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Abstract

Acoustic sources and receivers possess distinct directivity patterns that quantify
their directional dependent behavior. In common room acoustical applications
these directivity patterns are often neglected, although they are known to have
considerable influence on the obtained results. This thesis presents methods to
obtain and implement source and receiver directivity patterns for room acousti-
cal measurements and simulations. A typical complex scenario for room acoustics
consists of a concert hall that is excited by various natural sound sources (such
as musical instruments) with the sound received by human listeners. Therefore,
a large number of natural sound sources has been measured, analyzed and pro-
cessed in order to assemble a directivity database. The sound reception of the
human listeners is described by the head-related transfer functions (HRTFs) that
are derived from numerical simulations or measurements of artificial heads and
human individuals.

Both source and receiver directivity patterns can be represented as spherical
wave spectra (SWS) using a decomposition of the angular functions into the
set of orthonormal spherical harmonics. In this domain angular interpolation
and range extrapolation can be implemented conveniently, yielding physically
correct results for sampling schemes that are sufficiently dense in order to avoid
spatial aliasing artifacts. Suitable regularization allows to derive the SWS of
spatially incomplete data (with missing information at some directions) or data
that suffers from measurement uncertainties.

The measurement of room impulse responses for arbitrary directivity patterns is
performed using specialized spherical loudspeaker arrays to provide broadband
excitation in terms of temporal and spatial frequency components. Assuming
linear and time-invariant systems a sequential measurement approach greatly
enhances the maximum resolution of the synthesized directivity patterns. For
room acoustical simulations that include source and/or receiver directivity pat-
terns the particle based methods can be extended by multiplication in the spatial
domain. Wave based analytical simulations allow to implement arbitrary direc-
tivity patterns by the computation of the Cartesian derivatives of the room’s
eigenmodes. The results obtained in this thesis can be used to enhance the au-
ralization of rooms and to analyze the perceptional impact of source and receiver
directivity in room acoustical applications.
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1
Introduction

Sound sources can usually be distinguished by their spectral color and other
spectral or temporal features that can be obtained when listening to a mono
sound recording of that source. However, the spatial variations are missing when
using only a single channel: As most sound sources do not radiate omnidirec-
tionally (i.e. uniformly in all directions) they show specific directivity patterns
having a different sound color for the different directions of sound radiation.

Assume exemplarily a human speaker that is either facing the listener or look-
ing away from the listener. For free-field conditions or an acoustic scene of low
reverberation, this head orientation obviously has great influence on the per-
ceived sound. For more reverberant environments the difference diminishes, so
the audibility of the directivity patterns is closely tied to the acoustics of a
room. The directional dependent behavior of the ears of a human listener can
be considered as another directivity pattern, which occurs at the receiver side.
Combining source and receiver directivity in measurement or simulation thus
allows to obtain a binaural recording of the source in the given room.

In room acoustical measurements and simulations these directivity patterns are
generally not taken into account. While simulations commonly assume omnidi-
rectional directivity patterns, the directionality of the sensor used in the measure-
ments contributes with its directivity to the measurement result. If performing
room acoustical measurements according to the international standard ISO 3382
[Iso], sources and receivers with omnidirectional directivity patterns have to be
used for the measurements in order to gain comparable results that are largely
independent of the used type of the sensors and its orientation.

According to literature, directivity patterns of sources and receivers influence the
room transfer function and their variation can cause audible differences: Otondo
et al. [Oto04] state that the directivity patterns of musical instruments are pro-
nounced and have “direct influence on the distribution of acoustical parameters
in a room”. Wang et al. [Wan08] performed listening tests using omnidirectional
sound sources, octave band averaged directivity patterns (cf. also [Mey78]), and

1



CHAPTER 1. Introduction

highly focused sources in rather diffuse rooms. They conclude that directivity
patterns of strongly directive sources are audible, as the participants could dis-
criminate differences in realism, reverberation and clarity. These differences con-
tribute to the room acoustical parameters when derived from the measurements.

The goal of this thesis is to implement directivity patterns of sources and re-
ceivers in a physically correct manner for room acoustical applications. The
organization of the work can be summarized as follows:

In Chapter 2 the required theory and tools are derived for the subsequent chap-
ters. The transformation of the spatial directivity patterns into the spherical
Fourier domain allows to represent a directivity as spherical wave spectrum
(SWS). Compact loudspeaker array systems can be described by exterior bound-
ary value problems to facilitate efficient analytic computation. The impact of a
spatial sampling of generally continuous spherical functions is discussed. The
content of this chapter comprises the theoretic background of this work and is
referenced later from the following chapters.

Chapter 3 describes the methods how to obtain directivity patterns of natural
sound sources using a surrounding spherical microphone array. The directivity
patterns are analyzed and processed in order to provide data in the required
format of room acoustical applications. The feasibility of averaging approaches
depends on the principle of sound generation. At the end of the acoustical transfer
path often a human listener receives the sound from all directions in a binaural
audio scene.

In Chapter 4 the concepts of Fourier acoustics are applied to binaural technology,
offering new approaches for common problems in the processing of head-related
transfer functions (HRTFs). The proximity effect of sources close to the ear can
be solved using analytical tools. Hereby, a variation of the coordinate center used
as focal point for the spherical harmonic transform (SHT) seems to be beneficial
for the calculations. Having obtained realistic source and receiver directivity
patterns, the room impulse responses (RIRs) can be obtained with respect to the
given directivity patterns using either room acoustic measurement or simulation.
Both methods allow to obtain the RIR for a given combination of source and
receiver directivity patterns and are described in the remaining part of the thesis.

Chapter 5 deals with the design of measurement sources with variable directivity
for room acoustic applications. Using a sequential measurement approach, the
measurement devices can be combined with a computerized positioning system
for greatly enhanced spatial resolution. Arbitrary directivity patterns can be
synthesized from the measured responses with given directivity, either by a cal-
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culation using complex reconstruction of directivity patterns or using averaged
patterns without phase relations. Experimental results show that this method has
great potential for the implementation of arbitrary directivity in post-processing
using a set of transfer path measurements with known directivity.

Chapter 6 describes how to include arbitrary source and receiver directivity
patterns into room acoustic simulation software. In wave based simulations the
arbitrary patterns can be represented as physical multipoles, providing analytic
solutions for simple geometries by calculating the Cartesian derivatives of the
room’s eigenfunctions. In particle based simulations source and receiver direc-
tivity patterns are implemented in the spatial domain, weighting the outgoing
or incoming rays with the directivity value of the particular direction.

Including directivity pattern into room acoustical applications such as auraliza-
tion is an active topic of research [Dal93; Beh02; Oto04; War04]. Its significance
has been known for a long time, but current advances in technology of measure-
ment techniques and simulation opened this research topic in the recent years
for new applications and practical experiments.
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2
Fundamentals and preliminaries

In this chapter the mathematical preliminaries are given that allow to facilitate
the methods of Fourier acoustics for spatial audio processing. The theoretical
concepts required for signal processing of spherical functions are discussed briefly.
For a more profound theoretical overview, the reader is referred to literature
listed in the references and mentioned in this chapter.

Written works considering the theory of acoustics in spherical geometry which
are worth mentioning in particular include the following: Williams [Wil99] com-
prises a complete description of Fourier acoustics in Cartesian, cylindrical and
spherical coordinates and constitutes probably one of the most complete de-
scriptions of using spatial Fourier methods for applications in acoustics. Zotter
[Zot09a] contributed a comprehensive work on sound recording and recreation
using spherical arrays, including considerations on the choice of spatial sam-
pling schemes and many other topics. Rafaely advances the research in spherical
acoustics with a focus on topics regarding the use of spherical microphone arrays
[Raf04; Raf05; Raf07]. Duraiswami et al. [Dur04] and Gumerov et al. [Gum05]
approach this topic from a computational point of view and provide numerous
recurrence relations and mathematical methods for deriving suitable formula for
specific problems.

2.1. Definitions of directivity

The directional dependance of the radiation and reception of sound sources and
receivers, respectively, can both be quantified by their directivity. In the litera-
ture several definitions can be found for directivity patterns, all of these defini-
tions being generally frequency dependent functions.

Mechel [Mec08] states various definitions for expressing directivity patterns, with
some of them given here briefly. All these measures have in common that the
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CHAPTER 2. Fundamentals and preliminaries

directivity pattern ought to be measured in the far-field of the source. The di-

rectivity factor regards a complex frequency spectrum, defined as

�0(�, �) =
�(�, �, �)

�(�, �0, �0)
(2.1)

with �(�, �, �) being the complex sound pressure spectrum measured in the far-
field on the surface of a sphere with radius �. It defines the directivity factor
as the ratio between the pressure encountered in all directions and the pressure
encountered in a reference direction (�0, �0). Mechel also gives the alternative
definition of the directivity factor as

�0,magn(�, �) =
|�(�, �, �)|
|�(�, �0, �0)|

(2.2)

being the quotient of the magnitude values. Both definitions are functions of
angles and frequency, with the latter being usually omitted in this work for
notational ease.

These definitions of directivity are useful for the application of dry1 sound record-
ings performed at a single direction. By selecting the primary recording direction
as reference direction for the directivity factor, there is no colorization of the re-
sulting sound. The directivity factor according to Mechel [Mec08] is equivalent to
the monaural transfer function, one of the possible definition of the head-related
transfer function (HRTF) according to Blauert [Bla97] (cf. also Eq. (4.2)). This
relation shows the equivalence of binaural signal processing and the processing
of directivity patterns with the methods of Fourier acoustics.

The directivity value is defined as the squared magnitude values at different
directions in relation to their geometric average and can be stated as

�m(�, �) =
|�(�, �, �)|2

⟨|�(�, �′, �′)|2⟩(θ′,φ′)

(2.3)

with ⟨·⟩(θ′,φ′) being the average over all directions. The multiplication of the
directivity value thus does not change the total radiated sound power of the
source, but expresses the enhancement or reduction of sound radiation for all
directions. Expressed as a logarithmic term the directivity can be given as

�Lm(�, �) = 10 log10
|�(�, �, �)|2

⟨|�(�, �′, �′)|2⟩(θ′,φ′)

dB, (2.4)

1A dry recording only contains direct sound without reverberation and without reflections
of the emitted sound. For the purpose of measurements dry recordings are usually performed
in an anechoic chamber.
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2.2. Fourier transform of signals

which corresponds to the logarithmic diffuse-field equalized set of HRTFs, also
called the directional transfer functions (DTFs) [Mid99].

2.2. Fourier transform of signals

The Fourier transform (FT) is one of the most commonly employed integral
transforms in signal processing. It provides the representation of a (time) signal
�(�) in terms of its spectral components

�̂(�) = ℱ {�(�)} =

∞︁

−∞

�(�) e−jωt d� (2.5)

with �̂(�) being the Fourier domain of �(�) and � = 2�� denoting the angular
frequency. The inverse Fourier transform is given as

�(�) = ℱ−1
︁
�̂(�)

︁
=

1

2�

∞︁

−∞

�̂(�) ejωt d�. (2.6)

These two representations regard the time domain and the frequency domain
of a signal. Assuming real-valued time signals, it is sufficient to limit the focus
to the positive part of the spectrum. The values at negative frequencies can be
derived from the positive frequencies by the application of the symmetry relation

�̂(�) = �̂(−�) (2.7)

for real-valued time signals with the overbar denoting the complex conjugate.

Having a discretely sampled signal in the time domain the Fourier transform of

discrete time signals (FTDS) can be employed for the transform. The spectrum
can be computed as a sum over the discrete time values at

� = �� (2.8)

with � being an integer value, defined as

�̂(�) =
∞︁

ν=−∞

�(�� ) e−jωνT (2.9)

with the constant sampling period � = 1
fs

and �s being the sampling rate of the
equidistant discretization in time domain. The representation of the discretized
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CHAPTER 2. Fundamentals and preliminaries

signal in the Fourier domain is a continuous and periodic function, which is equal
to a periodic summation of the Fourier transform of the continuous time signal.

Signals that fulfill the Nyquist-Shannon sampling theorem can be reconstructed
without loss of information, as no spectral overlap occurs. Using the Nyquist

frequency �N = fs
2

the Fourier transform of the signal has to fulfill

�̂(�) = 0 for all |� | > �N . (2.10)

Applying discretization in frequency domain this yields the discrete Fourier

transform (DFT) which is precise for signals of finite duration. The DFT and
the more computationally efficient fast Fourier transform (FFT) are commonly
found in literature and prove to be useful in many practical applications.

Using the relation

� = �s
2�

�
� (2.11)

with 2π
M

being the distance between two normalized frequencies and � being
an integer value enumerating the � spectral bins, the discrete versions of the
Fourier transform in Eq. (2.5) and Eq. (2.6) can be given with the integral in
the equations replaced by a discrete sums.

Employing Eq. (2.11) and Eq. (2.8) the spectrum �̂(�) can be described by �̂(�)
and the time domain signal �(�) by �(�), yielding the DFT as

�̂(�) =

M−1︁

ν=0

�(�)ej2π
µν
M (2.12)

for the forward transform with � = 0 . . . (� − 1) being the number of time
samples and � = 0 . . . (� − 1) being the number of spectral bins. The inverse
discrete Fourier transform is given as [Var06]

�(�) =
1

�

M−1︁

µ=0

�̂(�)e−j2π µν
M . (2.13)

These transforms are computed without aliasing artifacts if both time and fre-
quency signal can be fully represented by these limited number of � time sam-
ples and � frequency bins. As the Fourier transform (as well as the DFT or
FFT in case of band limited and finite signals) regards two equivalent domains
of the same signal, both domains are used in this work without explicit notice
of the transformation applied.
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2.3. Fourier acoustics in spherical coordinates

Beside the commonly used relation between a time signal and its spectral repre-
sentation, the Fourier transform also allows generalization using higher dimen-
sional functions. In the following section the application of the Fourier transform
on space domain signals is discussed, in particular the spatial (two-dimensional)
Fourier transform for functions defined on a spherical surface.

2.3. Fourier acoustics in spherical coordinates

The Fourier transform in the spatial domain is commonly applied on multi-
dimensional functions. The analytic expressions required to perform Fourier
acoustics in the space domain simplify considerably for lower dimensional cases,
such as a two dimensional description of sound fields. Depending on used sym-
metries and the choice of the used coordinate system, the feasibility of analytic
solutions vary. In this section the fundamentals of Fourier acoustics in spherical
coordinates are presented.

2.3.1. Wave equation and separation of variables

The propagation of acoustic waves in a viscous medium can be described by the
wave equation as

∆� =
1

�2
�2�

��2
(2.14)

with the wave number � = ω
c

and the Laplace operator ∆ = ∇2. In Cartesian
coordinates the wave equation is given as the differential equation of second order
as

�2�

��2
+
�2�

��2
+
�2�

��2
=

1

�2
�2�

��2
(2.15)

with solutions for the pressure � as a function of the three-dimensional space
and time. Cartesian coordinates, e.g., are well suited for plane wave propagation
as the direction of the traveling wave can easily be aligned with an axis of the
coordinate system, while the other two axes span a plane of constant phase
fronts for the plane wave. For spherical waves, however, the spherical coordinate
system with the coordinate origin being the center point of radiation is the
most convenient choice. Using the definition of the Laplace operator in spherical
coordinates, the wave equation

1

�2
�

��

︂
�2
��

��

︂
+

1

�2 sin �

�

��

︂
sin �

��

��

︂
+

1

�2 sin2 �

�2�

��2
=

1

�2
�2�

��2
(2.16)
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CHAPTER 2. Fundamentals and preliminaries

can be derived [Wil99].

The solutions of this equation can be found by applying the concept of separa-
tion of variables and can thus be formulated as a product of three independent
variables in space plus one independent variable for the time dependence:

�(�, �, �, �) = �(�)Θ(�) Φ(�)� (�) (2.17)

The separation approach yields four ordinary differential equations [Wil99]:

d2Φ

d�
+�2Φ = 0 (2.18)

1

sin �

d

d�

︂
sin �

dΘ

d�

︂
+

︂
�(�+ 1)− �2

sin2 �

︂
Θ = 0 (2.19)

1

�2
d

d�

︂
�2

d�

d�

︂
+ �2�− �(�+ 1)

�2
� = 0 (2.20)

1

�2
d2�

d�2
+ �2� = 0 (2.21)

with the variables � and � being integers. Each of the four terms must satisfy
the wave equation. Having one independent variable each, terms for the general
solutions can be given:

Φ(�) = Φ1e
jmφ +Φ2e

−jmφ (2.22)

Θ(�) = Θ1�
m
n (cos �) + Θ2�

m
n (cos �) (2.23)

�(�) = �1ℎ
(1)
n (��) +�2ℎ

(2)
n (��) (2.24)

� (�) = �1e
jωt + �2e

−jωt (2.25)

Hereby �m
n (�) and �m

n (�) are the associated Legendre functions of first and
second kind and ℎ(1)

n (�) and ℎ(2)
n (�) are the spherical Hankel functions of first and

second kind. In order to obtain only functions without discontinuity in azimuthal
direction, the variable � needs to be of integer value. Allowing both positive and
negative values for �, only one summand is sufficient for a complete description
of all possible solutions, thus Φ2 can be set to zero. As the associated Legendre
functions of second kind possess singularities at their poles at � = 0 and � = � the
term Θ2 can also be set to zero. The index variable � of the Legendre functions
has to be an integer value for valid solutions without singularity at the poles
[Wil99].
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2.3. Fourier acoustics in spherical coordinates

The associated Legendre functions of first kind are defined for positive degrees �
as

�m
n (�) = (−1)m(1− �2)m/2 dm

d�m
�n(�). (2.26)

The functions for negative degrees can be derived by the relation

�−m
n = (−1)m

(�−�)!

(�+�)!
�m
n (�) (2.27)

with

�n(�) =
1

2n�!

dn

d�n
(�2 − 1)n (2.28)

being the orthogonal set of Legendre polynomials of order � [Wil99].

The spherical Hankel functions represent both incoming and outgoing waves, de-
pending on the sign convention used for the time constant. Eq. (2.25) describes
the time dependence in which the anti-causal solution can be disregarded. Ac-
cording to the used sign convention the constant �2 can be set to zero in order
to describe causal time signals only.2

The separation of variables described here is a fundamental concept in Fourier
acoustics and allows to derive analytical solutions for the tempo-spatial struc-
ture of acoustic fields. The results of this section regard the base for deriving
the spherical harmonics as a set of scalar orthonormal functions on the sphere
(by combining the angular parts) as shown in the following section. The angu-
lar terms in combination with the radial part can be considered as multipole

expansion and will be described in Sec. 2.3.4.

2.3.2. Spherical harmonics

Both Eq. (2.22) and Eq. (2.23) are functions with the argument of an angle. They
can be combined multiplicatively (using Φ2 = Θ2 = 0) to a set of functions called
spherical harmonics (SH) of order � and degree �, defined as

� m
n (�, �) =

︃
(2�+ 1)

4�

(�−�)!

(�+�)!
· �m

n (cos �) · ejmφ (2.29)

The square root term in the definition of the spherical harmonics is the chosen
product of Φ1 and Θ1 and provides for the orthonormality of the spherical har-

2This sign convention is the commonly used phasor in engineering and is implemented
in the measurement and signal processing software packages, Monkey Forest [Mül99] and the
ITA-Toolbox for Matlab [Die12a].
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monics.3 The spherical harmonics functions of negative order can be computed
from the functions of positive order using the relation

� m
n (�, �) = (−1)m · � −m

n (�, �) (2.30)

with the overbar denoting the complex conjugate. It can be seen that the absolute
value of the functions is not changed by this conversion rule, so that a function
of negative degree differs from the function of identical order and symmetric
positive degree only by its phase. In Fig. 2.1 the set of the spherical harmonics
up to an order of two are depicted. The color is used to describe the phase of the
function, while the radius quantifies the magnitude of the function at the given
direction.

A fundamental property of the spherical harmonics functions is their orthonor-

mality. The inner product of two spherical harmonics equals unity for identical
order and degree and zero for differing spherical harmonics. This can be expressed
mathematically as

︁

S2

� m
n (�, �)� m′

n′ (�, �) dΩ = ⟨� m
n |� m′

n′ ⟩ = �nn′�mm′ (2.31)

with
︁

S2

dΩ =

2π︁

0

π︁

0

sin � d� d� (2.32)

being the integral over the surface �2 of the unit sphere and the Kronecker delta

function defined as

�xy =

︃
1 for � = �

0 for � ̸= �
. (2.33)

According to Williams [Wil99] the set of spherical harmonics constitute a vector
basis for square-integrable functions. In order to fulfill that requirement the
integral of the squared magnitudes of the function has to be bound to a limited
value: ︁

S2

|�(�, �)|2 dΩ <∞ (2.34)

3Other definitions of the spherical harmonics exist, either with different sign convention or
with a different normalization. In the latter case the spherical harmonics regard an orthogonal
basis that is not orthonormal.
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Figure 2.1.: Complex spherical harmonics as balloon plots; radius denotes the
magnitude and color denotes the phase for a given direction.

2.3.3. Spherical wave spectrum

Williams [Wil99] further defines the spherical wave spectrum (SWS) �nm as the
spherical harmonic transform of an arbitrary square-integrable spherical function
�(�, �). The spherical harmonics are used as basis functions for the decomposition
into a set of SH coefficients. A spherical scalar function can thus be represented
in two equivalent domains: in the SH domain or in the spatial domain, analogous
to time and frequency domain when using the Fourier transform. Here the pair of
transformations for spherical functions and a relation between the two domains
is given.

13



CHAPTER 2. Fundamentals and preliminaries

Spherical harmonic transform

The spherical harmonic transform (SHT) is defined as

�nm = � {�(�, �)} =

︁

S2

�(�, �) · � m
n (�, �) dΩ. (2.35)

This operation is generally precise if the integral can be solved in an exact way.
In practice we are usually dealing with spatially sampled directivity patterns, so
that the integral has to be approximated by a summation over a set of discrete
points. The issues that possibly arise (such as e.g. aliasing artifacts) are addressed
in Sec. 2.5.

Inverse spherical harmonic transform

The inverse spherical harmonic transform (ISHT) is given as

�(�, �) = �−1 {�nm} =

∞︁

n=0

n︁

m=−n

�nm · � m
n (�, �). (2.36)

This operation is precise if the outer summation is performed up to an order of
infinity. For order limited SWS, the infinite sum can be replaced by a finite sum
up the maximum order of the SWS.

Parseval’s identity

As in the one-dimensional case Parseval’s identity is valid for the Fourier trans-
form on the sphere [Bro00]:

︁

S2

|�(�, �)|2 dΩ =
∞︁

n=0

n︁

m=−n

|�nm|2 (2.37)

This equation shows that the squared magnitudes of a spherical function in-
tegrated over the complete solid angle equals the squared magnitudes of its
spherical wave spectrum.4

4As the squared magnitude values are proportional to the energy values of a signal,
the term “signal energy” is used even if the required normalization with an impedance for
conversion to physical energy is being done.
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2.3. Fourier acoustics in spherical coordinates

2.3.4. Boundary value problems

Boundary value problems in acoustics consist of a sound field description using
the Helmholtz equation and a set of known values given at a boundary surface. If
the boundary surface can be described in an appropriate coordinate system by a
two dimensional subset of the three dimensional space, efficient analytic solutions
for the determination of the complete sound field exist. For spherically shaped
boundary surfaces, spherical coordinates are the natural choice and deliver such
fast and precise analytic solutions.

Three cases of boundary value problems can be differentiated as follows:5

Exterior problems

Exterior problems occur when all sources are confined within a certain area
in space. In Fig. 2.2a the sources are confined within the gray spherical area
of radius �. The area outside of this sphere is considered source free and the
problem satisfies the Sommerfeld radiation condition (no incoming radiation
from infinity).

If the pressure field (Neumann boundary condition) or the surface velocity
(Dirichlet boundary condition) is known on a separable surface, the complete
field outside of � > � can be determined, an area marked in Fig. 2.2a as region
of validity, cf. [Zot09a]. This kind of problem occurs e.g. when calculating the
radiation of a sound source at different radial distances from data obtained at a
single distance. Using reciprocity the solution of the exterior problem can also
be applied to sound receivers with complex directivity patterns.

The sound pressure field can be described by the multipole expansion of the field
into a set of singular solutions of the Helmholtz equation as

�(�, �, �) =

∞︁

n=0

n︁

m=−n

�nmℎn(��)�
m
n (�, �) (2.38)

with the expansion coefficients �nm being generally functions of frequency and �
being the wave number. This multipole expansion combines the spherical wave
spectrum with a term for radial wave propagation. Exploiting the orthonormality
of the spherical harmonics these coefficients can be derived by the multiplication

5As of reciprocity these problems can be formulated for sources and receivers, here the
problems for sources are formulated.
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of the conjugated complex of the spherical harmonics and an integration over
the 2-sphere, resulting in the following relation [Wil99]:

�nm =
1

ℎn(��)

︁

S2

�(�, �, �)� m
n (�, �) dΩ (2.39)

In these equations the spherical Hankel functions for an outgoing wave have
to be employed. With the used sign conventions these are the spherical Hankel
function of 2nd kind, abbreviated as ℎn(·) = ℎ2

n(·).

For a given spherical wave spectrum obtained at a radial distance �0 > � from
the focal point in the center of the coordinate system an extrapolated version
for the radial distance �1 > � can be calculated. This calculation is valid in the
white (source free) area in Fig. 2.2a and is performed in the spherical harmonic
domain. The spherical wave spectrum of the extrapolated function is multiplied
with the fraction of the spherical Hankel functions of the two radii as

�nm(�1, �) = �nm(�0, �)
ℎn(��1)

ℎn(��0)
. (2.40)

The fraction of Hankel functions contains the 1/� decay, as well as potential
near-field components of the higher orders of the SWS.

a

valid
region

(source free)

containing
sources

(a) Exterior problem

a

containing
sources

valid region
(source free)

(b) Interior problem

Figure 2.2.: Boundary value problems with the gray area containing all sources
and the white area being considered source free.
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2.3. Fourier acoustics in spherical coordinates

Interior problems

An interior problem (cf. Fig. 2.2b) occurs for a source-free region surrounded
by acoustical sources. Also in this case, the knowledge of the sound pressure
(Neumann boundary condition) or the particle velocity (Dirichlet boundary con-
dition) on a separable surface is sufficient to determine the sound field in the
source-free area within a confined space between the sources.

The sound pressure field inside the confined area can be described by the series
of

�(�, �, �) =
∞︁

n=0

n︁

m=−n

�nm�n(��)�
m
n (�, �) (2.41)

with the expansion coefficients �nm. In comparison to the exterior problem with
the singular solution given by the expansion coefficients �nm, the spherical Hankel
functions ℎn are replaced by the spherical Bessel functions �n, yielding the regular

solutions of the Helmholtz equation given by �nm. As the name suggests this
solution does not possess a singularity at the origin of the coordinate system,
yielding finite values for all points in the region of validity.

The derived coefficients are functions of the frequency and can be found analo-
gously to the exterior problem as [Wil99]:

�nm =
1

�n(��)

︁

S2

�(�, �, �)� m
n (�, �) dΩ (2.42)

Analogously to the exterior problem, the radial distance can be extrapolated in
the spherical harmonics domain as

�nm(�1, �) = �nm(�0, �)
�n(��1)

�n(��0)
(2.43)

with the fraction of spherical Bessel functions giving a frequency dependent and
order dependent scaling factor.

Mixed problems

Mixed problems can be regarded as a combination of exterior and interior prob-
lems. In case of spherical coordinates they provide solutions e.g. for a spherical
shell (three-dimensional annulus) that either contains all sources within or out-
side of its volume. For details confer to literature [Wil99; Gum03; Zot09a].
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2.3.5. Transformation of acoustic spherical fields

Acoustic fields can be expressed by their Fourier expansion using the coefficients
�nm or �nm as defined by Eq. (2.39) and Eq. (2.42). Analytical expressions exist
to perform translation and rotation in the Fourier domain or in the spatial
domain. While the rotation of spherical wave spectra or multipole expansions
are computationally straight-forward, the translation in the SH domain can be
computationally very demanding. In this section a short overview of the methods
for source translation and rotation is given.

Translation

In order to translate the acoustic field from one focal point to another, its mul-
tipole expansion coefficients can be transformed using recurrence relations as
given e.g. in Gumerov et al. [Gum03] and Zotter [Zot09a]. The translation can
be performed on the acoustic field represented as a weighted set of singular and
regular solutions of the Helmholtz equation. This can be done for the transla-
tion in any direction using recurrence relations that demand a comparatively
high computational effort for high orders. While the number of coefficients rise
quadratically with rising order, the number of required operations for a generic
translation rises with the power of five [Gum03].6

A significant speedup can be achieved by applying prior rotation so that the
direction of translation is aligned with the �-axis of the Cartesian coordinate
system. A translation in that direction is computationally much more efficient
than arbitrary translation [Zot09a; Kle12a]. After the rotation and the applica-
tion of the translation exploiting the symmetry to the �-axis, the inverse rotation
restores the orientation of the original problem.

For fast computation the translation can also be approximated in the spatial do-
main, although it is generally not possible to take near-field effects into account.
Using a far-field approximation of a singular source translated from the distance
�0 to �1 all higher orders are disregarded, yielding

�(�1) = �(�0) ·
ℎ0(��1)

ℎ0(��0)
= �(�0) ·

�0
�1

ejk(r0−r1). (2.44)

6Calculation times for generic translations for higher orders generally range from several
hours to several days of calculation time on a standard laptop.
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2.3. Fourier acoustics in spherical coordinates

Calculating source translation in the SH domain, the order dependent effects are
taken into account. A spherical function that has a limited rate of change over
the spatial angle typically has an order limited spherical wave spectrum (SWS).
After applying the translation the SWS is modified for the differing focal point.
While functions such as the sound pressure created from a compact sound source
are generally limited in order (cf. Sec. 2.3.8), a translation can lead to a displaced
source where a non-optimal focal point is used for the transformations, yielding
much higher orders of the SWS.

Rotation

In the spatial domain any possible rotation can be expressed by three single
rotations about the Cartesian coordinate axes. These rotations can be quantified
by the Euler angles �, � and �, denoting rotations around the �-axis, the �-axis
and a second time around the �-axis, respectively.

Any point in space can be rotated by the multiplication of its Cartesian coordi-
nates with a 3× 3 matrix with a determinant of unity that can be composed by
the multiplication of three rotation matrixes Rz(�), Ry(�) and Rz(�) defined
as [Kos03]

Rz(�) =

⎛
⎜⎝
cos� − sin� 0

sin� cos� 0

0 0 1

⎞
⎟⎠ and (2.45)

Ry(�) =

⎛
⎜⎝

cos� 0 sin�

0 1 0

− sin� 0 cos�

⎞
⎟⎠ . (2.46)

A point in space defined by its Cartesian position vector

r = � �⃗x + � �⃗y + � �⃗z (2.47)

can be transformed to the rotated position by a subsequent multiplication with
the rotation matrices as

rrot = Rz(�) ·Ry(�) ·Rz(�) · r. (2.48)

Alternatively quaternions can be used for the description of arbitrary rotations
in the spatial domain [Kui99].
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Rotation can also be implemented in the Fourier domain. As any set of spherical
harmonics of a given order forms an invariant subspace, the signal energy of a
specific order of a spherical function represented by its spherical wave spectrum
does not change by rotation. The distribution of energy in the various degrees
of a fixed order varies, but the total energy is constant.

The rotation is applied to a given spherical wave spectrum or multipole expansion
by the Wigner-D function defined for the given rotation expressed by the Euler
angles (�, �, �) as

�
(n)
k,m(�, �, �) = e−jkα · �(n)

k,m(�) · e−jmγ . (2.49)

with �, � and � being integer values and �(n)
k,m(�) being the reduced (real-valued)

Wigner-d function, which can be computed by a set of recurrence formulas and
explicit starting values as given in Kostelec et al. [Kos03] or Pendleton [Pen03].
The rotation can then be applied in the spherical harmonic domain as

�nm,rot =
n︁

k=−n

�nk ·�(n)
k,m(�, �, �). (2.50)

As the squared absolute values of the Wigner-D function add up for all values
of � to unity, the total signal energy stored in a certain SH order of the spherical
wave spectrum is not changed by the rotation:

n︁

k=−n

⃒⃒
⃒�(n)

k,m

⃒⃒
⃒
2

= 1 (2.51)

Fast algorithms for the computation of the Wigner-D can be found e.g. in Zotter
[Zot09a] and Klein [Kle12a].

2.3.6. Dirac impulse on unit sphere

A useful auxiliary function in signal processing is the generalized function of
the Dirac delta impulse. It can be used to sample a continuous function or to
apply a time shift, exploiting its sifting property. Integrating over the Dirac delta
impulse yields a value of unity. On the sphere, a Dirac impulse pointing in the
direction of (�′, �′) can be defined as [Wil99]:

�(θ
′,φ′)(�, �) = �(cos � − cos �′) �(�− �′) (2.52)
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2.3. Fourier acoustics in spherical coordinates

Williams [Wil99] also gives an alternative representation using the spherical har-
monic basis functions:

�(θ
′,φ′)(�, �) =

∞︁

n=0

n︁

m=−n

� m
n (�′, �′)� m

n (�, �) (2.53)

Comparing this equation with the ISHT given in Eq. (2.36) shows the SWS of
the Dirac impulse on the unit sphere as

�(θ
′,φ′)

nm = � m
n (�′, �′). (2.54)

The spatial representation of the Dirac impulse on the 2-sphere integrates to
unity: ︁

S2

�(θ
′,φ′)(�, �) dΩ = 1 (2.55)

This property of the �2-Dirac impulse is analog to the one-dimensional Dirac
impulse in the time domain, which also integrates to unity. It can thus also be
used for sampling a function at a certain point. As in the one-dimensional case,
this is done by an element-wise multiplication of the Dirac impulse with the
function and by integrating over the result. A spherical function multiplied by
a Dirac impulse and integrated over the sphere yields the function value at the
direction of the Dirac impulse:

�(�′, �′) =

︁

S2

�(�, �) · �(θ
′,φ′)(�, �) dΩ (2.56)

2.3.7. Cross-correlation of spherical functions

In signal processing the cross-correlation is commonly used to quantify the sim-
ilarity between two signals. For continuous signals the cross-correlation function
of two time signals �1(�) and �2(�) is defined as a function of the time lag �

[Ohm06]

�(�) =

∞︁

−∞

�1(�)�2(� − �) d� (2.57)

with the overbar denoting the conjugated complex. The cross-correlation is iden-
tical to the inner product of two functions in the used vector space. Analogously,
the inner product of two spherical functions can be regarded as their cross-
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correlation coefficient. It yields a measure of similarity for spherical functions
and is defined as [Kos03]:

�(�, �) = ⟨� | �⟩ =
︁

S2

�(�, �) �(�, �) dΩ (2.58)

This value depends on the magnitudes of the functions �(�, �) and �(�, �) and
changes with varying the total gain of one of these functions. In order to use it
as a similarity measure for directivity patterns (which are normalized as given
in the definitions in Sec. 2.1) the normalized correlation coefficient can be used.

The spherical cross-correlation coefficient can be divided by the square root of
the product of the two function’s squared magnitudes, yielding the normalized
cross-correlation coefficient as [Pol09c]

�︀(�, �) =
�(�, �)︀
�f�g

(2.59)

with
�f = ⟨� | �⟩ = �(�, �) (2.60)

being the inner product of the function with itself (or the auto-correlation of the
function). Using the generalization of Parseval’s theorem as defined in Eq. (2.37),
the spherical cross-correlation coefficient can also be defined in the spherical
harmonics domain as

�(�, �) =
∞︁

n=0

n︁

m=−n

�nm�nm. (2.61)

The normalized correlation allows convenient comparison of spherical functions,
even if the data differs in sensitivity (e.g. when recorded in different uncalibrated
measurement sessions) as a difference in the absolute gain does not influence the
result.

2.3.8. Frequency dependent order truncation

Numerical calculations in the spherical harmonics domain are usually performed
by truncating the infinite series of the SWS at a specific order. In the near-field
of a source or receiver the high order components of the SWS of the directivity
are highly attenuated at low frequencies and outward traveling direction, so a
frequency dependent upper order truncation is suitable.
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For lower maximum orders the computational cost is reduced with the price of
lower accuracy. Gumerov et al. [Gum02a] describe a general convergence to the
precise result for rising maximum orders, while regarding the choice of truncation
number an important question for the optimal trade-off between computation
speed and accuracy. Duraiswami et al. [Dur04] propose the ��-limit as rule-of-
thumb for the range extrapolation of HRTFs, using only spherical harmonics up
to the maximum order

�max = ⌊��min⌋ (2.62)

with �min being the radius encompassing all sources and � being the wave num-
ber. For a specific focal point used for the expansion as spherical wave spectrum
�min equals to the outermost source contributing to the radiation and regards
the minimum distance for the region of validity as depicted in Fig. 2.2.7

In literature also higher limits are found, resulting in a higher convergence to
the actual result with the risk of overfitting [Dur04]. Good results have been
reported by Müller-Trapet et al. [MT11] using the suggested limit raised to be
two orders higher (independent of frequency).

2.4. Discrete Fourier acoustics in spherical coordinates

The theory presented until here is subject to spatially continuous calculation.
Acoustic sensors usually sample the acoustic pressure field at discrete points in
space. Instead of continuous functions thus often a spatially sampled subset of
the values in the three dimensional space is available for further processing. As
Eq. (2.35) contains a continuous integral, this operation has to be modified for
discretely sampled data in order to numerically evaluate the integral in terms
of a finite sum of samples. Using weights �i for each of the � sampling points
the continuous integral over �2 shall be equally represented as discrete sum for
specific sampling schemes (cf. Sec. 2.5) as

︁

S2

�(�, �) dΩ
!

=

I︁

i=1

�i�(�i, �i) (2.63)

with �nm = � {�(�, �)} being the spherical wave spectrum which is order limited
to �max, expressed as

�nm = 0 for � > �max. (2.64)

7The described order truncation is applied in Sec. 4.3 and (with a higher limit) in
Sec. 5.4.3. Suitable order truncation can also be employed for computing the SHT for in-
complete datasets (cf. Sec. 4.4). A weaker order limit such as the order dependent Tikhonov
regularization (cf. Sec. 2.4.4) might be preferable in this case.
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The weights �i for the � sampling points can be determined by solving Eq. (2.63).
For details cf. to Sec. 2.5 where spherical sampling schemes using exact quadra-
ture are presented that yield precise forward and inverse SHT for order lim-
ited functions. Assuming such precise sampling schemes, the transforms, Parse-
val’s theorem and orthonormality condition and can be formulated with minor
modifications compared to the continuous cases in Eq. (2.31) and Eq. (2.35) to
Eq. (2.37).

The discrete spherical harmonic transform (DSHT) is defined as

�nm =
I︁

i=1

�i�(�i, �i)� m
n (�i, �i), (2.65)

while the inverse spherical harmonic transform (ISHT) can be defined for dis-
crete angles as

�(�i, �i) =

nmax︁

n=0

n︁

m=−n

�nm · � m
n (�i, �i). (2.66)

Parseval’s identity can be generalized as

I︁

i=1

�i|�(�i, �i)|2 =

nmax︁

n=0

n︁

m=−n

|�nm|2, (2.67)

while the orthonormality is also preserved for all �′ ≤ �max and � ≤ �max as

I︁

i=1

�i�
m′

n′ (�i, �i)� m
n (�i, �i) = �n−n′�m−m′ . (2.68)

2.4.1. Matrix formulation

The spatially discretized spherical harmonic basis functions can be represented
in matrix notation as

Y = YN =

⎛
⎜⎜⎜⎜⎜⎜⎝

� 0
0 (�1, �1) � −1

1 (�1, �1) · · · � N
N (�1, �1)

� 0
0 (�2, �2) � −1

1 (�2, �2) · · · � N
N (�2, �2)

� 0
0 (�3, �3) � −1

1 (�3, �3) · · · � N
N (�3, �3)

...
...

. . .
...

� 0
0 (�I , �I) � −1

1 (�I , �I) · · · � N
N (�I , �I)

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.69)
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2.4. Discrete Fourier acoustics in spherical coordinates

with � being the number of points used and � = �max the maximum order of
spherical harmonics. The linear index � is used to enumerate the columns of
the matrix by order and degree of the spherical harmonics as defined (amongst
others) by Zotter [Zot09a] as

� = �2 + �+�+ 1. (2.70)

This linear indexing is equivalent to sort the spherical harmonics as depicted in
Fig. 2.1 in reading direction from the top of the triangle line-by-line from left
to right. Using this linear index the functions of second order (� = 2, |�| ≤ �),
i.e., the functions depicted on the third row in Fig. 2.1, have the indices � =

22 + 2 +�+ 1, thus ranging from 5 to 9.

To use the order limited coefficients of the SWS by means of linear algebra,
the operator vecSH{·} can be introduced for the conversion into a vector of
coefficients as

f̂ = vecSH{�nm}. (2.71)

Likewise, the operator vec{·} is used to describe a function of a set of spatial
sampling points as the vector

f = vec{�}. (2.72)

For discretized spatial data the transformation into the order limited spherical
wave spectrum regards a purely discrete transform that can be represented using
matrix notation and related tools from linear algebra. The ISHT for the continu-
ous case as defined in Eq. (2.36) can be represented as matrix multiplication with
the transformation matrix Y = YN containing the spatially sampled spherical
harmonics as column vectors, as8

f = Y · f̂ . (2.73)

This relation is valid for order limited spherical wave coefficients with �nm = 0

for � > � . The SHT can be formulated as a matrix inversion of Y as

f̂ = ”Y−1” · f . (2.74)

In general the spherical harmonics matrix Y is not square and thus not an in-
vertible singular matrix. Other ways have to be found to obtain a (possibly ap-

8The matrix Y is chosen here to directly reflect a transformation matrix commonly used
in this work. A multiplication with the matrix denotes the ISHT, while the inverse operation
regards the SHT. Note that the matrix Y is sometimes defined differently in literature.
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CHAPTER 2. Fundamentals and preliminaries

proximate) solution of the inverse problem. With a quadrature sampling scheme
the order limited SHT can be calculated in an exact manner. The spherical wave
coefficients

f̂ = Y
H diag {�i} · f . (2.75)

are found by an multiplication with the conjugate transpose of Y, with a weight
vector for all sampling points given as diagonal matrix and with the vector of
the spatially sampled function values.

The matrix
O = Y

H diag {�i}Y (2.76)

thus represents subsequent inverse and forward SHT. With a limited maximum
order � the SHT and ISHT are precise for quadrature sampling schemes, re-
sulting in O being the Identity matrix. Another possibility for computing the
SHT is the use of a generalized inverse as suggested by Penrose [Pen55] (and
earlier by Eliakim H. Moore), calculating a least-squares approximation for a
overdetermined system of equations represented by a given matrix, for under-
determined systems the generalized inverse (also called Moore-Penrose-Inverse)
finds the solution of minimum norm.

If a spherical wave spectrum of higher orders than the maximum order the given
spherical sampling scheme can resolve is used for the SHT, aliasing artifacts
occur as is discussed in Sec. 2.5

2.4.2. Error measure

The spherical residual function �′(�, �) of two continuous spherical functions can
be defined as

�′(�, �) = �(�, �)− �(�, �). (2.77)

In case of discrete sampling of a pressure function the residual sound pressure
can be formulated as a vector rp = vec{�′} containing the discrete residual values
for each sampling point as

rp = p− porig. (2.78)

with porig being the sound pressure free of errors and p being the defective sound
pressure.

It can be useful to quantify the residual on a logarithmic scale in order to account
for the logarithmic perception of the human hearing as used e.g. in Sec. 5.4.1.
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2.4. Discrete Fourier acoustics in spherical coordinates

2.4.3. Condition number

The condition number � gives an upper limit for the amplification of errors that
occur using a given function or matrix transform, thus expressing the sensitivity
of the output to a change in the input. Assuming the general linear equation
Ax = b with given b and unknown x, the relative error of the solution vector x

with respect to the problem vector b can be expressed by the inequality [Str03]

||∆x||
||x|| ≤ �

||∆b||
||b|| (2.79)

with ||.|| being the 2-norm of the vectors.

In case of a defective matrix instead of a defective input vector the error bounds
can be stated as [Str03]

||∆x||
||x+∆x|| ≤ �

||∆A||
||A|| (2.80)

with ||A|| being the 2-norm (and thus the largest singular value) of matrix A.
For square matrices the condition number can be defined as the norm of the
matrix multiplied by the norm of its inverse [Gol96]

� = ||A|| · ||A−1|| (2.81)

while for non-square matrixes the inverse A−1 can be replaced with the gener-
alized matrix inverse A+. The condition number can also be calculated by the
fraction of the largest singular value of a matrix divided by the smallest singular
value.

The condition number of the matrix YN can be used to derive e.g. optimal
order truncation for given arbitrary geometries. In case of spatial undersampling
the condition number of the matrix YN increases dramatically, indicating the
ill-posedness of the SHT for a given maximum order � = �max.

2.4.4. Matrix inversion using regularization

In order to overcome the problems associated with bad conditioning, regulariza-
tion methods are commonly employed for achieving better results when inverting
a system of equations. This is done by using additional knowledge in order to
gain sensible results for the particular physical problem that needs to be solved.
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Using the Moore-Penrose pseudoinverse a least mean squares (LMS) solution
with the minimum 2-norm of the residual vector is found. The generalized
Tikhonov regularization regards a trade-off between minimum 2-norm of the
residual vector and the 2-norm of the solution vector, with the possibility to
emphasize one or the other norm [Nai97].

Extending this concept to the physical expectation of a certain spherical wave
represented by their SH coefficients, allows to derive better results for the ISHT
of possibly imprecise, defective data, that are possibly not even defined on a
regular distribution on the surface of a sphere. This concept allows to derive
solutions that minimizes the signal energy of high orders [Dur04].9

In acoustic applications regularization is not only used for calculating the ISHT
of imprecise spatial data, but generally when matrix inversion is performed.
Masiero [Mas12] employs a regularization approach in order to calculate stable
filters used for the cross-talk cancelation (CTC) technique.

Written in matrix formulation the solution x for a given inverse problem Ax = b

can be calculated using the Moore-Penrose pseudoinverse as

x = A
+
b. (2.82)

For a solution applying Tikhonov regularization the inverse problem can be
solved by the equation

x =
︁
A

H
A+ �D

︁−1

A
H
b (2.83)

with � > 0 being the regularization parameter and D being a diagonal matrix,
often set to the Identity matrix [BI03] as

D = I. (2.84)

Duraiswami et al. [Dur04] suggest to use an order dependent diagonal matrix
for the Tikhonov regularization, defined as

D = (1 + �(1 + �))I (2.85)

with � being the current order of the SWS. This allows to penalize higher orders
more than lower orders. In combination with a frequency dependent truncation

9Examples for the effect of regularization on directivity control can be found in Sec. 4.3.3
and Sec. 5.4.1. An example for incomplete data on the sphere is given in Sec. 4.4.
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of the calculation, this proves to be very effective for calculations of the SHT
with imprecise data and/or incomplete spatial sampling schemes [Hea03; Dur04;
MT11; Pol12a; Bro13].

2.5. Spherical sampling schemes and aliasing analysis

Directivity patterns are commonly measured on a spherical shell around a specific
point that is used as focal point for the transformations of the spherical functions.
In this section a selection of sampling schemes on a sphere are described that
have been used for this study.

The equiangular quadrature and the Gaussian quadrature sampling scheme offer
precise SHT for order limited spherical functions. Both show redundancy having
double (for Gaussian) or quadruple (for equiangular) the number of points as
there are coefficients in the SH domain.

The sampling scheme using hyperinterpolation on the sphere offers precise results
for order limited functions without redundancy, having as many sampling points
as there are coefficients in the SWS. The disadvantage of this kind of sampling
is that no redundancy also means higher errors for deviations or excitation of
higher orders above the order limit.

The equiangular sampling scheme using a regular angular spacing starting at the
poles of the spherical coordinate system is not an exact sampling scheme. As it
is often found in existing measurement data it is also analyzed in this section.

In Fig. 2.3 to Fig. 2.7 the aliasing components for these reviewed sampling
schemes are depicted as greyscale levels, showing the error that occurs perform-
ing the SHT using this geometry. Using a sampling scheme that is optimized for
the maximum order �1 = 10, the error that occurs by (under)sampling continu-
ous functions with a SWS of up to an order �2 = 20 is depicted. The deviation
from the ideal representation (perfect mapping up to order �1 and no contribu-
tions of higher orders) yields a �1×�2 matrix, representing the deviations from
orthonormality up to the order �1 and aliasing artifacts for higher orders.
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CHAPTER 2. Fundamentals and preliminaries

2.5.1. Equiangular quadrature sampling scheme

Driscoll et al. [Dri94] define a set of points with equal angular spacing in both
azimuth and elevation that is suitable for numerically precise integration of or-
der limited functions on the sphere. It consists of a rectangular sampling with
(2�max + 1) samples in the direction of both elevation and azimuth and pro-
vides exact weighted quadrature on the unit sphere. As all sampling points with
constant elevation have identical weights, Eq. (2.63) can be reformulated as:

︁

S2

�(�, �) dΩ =

L︁

l=0

K︁

k=0

�l�(�l, �k) (2.86)

with
� = � = 2�max + 1 (2.87)

and � {�(�, �)} being bound to a maximum order �max.

The sampling efficiency as defined by Zotter [Zot09b] for this kind of sampling
is 25%. As an advantage the influence of aliasing is small compared to other
types of sampling schemes [Raf07]. The aliasing components occurring for order
� > �max can be seen in Fig. 2.3. The Identity matrix is subtracted from the
orthonormality matrix

O = Y
H
N1

diag {�l}YN2 (2.88)

and depicted as logarithmic grayscale plot. For higher orders a part of the signal
is mapped into the lower order components as aliasing components. It can be
seen that these aliasing artifacts reach lower orders only for input values of
higher orders. Similar to aliasing products in the time-frequency representation,
a mirroring of the signal in the spectral domain occurs for this kind of sampling
scheme.
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Figure 2.3.: Equiangular quadrature: Sampling scheme and aliasing map
for precise quadrature with the maximum oder �max = 10.
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2.5.2. Gaussian quadrature sampling scheme

The Gaussian quadrature sampling is (like the equiangular quadrature sampling)
a rectangular sampling and thus well-suited for applications that use discrete
steps in both angular directions. Its advantage to the equiangular quadrature
sampling is the higher sampling efficiency of 50%, so only half the number of
samples have to be used for the representations of functions with the same max-
imum order [Zot09a].

The continuous integral of the integration of continuous function is approximated
the same way as with the equiangular quadrature (cf. Eq. (2.86)), using the
constants of

� = �max + 1 and � = 2�max + 1. (2.89)

In Fig. 2.4 the sampling error of higher order spherical functions (plotted up to
order 20) on a Gaussian quadrature sampling of maximum order 10 is depicted.
The orthonormality matrix as defined in Eq. (2.88) is plotted after subtracting
the main diagonal entries of perfect reconstruction. Compared to the equiangu-
lar quadrature only half the sampling points are needed for the same maximum
orders, yielding slightly higher aliasing components. Functions given with a de-
gree not higher than �1 are represented without loss of information, while higher
order components are mirrored to lower orders. The aliasing structure is similar
to the equiangular quadrature and does not affect all orders. An input signal
with an effective maximum order of e.g. �max = 15 only disturbs the resulting
orders of � ≥ 7 when using a Gaussian quadrature sampling.
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Figure 2.4.: Gaussian quadrature: Sampling scheme and aliasing map for
precise quadrature with the maximum oder �max = 10.
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2.5.3. Sampling scheme using hyperinterpolation

The sampling scheme using hyperinterpolation on the sphere is the most efficient
representation of order limited functions in the spatial domain, having the best
possible sampling efficiency of 100% [Zot09b]. For each coefficient of the SWS
exactly one spatial sampling point is used for perfect reconstruction of order
limited spherical functions. Details on the sampling distribution on the 2-sphere
can be found in Sloan et al. [Slo99; Slo04].

Having an equal number of SH coefficients and sampling points the matrix Y be-
comes a square matrix. With its full rank, the matrix inversion can be performed
using conventional matrix inversion, regarding a unique and precise operation
without loss of accuracy for band limited functions [Zot09b; Zot09a]. Y thus
describes the bijective transformation matrix converting SH coefficients to spa-
tial data by multiplication. The inverse operation regards the SHT and can be
expressed as

f̂ = Y
−1

f . (2.90)

The precomputed matrix inverse of Y can thus be used for solving the SHT
using simple matrix multiplication. The disadvantage of this kind of sampling
scheme is the stronger spatial aliasing components that occurs for SH orders
above order �1. As there is no redundancy, these higher orders have a strong
impact on the reconstruction of lower orders, as can be seen in Fig. 2.5. Again,
the orthonormality matrix

O = Y
−1
N1

YN2 (2.91)

with the subtracted diagonal matrix for perfect reconstruction within the order
limit is plotted.
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Figure 2.5.: Hyperinterpolation: Sampling scheme and aliasing map for pre-
cise quadrature with the maximum oder �max = 10.
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2.5. Spherical sampling schemes and aliasing analysis

2.5.4. Equiangular sampling schemes with regular spacing

Regular equiangular sampling schemes are commonly used for spherical mea-
surements due to their algorithmic simplicity and the wide support in acoustic
measurement software and spherical data formats10. Hereby a fixed angular res-
olution for azimuth and elevation is set and the measurements are performed in
these steps. The resolution of the chosen sampling scheme can be stated in the
(∆�/∆�) format, with commonly used formats of (10∘/10∘), (5∘/5∘) or (1∘/1∘).
When starting and ending the elevation at the poles, the number of unique points
of the chosen grid can be given as

� =

︂
180∘

∆�
− 1

︂
360∘

∆�
+ 2. (2.92)

The removal of duplicate points at the poles is essential for the calculation of
the SWS, as the transformation matrix Y needs to have full rank. In practice,
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Figure 2.6.: Sampling scheme and aliasing map for ∆� = 15∘ and ∆� = 15∘

with the maximum oder �max = 10 using pseudoinverse.
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Figure 2.7.: Sampling scheme and aliasing map for ∆� = 20∘ and ∆� = 20∘

with the maximum oder �max = 10 using pseudoinverse.

10The measurement software Monkey Forest (MF), as well as the data formats OpenDAFF
[Wef10] and the Common Loudspeaker Format (http://www.clfgroup.org) currently only sup-
ports this kind of sampling scheme.
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duplicate measurement points can be used to quantify the uncertainty of the
measurement system, as they should ideally yield perfectly identical results.

The matrix of the sampled spherical harmonic basis functions as defined in
Eq. (2.69) can be inverted using a generalized inverse. Depending on the chosen
maximum order, this yields to specific errors for functions with components be-
low and above this limit. Exemplarily the errors for a chosen maximum order of
10 are depicted in Fig. 2.6 and Fig. 2.7, using a (15∘/15∘) and a (20∘/20∘) sam-
pling scheme, respectively. It can be seen that while the former yields error free
transformations for spherical functions consisting of SH orders of 10 or lower,
the coarser sampling scheme shows errors also in lower orders. The choice of the
maximal order is thus essential for processing an arbitrary sampling scheme, as
the results will vary depending on that choice.

The orthonormality matrix for the calculation is computed using the generalized
inverse as

O = Y
+
N1

YN2 (2.93)

Contrary to the quadrature samplings all aliasing errors immediately affect low
orders. While quadrature samplings gradually affect lower and lower orders for
rising input orders, the regular equiangular sampling does not show an error free
reconstruction for low orders in case aliasing occurs.

2.6. Measurement of acoustic transfer paths

Acoustical measurements allow to determine the impulse response of a given
transfer path. The impulse response ℎ(�) of a linear time-invariant (LTI) system
can be formulated in the time domain as a deconvolution of the recorded signal
with the excitation signal, or as a spectral division in the Fourier domain.

For details on acoustical measurements refer to Müller et al. [Mül01]. Dietrich
[Die13] describes the total electro-acoustical signal path with a complete mea-
surement chain that can be extended with the directivity patterns of source and
receiver.11

The general characterization of acoustic systems require the components to be
linear and time-invariant (LTI). In reality often weakly nonlinear system or com-

11All measurements have been performed using the ITA-Toolbox for Matlab, cf. also Ap-
pendix A.4.1.
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ponents occur, as well as time-variances (especially with room acoustical mea-
surements) that create a specific uncertainty in the measured results [Die13].

2.6.1. Multiple exponential sweep method

In the context of head-related transfer functions Majdak et al. [Maj07] describe
a technique called Multiple Exponential Sweep Method (MESM). In the mea-
surement multiple loudspeakers are used simultaneously for the measurement.
The signals of the output channels are timed so that the excited frequencies and
their nonlinear harmonics do not overlap in order to retrieve the full information.
The multichannel data measured in this work uses an optimized version of the
MESM as described by Dietrich et al. [Die12b]. Hereby, weak nonlinearities are
accounted for and do not influence the obtained results at the same or at another
channel.

Measurements using the MESM are especially beneficial for experiments involv-
ing humans beings. As the measurements can be performed faster, the discomfort
for the subjects can be minimized and the deviations from movements minimized.

2.6.2. Reciprocity of transfer paths

The principle of reciprocity is commonly found in textbooks about wave propa-
gation or linear-circuit theory. According to Beranek [Ber54] the principle of reci-
procity can be extended to transducers, that are coupled by a gaseous medium.
He states that such a transducer fed by a constant-current generator produces
a given open circuit voltage at a second transducer. The same current applied
to the second transducer induces the identical open circuit voltage at the first
transducer. The ratio of resulting voltage and excitation current is thus constant
as

�2

�1
=
�1

�2
. (2.94)

Consequently, the measurement of acoustic transfer paths can be performed in
both directions and can alternatively be solved by the identical setup with sender
and receiver interchanged. Reciprocity is used in order to simplify boundary value
problems as formulated in Sec. 2.3.4. One example of such a simplification is the
incoming wave towards a human listener. Applying the principle of reciprocity,
the initial problem of having sources in the far-field and additional scattering
sources in the vicinity of the human ear, is simplified to a exterior problem: All
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sources (one at the location of the microphone and many scattering sources)
can be confined to a limited area with no additional sources outside that area,
yielding a classical exterior problem (cf. also Sec. 4.3). While at arbitrary field
points the interchange of source and receiver generally creates a different acoustic
field, the signal picked up at the receiver is identical and thus yields the identical
transfer path [Dur04].
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3
Directivity patterns of natural sound

sources

In this chapter the measurement, processing and analysis of directivity patterns
of natural sound sources are described. Due to the lack of precisely repeatable
excitation, directivity patterns of natural sound sources are usually measured
simultaneously for all directions using large surrounding spherical microphone
arrays. Directivity patterns are commonly implemented as logarithmic measure
derived from averaging a set of recorded tones [Mey78; Mar85; Oto04; Len07].
Phase information is hereby not taken into account.

In order to obtain complex-valued spectra representing the directivity patterns
of musical instruments, a large spherical surrounding microphone array is em-
ployed that encompasses the musician who is placed in the geometric center of
the array. It allows the simultaneous recording of the emitted sound in all di-
rections, which is used to retrieve phase accurate directivity patterns of these
natural sound sources. Tonal sound sources radiate a set of partial tones, con-
sisting of the fundamental frequency and its higher harmonics, which are excited
simultaneously for each played pitch. The recordings are analyzed in order to
derive information about similar and dissimilar directivity patterns that are en-
countered for specific frequency intervals.

The knowledge of the complex directivity patterns furthermore allow an analysis
in terms of the physical origin of the emitted acoustic waves. As the source posi-
tion has significant impact on the results of a spatial Fourier analysis, alignment
algorithms can be applied in post-processing in order to match the center of the
sound radiation to the geometric center of the surrounding spherical array. These
acoustic centering approaches allow to derive more compact representations of
the directivity patterns in terms of their spherical wave spectra and have the
potential to suppress aliasing at certain frequencies.

Parts of this chapter have been published in [Pol12e] and [Beh12].
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3.1. Recording of musical instrument radiation patterns

For the discussion of directivity patterns of natural sound sources a clear termi-
nology is beneficial: A single tone played by a musical instrument has a perceived
pitch of the fundamental frequency of the tone. Each tone consists of a set of
partial tones, the fundamental and the set of higher harmonics occurring at fre-
quencies of integer multiples of the fundamental frequency. All tones that can
be excited of a specific instrument are regarded as its gamut.

As mentioned in Sec. 2.1 several definitions for the directivity pattern exists,
each suiting specific demand. For the application of auralizing a specific sound
recording performed at a known direction from the instrument, the directivity

factor with that particular reference direction can be used in order not to colorize
the recording in an artificial manner.

For practical applications it is useful to be able to use arbitrary dry recordings1

of musical instruments in order to combine them with the directivity pattern of
these instruments. The source material can then be changed flexibly while using
a set of directivity patterns that have been derived earlier. This approach is valid
if the following assumption can be made: The directivity patterns are considered
as a frequency dependent pattern without any significant change due to the style
and the strength of playing, as this information is usually not directly included
in recording used for auralization.

In reality identical or similar frequencies can be excited from tones of various
pitches with their corresponding set of partial tones. The pitch of a specific tone,
e.g., has the same fundamental frequency as the first harmonic partial tone of a
pitch one octave below. The directivity patterns at specific frequencies excited
from differing pitches do not necessarily show high similarity. In order to quantify
the deviation from an averaged directivity pattern, the complex patterns of the
different harmonics for all possible pitches are compared for various instruments.

3.1.1. Types of sound excitation

The term musical instrument directivity pattern can be defined in different ways:
Natural sound sources can be excited artificially by the use of a technical appa-
ratus that mimes the excitation by a musician. Artificial excitation is generally

1A perfectly dry recording captures only the direct sound of the acoustic source without
reflections from the recording environment. These recordings are commonly performed in an
anechoic chamber for best possible results.
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repeatable and thus allows to obtain high resolution data using sequential mea-
surements helping to understand the physical properties of the musical instru-
ment, as done by Cremer [Cre81] and [Bad05].

In a real scenario, however, the musician is always present and regards an inte-
gral part of the complete arrangement. The directivity pattern of the player with
the musical instrument is signifiant for possible applications in room acoustics.
In order to obtain these patterns, either the musician is supposed to be present
during the measurement, or (when measured without player using artificial ex-
citation) should be added to the result in post-processing. This deviation could
possibly be approximated by a modification of the measured directivity pattern,
implementing an object with the rough shape of the musician in the vicinity of
the musical instrument.

More realistic results can be expected measuring the radiation of musical instru-
ments using natural excitation by the musician. The sound diffraction around
the human body and the scattering is fully included in the measurements using
this setup. Furthermore, natural excitation is the most natural form of sound
production as encountered in musical performance. As exact reproducibility can-
not be accomplished for natural excitations, surrounding microphone arrays are
commonly employed to capture the sound pressure values simultaneously in all
directions.

3.1.2. State of the art

In literature different strategies for the measurement of sound radiation can be
found, using natural excitation with simultaneous recording of all directions and
using artificial (repeatable) excitation in combination with a sequential measure-
ment approach. One of the earliest works regarding this research question is the
series of articles published by Meyer about half a century ago [Mey64; Mey65a;
Mey65b; Mey65c; Mey66a; Mey66b; Mey66c; Mey67]. These directivity pattern
have been obtained with the help of a turntable and exciter and can be found
in comprised form in [Mey78]. An alternative method to achieve repeatability
is the use of reciprocity, by swapping sender and receiver position when mea-
suring transfer paths (cf. Sec. 2.6.2). Weinreich [Wei97] applies the principle of
reciprocity by using a technical source at a distance from the instrument and
measuring the force as it occurs on the bridge of a violin.

More recently Otondo et al. [Oto04] published results of measured directivities,
recorded simultaneously with 13 microphones distributed on the median (ver-
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tical) plane and the horizontal plane, and analyzed the data using magnitude
averaging. In the same year Slenczka [Sle04] measured the directivity patterns
using a microphone array of 24 loudspeakers distributed spherically around the
musician (see Appendix A.1.3 for the geometry), using a similar approach by
using a geometric average of the spectra by recording a complete piece of mu-
sic. This data has been recorded with the purpose to do auralization in the
CAVE-like environment of RWTH Aachen University [Len07].

In 2009 Hohl [Hoh09] measured directivity pattern using 64 microphones solidly
arranged using the hyperinterpolation sampling scheme (cf. Sec. 2.5.3) for a max-
imum SH order of 7 in order to perform complex (phase accurate) analysis of
the measured data. In the same year the directivity patterns and sound power
spectra of a large set of symphonic musical instruments were measured in a joint-
project of TU Berlin and RWTH Aachen University. Preliminary results of the
data processing were published in [Pol09b] and [Pol10b]. Pätynen et al. [Pät10]
published an analysis of several directivity patterns of symphony orchestra in-
struments using cross-sections of the averaged directivity pattern obtained with
22 microphones, all of them using natural excitation of the instruments.

3.1.3. Measurement equipment

In recent years a large surrounding spherical microphone array has been devel-
oped at the Institute of Technical Acoustics of RWTH Aachen University. It
consists of a lightweight fiberglass structure arranging 32 microphones spheri-
cally in the direction of the faces and vertexes of a dodecahedron, located at an
(almost) constant radius from the geometric center. The geometry of the array is
depicted in Fig. 3.1 with the locations of the microphones openings (Sennheiser

KE4–211–2 ) with respect to the geometric center of the microphone array listed
in Appendix A.1.4.

In Fig. 3.2 the placement of a musician inside the spherical array is depicted in
the hemi-anechoic chamber of RWTH Aachen University. In order to provide for
a flexible placement of the musician the used chair can be placed arbitrarily in
the horizontal plane and has an adjustable height. When possible, the assumed
acoustical center of the musical instrument was aligned roughly to the geometric
center of the spherical array (so a higher position than shown in Fig. 3.2 was
usually chosen for the recordings).

All microphones are fully calibrated as described in Appendix A.2.1. Additionally
the directivity patterns of the array sensors are relevant if measuring objects with
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3.1. Recording of musical instrument radiation patterns

Figure 3.1.: Geometry of the spherical microphone array used for musical in-
strument directivity recording

Figure 3.2.: Spherical microphone array used to record the directional depen-
dent radiation of natural sound sources
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CHAPTER 3. Directivity patterns of natural sound sources

a significant spatial expansion. It is desired that the effective sensitivity of each
sensor is not influenced by the angle of sound incidence. In Appendix A.2.2 two
setups for the microphones as used in the surrounding spherical array are shown
and analyzed, concluding that the deviations in the meaningful part of sensor
directivity can potentially distort the results significantly.

3.1.4. Measurement environment

The recording of directivity patterns of musical instruments obey the same re-
quirements as conventional acoustic measurements where any reflections from
obstacles have to be avoided. Contrary to measurements using deterministic mea-
surement signals, an elimination of late reflections is not possible when recording
natural sound sources.

Using the surrounding microphone array in the hemi-anechoic chamber shows
interference effects in the resulting directivity patterns, depending on frequency
and elevation angle. This is caused by the ground reflection that is usually un-
desired in the results of the measurements. Practical experiments in the hemi-
anechoic chamber showed, that the use of acoustic absorbers covering the solid
floor of the chamber yields insufficient suppression of the reflection occurring on
the ground. One layer of absorbers of an approximate height of 20 cm exhibits a
reflection factor of 0.5 or higher for frequencies below 400 Hz, making the setup
inadequate for the desired accuracy and frequency range [Beh08]. Stacking up
several absorbers to a larger thickness improves the quality while diminishing the
available size for the measurement array. As the edges of the absorbers also cause
undesired secondary sources, the use of a full anechoic chamber is advisable for
high quality measurements.2

3.1.5. Obtaining recordings for a directivity database

In collaboration with the Audio Communication Group of TU Berlin the mea-
surement data used for the directivity database have been obtained in the full-
anechoic chamber located at the Institute for Technical Acoustics of TU Berlin.
This room has a low cut-off frequency of 63 Hz, delivering sufficient attenua-

2As the constructed microphone array only fits the hemi-anechoic chamber of the In-
stitute of Technical Acoustics of RWTH Aachen University (the full anechoic chamber is
not sufficiently large), all measurements used in this thesis have been performed in external
measurement facilities in collaboration projects.
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3.1. Recording of musical instrument radiation patterns

tion in the frequency ranges of interest and facilitates a high quality analysis of
measured musical instrument directivity patterns.

The recording of clean tones for the directivity database has been performed
by placing the musicians individually in the center of the surrounding spherical
microphone array. Both modern and historic (mostly symphonic) instruments
were employed, a detailed list of the instruments can be found in Appendix A.3.1.
A set of three tones for each pitch played (usually chromatic scales) in pianissimo

(pp) and fortissimo (ff) has been recorded with a manual selection of the cleanest
tone chosen for the subsequent analysis.3

32ch Firewire

sound card

8ch Preamplifier

Studio Microphones
Preamp

8ch Preamplifier

8ch Preamplifier

8ch Preamplifier

Firewire

sound card

Spherical Microphone Array

Artificial

reverb

Figure 3.3.: Setup used for the recording of directivity patterns of natural
sound sources

In Fig. 3.3 the schematic setup as used for the recording is depicted. The 32 mi-
crophones are connected via four 8-channel preamplifiers in the anechoic chamber
and connected to a Firewire sound card. A second sound card is connected to
the recording PC in order to provide enough channels for an additional high
quality recording of the sound. Artificial reverb allows the musician to listen to

3The measurement equipment was fully calibrated as described in Appendix A.2.1 without
the optimizations as described in Appendix A.2.2.
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CHAPTER 3. Directivity patterns of natural sound sources

their own sound with sufficient reverberation to feel comfortable in this rather
unnatural environment.

3.1.6. Recording audio for auralization

Beside the recording of clean tones it is also possible to record specific audio
tracks for a multichannel sound recording including the directivity pattern of
the instruments. The knowledge of a static directivity database is not sufficient
for this application if dynamic movements are meant to be included. For these
multichannel recordings for the purpose of auralization the same measurement
setup can be used together with additional high quality microphones to increase
the quality of the recordings in terms of signal-to-noise ratio (SNR). The micro-
phones of the spherical array have a higher self-noise and are thus used only for
the determination of the directivity, not as source material for auralization. For
the application of measured directivity patterns onto a recording performed at
a single direction (�, �0, �0) the definition of the directivity factor as defined in
Eq. (2.1) is useful.

An example for such a recording session is the time synchronous recording of a
medieval choir in cooperation with the Polytechnic University of Madrid, Spain,
using 32 microphones for the directivity measurement and two studio micro-
phones for the auralization.4 In Fig. 3.4 the complete setup as used in the record-
ing in Madrid is depicted. Due to the limited height of the anechoic chamber
the southernmost microphone approximately half a meter below the feet of the
singer has been omitted, resulting in a total of 31 channels for the directivity
measurement. Using the headphones the singers have been provided with a mix
of their live recording with added reverb and the audio tracks of the videos of a
full choir performing have been played on the iPad simultaneously.

3.2. Processing of recorded data

The multichannel tracks of the sound recordings can be used for further process-
ing. Here several types of computations are possible, depending on the desired ap-

4“The musical pieces recorded have been performed by members of the musical group
Schola Antiqua. [. . .] A total of eight pieces of the Mozarabic Chant repertoire have been
recorded. Seven of them belong to the Office of the Dead, and the eighth to the Rite of
Consecration of the Altar. In order to characterize different vocal timbres, the recording has
been made by six different singers. Each of them has played all the musical pieces chosen.”
[Ped12] The goal of the project is the auralization of the musicians in a simulated room
acoustical environment of an ancient church, including dynamic movements of the singers.
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Figure 3.4.: Setup used for the synchronous recording of audio with directivity
patterns [Ped12]

plication and the required data format. Zotter [Zot09a] lists many techniques for
directivity processing of source directivity measured with a surrounding spheri-
cal microphone array and distinguishes between time-frequency, space-frequency,
space-time-frequency domain methods, with some of them reviewed in this sec-
tion.

3.2.1. Analysis of the used array geometry

As shown in Sec. 2.5 the distribution of the microphones can be analyzed in terms
of aliasing components created by higher orders. In Fig. 3.5a and Fig. 3.5b the
aliasing error for directivity patterns up to a SH order of 10 for sources located
in the center of the used spherical microphone array is visualized. The DSHT is
calculated for these plots using the pseudoinverse matrix of Y that is defined in
Sec. 2.4.1.

As the spherical microphone array consists of 32 sensors, the maximum order
�max for the computation is set to have roughly an equal number of sensors
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CHAPTER 3. Directivity patterns of natural sound sources

and SH basis functions, using �max = 4 (for a total number of 25 spherical
harmonics) and �max = 5 (for a total number of 36 spherical harmonics). As can
be seen in Fig. 3.5a a function with components in order 5 yields comparatively
small distortions in lower (odd) SH orders. Calculating with a maximum order
of 5 instead (Fig. 3.5b) yields higher distortions that are limited to the same
order for a directivity pattern with a component of order 5. The grayscale in
the figure represents the logarithmic error component of a specific SH coefficient
with respect to the excitation level.

Note that although the aliasing structure in this plot looks similar to that of a
quadrature sampling (cf. Fig. 2.4), a directivity pattern of order 6 yields com-
ponents both in order 4 and in order 0 (monopole part) with the given sampling
scheme of the employed spherical microphone array (independent of the assumed
maximum SH order). These aliasing errors are unavoidable for higher orders of
directivity patterns encountered.
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(a) Maximum SH order of nmax = 4
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(b) Maximum SH order of nmax = 5

Figure 3.5.: Sampling scheme and aliasing map for surrounding spherical mi-
crophone array implementing the DSHT by pseudoinverse with
different maximum order.
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3.2. Processing of recorded data

3.2.2. Averaged magnitude data

Current room acoustical simulation software use mostly sound pressure levels at
discrete directions data as input parameters [Oto04; Sch11]. As the resolution of
musical instrument measurements is usually rather low, a spatial interpolation
on the magnitudes values in frequency domain is commonly performed [Len07].5

The source material for deriving an averaged directivity can either be chromatic
scales or any arbitrary piece of music with a representative pitch coverage. The
directivity is obtained by taking the Fourier transform of the time signal of all
recorded channels (either on the whole piece or segmented into smaller time-
blocks) and performing the desired band averaging (e.g. in third band intervals)
on the magnitude spectra derived by applying the discrete Fourier transform
(DFT) on the tracks recorded by the microphones. The spatially discrete data can
then be interpolated to a higher resolution, e.g. by representing the directivity as
spherical wave spectrum as described in Sec. 2.3.3. For the auralization of sound
sources with directivity, the recording channel is normalized by the directivity
pattern at the direction of the reference microphone in the dry recording not to
colorize the spectrum. Applying the directional and frequency dependent filter,
a dry audio passage can be used to account for the levels differences of the sound
radiation.

The processing using averaged magnitude data implicitly assumes that direc-
tivity patterns of natural sources are uniquely defined for a specific frequency
with a smooth transition between adjacent frequencies. In Sec. 3.3 it is shown
for which instruments this prerequisite is fulfilled.

3.2.3. Time-dependent analysis

Contrary to time averaging the data can also be processed as a time-dependent
quantity for a particular piece of music, allowing to include natural movements
of the musicians. These dynamic directivity patterns find their applications in
the field of virtual reality. The motion capturing of musicians as performed by
Schröder [Sch11] can employ dynamic directivity patterns6 in order to perform

5RAVEN, a room acoustical simulation software developed by Schröder [Sch11] the In-
stitute of Technical Acoustics at RWTH Aachen University, uses recorded data stored in
averaged third band octave bands and interpolated on a regular equiangular grid of 10∘ reso-
lution in both azimuth and elevation (cf. Sec. 2.5.4). For fast retrieval of the directivity data
at a specific direction the data is stored in the OpenDAFF file format [Wef10].

6Alternatively these dynamic patterns can be achieved artificially by using a static di-
rectivity database and performing rotation either in spatial domain or in the SH domain by
using the Wigner-D rotation matrix, cf. Sec. 2.3.5.
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CHAPTER 3. Directivity patterns of natural sound sources

auralization of dynamically changing sources. Also changes of the dynamics or
the style of playing can be taken into account when using time-variant directiv-
ities.

The auralization of audio content recorded in the surrounding spherical micro-
phone array can be done using blockwise processing. The time-variant process-
ing of directivity patterns slices the recorded multichannel audio tracks in time
frames of arbitrary length and calculates the frequency dependent directivity pat-
terns for each block. As the spectrum of a played tone regards a line spectrum
and is thus sparse in the frequency domain, the directivity pattern is not defined
for the continuous spectrum. In combination with the simultaneously recorded
audio track only the excited frequencies are required in that time frame. Using
this method allows the use of affordable microphones for the array and (at least)
one single high-quality microphone recording the track used for the auralization.
This type of data processing has been applied in collaboration with Pedrero et al.
[Ped12].

3.2.4. Harmonic peak extraction

A third type of processing is the determination of complex directivity patterns
(consisting of the complex spectral values of all occurring partial tones) in order
to use them for a profound analysis of the radiation of natural sound sources. The
source material used are the discreetly recorded tones, covering the full gamut.7

Each recorded tone is processed individually by extracting the time interval of
steady excitation and performing a Fourier transform on the signals. In order to
avoid spectral leakage a window is applied over the complete steady part before
performing the FFT.8 The resulting line spectra are sampled at the peaks of the
partial tones and stored as amplitudes with phase relations for all microphones
of the spherical array. As the amplitude peaks of the partial tones show a rapidly
changing phase around their physical resonance, the phase has to be determined
considering a small frequency interval around the peak frequency. Instead of
using the comparatively low spectral resolution of the data (due to comparatively
short patches of steady tone excitation) the phase transition can be interpolated
from the spectrally sampled phase information. As the knowledge of absolute
phases are not required, a common data processing for all microphone channel

7The gamut of modern instruments usually encompasses several octaves in a chromatic
scale.

8The type of window used is not significant as the effect of the window on the spectrum
regards to all channels. In the data used for this work a Hann window was applied.
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3.2. Processing of recorded data

allows to derive correct phase relations. A flowchart of the processing is depicted
in Fig. 3.6.

Time window FFT

Peak extraction

Directivity
database

Tones x Partials x Microphones Discrete complex values

Windowed steady partsTone recordings Line spectra

Figure 3.6.: Process chain for the recorded tones to obtain a directivity
database with complex peak information of the all partial tones
(fundamental and higher harmonics) a musical instrument can ex-
cite.

The obtained dataset contains complex values that quantify the magnitudes
and phase relations of the higher harmonics with respect to the fundamental
frequencies. For each partial tone of all pitches that a musical instrument can
excite a spatially discretized directivity pattern as defined in Eq. (2.1) is derived
(with a reference direction of high level that can be chosen from the set of
discretely measured direction). These data can be used for deriving the acoustic
center of the spherical wave emitted (cf. Sec. 3.4). To add dynamics to the
static directivity patterns the movements of the musicians can be obtained and
recorded by motion tracking methods [Sch11].

The number of partial tones used for spectral averaging (as described in
Sec. 3.2.2) varies with the pitch and the used type of filter. In Fig. 3.7 the
frequencies of the first ten partial tones for all pitches of a single musical instru-
ment (English Horn) are depicted. The fundamental frequencies of that instru-
ment range from approx. 150 Hz to almost 1 kHz, with the higher harmonics at
multiples of the fundamental frequency. Exemplarily a third octave band inter-
val at 500 Hz and an octave band interval at 2 kHz are marked in red and blue,
respectively, showing the number of partial tones that are taken into account in
an averaging process. It can be seen that the interval at 500 Hz contains partials
from the lowest three pitches, while the octave band interval at 2 kHz contains
a much higher number of partial tones of mostly higher order.
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CHAPTER 3. Directivity patterns of natural sound sources

Depending on the similarity of the directivity patterns within a specific band
interval, the directivity patterns of the specific partial tones can be represented
more or less accurately by an averaged frequency dependent directivity pattern
as described in Sec. 3.2.2. As the phase relations between different played pitches
are unknown, averaging approaches using the complex spectra have no unique
result for dissimilar directivity pattern.9
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Figure 3.7.: Frequency map of the first ten partial tones for all recorded pitches
of a instrument (here plotted for the English horn). Third octave
band interval (red) at 500 Hz and octave band interval (blue) at
2 kHz marked exemplarily.

3.3. Analysis of spectral smoothness

As the wave number (and thus the wave propagation term) changes over fre-
quency, directivity patterns naturally vary with frequency. The directivity thus
is often considered as frequency dependent function independent of played pitch,

9Using one microphone as reference direction for the pressure spectra, the arbitrary phase
relations between different played pitches can set to zero at the reference channel. The choice
of reference, however, influences the result of the averaging approach, so working with mag-
nitude values might be the better choice when determining an averaged directivity.
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3.3. Analysis of spectral smoothness

volume or playing style. Depending on the type of sound source this is an approx-
imation to a greater or lesser extent. The processing as described in Sec. 3.2.2
neglects these differences and extracts a generic directivity pattern with one de-
fined spherical function for a given frequency. As can be seen in Fig. 3.7, each
center frequency of an interval used for averaging possesses a number of partial
tones of different pitches, possibly each with a specific directivity pattern, even
though these different partial tones radiate in the same frequency ranges.

The extracted harmonic peak values allow to quantify the deviations of the
directivity patterns within a specific band interval. Dissimilar directivity patterns
of partials within the same band, yield higher deviations to the generic pattern
derived by averaging.

In order to compare the directivity patterns of all pitches with their correspond-
ing partial tones, the normalized correlation coefficient as defined in Eq. (2.59)
is calculated as a measure of similarity for all possible pairwise combinations of
partial tones an instrument can emit. The definition of the correlation coefficient
and the squared magnitudes as given in Eq. (2.58) and Eq. (2.60), respectively,
adjusted for the array geometry using �mics = 32 sensors can be given as

�(p1,p2) =
4�

�mics
p1

H
p2 =

4�

�mics

Lmics︁

i=1

�1,i · �2,i, (3.1)

�1 =
4�

�mics
||p1||22 =

4�

�mics

Lmics︁

i=1

|�1,i|2 and (3.2)

�2 =
4�

�mics
||p2||22 =

4�

�mics

Lmics︁

i=1

|�2,i|2 (3.3)

with px = (�x,1, �x,2, . . . , �x,Lmics)
T being the complex pressure values of the

partial tone � at all microphones and ||px||2 being the 2-norm of this vector. The
normalization factor 4π

Lmics
is applied in order to scale the sum at the microphones

to the result of an continuous integration over �2 (surface of unit sphere).

Written in vector form the normalized correlation coefficient can thus be ex-
pressed as

�︀(p1,p2) =
�(p1,p2)√

�1�2

=
p1

Hp2

||p1||2 · ||p2||2
(3.4)

yielding a complex value expressing the similarity of the measured directivity
patterns. As the phase relation between the pairs of these patterns is arbitrary,
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the magnitude value of the normalized correlation is used to quantify the simi-
larity of complex directivity patterns on a scale from zero to one.10

3.3.1. Plotting cross-correlation values over frequencies

The normalized correlation values of all pairs of partial tones (using all recorded
tones of a single musical instrument) are analyzed in a diagram with the frequen-
cies of the two partial tones used as logarithmic location on the �- and �-axis.11

This yields a scatter plot showing the correlation as color information of all pairs
of partial tones, the pair with identical frequencies plotted at the main diago-
nal.12 Using logarithmic scales for both frequencies, all frequency pairs with fixed
intervals are mapped onto lines. The structure of the plots is shown in Fig. 3.8
with the lines for third octave band intervals and octave band intervals marked
with a dashed or dotted line, respectively.

The correlation values are plotted in the lower right triangle in rising order with
respect to their magnitudes as opaque dots (thus showing the highest correlation
values for any pair of partial tones with the given frequencies) and in the upper
left triangle in falling order (showing the lowest correlation values). Comparing
these two triangles gives a hint about the spread of the correlation values at
identical frequency pairs of the analyzed partial tones. A strong deviation be-
tween the correlation values in the two triangles show that some partial tone
combination of that specific frequency pair have rather similar directivity pat-
terns, while other tone combination (of identical frequencies) radiate sound in a
fundamentally different manner.

The areas marked in red and blue regard the areas of consideration for third
octave band and octave band averaging. The range of fundamental frequencies
of all analyzed tones are marked with gray tags at the upper edge of the plot (in
the legend the fundamentals of the English Horn are depicted, cf. Fig. 3.7).

For �t tones, and �p partials per played tone analyzed (�t · �p)
2 normalized

cross-correlation values are calculated. For an average instrument with a gamut of
approx. three octaves more than 100.000 correlation values have to be computed

10Note that although the (single-value) phase relation between a pair of directivity patterns
is not taken into account, a non-constant phase difference on the sphere between the different
partial tones is detected and punished with a lower correlation value.

11The size of the markers is adjusted to the density of points in that area in order to obtain
only little overlap of the point, but large enough point sizes for convenient visual comparison
of the data sets.

12The correlation values for identical tones are unity, provide no information and have
been removed from the plots.

52



3.3. Analysis of spectral smoothness

0.2 0.5 1 2 5
Frequency of one partial tone [kHz]

0.2

0.5

1

2

5
Fr

e
q
u
e
n
cy

 o
f 

o
th

e
r 

p
a
rt

ia
l 
to

n
e
 [

kH
z] Fundamental frequencies

Lowest
correlation

values

Highest
correlation

values

Octave

3rd octave

Figure 3.8.: Legend for the correlation plots of all partial tone pairs of a musical
instrument. In the upper left triangle the lowest correlation values
are plotted opaquely on top, in the lower right triangle the highest
correlation values are dominant.

for the scattering plots of the correlation values.13 The number of sampling points
typically used in surrounding spherical microphone arrays usually does not allow
to gain sufficient information for obtaining the SWS for higher frequency where a
higher variation occurs. The correlation values computed with that limited (and
for higher frequencies most likely undersampled) set of sensors still predict the
similarity of that functions, as long as the musician did not change his position
during the time of recording.

The analysis depicted in Fig. 3.9 to Fig. 3.11 show generally higher values for
the correlation values for partial tones at low frequencies. No significant differ-
ence has been found between the recordings obtained in pianissimo (pp) and

13Comparable plots can be found in Behler et al. [Beh08] and Baumgartner et al. [Bau10]
for the analysis of similarity of directivity patterns of musical instruments.
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fortissimo (ff).14 As the recordings with high amplitudes show generally less
noise influences and seem thus cleaner, the fortissimo data has been used for
the processing. The first 10 partial tones for every pitch have been used for the
analysis.

3.3.2. Woodwind instruments

In Fig. 3.9 the correlation values for the woodwind instruments (English Horn,
Alto Saxophone, Tenor Saxophone, Oboe and Clarinet) are depicted. For low
frequencies below approx. 300 Hz to 400 Hz the correlation of all partials within
this frequency range is high for all woodwind instruments. These instruments
have in common a relative sudden change in the correlation values for rising
frequencies. The mentioned effect can be observed well in the example of the
English Horn (cor anglais): All partial tones below 380 Hz show high correlation
values, while the partials in the interval from 380 Hz to 520 Hz also show high
correlations. The correlation of partials in-between these two groups, however,
show remarkable low correlation values. This effect can be seen in all evaluated
woodwind instruments (with the edges between the discrete intervals being more
pronounced when analyzing less than ten partial tones for each pitch). The exis-
tence of correlation groups is expected to be caused by the abrupt change of the
fingering for specific tones that are played with the technique of overblowing (a
particular fingering can excite a higher pitch when overblowing the tone).

For frequencies above approx. 600 Hz the correlation values of all woodwind
instruments show a higher spread, noticeable in the difference of the highest cor-
relation values (in the bottom right triangle) and lowest correlation values (in
the top left triangle of the plot). It can thus be concluded that the difference
to a generic directivity derived by averaging becomes larger for rising frequen-
cies. For the saxophones the correlation values of the directivity patterns are
relatively high when considering averaging in third bands, while for the other
woodwind instruments even the partial tones within the lines marking the third
band interval do not show high similarity for higher frequencies.

3.3.3. Brass instruments

Brass instruments differ from woodwinds by having an immutable geometry of
the parts responsible for the sound radiation for different pitches played. As can

14At fortissimo higher amplitudes in the higher harmonics have been detected, but for the
calculation of directivity this spectral coloration is not relevant.
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Figure 3.9.: Woodwind instruments: Normalized correlation of different
partial tones of given frequencies. The dashed lines mark the 3rd
octave band, the dotted lines the octave band interval. Fundamen-
tal frequencies marked with gray tags on top edge.
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Figure 3.10.: Brass instruments: Normalized correlation of different partial
tones of given frequencies. The dashed lines mark the 3rd octave
band, the dotted lines the octave band interval. Fundamental
frequencies marked with gray tags on top edge.
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Figure 3.11.: String instruments: Normalized correlation of different partial
tones of given frequencies. The dashed lines mark the 3rd octave
band, the dotted lines the octave band interval. Fundamental
frequencies marked with gray tags on top edge.
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CHAPTER 3. Directivity patterns of natural sound sources

be seen in the plots in Fig. 3.10 these static geometries cause a rather smooth
directivity pattern over frequency with low variations in both triangles of the
plot (except for outliers). For frequencies above 300 Hz a third band averaging
seems appropriate, as the correlation in that range stays at a high level up to
high frequencies. The trombones even show relative high values within octave
bands.

3.3.4. String Instruments

String instruments show generally the smallest correlation values between differ-
ent partial tones as can be seen in Fig. 3.11. While for wavelength larger than
the dimensions of the instruments the correlation is generally high, the corre-
lation values drop steeply for higher frequencies. Even partial tones within a
small frequency interval show low correlation values, suggesting a low similarity
of the directivity. A band averaged generic directivity does not resemble well the
individual directivity patterns encountered at a specific partial tone played by a
sting instrument. The influence on the human perception regarding directivity
patterns and the effect of using averaged directivity data instead of patterns for
specific partials is still an open research question.

3.3.5. Statistical evaluation

Beside graphical evaluation of the correlation values of all partial tones for mu-
sical instruments, also statistical means can be employed. All pairs of partial
tones with an interval smaller than a third octave interval or an octave interval
are used as input values for a statistical analysis with the resulting plots shown
in Fig. 3.12. These boxplots visualize the magnitudes of the normalized cross-
correlation values located in a frequency range within the red (for third octaves
or 4 semitones) or the blue square area (for octaves or 12 semitones) as depicted
in the legend in Fig. 3.8.

These areas are being moved along the main diagonal in order to derive the
frequency dependent correlation values. A minimum of six directivity patterns
for each interval is required to display data in that frequency range. The me-
dian values are marked with a red or blue line, while the box extends from the
lower to the upper quartile. The whisker limits are defined as the 1.5 times the
interquartile range above the upper, or below the lower quartile [Tuk77].
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3.4. Acoustic centering methods

The English horn as an example for the woodwind instruments shows very high
correlation values for low frequencies with an abrupt decline for rising frequencies
at around 300 Hz to 500 Hz. The discrete patches of high correlation as can
be seen in Fig. 3.9 cause very spread boxes at frequencies around 300 Hz to
400 Hz, while for frequencies slightly above that interval the correlation values
are generally high again. The octave band averaging does not show this rise
to high values, as the correlation values generally decrease already for lower
frequencies.

From the correlation plots in Fig. 3.10 the well-behaved nature of the directivity
patterns of brass instruments can be seen. This also shows in the statistical
analysis. The tuba as an example for the group of brass instruments shows high
similarity of all directivity patterns (except for the outlier below 200 Hz) up
to high frequencies. Third band averaging yields significantly higher correlation
values than the octave band averaging.

The analysis of the violin as candidate for the string instruments shows high
correlation values up to frequencies of approx. 600 Hz to 800 Hz and very spread
values above that with a rather low median value. This confirms the observation
that an averaged generic directivity pattern is not very similar to the actual
directivity patterns of the partial tones of the instrument for wavelengths larger
than the dimensions of the instrument.

3.4. Acoustic centering methods

The complex analysis of the recordings made with the surrounding spherical mi-
crophone array is strongly dependent on the chosen focal point for the multipole
expansion. This point is located at the origin of the spherical coordinate system
that is used for the SHT and commonly chosen to be located in the geometric
center of the microphone array. In reality the sound emitted by a musical in-
strument is not bound to a single point and the contributing sources are not
necessarily located in the geometric center of the microphone array.

As the translation of a centered sound source causes higher harmonics (cf.
Sec. 2.3.5), the placement of the musicians with their instruments is a signif-
icant factor for the complex analysis of the directivity patterns and the compact
representation in terms of their SWS. The representation for a non-optimal focal
point regards an alternative representation and is not per se wrong. It requires,
however, a considerable higher number of SH orders for accurate representa-
tion, so aliasing errors are more likely for a displaced source in a given sampling
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(a) English Horn, 3rd octave bands
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(c) Tuba, 3rd octave bands
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Figure 3.12.: Statistical analysis of correlation values for radiation patterns of
woodwind, brass and string instruments in third octave band and
octave bands.
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3.4. Acoustic centering methods

scheme. Using a surrounding spherical microphone array for the measurement
the angular resolution of the array is usually rather limited, so an accurate cen-
tering of the sound source is beneficial in order to reduce these aliasing errors.

An adjustment according to the geometric position in the space domain has the
potential to decrease the effect of spatial aliasing. This can be done by a modifi-
cation of the recorded signal according to Eq. (2.44) before performing the SHT.
The averaging approach using magnitude data as described in Sec. 3.2.2 behaves
less sensitive to displacement, as translation causes mainly phase differences at
the microphone positions that is not accounted for during averaging.

3.4.1. Centering by minimizing the weighted SWS

One approach to find the origin of the emitted wave is to employ nonlinear op-
timization that minimizes a cost function. The choice of this cost function is an
active topic of current research. Deboy et al. [Deb10] present two optimization
criteria for deriving optimal center points using measurement data of a surround-
ing spherical microphone array with 64 sensors. Ben Hagai et al. [BH11] give a
number of objective functions as follows that show its minimum values at or
close to the physical center of sound radiation:

∙ �0 - power of the zero-order harmonic

�0 = 1− |�00|2
�2

, (3.5)

where

�2 = ‖�‖22 =
N︁

n=0

n︁

m=−n

|�nm|2 . (3.6)

∙ �1 - power ratio

�1 = 1−
�2
N

�2
, (3.7)

where

�2
N =

N︁

n=0

n︁

m=−n

|�nm|2 . (3.8)

∙ �2 - center of power

�2 =
N︁

n=0

n︁

m=−n

� |�nm|2
�2

. (3.9)
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∙ �3 - center of magnitude

�2 =
N︁

n=0

n︁

m=−n

� |�nm|
�1

, (3.10)

where

�1 = ‖�‖2 =
N︁

n=0

n︁

m=−n

|�nm| . (3.11)

In a study with analytic sound sources and the recording of a trumpet in the
spherical array with the geometry as defined in Appendix A.1.4 the �2 measure
shows the best performance, but exhibits a non-convex behavior at higher fre-
quencies of approx. 1 kHz. The deviations of the array radii of 2.5 cm have been
compensated for using the far-field approximation of Eq. (2.44), but have shown
not to have significant impact on the results. For details on this type of analysis,
refer to Ben Hagai et al. [BH11]. Centering algorithms that show a better con-
vergence for higher frequencies are currently being investigated by Shabtai et al.
[Sha14].

3.4.2. Centering by minimizing phase transitions

An alternative approach regards only the phase of the signals, as it contains
the information of the traveled distance of an acoustic wave. A sound source
described by a multitude of monopoles located infinitesimally close to the geo-
metric center result in constant phase values over the measurement sphere (with
possible phase transitions at the notches in the spatial domain, as occurs e.g.
with a dipole characteristic). Any displacement from the center point modifies
the phases occurring at the sensors depending on the shorter or larger traveling
distances from the sound origin to the microphones.

This phase shift can be observed in the radiation patterns of musical instruments
as recorded with the spherical microphone array. Due to their consistent radiation
patterns (cf. Sec. 3.3) and simple geometry brass instruments are expected to
be modeled efficiently as single point radiators. As an example the radiation
pattern of a trumpet player has been studied, whose placement is depicted in
perspective photos with a white cross marking the approximate center of the
microphone array in Fig. 3.13. It can be observed that for the this example
the horn of the trumpet (which is the assumed origin of sound radiation) is
located slightly displaced from the geometric center. Performing the complex
analysis of a single tone (cf. Sec. 3.2.4), a continuous phase change over the
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3.4. Acoustic centering methods

measurement sphere is visible. As an example the radiation of the standard
pitch A at approx. 440 Hz is depicted in Sec. 3.14a. The data can be plotted as
a complex balloon plot (cf. Appendix A.4.3) at the discrete microphone values
(colored dots) and as continuous function that was obtained performing the
SHT with a maximum order of �max = 4 (cf. Sec. 3.2.1). Performing a far-field
compensation as described in Sec. 2.3.5 to the positions of the horn opening of
the trumpet, the compensated balloon plot in Fig. 3.14b consists of a constant
phase indicating that the center point for that instrument was found correctly
[Pol12e].15

This observation can be used to define suitable objective functions and using
the phase as optimization criterion. The SWS of the complex function shows
increasing degradation from aliasing for larger displacements. As the displace-
ment causes different traveling times of the acoustic wave to the spherical surface,
mainly phase shifts of the directivity occur if the two radii �0 and �1 in Eq. (2.44)
are of similar value. Using the large argument approximation for the magnitudes
of the spherical Hankel function (c.f. Eq. (5.8)) the magnitude of the sound pres-
sure values is scaled by the ratio of the two radii �0 and �1. For directivity pattern
obtained in the far-field as described in Eq. (2.1) the change of the magnitude
of the directivity function is almost marginal, so increased aliasing components
are not to be expected for source translation.

One possibility is thus to define the SHT of the original function and the mag-
nitude values of the function as

�nm = � {�(�, �)} and (3.12)

�nm,abs = � {|�(�, �)|} (3.13)

and using the summed energetic differences of the magnitude values of their
spatial domains as the objective function as

�obj =

︁

S2

︀⃒⃒
�−1 {�nm,abs}

⃒⃒
−

⃒⃒
�−1 {�nm}

⃒⃒︀2
dΩ → min . (3.14)

Minimizing the objective function using a nonlinear optimization algorithm can
thus be regarded as finding a focal point that avoids aliasing. As sources usually
possess a rather smooth directivity pattern for low frequencies, the optimization
is performed sequentially with rising frequency. The initial guess for the solution
is set to be the geometric center of the array, while each processing step used the

15The plotted data has been compensated by (∆x,∆y,∆z) = (35 cm,−2 cm,−7 cm). This
displacement is the result of the nonlinear minimization of Eq. (3.14).
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CHAPTER 3. Directivity patterns of natural sound sources

previous result as the new starting value for the next frequency the optimizer is
running on.16

The results of this algorithm for the trumpet can be observed individually for
each partial tone in Fig. 3.15. While the fundamental frequencies are all detected
at a sensible position (upper row), the higher partials show deviations. Results for

Figure 3.13.: Measurement of trumpet directivity in the surrounding spheri-
cal microphone array. Approximative center of microphone array
marked with a white cross [BH11; Pol12e].

(a) Original measurement (b) Measurement after source alignment

Figure 3.14.: Alignment of acoustical center using a far-field approximation,
Trumpet playing the standard pitch A at 440 Hz, complex balloon
plots [Pol12e]

16The Matlab Optimization Toolbox with the function fmincon has been used for the
calculation.
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3.5. Summary natural sound sources

frequencies below approx. 1.5 kHz are generally stable. Each tone of the trumpet
converges at the location of approx. ∆� ≈ 35 cm, ∆� ≈ −2 cm and ∆� ≈ −7 cm,
yielding to the compensated directivity pattern as depicted in Fig. 3.14b. For
higher frequencies outliers occur, as the objective function does not possess a
defined and unique minimum.

3.5. Summary natural sound sources

The sound radiation of natural sound sources varies, depending on their principle
of tone generation. Computing the cross-correlation coefficients for all directivity
patterns a musical instrument can excite allows to analyze the occurrences of
similar or dissimilar pairs of directivity patterns in the same frequency range. The
knowledge of these similarities yield guidelines for conservative simplifications of
directivity patterns in order to derive a generic, frequency dependent directivity
pattern that can be applied as a frequency dependent filter.

Sound sources that do not change their geometry significantly show mostly uni-
form behavior for wavelengths larger than the instrument size. Brass instruments,
e.g., show to be represented well by a generic directivity pattern obtained by av-
eraging in third octave bands. Woodwind instruments show frequency blocks of
high correlation in low frequencies and erratic directivity patterns at higher fre-
quencies. String instruments behave erratic for wavelengths smaller than approx.
the instrument body. For larger wavelengths the directivity patterns are rather
uniform with high correlation values.

Applying a translation of the recorded sources in post-processing, yields a dif-
ferent representations in terms of their spherical wave spectra. The directivity
can be represented more efficiently for specific choices of the focal point used in
vicinity of the physical origin of sound radiation. Acoustic centering of natural
sources is a current topic of research and has been touched briefly in this chapter
[Deb10; Sha14].

The obtained data can be used for the purpose of realistic auralization using the
directional dependent sound radiation of musical instruments.
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z

x

(a) Lateral view

y

x

(b) Top view

Figure 3.15.: Center alignment result using Eq. (3.14) applied to the ex-
tracted complex peak information of a trumpet. Upper graph
shows the fundamental frequencies of all played tones (� =
185Hz . . . 1.4 kHz), the lower graph shows the fundamental plus
the first two higher harmonics (� = 185Hz . . . 4.2 kHz).
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4
Directivity patterns of binaural sound

receivers

In this chapter the directivity at the receiver side of the acoustical transfer path
is discussed. For a human listener the directivity pattern of the upper body with
the head, torso and ear can be considered as the perceptually most important
part in a binaural auralization of a room acoustical scene. Humans are capable
of localizing sound sources with a remarkable accuracy, in particular using the
direction of sound incidence and, to a smaller extent, the distance of the source
to the listener [Bla97].

The directivity pattern of a human listener is described by the head-related
transfer functions (HRTFs) usually obtained for sound incidence from a set of
points located on a spherical surface around the listener’s head and can be repre-
sented as spherical wave spectrum (SWS) using algorithms of Fourier acoustics.
In the spherical harmonic domain the correct interpolation and extrapolation of
HRTFs becomes feasible, as long as the spatial sampling is sufficiently dense in
order to avoid spatial aliasing. The fruitful combination of binaural technology
with Fourier acoustics allows algorithmic solutions for practical problems that
have been solved previously with the effort of lengthy measurement sessions.

The HRTF datasets obtained in this chapter can be used for both measurement
and simulation of room acoustics. Recent advances in the implementation of fast
measurement methods for individual HRTFs are shortly reviewed (cf. [Mas12]
and [Die12b]). It is shown that a variation of the focal point used for the decom-
position in the Fourier domain can prove beneficial for a compact description of
HRTFs as SWS.

Parts of this chapter have been published in [Pol11a], [Pol12c] and [Pol12a].
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CHAPTER 4. Directivity patterns of binaural sound receivers

4.1. Obtaining head-related transfer functions

Head-related transfer functions (HRTFs) describe the transfer paths from acous-
tic sources located at arbitrary positions to the eardrum or the opening of the
ear canal of a human listener. These functions can be utilized to calculate the
signals arriving at the listener’s ears originating from sound sources located at
any point in space by applying convolution.

Blauert [Bla97] gives different definitions of the HRTFs, namely the free-field
HRTFs (referenced to the sound pressure encountered in absence of the listener),
the monaural HRTFs (referenced to the level in a specific direction) and the
interaural HRTFs (the fraction between the sound pressure at both ears). The
definition of the frequency dependent free-field HRTFs is given as

�
[L/R]
free-field(�, �) =

� [L/R](�, �, �)

�0(�)
(4.1)

with � [L/R](·) being the transfer paths from the source position at (�, �, �) to the
left (L) and right (R) ear and �0(·) being the transfer path of the sound source
to an omnidirectional microphone mounted at the center point of the listener’s
head. The monaural HRTFs

�
[L/R]
monaural(�, �) =

� [L/R](�, �, �)

�(�, 90∘, 0∘)
(4.2)

are referenced to the sound incidence from frontal direction.

The definitions of the HRTFs are valid for sources located in the far-field of the
listener. For the measurement of HRTFs this implies that the distance between
source and listener is supposed to be sufficiently large in order to avoid any
change in the HRTFs with respect to distance. As the HRTFs are defined as
referenced transfer functions, any coloration caused by the equipment, such as
the sound source or the receiver (when using identical sensors) cancels out.

Comparing the definition of the monaural HRTFs with the directivity factor
defined in Eq. (2.1) shows their equivalence. The set of HRTFs can thus be
regarded as two channel directivity pattern, quantifying the sound incidence for
left and right ear. As a consequence all the computations in the Fourier domain
as formulated in Chapter 2 can be applied to HRTFs, opening up the field of
Fourier acoustics to binaural audio processing.
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4.1. Obtaining head-related transfer functions

Reciprocity states that physical transfer paths can be calculated in reversed
direction (cf. Sec. 2.6.2). Applying reciprocity to HRTFs allows to consider them
as solution to an exterior problem as described in Sec. 2.3.4. These exterior
problems are more straightforward to solve than assuming sources in the room
combined with the secondary sources at the human head and torso that also
contribute to the resulting sound pressure at the ear openings.

4.1.1. Simulation of HRTFs

HRTFs can be derived using numerical simulations that calculate the scattering
of sound at the human body. The geometry of the part of the body causing
the most significant contributions is represented using a discrete mesh of the
boundary surface of ear, head and torso. Such a mesh has to be sufficiently
fine (as a rule of thumb a minimum of 6 nodes per wavelength are required).
The simulation of high frequency solutions thus demands a large memory for
the computation. In Fig. 4.1 the meshes used for the simulation of two different
dummy-heads are depicted.

(a) HEAD acoustics HSU III
mannequin

(b) Custom-made mannequin
produced at ITA, RWTH Aachen
University [Sch93]

Figure 4.1.: Artificial heads used for measurement and simulation:
Meshes as used in the numerical model are depicted

Applying reciprocity the incoming wave arriving at the listener from different
source positions located on a spherical surface can be considered as an outgoing
radiation problem that can be solved analytical or numerical with standardized
methods. Kahana et al. [Kah98] suggest to use reciprocity for speeding up the
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CHAPTER 4. Directivity patterns of binaural sound receivers

simulation of HRTFs using the Boundary Element Method (BEM). Various au-
thors adopted this method for the efficient simulation of HRTFs [Kat01; Gum02b;
Ota03; Fel08].

Deriving time domain data from frequency domain simulation

The numerical simulation of HRTFs can be performed either using time do-
main or frequency domain methods. While the former yields the head-related
impulse response (HRIR) that can be used directly for further processing, fre-
quency domain methods are more commonly found, yielding results for discrete
frequencies. Due to the lack of DC component in the simulation and an upper
band limit that is commonly employed it is usually not possible to directly apply
the Fourier transform as described in Sec. 2.2 to obtain the related HRIR that
is used for the convolution of signals.

Using prior knowledge of the impulse responses, allows to obtain sensible solu-
tions for the simulated HRTFs that match the simulation results at the given
frequency points and continues the spectrum for frequencies below and above
the highest simulated frequency. This can be done adapting the methods of
compressed sensing in order to derive the missing information by exploiting the
additional knowledge of sparsity in time domain [Can06].

The first step is to choose the sampling rate and the impulse response length
that fulfills the following criteria: The sampling rate is chosen high enough for
sufficiently broadband HRTFs, while the length of the HRIR is set to resemble all
significant binaural features. As the information content of an HRTF is included
within approx. 1 m traveling distance of the acoustic waves, at least 3 ms are
required for the length of the HRIRs [Len07].

The frequency spacing as used in the simulation and the impulse response length
is matched in order to gain a representation for all frequency points after per-
forming the DFT. A transformation matrix is derived for the chosen parameters,
which represents the DFT by a matrix multiplication.

Using standard methods of compressed sensing allows to derive meaningful re-
sults, while block sparsity approaches that search for blocks of zeros are expected
to perform even better for that particular problem. Using ℓ1 minimization as sug-
gested by Candès et al. [Can06] it is possible to extend the frequency range of
the simulated data to DC and higher frequencies. This results in a HRIR whose
spectrum matches the set of simulated frequencies and has the additional prop-
erty of being compact in time domain. Applying conventional resampling, allows
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4.1. Obtaining head-related transfer functions

to transform the chosen sampling rate to a sampling rate supported by the used
audio equipment.

Informal listening tests have shown good performance of the sparse time do-
main approach. More elaborate methods (such as the mentioned block sparsity
approach) are expected to create more accurate time domain representations of
simulated data obtained only at a limited number of frequencies.

4.1.2. Sequential measurements of HRTFs

HRTFs can be obtained using sequential measurements, employing a single loud-
speaker in order to measure the transfer paths between the source and two micro-
phones located at the ear openings. As the measurement procedure is very time
consuming for high resolution data, usually HRTFs of artificial heads are mea-
sured using this technique. For human listeners the fast measurement methods
as described in the following section are more suitable.

An example for a measurement setup designed for sequential measurements can
be seen in Fig. 4.2. The artificial head is mounted on a continuously adjustable
turntable for the horizontal orientation of the head. The trellis arm allows to
modify the elevation angle in ranges between 0∘ and approx. 120∘ without dis-
torting the sound field significantly. In order to obtain a full spherical measure-
ment the dummy head can be mounted upside down and the measurement can
be repeated in order to obtain data for the lower hemisphere of the HRTFs. This
measurement setup requires the application of a suitable time window to elimi-
nate the ground reflection that is always present in the hemi-anechoic chamber.
Details of the described measurement setup can be found in Lentz [Len07] and
Masiero [Mas12], cf. also Appendix A.1.1.

If performed in a quiet environment, this measurement setup provides for very
precise results.1 The uncertainties of the measurement results are caused mainly
by a slight spatial deviation of artificial head position or receiver positions. As
a result, the process of merging the data obtained at the upper and lower hemi-
sphere can be demanding. Slight variations of the vertical positioning of the head
can cause a discontinuity at the plane used for concatenation (usually located
the at equator of the full sphere).2 This can render further signal processing

1Measurement results of highest precision are obtained in during night time or weekends,
when the noise from slamming doors and heavy machines close to the measurement room are
absent.

2An example of such an discontinuity can be found in the measured HRTFs used for
directivity synthesis on page 113.
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Figure 4.2.: Sequential measurement system to obtain HRTFs using high pre-
cision measurements of hemispherical data. For measurement data
covering the full sphere the artificial head can be mounted upside-
down in order to measure the lower hemisphere.

in the spherical harmonic domain difficult. Generally, mathematical algorithms
such as order dependent Tikhonov regularization when performing the SHT al-
low to minimize the influence of this discontinuous transition. Nevertheless, it
is advantageous to perform the acoustical measurement as precise as possible in
order to obtain the best possible representation of the HRTFs.

4.1.3. Fast HRTF measurement methods

Sequential measurement methods are usually too slow for the measurement of
HRTF for individual subjects. Several approaches can be found in literature to
measure the HRTFs of individual subjects in a fast manner, such as [Bro95] and
[Møl95]. Zotkin et al. [Zot06] use reciprocity for a fast measurement method of
individual HRTFs. Majdak et al. [Maj07] use specialized measurement signals to
accelerate the measurement of multiple transfer paths. Antweiler et al. [Ant09]

72



4.1. Obtaining head-related transfer functions

describe an accelerated measurement method of individual HRTFs using adaptive
filtering to obtain a quasi-continuous representation in azimuthal direction.

Measurement Setup

In order to obtain high-resolution HRTFs in a comparative short measurement
duration, Masiero [Mas12] developed a system that allows the rapid measure-
ment of high-resolution HRTFs, which is depicted in Fig. 4.3. A set of 3840
measurement directions (40 elevations combined with 96 azimuthal positions,
located approximately on a truncated Gaussian quadrature sampling scheme) is
measured at a radial distance of �LS ≈ 1m [Pol12b]. The fast measurement dura-
tion is accomplished using a modified version of the Multiple Exponential Sweep

Method (MESM) as mentioned in Sec. 2.6.1. The advantage of this method is the
greatly reduced measurement duration of approx. six to seven minutes [Mas12;
Pol12b].

Figure 4.3.: Measurement system for the fast acquisition of HRTFs. Subject
is rotated around the vertical axis (full rotation) while the arc of
loudspeakers stays in fixed position.
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Directivity pattern of loudspeakers

For high quality measurement results of individual HRTFs it is important that
all significantly contributing scattering regions of the human body receive an
acoustical wave of identical intensity. For that reason the loudspeakers used
in the array should possess a smooth directivity pattern in frontal directions.
The required opening angle of uniform sound distribution can be calculated
geometrically by the equation

�0 = arctan

︂
�sources
�LS

︂
(4.3)

relating the radius �sources of a sphere around the head containing all significant
scattering sources with the radial distance �LS of the loudspeakers to the geomet-
ric center of the setup. For the HRTF measurement arc developed by Masiero
[Mas12] this computes to an angle of �0 = 14∘ from the on-axis response of the
loudspeaker which corresponds to an offset of �sources = 25 cm from the geometric
center. This area of contributing secondary sources is expected to be sufficient
for precise measurement results of HRTFs. In Fig. 4.4 a schematic representation
of the required area of equal sound incidence is depicted.

≈
5
0
cm

�LS ≈ 1m

�0 ≈ 14∘

Figure 4.4.: Estimation of the required angle of even sound radiation for HRTF
measurements, adapted from [Zil14]

A description of the optimization of the loudspeaker directivity patterns for this
measurement setup is given in Appendix A.2.2.

Detection of loudspeakers positions

Another concern for accurate HRTF measurements are errors in loudspeaker po-
sitioning. These deviations can complicate a spatially continuous time-of-arrival
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detection as described in Majdak et al. [Maj13a] and Ziegelwanger et al. [Zie14],
as they distort the measurement results, for radial deviations especially in terms
of the arrival time of the acoustical wave.

The actual source positions of the waves emitted from the loudspeakers can be
found using a set of receiver points on a microphone array mounted in-place of
the listener in the center of the array. The arrival time of the impulse is calculated
using a convolution with the minimum-phase version of itself and calculating the
zero-crossings of the Hilbert transform of the result [Mas12].

A nonlinear optimization approach yields the positions of all used loudspeakers
as a frequency independent position of the excited waves [Kre12; Mas12; Zil14;
Pol14a]. The loudspeaker position with respect to the rotational axis of the
turntable, can be stated as

xLS,opt,j = argmin
xLS,j

︃︁

i,k

(‖xLS,j − xmic,ik‖ − �ijk · �)2 (4.4)

with � being the number of single loudspeakers, � being the number of mea-
surement microphone in the array and � being the number of a set of sequential
measurements using the microphone array within the loudspeaker array.

4.2. Low-frequency extension of measured HRTFs

Using measured HRTFs for means of auralization, it is important to cover the
full audible frequency range. Measured data, however, usually suffer from insuf-
ficient signal-to-noise ratio (SNR) for low frequencies, due to the comparatively
small size of the used loudspeakers in common measurement setups. These small
speakers do not interfere as strong with the created sound field during the mea-
surement and create a smoother directivity pattern in frontal direction due to
their smaller aperture size (that evenly excite a larger range of SH orders, cf.
Sec. 5.2). The excitation of low frequencies, however, requires large volume ve-
locities to gain significant levels. According to Masiero [Mas12] the individual
variation for HRTFs is very small for frequencies below 300 Hz, so all meaningful
features of an individual head and pinna geometry are included in the frequency
range of the measurement.

In order to restore the information in the low frequency range, the measurement
result can be combined with alternative methods, such as numerical methods
i.e. the Boundary Element Method (BEM), the Finite Element Method (FEM)
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or the Fast Multipole Method (FMM). Zotkin et al. [Zot06] use a reciprocal
HRTF measurement setup that is insufficient at frequencies below approx. 1 kHz
and use the low frequency behavior of a set of intersecting sphere (also named
descriptively as the snowman model) in order to gain a solution for the full
audible spectrum.

High precision measurements of the ITA prototype dummy-head [Sch93] using
the measurement system as described in Sec. 4.1.2 lack of sufficient SNR in the
frequency range below approx. 200 Hz. These measured HRTFs have been aug-
mented in this work by morphing the spatial characteristic of their responses
for low frequencies to a numerical simulation of an artificial head. Using these
simulation data only for the low frequency extension a much coarser mesh can
be used resulting in significantly shorter calculation times compared to full fre-
quency range simulations.

In terms of the representation of HRTFs as SWS, the ��-limit as frequency
dependent order limit as described in Sec. 2.3.8 proves to be useful and allows to
enhance the signal for order limited functions in the low frequency range. Moving
asymptotically towards the DC-component, the set of HRTFs can be limited with
a smaller and smaller specific order of SH coefficients without loosing accuracy.
The DC-component itself can be calculated with a zero order limit yielding a
constant value for all directions.

4.3. Range extrapolation of HRTFs

While the original definition of the HRTFs given by Blauert [Bla74] is limited
to the auralization of sources in the far-field of the listener, attempts have been
made to auralize sources in closer vicinity. Duda et al. [Dud98] study the effect
of sources close to a spherical scatterer and conclude that the changes in the in-

teraural level differences (ILD) are significant for closer distances than five times
the radius of spherical head model, while the interaural time differences (ITD)
are not significantly altered by close sources. In 2007 Lentz [Len07] evaluated
the audibility of near sources recorded with an artificial head. He concludes that
these effects become noticeable at source distances closer than 1.5 m and can be
considered significant in ranges closer than approx. 60 cm with a higher sensitiv-
ity to lateral sources. In order to include these effects in real-time auralization
systems, the HRTFs measured at different ranges (radial distances) are used in
the virtual reality auralization of the virtual reality system at RWTH Aachen
University [Len07].
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4.3. Range extrapolation of HRTFs

Representing the HRTFs by their spherical wave spectrum (SWS), the radial fil-
ter for a (reciprocal) exterior boundary problem as described in Sec. 2.3.4 can be
applied in order to compute the HRTFs for ranges that differ from the distance of
the original data. The obtained transfer functions given as SWS can be converted
to different ranges, allowing to auralize sound sources at different distances from
the listener even if the set of original HRTFs is available only at one specific
range [Dur04]. As this approach also provides (for a sufficiently dense spatial
sampling) a physically correct interpolation of the angles of sound incidence, the
HRTFs for any point in the three dimensional space can be computed.

In order to evaluate the theoretical formulation of the range extrapolation of
HRTFs from Duraiswami et al. [Dur04], the algorithm is tested with both sim-
ulated and measured HRTFs. The cross-correlation of spherical functions as de-
fined in Sec. 2.3.7 is used as a measure of the quality of extrapolation, regarding
both inward and outward extrapolation.3

4.3.1. Principle of calculation

Applying Eq. (2.35) the SWS of the HRTFs can be obtained as

�nm(�) = � {�(�, �i, �i)} . (4.5)

A frequency dependent order limit as described in Sec. 2.3.8 and suggested in
the original article on range extrapolation of Duraiswami et al. [Dur04] is em-
ployed. The radius �min encompassing all contributing sources is chosen to be
30 cm, equaling roughly the radius of the outermost edge of the dummy heads
as depicted in Fig. 4.1.

The extrapolation of the HRTFs can then be calculated by applying Eq. (2.40)
to the SWS using an order and frequency dependent ratio of outgoing spherical
Hankel functions as

�nm(�1, �) = �nm(�0, �)
ℎn(��1)

ℎn(��0)
. (4.6)

Inserting this result into Eq. (2.36) allows to derive spatially continuous function
values for the HRTFs at any desired point in the 3D space outside a sphere

3The data used for the extrapolation were a subset of the the 1∘/1∘ dataset in 5∘/5∘

steps as measured by Lentz in 2001 and the set of HRTFs of different distances measured by
Lentz in 2004, see Appendix A.3.2.
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located at the center of the head with a radius �min that contains all secondary
scattering sources.

The normalized correlation coefficient in the spherical harmonic domain as de-
fined in Eq. (2.59) provides a physically motivated measure for the similarity
of the spherical shape of two functions. Although not explicitly measuring the
perceptional impact, a mathematically high correlation of the functions also sug-
gests high similarity in terms of human sound perception.

4.3.2. Results for measured HRTFs

To evaluate the performance of the range extrapolation on realistic data, the
HRTFs at different ranges as measured by Lentz [Len07] are used to analyze
the performance of the algorithm. The artificial head whose mesh is depicted in
Fig. 4.1b has been used for the study.

The magnitude values of the correlation between measured HRTFs and extrap-
olated functions are plotted in Fig. 4.5 over frequency. The solid (red) line de-
scribes the quality of outward extrapolation, the dashed (gray) line shows the
quality of inward extrapolation. The dotted (blue) line acts as reference and
shows the cross-correlation coefficients of the original functions as measured in
two distances. It can be seen that the extrapolation between the distances 30 cm
and 2 m does not increase the cross-correlation values of the original function at
a specific range and the extrapolated result for the same range. According to the
measurement report the data used in Fig. 4.5a have been recorded in different
sessions, so additional uncertainties from the modified measurement setup can
be expected.4

A comparison of two functions recorded with the same measurement setup is de-
picted in Fig. 4.5b. Here a slight improvement can be noticed for the extrapola-
tions both in inward and outward direction in comparison to the cross-correlation
values of the original functions. The SHT was performed using order dependent
Tikhonov regularization as described in Sec. 2.4.4, but the correlation plots for
inversion by pseudoinverse show only very minor differences.

The obtained frequency dependent correlation coefficients of measurement result
and range extrapolation from data measured on a different radial distance are
surprisingly low. According to this measure the range extrapolation shows only

4The arm and turntable measurement system as described in Appendix A.1.1 has been
used by Lentz [Len07], using different arm constructions for the measurements at different
ranges.
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marginal improvement or even degradation with respect to the HRTFs obtained
at another radial distance.
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(a) Measurements at 30 cm and 200 cm
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(b) Measurements at 50 cm and 100 cm

Figure 4.5.: Correlation coefficients of range extrapolation results and mea-
sured HRTF data using order dependent regularization, cf.
[Pol12a].

20 40 60 100 200 400 1k 2k 4k 6k
0.5

0.6

0.7

0.8

0.9

1

Frequency in Hz

 

 

 Extrapol. 30cm  →  200cm

 Extrapol. 200cm →   30cm

 without range extrapolation

(a) Full sphere, inversion using Moore-
Penrose pseudoinverse

20 40 60 100 200 400 1k 2k 4k 6k
0.5

0.6

0.7

0.8

0.9

1

Frequency in Hz

 

 

 Extrapol. 30cm  →  200cm

 Extrapol. 200cm →   30cm

 without range extrapolation

(b) Full sphere, inversion using regulariza-
tion
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(c) Partial sphere, inversion using Moore-
Penrose pseudoinverse
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(d) Partial sphere, inversion using regular-
ization

Figure 4.6.: Correlation for range extrapolation results calculated from data
covering a full sphere (top) and a partial sphere (� ≤ 120∘) using
Moore-Penrose pseudo-inverse and Tikhonov regularization with
� = 10−4 (bottom), cf. [Pol12a].
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4.3.3. Results for simulated HRTFs

In order to evaluate the algorithm on precise data, a set of HRTFs has been
obtained using the Boundary Element Method (BEM) of LMS Virtual.Lab. The
results for the inversion using order dependent Tikhonov regularization and using
pseudoinverse are depicted in the upper row of Fig. 4.6. The simulation was
performed at radial distances of 30 cm and 2 m from the center of the head
(point in-between the ear openings).

Apart from the dips in the low frequency region (e.g. at around 180 Hz) caused
by the frequency dependent order truncation (cf. Sec. 2.3.8), the range extrapo-
lation yields almost perfect results with a correlation coefficient of nearly unity
for almost all frequencies. A relaxation of this order limit is expected to enhance
the result in this low frequency range [MT11]. In Fig. 4.7 the magnitude levels
of the horizontal direction of the HRTFs are plotted over frequency, in the top
row the BEM simulation results for 30 cm and 2 m of the artificial head as de-
picted in Fig. 4.1b and in the bottom row the extrapolation results for inward
extrapolation to 30 cm and the outward extrapolation to 2 m.

(a) Simulated HRTFs at 30 cm (b) Simulated HRTFs at 200 cm

(c) Extrapolation to 30 cm from simulated
HRTFs at 200 cm

(d) Extrapolation to 200 cm from simulated
HRTFs at 30 cm

Figure 4.7.: Simulated azimuthal HRTFs at different distances (top) and range
extrapolation results (bottom) [Pol12a].
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It can be seen that the range extrapolation yields visually a good match of
original and the appropriate extrapolation, independent of the direction of ex-
trapolation. The fine structure of the occurring peaks and notches agree with
high precision. The discontinuity at 10 kHz is caused by a change of the mesh
resolution at that frequency.

4.3.4. Conclusions range extrapolation of HRTFs

The performance of the range extrapolation algorithm seems highly dependent
on the quality of the used input data. While simulated data can be extrapolated
perfectly, the studied measurement data show rather mediocre results. While
data obtained at a single measurement session show a slight improvement from
range extrapolation, data measured using different setups could not be enhanced
by range extrapolation methods using the cross-correlation as measure for sim-
ilarity. In a joint publication of the author with the audio group of IRCAM in
Paris another set of measurements is discussed, showing sightly better results
for different measurement data, cf. to Pollow et al. [Pol12a] for further details.

4.4. Reconstruction of missing data of HRTFs

In real measurement scenarios for HRTFs often the data at lower elevation an-
gles cannot be obtained, as e.g. using the fast measurement system described
in Sec. 4.1.3. In order to study the effect of having only a subset of the data
available, BEM simulation data has been truncated at elevations below 150∘,
which represents the identical part of the sphere as in the measurement setup.

The HRTFs available only on partial spheres were used for the ISHT employed in
the range extrapolation using inversion by pseudoinverse and regularized inverse.
In the second row of Fig. 4.6 the extrapolation results for such truncated datasets
are depicted. Using a regularization approach the high performance as with the
full dataset can be obtained, at least up to 6 kHz, which was the upper frequency
limit for the simulated data.

In a second example, the measurement data of an artificial head in the measure-
ment arc as depicted in Fig. 4.3 is used. This setup again covers elevations from
the north pole to � ≈ 150∘, leaving an area without data at the southern part of
the sphere. In Fig. 4.8a the measured HRTFs are depicted in two view angles as
interpolated magnitude values plotted on the sphere for frequencies of 500 Hz,
1 kHz, 5 kHz and 15 kHz. The positions of the loudspeakers were detected by
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(a) Measured HRTFs with missing
data in low elevations

(b) SWS of HRTFs gained by regular-
ized inversion mapped on a Gaus-
sian sampling of nmax = 47

Figure 4.8.: Magnitude of HRTFs from two view angles at 500 Hz, 1 kHz, 5 kHz
and 15 kHz (from top to bottom) for measured data and the de-
rived SWS. The black dots mark the sampling points of the discrete
spherical functions.
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applying a non-linear optimization of the positions as formulated in Eq. (4.4).
A phase compensation for the slight deviations in traveling time of the acoustic
wave (in the range of a few centimeters) has been applied prior to processing.
The order dependent Tikhonov regularization as given in Sec. 2.4.4 is used for
the SHT as

p̂ =
︁
Y

H
Y + �D

︁−1

Y
H
p (4.7)

with the diagonal matrix D as defined in Eq. (2.85) and the regularization con-
stant of � = 10−5.

Having found the spherical wave spectrum of the HRTFs it is feasible to recon-
struct the spherical function for any arbitrary direction. An irregular distribution
of sampling points that possibly does not cover the full sphere, as is often found
in practical measurement setups, can thus be used to derive a representation
in the spherical Fourier domain, as long as the sampling has been sufficiently
dense not to create aliasing components (cf. Sec. 2.5). An example can be seen
in Fig. 4.8b where measured data of the setup as described in Sec. 4.1.3 have
been processed. The target sampling scheme has been set to a Gaussian sampling
of a maximum order of �max = 47.

4.5. Representation of HRTFs with varying focal point

HRTFs are usually measured or simulated at equidistant points from the center of
the listeners head. The opening of the ears are thus not located in the geometric
center of the sampling points. From research on loudspeakers it is known that
the acoustic center is generally frequency dependent and can even be located on
the outside of the device [Van06].

In order to apply this idea to HRTFs Richter et al. [Ric14] evaluate the acoustic
center of HRTF datasets using the objective function �2 as defined in Sec. 3.4.1
and employing nonlinear optimization. Both measured and simulated HRTF
datasets suggest to have the acoustic center of their reciprocal radiation for low
frequencies at or slightly beyond the ear opening (outside of the head), similar
to the known results from loudspeakers.

Using the found center of the spherical wave as new choice of focal point for the
SHT, accurate representation of HRTFs with a lower order limit can be obtained.
In Fig. 4.9 the required order for the match of a specific fraction of the signal
energy (squared magnitudes) is plotted over frequency for a BEM simulated
HRTF dataset. Especially for coarser approximations, the required number of
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SH coefficients can be reduced significantly. An energetic match of 95% can
be achieved at approx. 7 kHz using a maximum order of 4 for the ear-centered
SHT, while order 10 is required for the head-centered representation. This order
reduction allows significant speed-ups for real-time applications [Ric14]. For very
high precisions, however, the required SH order is not diminished as can be seen
for the dash-dot line.
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Figure 4.9.: Maximal spherical harmonic order needed to represent BEM simu-
lated HRTFs as SWS with a given accuracy expressed as a fraction
of the signal energy [Ric14]

4.6. Summary binaural sound receivers

A human listener receives sound with a specific coloration depending on the
angle of sound incidence. The influence on the spectrum and the time structure
of the received sound can be represented by the head-related transfer functions
(HRTFs), obtained by measurements or simulation methods.

These directional dependent transfer functions can be considered as complex
valued directivity patterns of the human listener with two channels, one for each
ear. The HRTFs can thus be processed using the analytic methods of Fourier
acoustics as described in Chapter 2, allowing them to be included in the given
mathematical framework used for the directivity synthesis in rooms.

The representation of the HRTFs as spherical wave spectra (SWS) furthermore
allows to apply sensible post-processing methods in order to e.g. compensate
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insufficient dynamics of measurement results in the low frequency range or in-
complete measurement data that does not cover all possible angles of sound
incidence.

In the Fourier domain the methods of acoustical holography in spherical co-
ordinates can be employed, making it possible to calculate near-field effects of
HRTFs. It has been shown that data of high quality is essential for precise ex-
trapolation results. While numerical simulations show perfect results, HRTFs
that have been measured in different setups and sessions could not prove the
same findings obtained from the simulation data.

The choice of focal point for the representation of HRTFs as spherical wave
spectra influences the occurring coefficients. Choosing the focal point close to
the physical point of sound reception allows to represent the spherical function
with a lower order limit compared to focal points farther away from the acous-
tical center. This is beneficial for avoiding aliasing artifacts for a limited spatial
resolution as commonly encountered in practical setups.
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5
Including directivity patterns in room

acoustic measurements

In this chapter the implementation of arbitrary source directivity in room acous-
tical measurements is described. As the directivity patterns of the measurement
sensors are inextricably linked to the measurement results, the respective pat-
terns have to be in effect at the time of measurement, either directly or as
superposition result composed from a suitable set of directivity patterns.

At the receiver side compact spherical microphone arrays are commonly used to
implement variable directivity patterns,1 at the sender side spherical loudspeaker
arrays with multichannel excitation can be used. In this chapter the focus is
set on the implementation of directivity patterns at the sender side, it order
to facilitate the measurement of the full transfer path with flexible source and
receiver directivity in combination with a spherical microphone array.

The international standard ISO 3382 for room acoustical measurement is re-
viewed and technical sound sources that can be used for the measurement with
and without directivity synthesis are described. Using an analytic model for
spherical sound sources allows rapid prototyping of specialized sources. Hav-
ing constructed the device, the measured directivity pattern of the source can
be used instead of the analytically modeled radiation, yielding more accurate
results.

Finally, applications are presented that employ the excitation or superposition
of arbitrary directivity patterns using multichannel sound sources. To verify
the method, a technical sound source has been used as target source allowing
to compare the measured room impulse response (RIR) with the superposition
result of many RIR measurements of known directivity patterns.

Parts of this chapter have been published in [Pol07], [Pol09c], [Pol11b], [Pol12d]
and [Pol13a].

1Commercial solutions for compact spherical microphone arrays exist, as well as algo-
rithms for the conversion of the recorded sound fields to spherical wave spectra [Mey02;
Raf05; Raf07; Li07].
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CHAPTER 5. Including directivity patterns in room acoustic measurements

5.1. Standardized room acoustic measurements

In room acoustic measurement tasks the directivity patterns of source and re-
ceiver are usually not taken into account and implicitly assumed to be of omnidi-
rectional type. When performing measurements according to ISO 3382 [Iso], the
sound source used in the measurement has to have an omnidirectional directivity
pattern. The norm defines a maximum level variation over a set of horizontal
directions, as given in the following table:2

Frequency band 125Hz 250Hz 500Hz 1 kHz 2 kHz 4 kHz

Allowed deviation3 ±1 dB ±1 dB ±1 dB ±3 dB ±5 dB ±6 dB

Spherical loudspeakers arrays are commonly used due to their uniform behavior
for all possible angular directions. Placing a set of transducers that are dis-
tributed equally in a spherical chassis yields rather uniform directivity patterns
that fulfill the required omnidirectionality as demanded by ISO 3382. Commonly
the Platonic solids (a set of regular, convex polyhedrons) are used as geometry
of such devices, e.g. the loudspeakers in shape of a dodecahedron: At each of its
twelve faces a transducer of identical size is mounted, yielding a self-repeating
arrangement of loudspeakers [Pol09c].

In Fig. 5.1 the three-way system as used in the Institute of Technical Acoustics
of RWTH Aachen University is depicted, consisting of a 12-channel spherical
high frequency unit (used for frequencies above approx. 1.5 kHz), a 12-channel
mid-range unit (used for frequencies between 150Hz and 1.5 kHz) and a single
channel subwoofer unit (used for frequencies below 150Hz). Subdividing the com-
plete spectrum in these frequency ranges allows to fulfill ISO 3382 well beyond
requirements on the source directivity pattern as given above.

5.2. Analytic model for spherical loudspeakers

The directivity pattern of a spherical sound source with a radially vibrating
circular area can be calculated analytically using the spherical cap model [Wil99;
Zot09b]. This model is useful for the simulation of spherical sound sources in
particular for the analysis of new shapes of spherical loudspeaker designs.

2These requirements are only demanded for the horizontal plane, yielding to some smart
loudspeaker designs that circumvent the norm by being only omnidirectional in the horizontal
plane.

3The given limits of allowed deviations have to be averaged over an angle of 30∘.
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5.2. Analytic model for spherical loudspeakers

Figure 5.1.: Dodecahedron loudspeakers as used for room acoustical measure-
ments. Here a three-way system, consisting of two spherical do-
decahedron loudspeakers of different sizes and a subwoofer unit is
depicted.

5.2.1. Aperture function to model membrane vibration

The area of the vibrating membrane in an otherwise solid sphere is modeled as the
aperture function �(�, �) that can be defined as a continuous spherical function.
This aperture function is defined as rotational symmetric function with respect
to the �-axis as

�(�, �) = �(�) = 1− �
︁
� − �

2

︁
(5.1)

with � being the aperture angle and �(�) being the Heaviside function (or unit

step function) [Pol09c]. The aperture function is visualized in Fig. 5.2, showing
the vibrating area as dark spherical cap. The spherical wave spectrum (SWS)
of this aperture function located at the northern pole can be calculated by a
spherical harmonic transform (cf. Eq. (2.35)) as

�nm = � {�(�, �)} = �m0 · �n = �m0 ·
︀
�(2�+ 1)

1︁

cos α
2

�n(�) d� (5.2)

where �n(�) is the Legendre polynomial of order � and �m0 being the Kronecker
delta function as defined in Eq. (2.33). The SWS of the rotationally symmetric
aperture function has only non-zero values for degrees of zero (� = 0).
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CHAPTER 5. Including directivity patterns in room acoustic measurements

α
2

yx

z

Figure 5.2.: Aperture function as used for the analytical spherical cap model.
Dark section vibrates with a specific radial velocity, while the
lighter gray section is assumed to be a solid hard sphere.

5.2.2. Total surface velocity and acoustic impedance

The aperture function given as SWS can be oriented to the locations of the mem-
branes of the spherical loudspeaker array by implementing rotation using multi-
plication with the Wigner-D matrix and subsequent summation (cf. Eq. (2.50))
as

�nm,l =
n︁

k=−n

�nk ·�(n)
k,m(0, �l, �l) (5.3)

with (�l, �l) being the orientation of the membrane � of the dodecahedron loud-
speaker.3 The complete list of membrane angles is given in Appendix A.1.5.
Alternatively the rotation can be implemented by a convolution on the sphere
[Wil99; Pol09c].

The total surface velocity �nm for a given set of cap velocities �l can be given as

�nm =
L︁

l=1

�l · �nm,l (5.4)

with � being the number of membranes of the spherical loudspeaker and �nm,l

being the SWS of the aperture function of the �th membrane.

3The first rotation around the z-axis can be disregarded as the spherical cap model has
a rotational symmetry.
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5.2. Analytic model for spherical loudspeakers

The acoustic impedance of a spherically shaped body to the outside medium due
to its radial vibration can be expressed as SWS as [Wil99]

�nm =
�nm(�0)

�nm
= −j�0�

ℎn(��0)

ℎ′
n(��0)

(5.5)

with �0 being the radius of the spherical radiator and ℎ′
n(�) being the derivative

of the spherical Hankel function. This equations states the connection between
the surface velocity of the spherical body and the resulting sound pressure on
the surface for any possible velocity distribution of the spherical surface.

5.2.3. Radiated sound pressure

The radiated sound pressure can be computed by applying the radial wave prop-
agation for the exterior problem as formulated in Eq. (2.40) as

�nm(�) =
ℎn(��)

ℎn(��0)
· �nm(�0). (5.6)

Combining this equation with the impedance, the calculation of the surface ve-
locities, and the definition of the aperture functions, the pressure at any point
in space can be given analytically as

�nm(�) =
ℎn(��)

ℎn(��0)
· �nm · �n ·

L︁

l=1

�l ·�(n)
0,m(0, �l, �l). (5.7)

with �(n)
0,m(0, �l, �l) being the Wigner-D matrix that implements the rotation of

the aperture function �n to the positions of the � membranes with the complex,
scalar velocities �l.

The large argument condition

lim
kr→∞

ℎ(2)
n (��) = j(n+1) �

−jkr

��
(5.8)

yields the far-field approximation of the sound pressure as used for the calculation
of the directivity [Wil99].

From Eq. (5.7) it becomes obvious that the possible directivity patterns created
by a given loudspeaker configuration depend directly on the aperture function
�n. Whereas the aperture functions differ when changing the orientation of the
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membrane, the order dependent signal energy stays constant for a fixed mem-
brane size.4 It is computed by the geometrically summed squared magnitudes of
all coefficients of single SH order � as

�a(�) =
n︁

m=−n

|�nm,l|2 = |�n|2 (5.9)

with �n being the SWS of the spherical cap aperture function. This value is
constant for all possible membrane orientations � as it is invariant to rotation
(cf. Eq. (2.51)). Using Parseval’s identity as defined in Eq. (2.37) the limiting
value for the infinite sum of the order dependent signal energy of the aperture
function can be computed as

∞︁

n=0

�a(�) =

︁

S2

|�(�)|2 dΩ = 2�
︁
1− cos

�

2

︁
. (5.10)

5.3. Design of compact spherical loudspeaker arrays

Using Eq. (5.7) the directivity patterns of a spherical sound source can be cal-
culated analytically for a given set of membrane velocities. The order dependent
signal energy of the aperture function as defined in Eq. (5.9) gives insight with
respect to the feasible excitation patterns using a specific source geometry. The
analytic model can be used for the analysis of existing devices or the rapid proto-
typing of specialized devices. Two examples are given in this section, extending
an existing dodecahedron loudspeaker for multichannel excitation and the design
of an optimized device for directivity synthesis using sequential measurements.

5.3.1. Dodecahedron loudspeakers as multichannel source

Dodecahedron loudspeakers used as single channel devices excite all membranes
simultaneously with an identical signal. These devices are commonly employed
for measurement tasks in room or building acoustics due to their omnidirec-
tional radiation. Using a modification of the spherical loudspeaker as depicted
in Fig. 5.1 (middle picture) each transducer can be excited with an individual
signal. This 12 channel loudspeaker array can radiate with adjustable directivity
depending on the applied signals. The inner volume is divided in 12 separate

4The definition of signal energy obtained from Parseval’s identity in Sec. 2.3.3 is used.
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Figure 5.3.: Order dependent signal energy of the aperture functions of dodec-
ahedron loudspeakers as depicted in Fig. 5.4.

chambers to provide individual air volumes for each transducer in order to min-
imize cross-talk effects.

In Fig. 5.3 the signal energy of the aperture function for the mid-range dodec-
ahedron loudspeaker5 is plotted over the SH order �. At certain orders, e.g. at
� = 10, the signal energy is negligibly small. Using a fixed geometry of mem-
brane size and sphere radius, this energy distribution is unchanged, independent
of tilt or rotation of the device, so the impact of the notches can only be reduced
by changing the ratio of the sphere radius and the membrane size.

Using the multichannel loudspeaker for sequential measurements, a tilt of the
device can be beneficial as it breaks the symmetry of its geometry. In the case of
the dodecahedron loudspeaker, the device has been used sequentially in different
positions rotated vertically around the �-axis. As the standard orientation of the
dodecahedron depicted in Fig. 5.4a has a 120∘ rotational symmetry and only
four unique elevations of the membranes, the tilted version in Fig. 5.4b has its
membranes at 12 unique elevations and thus allows greater degree of freedom.6

This tilted version is used for the synthesis of room impulse responses with a
specific directivity pattern, as described in Sec. 5.4.2.

5The simulation was performed for an array radius of 15 cm and a membrane radius of
5.2 cm, which are the dimensions of the mid-range dodecahedron loudspeaker as built and
used by the Institute of Technical Acoustics, RWTH Aachen University.

6In Appendix A.1.5 the membrane positions of the dodecahedron loudspeaker with and
without tilt are listed.
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CHAPTER 5. Including directivity patterns in room acoustic measurements

(a) Dodecahedron loudspeaker
mounted for directivity measure-
ments

(b) Tilted dodecahedron
loudspeaker mounted
for room acoustic
measurements [Kun11]

Figure 5.4.: 12 channel dodecahedron loudspeaker in normal position and tilted
in order to maximize the variation in elevation.

5.3.2. Optimized sound source for broadband excitation

In order to develop an efficient measurement procedure, Klein [Kle12a] con-
structed an optimized measurement device that provides broadband excitation,
both in terms of time-spectral frequency and spherical-wave-spectral frequency.
Using a set of different transducer sizes allows to overcome the notches that oc-
cur when using only a single membrane size. The prototype for the optimized
spherical sound source as depicted in Fig. 5.5a consists of a spherical chassis
with a radius of � = 20 cm and is equipped with transducers of three different
membrane sizes, using four 5-inch transducers, twelve 2-inch and twelve 3-inch
transducers. The device contains a step motor mounted in the sphere and can
be placed on a turntable as shown in Fig. 5.5b.

Choosing the geometry of the device

As commercially available transducers have standardized membrane sizes, the
sphere radius has been chosen in a way to ensure broadband behavior in the SH
domain. In Fig. 5.6 the signal energy of the aperture functions for conventional
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5.3. Design of compact spherical loudspeaker arrays

(a) Prototype [Kle14]

(b) Schematic setup as
mounted on turn table
[Kle12b]

Figure 5.5.: Optimized spherical loudspeaker array as measurement source for
flexible directivity control in post-processing. The spherical chassis
can rotate around the vertical and horizontal axis.

2-inch, 3-inch and 5-inch transducers mounted in a sphere with a radius of 20 cm
are plotted over the spherical harmonic order �.

Plotting the logarithmic signal energy (normalized by membrane area) of the
aperture functions of the three transducer types in the given sphere in Fig. 5.7
shows, that the criterion of broadband excitation up to a maximum order of
approx. 60 is well fulfilled.

Transducer placement concept

The placement of the transducers has been arranged to place the elevation of the
center points of the loudspeaker membranes at the elevations occurring in the
Gaussian quadrature sampling (cf. Sec. 2.5.2), so that using a rotating turntable
can yield full Gaussian sampling schemes with minor deviations (due to practical
constraints in the mechanical construction). The device has been constructed
for two possible spatial resolutions: covering a Gaussian sampling scheme of
order 11 or order 23, by using 24 or 48 azimuthal orientations at one or two
orientations around the horizontal axis, respectively. The latter uses for times as
many positions and thus requires substantially longer measurement durations.
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(d) SWS of aperture function (3" membrane)
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(f) SWS of aperture function (5" membrane)

Figure 5.6.: Signal energy of aperture function of 2", 3" and 5" transducers on
a sphere of 20 cm radius. The distance of the horizontal grid lines
corresponds to a fixed value for all plots.
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Figure 5.7.: Logarithmic signal energy of aperture functions 2", 3" and 5"
transducers on a sphere with a radius of � = 20 cm normalized
by membrane area

Considering the acoustic impedance and the radial wave propagation term as
used in the analytic model of the sound radiation in Sec. 5.2, it can be con-
cluded that low frequencies only need to be excited up to a lower maximum
order. A coarser sampling is thus sufficient for the largest membranes used in
the lower frequency range and allows to make better use of the limited space on
the spherical surface.

The list of transducer orientations in the prototype can be found in Ap-
pendix A.1.6, for further details on the transducer placement concept and mea-
surement strategies refer to Klein [Kle12a].

5.3.3. Using measured directivity patterns for the synthesis

Having constructed the prototype the directivity patterns of the spherical loud-
speaker array can be compared to results of the analytic model. As some dif-
ferences occur, the measured patterns are used for further processing to obtain
higher accuracy. These measured directivity patterns have been used e.g. for the
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CHAPTER 5. Including directivity patterns in room acoustic measurements

Figure 5.8.: Measurement setup for high-resolution directivity data of the op-
timized technical sound source.

synthesis of room impulse responses as described in Sec. 5.4.2 and the directivity
synthesis as shown in Sec. 5.4.3.

For the measurement of technical sound sources, computerized adjustable posi-
tioning systems can be used as described in Sec. 4.1.2. Instead of a loudspeaker
mounted on the trellis arm as used for the measurements of HRTFs, a micro-
phone is fixed allowing flexible positioning at elevations up to approx. 120∘. The
directional dependent radiation of the measurement source can thus be obtained
sequentially with very high precision. In Fig. 5.8 the measurement setup as used
for technical sound sources is depicted.

The analytic cap model radiation and the measurement results of the optimized
spherical loudspeaker are shown in Appendix A.3.3 for all three membrane types.
At some frequencies deviations can be seen, while for most frequencies the ana-
lytic calculation and the measured directivity pattern show good agreement.
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5.3. Design of compact spherical loudspeaker arrays

(a) Simulation result (b) Measurement result

Figure 5.9.: Levels of the SWS of the sound pressure that can be radiated by
the optimized spherical loudspeaker array [Kle14]. The normalized
maximum values for all transducer types are depicted.

The plots in Fig. 5.9 quantify the maximum levels of the SWS of the sound
pressure radiated by the optimized spherical loudspeaker array with its three
different transducer types. As a rotation of the source around the �-axis allows
to distribute the energy in a specific SH order to different degrees (cf. Eq. (2.51)),
the values depicted over frequency are summed over all SH degrees and normal-
ized to the global maximum, cf. [Kle14].7

In Fig. 5.9a the simulation result using the spherical cap model radiation as
defined in Eq. (5.7) is used, while in Fig. 5.9b the actually measured directivity
patterns are used for the calculation. The figures visualize the orders of SWS
(summed over all degrees) of the directivity patterns that can be excited over
frequency using a logarithmic color scale. For the simulation the expected notch
of excitation at orders of around 62 (that is also visible in Fig. 5.7) can be seen
in Fig. 5.9a.

The measurement results show excitation of higher orders as analytically pre-
dicted (cf. Sec. 2.3.8). An explanation is the influence of reflections occurring at
the outer frame structure of the physical setup of the loudspeaker array, yielding
a larger area of contributing secondary sources and consequently to higher orders
in the radiation.

If regarding aliasing components of 30 dB below the maximum levels as signifi-
cant, it can be seen from Fig. 5.9b that the maximum order of the used Gaussian
sampling scheme is reached at a frequency of approx. 8 kHz, but only impacting

7To be able to cover all possible components by rotation, the directivity patterns of the
measurement device may not have a rotational symmetric pattern with respect to the z-axis
for any order.
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CHAPTER 5. Including directivity patterns in room acoustic measurements

the results for frequencies higher than 10 kHz because the aliasing is not affecting
low orders immediately using Gaussian quadrature (cf. Sec. 2.5.2).

5.4. Applications of directivity synthesis

Spherical loudspeaker arrays can be used in various room acoustical applications
in order to implement directivity patterns in room acoustic measurements. Some
examples of directivity synthesis are given as follows.

In Sec. 5.4.1 the analytic cap model of the spherical loudspeaker array is used to
synthesize averaged musical instrument directivity patterns that were obtained
as described in Sec. 3.2.2.

Sec. 5.4.2 describes the use of the tilted dodecahedron loudspeaker mounted
on a turntable for the synthesis of directivity patterns of higher orders using
sequential measurements. The target directivity has been set as the directivity
of a technical sound source. This allows to validate the method by comparing
the RIR of the synthesis result and the RIR obtained by the measurement with
the same technical sound source used as exciter.

Sec. 5.4.3 illustrates the synthesis result using measured directivity patterns of
the optimized spherical sound source as described in Sec. 5.3.2. As target func-
tions for the synthesis an infinitesimally narrow beam and a set of high-resolution
HRTFs measured as described in Sec. 4.1.2 has been used. The influence of dif-
ferent regularization approaches on the resulting directivity pattern is analyzed
and visualized.

5.4.1. Directivity synthesis of musical instruments radiation patterns:

Simultaneous approach using a dodecahedron loudspeaker

In this section a multichannel dodecahedron loudspeaker is used for the synthesis
of directivity patterns of musical instruments. These patterns have been obtained
using an averaging approach (cf. Sec. 3.2.2) and are available as magnitude values
�i (without phase relations) recorded at 24 microphones (cf. Appendix A.1.3)8

written as vector
pmic = vec{�i}. (5.11)

8The directivity used in the plots has been derived from recordings of longer passages
of music using averaging and interpolation of the magnitudes to obtain a generic directivity
over frequency [Len07].

100



5.4. Applications of directivity synthesis

A matrix M can be defined from Eq. (5.7) after spatial sampling using Eq. (2.56),
mapping each membrane velocity vector

v = vec{�l} (5.12)

to the complex sound pressure values

pre(v) = M · v (5.13)

at the microphone locations. As the analytic calculation of the pressure results
in a complex vector pre(v), many solutions are possible whose absolute values
match the given target directivity. Therefore, two strategies of matching the
pressure values are evaluated: assuming a constant phase of zero for all micro-
phones and using nonlinear optimization to find a solution with arbitrary phase
whose absolute values match the target.

The first method regards a linear problem that is solved efficiently by matrix
inversion using a multiplication with the pseudoinverse of matrix M, minimizing
the residual (cf. Eq. (2.78))

rp = pre(v)− pmic. (5.14)

The directivity pattern of the spherical loudspeaker is thus not matched in the
spherical harmonics domain but in the spatial domain at the discrete sampling
points of the spherical microphone array.

The second approach offers a higher degree of freedom, with the possibility to
use any phase as long as the magnitudes values of the pressure are equal. The
modified residual can be defined as

rabs = |pre(v)| − pmic (5.15)

describing the deviation from a perfect magnitude match of the two functions at
the microphones. As the absolute value in the calculation of the residual regards
a nonlinear computation, the computation with a generalized matrix inversion is
not feasible. A least-squares optimization approach is followed to obtain solutions
for the optimal excitation. The phase at the position of the microphones is thus
considered arbitrary and optimized for a best possible match.

The results of the directivity synthesis are depicted in Fig. 5.10 and Fig. 5.11 for
the radiation of a trumpet and a violin, respectively. Both methods described
have been evaluated, assuming a constant phase in the left column and optimiz-
ing the phase in the right column. The shade of gray of the round spots represents
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Figure 5.10.: Synthesis of trumpet directivity using a spherical dodecahedron
loudspeaker with individual transducer gain control. The round
spots represent the directivity value of the musical instrument,
the black dots show the location of the loudspeaker membranes.
Simulation performed using a constant phase (left) and an opti-
mized phase (right) at frequencies of 400 Hz, 900 Hz and 1300 Hz.
[Pol09c]
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Figure 5.11.: Synthesis of violin directivity using a spherical dodecahedron
loudspeaker with individual transducer gain control. The round
spots represent the directivity value of the musical instrument,
the black dots show the location of the loudspeaker membranes.
Simulation performed using a constant phase (left) and an opti-
mized phase (right) at frequencies of 400 Hz, 900 Hz and 1300 Hz.
[Pol09c]
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(a) Synthesis of trumpet radiation with
constant (zero) phase
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(b) Synthesis of trumpet radiation using
phase optimization
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(c) Synthesis of violin radiation with
constant (zero) phase
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(d) Synthesis of violin radiation using
phase optimization

Figure 5.12.: Average and maximum SPL deviation between measured instru-
ment directivity and simulated dodecahedron directivity [Pol09c]

the logarithmic directivity of the musical instrument in that direction, while the
black dots represent the center points of the membranes of the dodecahedron
loudspeaker. The continuos grayscale in the background is the resulting SPL
caused by the simulated radiation of the loudspeaker. Identical contrast of the
spots and the background shading thus represents a perfect match at that mi-
crophone position. The frequencies 400 Hz, 800 Hz and 1300 Hz are depicted in
the figures.

It can be seen, that the match is generally higher for higher degrees of freedom
using the arbitrarily optimized phase. Even maxima in-between the membrane
center points can be matched well in that case (cf. Fig. 5.10 at 1300 Hz) while
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5.4. Applications of directivity synthesis

forcing a fixed phase of zero from the averaged data yields higher deviations,
especially for highly focused sources.

The error plots in Fig. 5.12 confirm these observations. For each instrument the
frequency dependent average SPL error and the maximum SPL error consider-
ing all microphones are depicted. The dotted lines show the average error for a
similar target directivity obtained using different track recordings of the musi-
cal instruments. In the operating range of the mid-range unit of the spherical
dodecahedron loudspeaker, maximum deviations from mostly under 2 dB occur
for the optimized phase, while for the zero-phase-approach deviations up to 6 dB
and 12 dB occur for the synthesis of the trumpet and the violin, respectively.

The feeding voltages to obtain the required surface velocities for the membranes
can be obtained either by a laser Doppler vibrometer or by the electroacoustic
equivalent circuit diagram of the mechanical elements involved [Pol09c].

5.4.2. Directivity synthesis for RIR measurements: Sequential

approach using tilted dodecahedron loudspeaker

In this section the directivity pattern of a technical target sound source is syn-
thesized using the measured radiation patterns of a spherical loudspeaker array.
The synthesis result is a weighting vector that can also be applied to room
impulse responses (RIRs) measured with the spherical loudspeaker. Assuming
linear and time-invariant (LTI) systems this approach allows to synthesize the
room impulse responses for arbitrary target source directivity up to a specific
spatial resolution.

As experimental evaluation the tilted dodecahedron loudspeaker as depicted in
Fig. 5.4b is used. The device is mounted on a turntable to increase the spatial
resolution to � = 120 (virtual) transducers using ten azimuthal orientations in
steps of ∆� = 36∘ [Kun11]. The radiation of all membranes of the tilted dodec-
ahedron loudspeaker in all positions measured at distance � can be described by
the matrix

P̂ = [p̂1, p̂2, . . . , p̂L] . (5.16)

containing the spherical wave coefficients (SWS) of the membranes’ directivity.
The transfer functions of unit excitation (re 1 V) of the �th transducer are given
as vector p̂l in the SH domain. Applying the spherical harmonic transform (SHT,
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CHAPTER 5. Including directivity patterns in room acoustic measurements

cf. Eq. (2.75)) a set of measured sound pressure values obtained on a spherical
sampling scheme can be used to calculate the vector

p̂l = vecSH{�nm,l} (5.17)

describing the SWS of the sound pressure measured at the distance � around
the focal point (center of the spherical loudspeaker). For the measurement the
Gaussian quadrature sampling scheme (cf. Sec. 2.5.2) has been used as it offers
a exact SHT for order limited functions without the need of explicit matrix
inversion.

As target the directivity of a cubic loudspeaker (as depicted in Fig. ?? with
an edge length of 12 cm) that is represented by its SWS as vector p̂t has been
used. The input voltage vector for the spherical sound source with � transducers
contains the complex input voltages �l for � = 1 . . . � denoted as

u = [�1, �2, . . . , �L]
T . (5.18)

The resulting directivity pattern can be computed using the equation

p̂ = P̂u (5.19)

with p̂ being the sound pressure of the synthesis result. This superposition ap-
proach holds for coherent excitation of only one driver at a time, avoiding cross-
talk effects that impact the result. Depending on the application either measured
or simulated directivity patterns can be used as target patterns. In this example
the measurement result of the directivity pattern of the cubical loudspeaker is
used as target directivity, as it can be measured to verify the obtained results.9

A solution for the input voltage vector u can be formulated by least-mean squares
minimization of the deviation of target and synthesized directivity in the spher-
ical harmonic domain [Pol11b]:

ut = arg min
u∈CL

⃦⃦
⃦p̂t − P̂u

⃦⃦
⃦
2

2
(5.20)

9Here the assumption is made that the directivity is uniquely defined for every frequency.
In reality, however, the directivity of natural sound sources also depends on different prop-
erties as style and strength of excitation as illustrated in Chapter 3.
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5.4. Applications of directivity synthesis

Numerical solutions of this equation can be found by using the Moore-Penrose
pseudoinverse. In this example Tikhonov regularization has been applied giving
preference to solutions with smaller norm as

ut =
︁
P̂

H
P̂+ �I

︁−1

P̂
H
p̂t (5.21)

with � = 10−3 being the regularization parameter in the given example and I

being the �×� Identity matrix [Pol11b]. To determine the RIR for the derived
excitation vector ut the RIRs of all � membranes are measured individually and
are stored in the row vector

h = [ℎ1, ℎ2, . . . , ℎL] (5.22)

with
ℎl = �l(u) for �l′ = �ll′ (5.23)

being the RIR as measured for transducer position �. The Kronecker delta �ll′ has
been defined in Eq. (2.33). The measurement time of a RIR for one orientation
of the spherical array and the reference loudspeaker requires approx. 30 seconds.
Hence, ten sphere orientations corresponding to � = 120 membrane orientations
require roughly five minutes of measurement time.

Applying superposition of the elements of h with the calculated input voltage
vector ut derived from Eq. (5.21) yields the room impulse response

ℎt = hut (5.24)

for the excitation of a target directivity pattern p̂t.

In order to evaluate the proposed method a comparative measurement has been
conducted in a lecturing hall with an approx. size of 8m × 6m × 3m, a mean
reverberation time of approximately �60 = 0.9 s and a distance of source and
receiver of approx. 4.8m. The superposition weights are calculated for directivity
synthesis and then applied to measured RIRs of single membrane excitation. A
band-pass filter from 400Hz to 4 kHz is applied to the measurement results as
this has shown to be the operating range for this measurement setup [Kun11].
Between 300 Hz and 1.5 kHz very high correlation values between original RIR
and the synthesis result can be derived [Kun12]. In Fig. 5.13 the room transfer
function (RTF) is plotted as measured with the target directivity and synthesized
from the measurements of the tilted dodecahedron loudspeaker. In Fig. 5.14 the
room impulse responses are plotted on a logarithmic scale in time domain.
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(a) Source with target directivity (b) Loudspeaker array used for the synthesis
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(c) RTF of reference source
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(d) RTF of synthesis result
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(e) Zoomed RTF of reference source
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(f) Zoomed RTF of synthesis result

Figure 5.13.: Measured RTF using a reference source and the synthesized result
using the loudspeaker array. The zoomed part of the RTF is
marked by a frame.
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5.4. Applications of directivity synthesis

(a) Source with target directivity (b) Loudspeaker array used for the synthesis
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(c) RIR of reference source
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(d) RIR of synthesis result
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(e) Early part of RIR of reference source
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(f) Early part of RIR of synthesis result

Figure 5.14.: Reference source and loudspeaker array used for RIR synthesis
and results in large and small scale. The zoomed part of the RIR
is marked by a frame.
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CHAPTER 5. Including directivity patterns in room acoustic measurements

5.4.3. Directivity synthesis for high resolution radiation patterns:

Sequential approach using an optimized spherical loudspeaker

array

In this section the results of the directivity synthesis using measured pressure
functions of the optimized spherical sound source as described in Sec. 5.3.2 are
visualized. The 28 transducers of the array system have been simulated in 24
positions resulting in 672 membrane orientations. The individual behavior of
the transducer is taken into account, as the measured directivity pattern of the
individual transducers are used for the computation.

Giving arbitrary target directivity patterns p̂t, solutions of the ideal excitation
vector ut can be found by multiplication with the pseudoinverse matrix or by
using inversion with order dependent Tikhonov regularization as

ut = P̂
H
︁
P̂P̂

H + �D
︁−1

p̂t. (5.25)

The diagonal matrix D defined as in Eq. (2.85) has been used. In the example
given here the regularization constant is set to � = 10−6, the maximum order
chosen as �max = ⌈1.5 · ��⌉ or �max = 70 (whatever value is smaller). These
parameters yield accurate results for the directivity synthesis.

As an example three target directivity patterns have been synthesized: the ideal
Dirac delta function on the sphere as depicted on page 111 and a set of sim-
ulated and measured HRTFs of artificial heads (cf. Sec. 4.1) depicted on page
112 and 113, respectively. Each pattern has been synthesized using both matrix
inversion by Moore-Penrose pseudoinverse and using order dependent Tikhonov
regularization, cf. Sec. 2.4.4.

It can be observed that with regularization smoother patterns are obtained that
use significantly smaller amplitudes in the superposition vector. The (unrealis-
tic) narrow beam at low frequencies is approximated at the cost of noise in all
directions for the pseudoinverse, and at the cost of a wider lobe for the regulariza-
tion approach.10 The horizontal ripple that is a visible artifact in the measured
HRTFs at 500 Hz in Fig. 5.21 is reconstructed using the pseudoinverse. Using
regularization the synthesis result of the 672 individual transducer directivity
patterns in Fig. 5.23 seems like the perfect correction of the original measure-
ment result without this horizontal ripple. For frequencies starting from 1000 Hz

10Note that the amplitudes of the beams vary with the frequency, as the mean square
error of the deviations between the ideal beam and the generated beam are minimized for all
directions.
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5.4. Applications of directivity synthesis

the deviations between original and synthesized directivity pattern become vis-
ible for the order dependent Tikhonov regularization.

(a) 500Hz (b) 1000Hz (c) 5 kHz (d) 15 kHz

Figure 5.15.: Target function: Ideal narrow beam

(a) 500Hz (b) 1000Hz (c) 5 kHz (d) 15 kHz

Figure 5.16.: Synthesis of the narrow beam from measured loudspeaker direc-
tivity patterns using inversion by Moore-Penrose pseudoinverse

(a) 500Hz (b) 1000Hz (c) 5 kHz (d) 15 kHz

Figure 5.17.: Synthesis of the narrow beam from measured loudspeaker direc-
tivity patterns using inversion with order dependent Tikhonov
regularization
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CHAPTER 5. Including directivity patterns in room acoustic measurements

(a) 500Hz (b) 1000Hz (c) 5 kHz (d) 15 kHz

Figure 5.18.: Target function: BEM simulation of HRTFs

(a) 500Hz (b) 1000Hz (c) 5 kHz (d) 15 kHz

Figure 5.19.: Synthesis of the simulated HRTFs from measured loudspeaker
directivity patterns using inversion by Moore-Penrose pseudoin-
verse

(a) 500Hz (b) 1000Hz (c) 5 kHz (d) 15 kHz

Figure 5.20.: Synthesis of the simulated HRTFs from measured loudspeaker di-
rectivity patterns using inversion with order dependent Tikhonov
regularization
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(a) 500Hz (b) 1000Hz (c) 5 kHz (d) 15 kHz

Figure 5.21.: Target function: Measured HRTFs

(a) 500Hz (b) 1000Hz (c) 5 kHz (d) 15 kHz

Figure 5.22.: Synthesis of the measured HRTFs from measured loudspeaker
directivity patterns using inversion by Moore-Penrose pseudoin-
verse

(a) 500Hz (b) 1000Hz (c) 5 kHz (d) 15 kHz

Figure 5.23.: Synthesis of the measured HRTFs from measured loudspeaker di-
rectivity patterns using inversion with order dependent Tikhonov
regularization
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CHAPTER 5. Including directivity patterns in room acoustic measurements

5.5. Summary directivity patterns in room acoustic

measurements

In this chapter the tools have been derived to obtain room acoustical measure-
ments with respect to arbitrary source directivity. An analytic model for spher-
ical sound sources is given, allowing to calculate the resulting sound pressure
in the entire room from a given set of membrane velocities on a spherical loud-
speaker chassis. This model has been used to analyze the performance of existing
loudspeaker arrays and to design specialized loudspeaker arrays for the purpose
of efficient directivity synthesis. The mathematical framework presented earlier
allows rapid analytical calculation of the radiation of the array, which can be
optimized for simultaneous synthesis or sequential synthesis methods (using a
subsequent azimuthal rotation of the array). Using these devices for directivity
synthesis the measured directivity pattens for all individual membranes can be
used, taking into account the deviations between analytical model and physi-
cal reality. Following this approach the individual behavior such as the specific
sensitivities of the transducers are considered, thus increasing the accuracy of
synthesis.

Finally, three examples for the use of these devices in room acoustical measure-
ments have been given:

The first example shows the performance of directivity synthesis using a mul-
tichannel dodecahedron loudspeaker to match the target data as obtained on a
spatially coarse sampling grid. As the target pattern is given as amplitudes, a
nonlinear optimization of the phases allows to improve the performance of the
directivity synthesis.

The second example shows the RIR synthesis for a target directivity pattern
using a spherical sound source and a sequential synthesis approach, showing a
good match in the range of the predicted operating frequencies.

The last example visualizes the performance of the different matrix inversion
approaches on the resulting synthesized directivity patterns. Depending on the
used inversion a focus can be set to derive high similarity, lower amplitudes of
the synthesis vector and/or a smoothed target directivity.
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6
Including directivity patterns in room

acoustic simulations

In this chapter methods and algorithms are described that allow the integration
of arbitrary source and receiver directivity patterns in room acoustic simula-
tion software. The simulation methods for room acoustics can be separated in
wave based methods and particle based methods. While wave based simulations
yield precise solutions for known geometries and known boundary conditions,
the computational cost are high, especially with rising frequency.

Modern simulation programms use hybrid simulation methods [Sch11], combin-
ing e.g. the precise but computationally expensive image source method [All79]
with a ray tracing approach for the late reflections. Both of these particle based
methods can be extended to include directivity patterns in a straightforward
manner, multiplying the outgoing or incoming sound with the specific directiv-
ity value in the direction of sound radiation or reception. Measured or simulated
directivity patterns can be taken into account in these algorithms (either as a
complex function or using magnitude values) in space domain or the spherical
Fourier domain. The latter offers implicit interpolation of the directivity pat-
terns, thus allowing to retrieve the value for an arbitrary direction without the
need for explicit interpolation from neighboring points.

For wave based simulations the effect of directivity patterns can be included if
the modal structure of the considered room is known. Arbitrary patterns can be
represented as a specific set of physical multipoles whose impact on the room is
calculated by taking the spatial derivatives in Cartesian coordinates of the eigen-
functions of the room. The obtained description in terms of physical multipoles
can then be converted to represent directivity patterns of arbitrary SWS, both
for sender and/or receiver side.

Parts of this chapter have been published in [Pol13b] and [Pel12a].
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CHAPTER 6. Including directivity patterns in room acoustic simulations

6.1. Directivity in wave based room simulation

Different techniques can be used to obtain reliable results from room acousti-
cal simulations. The wave based numerical approaches are regarded as precise
methods with high computational cost (especially for higher frequencies) and
can be performed using e.g. the Boundary Element Method (BEM), the Finite
Element Method (FEM) or the Fast Multipole Method (FMM). In practice, the
computational demand of these simulation methods is often too high for a re-
alistic room simulation of complex scenarios over the entire audible frequency
range. For simpler geometries the room modes and thus the room transfer func-
tion can be derived analytically. The room transfer function for these simple
geometries can be computed from the summation of the calculated room modes
[Kut00; Pie89]. The resulting room transfer function (RTF) is valid for both
perfectly omnidirectional sources and receivers. The Cartesian derivatives of the
eigenfunctions of a particular room allows to exchange the solution for monopole
sources and receivers to a solution for dipole sources and/or receivers, whereas
multiple derivatives yield the result for the physical multipoles of higher orders.
This multipole description can then be converted to a representation in terms
of the spherical wave spectrum (SWS), allowing to determine the analytically
computed room impulse response for arbitrary source and receiver directivities
in rooms of known and differentiable eigenmodes.1

In order to validate the method a simple rectangular room (shoebox shaped
geometry) is considered and the transfer path between two arbitrary points in
the room is computed with respect to the arbitrary given directivity patterns of
source and receiver. The result is compared with a numerical BEM simulation of
the same geometry, using LMS Virtual.Lab witch offers the feature to compute
the room response for dipole and quadrupole excitation.

6.1.1. Spatial sampling of the eigenfunctions of a room

The eigenfrequencies of a rectangular room with rigid walls can be written as

�i = ��

︃︂
�x,i

�x

︂2

+

︂
�y,i

�y

︂2

+

︂
�z,i

�z

︂2

(6.1)

1Note that in order to be in compliance with the conventions used by Gumerov et al.
[Gum03] a different definition for the spherical harmonics are used in this section as follows:

Y m
n (θ, φ) = (−1)m

︁

2n+1
4π

(n−|m|)!
(n+|m|)!

P |m|
n (cos θ)ejmφ.
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6.1. Directivity in wave based room simulation

with the modal numbers �x,i, �y,i and �z,i being all possible combinations of
non-negative integer values and � being the speed of sound [Kut00; Mec08].

The formula for the modal superposition in a room reads as

�(�) = −4��2

�

︁

i

�i(rs)�i(rr)

(�2 − �2
i − j�i�i)�i

(6.2)

with � being the volume of the rectangular room of dimensions �x×�y ×�z, �i
being the damping constant (here �i = 0 is assumed, representing an undamped
room) and�i =

︀︀︀
�2

i (r) d� being a normalization constant for the eigenmodes
[Kut00]. The result constitutes the frequency response of the room transfer path
from a point source at rs to a receiver point at rr. Applying the inverse Fourier
transform this term directly states the room impulse response for the given
transfer path.

The eigenfunctions in the room sampled at a discrete position r = (�, �, �) can
be expressed as frequency response

�i(r) = cos

︂
��x,i

�

�x

︂
cos

︂
��y,i

�

�y

︂
cos

︂
��z,i

�

�z

︂
. (6.3)

For any arbitrary room an infinite number of modes exist, while in practice an
upper frequency limit is defined to restrict the number of modes to calculate.
Inserting these spatially sampled eigenfunctions for both source and receiver
positions in Eq. (6.2), yields the room transfer function for point sources and
point receivers with omnidirectional radiation and omnidirectional sensitivity,
respectively.

6.1.2. Radiation of monopoles and physical multipoles

The free-field sound radiation of a monopole source located in the origin of the
coordinate system can be formulated as

�(r) = j�0���s�(r|0) (6.4)

with �(r|r′) being the Green’s function, r′ the source position and r the obser-
vation point [Wil99]. The radiation of a dipole (here exemplarily oriented in �

direction) can be described as

�(r) = j�0���s�
�

��
�(r|0). (6.5)
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This term differs from the radiation of a monopole by a multiplication of the
dipole distance � and by replacing the Green’s function by its Cartesian deriva-
tive [Wil99]. The physical multipoles of higher orders can thus composed by
multiple differentiations in Cartesian coordinates.

6.1.3. Spherical wave spectrum of physical multipoles

To convert the solution in terms of physical multipoles to a description as spher-
ical wave spectrum (SWS) all possible combinations of Cartesian derivatives of
the eigenfunctions are calculated and sampled at the position of source and re-
ceiver. The spherical wave coefficients for all physical multipoles up to a specific
order are calculated and stored as SWS in a matrix. This matrix describes an
underdetermined system of equations, so multiple solutions exist to represent a
directivity pattern given as SWS by a set of physical multipoles. The transfor-
mation matrix is sparsely populated and a solution of the inverse problem can be
found, e.g. by LU decomposition. This calculation is not unique, so it is possible
to speed up the computation for spherical wave spectra of higher orders, as only
a subset of the derivatives have to be computed to find a set of multipoles for
any arbitrary directivity pattern.

Any compact sound radiator can be described by the multipole expansion �nm as
formulated in Sec. 2.3.4 as superposition of the fundamental singular solutions
of the Helmholtz equation. Defining �

(nx,ny ,nz)
nm as the multipole expansion of

the monopole point source after multiple Cartesian differentiation and using the
abbreviation

�m
n (r) = ℎn(��)�

m
n (�, �) (6.6)

with the vectorized position r = �⃗r � + �⃗θ � + �⃗φ � yields:

︂
�

��

︂nx
︂
�

��

︂ny
︂
�

��

︂nz

�(r) = (6.7)

=

︂
�

��

︂nx
︂
�

��

︂ny
︂
�

��

︂nz ∞︁

n=0

n︁

m=−n

�(0,0,0)nm �m
n (r) (6.8)

=
∞︁

n=0

n︁

m=−n

�
(nx,ny ,nz)
nm �m

n (r) (6.9)

For a point source the multipole expansion can be given as

�(0,0,0)nm = �n0�m0
�0��

2

√
4�

�s. (6.10)

118



6.1. Directivity in wave based room simulation

Gumerov et al. [Gum03] give the Cartesian derivatives of the singular solutions
of the Helmholtz equation as:

�

��
�m
n (r) =

�

2

︀
�m
n,1(r) + �m

n,2(r)
︀

(6.11)

�

��
�m
n (r) =

j�

2

︀
�m
n,2(r)− �m

n,1(r)
︀

(6.12)

�

��
�m
n (r) = � �m

n,3(r) (6.13)

The abbreviations �m
n,1(r), �

m
n,2(r) and �m

n,3(r) are defined as

�m
n,1(r) = �−m−1

n+1 �m+1
n+1 (r)− �mn �

m+1
n−1 (r) (6.14)

�m
n,2(r) = �m−1

n+1 �
m−1
n+1 (r)− �−m

n �m−1
n−1 (r) (6.15)

�m
n,3(r) = �mn+1�

m
n−1(r)− �mn �

m
n+1(r) (6.16)

with

�mn =

⎧
⎨
⎩

︁
(n+1+|m|)(n+1−|m|)

(2n+1)(2n+3)
for � ≥ |�|

0 for � < |�|
(6.17)

and

�mn =

⎧
⎪⎪⎨
⎪⎪⎩

︁
(n−m−1)(n−m)
(2n−1)(2n+1)

for 0 ≤ � ≤ �

−
︁

(n−m−1)(n−m)
(2n−1)(2n+1)

for − � ≤ � < 0

0 for |�| > �

. (6.18)

The sound pressure level for a multipole source that is equivalent to the �th, �th
and �th derivation in �, � and � direction, respectively, is:

�(i,k,l)(r) =

︂
�

��

︂i ︂
�

��

︂k ︂
�

��

︂l

�(0,0,0)(r) (6.19)

=

︂
�

��

︂i ︂
�

��

︂k ︂
�

��

︂l

�
(0,0,0)
00 �0

0(r) (6.20)

=
∞︁

n=0

n︁

m=−n

�(i,k,l)nm �m
n (r) (6.21)
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A linearization of the SWS as described in Sec. 2.4.1 allows to use matrix notation
for the conversion of the physical multipoles into the multipole expansion given
as SH coefficients as

c
(i,k,l) = vecSH

︁
�(i,k,l)nm

︁
. (6.22)

Combining all multiple partial derivatives of the radiated sound pressure of a
point source with a maximum number of up to �max derivatives, this yields the
transformation matrix

M =
︁
c
(i,k,l) ∀ �+ � + � ≤ �max

︁
(6.23)

=
︁
c
(0,0,0)

c
(1,0,0)

c
(0,1,0) . . . c(0,0,nmax)

︁
(6.24)

of size (�max + 1)2 ×
︀nmax

n=0
(2+n)!
2·n!

constituting an underdetermined system of
equations for SH orders greater than one.

Any source directivity given by the coefficients �nm of its SWS can be represented
by superposing the partial derivatives of the monopole source as

c = Md (6.25)

with d being the coefficient vector for all computed partial derivations, which
can be calculated e.g. by an LU decomposition of the matrix M.

With the help of the room impulse responses for the partial derivatives as for-
mulated in Eq. (6.11) to Eq. (6.13) it is thus possible to superpose the room
impulse response for any sound source with arbitrarily given SWS.

6.1.4. Verification of the algorithm

In order to verify the proposed analytic model a numerical simulation is carried
out using the Boundary Element Method (BEM) of LMS Virtual.Lab with a
suitable mesh to simulate a shoebox type room up to a frequency of 1000Hz.
The room is chosen to have the dimensions 80 cm × 50 cm × 30 cm as depicted
in Fig. 6.1, with the source placed at rs = (15 cm, 15 cm, 15 cm) and the receiver
placed in one of the room corners at rr = (0, 0, 0). While the receiver is kept with
omnidirectional sensitivity, the directivity of the source is varied by modification
of the eigenfunctions of the room. The analytic calculation is performed up to a
frequency of 10 kHz.
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6.1. Directivity in wave based room simulation

�x = 80 cm

�z = 30 cm

�y = 50 cm

Figure 6.1.: Rectangular room with solid walls used for the calculation of the
modes and its RTF with respect to varying directivity patterns

The result for the analytic calculation of the monopole source is compared with
the BEM results in Fig. 6.2. It can be seen that both simulation results match
precisely in the evaluated frequency range up to 1 kHz (which regards the upper
limit for the BEM computations due to computational constraints). All peaks
and notches of the room transfer function equal both in frequency and absolute
levels.

Replacing the point source in the analytical model with a dipole source by using
the first Cartesian derivative of the eigenfunctions as

�i,dipole(rs) =
�

��
�i(rs) (6.26)

allows to calculate the frequency response of a dipole source to a monopole
receiver. As Eq. (6.1) is always valid, the eigenfrequencies are identical to the
previous case, while some of the modes are not excited due to the dipole character
of the source, i.e. all modes with the mode number �x,i = 0 are not being
excited when computing the response for the dipole source by applying the first
derivative in �-direction. A comparison with the BEM simulation of that dipole
source as depicted in Fig. 6.3 shows a good match with minor deviations at very
low frequencies below the first room resonance of less than 1 dB. The used BEM
simulation software allows the use of explicit dipole sources, which provides the
same result as the BEM simulation of two monopoles of opposite phase in close
vicinity multiplied with their distance.

Applying the second derivative to the eigenfunction of the monopole yields the
longitudinal quadrupole for the source directivity pattern as

�i,quadrupole(rs) =
�2

��2
�i(rs) (6.27)
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Figure 6.2.: Monopole source and receiver: Comparison of frequency response
functions obtained by analytic model and by numeric simulation
[Pol13b].
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Figure 6.3.: Dipole source in �-direction and monopole receiver: Comparison
of frequency response functions obtained by analytic model and
by numeric simulation [Pol13b].

Inserted in Eq. (6.2) and compared with the corresponding BEM simulation
result shows a match in both frequencies and absolute levels at the resonances,
but with significant differences in-between these peaks. This resulting transfer
function varies for small variations of the upper frequency limit of the analytic
simulation, suggesting a significant influence of the higher modes even in the low
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Figure 6.4.: Longitudinal quadrupole source in �-direction and monopole re-
ceiver: Comparison of frequency response functions obtained by
analytic model with offset correction and by numeric simulation
[Pol13b].

frequency range far from their actual resonance peaks due to hard truncation
at a specific frequency. Correcting the result of the analytic calculation by the
subtraction of a frequency independent offset, yields a good match with the
BEM simulation results as depicted in Fig. 6.4. This compensation is performed
by calculating the frequency response for the first few modes starting at low
frequencies and matching the residual at DC for the full simulation up to higher
modes as described by Dietrich [Die13].

6.2. Directivity in particle based room simulation

In order to obtain faster results over a broad frequency spectrum and complex
room geometries often ray based simulations are used. Current state-of-the-art
software uses a hybrid method, combining e.g. the (deterministic) image source
method [All79] for the direct sound and early reflections with an efficient sta-
tistical path based approach such as ray tracing or related techniques such as
beam-tracing, cone-tracing and radiosity [Kut00; Sch11; Kou12].

Both deterministic and stochastic methods allow to include the directivity of
source and receiver in a straightforward manner. The directional dependence of
the sensitivity can be implemented in ray tracing by a scaling factor for each
emitted ray at the sender side and by a directional sensitive detection sphere on
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the receiver side. As the approach is energy based the magnitude values of the
directivity patterns are sufficient.

Also the image source model can be extended using the directional sensitivity of
source and receiver. Here complex directivity patterns (including phase informa-
tion) can be implemented, which are mirrored together with the source position
in the computation. Working with the spherical wave spectrum of the directivity
functions, the interpolation of the spherical functions to any arbitrary directions
can be performed efficiently.

6.2.1. Implementation for fixed source and receiver directivity

patterns

In common geometrical acoustics models, sources can be modeled as point
sources with optional directivity. For most of the natural sound sources this
is a valid simplification as long as the source can be considered as small from
the listening point. Most symphonic instruments fulfill this requirement when
perceived from the audience [Pel12a].

The directivity pattern of a receiver is implemented using energy histograms in a
general frequency-, time- and direction dependent data structure. A directional
dependent sensitivity can be applied to the simulation, so that the acoustical
transfer paths are simulated for the correct directivity patterns of source and
receiver. The directivity patterns are currently being used in third octave bands
in ITA’s in-house development RAVEN [Sch11].

6.2.2. Implementation for exchangeable directivity patterns

For an alternative implementation a set of directivity functions is calculated
which allows the superposition of any receiver directivity pattern up to a max-
imum spherical harmonic (SH) order. The spherical harmonics as defined in
Eq. (2.29) regard a set of orthonormal basis functions and are thus perfectly
suited to span the function space of arbitrary directivity patterns. As the sim-
ulations are performed in time-domain, the use of a real-valued set of spherical
harmonic functions as used in Zotter [Zot09a] is more efficient. The obtained sim-
ulation results can be used for arbitrary directivity patterns that can be changed
efficiently in the post-processing stage.
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6.2. Directivity in particle based room simulation

For directivity patterns represented as spherical wave spectra as defined in
Sec. 2.3.3, the property of computationally cheap azimuthal variation can be
exploited: Implementing an azimuthal rotation of static directivity patterns (a
common use case for musical instruments and human listeners) the Wigner-D
matrix as defined in Eq. (2.49) simplifies to

�
(n)
k,m(�, 0, 0) = e−jkα (6.28)

and can be used to calculate rotations around the �-axis orders of magnitude
faster than arbitrary rotations around a center point.

For the implementation of both source and receiver directivity pattern the room
acoustic transfer path is depicted in Fig. 6.5. The vectorized SWS of the source
and receiver can both be individually rotated by Wigner-D rotation matrices.
The room can then be described as a transformation matrix mapping the SWS
of the source to the SWS of the receiver at the fixed positions the simulation has
been computed for.

∑ 

Receiver 
directivity

1 x N

Rotation
N x N

× × 

SH to SH

room impulse 
response

N x M

Rotation

M x M

Source 
directivity

M x 1

× × 

Figure 6.5.: Signal chain to simulate a transfer path for arbitrary source and
receiver directivity patterns in RAVEN [Pel12b]

6.2.3. Efficient pre-processing for exchangeable receiver directivity

patterns

For an immersive real-time auralization all computationally expensive operations
can be done in a pre-processing step. This concerns mainly the simulation of
spatial room impulse responses as well as the convolution of several minutes of
recorded solo instruments with long room impulse responses for all combinations
of spherical harmonics basis functions. The real-time operations in the signal
chain of auralization are reduced to the implementation of the head rotation
and the convolution with the HRTFs (which are of short length and thus much
less expensive as convolution with the RIR).

The signal processing chain is depicted in Fig. 6.6. An exchange of the receiver
directivity enables arbitrary HRTFs (e.g. different artificial heads or individual
HRTFs). The remaining operations are simple multiplications of SH coefficients
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and thus real-time capable even for high spatial resolutions. The HRTFs can
be stored in a very compact format by separating the delay and the interaural
time-differences from the impulse response, resulting in small filters with only 65
frequency bins [Pel12a]. Represented as a weighted set of spatially continuous SH
basis functions no explicit interpolation has to be performed. Even a low order
description of the data represents a continuously changing function over varying
angles. For a full real-time auralization the number of sources and the length
of the impulse response do not impact the computational load. The expensive
convolutions for many sources and long room impulse responses are superposed
in the pre-processing stage.
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Figure 6.6.: Signal chain to efficiently simulate the transfer paths of several
sources and a binaural receiver [Pel12b]

The real-time convolution with directivity patterns represented in terms of their
spherical harmonic representation currently allow a maximum order of �max ≈ 20

on a standard workstation computer (e.g. Intel Core2 3 GHz) using a buffer size
of 256 samples. The auralization can be scaled down for slower machines by only
using a subset of the SH coefficients, limiting the maximum order used.

6.3. Summary directivity patterns in room acoustic simulation

With the presented methods arbitrary source and receiver directivity patterns
can be implemented in room acoustic simulation algorithms. For particle based
methods the implementation can be done in a straightforward manner by apply-
ing a complex direction dependent sensitivity. The directivity patterns of musical
instrument recordings (cf. Sec. 3) have been implemented in the room simulation
software RAVEN [Sch11]. The spherical Fourier transform can be also used to
interpolate the directivity patterns onto a rectangular grid as required for the
exchange of such data between different implementations [Wef10].

Using a sequential approach it is possible to pre-calculate the room acoustics for
a set of sources and transfer paths to a receiver point with arbitrary directivity.
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These receiver directivity patterns can then be changed in the post-processing
stage. This is in particular advantageous for complex sound scenes using a large
number of sources to avoid the need of recalculation of the entire scene for
a change in the receiver directivity pattern. This allows the flexible exchange
of the receiver directivity patterns on perviously simulated acoustic scenarios,
allowing to e.g. implement free head-rotations or the use of individual HRTFs
in the post-processing stage after having finished the computationally expensive
part of the room simulation.

In wave based simulation methods directivity pattern have been implemented by
extending the analytical calculation of rooms as described by Kuttruff [Kut00].
Using the Cartesian derivatives of the eigenfunctions instead of the eigenfunc-
tions itself, the room transfer functions (RTF) can be calculated for the set of
physical multipoles (such as monopole, dipole or higher order multipoles) in all
possible orientations. These physical multipoles allow to synthesize any arbitrary
directivity pattern given as spherical wave spectrum (SWS) using LU decompo-
sition, so the RTF can be found for any pair of arbitrary source and receiver
directivity using a superposition approach.
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7
Conclusions and Outlook

In this thesis a methodology for the implementation of realistic source and re-
ceiver directivity patterns in room acoustical measurements and simulations is
described. The procedure is realized in two steps: Firstly, the directivity pat-
terns of the desired sound sources and receivers are obtained and, secondly, the
room response for the specific pair of source and receiver directivity patterns is
derived using either measurement or simulation. The directivity synthesis can
be explicitly calculated for the desired target directivity patterns or implicitly
as a superposition result of a suitable set of general directivity patterns.

In order to obtain the source directivity patterns of musical instruments, a set
of instruments have been acoustically examined using a surrounding spherical
microphone array for simultaneous recording. As the excitation of natural sound
sources is not repeatable in a precise manner, these directivity patterns cannot
be measured with a sequential measurement method. Due to the relative low
spatial resolution of such arrays, spatial undersampling commonly occurs for
higher frequencies, especially when the actual sound source is not positioned in
the geometric center of the microphone array.

For the analysis of the recorded directivity patterns two methods have been ap-
plied: Capturing time-averaged directivity patterns for an instrument and eval-
uating the complex radiation patterns (including phase relations) obtained indi-
vidually for all partial tones of all played pitches. The former approach is com-
monly found in literature [Vig07; Sch11] and employs usually longer recordings
of several notes or pieces of music. Spatially and spectrally smooth directivity
patterns can be derived that are given as amplitudes or levels without phase re-
lations. Using these averaged directivity data as synthesis target, either a linear
approach by choosing an arbitrary phase can be followed or a nonlinear opti-
mization approach that allows to derive arbitrary phase values (and yield results
more closer to the target) [Pol10a].

Tonal musical instruments can have different directivity patterns at identical
frequencies that are excited from different partial tones of different pitches. The
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directivity of these tones can be studied after recording the radiation with mag-
nitude and phase information for each played pitch. In order to verify whether
the directivity of a natural source is only depending on frequency, the cross-
correlation coefficients for all pairs of directivity patterns have been calculated
and analyzed. The woodwind instruments show remarkable patterns having fre-
quency blocks of high correlation coefficients spectrally adjacent to blocks of low
coefficients. An explanation can be found in the geometry of the woodwinds,
causing abrupt changes at some tones in the chromatic scale. Other instrument
types behave more similar to purely frequency dependent radiators. The Brass
instruments, e.g., show frequency dependent directivity patterns independent of
the played pitch that are well suited for obtaining a frequency-dependent average
of the directivity.

On the receiver side of the acoustical transfer path, measured or simulated head-
related transfer functions (HRTFs) can be used as directivity pattern, being able
to deliver a binaural representation for rooms acoustical scenes. From literature
on HRTFs it can be concluded that the required spatial resolution is significantly
higher on the receiver side as humans are able to localize sound with remark-
ably high accuracy [Bla97]. These high-resolution HRTFs can be measured using
different setups, focusing on either highest possible resolution (for dummy head
measurements) or on a considerable fast measurement procedure (for HRTFs
measured on human subjects). Alternatively, arbitraty directivity patterns of
specific recording microphones can be implemented on the receiver side for the
measurement of directivity dependent room impulse responses.

To include the desired directivity patterns in room acoustical measurements
these radiation patterns have to be present at the time of the measurement.
Commercial products for the process of sound capturing are available, so the fo-
cus of this work has been set to develop spherical loudspeaker arrays that can be
used for room transfer function (RTF) measurements. The relatively large mem-
brane sizes of the loudspeaker array results in a rather low maximum spherical
harmonics order. Using a sequential measurement approach, however, allows to
achieve a much higher spatial resolutions. As proof of concept measurements
of RIRs have been performed sequentially using a source of known radiation in
order to calculate RIRs for arbitrary source directivity patterns. In the imple-
mented example, the measurement duration is only a few minutes, so significant
effects from time variances can be disregarded.

A novel measurement device for this method has been designed recently by Klein
[Kle12a], which allows to synthesize directivity patterns of SH orders up to 23
using sequential measurements, as long as the requirements on the LTI behavior
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of the whole system are fulfilled. While simulated room impulse responses can
be derived with almost arbitrary high resolution, measurement results are more
prone to errors due to possible changes of the physical constants such as air
temperature and humidity. Optimized compact spherical loudspeaker arrays are
used to obtain room response measurements with respect to directivity patterns
of high resolution in a comparably short measurement duration of a few hours
for such a massive number of RIR measurements.

Directivity patterns of sources and receiver can also be applied in room acous-
tical simulation software. In this work methods have been derived to include
arbitrary directivity patterns in both wave based simulations and particle based
simulations. By using a pre-calculation of the room responses for a set of general
directivity patterns, the individual directivity patterns can be derived computa-
tionally efficient by superposition in the post-processing stage.

An outlook for the future is certainly the measurement of RTFs with directivity
patterns implemented on both sender and receiver side, using a combination
of an optimized spherical sound source and a spherical microphone array. As
these measurement usually take a considerable amount of time, the trade-offs
between time-invariance of the room and obtainable spatial resolution have to be
discussed and psychoacoustically evaluated. Employing a block sparsity approach
might help to find well suited data for the synthesis that has been recorded within
a relative small time frame, so that time-variances can be minimized. This can
be done by using only a subset of the measurement results depending on the
frequency range and this the required spatial resolution. In future also listening
tests have to be employed to derive guidelines for the required spatial resolution
of both source and receiver directivity patterns and for the required degree of
accuracy of the RTFs with respect to the directivity patterns.

The derived theoretic framework is useful for a wide range of acoustical ap-
plications. As the presented methodology separates the implementation of the
source, the receiver, and the simulated room, clear interfaces exist to be able
to exchange the components individually. These interfaces have the potential to
allow the combination of different measurement and simulation results (of source
directivity, receiver directivity, or the resulting room response), to compare the
results from different scientific institutions for any of these measures. Future re-
search using psychoacoustics will allow to judge the subjective significance for
humans regarding the additional parameters of source and receiver directivity in
room acoustical measurements and simulations.
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A
Appendix

A.1. Geometry of the used measurement devices

In this section the used measurement devices are depicted and briefly described.
For the fixed arrays the geometry information is given in a table.

A.1.1. Surrounding flexible array (turntable and arm)

The computerized arm and turntable measurement system allows flexible posi-
tioning of both azimuth and elevation at the upper part of a full sphere. The
elevation angles are limited to approx. �max = 120∘ measured at a radius of ap-
prox. 1.75 m – 2.1 m, depending on the revision of the arm as used over the
recent years. Several optimizations of the measurement setup as depicted have
been performed since the first construction in 2001. In the current stage of its
evolution the trellis arm construction is made of highly stiff carbon material.
In comparison to the old, slightly flexible trellis structure made from brass this
construction offers much higher positioning accuracy.

Usually rectangular samplings (e.g. the Gaussian sampling or an equiangular
sampling) are used for the positions as they allow slightly faster approaching
of the subsequent measurement points. The system can be used to measure
both source and receiver directivity, attaching a microphone (cf. Fig. 5.8) or
a loudspeaker (cf. Fig. 4.2) at the end of the arm. The sequential arm and
turntable measurement system can thus be used for the measurement of HRTFs
from artificial heads as described in Sec. 4.1.2 or directivity patterns of technical
sound sources shown in Sec. 5.3.3.
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A.1.2. Surrounding spherical LS array (HRTF arc)

The lightweight HRTF arc measurement system has been designed by Masiero
[Mas12] and is optimized for the fast measurement of individual HRTFs. It con-
sists of 40 loudspeakers arranged in a circular arc, for details see Sec. 4.1.3.

Ch.Nr. r θ φ

20 1m 6.52∘ 0∘

19 1m 13.93∘ 0∘

18 1m 21.35∘ 0∘

17 1m 28.77∘ 0∘

16 1m 36.19∘ 0∘

15 1m 43.61∘ 0∘

14 1m 51.03∘ 0∘

13 1m 58.46∘ 0∘

12 1m 65.88∘ 0∘

11 1m 73.30∘ 0∘

10 1m 80.72∘ 0∘

09 1m 88.14∘ 0∘

08 1m 95.57∘ 0∘

07 1m 102.99∘ 0∘

06 1m 110.41∘ 0∘

05 1m 117.83∘ 0∘

04 1m 125.26∘ 0∘

03 1m 132.68∘ 0∘

02 1m 140.10∘ 0∘

01 1m 147.52∘ 0∘

Ch.Nr. r θ φ

21 1m 2.84∘ 180∘

22 1m 10.22∘ 180∘

23 1m 17.64∘ 180∘

24 1m 25.06∘ 180∘

25 1m 32.48∘ 180∘

26 1m 39.90∘ 180∘

27 1m 47.32∘ 180∘

28 1m 54.74∘ 180∘

29 1m 62.17∘ 180∘

30 1m 69.59∘ 180∘

31 1m 77.01∘ 180∘

32 1m 84.43∘ 180∘

33 1m 91.86∘ 180∘

34 1m 99.28∘ 180∘

35 1m 106.70∘ 180∘

36 1m 114.12∘ 180∘

37 1m 121.54∘ 180∘

38 1m 128.97∘ 180∘

40 1m 143.81∘ 180∘

39 1m 136.39∘ 180∘
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A.1.3. Surrounding spherical microphone array (24 channels)

The surrounding microphone array has been used by Lentz [Len07] to derive di-
rectivity patterns of musical instruments using an energetic averaging approach.
The resulting (magnitude only) data is used for the directivity synthesis using a
dodecahedron loudspeaker in Sec. 5.4.1.

Ch.Nr. r θ φ

01 1.56m 0∘ 0∘

02 1.56m 45∘ 0∘

03 1.56m 45∘ 45∘

04 1.56m 45∘ 90∘

05 1.56m 45∘ 135∘

06 1.56m 45∘ 180∘

07 1.56m 45∘ 225∘

08 1.56m 45∘ 270∘

09 1.56m 45∘ 315∘

10 1.56m 90∘ 0∘

11 1.56m 90∘ 45∘

12 1.56m 90∘ 90∘

13 1.56m 90∘ 135∘

14 1.56m 90∘ 180∘

15 1.56m 90∘ 225∘

16 1.56m 90∘ 270∘

17 1.56m 90∘ 315∘

18 1.56m 135∘ 0∘

19 1.56m 135∘ 60∘

20 1.56m 135∘ 120∘

21 1.56m 135∘ 180∘

22 1.56m 135∘ 240∘

23 1.56m 135∘ 300∘

24 1.1m 180∘ 0∘
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A.1.4. Surrounding spherical microphone array (32 channels)

The large surrounding microphone array has been designed for accurate mea-
surements of musical instrument directivity patterns, cf. Sec. 3.1.3 and Behler
et al. [Beh08]. The calibration of the channels is described in Appendix A.2.1,
the geometry of the single speakers has been improved to minimize the impact
of the other objects as stated in Appendix A.2.2.

Mic.Nr.a r θ φ

01 (01) 2.06m 37.38∘ 36∘

02 (09) 2.06m 37.38∘ 108∘

03 (17) 2.06m 37.38∘ 180∘

04 (18) 2.06m 37.38∘ 252∘

05 (25) 2.06m 37.38∘ 324∘

06 (02) 2.06m 79.19∘ 36∘

07 (10) 2.06m 79.19∘ 108∘

08 (19) 2.06m 79.19∘ 180∘

09 (20) 2.06m 79.19∘ 252∘

10 (26) 2.06m 79.19∘ 324∘

11 (03) 2.06m 100.81∘ 72∘

12 (11) 2.06m 100.81∘ 144∘

13 (21) 2.06m 100.81∘ 216∘

14 (27) 2.06m 100.81∘ 288∘

15 (04) 2.06m 100.81∘ 0∘

16 (05) 2.06m 142.62∘ 72∘

17 (12) 2.06m 142.62∘ 144∘

18 (22) 2.06m 142.62∘ 216∘

19 (28) 2.06m 142.62∘ 288∘

20 (06) 2.06m 142.62∘ 0∘

21 (13) 2.085m 0∘ 0∘

22 (29) 2.085m 63.43∘ 0∘

23 (07) 2.085m 63.43∘ 72∘

24 (14) 2.085m 63.43∘ 144∘

25 (23) 2.085m 63.43∘ 216∘

26 (30) 2.085m 63.43∘ 288∘

27 (15) 2.085m 116.57∘ 108∘

28 (24) 2.085m 116.57∘ 180∘

29 (31) 2.085m 116.57∘ 252∘

30 (32) 2.085m 116.57∘ 324∘

31 (08) 2.085m 116.57∘ 36∘

32 (16) 2.085m 180∘ 0∘

aThe channel numbers of the recording
setup are given in brackets
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A.1.5. Spherical loudspeaker array (12 channels, midrange device)

The spherical loudspeaker array in shape of a dodecahedron has been constructed
to allow multichannel excitation. In the following table the data of the mid-range
loudspeaker is given. For higher frequencies a 12 channel tweeter dodecahedron
with a diameter of 10 cm (instead of 30 cm) is used. The dodecahedron array is
used for the synthesis of directivity patterns, cf. Sec. 5.3.1 and Sec. 5.4.1.

Ch.Nr. rmem r θ φ

01 5.2 cm 15 cm 37.38∘ 0∘

02 5.2 cm 15 cm 37.38∘ 120∘

03 5.2 cm 15 cm 37.38∘ 245∘

04 5.2 cm 15 cm 79.19∘ 60∘

05 5.2 cm 15 cm 79.19∘ 180∘

06 5.2 cm 15 cm 79.19∘ 300∘

07 5.2 cm 15 cm 100.81∘ 0∘

08 5.2 cm 15 cm 100.81∘ 120∘

09 5.2 cm 15 cm 100.81∘ 240∘

10 5.2 cm 15 cm 142.62∘ 60∘

11 5.2 cm 15 cm 142.62∘ 180∘

12 5.2 cm 15 cm 142.62∘ 300∘

For a better distribution of the loudspeakers the dodecahedron device as shown
above was tilted by 38.5∘ around the �-axis and 16.2∘ around the �-axis, resulting
in a modified set of membrane positions. This array system is used in Sec. 5.4.2
for the synthesis of room impulse responses for arbitraty source directivity.

Ch.Nr. rmem r θ φ

01 5.2 cm 15 cm 50.91∘ 29.14∘

02 5.2 cm 15 cm 22.97∘ 145.25∘

03 5.2 cm 15 cm 42.43∘ 297.15∘

04 5.2 cm 15 cm 77.25∘ 95.12∘

05 5.2 cm 15 cm 66.76∘ 221.72∘

06 5.2 cm 15 cm 94.29∘ 338.84∘

07 5.2 cm 15 cm 113.24∘ 41.72∘

08 5.2 cm 15 cm 85.71∘ 158.84∘

09 5.2 cm 15 cm 102.75∘ 275.12∘

10 5.2 cm 15 cm 137.57∘ 117.15∘

11 5.2 cm 15 cm 129.09∘ 209.14∘

12 5.2 cm 15 cm 157.03∘ 325.25∘
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A.1.6. Spherical loudspeaker array (28 channels, SLAYER)

The spherical loudspeaker array SLAYER1 has been designed by Klein [Kle12a]
in order to facilitate broadband excitation both in temporal spectrum and spher-
ical wave spectrum, cf. Sec. 5.3.2. The measured directivity of this device is used
for the synthesis of HRTFs in Sec. 5.4.3. Both source and target directivity pat-
terns have been measured using the arm and turntable system as described in
Appendix A.1.1.

Ch.Nr. rmem r θ φ

01 5.25 cm 20 cm 48.56∘ 75∘

02 5.25 cm 20 cm 70.12∘ 310∘

03 5.25 cm 20 cm 109.88∘ 235∘

04 5.25 cm 20 cm 131.44∘ 105∘

05 3.2 cm 20 cm 11.02∘ 15∘

06 3.2 cm 20 cm 25.30∘ 180∘

07 3.2 cm 20 cm 39.65∘ 345∘

08 3.2 cm 20 cm 54.03∘ 160∘

09 3.2 cm 20 cm 68.42∘ 15∘

10 3.2 cm 20 cm 82.81∘ 180∘

11 3.2 cm 20 cm 97.19∘ 0∘

12 3.2 cm 20 cm 111.58∘ 165∘

13 3.2 cm 20 cm 125.97∘ 17∘

14 3.2 cm 20 cm 140.35∘ 195∘

15 3.2 cm 20 cm 154.70∘ 330∘

16 3.2 cm 20 cm 168.98∘ 120∘

17 2.2 cm 20 cm 21.02∘ 252∘

18 2.2 cm 20 cm 25.30∘ 110∘

19 2.2 cm 20 cm 39.65∘ 30∘

20 2.2 cm 20 cm 54.03∘ 195∘

21 2.2 cm 20 cm 68.42∘ 345∘

22 2.2 cm 20 cm 82.81∘ 150∘

23 2.2 cm 20 cm 97.19∘ 30∘

24 2.2 cm 20 cm 111.58∘ 195∘

25 2.2 cm 20 cm 125.97∘ 345∘

26 2.2 cm 20 cm 140.35∘ 150∘

27 2.2 cm 20 cm 154.70∘ 33∘

28 2.2 cm 20 cm 160.98∘ 55∘

1Spherical Loudspeaker Array Yielding Exceptional Results
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A.2. Implementation of array measurements

In this section the calibration of a spherical microphone array as used for the
measurements of tone recordings is described. Improvements of the design for
the surrounding array are described, showing an analysis of the individual sensor
directivity patterns.

A.2.1. Calibration of surrounding spherical microphone array

A necessary prerequisite of acoustical measurements is the calibration of the
whole measurement chain. For the mere use of determining the directivity pat-
terns an absolute calibration is not necessarily required. Nevertheless, fully cal-
ibrated data allows to obtain information of the exact levels that are recorded.

Using the concept of the calibrated measurement chain formulated by Dietrich
[Die13] the calibration procedures can be derived. As different input sensitivities
might be required for compensating the differing sound power of different musi-
cal instruments, the possibility of gain adjustments is crucial in order to avoid
clipping artifacts or a too small signal-to-noise ratio for the recording of high
amplitudes or small amplitudes, respectively.

Before the recording the adjustable gain of the used preamplifiers have been ad-
justed to sensible positions. During the measurement session these levels have
constantly been monitored in order to avoid both noise amplification and clip-
ping. For loud instruments such as the tuba the levels had to be lowered to avoid
clipping artifacts, for subsequent low volume instuments the sensitivity had to
be increased afterwards. After each of these changes a generated measurement
signal has been applied to all of the 32 input channels using a shortcut from the
defined output to the input channels.2 The recorded signal gives the sensitivity
with respect to the defined output signal and yields 32 individual sensitivity
values that are independent of frequency and quantify precisely the gain settings
of the pre-amplifier, used later for the total calibration of the system.

The calibration has been finalized with the measurement of one of the most
accessible measurement sensor. The microphone on the south pole of the array
has been chosen, as it allows the use of the pistonphone in a stable position as
of its vertical alignment. This value allows to calculate the absolute sensitivity
from the relative sensitivities determined before.

2The measurement has been repeated four times as the break-out cable could feed 8 of
the 32 channels.
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A.2.2. Optimizing the directivity of the array sensors

The sensors of the measurement arrays used have specific directivity patterns,
yielding a directional dependent sensitivity. In order to avoid large deviations
from the angle of incidence, a rather omni-directional directivity is beneficial,
at least in the directions of interest. An optimization has been performed for
the surrounding microphone array (cf. Appendix A.1.1) and the surrounding
loudspeaker array (cf. Appendix A.1.2).

Sensors of surrounding microphone array

In Fig. A.1a the maximum deviation of all sensitivity values within a certain cone
of angles around the on-axis result are plotted. The uncertainties caused by the
variance of the directivity can be quantified with this plot. At some frequencies
such as 8 and 11 kHz deviations of up to 10 dB can be observed if the array is used
without additional absorbers. In this section the modifications of the microphone
array are stated explicitly, yielding much smoother directivity patterns for the
microphone elements as visible in Fig. A.1b.

Optimization of surrounding spherical microphone array

The calibration shows a dependence on the angle of sound incidence. In order
to separate the influence of the housing of the microphones, a reciprocal BEM
simulation has been performed. The geometry of the microphone in the mounting
situation is simulated with a point source at the opening of the microphone
membrane, allowing to calculate the transfer path from any point in space to the
microphone. In Fig. A.2 the logarithmic directivity value of a single microphone
is plotted for the angles of sound incidence of 0∘, 20∘ and 40∘ with respect
to the on-axis radiation. The on-axis sensitivity shows a remarkable variation,
much bigger than the commonly used rules-of-thumb suggest. The artifacts begin
already at rather low frequencies of approx. 2 kHz, where the objects are still
small compared to the wavelength. As the fiber glass sticks and the connectors
have diameters from up to 1 cm, this influence is expected to be caused by the
high symmetry of the stick geometry. For a different angle of sound incidence,
the comb filter effect visible in Fig. A.2 is reduced.

In order to confirm the BEM simulation, the array microphone has been mea-
sured with and without suitable modifications to increase the smoothness of their
directional sensitivity. The measurement data is obtained for angles up to 45∘
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(a) Without absorber

(b) With absorber

Figure A.1.: Maximum SPL deviation from the on-axis response of an array
microphone with and without baffle absorber.

(a) Mesh used for simulation
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(b) Angle dependent sensitivity [Pol09a]

Figure A.2.: Boundary-Element-Method simulation of the angle dependent mi-
crophone sensitivities as used in the surrounding spherical micro-
phone array
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from the on-axis direction, corresponding roughly to a maximum deviation of
1.5 m from the geometric center of the array as used for the recording of musical
instruments.

In Fig. A.3 the logarithmic directivity for a set of angular deviation from the
on-axis response of the original loudspeaker and one of the test version are de-
picted, showing a much smoother sensitivity especially in the on-axis direction.
The smooth frequency response is achieved by the use of a foam absorber that
can be attached to the microphone housing. Several modifications of the micro-
phone housing have been tested (e.g. a drop-shaped solid chassis and several
foam absorbers of different shapes and sizes using Polyurethane (PU) foam and
Basotect3 foam). The depicted absorber consists of an attachable cylindrical
block of Basotect with grated edges, as depicted in Fig. A.4.

Directivity analysis of loudspeaker array

The original setup as developed by Masiero [Mas12] and an improved version
using a foam absorber made of Basotect are depicted in Fig. A.5.

The directivity pattern of the loudspeaker consists of its original directivity and
the reflections from the physical objects in vicinity of the loudspeaker. While the
influence of objects located at a distance of greater than approx. one meter from
the loudspeaker can be eliminated applying a suitable time window, the reflec-
tions at the immediate neighbors of the actual speaker have to be minimized.

In Fig. A.6a the part of the loudspeaker arc from both setups is analyzed with
and without neighboring loudspeakers. The setup is depicted on the left, while
the resulting deviations from the on-axis radiation are depicted on the right. For
these plots the directivity patterns have been measured on a Gaussian sampling
of order �max = 35 limited to the range of � ≤ 22∘ with the axis of the loud-
speaker pointing to the positive �-axis. The highest deviation of the measured
levels between on-axis result and all points with a maximum angular deviation
are plotted in the contour plot on the right. The color is segmented in intervals
of 0.5 dB deviation from the on-axis result. It can be seen that for the origi-
nal setup the maximum deviation is approx. 4 dB up to frequencies of around
15 kHz, if assuming 14∘ as the required angular limit for even sound distribution,
cf. Fig. 4.4.

3Basotect is an optimized foam material for the use as acoustic absorber. Further infor-
mation can be found at http://www.basf.com/group/corporate/de/brand/BASOTECT
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(a) Without absorber
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(b) With absorber

Figure A.3.: Directivity value of array microphone with and without baffle
absorber.

ü
Ä

°

(a) Front view
ü

Ä

°

(b) Back view

Figure A.4.: Absorber for obtaining a smooth directivity pattern for the sen-
sors of the microphone array. Here the version for the 5-stick ele-
ment is depicted.
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(a) Original design (b) Improved design

Figure A.5.: Original transducer design used and improved version using a
foam absorber as used in the measurement arc for fast HRTF
measurements.

The directivity pattern of the same loudspeaker without its neighbors is depicted
in Fig. A.6b. The influence on the sound distribution onto the area of interest
is enhanced significantly, with deviations for less than 1 dB up to frequencies of
approx. 10 kHz. In the higher frequency rage the presence of the other transduc-
ers does not change the encountered levels, suggesting that the directivity of a
single transducer is already so strongly focused that the interference due to the
neighboring transducer chassis is not significant anymore.

As the fast measurement method of HRTFs cannot be performed without us-
ing multiple speakers, the frequency response is optimized by using acoustical
absorbers around the loudspeaker chassis.

In Fig. A.6c the single loudspeaker response is depicted for the same speaker with
an acoustic absorber attached. The contour plot shows very similar directivity
patterns as the single speaker without any absorber. Only the resonances seem to
be a little bit more smooth. Furthermore a noticeable boost for low frequencies
could be discovered when using the baffles made from absorber foam. As the
HRTFs are referenced, this frequency dependent amplitude variation only has a
minor effect, but enhances the SNR in low frequency marginally.

Lastly the effect of the absorbers is tested on the HRTF arc as used for measure-
ments, depicted in Fig. A.6d. While the negative influence of the loudspeaker
is still visible, a clear enhancement can be achieved using the absorbing foam.
Especially the improvement in the frequency range between 2 kHz and 8 kHz is
expected to be highly relevant, as for a correct interference pattern the intensity

144



A.2. Implementation of array measurements

0 5 10 15 20
Frequency [kHz]

-15°

-10°

-5°

0°

5°

10°

15°

A
n
g
le

 f
ro

m
 o

n
-a

x
is

6

4

2

0

M
o
d
u
lu

s 
[d

B
]

(a) 12 drop shaped loudspeaker chassis mounted on the HRTF measurement arc
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(b) Single drop shaped loudspeaker chassis mounted on the HRTF measurement arc

0 5 10 15 20
Frequency [kHz]

-15°

-10°

-5°

0°

5°

10°

15°

A
n
g
le

 f
ro

m
 o

n
-a

x
is

6

4

2

0

M
o
d
u
lu

s 
[d

B
]

(c) Single loudspeaker mounted in absorber on the HRTF measurement arc
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(d) 12 loudspeakers mounted in absorbers on the HRTF measurement arc

Figure A.6.: Maximum SPL deviation from the on-axis response of a single
loudspeaker in different mounting setups.
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of the wave arriving at the ear cannel with shoulder reflection and using the
direct path has to be identical.

A.3. Spherical datasets

A.3.1. Musical instrument recordings (Berlin, 2009)

The following modern instruments have been measured in a collaboration with
the Audio Communication Group of TU Berlin [Beh12]:

∙ Woodwinds (Bassoon, Contrabassoon, Oboe, English horn, Clarinet,
Bass clarinet, Alto saxophone, Tenor saxophone, Western concert Boehm
flute)

∙ Brass instruments (Trumpet, Tenor trombone, Bass trombone, Tenor
saxophone, Tuba, French horn)

∙ Percussion (Timpani)

∙ Singer (Soprano)

∙ String instruments (Viola, Violin, Cello, Double-action pedal harp, Con-
trabass, Classical guitar)

From the group of historical instruments additionally these instruments have
been measured:

∙ Woodwinds (Basset horn, Bassoon, Western concert Boehm flute, Clar-
inet, Oboe)

∙ Brass instruments (Bass trombone, French horn, Tenor trombone,
Trumpet)

∙ String instruments (Contrabass, Violin, Viola, Cello)

The modern instruments have been played mostly by members of the German

Symphony Orchestra Berlin joined by few other professional orchestras. The his-
torical instruments have been played by members of Akademie für Alte Musik

Berlin [Det10; Krä10]. The microphone array has been used without the en-
hancements using a specialized absorber as described in Appendix A.2.2.
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A.3.2. HRTFs measurement data at different ranges

The measurement data used for the range extrapolation has been obtained at
radii of 200 cm and a set of closer distances, measured from Lentz [Len07] in 2001
and in 2004, respectively. The setup most likely has been modified and a direct
comparison of the measurement data does not show comparable levels of the
HRTFs. Even the data obtained on different ranges in one measurement session
from 2004 shows some gain variances in the data, presumably to make best use of
the available headroom. In order to resolve this issue the DTF as mentioned by
Middlebrooks [Mid99] have been calculated. Instead of the correlation coefficient,
the normalized correlation coefficients are used, allowing to perform the analysis
of the data without the need of performing extensive new measurement sessions.

A.3.3. SLAYER Radiation

The results of the directivity measurements of the optimized spherical loud-
speaker array SLAYER device (cf. Appendix A.1.6) are visualized here exem-
plarily for one of each membrane types. The measurement has been performed
using the computerized positioning system as described in Appendix A.1.1 and
depiced in Fig. 5.8. A Gaussian quadrature sampling scheme of order �max = 82

as described in Sec. 2.5.2 has been used as measurement grid.
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(a) Analytic simulation (b) Measured radiation

Figure A.7.: Measured and simulated directivity pattern of a 5 inch transducer
mounted on a sphere. Center of membrane marked with a black
cross.
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(a) Analytic simulation (b) Measured radiation

Figure A.8.: Measured and simulated directivity pattern of a 3 inch transducer
mounted on a sphere. Center of membrane marked with a black
cross.
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(a) Analytic simulation (b) Measured radiation

Figure A.9.: Measured and simulated directivity pattern of a 2 inch transducer
mounted on a sphere. Center of membrane marked with a black
cross.
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A.4. Software tools, data processing and visualization

A.4.1. ITA-Toolbox for Matlab

All acoustical measurements used for this thesis have been performed using the
ITA-Toolbox for Matlab, an open source project4 covering a broad spectrum
of useful routines for acoustic engineers. The ITA-Toolbox project stated as an
initiative to develop a common code base for the employees of the Institute of
Technical Acoustics (ITA) of RWTH Aachen University. The project quickly
became more robust and more diverse, so that for most of the fundamental func-
tions used for audio and acoustic engineering well tested, stable solutions exist.
Nowadays the ITA-Toolbox can be regarded as standard software toolkit at ITA.
It allows the implementation of the full signal chain, including measurements us-
ing standard sound cards and various post-processing routines using Matlab. In
scope of the work presented in this thesis a package that implements the funda-
mental concepts of processing in the spherical harmonic domain has been added
to ITA-Toolbox. It implements the calculation of e.g. the spherical harmonics,
spherical Hankel and Bessel functions, plotting functions to visualize data in the
spatial or Fourier domain and the sampling schemes of all array systems used
for this thesis.

A.4.2. Data formats (HDF5, OpenDAFF)

For very high resolution data the usual way of storing data from the ITA-Toolbox
results in a very large number of files allowing fast access only when retrieving the
data for a single channel. As an alternative for fast random access the Hierarchi-

cal Data Format (HDF) has been used to store complete datasets in single files.
Its current version (HDF5) provides an open-source file format and library for
storing and managing data in large files. It is “designed for flexible and efficient
I/O and for high volume and complex data”5. The new SOFA format for storing
spatial audio data also employs HDF5 as fundamental data container [Maj13b].
As an alternative, OpenDAFF can be employed as described in Sec. 2.5.4, as
long as the requirements on the used sampling scheme are fulfilled [Wef10].6

4http://www.ita-toolbox.org
5http://www.hdfgroup.org/HDF5
6The current version of OpenDAFF supports only rectangular equiangular sampling

schemes, as described in Sec. 2.5.1 and Sec. 2.5.4.
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A.4.3. Implementation of Balloon plots

For the visualization of directivity patterns many plot types can be employed
and prove useful for specific applications. A very descriptive visualization (espe-
cially for interactive applications) is the balloon plot, depicting the magnitude
of a spherical function as the radius of a continuous balloon plot. An additional
dimension of the data can be visualized using the color of the surface of this
balloon. Usually spherical measurement results of a physical quantity can be
plotted using the following values [Pol14b].

The magnitude � , the sound pressure level � and the angular phase � for a
directivity described as spherical pressure function �(�, �) are calculated:

� = |�(�, �)| (A.1)

� = 20 log10

︂
|�(�, �)|

max (|�(�, �)|)

︂
dB +∆� (A.2)

� = arg (�(�, �)) (A.3)

As the logarithmic scale is not bound, an effective dynamic range ∆� is chosen
as the maximum level and all values below 0 dB are truncated to a radius of
zero. Various plot types can be composed from these physical quantities by a
variation of the radius � and the color �, with the following plots supported by
the developed software:

∙ Complex balloon plot (� =� , � = �)

∙ Log. complex balloon plot (� = �, � = �)

∙ Magnitude balloon plot (� = � =�)

∙ Log. magnitude balloon plot (� = � = �)

∙ Magnitude on unit sphere (� = 1, � =�)

∙ Log. magnitude on unit sphere (� = 1, � = �)

∙ Phase on unit sphere (� = 1, � = �)

These plot types allow an efficient graphical analysis of spherical data. The used
colormaps can be adjusted to express either a linear scale (such as amplitude)
or a circular scale (such as phase) that have identical colors for the starting and
ending point of the colormap.
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Balloon plots of a rectangular sampling scheme can be implemented by the calcu-
lation of small polygons connecting four vertices. A more general representation
that also works for irregular sampling schemes is implemented by triangulariza-
tion. Hereby the intersection of all discrete angles with the unit sphere is defined
as points in the 3D space. Then a triangularization of the data is performed by
the computation of the convex hull covering all sampling points in order to get
a complete closed balloon.

A.4.4. Visual quality assessment of spherical data

Working with large sets of scientific data is challenging in terms of how to obtain
a general understanding of the data to be able to verify the accuracy and quality
of the obtained results. Visual evaluation of large sets of measurement data
requires tools that can be employed. Even if mathematical methods are expected
to yield more precise results, a visual check can be beneficial to rapidly check
the data of e.g. acoustical measurements and trace down some of the systematic
or unsystematic errors.

The visualization package has been implemented in Python using the open source
package VTK via MayaVi as API. The data is read using the package h5py which
allows fast access of data stored in the HDF5 format. Details of the implementa-
tion can be found in Pollow et al. [Pol14b]. The result is a graphical user interface
as depicted in Fig. A.10 to load and analyze sets of directivity data.

153



CHAPTER A. Appendix

F
ig

u
r
e

A
.1

0
.:

S
creen

sh
ot

of
G

U
I

for
d
ata

visu
alization

.
In

th
is

exam
p
le

th
e

au
th

or’s
left

ear
H

R
T

F
as

m
easu

red
w

ith
th

e
setu

p
d
escrib

ed
in

A
p
p
en

d
ix

A
.1.2

is
p
lotted

as
com

p
lex

b
alloon

p
lot

at
a

frequ
en

cy
of

1
kH

z.

154



Glossary

List of Acronyms

BEM Boundary Element Method

CAVE Cave Automatic Virtual Environment

CTC Cross-Talk Cancellation

DC Direct Current

DFT Discrete Fourier Transform

DSHT Discrete Spherical Harmonic Transform

DTF Directional Transfer Function

FEM Finite Element Method

FFM Fast Multipole Method

FFT Fast Fourier Transform

FT Fourier Transform

FTDS Fourier Transform of Discrete time Signals

HDF5 Hierarchical Data Format (version 5)

HRIR Head-Related Impulse Response

HRTF Head-Related Transfer Function

ILD Interaural Level Differences

ISHT Inverse Spherical Harmonic Transform

ISO International Organization for Standardization

ITA Institute of Technical Acoustics (RWTH Aachen University)

ITD Interaural Time Differences

LMS Least Mean Squares

LTI Linear Time-Invariant

MESM Multiple Exponential Sweep Method

RAVEN Room Acoustics for Virtual Environments

RIR Room Impulse Response
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RTF Room Transfer Function

SH Spherical Harmonics

SHT Spherical Harmonic Transform

SLAYER Spherical Loudspeaker Array Yielding Exceptional Results

SNR Signal-to-Noise Ratio

SPL Sound Pressure Level

SWS Spherical Wave Spectrum

Mathematical Operators

ℱ {·} Fourier transform

ℱ−1 {·} inverse Fourier transform

� {·} spherical harmonic transform

�−1 {·} inverse spherical harmonic transform

(·) complex conjugate

(·)H Hermitian transpose of matrix

(·)−1 inverse of matrix

(·)+ Moore-Penrose pseudoinverse of matrix

⟨· | ·⟩ inner product of two functions

⟨·⟩(θ′,φ′) arithmetic mean over the unit sphere

|·| = ||·||2 2-norm (Euklidian length) of vector

diag {·} operator that converts a vector to a diagonal matrix

vec{·} operator converting spatially samples values to a vector

vecSH{·} operator converting a spherical wave spectrum to a vector

Mathematical Symbols

(�, �, �) Euler angles

(�, �, �) spherical coordinate system

�i weight of spatial sampling point �

�nm = �n spherical wave spectrum of aperture function
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�nm multipole expansion coefficients for interior problems

�nm multipole expansion coefficients for exterior problems

�(�) cross-correlation function as function of time lag �

�(�, �) cross-correlation coefficient of spherical functions � and �

�(�, �) normalized cross-correlation coefficient

�0(�, �) directivity factor (referenced to specific direction)

�0,magn(�, �) directivity factor of magnitude values

�Lm(�, �) directivity (logarithmic)

�m(�, �) directivity value (referenced to equivalent monopole radiation)

�
(n)
k,m(�) reduced Wigner-D function

�
(n)
k,m(�, �, �) Wigner-D function

�(θ
′,φ′)(�, �) Dirac impulse pointing in direction (�, �) given (spatial domain)

�
(θ′,φ′)
nm Dirac impulse pointing in direction (�, �) given as SWS

�xy Kronecker delta function

�a(�) geometically summed squared magnitudes

� regularization constant

� frequency

�N Nyquist frequency

�s sampling rate

�(�) signal in time domain

�(�, �) spherical function

�nm spherical wave spectrum (SWS) of spherical function �(�, �)

�̂(�) signal in frequency domain

f̂ spherical wave spectrum stored as vector

f spatially sampled points of a spherical function stored as vector

�(r|r′) Green’s function for source at r′ observed at position r

�
[L/R]
free-field(�, �) Head related transfer function

�(�) room transfer function

ℎ
(1)
n (·) spherical Hankel functions of first kind and order �

ℎ
(2)
n (·) = ℎn(·) spherical Hankel functions of second kind and order �

I identity matrix

�n(·) spherical Bessel function of order �
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� condition number

�max maximum order of spherical wave spectrum

O orthogonality matrix

� angular frequency

Ω room angle

�(·) sound pressure in time or frequency domain

�nm(�) SWS of sound pressure

p̂ SWS of sound pressure stored as vector

p̂t SWS of target pressure function stored as vector

pmic sound pressure at microphone array positions stored as vector

pre(v) reconstructed sound pressure at microphone array positions
stored as vector

�i(r) spatially sampled eigenfunctions of rectangular room

P̂ SWS of sound pressure stored as matrix

�n(·) Legendre polynomials of order �

�m
n (·) associated Legendre functions of first kind and order �

�m
n (·) associated Legendre functions of second kind and order �

�′(�, �) spherical residual function

r point in space stored as vector

�mem membrane radius

rp sampled spherical residual function stored as vector

rabs residual function of absolute function values stored as vector

Ry rotation matrix for rotations around the �-axis

Rz rotation matrix for rotations around the �-axis

�2 surface of the unit sphere

ut target feeding voltage for loudspeaker array

�nm spherical wave spectrum of surface velocity

v membrane velocities of louspeaker array stored as vector

� m
n (�, �) spherical harmonics of order � and degree �

Y = YN matrix of sampled spherical harmonics up to order �

�nm acoustic impedance as spherical wave spectrum
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