Still, elements of Tα should be local minimizers of Eα. Let

Sα = {t ∈ (0,∞) | ∃δ > 0 ∀s ∈ [t− δ, t+ δ] \ {t} : Eα(t) < Eα(s)} (12)

denote the set of isolated local minima of Eα except for t = 0. Unfortunately, as
illustrated in Figure 2, possibly (minSα)eα /∈ VC . Thus, we need a robust way
to select the desired local minimum from Sα.

Let us assume that all errors (image noise, distortions, discretization) are
small enough that the energy Eα at least fulfills the following properties:

I The (numerical) fundamental period of the signal Eα is close to Tα
II Multiples of Tα lie near local minimizers of Eα

III The local minimizer with smallest energy is roughly a multiple of Tα
IV Distances between energies of local minimizers close to multiples of Tα are

smaller than those between them and the energies of other local minimizers

Note that in an ideal setting, these properties are a consequence of (6).
Property I implies that Eα(Sα) may be split in k ≤ #({t ∈ Sα | t ≤ Tα}) clus-

ters C1, . . . , Ck corresponding to the different types of local minima in each fun-
damental period of Eα. Moreover, due to Properties II-IV, the cluster containing
minEα(Sα) also contains Eα(Tα), but no Eα(t) with t /∈ Tα. Thus, Tα can be
estimated as T̂α = min(E−1(Ci) ∩ Sα), where 1 ≤ i ≤ k with minEα(Sα) ∈ Ci.

The proper choice of the number of clusters is crucial in this context: on the
one hand, if k is chosen too small, one risks that a local minimum corresponding
to a period t < Tα ends up in the same cluster as E(Tα), which implies T̂α 6= Tα;
on the other hand, if k is chosen too large, one risks that Eα(Tα) does not end
up in the same cluster as minEα(Sα), also resulting in T̂α 6= Tα.

To this end, we propose a method for robust unsupervised selection of the
number of clusters k. Our approach is based on work by Pelleg and Moore [17].
They use a Bayesian information criterion (BIC) under an identical spherical
Gaussian assumption on the cluster formation to formulate an unsupervised
variant of k-means, known as X-means. Note that G-means [11], which has been
shown to outperform X-means, especially in higher dimensions, is not suitable
for our setting, because the total number of data points #(Sα) is very small.

We base our analysis on the Akaike information criterion AICk = −2L̂k+2pk
[1], where L̂k = L̂k(S) = maxθ Lk(S|Mk(θ)) is the maximum of the log-likelihood

Lk(S|Mk(θ)) = log
∏n
j=1P (xj |Mk(θ)) =

∑n
j=1 logP (xj |Mk(θ)) (13)

of the data S = {x1, . . . , xn} given a model Mk(θ) of the data, which induces
point probabilities P (xj |Mk(θ)). As pointed out in [6], AIC has theoretical and
practical advantages over BIC. For instance, it allows for the evaluation of actual
model likelihoods, allowing for more sophisticated strategies to select a proper k
than simply minimizing the value of the criterion, as is usually done with BIC.
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In our setting, letMk(θ) model the set Sα = {x1, . . . , xn} as k one-dimensional
Gaussian distributions with means µ1, . . . , µk, µi 6= µl, i 6= l, variances σ2

1 , . . . , σ
2
k,

and relative frequencies n1

n , . . . ,
nk
n . Then

P (xj |Mk(θ)) =
n(j)

n

(
2πσ2

(j)

)−1/2
exp

{
−|xj − µ(j)|2/(2σ2

(j))
}
. (14)

Here, (j) = min{i ∈ {1, . . . , k} | |xj − µi|2 ≤ |xj − µl|2 ∀l 6= i}. Usually, there is

only one such i. Since nk = n−
∑k−1
i=1 ni, the set of free model parameters is θ =

(n1, . . . , nk−1, µ1, . . . , µk, σ1, . . . , σk). The maximum-likelihood estimator µ̂i =
1
ni

∑
x∈Ci x is obtained as a result from the k-means clustering for each cluster

Ci. The maximum-likelihood estimator of the variance is σ̂2
i = 1

ni

∑
x∈Ci(x−µ̂i)

2.
This leads to the following expression for the maximum log-likelihood of S:

L̂k(S) =
∑k
i=1

[
ni log ni

n −
1
2ni

(
log
(
2πσ̂2

i

)
+ 1
)]

. (15)

In this setting, the number of free parameters is pk = 3k − 1.
As pointed out by Akaike, the likelihood of the model Mk given the data S is

L(Mk|S) = exp {(AICkmin
−AICk)/2}, where kmin = arg mink AICk. Note that

L(Mkmin
|S) = 1. Models with a likelihood not significantly less than 1 cannot be

discarded with confidence. In case two or more models cannot be discarded, we
suggest to prefer models assuming fewer clusters in order to increase the proba-
bility that the desired local minimum Eα(Tα) is assigned to the same cluster as
the global minimum minEα(Sα). Thus we suggest to choose the optimal number
of clusters as

k∗ = min {k | L(Mk|S) > τ} . (16)

We used the threshold τ = 0.1 for all presented experiments and found that in
the regarded cases the result was not sensitive to this particular choice.

Using the unsupervised k-means clustering described above, we can assign
a fundamental period Tα to any given lattice vector angle α. Let α1, . . . , αn
be candidate lattice vector angles estimated as described in Section 2.1 and
V ∗ = {Tα1

eα1
, . . . , Tαneαn} ⊂ VC . Finally, in accordance with (8), we estimate

the primitive unit cell by

U = {v1,v2}, v1 = arg min
u∈V ∗

1
2 |u|

2, v2 = arg min
u∈V ∗\{v1}

1
2 |u|

2 . (17)

2.3 Local Refinement of Lattice Vectors

The methods described above yield a good approximation of a primitive unit
cell U = {v1,v2} ∈ UpC . However, by first estimating the angles of the desired
lattice vectors followed by an estimation of their magnitudes, errors in the angles
α1, α2 amplify the error in the magnitudes |v1|, |v2|. Nevertheless, the initial
guess v1,v2 is expected to yield local convergence of iterative minimization of
(7) to the desired local minimum. This minimization can be performed efficiently
in practice, since the discretization of (7) is a sum of squares, which allows for
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Fig. 4. Left: rectangular crystal lattice (magenta dots) with a motif of three very sim-
ilar Gaussian bells placed along the horizontal lattice direction (magenta/blue/green
dot triples); Right: Eα(t) (11) for α = 0, i.e. the horizontal lattice direction

Gauss-Newton type algorithms to be used for numerical minimization. Finally,
Ω̃ = {x ∈ Ω |dist(x, ∂Ω) > max{|v1|, |v2|, |v1 + v2|} + ε} can be used as the
admissible set, with a fairly small ε (e.g. three times the pixels size), since the
solution is not expected to be more than a few pixels away from the initial guess.

3 Results and Discussion

Here, we show unsupervised analyses of exemplary crystal structures, using both
artificially created images, as well as electron micrographs acquired by scanning
transmission electron microscopy (STEM) [4]. In the following figures, the origin
of any crystal lattice is aligned manually with one of the atoms in the unit
cell. Also, motif recognition is not part of the proposed method and was done
manually to illustrate the full geometry of the crystals. The lattice and the
motive is only overlayed in the lower half of each image to facilitate a visual
confirmation of the correctness of the estimated lattice parameters.

Figure 4 shows an artificial rectangular crystal lattice with three 2D Gaussian
bells of similar intensity in each primitive unit cell, placed along the horizontal
lattice direction. The proposed estimator for the number of clusters yields the
correct result (k = 3) for Eα with α = 0, even though the absolute values of the
local minima are extremely close to each other.

The accuracy of the proposed method is assessed on four artificially created
crystal lattices (cf. Figure 5) with known parameters and varying levels of Gaus-
sian noise. The resulting absolute errors in Table 1 show sub-pixel accuracy in
all cases except for the “Bumps3” image in Figure 5 with 50% noise standard
deviation. In this case, the combination of strong noise and low contrast between
local minima constitutes a violation of Property IV, resulting in a third of the
period to be estimated - hence the large error. Note that a classical Fourier anal-
ysis, e.g. selecting the two brightest non-collinear peaks in Fourier space, does
not yield useful results for the images shown in Figure 5.
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Fig. 5. Artificial crystal lattice images; top row: ideal crystals (from left to right:
“Bumps3”, “HexVacancy”, “SingleDouble”, “Triples2”); bottom row: same images plus
Gaussian noise with a standard deviation of 50% of the maximum intensity

Fig. 6. Experimentally acquired STEM images and estimated crystal lattices (magenta
dots) and motifs (magenta/blue dot pairs); STEM images courtesy of P. M. Voyles

Figure 6 shows experimental crystal images acquired using STEM. These im-
ages exhibit all artifacts inherent to this particular acquisition technique, namely
intensity noise, small scale distortions and large scale sample drift. In the left
image, along the roughly diagonal (α ≈ −60◦) and vertical lattice directions,
there is a horizontal offset between neighboring atoms (slight in the former and
more apparent in the latter case). The proposed estimator (17) correctly identi-
fies this and chooses the horizontal and vertical lattice vectors - the latter with a
period that skips each second row of atoms (leaving the atoms in the other rows
as part of the motif). In the right image, a similar difficulty is tackled, where a
translation along the diagonal direction leads to high-auto correlation.

In [16], we recently proposed a method to denoise crystal images by non-local
averaging over periodic lattices. This method showed a substantial performance
increase over non-local averaging techniques [5,8] without such prior information.
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Table 1. Errors in the lattice vectors detected by our method for the images from
Figure 5. σ/max f is the noise standard deviation relative to the maximal image in-
tensity

Crystal σ/max f |v∗
1 − v1| |v∗

2 − v2|

Bumps3 0 2.60× 10−8 4.13× 10−8

Bumps3 10% 0.136 0.0670
Bumps3 50% 0.425 22.3
HexVacancy 0 3.61× 10−8 1.50× 10−7

HexVacancy 10% 0.218 0.408
HexVacancy 50% 0.292 0.153
SingleDouble 0 2.20× 10−10 1.30× 10−9

SingleDouble 10% 0.0937 0.0830
SingleDouble 50% 0.360 0.306
Triples2 0 2.12× 10−9 8.84× 10−9

Triples2 10% 0.0129 0.0240
Triples2 50% 0.0172 0.009 00

However, the accuracy of our previously proposed approach to unsupervised lat-
tice vector estimation is limited due to its Fourier space lattice angle estimation
and likely unable to cope with complex motifs due to the employed period es-
timation via real-space sine fitting. Experiments performed for a selection of
images from [16] indicate that the peak signal-to-noise ratio (PSNR) of the de-
noised image can be increased by more than 1 dB just by using the proposed
real-space lattice vector estimation within the non-local denoising framework.

4 Conclusions

We have proposed a method for the unsupervised extraction of primitive unit
cells from crystal images. It involves the selection of desired local minima of a
periodicity energy by means of unsupervised clustering. Building on X-means
[17], an improved strategy for the unsupervised selection of the number of clus-
ters was proposed, using an extended data model considering clusters of different
variances, and based on true model likelihoods derived from AIC.

Results on synthetic and experimental images demonstrate that the cluster-
ing robustly selects the desired local minimum and that primitive unit cells are
estimated with sub-pixel accuracy, even in the presence of strong noise and am-
biguities due to strong auto-correlation of the image along lattice vectors and
inside the unit cells.

The proposed method offers the potential to turn powerful real-space pro-
cessing methods for crystal images requiring prior knowledge about crystal sym-
metries into unsupervised methods. Lastly, let us point out that the proposed
estimator for the fundamental frequency also suggests itself for pitch detection
problems in sound analysis [9,22].
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