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Abstract: In this paper, we introduce a novel approach for analyzing the behavior of a vehicle
that is controlled by both a human driver and a cognitive and cooperative automation at the
same time. In a situation where a dynamic and a static obstacle force the driver-vehicle system
to engage in a lane changing maneuver at a sooner or later point in time, the objective is
to maximize the driving comfort, minimize risks, and, ultimately, avoid a crash with either
obstacle. Hereby, the dynamic obstacle is another driver-vehicle system with similar properties
as the first one. Therefore, their interaction can be modeled as a sequential game with imperfect
information, since neither can perfectly predict the behavior of the other. As a proxy for comfort
and safety, we use the time to collision (TTC) and compare it to the preferred TTC of each
system. A further component of the utility function is the velocity, which serves to evaluate
the time consumed to perform a maneuver as well as the costs related to it. Each system
puts different weights on the individual components and, therefore, chooses different actions at
different points in time. It can influence the velocity as well as the lane on which to drive. Using
a simulation, we evaluate the behavior of both systems at several points in time until the static
obstacle is passed.

1. INTRODUCTION

Nowadays, state-of-the-art assistance systems in vehicles
already offer several aspects of automation for supporting
the driver. Systems, such as the Lane Departure Assis-
tant or the Night Vision system, alert the driver upon
detecting possible risks in the close environment, while
using various channels of communication to reach the
human driver. Furthermore, some assistance systems even
introduce automation in parts of the driving task, in the
lateral as well as in the longitudinal direction. Covering
the longitudinal aspect, Adaptive Cruise Control (ACC)
is already designed to control a vehicle in such a way that
it automatically follows a vehicle ahead at an appropriate
(timewise) distance by adjusting the speed accordingly.
An example for lateral control can be found in the Active
Lane Keeping Assistance system (LKAS), which ensures
that the vehicle does not deviate from the current lane
by optically tracking the markings for lane delimitations.
When combining these two systems, the driving task can
already be executed in a partially automated way, at least
while staying on highways such as the German Autobahn.
Highly-automated driving has been explored in several
research and development projects over the last decades
(Hoeger et al., 2011; Flemisch et al., 2014). Important
issues of controlling such a system and keeping the human
driver in the loop in critical traffic situations are addressed
in the approach for cooperative driving (Flemisch et al.,
2012; Winner and Hakuli, 2006). A crucial element of
cooperative guidance and control in the driving task is

the use of an automation, which should, in principle, be
able to steer the vehicle autonomously. While previous
game-theoretic approaches for behavior of drivers mainly
consider human drivers without the aspects of automation
(Kita, 1999; Lubashevsky et al., 2003, f.ex.), we attempt to
find optimal maneuvers or strategies for human-machine
systems. The first step in doing so is to define the utility of
the integrated system. Relevant components are (required)
time, costs, and (perceived) safety. It should be noted
that preferences vary with the type of human driver. To
illustrate this, one can think of drivers who are mainly
interested in completing the driving task as quickly as
possible, while costs are rated as less important (and enter
the utility function with a lower weighting). The highly-
automated vehicle controlled by such a driver should then
execute a maneuver more swiftly than a system concerned
about cost factors. As aggressive driving is often associated
with smaller (time) gaps and therefore leads, in compar-
ison to defensive driving, to a higher criticality of the
traffic situation, one also needs to consider safety aspects.
Using parameter estimation methods, information about
current states and probabilities of future states can be
extracted. For discrete instants of time in the considered
period, equilibrium choices of driving maneuvers can be
found. Analyzing these equilibria, expected behavior can
be predicted. The introduced game-theoretic method for
analyzing the cooperation of human-machine systems can
be used for online estimations of expected driving behav-
ior. This leads to an enhanced comprehension of the func-
tioning and interaction of several human-machine systems
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that conform to the principles of cooperative guidance and
control. Moreover, such an estimation method can be used
as part of an automation for assisted, partially and highly
automated vehicles, because it provides an assessment of
the behavior of other road users without the need of (more
costly) solutions like Car-2-X-communication.

2. THEORETICAL BACKGROUND: COOPERATIVE
GUIDANCE AND CONTROL

2.1 Assistance and automation

Cooperative guidance and control of vehicles occurs when
at least one human and one machine work together to
determine the behavior of at least one vehicle (Flemisch
et al., 2014). However, Flemisch et al. (2014) point out
that this concept can also be extended to cooperative
technical systems, such as vehicles and infrastructure
that communicate and work together towards a common
goal (as in Car2Car or Car2Infrastructure). An important
aspect hereby is that a human and a machine work on the
control task at the same time, which can be called “shared
control” (Griffiths and Gillespie, 2004; Mulder et al., 2012)
or “shared authority” (Flemisch et al., 2012). If this is
not optimal or not desired for any other reason, tasks or
subtasks can also be delegated to the different agents in a
hierarchical manner (cf. Rasmussen, 1983; Hollnagel and
Woods, 1983). The automation can thereby be adaptive as
well as adaptable (e.g. Sheridan and Parasuraman, 2006).
In this sense, cooperative guidance and control can be
understood as the implementation of an automation that
can rather autonomously steer a vehicle, but where the
human driver remains in the loop. She can partly or fully
take over control with a seamless transition whenever she
likes.

2.2 Cooperative guidance and control in the H-Mode

A first definition of semi- and high automation is given
by Gasser et al. (2012), a slightly different one is given
in Hoeger et al. (2011). Overcoming this gap, we differen-
tiate between partially-/highly automated (Loose Rein),
and highly/temporarily fully automated driving (Secured
Rein). Thus, we denominate the area where most of the
control task is carried out by the automation as partially-
/highly automated. When the human driver is only as-
sisted in selected tasks, such as in lateral control by
a Lane Keeping Assistance system, we enter the semi-
autonomous area. Figure 1 illustrates this using the assis-
tance and automation chart, which is a simplified model
of one-dimensional division of control between human
and automation. Challenges and opportunities for highly-
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Fig. 1. Assistance and automation scale (e.g. Flemisch
et al., 2014)

automated driving are increasing with growing technical
achievements for vehicle assistance. The H-Mode is based

on the H-Metaphor (e.g. ?), which describes the interac-
tion of a cooperative or highly-automated vehicle and a
human driver. The metaphor uses the natural example of
the relationship between a rider and a horse, or a driver
and a horse cart, as a blueprint for the interaction between
the human and the technical subsystem. This also means
that the most important element in cooperative guidance
and control is the capability of the automation of work-
ing together with the human driver. In order to enable
a human to take part in vehicle guidance and control,
the technical system needs to be comprehensive and act
predictably (Löper et al., 2008). H-Mode as an approach
to cooperative guidance and control takes into account
the possibilities of dynamically dividing the tasks between
human and machine as well as the issue of implementing
appropriate takeover and reaction times. In the course
of several research projects, three specific automation
modes with different degrees of control distribution be-
tween the human and the machine emerged (e.g. Flemisch
et al., 2014). In particular, these are an assisted mode,
a partially/highly- automated mode and a temporarily
fully-automated mode. Figure 2 illustrates these modes
graphically. Another important requirement is that the
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Fig. 2. Automation spectrum with specific modes (cf.
Flemisch et al., 2014)

automation should be compatible with the driver in terms
of inner and outer compatibility (?Bubb, 1993).

2.3 Automation cooperative vehicle guidance and control

In addition to the requirement that the automation should
in principle be capable of driving autonomously, the con-
cept of inner compatibility (Bubb, 1993) is a decisive
component. Hereby inner compatibility denotes, among
others, the fitting of the mental model of the human
to the behavior of her technical counterpart. It can also
be understood as cognitive compatibility (?), which in-
cludes common goals and norms of the human and the
automation ensuring consistent evaluations of upcoming
situations. In order to increase inner compatibility, the
automation needs to be modeled according to the mental
model of the human driver. In doing so, one obtains a
multi-layered model, which considers several planning and
execution horizons of the human driver. Cognitive models
for vehicle guidance and control are discussed in Donges
(1982), while more general models on the interaction with
automated technical systems can be found in Rasmussen
(1983) and Parasuraman et al. (2000). Löper et al. (2008)
apply models in the context of vehicle guidance and con-
trol in the H-Mode. The three-layered model of Donges
(1982) introduces the levels of stabilization, guidance, and
navigation. From a technical perspective, guidance is im-
plemented as anticipatory control (Donges, 2012). Löper
et al. (2008) further distinguish two layers within the level
of guidance, namely the maneuver and the trajectory level.
These result in a four-layered model of vehicle guidance



and control, including state control, trajectory planning,
maneuver planning, and navigation. Maneuvers are hereby
defined as spatially and temporally related processes. We
consider this four-layered model as the basis of the cogni-
tive design of the automation, which is required to exhibit
similar levels to achieve the aforementioned inner compat-
ibility.

2.4 Maneuver-based vehicle guidance and control in partially
automated mode (Loose Rein)

In this paper, we focus on the partially/highly- automated
mode of cooperative guidance and control in the H-Mode.
This driving mode describes vehicle guidance as maneuver-
based assignments by the human driver. In this mainly
sequential model, the automation takes over the lower
levels of trajectory planning and control, while the human
remains with the higher levels of maneuver planning and
navigation. As decisions and interaction between human
and machine can only be taken on these levels, we limit
ourselves in this study to the investigation of lane change
and speed adjustments.

3. THEORETICAL BACKGROUND:
GAME-THEORETIC MODELING OF DRIVING

BEHAVIOR

Most applications of game-theoretic approaches consider
use cases which involve lane changing maneuvers or the
gap between two cars on the same lane. Bell and Cassir
(2002) model an optimal routing choice problem under
consideration of the estimated duration of the route and
the possibility of an unexpected increase in costs for a
specific branch. A similar problem is considered in Garcia
et al. (2000), but in form of a cooperative game. Hereby
total utility, which is equivalent to the social welfare dis-
cussed in the end of this paper, is to be maximized by an
optimal routing choice, i.e. the average travel time of all
players is to be minimized. Fotakis et al. (2002) models
this as a non-cooperative game and compares the social
costs of all possible Nash equilibria. Wie (1993) expands
the situation of a traffic jam with flexible departure times
and thereby broadens the applicability of the model to
also include aviation. Although Vetta (2002) and Fotakis
et al. (2002) both use traffic planning problems as ex-
amples, they concentrate on the development of efficient
algorithms that are capable of solving for the Nash equi-
libria. The emphasis is on the relatively high complexity
in computation, which is why so far no algorithms in
polynomial time have been found.
Hollander and Prashker (2006) classify game-theoretic
modeling in the traffic domain as games against a demon,
who tries to do the largest possible damage (i.e. mini-
mize the objective function), games between institutions
or companies, which play a minor role, games between
institutions and travelers and games between travelers.
The model at hand can be categorized as the latter, be-
cause it includes two players that are users with a similar
perspective and on an equal level in the traffic system.
Most other games of this category consider strategic plan-
ning of departure or traveling times to achieve maximum
utility. Usually, this is modeled as a conflict of shortest
branch and route with least traffic. Preventing traffic jams

Fig. 3. Initial driving situation at time t0

by implementing appropriate measures for traffic planning
and management falls into the category of games between
institutions or games between institutions and travelers.
This can include the planning of public transport facil-
ities, traffic legislation, tolls, or extension of routes and
networks.
Closest to our study is Kita (1999). He develops a game-
theoretic model for two vehicles that are about to change
lanes on a street with two lanes. The starting point of
this is the mutual influence of both vehicles. The strategy
space encompasses, similar to our model, the options of
merging or waiting on the one hand, and giving way or
not on the other hand. The utility function depends on the
distance between the two vehicles or rather the TTC (time
to collision). The model is solved with a mixed strategy
equilibrium in a game of perfect information. In a case
study, the model parameters are determined to validate
the model.

4. INVESTIGATED USE CASE

The scene is composed of a multi-lane road, i.e. one that
is composed of more than one lane, and a fixed obstacle
on the rightmost lane. All lanes run in the same direction,
which means we do not consider oncoming traffic. A real
world example of such a scenario would be a highway,
such as the German Autobahn. Dynamic elements in
this context are two human-machine systems, which are
composed of a vehicle that is capable of highly-automated,
cooperative driving and a human driver. At initial time t0,
both of the vehicles are on the right lane in front of the
obstacle. Although they are driving on the same lane, the
second vehicle is on an earlier section of the route than
the first vehicle. This is how a typical overtaking situation
emerges. The rear vehicle is driving at a higher speed, at
least in the initial state (3).

4.1 Scenario

The driving situation on a multi-lane road without on-
coming traffic, as described in the previous section, is
used for modeling the decision problem. Hereby, we will
limit ourselves again to the two human-machine systems.
Actions concerning the motion guidance of both vehicles
are mutually interdependent, because an obstacle on one
lane forces changing lanes for at least one of the vehicles.
Hereby, the obstacle can either be static (f. ex. a car that
broke down, an object or similar) or dynamic (a vehicle
driving at a lower speed level). For better illustration, let
us now assume that the obstacle is on the right lane and
that both human-machine systems, hereafter vehicle 1 and
2, are driving on that same lane.



5. MODELING THE DRIVING BEHAVIOR

The game at hand can be regarded as a classical Stack-
elberg leader-follower game (von Stackelberg, 1934). The
central component hereby is that the second player can
observe the actions of the first player and can, therefore,
react with his Best Response. In a game of perfect infor-
mation, player 1 anticipates this and chooses his strategy
in such a way that his own utility is maximized. However,
this assumes complete and perfect information from the
start. In the above mentioned game, however, we only have
incomplete information, since each player only knows his
own type with certainty. In order to be able to solve such
a game, we need to perform a Harsanyi transformation.
Thereby an additional player, Nature, is introduced. Na-
ture takes all random actions which are not performed by
the actual players. By doing so, we obtain a game with
complete, but imperfect information (Harsanyi, 2004). As
the probability distribution of all possible moves of Nature
is known, the game can be solved using Bayes’ theorem (cf.
Rasmussen, 1989, for the role of information in games).
Since the driving situation described above cannot only
be described at a discrete point in time, but continuously,
the chosen strategy of the driver-vehicle system is also
influenced by the course of time. Games with consideration
of the time component are discussed in Fudenberg and
Tirole (1991) or Rasmussen (1989), for example.
For every driver-vehicle system, there is a set of possible
actions that can be defined to cope with the driving
task. This set is a subset of the entire action space A,
which includes all theoretically possible actions. An action
hereby describes the execution of one aspect of the driving
task on the maneuver level. In the proposed scenario,
both human-machine systems have, in principal, a similar
strategy space, which can be defined by the momentarily
possible maneuvers. In detail, these are accelerate, brake,
and change lane (left or right):

A ∈ A
Aj = {Accelerate,Brake, Lane Change left,

Lane Change right}
(1)

As we assume there to be two lanes with an obstacle on the
right lane, we can reduce the possible/feasible actions for
the second vehicle, which also decreases the complexity of
the described driving, and thereby also decision, situation.

A1 = {Accelerate,Brake, Lane Change left}
A2 = {Accelerate,Brake, Lane Change left} (2)

For modeling the behavior of a driver-vehicle system we
assume that the executed or preferred maneuvers can be
described as intentional actions. We further assume that
the choice of a maneuver happens iff that specific maneu-
ver leads to the largest possible utility. Such a description
of the considered system offers the possibility of a game-
theoretic approach, especially since the attainable utility
is co-determined by the chosen maneuver of the other
party. A player in the described scenario is a driver-vehicle
system, where the fixed system limit specifically entails
both subsystems, i.e. the human and the machine. The
driving maneuvers describe the strategies which can be

followed for reaching the goals, i.e. maximizing utility. By
choosing an optimal strategy, a player tries to maximize
her expected utility. For doing so, traditional game theory
defines costs and payoffs for each set of actions. Accord-
ingly, we can describe the payoffs as the acquired utility,
composed of several factors. In analogy, the payoffs can be
modeled as the obtained utility, however, the transfer to
the illustrated traffic scenario requires considering several
factors.

5.1 Identification of input factors

The currently available strategies are constrained by the
(relative) geographical position. The underlying logic be-
comes obvious when considering the consequences of a
lane change while the other vehicle is driving in parallel.
A change of lane is, thus, only possible when the two
vehicles are not directly next to each other. These cir-
cumstances are, however, not modeled in a discrete way,
but as a continuum of all possible coordinates. As further
constraints, we also need to determine the points of origin
as coordinates as well as initial velocities of both cars.
As the utility function is specific to each driver, i.e. for
every user of the system, the final values for the variables
can only be determined empirically. However, we still want
to introduce the underlying formulas in preparation in the
next section.

5.2 Model synthesis

In order to be able to analyze the behavior of the human-
machine system under consideration, we develop a utility
function on the basis of the input factors described above.
In our model, the utility function is influenced by the
position of the own vehicle, the velocity as well as the
position of the obstacle and the other vehicle. Hereby,
we assume that the TTC highly influences the decision
about the action to be taken. To take into account the
user-specific preferences, coefficients are introduced that
specify the weights of the elements of the utility function.
For simplicity, costs are assumed to be proportional to the
velocity:

c = β̂ vi(t) (3)
While the velocity is a negative factor in the cost func-
tion, and therefore also becomes a negative factor in the
expected utility function, it exhibits an otherwise positive
impact in the utility function. This positive interdepen-
dence results from the time needed to conduct a driving
maneuver. For numerical reasons, we hereby introduce a
reference time Tref,i, which can be surpassed or undercut.
The time difference between reference time and time actu-
ally consumed is weighted with the coefficient γ and enters
the utility function as follows:

γ (Tref,i − Tconsumed) (4)
Hereby the time consumed is composed of a reference
distance that is based on the reference time and the
velocity.

γ
sref,i

vi
with sref,i = vref,itref,i (5)

With such a formulation, it is assured that the positive
influence of the velocity has a sensible upper limit. At the
same time, we achieve that very small velocities have a



clear negative impact on the utility function, which also
means that stopping the vehicle is hardly a preferable
option.
The TTC has a positive impact on the utility, because the
perceived and probably also the actual safety positively
correlate with the TTC. However, this part of the utility
is limited, since one can assume that from a certain
TTC onwards the utility does not increase any further.
In the utility function described here, this is considered
by limiting the TTC by a user-specific reference time
TTCref,i from above

TTC = max(TTCref,i,
d

vi
) (6)

Every human-machine system, i.e. every player, tries to
maximize its own utility. As mentioned in the preceding
paragraph, we assume three possible driving maneuvers.

A = {Accelerate,Brake, Lane change} (7)
The utility can, therefore, be influenced by the choice
of the lane and the velocity. When considering another
vehicle or an obstacle in the driving situation, the distance
d can be regarded as the gap between the two vehicles in
the driving direction. For simplicity, it can be assumed that
the two vehicles are moving along their lanes, which means
that the velocity vectors overlap in case they choose the
same lane. From here, the TTC can be determined as the
ratio of the distance in driving direction and the relative
velocity. When introducing a local coordinate system,
which defines the orientation of y in the driving direction,
the TTC can be represented as follows:

TTC = y2 − y1

v1 − v2
= d

vdiff
(8)

The utility function of a driver-vehicle system i therefore
becomes:

Ui = α
d

vdiff
+ β̂ vi + γ (sref,i

vref
− sref,i

vi
) (9)

5.3 Weighting user-specific factors

Central aspect of a game theoretic modeling is the utility
for each driver-car system. Obviously, a perceived utility
is most likely to be user specific. Therefore we explicitly
allowed the Time to collision constraint to vary for each
simulated human machine system. Moreover, we intro-
duced user-specific factors, describing the weight of each
term of the utility function. To this end, we introduce
suitable coefficients: ling is the utility for each driver-car
system. Obviously, a perceived utility is most likely to
be user specific. Therefore we explicitly allowed the Time
to collision constraint to vary for each simulated human
machine system. Moreover, we introduced user-specific
factors, describing the weight of each term of the utility
function. To this end, we introduce suitable coefficients:

α, γ > 0
β̂ < 0

(10)

As explained in an earlier paragraph, we expect that the
element costs has a negative impact on total utility. This
aspect is accounted for with the negative coefficients β̂ in
equation 9 and 10. As this fact is already considered when

formulating the corresponding element, the coefficient can
be substituted with positive coefficients as in equation (9).
From here we obtain an alternative formulation for the
utility function:

Ui = α
d

vdiff
+ β vi + γ (sref,i

vref
− sref,i

vi
)

with β = −β̂
(11)

5.4 Parametrization

Sensible values are attributed to the user-specific param-
eters of the model. Please note that we subsequently plan
to evaluate the model with human drivers in a driving
simulator. Therefore, it is currently sufficient to use some
plausible dimensioning for the values, also because the
focus of this study is on the resulting driving situation.

TTCref = 12.0
α = 1.5

β, γ = 1.0
(12)

6. SIMULATION AND ANALYSIS

6.1 Implementation

The model described above is implemented using MAT-
LAB. The driver-car systems are modeled in an object-
orientated way and is based on a model for simulating
the longitudinal and lateral vehicle dynamics. For the
optimization of the utility function the MATLAB Opti-
mization Toolbox is used, applying a NLP Solver in the
fmincon environment. For better illustration, the schemat-
ics of this process can be found in Figure 4. As mentioned
before, the TTC is considered to have a certain maximum,
which results in an optimal perceived safety and therefore
a further increase would have no effect on the utility. Thus,
two objective functions are implemented. One function
uses the maximum impact of the TTC, while the other
objective function considers a dynamic influence of the
TTC.

max(α d

vdiff
− β vi + γ (sref,i

vref
− sref,i

vi
))

or

max(α TTCref,i − β vi + γ (sref,i

vref
− sref,i

vi
))

s.t
TTC ≥ 1

0 ≤ vi ≤ vmax,i

(13)

The switching point between both functions is relative to
the constraints of the velocity.

vbound = d

TTCref
(14)

Obviously, a crash is to be strictly avoided, because in
this case the utility would, of course, reach a minimum.
To ensure that no incident in form of a crash occurs, the
utility function has a constraint that requires the TTC
to be above a certain threshold, which is set at 1.0. The
fmincon function of the MATLAB Optimization Toolbox
provides a solver only for minimization problems. There-
fore, an equivalent objective function of the corresponding
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Fig. 4. Schematic description of the simulation environ-
ment

minimization problem was formulated by inverting the
result.

Ũ = −U (15)
For both cases, the static TTC and the dynamic TTC case,
the associated objective function is minimized individually
to avoid a switching structure of the optimization problem.
Subsequently, the minimal term is used while the other
term is neglected. The overall optimization problem can
be described as:

min(min(−(α d

vdiff
− β vi + γ (sref,i

vref
− sref,i

vi
)),

min(−(α TTCref,i − β vi + γ (sref,i

vref
− sref,i

vi
))))

s.t
TTC ≥ 1

0 ≤ vi ≤ vmax,i

(16)

This optimization problem is solved for both vehicles at
every time step. A driver-car system can observe the be-
havior of the opponent system, but its intentions remain
unknown. Therefore, every system decides upon its own
strategy with the information given by a simple obser-
vation without taking actual intentions of the opponent
into account. In each round, both human-machine systems
choose their optimal strategy by comparing the attainable
utilities of every possible action and choosing the one with
the highest expected score. This leads to the selection of
a driving lane as well as to an adjustment regarding the
speed guide.
All user-specific parameters as input have been randomly
allocated according to the normal distribution:

TTCref : µ = 12.0, σ = 1.0
α : µ = 1.5, σ = 0.10
β : µ = 1.0, σ = 0.05
γ : µ = 1.0, σ = 0.05

(17)

The resulting distributions as used during the simulation
can be seen in Figure 5. The starting position in the driving
direction for the rear car (vehicle 2) is y = 200, for vehicle
1 y = 300. The obstacle is placed on the right lane at
y = 1000. At initial conditions, the velocity of vehicle
2 is 25.0, while the velocity of vehicle 1 is 20.0. These
values result from the use case under consideration, i.e.
two vehicles on the right lane of a highway in a typical
overtaking situation as described above. Therefore, vehicle
1 is driving at 90% of the relevant speed limit for trucks,
while the other vehicle is approaching at a higher speed
with a non-critical TTC of 20 seconds.

Fig. 5. Distribution of input parameters

6.2 Analysis of the model

The model has been simulated in 60 simulation runs.
The corresponding parameters have been drawn randomly
in accordance to equation 17. All simulation runs were
successful, i.e. they ended without interruption or errors
and the given constraints were never violated. Hardware-
wise, we used a desktop PC with Windows 7 as operating
system, 8GB RAM and four processor cores with a clock
rate of 3.1 GHz. The model has been implemented and
simulated in MATLAB 2013b.
Having described the traffic situation as a dynamic game,
the next step is to analyze possible equilibria of the model.
In general, the characteristics of an equilibrium are always
that no player has an incentive to change her behavior as
long as the other player does not change her behavior. In
the situation at hand, we need to extend this to include
the environment, i.e. the distance to the obstacle. As long
as each system is satisfied with the distances to the other
two components as well as with its traveling speed, it will
not change its behavior. If, however, the TTCs drop below
the level perceived as comfortable, some action needs to be
taken. The same applies upon the arousal of dissatisfaction
with the traveling speed. As mentioned above, the actions
that can be taken are limited by the position of the car and
influenced by possible actions of the other player. Three
possible constellations can occur:
• Both vehicles are on the right lane with the obstacle.
• Both vehicles are on the left lane.
• One vehicle is on the left lane, one vehicle is on the

right lane.
From the perspective of the later vehicle following the
earlier vehicle a need for action always arises when the
vehicle in front is driving at a (much) lower speed. This
is irrespective of the lane they are using, but can be
influenced by the distance to the obstacle. This situation
can never constitute an equilibrium.
When the difference in speed is not relevant, a temporal
equilibrium can emerge when the obstacle is far enough,
such that the TTC does not require an immediate reaction.
This means in case 1, if the velocity of the first vehicle is
at least as high as that of the second vehicle a temporal
equilibrium is sustained as long as the distance to the
obstacle is large enough. Case 3 is similar, however, only
the car on the right lane is concerned about the obstacle.



Fig. 6. Position, speed and TTC
An example of a situation which can arise during the
simulation, can be seen in Figure 6. In the middle part
of the figure, one can observe that vehicle 1 drives at
a higher speed than vehicle 2 and, therefore, has an
incentive to immediately switch lanes. In the lower part
of that same figure, one can also see that the TTC of
vehicle 2 (which is still on the right lane) and the obstacle
decreases constantly, while the vehicle is approaching the
obstacle. At time t = 13, it undercuts the reference TTC
of vehicle 2, which then, of course, also moves to the right
lane. In Figure 7 one can see how the utility develops.
It becomes obvious that vehicle 1 is initially indifferent
between remaining on the right lane or changing to the
left lane. This, however, changes very quickly when she
approaches vehicle 2 and the obstacle, which forces her to
switch to the left lane to avoid a crash. This is mirrored in
the accelerating utility (remember that we converted the
maximization problem into a minimization problem, which
means that strongly negative values can be translated into
very high levels of utility). In the middle of Figure 7 the
distance between the two vehicles is depicted as a result
of the chosen maneuvers. It can be seen that when it is
minimal, the utility for changing the lane starts striving.
-
When speed is not an issue, case 2 can constitute a general
equilibrium. This also means that both players are best off
if they can coordinate in such a way that they are both
driving on the left lane, with the faster car in front and the
slower car following behind. This situation emerges when
both cars have switched to the left lane (cf. Figure 6).

7. LIMITATIONS AND FURTHER RESEARCH

While the utility function introduced in this paper already
offers a good approximation and results from the simu-

Fig. 7. Target lane, distance between the two cars and
value of the utility function

Lane Changes 1 2 3 4 5 11 12
Vehicle 1 44 8 5 0 2 1 0
Vehicle 2 46 12 0 1 0 0 1

Tab. 1. Amount of initiated lane change ma-
neuvers for each vehicle in 60 simulations

Fig. 8. Utility functions during the most critical run with
multiple lane change maneuvers

lation seem to be robust, the real-world utility function
might look differently to include further factors that are
important to a driver-vehicle system.

7.1 Extending the utility function

An alternative model of the utility function might look as
follows:

U = αS + β̃C + γ̃T + δJ + εW (18)

While some common elements remain, such as the in-
tuition of term T (introduced in equations (4) and (5))
which is necessary for performing the maneuver with some
weighting factor γ̃, some new elements now additionally
enter the function. Some of these already find considera-
tion in the original model in other terms. For example, we
introduced TTC as a proxy for perceived safety. However,



other factors like vehicle properties or the condition of the
road might also play a role. Therefore, here S denotes the
perceived safety of the individual driver-vehicle system,
which is composed of not only the distance to the other
vehicle and the obstacle, but also other internal and exter-
nal factors. Furthermore, experienced joy might be crucial
for the overall evaluation of the situation and the resulting
payoffs. Term J is supposed to be constructed from the joy
of driving, which again depends on the perceived dynamics
and the perceived success in performing the driving task.
As at least most human beings exhibit some altruistic
traits and since other goals like reducing travel times on
certain roads might want to be accomplished with the
introduction of a cooperative system, social effects need
to be considered. Term W describes the social welfare,
which, unlike all the other elements, can be assumed to be
identical for all systems under consideration. Coefficient ε
considers the individual weights that each human-machine
systems puts on social welfare.
Perceived risk is highly influenced by the risk attitude of
the individual agent. In principal, it can be assumed that
time and risk are negatively correlated, since maneuvers
that are perceived as risky, such as swift acceleration, close
tailgating, and slipping into short gaps in the traffic flow,
are usually performed to decrease travel time and often re-
ally do so. Nevertheless, as this interdependence cannot be
regarded as generally applicable, both elements still need
to be modeled in detail. To maximize utility, all elements
except for the time consumed and the emerging costs need
to be maximized. The time term γ̃T and the cost term β̃C
tend to decrease when approaching the global optimum,
since performing the driving task in a faster way or lower
costs result in a higher utility. These circumstances are
mirrored in the negative weighting factors γ̃ and β̃.

Perceived safety In order to be able to describe perceived
safety in quantitative terms, one can resort to the approach
of collision avoidance and warning, known in aviation.
Hereby, in analogy to aviation, we define speed dependent
areas around the considered vehicle. To define these areas,
the delimitation of the lanes at the lateral axis of the
vehicle as well as in the middle of the road are used.
For better illustration, one can describe the emerging
areas as a sort of tube around the middle of the lane.
For evaluating the perceived safety, the lowest resulting
distance between the vehicle in question and a third-party
vehicle is additionally determined. For a driver-vehicle
system, the trajectory belonging to a specified maneuver
is known for the own vehicle, but those of the other road
users are not predictable. The perceived safety can be
modeled under consideration of the following elements:
TTC, lowest resulting distance and collision avoidance
under consideration of the braking distance depending on
speed and environment .

Perceived joy of driving For quantifying the joy of
driving, several joy supporting and hindering activities are
linked to the driving maneuvers. Furthermore, some meta-
elements need to be considered, such as the contribution
of a maneuver to fulfilling the driving task and possibly
resulting feedback. For estimating the joy of driving,
several components are further broken down and their
valuation is ranked on an ordinal scale. The theoretically

achievable maximal value of the perceived joy of driving is
used for normalization.

Ji =
∑

k ji,k

Jmax

(19)

Economic costs The economic costs of a driving maneu-
ver are composed of energy and wear-out costs. The energy
part of costs consists of the consumed energy. In particular,
this can be fuel consumption or the amount of energy taken
from a battery. Fuel consumption corresponds to the time
integral of the molar flux entering the combustion engine
over the period of the driving maneuver. This depends on
the course of the position of the throttle valve.

Ci = (1− c− cmin

cmax − cmin
) (20)

7.2 Introducing expectations and risk preferences

Keeping in mind that a player does not know a priori which
type his opponent has been attributed, one can expect that
she forms some sort of expectations about the behavior
of her opponents. As this can significantly influence the
choice probabilities of a strategy, it should be incorporated
into the model. One usually assumes that the distribution
function of risk types is commonly known and that a risk
type is uniformly or normally distributed. An approach for
solving such a dynamic situation with incomplete informa-
tion is the perfect Bayesian Nash equilibrium. Hereby one
assumes that a player can improve and update her expecta-
tions starting with previous probabilities and by observing
the behavior of other players. Hereby, she can adjust her
own behavior to reach a better solution. Expectations are
formed under consideration of the Bayesian rules. This can
be wrapped-up as follows:
• In a sequential game, nature chooses first and draws

the individual attributes from a normal distribution.
• Player 1 gets to know his characteristic, player 2

knows the probability distribution.
• Player 1 can only choose between the available ac-

tions. By choosing the action which does not cor-
respond to his own type, a player therefore accepts
a lower payoff, but might be able to elicit a certain
behavior from the other player.

• Player 2 has similar options as player 1 and can choose
with the same consequences.

The limitations mentioned here can also be understood as
challenges that need to be addressed by future research.
It should be evaluated whether the model performs better
with the inclusion of these factors. Using experiments with
human subjects, it can be investigated which model is
closer to actual human behavior.

8. CONCLUSION AND OUTLOOK

In this paper, we modeled the behavior of two driver-
vehicle systems on a road with a static obstacle as a game
of imperfect information. Using TTC and velocity as main
components of the utility function, each system strives for
its maximization. We find that this leads to lane changes at
different points in time, where one system can also change



lanes more than once, i.e. more than might be necessary
for just avoiding the static obstacle. A crash – which has,
of course, the lowest utility – does not occur in any of the
cases we investigated. At least in the model, user-specific
preferences lead to highly differentiated behavior and
fluctuating dynamics in the investigated driving situation.
In order to complement and validate our findings from the
simulation, we plan to conduct experiments with human
test subjects in a driving simulator which disposes of a
cooperative automation such as the one described in this
paper. We will then evaluate how well the existing model
predicts the system’s behavior and adjust it, if necessary,
accordingly. In a second step, we plan to extend the model
to encompass more than just two players to be applicable
to traffic jams with many vehicles or to investigate swarm-
like behavior.
On a broader level, findings from this and following studies
can also be adopted in the field of vehicle automation.
Applying a suitable parameter estimation method, a ten-
dency in the probability of observing a certain driving
behavior of other road users can be identified. Among
other factors, this can be used as input for the decision
making process of a cognitive automation in automated
guidance and control.
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