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Chapter 1

Short Summary
English In this thesis, we study two recently developed methods to tackle low-

dimensional correlated quantum systems.

In the first part, we benchmark the extension of the functional renormalization group

to spin-systems. We apply it to the two-dimensional XXZ model and reproduce the

prediction for the phase transition from planar to axial ordering at the isotropic point.

The interpretation of the critical scale (where the flow of the susceptibility diverges) as

the critical temperature of the system can be questioned, since it yields only good re-

sults in the Ising limit. Especially near the isotropic point, this interpretation becomes

unsatisfactory as the Mermin-Wagner theorem is violated. We discuss several problems

of the method and conclude that it should only be used to explore phase diagrams.

In the second part, we extend previous works to two-level quantum dots in the Coulomb

blockade regime with special hopping matrices in nonequilibrium, e.g., the Kondo

model, to the generic form, including ferromagnetic leads, spin-orbit interactions etc.

The dot and the transport observables are determined completely by the hybridization

matrix, leading to one of our major results that all these models can be mapped to the

Anderson impurity model with ferromagnetic leads. We investigate this model with

a well-controlled real-time renormalization group approach and justify the results of a

poor man’s scaling analysis. By using a singular value decomposition of the tunneling

matrix we can rotate the model to the anisotropic Kondo model in the high-energy

regime to solve the flow equations analytically. With this, we calculate the stationary

dot magnetization and the current. The minimum of the magnetization is found to be

an ellipsoid as function of the magnetic field, where the stretching factor determines the

distance to the scaling limit. Afterwards, we consider the special case of two external

reservoirs and the system being in the scaling limit and discuss the golden-rule as well

as the quantum-interference regime in detail. We can give a recipe how to extract the

effective model parameters by measuring the current through the dot. Finally, the case

of more than two dot-levels is discussed, where our approach becomes inapplicable.
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4 CHAPTER 1. SHORT SUMMARY

Deutsch In dieser Arbeit diskutieren wir zwei kürzlich entwickelte Methoden zur Be-

trachtung niedrig-dimensionaler Systeme.

Im ersten Teil überprüfen wir die Erweiterung der funktionalen Renormierungsgruppe

auf Spinsysteme. Hierzu wenden wir sie auf das zweidimensionale XXZ Modell an und

können so die Vorhersage des Phasenübergangs von planarer zu axialer Ordnung am

isotropen Punkt reproduzieren. Die Interpretation der kritischen Skala, bei der der

Fluss der Suszeptibilität divergiert, als kritische Temperatur des Systems liefert jedoch

nur gute Resultate im Ising-Limes. Vor allem in der Nähe des isotropen Punktes wird

sie sehr problematisch, da das Mermin-Wagner-Theorem verletzt wird. Wir disku-

tieren mögliche Probleme und schlussfolgern, dass die Methode nur zum Untersuchen

von Phasenübergängen verwendet werden sollte.

Im zweiten Teil betrachten wir zwei-Level Quantenpunkte im Coulomb-Blockade Be-

reich im Nichtgleichgewicht. Ein Beispiel hierfür ist das Kondo-Modell. Wir erwei-

tern frühere Arbeiten mit speziellen Hüpfmatrixstrukturen auf den generischen Fall,

welcher z.B. ferromagnetische Reservoire und eine Spin-Orbit Wechselwirkung bein-

haltet. Die lokalen Quantenpunkt- und die Transportobservablen sind durch die Hy-

bridisierungsmatrix bestimmt, was auf eines unserer Hauptresultate führt, dass alle

diese Modelle auf das Störstellen-Anderson-Modell mit ferromagnetischen Reservoiren

abgebildet werden können. Dieses untersuchen wir mit einem kontrollierten Echtzeit-

Renormierungsgruppen-Ansatz und verifizieren so die Resultate einer Poor Man’s Scal-

ing Untersuchung. Durch die Verwendung einer Singulärwertzerlegung der Tunnelma-

trix kann das Modell im Hochenergie-Sektor auf das anisotrope Kondo-Modell abge-

bildet werden, wodurch die Flussgleichungen analytisch gelöst werden können. Hiermit

berechnen wir die Magnetisierung des Quantenpunkts und den Strom. Das Minimum

der Magnetisierung ist gegeben durch ein Ellipsoid als Funktion des Magnetfelds, wobei

der Streckungsfaktor mit der Distanz zum Skalenlimes zusammenhängt. Danach be-

trachten wir den Spezialfall von zwei externen Reservoiren, wobei sich das System

im Skalenlimes befindet, und diskutieren sowohl den Goldene-Regel Bereich als auch

den Quanten-Interferenz Bereich detailiert. Hier ist es uns möglich, eine Vorschrift

anzugeben, wie man aus verschiedenen Strommessungen die effektiven Modellparame-

ter bestimmen kann. Abschließend betrachten wir den Fall von mehr als zwei Leveln

im Quantenpunkt und zeigen, dass das bisherige Vorgehen so nicht mehr möglich ist.



Chapter 2

Introduction

Low-dimensional correlated quantum systems show a wide range of fascinating physical

phenomena. On the one hand, the experimental progress in fabricating and control-

ling those systems increased significantly in the last decades, on the other hand, the

theorists are challenged to extend existing or invent new methods to explain those phe-

nomena.

A ground breaking advancement in the field of condensed matter in recent years was

the experimental control of ultra-cold atoms, advanced a Nobel prize in 2012. In

those, extraordinarily controllable quantum systems were realized by cooling atoms in

a magnetic or optical trap down to very low temperatures [Kin06, Blo08]. With this

setup, model Hamiltonians, which were already treated by theorists for decades like

the quantum-spin Heisenberg model [Hei28, Bet31], become realizable in real physical

systems nearly without any external disturbances [Dua03, Kuk03]. Additionally, also

more advanced Hamiltonians can be prepared, such that the development of new meth-

ods becomes more and more important.

These quantum-spin Heisenberg-type models gained renewed interest in the 80’s af-

ter the discovery of high-Tc superconductivity [Bed86, Chu87], as the two-dimensional

CuO-planes, which are an integral compound of all cuprate superconductors, could be

well described by a nearest-neighbor spin-1/2 Heisenberg model. Furthermore, frus-

tration effects due to competing spin interactions or special lattice geometries are of

particular interest. By tuning them, the systems can be driven to different phases,

exhibiting quantum-phase transitions [Sac99]. Therefore, understanding these spin-

systems is extremely interesting, however up to now all existing methods to tackle

these systems have their individual drawbacks.

Beside the experimental advances in ultra-cold atoms, quantum computing, i.e., us-

ing some quantum-mechanical properties to store and manipulate information, gains

more attention. For quantum computers qubits are the analog to conventional bits.

5



6 CHAPTER 2. INTRODUCTION

There is hope that computers build on the concepts of quantum mechanics could over-

come the speed limitations of conventional computers, especially in the fields of integer

factorization used, e.g., in cryptography, searching unsorted databases as well as simu-

lating physical properties of quantum many-body Hamiltonians in polynomial instead

of exponential time. However, up to now experiments are only able to handle a small

number of qubits, as the preparation, manipulation and read-out of qubits is rather

challenging. Thus, a working quantum computer outperforming conventional ones re-

mains a long-term goal. Additionally, also theoretical challenges have to be solved. The

qubits can be modeled by quantum dots, which is our main motivation to study them.

These quantum dot models consist usually of a quasi-zero dimensional system coupled

to external reservoirs. Interesting physics can arise due to strong correlations within

the system like the Coulomb blockade or Kondo screening [GG98a, vdW00]. Although

these strong correlations render quantum dots difficult to treat, these effects could lead

to an unexpected behavior of the system, which need to be understood and might be

exploited in quantum processing. Therefore, many studies of quantum dots were done

in the past years concerning mostly equilibrium situations, while the non-equilibrium

setup is still a newly emerging field of research and only been tackled for special cases,

e.g., the Kondo model.

Goals of this Thesis The aim of this thesis is two-fold. In the first part, we focus

on methodical development. As previously mentioned, quantum spin systems are of

huge relevance to explain various physical phenomena, they are among other things

needed to understand the high-Tc superconductivity. Due to frustration and strong

correlations, the adequate treatment of spin systems remain complicated such that until

now all existing approaches suffer from different drawbacks (an exception being one-

dimensional systems). In this thesis, we will perform a quantitative and qualitative test

of the recently developed extension to the functional renormalization group put forward

by Reuther and Wölfle [Reu10] to study its strengths and weaknesses. Providing a

positive result, this extension would be a powerful tool as it is rather flexible in treating

different lattice geometries and dimensions without the problem of too large numerical

effort, sign problems (such as quantum Monte Carlo) etc.

Afterwards, we turn towards the real-time renormalization group method and apply it

to a quantum dot coupled to an arbitrary number of reservoirs in the weak-coupling

regime. Up to now, this has mostly been done for various forms of the Kondo model,

which we will introduce later. In this thesis, we extend these studies and do no longer

constrain the form of the reservoir-dot coupling. We will calculate nonequilibrium

stationary quantities which are rather important to understand and control quantum
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dots in detail.

Outline of this Thesis This thesis is organized as follows:

The first part begins with the resummation of the strengths and drawbacks of different

methods which are used to tackle strongly correlated systems. Afterwards, we intro-

duce the XXZ model, which will be used as the test model for the spin functional

renormalization group. The functional renormalization group is outlined in chapter

5, where we will at first explain its traditional form and then its extension for spin

systems. Thereafter, we present the results of this method for the susceptibility and

the critical temperature of the XXZ model and compare those to other methods. This

part will be concluded in chapter 7, where we will also discuss possible drawbacks of

the functional renormalization group.

The next part starts with an introduction to the Kondo model and a short overview,

why renormalization group methods are useful to tackle it (chapter 8). Then, we start

from the generic quantum dot model and present a simplified version which is valid

in the Coulomb blockade regime. In chapter 10 we describe the real-time renormaliza-

tion group, where we focus on the E-Flow scheme. For this, we use a weak-coupling

expansion and compare analytically those results to a poor man’s scaling approach.

Finally, we present the results of the real-time renormalization group calculations for

the generic quantum dot model and finish this theses with a summary of this part and

a brief outlook of future research avenues in this field.





Scrutinization of the

Spin-Functional RG

for the 2D XXZ Model

In this part of the thesis, we compare the results of the spin-functional
renormalization group for the susceptibility and the critical temperature
of the XXZ Model on a two-dimensional square lattice with other meth-
ods for qualitative and quantitative benchmark. We specify the model
and explain the functional renormalization group and its extension to
spin systems in detail. Thereafter, we present and compare the results
of various methods and draw a conclusion about the implications of our
study for the spin-functional renormalization group as well as outline
possible problems.
This part is based on Ref. [Gö12].
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Chapter 3

Motivation

We discussed in the introduction of this thesis (Chapter 2) the strong interest in the un-

derstanding of low-dimensional systems and the introduction of new methods to tackle

those. A large class of renormalization group (RG) based methods were developed in

the last decades and they became a widely used tool for strongly correlated electron

systems [Só79, Sha94, Met98, Met12].

In this part of the thesis, we will focus on the functional renormalization group (FRG)

where one aims at describing the flow of the vertex functions. Within the FRG frame-

work one is able to treat energy scales successively from high to low and thus to monitor

the flow to certain fixed points of the model. For fermionic systems one needs to trun-

cate the flow in powers of fermionic fields, thus one needs a small expansion parameter

usually. Hence, the FRG is often used only as a qualitative tool to differentiate low-

energy behaviors, so to explore phase diagrams. Nevertheless, also quantitative results

like the exponents in Luttinger liquids could be reproduced by the FRG and coincide

with exact solutions to leading order [And04, Sch05].

At first glance, quantum spin systems like the XXZ model introduced later are not in the

scope of a FRG approach as the Hamiltonian does not contain a weak coupling parame-

ter, in which one could expand the RG flow, and more importantly, Wicks theorem is not

applicable to spin systems due to the non-trivial commutation relation of spin operators.

On the other hand, direct numerical methods are the most common approaches to those

strong coupling systems but usually suffer from finite size effects and sign problems for

frustrated systems. Analytical or field theoretical approaches are more involved, as

one has to deal with the constraint of a fixed total spin per lattice site. Additionally,

competing orders and strong quantum fluctuations in those systems [Mis05, Bal10] ren-

der their description a formidable challenge for theoretical methods, such as the FRG.

Provided its applicability the FRG could thus prove to be a powerful tool to tackle

11



12 CHAPTER 3. MOTIVATION

those systems. In a series of papers the standard FRG was extended to spin systems

by a mapping of the spin-system to a fermionic one and a qualitative agreement to

benchmark results were achieved [Reu10, Reu11b, Reu11c, Reu11d, Reu11e, Sin12].

The strength of the FRG would be its flexibility in treating different lattice geometries

and dimensions without increasing the numerical effort drastically, e.g., large, frus-

trated spin systems could be described without sign problems. Hence, it is important

to benchmark the spin-FRG approach also quantitatively with other methods.



Chapter 4

Model: The 2D XXZ Model

As already explained in the motivation we want to compare the results of the spin-FRG,

which will be explained in detail later, to those of other methods, e.g., quantum Monte

Carlo (QMC) calculations. Quantitative tests of the spin-FRG for one-dimensional

models have already been discussed in Refs. [Gö11, Sä11], where predictions for the

ground state energy, the spin-spin correlation function and the susceptibility of various

one-dimensional spin-models calculated within the spin-FRG where compared to Bethe-

Ansatz solutions. It was shown that neither the calculated ground-state energies nor the

spin-spin correlation functions agreed with each other. Although quantitative checks

in one dimension failed, we want to test the method for two-dimensional systems as the

underlying physics is completely different. Furthermore, if the quantitative comparison

fails again, we will check if at least qualitative predictions like phase transitions are

possible. We will use the units ~ = e = kB = 1.

4.1 The 2D XXZ Model on a Square Lattice

We consider the spin-1/2 XXZ model with antiferromagnetic nearest-neighbor exchange

interaction J . The Hamiltonian of this model is given by

H = J
∑
〈ij〉

(
Sxi S

x
j + Syi S

y
j + ∆Szi S

z
j

)
, (4.1.1)

where ~Si is the spin-1/2 operator acting on lattice site i of a two-dimensional square

lattice with periodic boundary conditions. The anisotropy parameter ∆ is restricted

to ∆ ≥ 0 in our discussion. The ground state properties and the finite temperature

phase diagram are well known, cf., e.g., Ref. [Far04], so the results produced by the

spin-FRG can be tested.

13



14 CHAPTER 4. MODEL: THE 2D XXZ MODEL

At the isotropic point, ∆ = 1, the Hamiltonian has a continuous SU(2) symmetry, such

that the antiferromagnetic order of the ground state is constrained to zero temperature

due to the Mermin-Wagner theorem [Mer66], i.e., Tc = 0. For ∆ > 1, called the

easy-axis region, this continuous symmetry is no longer given and the Mermin-Wagner

theorem is no longer applicable. From the Onsager solution [Ons44] in the Ising limit,

∆ → ∞, it is known that a Néel-ordered ground state along the z-axis occurs, which

emerges already below a finite transition temperature Tc ≈ 2.269∆J/4 and originates

from a breaking of a discrete Z2 symmetry of the Hamiltonian. As the Ising limit

and the isotropic point are continuously connected by a variation of ∆, we also expect

a finite critical temperature Tc > 0 for all values ∆ > 1, which we will calculate by

a QMC analysis. The ground-state in the easy-plane region, ∆ < 1, exhibits long-

range transverse antiferromagnetic ordering within the xy-plane at zero temperature.

This is related to the breaking of the rotational symmetry in the xy-plane. As this is

also a continuous symmetry, Mermin-Wagner theorem can once again be applied and

this long-range ordering can no longer be found at finite temperature. An additional

Berezinskii-Kosterlitz-Thouless (BKT) transition at a critical temperature TBKT > 0

exists. Above this temperature, free vortex and anti-vortex excitations occur, which

annihilate each other below the critical temperature and lead to a quasi-long-ranged

ordered phase between T = 0 and T = TBKT , where the transverse spin correlation

function decays algebraically. Furthermore, this phase can be characterized by a finite

spin stiffness, which exhibits an universal jump at T = TBKT . This will be the criteria

to determine TBKT in our QMC calculations.

4.2 Fermionization of the XXZ Model

We want to apply the FRG described in the next chapter to the XXZ model. Unfortu-

nately, Wick’s theorem [Wic50] cannot be used for spin systems due to the non-trivial

commutation relations of spin-operators[
Sα, Sβ

]
= iεαβγSγ , with α, β, γ ∈ [x, y, z] (4.2.1)

so that a direct diagrammatic calculation is not possible. Various auxiliary-particle

techniques have been used for spin systems, which have in common that the spin op-

erators are replaced by fermionic or bosonic ones. Those fulfill canonical commutation

relations and thus diagrammatic calculations become available. Probably, the most

common auxiliary-particle techniques are the spin-wave theory [And52, Man91] and the

hard-core boson Ansatz [Gia03]. In this thesis, we follow Reuther and Wölfle [Reu10]
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and use the Abrisokov auxiliary-fermion representation [Abr65]. Two fermionic opera-

tors f↑ and f↓ are introduced per site rewriting the spin operators of site i as follows

Sµi =
1

2

∑
αβ

f †iασ
µ
αβfiβ, (4.2.2)

with µ ∈ [x, y, z] and σµ being the standard Pauli matrices. The operators f fulfill

fermionic commutation relations allowing to use Wick’s theorem, but also double the

local Hilbert space per lattice site from two to four states, which are labelled by

|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉, (4.2.3)

where the numbers are the occupations of up and down fermions. The two single-

occupied states correspond to the physical states of the original model while the doubly

and the unoccupied state are unphysical. One thus has also to introduce the constraint

Qi =
∑
α

f †iαfiα ≡ 1, (4.2.4)

which is always fulfilled on average for fermions at half-filling in the XXZ model, leading

to a vanishing chemical potential µ = 0 for the auxiliary-fermions at temperature

T = 0 due to particle-hole symmetry. An exact treatment of this constraint is only

possible for lattice models at finite temperature at the particle-hole symmetric point.

Popov and Fedotov proposed to introduce a homogeneous imaginary chemical potential

µPPV = − iπT
2 with the temperature T and a modification of the Hamiltonian

HPPV = H − µPPV
∑
i

Qi. (4.2.5)

The expectation values of physical observables O with respect to this new Hamiltonian

and the entire Hilbert space are the same as for the original Hamiltonian and the

physical Hilbert space [Pop88]. This occurs because the unphysical contributions cancel

out for each lattice site exactly as in the partition function these contributions lead to∑
Qi=0,2 e

βµPPV = 1 + eiπ = 01. Although using this imaginary chemical potential or

the vanishing potential at T = 0 due to particle-hole symmetry seem to be equivalent

at T = 0, this is not necessarily the case as the limit T → 0 while using an imaginary

chemical potential does not always commute with the calculation of expectation values.

Therefore, the constraint can only be taken into account on average neglecting the

quantum fluctuations and the impact of this approximation has to be checked carefully.

1A more detailed discussion can be found in Appendix A of [Reu11a]





Chapter 5

Method: The Spin-FRG

In this chapter we will explain first why RG methods are often useful to tackle low-

dimensional systems. Here, we focus on the FRG and sketch a short derivation of

the infinite hierarchy of flow equations for the one particle irreducible (1PI) vertex

functions. A complete derivation can be found in Ref. [Jak10a]. This infinite system

of differential equations will be approximated with the Katanin truncation scheme.

Afterwards, we will describe in detail how this scheme is applied to spin systems.

5.1 General Renormalization Group Idea

Quantum many-body systems in condensed matter physics have often a wide range of

energy scales which have to be taken into account. Already the bare energy contri-

butions to the Hamiltonian like the kinetic energy, the Coulomb interaction, magnetic

interactions and so on can deviate in orders of magnitude. Further relevant scales, like

single-particle excitation energies, the Kondo temperature and others are often even

much smaller than the bare ones, e.g., the bare Coulomb interaction in cuprate high-

temperature superconductors is larger than the transition temperature for supercon-

ductivity by a factor of 1000 [Met12]. Perturbative approaches, which tackle all these

energy scales at once, often fail due to the emergence of infrared divergences especially

in low dimensional systems, even if the expansion parameter is small [Hew93, Gia03].

Furthermore, the diversity of the relevant energy scales renders it nearly impossible to

solve these microscopic models with a straightforward numerical method as a huge class

of interesting phenomena only occurs at very low temperatures and exceedingly large

system sizes. Due to these complications the idea came up to separately tackle the

degrees of freedom of different energy scales successively by integrating them out from

high to low [Wil74]. Various methods based on this so called RG-idea were formulated

and we will outline one of these in the following, namely the FRG [Sal01, Met12].

17



18 CHAPTER 5. METHOD: THE SPIN-FRG

The central idea of the FRG method is to split the free propagator of a system into

two parts, one containing the high energy contributions and the other one the low

ones, where high and low has to be regarded with respect to a cutoff parameter Λ. It

depends on the scheme what is meant by energy contributions, e.g., one can consider

the single-particle energy within the corresponding propagator, the frequency argument,

the imaginary frequency and so on [Jak10a]. The high energy contributions are then

absorbed by defining effective many-body interactions, which replace the bare ones,

and the propagation of the system is restricted to the low energies. The calculation of

the effective interactions does usually not suffer from the infrared divergences as no low

energies are incorporated. Choosing Λ =∞ these effective interactions are equal to the

bare ones, which is the starting point for most of the RG schemes. Λ is now lowered

and the flow equations state how the effective interactions have to be modified to keep

the physical variables unchanged during the flow. In this way the energy scales are

incorporated into the effective interactions step by step and one gets closer and closer

to the former infrared divergences in a controlled fashion.

5.2 Functional Renormalization Group Formalism

In the following we will present the fermionic formulation of a special RG method,

namely the FRG, which has been successfully applied to various fermionic systems

in equilibrium and non-equilibrium (see [Met12] and references therein). Due to the

semi-group law of the RG [Sal01] the effective interactions described in the previous

section are exactly the same as the connected amputated Green functions, where the

bare propagator is replaced by the one containing only the low energy contributions,

as used by Polchinski [Pol84]. One can also compute the flow of other Green or vertex

functions and we will use the 1PI vertex functions γm, whose flow equations are usually

derived via generating functionals [Wet93, Sal01] or alternatively on a diagrammatic

level [Jak03, Jak07]. These derivations lead to an infinite hierarchy of differential

equations

∂Λγ
Λ
m = fm({γΛ

n |n ≤ m+ 1}), (5.2.1)

where the functions fm can be explicitly deduced, so that it is an exact reformulation of

the full quantum many-body problem. This leads to the necessity of a truncation of the

set of differential equations, which is commonly done by neglecting the flow of all vertex

functions above a certain mc (which is usually mc = 1 or mc = 2), and is obviously only

valid if the neglected terms are and stay small during the flow. This is however difficult
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to determine as only the truncated problem can be tackled. Within this approach, it

is known that the important Ward-identities [War50] are violated. Another truncation

scheme introduced by Katanin [Kat04] incorporating parts of γ3 into the flow of γ2

(instead of neglecting it completely) and neglecting all other contributions helps to

fulfill Ward-identities to higher order. This truncation scheme will be discussed later.

The 1PI vertex functions have major advantages: first, all closed propagator loops,

meaning all parts leading to the infrared divergences, are incorporated and double-

counting of reducible diagrams does not occur. Furthermore, the self-energy can be

feed back in the RG flow non-perturbatively. Most importantly, the theory can be

utilized directly to microscopic models with physical meaningful energy scales and is

not limited to effective field theories, so that the full-fledged physics is accessible and

not only the low-energy asymptotics. Additionally, different approximation schemes

can be used at different energy scales so that one can combine the full power of all

existing truncation schemes.

Within the FRG framework phase diagrams are accessible as competing instabilities in

two-dimensional systems are signaled by a divergence of parts of the vertex functions.

The Λ-scale, at which the vertex function diverge, is interpreted as the critical temper-

ature of the system in Ref. [Reu11d] and we will check this assumption in the following

within the XXZ-model described in chapter 4. A disadvantage of this divergence in

the vertex functions is that the full solution at Λ = 0 cannot be recovered, making it

impossible to calculate quantitative observables like the ground-state energy.

5.3 Flow Equations

As already mentioned in the last section, the flow equations for the vertex functions can

be derivated via generating functionals within the Matsubara formalism [Sal01], but

one can also obtain them on a diagrammatic level [Jak03, Jak07], and we will sketch

this in the following.

The n-particle vertex function is given as the sum of all 1PI diagrams dn, which include

n amputated incoming and n amputated outgoing lines. Each of these diagrams dn con-

sists of bare interactions connected by single-particle Green functions G0 as propagators

[Jak10a]. An example for a diagram d2 is sketched in Fig. 5.1.

Introducing a sharp frequency cutoff in the bare propagator G0 in the Matsubara
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Figure 5.1: Example of a diagram contributing to the vertex function γ2. The incoming
and outgoing lines are amputated, the gray dots represent bare vertex functions and the
connecting lines are dressed particle Green functions G0.

formalism

G0(iω)→ G0Λ(iω) =
Θ(|ω| − Λ)

iω − ε
, (5.3.1)

all diagrams and vertex functions become also Λ-dependent. Calculating the diagrams

dn with the standard diagrammatic rules, e.g. [Bru04, Sch09a, Jak10a], the free propa-

gators and therefore the Λ-dependence occur as products. Considering now the deriva-

tive of dn with respect to Λ one gains a sum over all diagrams d′n, which are equal to dn,

except for one Green function being replaced by its derivative. This derivative will be

represented by a slanted line in the diagrams. To compute ∂Λγ
Λ
n one thus has to sum

all diagrams d′n, which result from crossing any line in any diagram dn. Visualizing now

these diagrams d′n with leaving out the derivative of the propagator, it is easy to see

that the remaining part stays connected as dn was 1PI by definition, and furthermore

it is a chain of irreducible subdiagrams connected by single lines which form a closed

loop when reinserting the derivative. Adding up all d′n with the same loop-structure,

so differing only in the irreducible subdiagrams, one gets a loop of vertex functions.

When further adding up those rings which are identical except for self-energy inser-

tions, one achieves a dyson equation leading to full Green functions G and full Single

Scale propagator

SΛ = GΛ d

dΛ

(
G0Λ

)−1
GΛ (5.3.2)

connecting the vertex functions.

To sum up, for calculating the derivative of γΛ
n one has to draw all possible loops con-

sisting of vertex functions {γΛ
m|m ∈ {2, . . . ,m+ 1}} and connect those vertex functions

with full Green functions G and exactly one Single Scale propagator S. Symmetry

factors or other prefactors due to equivalent lines of diagrams are not needed due to

the special loop structure and the distinguished position of S [Jak07, Jak10a]. A short

summary of this procedure is depicted in Fig. 5.2.
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(a) (b) (c)

γΛ
2 γΛ

2

ΣΛ

γΛ
2 γΛ

2

γΛ
3 γΛ

3

Figure 5.2: a) Two diagrams contributing to the derivative of the diagram d2 which is
sketched in Fig. 5.1. The slanted line indicates the derivative of a free propagator. One
recognizes the loop structure of vertex functions (shaded in gray) connected via propagators
and exactly one derivative of it.
b) Summing up all diagrams with the same ring structure leads to diagrams with full
vertex functions and self-energy insertions in the propagators. c) Adding up these self-
energy insertions one gets the full propagators G and the Single Scale propagator S.

The flow equations for the vertex functions γΛ
1 and γΛ

2 are shown in Fig. 5.3 and for

temperature T = 0 read

d

dΛ
γΛ

1 (1′, 1) =
1

2π

∑
2,2′

γΛ
2 (1′, 2′; 1, 2)SΛ(2, 2′) (5.3.3)

d

dΛ
γΛ

2 (1′, 2′; 1, 2) =
1

2π

∑
3,3′

γΛ
3 (1′, 2′, 3′; 1, 2, 3)SΛ(3, 3′)

+
1

2π

∑
3,3′,4,4′

[
γΛ

2 (1′, 2′; 3, 4)γΛ
2 (3′, 4′; 1, 2)

− γΛ
2 (1′, 4′; 1, 3)γΛ

2 (3′, 2′; 4, 2)−
(
3′ ↔ 4′; 3↔ 4

)
+ γΛ

2 (2′, 4′; 1, 3)γΛ
2 (3′, 1′; 4, 2) +

(
3′ ↔ 4′; 3↔ 4

) ]
×GΛ(3, 3′)SΛ(4, 4′), (5.3.4)

with the multi-indices 1 = {ω, i, α} including the frequency ω, the site index i and the

spin α of incoming or outgoing lines and the sum over 1 contains an integral over ω1,

as well as a sum over i1 and α1.

5.4 Truncation Schemes

The solution of the infinite system of coupled differential equations for the vertex func-

tions with the evaluation at Λ = 0 would be the solution of the full-fledged many-body
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Figure 5.3: Flow equations for the self-energy γ1 and the two-particle vertex function γ2.
The indices 1, 1′, 2, 2′ are multi-indices containing all relevant information of the incoming
and outgoing lines (Sketch taken from Ref. [Jak10a]).

problem and is for almost all cases impossible. Hence, one needs truncation schemes

yielding an easier set of differential equations which can be tackled at least numeri-

cally. As the differential equation for γΛ
n only contains γΛ

1 up to γΛ
n+1 and no vertex

functions with higher particle numbers, the easiest way to get a closed set of equations

is to neglect the flow of the vertex functions with indices larger than a critical index

m. In this truncation scheme the Ward identities [War50] are not fulfilled and it was

shown in earlier calculations that for spin systems a more involved truncation which

does not violate the Ward identities in leading order [Kat04, Ens05] leads to better

results [Reu10, Gö11]. Within this Katanin truncation-scheme parts of the flow of γ3

are also included and the flow equation for γΛ
2 is modified by the replacement

SΛ → − d

dΛ
GΛ, (5.4.1)

so γ3 still does not appear explicitly leaving a closed set of differential equations for γ1

and γ2.
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5.5 Extension to Spin Systems

Using a mapping of the XXZ model to a fermionic system allows to use the FRG

introduced in the previous sections. Moreover, in the mapped XXZ model no weak

coupling parameter for all regimes of ∆ exists in the Hamiltonian, in which one could

expand the vertex functions. In this so called strong coupling limit a truncation of the

flow equations cannot be substantiated mathematically. Nonetheless, we will use the

Katanin truncation scheme as it led to reasonable results in former applications, see,

e.g., [Reu10].

The self-energy, the full propagator and the Single Scale propagator are local in real

space and spin conserving, so one can rewrite them

γΛ
1 (1, 1′) = γΛ

1 (ω1)δ(ω1 − ω1′)δi1i1′ δα1α1′ (5.5.1)

and equivalently for GΛ and SΛ. Defining the self-energy Σ = −iγ1 and the two-particle

vertex Γ = γ2 their flow equations read

d

dΛ
ΣΛ(1) =− 1

2π

∑
2

ΓΛ(1, 2; 1, 2)SΛ(ω2), (5.5.2)

d

dΛ
ΓΛ(1′, 2′; 1, 2) =

1

2π

∑
3,4

{
ΓΛ(1′, 2′; 3, 4)ΓΛ(3, 4; 1, 2)

−
[
ΓΛ(1′, 4; 1, 3)ΓΛ(3, 2′; 4, 2)− (3↔ 4)

]
+
[
ΓΛ(2′, 4; 1, 3)ΓΛ(3, 1′; 4, 2)− (3↔ 4)

] }
×GΛ(ω3)SΛ(ω4). (5.5.3)

The full propagator and the Single Scale propagator are given as (ε = 0 in this case)

GΛ(iω) =
Θ(|ω| − Λ)

iω − ΣΛ(iω)
, (5.5.4)

SΛ(iω) =
δ(|ω| − Λ)

iω − ΣΛ(iω)
+

(
d

dΛ
ΣΛ(iω)

)
Θ(|ω| − Λ)

[iω − ΣΛ(iω)]2
. (5.5.5)

The model under consideration has several symmetries. First of all, it is translational

invariant, so that the vertex functions do only depend on the distance |~i1 −~i2|1 in-

stead of the positions ~i1 and ~i2 themselves, with | . . . |1 meaning the one-norm defined

as |~a|1 = |ax| + |ay| in our two-dimensional system, and the self-energy is position-

independent. The position vectors ~i refer to an arbitrarily chosen reference spin and

the distance between neighboring spins is defined as our natural unit of length. Fur-
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thermore, as the mapped pseudo-model consists of fermions, the vertex functions have

to be antisymmetric under particle exchange. Last but not least, the system exhibits

a rotational invariance in the xy-plane. All in all, the vertex can be parametrized as

ΣΛ(1) =ΣΛ(ω1) (5.5.6)

ΓΛ(1′, 2′; 1, 2) =
[
ΓΛ
z,|~i1−~i2|1

(ω1′ , ω2′ ;ω1, ω2)σzα1′α1
σzα2′α2

+ ΓΛ
xy,|~i1−~i2|1

(ω1′ , ω2′ ;ω1, ω2)
(
σxα1′α1

σxα2′α2
+ σyα1′α1

σyα2′α2

)
+ ΓΛ

d,|~i1−~i2|1
(ω1′ , ω2′ ;ω1, ω2)δα1′α1δα2′α2

]
× δi1′ i1δi2′ i2

−
[
ΓΛ
z,|~i1−~i2|1

(ω1′ , ω2′ ;ω2, ω1)σzα1′α2
σzα2′α1

+ ΓΛ
xy,|~i1−~i2|1

(ω1′ , ω2′ ;ω2, ω1)
(
σxα1′α2

σxα2′α1
+ σyα1′α2

σyα2′α1

)
+ ΓΛ

d,|~i1−~i2|1
(ω1′ , ω2′ ;ω2, ω1)δα1′α2δα2′α1

]
× δi1′ i2δi2′ i1 (5.5.7)

in the following, where Γd contains the density-density interaction and Γz and Γxy the

spin-spin interaction in z-direction and in the xy-plane, respectively. Due to energy

conservation, for the frequencies the relation ω1 +ω2 = ω1′+ω2′ has to hold. Therefore,

it is common to define three ’Mandelstam’-variables s, t, u by

ω1 =
1

2
(s− t+ u) ω1′ =

1

2
(s+ t+ u)

ω2 =
1

2
(s+ t− u) ω2′ =

1

2
(s− t− u) (5.5.8)

and write the vertex functions in the form

ΓΛ
xy/z/d,|~i1−~i2|1

(ω1′ , ω2′ ;ω1, ω2)→ ΓΛ
xy/z/d,|~i1−~i2|1

(s, t, u), (5.5.9)

which satisfies the energy conservation implicitly. Inserting this parametrization into

eq. (5.5.3) leads to the flow equations which will be solved numerically. Due to their

length, we will only present them in appendix A.

We will now specify the initial conditions for Σ and Γ at the starting point of the

flow Λ = ∞. By introducing the cutoff parameter Λ as shown in eq. 5.3.1, the bare

propagator vanishes and only the bare two-particle interaction remains. The self-energy

is obviously zero, as already the lowest order diagram contains one free propagator1

ΣΛ=∞(iω) = 0. (5.5.10)

1Numerically, the flow has to start at a finite Λ. Consequences of this are discussed in Ref. [Jak10a].
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The bare interaction has to be antisymmetrized as ΓΛ(1′, 2′; 1, 2) changes sign under

the exchange of two incoming or outgoing particles, so it reads

ΓΛ=∞(1′, 2′; 1, 2) =J|~i1−~i2|1

[(
1

4
σxα1′α1

σxα2′α2
+

1

4
σyα1′α1

σyα2′α2
+

∆

4
σzα1′α1

σzα2′α2

)
× δi1′ i1δi2′ i2

−
(

1

4
σxα1′α2

σxα2′α1
+

1

4
σyα1′α2

σyα2′α1
+

∆

4
σzα1′α2

σzα2′α1

)
× δi1′ i2δi2′ i1

]
, (5.5.11)

where the Kronecker δ prevent the fermionic hopping on the lattice. In the parametrized

form this leads to

ΓΛ=∞
xy,i1−i2(s, t, u) =

1

4
J|~i1−~i2|1 , (5.5.12)

ΓΛ=∞
z,i1−i2(s, t, u) =

∆

4
J|~i1−~i2|1 , (5.5.13)

ΓΛ=∞
d,i1−i2(s, t, u) =0. (5.5.14)

Regarding the symmetries of the initial conditions and the flow equations for the self-

energy and the two-particle interaction with respect to the frequencies, it is obvious

that the self-energy is an odd function. Furthermore, one can show that Γ is in-

variant under each of the transformations s ↔ −s, t ↔ −t and u ↔ −u due to time-

reversal invariance, particle-hole symmetry and antisymmetry by particle-exchange (see

[Reu11a, Sä11]). Additionally, Γxy and Γz are invariant under s ↔ u and Γd changes

sign under this transformation. These symmetries will be used to reduce the numerical

effort by roughly a factor of 16.

5.6 Physical Observable: The Susceptibility

Our major physical observables under consideration are the static spin-spin correlation

function χij(iν = 0) and the susceptibility χ(q = π, ω = 0), as a divergence in these

quantities would indicate a flow into a magnetically ordered phase. Following Reuther,

Thomale and Trebst [Reu11d], the energy-scale, at which this divergence occur, is

interpreted as the critical temperature of the system.
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The spin-spin correlation function is defined as

χzzij (iν) =

∫ ∞
0

dτeiντ 〈Tτ{Szi (τ)Szj (τ)}〉

+i j i j
iν = 0

= δij
iν = 0

, (5.6.1)

with the time-ordering operator Tτ . The dashed block represents the two-particle vertex

function −Γ(1′, 2′; 1, 2). χxx = χyy can be defined analogously. The first diagram (D1)

can be translated easily

Dzz
1 =−

∫ ∞
−∞

dω

2π
GΛ(ω)

1

2
σzαβG

Λ(ω)
1

2
σzβαδij

=

∫ ∞
Λ

dω

2π

(
1

ω + iΣΛ(ω)

)2

δij (5.6.2)

=Dxx
1 .

For the second diagram (D2), this translation is slightly more involved

Dzz
2 =−

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π

[
GΛ(ω1)

]2 1

2
σzαβΓΛ

ij(ω1α, ω2γ;ω1β, ω2δ)
[
GΛ(ω2)

]2 1

2
σzγδ

=− 1

4

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
Θ(|ω1| − Λ)Θ(|ω2| − Λ)

[
1

ω1 + iΣ(ω1)

]2 [ 1

ω1 + iΣ(ω2)

]2

× σzαβσzγδ
{[

ΓΛ
xy,|~i−~j|1

(ω1, ω2;ω1, ω2)
(
σxβασ

x
δγ + σyβασ

y
δγ

)
+ ΓΛ

z,|~i−~j|1
(ω1, ω2;ω1, ω2)σzβασ

z
δγ + ΓΛ

d,|~i−~j|1
(ω1, ω2;ω1, ω2)δβαδδγ

]
− δij

[
ΓΛ
xy,|~i−~j|1

(ω1, ω2;ω2, ω1)
(
σxδασ

x
βγ + σyδασ

y
βγ

)
+ ΓΛ

z,|~i−~j|1
(ω1, ω2;ω2, ω1)σzδασ

z
βγ + ΓΛ

d,|~i−~j|1
(ω1, ω2;ω2, ω1)δδαδβγ

]}
=− 1

4

∫ ∞
−∞

dω1

2π

∫ ∞
−∞

dω2

2π
Θ(|ω1| − Λ)Θ(|ω2| − Λ)

[
1

ω1 + iΣ(ω1)

]2 [ 1

ω1 + iΣ(ω2)

]2

×
{

4ΓΛ
z,|~i−~j|1

(ω1 + ω2, 0, ω1 − ω2)

− δij
[
2ΓΛ

z,|~i−~j|1
(ω1 + ω2, ω1 − ω2, 0)− 4ΓΛ

xy,|~i−~j|1
(ω1 + ω2, ω1 − ω2, 0)

+ 2ΓΛ
d,|~i−~j|1

(ω1 + ω2, ω1 − ω2, 0)
]}
. (5.6.3)
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Using the symmetry properties of the vertex functions, this can be further simplified

Dzz
2 =− 2

∫ ∞
Λ

dω1

2π

∫ ω1

Λ

dω2

2π

[
1

ω1 + iΣ(ω1)

]2 [ 1

ω1 + iΣ(ω2)

]2

×
{

4ΓΛ
z,|~i−~j|1

(ω1 + ω2, 0, ω1 − ω2)

− δij
[
ΓΛ
z,|~i−~j|1

(ω1 + ω2, ω1 − ω2, 0) + ΓΛ
z,|~i−~j|1

(ω1 − ω2, ω1 + ω2, 0)

− 2ΓΛ
xy,|~i−~j|1

(ω1 + ω2, ω1 − ω2, 0)− 2ΓΛ
xy,|~i−~j|1

(ω1 − ω2, ω1 + ω2, 0)

+ ΓΛ
d,|~i−~j|1

(ω1 + ω2, ω1 − ω2, 0) + ΓΛ
d,|~i−~j|1

(ω1 − ω2, ω1 + ω2, 0)
]}
.

(5.6.4)

The calculation of Dxx
2 yields

Dxx
2 =− 2

∫ ∞
Λ

dω1

2π

∫ ω1

Λ

dω2

2π

[
1

ω1 + iΣ(ω1)

]2 [ 1

ω1 + iΣ(ω2)

]2

×
{

4ΓΛ
xy,|~i−~j|1

(ω1 + ω2, 0, ω1 − ω2)

− δij
[
− ΓΛ

z,|~i−~j|1
(ω1 + ω2, ω1 − ω2, 0)− ΓΛ

z,|~i−~j|1
(ω1 − ω2, ω1 + ω2, 0)

+ ΓΛ
d,|~i−~j|1

(ω1 + ω2, ω1 − ω2, 0) + ΓΛ
d,|~i−~j|1

(ω1 − ω2, ω1 + ω2, 0)
]}
.

(5.6.5)

In a next step, the static susceptibility can be computed from these quantities

χ(q = (π, π), iν = 0) =
∑
~i

(−1)|
~i|1χ0|~i|1(iν = 0). (5.6.6)

These quantities have only a physical interpretation at Λ = 0, but we will calculate

them for finite Λ as well and interpret their divergence as sign of a magnetic instability

of the system.

5.7 Other Methods

As we want to test the results calculated within the spin-FRG, we have to use also

other methods to compare with. In this section, we will briefly describe those.

Random Phase Approximation The random phase approximation (RPA) is a

widely used approximation scheme to compute, e.g., magnetic properties in condensed

matter physics. It was introduced by Bohm and Pines in the early 1950’s [Boh51, Pin52,
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Boh53]. The individual spins or electrons are treated as they only interact with a total

magnetic or electric field, which consists of an externally applied field and a screening

potential due to the other spins or electrons. So the rest of the system is only treated on

average and quantum fluctuations are neglected. By dropping some terms of the full set

of FRG equations we can reproduce a single-channel summation of RPA character. We

will present results of such restricted flows, where only specific terms of the t-channel

are taken into account, which are the terms ∼ ΓΛ(1′, 4; 1, 3)ΓΛ(3, 2′; 4, 2) + (3 ↔ 4)

of eq. (5.5.3). Details are explained in Ref. [Reu10]. The remaining terms can be

investigated more carefully by using the parametrization (5.5.7). The ΓΛ
d,|~i−~j| terms

are initially zero and stay constant during the flow. Fourier-transforming the other

vertex functions ΓΛ
xy/z,|~i−~j| from |~i − ~j| to the reciprocal vector ~q, the t-channel can

be split into a part which do not couple different ~q and a part with an internal sum

over another ~q′. The second ones are vertex corrections and also dropped in our RPA

scheme, but the first ones are bubble-like diagrams and lead to the flow equations

for the vertices explicitly stated in Ref. [Reu10]. In the following comparison to the

FRG results, we will discuss two versions of this RPA scheme. In the first one, the

self-energy is completely neglected, and we will call this ”RPA0”. Including these

self-energy contributions like in usual self-consistent RPA without cutoffs we call the

”RPA+” scheme.

Quantum Monte Carlo A common starting point for numerical studies of inter-

acting many-body systems is the path-integral formalism. As long as the system under

consideration is not frustrated, so positive definiteness can be assured, unbiased QMC

methods can be used to solve these problems numerically exact [Ass08]. In this thesis,

we use comparative data for the critical temperature Tc in the vicinity of ∆ = 1 cal-

culated by Cuccoli et al. [Cuc03]. As we need an estimation of Tc in a wider range of

∆ to test the Spin-FRG, we use QMC simulations with the stochastic series expansion

method [San99] with generalized directed loop updates [Syl02, Ale05]. Square lattices

with periodic boundary conditions and edge length up to 32 spins are simulated and

from these finite size data the critical temperature in the easy-axis regime ∆ > 1 is ob-

tained from a finite-size analysis based on the critical Binder ratio [Bin81]. For ∆ < 1

the critical temperature is given by the jump in the spin stiffness, which is calculated

from the measurement of the spin winding number fluctuations [Pol87]. We appreciate

that Stefan Weßel2 has provided the results of the QMC calculations presented in the

following.

2Stefan Weßel, RWTH Aachen, Institute for Condensed Matter Physics



Chapter 6

Results

In this chapter, we present the numerical solution of the flow equations (5.5.2) and

(5.5.3) with the initial conditions (5.5.14). In detail, we will show at first the flow of

the susceptibility (5.6.6) and reproduce the phase transition at ∆ = 1. Afterwards, we

investigate the critical scale Λc, at which the flow of the vertex function diverge, and

compare this with the critical temperature of the XXZ model in various limits.

If it is not stated explicitly otherwise, we consider a square lattice with 10 × 10 sites.

The handling of the frequencies is comparable to the one of Reuther and Wölfle [Reu10],

as we also use a logarithmic discretization of Nf = 30 positive frequencies with ωmin =

0.001J and ωmax ≈ 250J . Negative frequencies are included due to the symmetry

relations of the vertex functions. So all in all, the full range of frequencies is covered

where the frequencies with a small absolute value are treated in detail, as they mainly

determine the low-energy behavior of the system, but also high frequencies larger than

∆× J are taken into account to capture the high-energy physics.

Of course this finite-size treatment of the XXZ Model and the frequency discretization

are approximations which have to be tested, so we also present results for different

lattice sizes and other frequency discretizations.

6.1 Susceptibility

As mentioned at the beginning of this chapter, we start with the discussion of the

susceptibility for different values of ∆. For ∆ > 1 we expect a dominant correlation in

z-direction leading to χzz > χxx. At the isotropic point ∆ = 1, the system is rotational

invariant, so both susceptibilities should be equal, and for ∆ < 1 the planar correlation

becomes stronger than the axial one. These results were reproduced within our FRG

calculations as one can see in Fig. 6.1.
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Figure 6.1: Flow of the static Néel susceptibility in z- and x-direction, χzz and χxx

respectively, for different values of the anisotropy parameter ∆. The existence of a phase
transition at ∆ = 1 can be confirmed, as for ∆ > 1 a diverging χzz characterizes an axial
ordering, whereas for ∆ < 1 the planar ordering dominates due to χxx > χzz.

In the easy-plane regime with ∆ = 0.7, the static Néel susceptibility χxx diverges

at Λ ≈ 0.6J , whereas χzz increases but remains finite. As mentioned earlier, these

quantities have only a strict physical interpretation at Λ = 0, but the divergence of one

component can be interpreted as a tendency to a magnetic ordering in this direction.

Thus a planar ordering is obtained. Analogously, the diverging χzz for ∆ = 1.3 indicates

an axial ordering in the system. For ∆ = 1 both susceptibilities diverge simultaneously

as expected. All in all, the phase transition at ∆ = 1 from planar order (∆ < 1) to

an axial ordering (∆ > 1) is obtained, but quantitative comparisons to other methods

for the values of the susceptibility are not possible due to its divergence. Therefore, in

a next step we try to connect the scale Λc at which the flow diverges with the critical

temperature Tc of the system, as it is done by Reuther, Thomale and Trebst [Reu11d].
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Figure 6.2: Left: Critical scale of the system for different lattice sizes. Λc seems to
be nearly converged, only a mild effect of increasing with lattice size is obtained. Right:
Critical scale for different amounts of frequencies used in the discretization of the flow
equations. As long as enough frequencies are taken into account, the critical scale seems
to be converged and does not show a monotonous behavior.

6.2 Finite Size and Frequency Discretization Effects

Before we compare the critical scale Λc, at which the flow of the vertex functions

diverge, with the critical temperature of the system, we try to assess the effect of our

finite system and the frequency discretization on this quantity. The results for various

lattice sizes and different amounts of frequencies are shown in Fig. 6.2.

Although only lattices up to 12× 12 sites are studied due to the numerical effort of the

method, the critical scale seems to be nearly converged in all regions of the anisotropy

parameter ∆. A mild finite-size effect is still visible and Λc seems to increase with

system size. The number of positive frequencies Nf used in the FRG calculations show

also no crucial effect on the critical scale, as long as enough frequencies Nf > 20 are

taken into account. Furthermore, in contrast to the system-size dependence, one cannot

observe a monotonous dependence for the critical scale on the frequency discretization

within the limitations of our test.

6.3 Critical Scale and Temperature

The critical scale Λc of the RG-flow is directly interpreted as the critical temperature Tc

of the system by Reuther, Thomale and Trebst [Reu11d]. To check this interpretation,

we first consider the Ising limit, meaning ∆ → ∞, as the critical temperature for the

phase transition into the ordered phase is exactly known Tc ≈ 2.269∆J/4 [Ons44]. The

results in this limit are presented in Fig. 6.3.
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Figure 6.3: Critical scale Λc as a function of the anisotropy parameter ∆ for the different
methods under consideration in this thesis. The spin-FRG is a distinct improvement of
both RPA methods and the critical scale coincides with the critical temperature in the
Ising limit ∆→∞ within the expected error due to various approximations.

The QMC data are numerically exact for this model due to the absence of frustration,

as explained in the previous chapter. The values of the ”RPA0”, ”RPA+” and ”FRG”

converge as a function of large ∆, but their limits differ. From the comparison of

the ”RPA0” and the ”RPA+” results we can conclude that the inclusion of the self-

energy improves the results, but both methods lead to too large critical temperatures

so that the ordering tendency of the system is overestimated. Concerning the various

approximations within the spin-FRG calculations, the result in the Ising limit agrees

rather well with the correct value, so that this method seems to be an improvement over

the RPA. Furthermore, the interpretation of Λc as the critical temperature Tc might

be a promising assumption at least in the Ising limit.

In a next step, we investigate the regime ∆ ≈ 1, where we will show that this interpre-

tation becomes invalid. In this regime, no analytic result for the critical temperature

is known, so we will compare the results with those of the QMC analysis. Only at

∆ = 1 the critical temperature has to vanish as the Mermin-Wagner theorem states

the absence of a finite temperature phase transition in a model with a continuous sym-

metry. Remember that for ∆ < 1 a continuous symmetry also exist, the rotational

invariance in the xy-plane, but a BKT-transition occurs at finite temperature, whose

critical temperature is calculated within the QMC analysis. The results for the various

methods are shown in Fig. 6.4.
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Figure 6.4: The spin-FRG is also an improvement of the RPA methods in the isotropic
regime, but violates the Mermin-Wagner theorem at ∆ = 1 significantly. The deviations
between FRG results and the numerical exact estimations for Tc calculated with a QMC
analysis are rather large, especially in the easy-plane regime.

Like in the Ising limit, the spin-FRG improves both RPA calculations, but the devia-

tions to the QMC data are significantly larger than before. For ∆ & 2 the approxima-

tion of the critical temperature provides a reasonable estimate, but in the easy-plane

regime it fails by roughly a factor of 2. The strongest deviations between spin-FRG

and QMC data are around the isotropic point ∆ = 1. The QMC results reproduce the

vanishing critical temperature, whereas the spin-FRG results stay finite and therefore

violate the Mermin-Wagner theorem under the interpretation Λc = Tc. Taking a closer

look at the RPA and the spin-FRG results in this regime, the ”RPA0” without any

self-energy inclusion does not show any special feature at ∆ = 1 and the critical tem-

perature is monotonically increasing with ∆. The ”RPA+” has a very tiny kink at this

position, and a distinct kink appears in the FRG data which is again an improvement

with respect to the RPA results. Nonetheless, the isotropic model is gapless and the

critical temperature vanishes, so only the bare energy scale J exists. Therefore, the

interpretation of Λc as any energy scale of the model fails at all. Concluding, important

parts of the physics to describe the vanishing critical temperature at ∆ ≈ 1 correctly

are obviously not captured in the spin-FRG scheme, so the interpretation of Λc as the

critical temperature Tc of the system has to be taken with great caution.
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Figure 6.5: Auxiliary fermion self-energy near Λ = Λc for different values of the anisotropy
parameter ∆. It shows a peak structure with the maximum located at ω ≈ ∆J at least for
∆ ≥ 1.

6.4 Auxiliary Fermion Self-Energy

As explained previously, the difference between ”RPA0” and ”RPA+” is the generated

self-energy of the auxiliary fermions. This leads to an improved description of the

critical temperature at the isotropic point ∆ = 1, because the ”RPA+” shows at least

a weak kink in this parameter regime whereas the ”RPA0” leads to a monotonically

increasing critical temperature with ∆. So probably a deeper analysis of this self-energy

could shed light on the results of the spin-FRG.

Although this auxiliary fermion self-energy is not a physical quantity, as the auxiliary

fermion Green function connects the physical Hilbert space with one fermion per site to

the unphysical sector of doubly- or unoccupied lattice sites, we present in Fig. 6.5 the

results of the spin-FRG for the frequency dependent self-energy γΛ(ω) at the end of the

RG-flow for different values of ∆. One observes a peak structure with the maximum

located at ω ≈ ∆J at least for ∆ ≥ 1.

The position of the peak differs qualitatively from the self-energy found in self-consistent

RPA [Bri05], where the peak occurs near zero frequency. It has to be pointed out that

the mismatch between the self-consistent RPA scheme and our ”RPA+” could be the

delayed generation of the self-energy in our implementation, although both approaches

keep the same class of diagrams.

Even more accessible are the results for a two-site system. The exact form of the
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auxiliary fermion self-energy can be computed by a Lehmann representation yields

γ ∼ 1/ω [Reu11a]. The self-energy generated in our RG-flow shows the same structure

as for the two-dimensional system, see Refs. [Gö11, Sä11]. A possible reason for

this disagreement is an incorrect description of the small frequencies in our spin-FRG

approach, which could originate from the frequency discretization with a finite ωmin.

Based on this hypothesis, one could argue why the spin-FRG leads to a good approx-

imation of the critical temperature at least in the Ising limit ∆ → ∞. In this regime,

the flow diverges at a larger scale of Λ. The self-energy enters into the flow only via the

propagators ∼ 1/[ω+γ(ω)], so its precise form for ω ≥ Λ only weakly effects the results.

For smaller values of ∆, the flow reaches regimes where the self-energy becomes more

and more important, so that the mismatch between the generated self-energy and the

expected ∼ 1/ω behavior becomes relevant, leading to the failure of avoiding the diver-

gence of the flow at a non-zero scale for ∆ = 1. This could be a qualitative explanation

for the reasonable results in the Ising regime and the violation of the Mermin-Wagner

theorem at the isotropic point.

An artificially stronger suppression of the auxiliary fermion spectral function at small

frequencies could improve the results in self-consistent studies [Bri05]. Also in our

spin-FRG scheme a larger self-energy around ω ≈ 0 could lead to a vanishing critical

temperature at the isotropic point and thus to the fulfillment of the Mermin-Wagner

theorem. However, this would also strongly effect the estimations of the critical tem-

perature for other values of ∆, especially in the easy-plane where it would vanish.





Chapter 7

Conclusion

In this first part of the thesis, we compared the results of spin-FRG calculations with

those of other methods, namely ”RPA0”, ”RPA+” and QMC, to get a qualitative and

quantitative assessment of the spin-FRG. Although the prediction for the phase tran-

sition of the XXZ model from planar to axial ordering at ∆ = 1 could be reproduced,

the interpretation of the critical scale Λc as the critical temperature Tc yields only good

results in the strong Ising limit. Near the isotropic point this interpretation becomes

unsatisfactory, as the Mermin-Wagner theorem was violated, and also in the easy-plane

regime the critical temperature was overestimated by a factor of two. Furthermore, the

self-energy of the auxiliary fermions was not generated correctly especially in the low

frequency regime, leading to a divergent FRG-flow, as the self-energy was too weak to

prevent this divergence.

Possible reasons for these problems are:

• It was stated that the low-energy part of the auxiliary fermion self-energy was

generated too weak to prevent the divergence in the FRG-flow. A denser dis-

cretization of the frequencies would perhaps lead to better results, but the results

presented in Fig. 6.2 at least do not suggest improvements due to a higher number

of frequencies. Furthermore, at the isotropic point, excitations with an infinites-

imal energy are possible, so that one would need a continuous treatment of the

frequencies to cover the whole physics, which is numerically not possible.

• Another numerical issue is the necessity of treating a finite size system. Probably

the long-wave physics is not included in our relatively small systems, so that the

spin waves are too constrained. A counter-argument is given by Fig. 6.2 as the

critical scale Λc increases with the system size for the models under consideration

in our calculations and do not decrease as it is needed for fulfilling the Mermin-

Wagner theorem.
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• Another approximation was already addressed in section 4.2. The mapping from

the spin-system to the fermionic one was only possible with the introduction of

a constraint (eq. 4.2.4). For vanishing temperature, this constraint could only be

fulfilled on average neglecting quantum fluctuations. The generated self-energy

of these auxiliary fermions does not fit to the expected one and major changes

to the formalism would be needed to alter this behavior. For finite temperatures

the constraint can be surpassed by the introduction of an imaginary chemical

potential [Pop88] which increases the numerical effort substantial as some of the

presented symmetries are broken. Nevertheless, calculations for the Heisenberg

model at finite temperature were done by Reuther [Reu11a], but no qualitative

differences to the vanishing temperature results was found, so we do not expect

that this projection is the main source of error.

• Within the FRG one sets up an infinite system of coupled differential equations,

which was truncated after the four-point vertex in our study. For standard spin-

Hamiltonians without a kinetic energy term, like the XXZ model, no small ex-

pansion parameter exists. Therefore, a truncation of the flow equations is a priori

not controlled. Furthermore, in a bosonic description of O(3) models, the four-

boson coupling needs to be included in the calculations to get a vanishing critical

temperature to fulfill the Mermin-Wagner theorem. This four-boson coupling

corresponds to a 1PI eight-fermion vertex which we do not include due to the

truncation. So the interaction of low-lying spin fluctuations which suppress the

zero-frequency ordering might not be incorporated correctly, which is also sup-

ported by the observation that the estimation of the critical temperature Tc in the

easy-plane regime is worse than in the easy-axis regime, because the spin waves

on the easy-plane side are gapless.

We conclude, the spin-FRG improves RPA calculations in the two dimensional quan-

tum spin XXZ model and furthermore, it was possible to detect the quantum phase

transition at ∆ = 1. The computed critical temperature in the Ising limit ∆ → ∞
coincides with the analytic solution and in the regime not too close to the isotropic

point ∆ = 1 the calculated critical scales where at least in the same order of magnitude

as the estimations of the QMC analysis. However, at the isotropic point the spin-FRG

predicts a finite critical temperature in violation of Mermin-Wagner theorem, which

also destroys the quantitative validity in the vicinity of ∆ = 1. Additionally, due to

the divergence in the RG-flow at finite Λ, no quantitative results for susceptibilities

or correlation functions can be calculated and compared to other methods. These

drawbacks of FRG calculations are already known in itinerant two-dimensional many
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fermion systems [Met12] and the advanced approximation in the spin-FRG with the

Katanin truncation, including the full self-energy feedback and frequency dependence

of the vertices, cannot remedy this deficiency. All in all, the spin-FRG should only be

used to explore phase diagrams whose competing ground states differ strongly, mean-

ing a difference already in the correlation functions on short distances. These are the

situations studied in most of the spin-FRG papers up to now.





Real-Time RG Study of a

Generic 2-Level Quantum Dot in

the Coulomb Blockade Regime in

Nonequilibrium

In the following chapters, we will apply the real time renormalization
group to a generic quantum dot in the Coulomb blockade regime and
compare the results for the stationary magnetization and current to
those of a poor man’s scaling-approach.
This part is based on Refs. [Gö15a, Gö15b].
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Chapter 8

Motivation

Within recent years, the possibility to prepare and manipulate quantum systems has

made enormous progress. One example for this is the field of ultra-cold atoms [Blo08],

but also in other setups coherent quantum systems were realized, e.g., in single molecules

in silicon structures [Pla12]. Furthermore, the manipulation of charge- [Pet04] and

spin-degrees [Cra04, Pet05] of freedom in quantum dots (QDs) were successfully demon-

strated already earlier. The ability to control these setups is one of the most important

steps towards quantum computing, but it has also a variety of applications in nano-

electronics and spintronics in general [Han07]. These open quantum systems show in-

teresting many-body properties and coherent phenomena at low temperatures [And10,

Sch11b]. We will focus on spin-dependent phenomena, as the elementary unit needed

for quantum processing, the qubit, is often modeled by a single spin coupled to an

infinite environment. Those can be described by a QD, which is tuned to the Coulomb

blockade regime, such that the dot is occupied by a fixed number of charges and only

other quantum numbers can be changed by an interaction with the environment. An ex-

ample is the antiferromagnetic spin-1/2 Kondo model, which can be realized by a single-

occupied dot, where this particle can fluctuate between two states. The investigation of

this Kondo model has a long history [Hew93], and a milestone was reached by the pre-

diction and experimental observation of universal conductance [Gla88, Ng88, GG98b,

Cro98, Sim99]. Next to the broad studies of equilibrium properties of the Kondo model

[Cos94, Gla05], also the non-equilibrium features at finite bias voltage and the time dy-

namics have been analyzed in weak [Ros01, Ros03, Keh05, Sch09b, Sch09c, Fri10, Ple10]

and strong coupling [Jak10b, Eck10, Ple12, Smi13a, Smi13b, Rei14] as well as compared

to experiments [Kre12, Klo13] with renormalization group (RG) methods. The isotropic

Kondo model with unpolarized leads is only one special case of this QD setups with a

particle fluctuating between two states. On the one hand, the leads can, e.g., be ferro-

magnetically with arbitrary spin orientations, on the other hand, the quantum numbers
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labeling the dot levels do not have to belong to a physical spin but can also arise from

different orbitals or mixtures of spin and orbital degrees of freedom in the presence

of spin-orbit interaction. Thus, the tunneling matrices could be non spin-conserving.

For these cases exchange fields are generated, and it has been found in equilibrium

and the linear response regime that the universal properties of the Kondo model can

be re-established, if one cancels those exchange fields by external ones. Within a nu-

merical RG-approach, this could be confirmed for ferromagnetic leads with parallel or

antiparallel orientations [Mar03b, Mar03a, Sin07], for orbital degrees of freedom on the

dot and for Aharonov-Bohm geometries [Boe01, Boe02]. An analytical understanding

was achieved by Kashcheyevs et al. [Kas07], as all these equilibrium models could be

mapped to the anisotropic Kondo model. The studies concerning non-equilibrium situa-

tions focused on exchange fields generated by ferromagnetic leads [Kö03, Bra04, Wey07],

spin-orbit interactions [Paa10], orbital fluctuations [Boe01, Boe02] or an additional

Dzyaloshinskii-Moriya interaction [Ple11]. Up to now, all studies treated special cases

of a pseudo spin-1/2 QD. In this thesis, we identify generic features, which are in-

dependent of the complexity of the geometry, special forms of the interactions or the

polarizations of the leads.

As the dissipative environment coupled to the QD has a continuous spectrum, typically

logarithmic divergences occur in all orders of perturbation theory. These are at large

energies D � ∆, 1/t powers of

J0 ln
D

max{∆, 1/t}
, (8.0.1)

where D is the band width of the reservoirs, J0 is an appropriately defined coupling

constant between the reservoirs and the QD, ∆ contains all physical low-energy scales

like the magnetic field, the temperature or the bias voltage, and t denotes the time

variable. Furthermore, also divergences at long times t � 1/∆ can occur, which are

powers of J0ln∆t [Kas13]. Perturbation theory breaks down if one of these parameters

become of O(1), such that it is necessary to resum the leading logarithmic terms via

some well-controlled weak-coupling RG method. Phenomenologically, one expects that

the non-equilibrium setup leads to two new energy scales, the bias voltage V and the

inverse time 1/t, which could cut the RG-flow. One thus uses the usual poor man’s

scaling (PMS)-approach [And70, Hal78] to integrate out the high-energy contributions

of the reservoirs step by step until the effective bandwidth becomes of the same order

as Λc = max{∆, 1/t}, which is the maximum of all physical energy scales of the system.

Here, one stops the RG-flow and uses this renormalized couplings Jc as input parameters

for a perturbation theory in Jc, which is at least well defined if Jc � 1. Although
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this phenomenological ansatz is very appealing from a pragmatic point of view, it

is important to check its validity by a comparison to a fully controlled microscopic

approach. Therefore, many RG methods have been developed. Based on the functional

renormalization group (FRG) [Met12], a quantum dot (QD) in a non-equilibrium setup

has been treated in Ref. [Jak10b, Kar10], where one expands in the Coulomb interaction

on the dot. Furthermore, also the flow-equation method [Weg00, G l93, Gla94] was

extended to treat this situation [Keh05, Fri10]. In this thesis, we will use the recently

developed real time renormalization group (RTRG) [Sch09b]. It uses an expansion in

the reservoir-dot hopping, such that it is formally close to the phenomenological poor

man’s scaling (PMS)-approach, which makes an analytical comparison between both

ansatzes possible.





Chapter 9

Model: The Quantum Dot

In the first part of this chapter, we introduce a generic Z-level QD, which is coupled to

an arbitrary number of non-interacting multi-channel metallic reservoirs by a generic

tunneling matrix. We will show that only a specific combination of the reservoir density

of states and the tunneling matrix occurs for observables supported on the local QD

system. By utilizing that only this combination occurs, one can map the two-level QD

to a pseudo spin-1/2 model with the spin on the dot and in the reservoirs pointing in

arbitrary directions individually, which is equivalent to the Anderson impurity model

with ferromagnetic leads. Afterwards, we will focus on the Coulomb blockade regime

of this two-level QD with a fixed particle number N = 1 on the dot. The effective

Hamiltonian of this special case can be derived by a standard “Schrieffer-Wolff trans-

formation” [Sch66], as explained in Ref. [Sch09b], and will be the starting point for

our RG-approach in the next chapter. We will use the units ~ = e = kB = 1.

9.1 Generic Z-Level Quantum Dot Model

The generic Z-level interacting QD is coupled to an arbitrary number of reservoirs via

tunneling processes. The Hamiltonian of this configuration is generically given by

Htot = Hres +HD + V, (9.1.1)

where Hres, HD and V denote the reservoir, the dot and the tunneling part, respec-

tively. The QD without the coupling to the reservoirs consists of Z single particle

levels described by a complete set of quantum numbers (like the spin) and are labeled

by l = 1, . . . , Z in the following. Therefore, the Hamiltonian containing an arbitrary
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interaction can be written as

HD =
∑
ll′

εll′c
†
l cl′ +

1

2

∑
l1l2l′1l

′
2

vl1l2,l′1l′2c
†
l1
c†l2cl′2cl′1 , (9.1.2)

with the creation and annihilation field operators on the dot c†l and cl. This Hamiltonian

can be diagonalized with the eigenenergies Es and the corresponding eigenstates |s〉, to

rewrite the Hamiltonian as

HD =
∑
s

Es |s〉 〈s| . (9.1.3)

The reservoirs are assumed to be infinitely large and consist of non-interacting fermions.

Therefore, the Hamiltonian of this part reads

Hres =
∑
α

Hα
res =

∑
ανν′k

εαkνν′a
†
ανkaαν′k =

∑
αk

a†αkε
αkaαk, (9.1.4)

with α = 1, . . . , Zres being the reservoir index, ν = 1, . . . , Zαch the channel index, e.g., the

spin, of the corresponding reservoir α, and k represents a one-dimensional discrete index

characterizing uniquely the energy dispersion of the reservoir bands. The corresponding

creation and annihilation operators are a†ανk and aανk. The column (row) vector a
(†)
αk

and the dispersion matrix εαk are defined for a compactified notation w.r.t. the channel

indices. As the reservoirs are non-interacting their density matrix in the isolated case

can be described by a grandcanonical distribution function

ρeq
res =

∏
α

ρeq
α , ρeq

α =
1

Zα
e−(Hα

res−µαNα
res)/Tα , (9.1.5)

with chemical potentials µα and temperatures Tα, which could differ generically. Within

this treatment of the reservoirs, spin-orbit effects and ferromagnetic leads are incorpo-

rated, as the reservoirs need not to be diagonal w.r.t. the channel index. To clarify

the notation, the index α denotes a specific reservoir with its temperature Tα and

chemical potential µα whereas the index ν labels the bands within the same reservoir.

Furthermore, we can also define for the density of states of the reservoirs a matrix

representation

ρα(ω) =
1

ρ0

∑
k

δ(ω − εαk + µα), (9.1.6)

with some average density of states ρ0.

Last but not least, the interaction V between the reservoirs and the dot has to be
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specified. Again, we start with the generic form

V =
1
√
ρ0

∑
ανkl

tαkνl a
†
ανkcl + h.c., (9.1.7)

with the tunneling matrix elements tαkνl . The energy dependence of the tunneling matrix

is taken into account for the general discussion of the model but will be neglected later.

To shorten the notation, we introduce the Zαch×Z matrix tαk with the matrix elements

tαkνl and rewrite V as

V =
1
√
ρ0

∑
αk

{
a†αkt

αkc+ c†
(
tαk
)†
aαk

}
, (9.1.8)

where c is a vector w.r.t. the index l.

Continuum Representation After introducing the generic model, the question

arises, if a mapping to an effective model with simpler matrix structures for the energy

dispersion εαk with the matrix elements εαkνν′ and the tunneling matrix exists. Trivial

unitary transformations in the channel space of the reservoirs are obviously possible,

however, we will show that additionally the information can be shifted from the density

of states of the reservoirs to the tunneling matrix and vice versa, as the observables

under consideration depend only on a specific combination of those.

At this point, we switch to a continuum representation in the energy space of the

reservoirs replacing the discrete (arbitrarily dense) k index to introduce the possibility

for the system to relax into a steady-state without recurrence. Therefore, we have to

switch to the basis, in which the hermitian matrix εαk is diagonal, to find a unique

relationship between the discrete index k and the continuous variable ω. We perform

a unitary transformation Uαk such that

εαk =
(
Uαk

)†
ε̃αkUαk, (9.1.9)

with the diagonal matrix

ε̃αkνν′ = δνν′ ε̃
αk
ν (9.1.10)

characterizing the energy-band dispersion for given reservoir and channel. With this

dispersion relation the function kαν (ω) can be defined as the solution for k of the equation

ε̃αkν = ω + µα (9.1.11)
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for given α, ν, ω. Assuming ε̃αkν to be a monotonously increasing function of k, this solu-

tion is always unique. As a reservoir lead coupled to a QD is characterized by standing

waves with quantum number k labeling the longitudinal direction, this monotony can

always be achieved. Hence, all other quantum numbers like the transverse modes, the

spin and further degeneracies are incorporated in the channel index ν. Due to this

unique relation between k and the energy dispersion, we can define a density of states

in the diagonalized basis

ρ̃αν (ω) =
∑
k

δ(ω − ε̃αkν + µα). (9.1.12)

This density of states contains all information of ε̃αkν (up to a trivial shift of the k-

indices) as one can first determine ωαν (k) from

ε̃αkν = ωαν (k) + µα, (9.1.13)

then inverting this function obtaining kαν (ω), and finally derivating this

1

δk

d

dω
kαν (ω) = ρ̃αν (ω), (9.1.14)

with the constant distance between the discrete k-indices δk.

To complete the unitary transformation (9.1.9), we introduce the field operators and

the tunneling matrix in this new basis by

ãαk =Uαkaαk, (9.1.15)

t̃
αk

=Uαktαk, (9.1.16)

and define also their continuum representation via

Uανν′(ω) =Uαkνν′
∣∣
k=kαν (ω)

, (9.1.17)

ãα(ω) =
1
√
ρ0

∑
k

δ(ω − ε̃αk + µα)ãαk, (9.1.18)

ã†α(ω) =
1
√
ρ0

∑
k

ã†αkδ(ω − ε̃
αk + µα), (9.1.19)

t̃ανl(ω) =t̃αkνl
∣∣
k=kαν (ω)

. (9.1.20)
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The coupling between the dot and the reservoirs (9.1.8) can then be reformulated as

V =
∑
α

∫
dω
[
ã†α(ω)t̃

α
(ω)c+ c†t̃

α
(ω)†ãα(ω)

]
. (9.1.21)

Now we can transform back to the original basis by the definitions

aα(ω) =Uα(ω)†ãα(ω), (9.1.22)

a†α(ω) =ã†α(ω)Uα(ω), (9.1.23)

ρα(ω) =Uα(ω)†ρ̃α(ω)Uα(ω), (9.1.24)

tα(ω) =Uα(ω)†t̃
α
(ω), (9.1.25)

with the tunneling part (9.1.21) becoming

V =
∑
α

∫
dω
[
a†α(ω)tα(ω)c+ c†tα(ω)†aα(ω)

]
. (9.1.26)

The correspondance between the quantities in the continuum description (9.1.22 -

9.1.25) to the discrete k-representation can be done by a straightforward calculation.

For example, inserting eq. (9.1.15) into eq. (9.1.18) and this into eq. (9.1.22), one can

use eq. (9.1.9) to show

aα(ω) =
1
√
ρ0

∑
k

δ(ω − εαk + µα)aαk. (9.1.27)

Equivalently, one can calculate

a†α(ω) =
1
√
ρ0

∑
k

a†αkδ(ω − ε
αk + µα), (9.1.28)

ρα(ω) =
1

ρ0

∑
k

δ(ω − εαk + µα), (9.1.29)

tανl(ω) =
∑
ν′

(
Uαk

)†
νν′

(
Uαktαk

)
ν′l

∣∣
k=kα

ν′ (ω)
. (9.1.30)

The last deviation of the relation for the tunneling matrix is a little bit subtle since

a unique connection between k and ω only exists in the diagonalized basis, and as no

explicit sum over k occurs on the r.h.s. of the equation, one needs to introduce two

unitary matrices.

The whole information is now covered by the density of states ρα(ω) and the continuum

representation of the tunneling matrix tα(ω).
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Hybridization Matrix In this thesis, we study only physical quantities, which con-

tain the dot degrees of freedom and the tunneling vertices. More specifically, we will

investigate the reduced density matrix of the dot

ρD(t) = Trresρtot(t) (9.1.31)

and the expectation value of the particle current flowing from reservoir α to the dot

Iα(t) =− i〈[Htot, Nα]〉(t) (9.1.32)

=i

∫
dω〈a†α(ω)tα(ω)c− c†tα(ω)†aα(ω)〉(t). (9.1.33)

Furthermore, we are only interested in stationary properties. For t → ∞ the initial

density matrix at time t = t0 is unimportant1, so we can choose it to be a product of

an arbitrary dot density matrix and the equilibrium density matrix for the reservoirs

ρtot(t0) = ρD(t0)ρeq
res. (9.1.34)

With these assumptions, one can expand in the tunneling part V and integrate out the

reservoirs via Wick’s theorem [Wic50] for which one needs to calculate pair contractions

of the form

tα(ω)†aα(ω, t)a†α′(ω
′, t′)tα

′
(ω′). (9.1.35)

To evaluate this expression, we indicate some relations for the field operators in the

continuum representation

[Hres, aα(ω)] =− (ω + µα) aα(ω), (9.1.36)

aα(ω, t) =eiHrestaα(ω)e−iHrest = e−i(ω+µα)taα(ω), (9.1.37){
aα(ω), a†α′(ω

′)
}

=δαα′δ(ω − ω′)ρα(ω), (9.1.38)

aα(ω)a†α′(ω
′) =Trresaα(ω)a†α′(ω

′)ρeq
res

=δαα′δ(ω − ω′)ρα(ω) [1− fα(ω)] , (9.1.39)

a†α(ω)aα′(ω
′) =δαα′δ(ω − ω′)ρα(ω)fα(ω), (9.1.40)

where [·, ·] and {·, ·} are the commutator and anticommutator, respectively, and fα(ω) =(
eω/Tα + 1

)−1
denotes the Fermi distribution function. With this, the expression

1Only for some special points in the parameter space the initial condition affects the stationary
state, like a completely decoupled dot level. These systems will not be discussed here.
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(9.1.35) can be simplified to

tα(ω)†aα(ω, t)a†α′(ω
′, t′)tα

′
(ω′) =δαα′δ(ω − ω′)tα(ω)†ρα(ω)tα(ω)

× [1− fα(ω)] e−i(ω+µα)(t−t′). (9.1.41)

Thus, the reservoirs only occur in the so called hybridization matrix, defined as

Γα(ω) = 2πtα(ω)†ρα(ω)tα(ω). (9.1.42)

The prefactor 2π is chosen by convention. This hybridization matrix is hermitian and

a positive definite single-particle matrix in the dot space.2

At this point, we can conclude that all models with the same hybridization matrix

(9.1.42) yield the same results for the physical observables studied in this thesis.

Effective Channel-Diagonal Model Taking a closer look at the hybridization ma-

trix (9.1.42) it is obvious that the observables considered here are invariant not only

under unitary transformations within the channel indices, but also under shift of parts

of the tunneling matrix to the density of states or vice versa. For a physical interpreta-

tion of our generic model, we will first shift all information beside an overall scale tα(ω)

for each tunneling barrier into the density of states, leading to a so called “effective

channel-diagonal model”. The hybridization matrix is given by

Γα(ω) = 2πtα(ω)2ρα
eff

(ω) =
1

Z
Γα(ω)ρα

eff
(ω) (9.1.43)

with

Γα(ω) = 2πZtα(ω)2 (9.1.44)

describing the strength of the tunnel barrier α. The effective tunneling matrix takes

the form

tα
eff

(ω) = tα(ω)1 (9.1.45)

showing that one can perform a unitary transformation in the channel indices such

that the effective number of channels Zαch in reservoir α is the same as the number

of dot levels Z. The corresponding effective density of states in the reservoirs can be

2For those familiar with the Keldysh formalism, the combination − i
2
Γα(ω) is the contribution of

the noninteracting reservoir α to the retarded self-energy after integrating it out.
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diagonalized analogously to eq. (9.1.9) which leads to

ρα
eff

(ω) = Uα
eff

(ω)†ρ̃α
eff

(ω)Uα
eff

(ω). (9.1.46)

The matrix ρ̃α
eff

(ω) has real and positive eigenvalues since the hybridization matrix

Γα(ω) is hermitian and positive definite. Furthermore, the eigenvalues ρ̃αeff,ν(ω) charac-

terize the polarization of the channels, which have been rotated in the Z dimensional

space.

We will focus mainly on the two-level QD with Z = 2. This effective channel-diagonal

model has a direct physical interpretation as an effective Anderson impurity model with

ferromagnetic leads. The conserved channel index ν ≡ l ≡ σ =↑, ↓ can be understood

in terms of a pseudo-spin-1
2 . The dot Hamiltonian of this model can be written as an

Anderson impurity model

H =
∑
σ=↑,↓

εσc
†
σcσ + Un↑n↓, (9.1.47)

with nσ = c†σcσ, where the z-axis is chosen such that the effective magnetic field on the

dot points in this direction. The unitary transformation matrix Uα
eff

(ω) has generically

the form (up to a phase factor which can be included in tα)

Uα
eff

(ω) = e
i
2
~φα(ω)·~σ, (9.1.48)

where the vector ~φα(ω) represents the rotation axis and the vector ~σ = (σ
x
, σ

y
, σ

z
)T

contains the Pauli matrices σi. The effective spin direction ~dα(ω) of reservoir α can be

computed from the rotation axis

R(~φα(ω))ez = ~dα(ω), (9.1.49)

where R(~φα(ω)) is the rotation matrix in a 3-dimensional space with rotation axis
~φα(ω).

To sum up, we derived a two-level QD coupled to ferromagnetic leads with a spin

dependent density of states ρ̃αeff,σ=↑,↓(ω) and spin polarization directions ~dα(ω).

Effective Normal Lead Model As already mentioned earlier, the hybridization

matrix determines the results of the physical observables described in this thesis. In

the previous paragraph, the hopping matrix was shifted into the density of states, and

here we will now alternatively shift the density of states in the tunneling matrix. We call
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this the “effective normal lead model” and treat it in the next chapters. First, we need

to diagonalize the hybridization matrix, which is done by the unitary transformation

Uα
eff

defined in eq. (9.1.46). This leads to

Γα(ω) = Uα
eff

(ω)†Γ̃
α
(ω)Uα

eff
(ω), (9.1.50)

with the diagonal matrix Γ̃
α
(ω) given by

Γ̃αll′(ω) = δll′Γ̃
α
l (ω), Γ̃αl (ω) = 2πt̃αl (ω)2. (9.1.51)

Furthermore, we find the relations

Γα(ω) =
∑
l

Γ̃αl (ω) = Z2πtα(ω)2, (9.1.52)

Γ̃αl (ω) =
1

Z
Γα(ω)ρ̃αl,eff(ω). (9.1.53)

With this, the hybridization matrix takes the form

Γα(ω) = 2πtα
eff

(ω)†tα
eff

(ω) (9.1.54)

with an effective tunneling matrix whose elements read

tαll′,eff(ω) = t̃αl (ω)Uαll′,eff(ω). (9.1.55)

In this form, the density of states is a constant

ρα
eff

(ω) = ρ01, (9.1.56)

leading to an effective Hamiltonian for the reservoirs

Heff
res =

∑
ανk

εka
†
ανkaανk. (9.1.57)

Again, the effective channel number Zeff
ch coincides with the number of dot levels Z,

and we will consider the case Z = 2 and additionally neglect the frequency-dependence

of the effective tunneling matrix and assume a vanishing temperature in all reservoirs

Tα = 0 for the rest of this thesis. Within these assumptions, the eigenvalues of the

hybridization matrix can be compactified to the form

Γ̃αl (ω) =
1

2
Γα(ω) (1 + lpα(ω)) , (9.1.58)
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h
µR

pL ~̂dL

µL

pR ~̂dR

ΓL = xLΓ ΓR = xRΓ

Figure 9.1: Sketch of the effective model of two ferromagnetic reservoirs α = L,R cou-
pled to a two-level QD via spin-conserving tunneling rates ΓL,R = xL,RΓ. µL,R denote
the chemical potentials and the polarizations of the reservoirs are characterized by their

strength pL,R and direction ~̂dL,R. h is the Zeeman-splitting of the dot.

where l = ± and we defined the spin polarization

pα(ω) =
ρ̃α↑,eff − ρ̃α↓,eff

ρ̃α↑,eff + ρ̃α↓,eff

. (9.1.59)

The hybridization matrix can then be written in the form

Γα(ω) =
1

2
Γα(ω){1 + pα(ω) ~̂dα(ω) · ~σ}. (9.1.60)

A sketch of this model for two external reservoirs is given in Fig. 9.1.

Effective Tunneling-Hermitian Model We also note a third possibility to encode

the same information in the density of states and the tunneling matrix. One could

again assume a constant density of states, but instead of eq. (9.1.55) we rewrite the

tunneling matrix in a hermitian form by inserting an additional unitary transformation

which does not change the hybridization matrix as it cancels out in eq. (9.1.54)

tα
eff

(ω) = Uα
eff

(ω)†t̃
α
(ω)Uα

eff
(ω). (9.1.61)

For the case Z = 2 one can split t̃
α
(ω) into

t̃
α
(ω) = λα1 (ω)1− λα2 (ω)ezσ, (9.1.62)

with

λα1 (ω) =
1

2

[
t̃α↓ (ω) + t̃α↑ (ω)

]
, (9.1.63)

λα2 (ω) =
1

2

[
t̃α↓ (ω)− t̃α↑ (ω)

]
, (9.1.64)
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leading to a tunneling matrix of the form

tα
eff

(ω) = λα1 (ω)1− λα2 (ω)~dα(ω) · ~σ, (9.1.65)

where we have used eq. (9.1.48). The λαi (ω) are real numbers and λα1 (ω) is chosen

to be larger than zero, and ~̂dα(ω) is the normalized spin polarization vector defined

in eq. (9.1.49). This is exactly the model which was treated in Ref. [Ple11]. There,

it was found that the vector ~dα describes a Dzyaloshinskii-Moriya (DM)-interaction

∼ ~dα ·~sα× ~S between the reservoir spin ~sα and the dot spin ~S in the Coulomb blockade

regime, which we will introduce in the next section. For this DM-vector we found

another physical interpretation as it represents the direction of the spin polarization in

the ferromagnetic leads when one shifts the hopping matrix into an effective density of

states. Furthermore, the two parameters λαi (ω) describes the square root of the average

density of states of the two spin species in reservoir α (λα1 (ω)) and the difference of

those (λα2 (ω)).

9.2 Effective 2-Level QD with Fixed Particle Number N=1

From now on, we will consider a generic QD with Z = 2 levels. We have shown in the

previous section that this situation can be described by an Anderson impurity model

with ferromagnetic leads. We shift the reservoir density of states into the tunneling

matrix leading to the effective normal lead model, and furthermore neglect the fre-

quency dependence of the tunneling matrix. Within this scheme, the tunneling matrix

and the density of states are given by eq. (9.1.55) and eq. (9.1.56), respectively. The

Hamiltonian in the continuum representation reads (omitting the index “eff” in the

following)

Htot =Hres +HD + V, (9.2.1)

Hres =
∑
α

∫
dω(ω + µα)a†α(ω)aα(ω), (9.2.2)

HD =
∑
σ=↑,↓

εσc
†
σcσ + Un↑n↓, (9.2.3)

V =
∑
α

∫
dω
[
a†α(ω)gα +

(
gα
)†
aα(ω)

]
, (9.2.4)

with the dot operator

gα = tαc, (9.2.5)
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and its anticommutation relation{
gα,
(
gα
′
)†}

= tα
(
tα
′
)†
. (9.2.6)

The equations (9.1.38 - 9.1.40) simplify to{
aα(ω), a†α′(ω

′)
}

=δαα′δ(ω − ω′)1, (9.2.7)

aασ(ω)a†α′σ′(ω
′) =δαα′δσσ′δ(ω − ω′) [1− fα(ω)] , (9.2.8)

a†ασ(ω)aα′σ′(ω
′) =δαα′δσσ′δ(ω − ω′)fα(ω), (9.2.9)

and the tunneling matrix can be written as

tασσ′ =t̃ασU
α
σσ′ (9.2.10)

=t̃ασ

[
cos

(
φα
2

)
δσσ′ + i sin

(
φα
2

)
~̂φα · ~σσσ′

]
(9.2.11)

with φα = |~φα|, ~φα = φα ~̂φα which is defined by eq. (9.1.49). The density of states of

the two spin directions in the corresponding reservoir α is given by ρ̃ασ =
(
t̃ασ/t

α
)2

. The

hybridization matrix (9.1.60) simplifies to

Γα(ω) =
1

2
Γα
{
1 + pα~dα · ~σ

}
. (9.2.12)

Furthermore, we introduce the notations

Γα =TrσΓα =
∑
σ

Γασ , (9.2.13)

Γ =
∑
α

Γα, (9.2.14)

Γασ =Γασσ, (9.2.15)

Γ =
∑
σ

Γσ =
∑
σ

Γσσ. (9.2.16)

We define now the single particle energies εσ of the dot levels

εσ = ε+
1

2
σh0, (9.2.17)

with σ =↑↓≡ ± and the bare magnetic field chosen in z-direction h0. The average

charge excitation energies D± from the single occupied dot to the double occupied one
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or from an empty dot to the single occupied one, respectively, read

D+ = ε+ U and D− = −ε. (9.2.18)

Here, we have set the average chemical potential to zero

µ =
1

Zres

∑
α

µα = 0, (9.2.19)

otherwise the term ε would be replaced by ε−µ in the definition of D±. These average

charge excitation energies need to be much larger than all other bare energy scales of

the system

D± � |h0|, |µα|,Γα, (9.2.20)

as we consider the Coulomb blockade regime with fixed particle number N =
∑

σ c
†
σcσ =

1 from now on, where only cotunneling processes via virtual intermediate states lead

to spin fluctuations. Pair tunneling is neglected because of the assumption of a strong

repulsive Coulomb interaction.

To derive the effective Hamiltonian of this model, we perform a Schrieffer-Wolff trans-

formation [Sch66]. This is done by introducing an operator S being first order in V

and defining the effective Hamiltonian

Heff
tot =eSHtote

−S = (1 + S + . . .) (H0 + V ) (1− S + . . .) (9.2.21)

=H0 + V + [S,H0] + [S, V ] +
1

2
[S, [S,H0]] +O

(
S3
)

(9.2.22)

where H0 = Hres +HD. Furthermore, S is chosen such that Heff
tot does not contain any

terms linear in V , meaning V = − [S,H0], leading to

Heff
tot = H0 +

1

2
[S, V ] +O

(
S3
)
. (9.2.23)

The virtual process of an electron hopping from the reservoir to the dot and back can

be written as [Kor07]

g+
ασ,α′σ′(ω, ω

′) =
1

2

∑
σ1σ′1

c†σ1
cσ′1〈σ1|gασ

(
gα
′

σ′

)†
|σ′1〉

×

(
1

ω + µα + σ1
h0
2 −D+

+
1

ω′ + µα′ + σ′1
h0
2 −D+

)
, (9.2.24)
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and the contrary one from the dot to the reservoir and back

g−ασ,α′σ′(ω, ω
′) =

1

2

∑
σ1σ′1

c†σ1
cσ′1〈σ1|

(
gα
′

σ′

)†
gασ |σ′1〉

×

(
1

ω + µα − σ′1
h0
2 +D−

+
1

ω′ + µα′ − σ1
h0
2 +D−

)
. (9.2.25)

With this, the effective interaction in the subspace N = 1 is given by

Veff =
∑
ασα′σ′

∫
dωdω′

[
g+
ασ,α′σ′(ω, ω

′)a†ασ(ω)aα′σ′(ω
′)− g−ασ,α′σ′(ω, ω

′)aα′σ′(ω
′)a†ασ(ω)

]
.

(9.2.26)

Defining the normal ordering : O : of a product of two operators a and b

: ab := ab− ab (9.2.27)

the total effective Hamiltonian can be rewritten using (9.2.8) and (9.2.9)

Heff
tot =Hres +Heff + Veff, (9.2.28)

Heff =HD +
∑
ηασ

∫
dωηf(ηω)gηασ,ασ(ω, ω), (9.2.29)

Veff =
∑
ασα′σ′

∫
dωdω′ : a†α(ω)ĝαα

′
(ω, ω′)aα′(ω

′) :, (9.2.30)

with the dimensionless vertex operator matrix

ĝαα
′

σσ′ (ω, ω
′) = ĝασ,α′σ′(ω, ω

′) =
∑
η

gηασ,α′σ′(ω, ω
′). (9.2.31)

Effective Dot Hamiltonian In a next step, we calculate the additional terms to the

dot Hamiltonian, which lead to corrections to the level splitting and generate transition

matrix elements between the levels. As we assume a vanishing temperature Tα = 0 for

all reservoirs, the Fermi distribution function reduces to a step function, leading to a

trivial frequency integral. It is formally divergent in the uv-limit, and we will split

it at some high-frequency D into the low-frequency regime from 0 to D and the high

one from D to ∞. For this high-energy part of the integral, one can approximate the

denominator in (9.2.24) and (9.2.25) by D. The remaining sums can be performed

leading to a constant in the Coulomb blockade regime, yielding an infinite constant

for the integral, which will be neglected from now on. The low-frequency contribution
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reads

Heff =HD +
1

2

∑
ασ

∑
σ1σ′1

c†σ1
cσ′1

{
〈σ1|gασ (gασ )† |σ′1〉ln

∣∣∣∣∣D+ − µα − σ1
h0
2

D

∣∣∣∣∣
+ 〈σ1| (gασ )† gασ |σ′1〉ln

∣∣∣∣∣D− + µα − σ1
h0
2

D

∣∣∣∣∣
}

+ h.c.. (9.2.32)

As long as its large enough, the high energy scale D can be chosen arbitrarily, as the

contributions from lnD give only additional irrelevant constants. To this end, we define

1

D
=

1

2

(
1

D+
+

1

D−

)
=

U

2|ε|(ε+ U)
. (9.2.33)

From the definition of gασ (9.2.5) and the hybridization matrix (9.1.54) we can evaluate

the matrix elements in eq. (9.2.32)

∑
σ

{gασ , (gασ )†} =Tr tα
(
tα
)†

=
Γα

2π
, (9.2.34)

〈σ1|
∑
σ

(gασ )† gασ |σ′1〉 =
1

2π
Γασ1σ′1

. (9.2.35)

With these, eq. (9.2.32) can be transformed to (again, some irrelevant constants are

left out)

Heff =HD +
1

4π

∑
α,σ,σ′

σc†σcσσ
′Γασ′ ln

∣∣∣∣∣D− + µα − σ′ h0
2

D+ − µα + σ′ h0
2

∣∣∣∣∣
+

1

4π

∑
α,σ 6=σ′

c†σcσ′Γ
α
σσ′

[
ln

∣∣∣∣∣D− + µα − σ h0
2

D+ − µα − σ h0
2

∣∣∣∣∣+ (σ → σ′)

]
. (9.2.36)

Using D± � |µα|, |h0| the logarithms can be expanded

ln

∣∣∣∣∣D− + µα − σ′ h0
2

D+ − µα + σ′ h0
2

∣∣∣∣∣ ≈ln
D−
D+

+ 2
µα
D
− σ′h0

D
, (9.2.37)

ln

∣∣∣∣∣D− + µα − σ h0
2

D+ − µα − σ h0
2

∣∣∣∣∣ ≈ln
D−
D+

+ 2
µα
D

+
1

2

(
1

D+
− 1

D−

)
σh0, (9.2.38)

which leads to the result for the effective Hamiltonian

Heff =
1

2
h′0
∑
σ

σc†σcσ + ∆0c
†
↑c↓ + ∆∗0c

†
↓c↑, (9.2.39)
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with longitudinal and transverse fields

h′0 =h0 +
Γ↑ − Γ↓

2π
ln
D−
D+

+
1

π

∑
α

(
Γα↑ − Γα↓

) µα
D
− Γ

2π

h0

D
, (9.2.40)

∆0 =
Γ↑↓
2π

ln
D−
D+

+
1

π

∑
α

Γα↑↓
µα
D
, (9.2.41)

where we haven chosen the external magnetic field in z-direction.

The Hamiltonian can also be written in the form

Heff =h0

(
1− Γ

2πD

)
Sz +

1

π

∑
α

(
1

2
ln
D−
D+

+
µα
D

)
c†Γαc (9.2.42)

=~h
(0)
eff · ~S, (9.2.43)

with the effective exchange field

~h
(0)
eff = h0

(
1− Γ

2πD

)
~ez +

1

π

∑
α

(
1

2
ln
D−
D+

+
µα
D

)
Γαpα ~̂dα. (9.2.44)

The first term ∼ h0 on the r.h.s. of this equation contains a O(Γ) correction to the

bare magnetic field of the dot and is independent of the spin polarization in the leads.

The second one contains the contribution of the spin polarizations of the reservoirs,

which generate individual exchange fields pointing into the corresponding direction of

the polarization axis ~dα. This contribution is also of O(Γ) and has already been derived

and discussed in Ref. [Bra04] for the case h0 = 0 and a finite temperature T � Γ.

Particle-Hole Symmetric Point Investigating eq. (9.2.44) carefully, one can ex-

tract that the effective magnetic field is dominated by the terms ∼ ΓlnD−D+
∼ J0D if

|D+ − D−| ∼ D � |µα|, |h0| with some characteristic exchange coupling J0 ∼ Γ/D,

if one does not consider particle-hole symmetry D+ = D−. These large contributions

would dominate the physics of the system, and higher order renormalization effects,

which we will show are ∼ J |µα|, Jh0 with the renormalized coupling constant J given

in lowest order perturbation theory by J0, would be negligible. Furthermore, terms

∼ J0D would crucially depend on the definition of the high-frequency cutoff scale D,

i.e. are nonuniversal contributions. Therefore, to consider a well defined effective model

with universal low-energy behavior and making a renormalization group approach ap-

plicable, we will study the model at the particle-hole symmetric point

D+ = D− = D, ⇔ 2ε+ U = 0. (9.2.45)
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As already explained, this effective model is only valid in the low-energy regime com-

pared to the charge excitation energy D of the dot. So, an additional cutoff for the

reservoir frequencies ω ≡ εk − µα on the scale of D has to be introduced, which is

chosen by convenience as a Lorentz-function

D(ω) =
D2

D2 + ω2
. (9.2.46)

This artificially introduced cutoff scale has nothing to do with the physical band width

of the reservoir spectrum and is only needed for a well defined effective model. Of

course, we have to show that the low-energy physics is universal and does not depend

on the specific form of the chosen cutoff function.

Compactification of the Effective Dot Hamiltonian and the Effective In-

teraction With this high-frequency cutoff, or to be more precise with the claimed

independence of the low-energy physics of the effective model of this cutoff, the vertex

operator matrix ĝαα
′

defined in eq. (9.2.31) can be simplified. In the denominators

of eqs. (9.2.24) and (9.2.25) we need only the excitation energies D+ and D−. Using

(9.2.5) we obtain the frequency-independent result

ĝαα
′ ≈ − 1

D

[
gα,
(
gα
′
)†]

= − 1

D
tα[c, c†]

(
tα
′
)†
. (9.2.47)

Inserting this equation into eq. (9.2.30) one derives a series of terms involving spin-spin

and spin-charge interactions which has been treated in Ref. [Ple11]. However, we will

keep the vertex in the form (9.2.47) as it is more compact. Performing the trace over

the reservoir spin index and considering α = α′ we get

Trσ ĝ
αα =

1

πD
c†Γαc− Γα

2πD
. (9.2.48)

Therefore, the effective dot Hamiltonian (9.2.42) can be written as (again, an irrelevant

constant has been neglected)

Heff = h0

(
1− Γ

2πD

)
Sz +

∑
α

µαTrσg
αα. (9.2.49)

We will show later that the form of the second term on the r.h.s. of this equation

stays unchanged during the RG flow if one replaces the vertex operator matrix by a



64 CHAPTER 9. MODEL: THE QUANTUM DOT

renormalized one. We can also use[
c, c†

]
= −2~σ · ~S, (9.2.50)

to rewrite eq. (9.2.47)

ĝαα
′ ≈ 2

D
tα~σ

(
tα
′
)†
· ~S

= ~J
αα′ · ~S (9.2.51)

with

~J
αα′

=
2

D
tα~σ

(
tα
′
)†
. (9.2.52)

This form will be later used for the RG-treatment of the model.

The effective interaction (9.2.30) can be written in a more convenient form by antisym-

metrizing the sequence of the two field operators via

gηασ,η′α′σ′ =δη,−η′

ĝασ,α′σ′ for η = +,

−ĝα′σ′,ασ for η = −,
(9.2.53)

aηασ(ω) =

a
†
ασ(ω) for η = +

aασ(ω) for η = −
. (9.2.54)

The effective interaction can then be represented as

Veff =
1

2
g11′ : a1a1′ :, (9.2.55)

where we sum/integrate implicitly over the multi-indices

1 ≡ ηασω, 1′ ≡ η′α′σ′ω′. (9.2.56)



Chapter 10

Method: Real-Time Renormaliza-

tion Group

Here, we will present the technical details to tackle the effective Anderson impurity

model with ferromagnetic leads, derived in the previous chapter. The standard quan-

tum field theoretical approach to systems in nonequilibrium is based on the Keldysh-

formalism [Kel75, Hau08, Dan84, Ram86], where the field operators are integrated out

via Wick’s theorem or the path integral formalism [Neg88]. We cannot adopt these

methods here, as the dot Hamiltonian could contain arbitrary interaction parts which

need not to be quadratic, so Wick’s theorem is not applicable. Due to this, only the

reservoir degrees of freedom can be integrated out and the coupling vertex g1...n remains

as an operator. Furthermore, we will not expand the time evolution on the Keldysh

contour, but we will introduce superoperators in Liouville space with the advantage

that the two branches of the Keldysh contour can be taken together in a compact form.

So at first, we reduce the problem to calculate the density matrix of the system to the

derivation of an effective Liouvillian, where we integrate out the reservoir degrees of

freedom. In a next step we can show that a perturbative treatment of this Liouvil-

lian encounters the problem of logarithmic divergences, making a RG-ansatz necessary.

Therefore, we derive the flow equations in the E-flow scheme of the RTRG and perform

a weak coupling expansion. All these steps are simultaneously done for the Liouvil-

lian itself to determine the reduced density matrix and the current kernel to calculate

the stationary current through the system. This method was successfully applied to

the Kondo model in and out of equilibrium for weakly and strongly coupled reser-

voirs [Sch09b, Sch09c, Ple12]. Also the time dynamics of those systems and extensions

to the Dzyakoshinskii-Moriya-Kondo model were investigated [Ple10, Ple11, Rei14].

Additionally, the RTRG was adapted to the spin-1/2 and spin-1 Kondo model for a

multi-channel setup [Hö12b, Hö12a, Hö14]. Furthermore, the properties of the spin

65
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boson model were calculated [Kas13, Ken13].

10.1 Dot Density Matrix in Liouville Space

The main task of this thesis is to calculate the stationary density matrix of the effective

Anderson impurity model with ferromagnetic leads, which has been derived in the

previous chapter. So we start our considerations with the von-Neumann equation

ρ̇(t) = −i [H, ρ(t)] , (10.1.1)

with the initial condition given at time t = t0 by eq. (9.1.34)

ρ(t0) = ρD(t0)ρeqres. (10.1.2)

For a time-independent Hamiltonian, it can be formally solved by a forward time evo-

lution e−iH(t−t0) acting from the left on the initial density matrix and a backward time

evolution eiH(t−t0) acting from the right. Defining a Liouville superoperator Lb = [H, b]

acting on an arbitrary operator b in the Hilbert space, this can also be written as

ρ(t) = e−iH(t−t0)ρ(t0)eiH(t−t0) = e−iL(t−t0)ρ(t0). (10.1.3)

The effect of an Liouville superoperator can be understood by a comparison to a “nor-

mal” Hilbert operator b. Given an orthonormal basis in Hilbert space defined by the

ket-vectors |n〉, the matrix element bmn is defined as the projection of b |n〉 to the state

|m〉

bmn = 〈m| b |n〉 . (10.1.4)

For the Liouville space, one can also define a Liouville ket-vector |mn〉L, which is an

operator in Hilbert space

|mn〉L = |m〉 〈n| , (10.1.5)

so that the matrix elements of a Liouville superoperator are given by

Amn,m′n′ = L 〈mn|A
∣∣m′n′〉

L
=Tr

[
|n〉 〈m|

(
A
∣∣m′〉 〈n′∣∣)]

= 〈m|
(
A
∣∣m′〉 〈n′∣∣) |n〉 (10.1.6)
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which can be interpreted as the projection of A |m′n′〉L = A |m′〉 〈n′| to the state

|mn〉L = |m〉 〈n|. Products of a Liouville superoperator A and a Hilbert operator b or

a second Liouville superoperator B are given by

(Ab)mn = 〈m|Ab |n〉

=
∑
m′n′

〈m|
(
A
∣∣m′〉 〈m′∣∣ b ∣∣n′〉 〈n′∣∣) |n〉

=
∑
m′n′

Amn,m′n′bm′n′ , (10.1.7)

(AB)mn,m′n′ = 〈m|
(
AB

∣∣m′〉 〈n′∣∣) |n〉
=
∑
m′′n′′

〈m|
[
A
∣∣m′′〉 〈m′′∣∣ (B ∣∣m′〉 〈n′∣∣) ∣∣n′′〉 〈n′′∣∣] |n〉

=
∑
m′′n′′

Amn,m′′n′′Bm′′n′′,m′n′ . (10.1.8)

A full Liouville superoperator basis and some useful relations are given in appendix B.

After this short definition of the Liouville space, we return to the formal solution of

the time-dependent density matrix (10.1.3). In the same way, as the total effective

Hamiltonian defined in eq. (9.2.28) was split into a reservoir, a dot and an interaction

part, the Liouvillian can also be splitted into

Lresb = [Hres, b] , LDb = [Heff, b] , LVb = [Veff, b] . (10.1.9)

Analogue to the Hamiltonian, the parts Lres and LD are easy to deal with as the

reservoirs are noninteracting and the eigenstates and -energies of the uncoupled QD

are known exactly. To express LV in the Liouville space, we have to introduce dot

superoperators and lead superoperators

Gpp
′

11′b =δpp′

g11′b for p = +,

−bg11′ for p = −,
(10.1.10)

Jp1 b =

a1b for p = +,

ba1 for p = −,
(10.1.11)

where the indices p and p′ denote the corresponding time evolution on the Keldysh-

contour with p = + being the forward time evolution and p = − the backward one.

The effective interaction (9.2.55) can then be expressed in Liouville space by

LV =
1

2
p′Gpp

′

11′ : Jp1J
p′

1′ : (10.1.12)



68 CHAPTER 10. METHOD: REAL-TIME RENORMALIZATION GROUP

where the implicit summation over the multi-indices 1 and 1′ is extended to the addi-

tional summation over p and p′.

We now return to the calculation of the central object of this thesis, the reduced density

matrix of the dot. The reservoir information are included by tracing out their degrees of

freedom, leading to an integro-differential equation in real-time space. By convenience,

we perform a Laplace transformation to map the convolutions in real-time to products

in the Laplace variable, which leads to

ρD(E) =

∫ ∞
t0

dteiE(t−t0)ρD(t)

=Trres
i

E − L(E)
ρD(t0)ρres, (10.1.13)

with Im(E) > 0. As we are only interested in the stationary state properties of the

system, we consider the case E = iη with η being some infinitesimal positive quantity,

as the stationary state density matrix ρst
D = limt→∞ ρD(t) can be computed from

ρst
D = −i lim

E→iη
EρD(E). (10.1.14)

Eq. (10.1.13) is in general still not exactly solvable, so we now insert the splitted form

of the Liouvillian and expand in terms of the exchange interaction LV

ρD(E) = iTrres

∞∑
n=0

(
1

E − Lres − LD
LV

)n 1

E − Lres − LD
ρD(t0)ρres. (10.1.15)

10.2 Wick’s Theorem

To proceed with the evaluation of the reduced density matrix, the trace over the reser-

voir degrees of freedom in eq. (10.1.15) is performed. It is equivalent to the calculation

of an expectation value with respect to the grandcanonical density matrix ραres of the

noninteracting reservoirs, for which Wick’s theorem [Wic50] is the method of choice. It

will be applied to the fermionic lead superoperators Jp1 and the reservoir Hamiltonian

Hres, but does not act on the dot operators Gpp
′

11′ and the dot Hamiltonian HD
1. The

idea of Wick’s theorem is that expectation values like

〈p′1 : Jp1
1 J

p′1
1′ : p′2 : Jp2

2 J
p′2
2′ : · · · p′n : Jpnn J

p′n
n′ :〉ρres (10.2.1)

1The extension of Wick’s theorem to superoperators is discussed in Ref. [Rei09].
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can be evaluated by adding up all possible decompositions of the superoperator product

into pairwise contractions. Hereby, one has to regard the constraint that no superoper-

ators of the same block : Jpi1 J
p′i
i′ : are contracted to each other, which is forbidden due

to the normal ordering. The pair contraction of two reservoir superoperators Jp1 and

Jp
′

1′ is defined by

γpp
′

11′ := Jp1J
p′

1′ = p′Trres

{
Jp1J

p′

1′ ρres

}
= p′δ11̄′ρres(ω)f(p′ηω) =: δ11̄′γ

p′(ηω), (10.2.2)

where the evaluation of the trace was performed in Ref. [Rei09]. f(ω) denotes the

Fermi distribution function and δ11̄′ = δη−η′δ(ω − ω′)δαα′δσσ′ . With this, eq. (10.2.1)

can be evaluated considering the following rules

1. Contract all pairs of superoperators Jpii without contracting those which occur in

the same normal-ordered block.

2. Disentangle the contractions to a product of n contractions by commuting the

superoperators without changing the order of two superoperators which are con-

tracted. Every commutation of neighboring J ’s yields a minus sign.

3. Calculate the value of the contractions according to eq. (10.2.2).

4. Repeat all previous steps for every possible pairing of the superoperators and sum

up the resulting terms.

An example calculation following these rules is given by

〈p′1 : Jp1
1 J

p′1
1′ : p′2 : Jp2

2 J
p′2
2′ :〉ρres =Jp1

1 J
p′1
1′ J

p2
2 J

p′2
2′ + Jp1

1 J
p′1
1′ J

p2
2 J

p′2
2′

=− Jp1
1 Jp2

2 J
p′1
1′ J

p′2
2′ + Jp1

1 J
p′2
2′ J

p′1
1′ J

p2
2

=− γp1p2
12 γ

p′1p
′
2

1′2′ + γ
p1p′2
12′ γ

p′1p2

1′2 . (10.2.3)

To apply Wick’s theorem to eq. (10.1.15), in a first step the lead superoperators Jp1 have

to be shifted to the right, so commutators between Jp1 and Lres have to be computed.

A straightforward calculation yields [Rei09]

[Jp1 , Lres]b =

[a1, Hres]b = −x1a1b for p = +,

b[a1, Hres] = −x1ba1 for p = −,
(10.2.4)
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with x1 = η1(ω1 + µα1) = ω̄1 + µ̄1. For the resolvents follow

Jp1J
p′

1′
1

E − Lres − LD
=

1

E + x1 + x′1 − Lres − LD
Jp1J

p′

1′ . (10.2.5)

By using the fact

〈Jp1J
p′

1′ 〉ρres = Jp1J
p′

1′ ∼ δηη̄′δαα′δσσ′δ(ω − ω
′), (10.2.6)

which follows from eq. (9.2.9), it can be concluded that

x1 + x1′ = 0 if Jp1J
p′

1′ 6= 0. (10.2.7)

With this information, eq. (10.2.5) can be extended to the normal-ordered product

: Jp1J
p′

1′ :
1

E − Lres − LD
=

1

E + x1 + x′1 − Lres − LD
: Jp1J

p′

1′ :, (10.2.8)

occurring in the perturbative expansion of the reduced density matrix ρD(E) (10.1.15).

To sum up all energy shifts in each resolvent which occur due to the commutation

of the lead superoperators and the resolvents, it follows again from eq. (10.2.7) that

only those contractions lead to an energy shift, where one superoperator left from the

resolvent is connected with one to the right of it. We denote the shift in the resolvent

after the j-th coupling superoperator G
pjp
′
j

jj′ by Xj with X0 = 0. Furthermore, due to

TrresLres = 0, the reservoir Liouvillian Lres can be omitted in the denominators of this

equation, so that eq. (10.1.15) becomes

ρD(E) = i

∞∑
n=0

1

2n

 n∏
j=1

1

E +Xj−1 − LD
G
pjp
′
j

jj′

 1

E − LD
ρD(t0)〈

n∏
j=1

p′j : J
pj
j J

p′j
j′ :〉ρres ,

(10.2.9)

where empty products are defined as one, i.e.,
∏0
j=1 · · · = 1. To simplify the calculation,

it can be shown that all decompositions of reservoir superoperators, which only differ by

an exchange of the contraction partners of the two lead superoperators in one vertex,

are equal. Therefore, only one of these contributions has to be calculated and the

prefactor 1
2n is reduced to 1

S , where the symmetry factor S = 2m with m being the

number of pairs of vertices which are contracted twice to each other. A more detailed

analysis of this can be found in Ref. [Rei09].
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To sum up, the n-th order contribution to eq. (10.2.9) is given by

i

S
(−1)Nperm

(∏
γ
) 1

E − LD
G

1

E +X1 − LD
G · · ·G 1

E +Xn − LD
G

1

E − LD
ρD(t0).

(10.2.10)

For all diagrams, each element in this equation can be obtained by the diagrammatic

rules defined in Ref. [Sch09b], where:

• S = 2m is the symmetry factor and m denotes the number of pairs of vertices

which are contracted twice with each other.

• Nperm is the number of permutations needed to disentangle the pair contractions

of superoperators.

• γ = γpp
′

11′ is the contraction with adequate indices 1, 1′, p, p′.

• G = Gpp
′

11′ is the coupling superoperator acting on the dot.

• Xj is the energy shift in the resolvent due to contractions of two superoperators,

with one being left and the other one right of the resolvent.

• One has to sum or integrate up over all occurring indices.

It is now convenient to define the irreducible kernel Σ(E), which is the sum over all

possible combinations of connected diagrams [Sch09b, Sch09c]. The n-th order contri-

bution reads

Σ(E)(n) → 1

S
(−1)Nperm

(∏
γ
)

connected
G

1

E +X1 − LD
G · · ·G 1

E +Xn − LD
G.

(10.2.11)

With this, we can rewrite eq. (10.2.9)

ρD(E) =
i

E − LD

∞∑
n=0

(
Σ(E)

1

E − LD

)n
ρD(t0)

=
i

E − Leff
D (E)

ρD(t0), (10.2.12)

with the effective dot-Liouvillian

Leff
D (E) = LD + Σ(E) (10.2.13)
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and LD = −2heff · L2 in the Liouville basis for the 2-level QD defined in appendix B.

In addition, a partial resummation by taking all closed subdiagrams between two fixed

vertices together, where only contractions connecting vertices between the two fixed

ones occur, is possible. Schoeller and Reininghaus showed [Sch09c] that this leads to

the replacement

1

E +Xi − LD
→ 1

E +Xi − Leff
D (E +Xi)

=: Π(E +Xi), (10.2.14)

where we defined the resolvent Π(E). It has the advantage of a smaller number of

diagrams which has to be taken into account, but the disadvantage that Σ(E) can only

be calculated self-consistently.

Multiplying the representation of the stationary density matrix in eq. (10.1.14) by

iη−Leff
D (iη) from the left and using eq. (10.2.12), it is easy to verify that the stationary

density matrix yields the kinetic equation

Leff
D (iη)ρst

D = 0, (10.2.15)

so we only have to calculate the eigenvector in Liouville space to the eigenvalue 0+ of the

effective dot Liouvillian Leff
D . Inserting eq. (10.2.11) into eq. (10.2.13), the conditional

equation to calculate the effective dot Liouvillian can be visualized in a diagrammatic

expression

Leff
D (E) =LD +

1

2
+ +O(G4). (10.2.16)

which contains all diagrams up to third order in the bare vertices. The occurring

elements in this diagrammatic expression and all following ones are summarized in

tab. 10.1. From this diagrammatic series it is obvious that the frequency integrations

in the first diagram over the resolvent Π ∼ 1
ω+ω′+... leads to logarithms, which diverge

in the scaling limit D →∞ at the upper boundary. Therefore, the evaluation of these

diagrams is still impossible2 and we will use a RG-treatment in the following to tackle

this problem. The lower boundary of the integral cannot lead to divergences, as the

eigenvalue zero of the Liouvillian can be disregarded in terms of the form

f(Leff
D (E))Gpp11′ (10.2.17)

with an arbitrary function f and all other eigenvalues lead to a finite contribution to

the lower boundary [Rei09].

2A more rigorous proof of this statement can be found, e.g., in [Sch11a].
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Symbol Name Rule

Bare two-point vertex G
(0)
11′ Indices which are contracted with each

other are fixed to 1↔ 1̄

Effective two-point vertex
G12(E,Xi)

Xi is determined from the resolvent to
its left

Resolvent Π(E +Xi) Xi is determined by a vertical cut
through the contractions

∂
∂EΠ(E +Xi) Derivative of the resolvent with respect

of E

Contraction γpp
′

11′ (ω) Integrate over ω

Contraction γpp
′

11′ (ω) Outgoing line of a vertex

Derivative d
dω̄γ

pp′

11′ (ω) Derivative of the Fermi function f(ω̄)

Table 10.1: This table contains a summary of objects occurring in the diagrammatic
expressions used in this thesis. The indices 1 and 1′ are chosen appropriate to the left and
right connection.

10.3 Current

In addition to the stationary density matrix of the dot, we want to calculate the ex-

pectation value of the stationary current Iγ,st from reservoir γ into the dot. Therefore,

we define the current operator Iγ(t)H for reservoir γ in the Heisenberg picture which

is given by the change of the particle number Nγ(t)H in the corresponding reservoir

Iγ(t)H = − d

dt
Nγ(t)H = −i[H,Nγ(t)H ]. (10.3.1)

Changing to the Schrödinger picture and using the fact that only the interaction V

changes the particle number in the reservoirs yields

Iγ = −i[V,Nγ ]. (10.3.2)

Analog to eq. (9.2.55) this can be expressed as [Sch09c]

Iγ =
1

2
iγ11′ : a1a1′ :, (10.3.3)

with

iγ11′ =− 2icγ11′g11′ , (10.3.4)

cγ11′ =− 1

2

(
ηδαγ + η′δα′γ

)
. (10.3.5)
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Next, we perform the same steps as for the dot density matrix. In the Liouville space,

this leads to

(Iγ)pp
′

11′ =cγ11′δpp′pG
pp′

11′ (10.3.6)

LIγ =
1

2
p′ (Iγ)pp

′

11′ : Jp1J
p′

1′ : (10.3.7)

and the expectation value of the current reads

〈Iγ〉(t) = TrDTrres(−iLIγ )e−iL(t−t0)ρD(t0)ρres. (10.3.8)

The Laplace-transformation with the expansion in LV leads to

〈Iγ〉(E) = TrDTrresLIγ
1

E − L
ρD(t0)ρres, (10.3.9)

Finally, the current can be expressed as [Rei09]

〈Iγ〉(E) = −iTrD {Σγ(E)ρD(E)} , (10.3.10)

where Σγ(E) is equivalent to Σ(E) with the first vertex Gpp
′

11′ being replaced by the

current vertex (Iγ)pp
′

11′ . Considering the stationary value, it can be determined from

Iγ,st = −iTrD

{
Σγ(iη)ρst

D

}
. (10.3.11)

10.4 Different RG Schemes

As it was shown in the previous sections, the perturbative expansion of the Liouvillian

in bare vertices leads to logarithmic divergent frequency integrals, i.e., the n-th order

contribution contains divergences of the form lnk
(

D
max{|E|,∆}

)
with k ≤ n − 1 and

∆ = T, V, . . . is some physical energy scale except of E. To solve this problem, we will

mention here two different RG-schemes.

Lambda-Flow In this scheme, the idea is to integrate out the reservoir energy scales

step by step. Therefore, one introduces a high-energy cutoff parameter Λ in the con-

traction (10.2.2) by

γpp
′

11′,Λ =

p′δ11̄′ρres(ω)fα(p′ηω) for Λ =∞

0 for Λ = 0
, (10.4.1)
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i.e, γpp
′

11′,Λ flows from its original value down to zero. An example of this could be an

imaginary frequency cutoff in the Fermi distribution function fα(ω)

fα(ω)Λ = −Tα
∑
|ωαn |<Λ

eiω
α
nη

1

ω − iωαn
, (10.4.2)

with the Matsubara frequencies ωαn = (2n + 1)πTα and the temperature Tα. This

scheme was successfully supplied to the Kondo model in Refs. [Sch09b, Sch09c] in the

weak-coupling regime.

E-Flow In the E-Flow scheme, which we will apply to the generic two-level QD in this

thesis, the Laplace variable E itself will be used as flow parameter. It was developed by

Pletyukhov and Schoeller [Ple12] and is based on the idea that instead of expanding the

effective Liouvillian in bare vertices, we expand its second derivative in effective vertices,

where we will show that this leads to convergent frequency integrals. These effective

vertices are defined as the sum over all connected diagrams with two outgoing lines.

From the perturbative series of the kernel Σ (10.2.11) it can be seen that the Laplace

variable E always occurs in combination with the internal frequencies and a shift due

to the chemical potentials of the form E12...n +
∑n

i=1 ω̄i with E12...n := E +
∑n

i=1 µ̄i,

so the imaginary part of E acts as a high-energy cutoff. Thus, for large enough E all

logarithmic divergences are of the form lnk
(

D
−iE

)
, where we have chosen −iE in the

argument so that the branch cuts point into the negative imaginary axis. Furthermore, a

derivative with respect to E raises the exponent of the denominator in the resolvents by

one. Thus, for the Liouvillian, where two frequency integrations have to be performed

for the lowest order diagram, a second derivative would lead to a term ∼ ω−3, which

does not lead to logarithmic divergences. With this, the limit D →∞ can be performed

safely leading to universal results which do not depend on the precise form of the high-

energy cutoff in the distribution function of the reservoirs. The resulting RG-equations

can be symbolically written as

∂2

∂E2
Leff

D (E) =FL{Leff
D (E12...n), Geff(E12...n′)}, (10.4.3)

∂

∂E
Geff(E) =FG{Leff

D (E12...n), Geff(E12...n′)}, (10.4.4)

where the functionals FL/G depend only on the effective Liouvillian and an effective

two-point vertex Gpp
′

11′,eff and will be determined in the next sections.
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10.5 Derivation of Flow Equations in the E-Flow Scheme

From now on, we will omit the index ’eff’ as we always discuss the effective quantities Leff
D

and Geff unless it is stated otherwise by an extra index (0). We start to derive the basic

RG-equations (10.4.3) and (10.4.4) and use the diagrammatic expression of the effective

Liouvillian in terms of the bare vertices (10.2.16) as our starting point. We already

summed up those subdiagrams, where only contractions connecting vertices between

two fixed vertices occur, so that the resolvent between the remaining vertices is given by

Π defined in eq. (10.2.14). In the same way as it was done for the effective Liouvillian,

one can also set up a diagrammatic series for the effective vertex Gp1...pn
1...n (E), which

is defined as the sum of all connected diagrams with n free lines. The diagrammatic

series is exactly the same as for the effective Liouvillian with the additional conditions:

[Rei14]

1. All outgoing lines are directed to the right and their frequencies and chemical

potentials have to be included in the resolvents.

2. The diagram gets a factor of (−1)P , where P is the number of permutations

needed to transform the sequence of external indices P1, P2, . . . , Pn to 1, 2, . . . , n.

3. When the outgoing lines belong to different vertices, one has to sum over all

permutations of the external lines. When they belong to the same vertex, the

corresponding diagram is to be computed once only.

4. As the vertices are normal ordered, a vertex cannot be contracted with itself.

For the two-point vertex, these rules give up to second order

Gp1p2
12 (E)−G(0)p1p2

12 =

1 2

− (1↔ 2)

=γp̄3(ω̄3)G
(0)p1p3

13 Π(E +X13)G
(0)p̄3p2

3̄2
− (1↔ 2), (10.5.1)

where x̄ = ηx and an implicit summation/integration over the internal frequencies and

further indices is assumed, but not over the external ones. After defining these effective

vertices, we turn back to the initial question how to perform the limit D → ∞ with-

out the problem of divergent frequency integrals. This divergence can be estimated

easily by counting the number of integrations and resolvents in each diagram. For the

leading order diagram contributing to the Liouvillian, we have two internal frequency

integrations and only one resolvent, so we need two derivatives with respect to the
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Laplace variable E to obtain a convergent result. For the effective two-point vertex,

we only have one integration and one resolvent (10.5.1), so a first derivative is suffi-

cient. Performing the E-derivative to the Liouvillian (10.2.16), it can only act on the

resolvent Π between the bare vertices. Choosing a specific resolvent for the derivative,

the diagrams can be classified by the number of contractions running over this resol-

vent. By cutting those contractions, the diagrams split into two parts, and one can

subsequently resum all connected diagrams to the left and to the right of the resolvent.

With this resummation, one gets the effective vertices and no contraction is left which

connects vertices only to the left or only to the right of the resolvent. In the remaining

diagrams all contractions need to connect effective vertices which are on different sides

of the resolvent which is differentiated. With this, we derived a diagrammatic series

consisting only of effective vertices and all frequency integrals are convergent. For the

second derivative of the Liouvillian and the first derivative of the effective two-point

vertex those read up to O(J3) (with J defining the leading order of G12): [Rei14]

1

2

∂2

∂E2
L(E) =

1

2

1

2
+ +O(J4) (10.5.2)

∂

∂E
Gp1p2

12 (E) =

[
1 2

− (1↔ 2)

]
+

1

2
21

+
1

2
21

+

[
1 2

+

21

− (1↔ 2)

]
+O(J4).

(10.5.3)

Here, the prefactors arising from the symmetry factor S or from the E-derivatives 1
n!∂

n
E

are written explicitly. From the diagrams we can see that all frequency integrations

converge in the limit D →∞ even if one neglects the frequency dependence of the two-

point vertices, so this additional frequency dependence can be calculated perturbatively.

Furthermore, one has to be careful with the higher-order diagrams, as the contribution

to Gp1p2
12 (E) in O(J4) contains the four-point vertex like, e.g.,

12

. (10.5.4)

If one would neglect the frequency dependence of both effective vertices here, the fre-

quency integration would diverge as there are two integrations and only one resolvent
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and one derivative present. But one can show that all n-point vertices with n > 2 can

be expressed in terms of the two-point vertices with convergent frequency integrations

[Rei14]. The limit D →∞ can now be performed and the Liouvillian and the effective

two-point vertex contain the band width D only implicitly by the initial conditions at

E ∼ iD,3 which will be determined later.

10.6 Frequency Integrals

In a next step, we want to evaluate the frequency integrations. As the resolvents

depend only on the sum of the Laplace variable E and the frequencies ω̄i = ηiωi, we

can replace the derivative with respect to E by a frequency derivative, and then apply

an integration by parts. Here, we have to assume that the effective vertices can also

contain a frequency dependence, so that for example the first term of eq. (10.5.3) reads

1 2

=−

1 2

−

1 2

−

1 2

=−

1 2

−

1 2

−

21

(10.6.1)

where the cross indicates a derivative with respect to the frequency ω̄ of the corre-

sponding contraction or vertex. From the first to the second line we have used the

antisymmetry relation Gp1p2
12 (E, ω̄1, ω̄2) = −Gp2p1

21 (E, ω̄2, ω̄1) and

12

=

1 2

+O(J3) (10.6.2)

12

=

12

+O(J3), (10.6.3)

which can be derived analogously to eq. (10.5.3) [Rei14]. The first term of eq. (10.5.2)

can be treated analogously, here two integration by parts lead to

= + 2 + 2 +O(J4)

= − 4 +O(J4). (10.6.4)

3As mentioned earlier, the logarithmic divergences have the form lnk
(

D
−iE

)
, so the perturbative

series at E = iΛ0 ∼ iD can be calculated without such problems.
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Inserting these results into eqs. (10.5.3) and (10.5.2) many terms cancel each other,

leading to the final third-order RG-equations

∂2

∂E2
L(E) =

1

2
+O(J4) (10.6.5)

∂

∂E
Gp1p2

12 (E) =−
[

1 2

− (1↔ 2)

]
− 1

2
21

+O(J4). (10.6.6)

The frequency derivative in the contractions acts only on the Fermi functions, and it

is convenient to decompose those into a symmetric and an antisymmetric part by

f(ω) =
1

2
+ fa(ω), (10.6.7)

so that the contraction can be split

γp
′
(ω̄) = p′γs(ω̄) + γa(ω̄) (10.6.8)

with

γs(ω̄) =
1

2
D(ω̄), γa(ω̄) = fa(ω̄)D(ω̄). (10.6.9)

This has the advantage that in the limit D → ∞ the index p′ is split from the fre-

quency dependent part. In particular, the frequency integrations in eqs. (10.6.5) and

(10.6.6) are calculated by closing the integration path in the upper half of the complex

plane. As the resolvents and the vertices are analytic there [Sch09b], only the poles of

the contraction remain, which are given by the Matsubara poles of the antisymmetric

part of the Fermi function. Hence, the symmetric part does not contribute and can

be neglected in the RG-equations, it only has to be taken into account for the initial

conditions. Furthermore, also the p′-dependence of the remaining antisymmetric con-

traction vanishes, so that the sum over the indices p can be performed, leading to the

fact that only averaged vertices G12 =
∑

p1p2
Gp1p2

12 occur in the differential equations.

Additionally, the frequency derivative of the antisymmetric contraction at vanishing

temperature T = 0 gives

∂

∂ω̄
γa(ω̄) = f ′(ω̄) = −δ(ω̄), (10.6.10)
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such that those integrations become trivial. With all these information, the differential

equations are finally given by

∂2

∂E2
L(E) =

1

2
G12(E)Π(E12)G2̄1̄(E12), (10.6.11)

∂

∂E
G12(E) =G13(E)Π(E13)G3̄2(E13)−G23(E)Π(E23)G3̄1(E23) (10.6.12)

− i
2

∫ ∞
0

dωG34(E)Π(E34 + iω)G12(E34)Π(E1234 + iω)G4̄3̄(E1234).

The differential equations for the current vertex Iγ12(E) and the current kernel Σγ(E)

are exactly the same but one replaces the first vertex on the r.h.s. by the current vertex.

10.7 RG-Equations for Slowly Varying Parts

Following Ref. [Kas13] it is helpful to split the kernels in parts which only vary slowly

with respect to the Laplace variable E

L(E) =L∆(E) + EL′(E), (10.7.1)

Σγ(E) =Σγ
∆(E) + EΣ′γ(E), (10.7.2)

where L∆(E) and Σγ
∆(E) are proportional to some physical low-energy scale ∆ ∼ µα, h

and L′(E) and Σ′γ(E) are dimensionless. In Ref. [Kas13], the differential equations

for those quantities were derived up to order O(J2) and we will generalize this to

the subleading order O(J3). The main idea is to write the second derivative of the

Liouvillian as first derivatives of L∆(E) and L′(E) in the form

∂2

∂E2
L(E) =

∂

∂E
L′(E) +

∂

∂E

[
∂

∂E
L∆(E) + E

∂

∂E
L′(E)

]
. (10.7.3)

To this end we define the following quantities

Z ′(E) =
1

1− L′(E)
, (10.7.4)

χ∆
12(E) = µ̄12︸︷︷︸

=µ̄1+µ̄2

−Z ′(E12)L∆(E12), (10.7.5)

showing that the resolvent can be written as

Π(E12) =
1

E + χ∆
12(E)

Z ′(E12). (10.7.6)
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We perform all the following steps only for the Liouvillian, but they can be simultane-

ously done for the current kernel if one replaces the first vertex by the current vertex.

By adding terms which only contribute to O(J4), eq. (10.6.11) can be rewritten to

∂2

∂E2
L(E) =

1

2
G12(E)Π(E12)G2̄1̄(E12)

−G12(E)Π(E12)G2̄3(E12)Z ′(E13)G3̄1̄(E13)

−G12(E)Z ′(E12)G2̄3(E12)Π(E13)G3̄1̄(E13)

+
∂

∂E

[1

2
G12(E)Z ′(E12)G2̄1̄(E12)

− 2G12(E)Z ′(E12)G2̄3(E12)Z ′(E13)G3̄1̄(E13)
]

+O(J4). (10.7.7)

Hereby, the second and third term are canceled by the E-derivative of the vertices of

the fourth term (up to higher orders) and the last term is of higher order and has only

been added to show that L∆(E) contains only terms proportional to ∆ and not to the

Laplace variable E itself. By comparison, we find up to O(J3):

∂

∂E
L′(E) =

1

2
G12(E)Π(E12)G2̄1̄(E12)−G12(E)Π(E12)G2̄3(E12)Z ′(E13)G3̄1̄(E13)

−G12(E)Z ′(E12)G2̄3(E12)Π(E13)G3̄1̄(E13),

(10.7.8)

∂

∂E
L∆(E) + E

∂

∂E
L′(E) =

1

2
G12(E)Z ′(E12)G2̄1̄(E12)

− 2G12(E)Z ′(E12)G2̄3(E12)Z ′(E13)G3̄1̄(E13),

(10.7.9)

and with eq. (10.7.6)

∂

∂E
L∆(E) =

1

2
G12(E)

χ∆
12(E)

E + χ∆
12(E)

Z ′(E12)G2̄1̄(E12)

−G12(E)
χ∆

12(E)

E + χ∆
12(E)

Z ′(E12)G2̄3(E12)Z ′(E13)G3̄1̄(E13)

−G12(E)Z ′(E12)G2̄3(E12)
χ∆

13(E)

E + χ∆
13(E)

Z ′(E13)G3̄1̄(E13), (10.7.10)

∂

∂E
L′(E) =

1

2
G12(E)

1

E + χ∆
12(E)

Z ′(E12)G2̄1̄(E12)

−G12(E)
1

E + χ∆
12(E)

Z ′(E12)G2̄3(E12)Z ′(E13)G3̄1̄(E13)

−G12(E)Z ′(E12)G2̄3(E12)
1

E + χ∆
13(E)

Z ′(E13)G3̄1̄(E13). (10.7.11)



82 CHAPTER 10. METHOD: REAL-TIME RENORMALIZATION GROUP

Initial Conditions As we set up the differential equations in the last sections, we

have to specify next their initial conditions. We have to consider the lowest order

diagrams for the effective Liouvillian and the two-point vertex and insert the unrenor-

malized values for the Liouvillian (B.1.8) and the vertices on the r.h.s of these equations,

obtaining for D � ∆ [Sch09b]

L(E) =L(0) +
1

2
G

(0)
12

∫ ∫
dωdω′

γp(ω)γp(ω′)

E12 − L(0) + ω + ω′
G

(0)pp

2̄1̄

=L(0) +
1

2
G

(0)
12

[
− ipπ

2
(E12 − L(0)) + (E12 − L(0)) ln

−i(E12 − L(0))

D

+
1

4

(
π2

4
− 3

)
(E12 − L(0))− pπ

2
D
]
G

(0)pp

2̄1̄
, (10.7.12)

G12(E) =G
(0)
12 +

{
G

(0)
13

∫
dω

γp(ω)

E13 − L(0) + ω
G

(0)pp

3̄2
− (1↔ 2)

}
=G

(0)
12 +

{
G

(0)
13

[
−iπ

2
p+ ln

−i(E13 − L(0))

D

]
G

(0)pp

3̄2
− (1↔ 2)

}
. (10.7.13)

The last two terms of eq. (10.7.12) are nonuniversal, i.e. they depend on the special

choice of the cutoff function. The term linear in D will be discussed in detail later

(see section 12.5), and we will show that it will vanish for a generic two-level QD.

Concentrating on universal physics, we will omit all nonuniversal terms in the following.

The logarithms can also be neglected, as they are small at E ∼ iD. Defining

G̃
(0)
12 =

∑
p=±

pG
(0)pp
12 (10.7.14)

we find the initial conditions at E = iΛ0 ∼ iD

L∆

∣∣
E=iΛ0

=L(0) − iπ
4
G

(0)
12

(
µ̄12 − L(0)

)
G̃

(0)

2̄1̄
, (10.7.15)

L′
∣∣
E=iΛ0

=− iπ
4
G

(0)
12 G̃

(0)

2̄1̄
, (10.7.16)

Σγ
∆

∣∣
E=iΛ0

=− iπ
4
I
γ(0)
12

(
µ̄12 − L(0)

)
G̃

(0)

2̄1̄
, (10.7.17)

Σ′γ
∣∣
E=iΛ0

=− iπ
4
I
γ(0)
12 G̃

(0)

2̄1̄
, (10.7.18)

G12

∣∣
E=iΛ0

=G
(0)
12 − i

π

2

[
G

(0)
13 G̃

(0)

3̄2
− (1↔ 2)

]
, (10.7.19)

Iγ12

∣∣
E=iΛ0

=I
γ(0)
12 − iπ

2

[
I
γ(0)
13 G̃

(0)

3̄2
− (1↔ 2)

]
. (10.7.20)
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10.8 Weak Coupling Expansion

We now discuss the analytic solution of the RG-equations in the weak-coupling regime,

which is defined as

Λc = max{|µα|, |h|} � TK , (10.8.1)

with some low-energy scale TK , called the Kondo-temperature, where the renormalized

couplings become of O(1) when µα = h = 0. This means that the couplings are still

small for |E| ≥ Λc if one is not too close to the branching points of the resolvent Π(E).

Following Ref. [Sch09c] we split the regime where we want to solve the RG-equations

into a high- and a low-energy part separated by Λc. Starting the flow at E = iΛ0 and

being interested in the stationary properties given at E = 0, it is convenient to rewrite

the Laplace-variable E → E + iΛ and integrate from Λ = Λ0 to Λ = 0 and finally set

E = 0.4

Solution in the High-Energy Regime In the regime Λ > Λc we define a reference

solution, denoted by a superscript (1), in which all physical energy scales and E are set

to zero. We furthermore neglect the weak frequency dependence of L∆ and Z ′ in the

last term of eq. (10.6.12) such that the frequency integration can be performed easily.

The RG-equations for L′(1), Z ′(1) and G
(1)
12 read

∂

∂Λ
L′(1) =

1

2Λ
G

(1)
12 Z

′(1)G
(1)

2̄1̄
− 2

Λ
G

(1)
12 G

(1)

2̄3
G

(1)

3̄1̄
+O(J4), (10.8.2)

∂

∂Λ
Z ′(1) =Z ′(1) ∂

∂Λ
L′(1)Z ′(1) +O(J4), (10.8.3)

∂

∂Λ
G

(1)
12 =

1

Λ
G

(1)
13 Z

′(1)G
(1)

3̄2
− 1

Λ
G

(1)
23 Z

′(1)G
(1)

3̄1
− 1

2Λ
G

(1)
34 G

(1)
12 G

(1)

4̄3̄
+O(J4), (10.8.4)

and their initial conditions depend only on the initial coupling vertex g12 but not on

the other physical parameters of the system, whereas L
(1)
∆

∂

∂Λ
L

(1)
∆ =

1

2Λ
G

(1)
12 χ

(1)
12 Z

′(1)G
(1)

2̄1̄
− 1

Λ
G

(1)
12 χ

(1)
12 G

(1)

2̄3
G

(1)

3̄1̄
− 1

Λ
G

(1)
12 G

(1)

2̄3
χ

(1)
13 G

(1)

3̄1̄
+O(J4)

(10.8.5)

with χ
(1)
12 = E12 − Z ′(1)L

(1)
∆ contains also the initial dot Hamiltonian and the chemical

potentials. Again, the differential equations for the reference solution of the current

vertex I
γ(1)
12 and the current kernels Σ′γ(1) and Σ

γ(1)
∆ can be obtained by replacing the

4Within this scheme, one could also calculate the time evolution of a system, see Ref. [Rei14].
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first vertex with the current vertex.

In a next step, we calculate the next correction to the reference solution and denote it

by a superscript (2). With 1
ΛJ

2 ∼ d
dΛJ we find for the low-energy scale ∆ ∼ µα, h the

approximation

1

Λ
Jn ∼ d

dΛ
Jn−1, (10.8.6)

∆

Λ2
Jn ∼

(
d

dΛ

∆

Λ

)
Jn

∼ d

dΛ

∆

Λ
Jn +

∆

Λ
Jn−1 d

dΛ
J

∼ d

dΛ

∆

Λ
Jn +

∆

Λ2
Jn+1, (10.8.7)

so terms on the r.h.s. of the RG-equations with a prefactor 1
Λ become one order less

in J after the integration, those with a prefactor ∆
Λ2 remain of the same order. We can

furthermore use

1

Λ− iχ12
=

1

Λ
+O

(
∆

Λ2

)
, (10.8.8)

G12(E1...n + iΛ) =G12(iΛ) +O
(

∆

Λ
J2

)
, (10.8.9)

to neglect all low energy scales in the arguments of all quantities and it is thus sufficient

to consider only the lowest order of the RG-equations (10.7.10), (10.7.11) and (10.6.12).

The first correction can then be determined by replacing all quantities by their reference

solution, leading to

∂

∂Λ
L

(2)
∆ =

1

2
G

(1)
12 χ

(1)
12

(
1

Λ− iχ(1)
12

− 1

Λ

)
G

(1)

2̄1̄
, (10.8.10)

∂

∂Λ
L′(2) =

1

2
G

(1)
12

(
1

Λ− iχ(1)
12

− 1

Λ

)
G

(1)

2̄1̄
, (10.8.11)

∂

∂Λ
G

(2)
12 =G

(1)
13

(
1

Λ− iχ(1)
13

− 1

Λ

)
G

(1)

3̄2
− (1↔ 2). (10.8.12)

We can integrate those by using(
1

Λ− iχ(1)
12

− 1

Λ

)
J2 =

d

dΛ

(
ln

Λ− iχ(1)
12

Λ
J2

)

+O

(
1

Λ

dχ
(1)
12

dΛ
J2

)
+O

(
ln

Λ− iχ(1)
12

Λ
J
dG

dΛ

)
(10.8.13)
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together with

1

Λ

dχ
(1)
12

Λ
J2 ∼χ

(1)
12

Λ2
J4, (10.8.14)

ln
Λ− iχ(1)

12

Λ
J
dG

dΛ
∼χ

(1)
12

Λ2
J3 (10.8.15)

so that we can neglect those contributions. We finally get for the first correction to the

reference solution up to O(J2)

L
(2)
∆ =

1

2
G

(1)
12 χ

(1)
12 ln

Λ− iχ(1)
12

Λ
G

(1)

2̄1̄
, (10.8.16)

L′(2) =Z ′(2) =
1

2
G

(1)
12 ln

Λ− iχ(1)
12

Λ
G

(1)

2̄1̄
, (10.8.17)

G
(2)
12 =G

(1)
13 ln

Λ− iχ(1)
13

Λ
G3̄2 − (1↔ 2). (10.8.18)

Solution in the Low-Energy Regime The previously defined reference solution

and the first correction to it will be used as initial condition at Λ = Λc. We solve the

RG-equations (10.7.10), (10.7.11) and (10.6.12) in the regime Λ < Λc perturbatively

in the reference solution G
(1)c
12 = G

(1)
12 |Λ=Λc . This perturbative series is well defined as

the logarithmic divergences are summed up in the reference solution and the couplings

are still small due to the weak-coupling condition. The lowest order contributions are

already O(J2
c ) so it is enough to consider only the lowest order diagrams for the RG-

equations and replace all quantities by their reference solution evaluated at Λ = Λc.

The remaining Λ-dependence is contained in the resolvent, which can be integrated via

1

Λ− iχ(1)c
12

=
d

dΛ
ln

Λ− iχ(1)c
12

Λc
. (10.8.19)

So we find the final result valid for Λ < Λc

L∆(E + iΛ) =L
(1)c
∆ +

1

2
G

(1)c
12 χ

(1)c
12 ln

Λ− iχ(1)c
12

Λc
G

(1)c

2̄1̄
, (10.8.20)

L′(E + iΛ) =L′(1)c +
1

2
G

(1)c
12 ln

Λ− iχ(1)c
12

Λc
G

(1)c

2̄1̄
, (10.8.21)

Z ′(E + iΛ) =Z ′(1)c +
1

2
G

(1)c
12 ln

Λ− iχ(1)c
12

Λc
G

(1)c

2̄1̄
, (10.8.22)

G12(E + iΛ) =G
(1)c
12 +G

(1)c
13 ln

Λ− iχ(1)c
13

Λc
G

(1)c

3̄2
− (1↔ 2). (10.8.23)
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A modification of the definition of Λc by a factor of O(1) would not change the solution

up to O(J2
c ) as the changes would cancel. Again, the current vertex and the current

kernels could be calculated analogously by replacing the first vertex by the current

vertex.

10.9 Summary of the RTRG

We are interested in the stationary properties of the system determined by eqs. (10.2.15)

and (10.3.11) in leading and next-leading order, so we only need to calculate the Liouvil-

lian and the current kernel at E = 0. With the decompositions (10.7.1) and (10.7.2) it

is obvious that all these information are contained in L∆ and Σγ
∆. Therefore, we solve

the differential equations in the high-energy regime (10.8.3 - 10.8.5) with the initial

conditions (10.7.15, 10.7.19) and Z ′(1)|Λ=Λ0 = 1 to determine the reference solutions

L
(1)
∆ , G

(1)
12 and Z ′(1) and insert them into the equation (10.8.20), where we set finally

E + iΛ = 0. The same is done for Σγ
∆ by replacing the first vertex by the current

vertex. L′ and Σ′γ have not to be calculated explicitly as L′ only contributes implicitly

due to the Z ′-factor and Σ′γ does not contribute at all. Furthermore, we need this

Z ′-factor only up to O(J) because it always occurs in combination with at least two

vertex functions in the differential equations under consideration.

10.10 Poor Man’s Scaling

In the next chapter, we will compare our results to those of a PMS-approach [And70,

Hal78]. Therefore, we shortly define what can be understood as a PMS-solution

of the system under consideration. Instead of our RG-equations in the high-energy

regime, within a PMS-approach one expands the Liouvillian in bare vertices (similar to

eq. 10.7.12) and replaces the bare vertices with effective ones. These can be calculated

in Hilbert-space via

d

dΛ
gPMS

12 =
1

Λ

[
gPMS

13 gPMS
3̄2 − (1↔ 2)

]
(10.10.1)

which yields for the vertices in Liouville space

d

dΛ
GPMS

12 =
1

Λ
GPMS

13 GPMS
3̄2 − (1↔ 2), (10.10.2)

d

dΛ
G̃PMS

12 =
1

Λ

(
GPMS

13 G̃PMS
3̄2 − G̃PMS

23 GPMS
3̄1

)
, (10.10.3)
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which is identical to the leading order of eq. (10.8.4). The flow parameter Λ runs from

Λ0 to Λc. For the low-energy regime one uses the same perturbative expansion as in

the RTRG and inserts the previously calculated vertices as the reference solution.





Chapter 11

Comparison between RTRG and

PMS

To compare the RTRG-results with those of a PMS-approach, we follow Ref. [Sch09b,

Sch09c] and separate the part of the reference solutions for the vertex and the current

vertex in the regime Λ > Λc which arises due to the O(J2) part of the initial condition.

In the same sense, we isolate the contributions of those to the Liouvillian and the

current kernel. With this splitting, we will show that the RTRG-calculations for the

Liouvillian reproduce the PMS-solution exactly up to O(J2) for our two-level system

but additionally generate an effective magnetic field. For the current kernel, we are

able to show that the outcome of both methods coincide.

11.1 Splitting of the Vertex Functions

We start with the set of differential equations for the needed reference solutions in the

regime Λ > Λc derived in the previous chapter which read up to O(J3)

∂

∂Λ
G

(1)
12 =

1

Λ
G

(1)
13 Z

′(1)G
(1)

3̄2
− 1

Λ
G

(1)
23 Z

′(1)G
(1)

3̄1
− 1

2Λ
G

(1)
34 G

(1)
12 G

(1)

4̄3̄
, (11.1.1)

∂

∂Λ
I
γ(1)
12 =

1

Λ
I
γ(1)
13 Z ′(1)G

(1)

3̄2
− 1

Λ
I
γ(1)
23 Z ′(1)G

(1)

3̄1
− 1

2Λ
I
γ(1)
34 G

(1)
12 G

(1)

4̄3̄
, (11.1.2)

∂

∂Λ
L

(1)
∆ =

1

2Λ
G

(1)
12 χ

(1)
12 Z

′(1)G
(1)

2̄1̄
− 1

Λ
G

(1)
12 χ

(1)
12 G

(1)

2̄3
G

(1)

3̄1̄
− 1

Λ
G

(1)
12 G

(1)

2̄3
χ

(1)
13 G

(1)

3̄1̄
, (11.1.3)

∂

∂Λ
Σ
γ(1)
∆ =

1

2Λ
I
γ(1)
12 χ

(1)
12 Z

′(1)G
(1)

2̄1̄
− 1

Λ
I
γ(1)
12 χ

(1)
12 G

(1)

2̄3
G

(1)

3̄1̄
− 1

Λ
I
γ(1)
12 G

(1)

2̄3
χ

(1)
13 G

(1)

3̄1̄
, (11.1.4)

∂

∂Λ
Z ′(1) =

1

2Λ
G12G2̄1̄ +O(J3). (11.1.5)
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The initial conditions are given by

G
(1)
12

∣∣
E=iΛ0

=G
(0)
12 − i

π

2

[
G

(0)
13 G̃

(0)

3̄2
− (1↔ 2)

]
, (11.1.6)

I
γ(1)
12

∣∣
E=iΛ0

=I
γ(0)
12 − iπ

2

[
I
γ(0)
13 G̃

(0)

3̄2
− (1↔ 2)

]
, (11.1.7)

L
(1)
∆

∣∣
E=iΛ0

=L(0) − iπ
4
G

(0)
12

(
µ̄12 − L(0)

)
G̃

(0)

2̄1̄
, (11.1.8)

Σ
γ(1)
∆

∣∣
E=iΛ0

=− iπ
4
I
γ(0)
12

(
µ̄12 − L(0)

)
G̃

(0)

2̄1̄
, (11.1.9)

Z ′(1)
∣∣
E=iΛ0

=1, (11.1.10)

with

G
(0)
12 =[g

(0)
12 , ·] = −2 ~J12 · L2, (11.1.11)

G̃
(0)
12 ={g(0)

12 , ·} = ~J12 · (L1 + L3), (11.1.12)

I
γ(0)
12 =cγ12{g

(0)
12 , ·} = cγ12

~J12 ·
(
L1 + L3

)
, (11.1.13)

L(0) =− 2~heff · L2, (11.1.14)

and ~J12 given by eq. (9.2.52). The superoperators Li and their algebra is defined in

App. B.

In a first step, we perform the occurring η-sums. As the bare vertex contains a δη−η′

(9.2.53), this parametrization is conserved during the flow. From now on, all occurring

vertices have the indices η = + and η′ = − and the multi-indices 1, 1′ etc. do not longer

contain those1. Furthermore, as mentioned before, we split

G
(1)
12 =G

(11)
12 + iG

(12)
12 , (11.1.15)

I
γ(1)
12 =I

γ(11)
12 + iI

γ(12)
12 , (11.1.16)

L
(1)
∆ =L

(11)
∆ + L

(12)
∆ , (11.1.17)

Σ
γ(1)
∆ =Σ

γ(11)
∆ + Σ

γ(12)
∆ (11.1.18)

1The vertices with η = − and η′ = + are rewritten with eq. (B.4.2) to vertices, where the first
η-index is positive.
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where the (11) parts can contain O(J) contributions, whereas the (12) parts are at least

of O(J2). The differential equations for these new defined quantities are given by

Λ
∂

∂Λ
G

(11)
12 =G

(11)
13 Z ′(1)G

(11)
32 −G

(11)
32 Z ′(1)G

(11)
13 −G

(11)
34 G

(11)
12 G

(11)
43 , (11.1.19)

Λ
∂

∂Λ
G

(12)
12 =G

(11)
13 G

(12)
32 +G

(12)
13 G

(11)
32 −G

(11)
32 G

(12)
13 −G

(12)
32 G

(11)
13 , (11.1.20)

Λ
∂

∂Λ
L

(11)
∆ =µ12G

(11)
12 Z ′(1)G

(11)
21 −G

(11)
12 Z ′(1)L

(11)
∆ Z ′(1)G

(11)
21

− (µ12 + µ13)
(
G

(11)
12 G

(11)
23 G

(11)
31 +G

(11)
21 G

(11)
32 G

(11)
13

)
+G

(11)
12

{
G

(11)
23 , L

(11)
∆

}
G

(11)
31 −G

(11)
21

{
G

(11)
32 , L

(11)
∆

}
G

(11)
13 , (11.1.21)

Λ
∂

∂Λ
L

(12)
∆ =iµ12

(
G

(11)
12 G

(12)
21 +G

(12)
12 G

(11)
21

)
− iG(11)

12 L
(0)
∆ G

(12)
21 − iG

(12)
12 L

(0)
∆ G

(11)
21 , (11.1.22)

Λ
∂

∂Λ
Z ′(1) =G

(11)
12 G

(11)
21 , (11.1.23)

and the flow equations for I
γ(11)
12 , I

γ(12)
12 , Σ

γ(11)
∆ and Σ

γ(12)
∆ are analogue with the first

vertex replaced by the current vertex. The initial conditions read

G
(11)
12

∣∣
E=iΛ0

=G
(0)
12 , (11.1.24)

G
(12)
12

∣∣
E=iΛ0

=− iπ
2

[
G

(0)
13 G̃

(0)
32 −G

(0)
32 G̃

(0)
13

]
, (11.1.25)

I
γ(11)
12

∣∣
E=iΛ0

=I
γ(0)
12 , (11.1.26)

I
γ(12)
12

∣∣
E=iΛ0

=− iπ
2

[
I
γ(0)
13 G̃

(0)
32 − I

γ(0)
32 G̃

(0)
13

]
, (11.1.27)

L
(11)
∆

∣∣
E=iΛ0

=L(0), (11.1.28)

L
(12)
∆

∣∣
E=iΛ0

=− iπ
2
G

(0)
12

(
µ12 − L(0)

∆

)
G̃

(0)
21 , (11.1.29)

Σ
γ(11)
∆

∣∣
E=iΛ0

=0, (11.1.30)

Σ
γ(12)
∆

∣∣
E=iΛ0

=− iπ
2
I
γ(0)
12

(
µ12 − L(0)

)
G̃

(0)
21 . (11.1.31)
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11.2 Analytic Evaluation of the Differential Equations

Here, we analyze the differential equations for the Liouvillian and the current derived in

the previous section. The hermicity of the effective Hamiltonian (9.2.43) and the rela-

tion g†12 = g2̄1̄ in Hilbert space leads to the following relations for the initial conditions

of the vertex superoperators

G
(11),†
12

∣∣∣
Λ0

=G
(11)
21

∣∣∣
Λ0

, (11.2.1)

I
γ(11),†
12

∣∣∣
Λ0

=− Iγ(11)
21

∣∣∣
Λ0

, (11.2.2)

where we have defined the adjoint of an superoperator in Liouville space as (A†)ss′,s̄s̄′ =

A∗s̄s̄′,ss′ . For the Liouvillian, the current kernel and the Z-factor in leading order this

results in

L
(11),†
∆

∣∣∣
Λ0

=L
(11)
∆

∣∣∣
Λ0

, (11.2.3)

Σ
γ(11),†
∆

∣∣∣
Λ0

=− Σ
γ(11)
∆

∣∣∣
Λ0

, (11.2.4)

Z(1),†
∣∣∣
Λ0

=Z(1)
∣∣∣
Λ0

. (11.2.5)

All these relations are preserved under the RG-flow for an arbitrary number of dot

levels. For the two-level system under consideration in this thesis, we can show with

this hermicity and eqs. (B.4.4) and (B.4.6) that the Liouvillian L(11) has the structure

L
(11)
∆ =


0 0 −φ∗ φ

0 0 φ∗ −φ
−φ φ h 0

φ∗ −φ∗ 0 −h

 (11.2.6)

=
[
H(1), ·

]
, (11.2.7)

where the basis in Liouville space is chosen as |↑↑〉, |↓↓〉, |↑↓〉, |↓↑〉 and

H(1) =

(
h
2 φ

φ∗ −h
2

)
= ~h · ~S, (11.2.8)

with the generated magnetic field ~h = (2Re(φ), 2iIm(φ), h)T . So the contribution of

L
(11)
∆ is a renormalization of the effective magnetic field, which is a priori not captured

in the PMS-calculations.
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At first glance, integrating the differential equation for Σ
γ(11)
∆ seems to produce terms

∼ O(J) for the current, which could not be captured within a PMS-approach. To

investigate those, we first have to analyze I
γ(11)
12 . The form of the initial condition

(11.1.13) is preserved under the RG-flow in leading order2 with the same ~J12 as in

eq. (11.1.11). The terms, which could lead to O(J)-contributions to the current are

given by

Λ
∂

∂Λ
Σ
γ(11)
∆ =µ12I

γ(11)
12 G

(11)
21 − I

γ(11)
12 L

(0)
∆ G

(11)
21 +O

(
J3
)
. (11.2.9)

The first part of the r.h.s. gives

µ12I
γ(11)
12 G

(11)
21 =− 2µ12c

γ
α1α2

J i12J
j
21(L1

i + L3
i )L

2
j

=iεijkµ12c
γ
α1α2

J i12J
j
21L

1
k

=iεijkµ12c
γ
α1α2

J i21J
j
12L

1
k

=0, (11.2.10)

where we have relabeled 1 ↔ 2 and used µ12 = −µ21, cγα1α2 = −cγα2α1 . For the

evaluation of the second part, we choose the magnetic field in z-direction, which leads

to

I
γ(11)
12 L

(0)
∆ G

(11)
21 =4hcγα1α2

J i12J
j
21(L1

i + L3
i )L

2
zL

2
j

=hcγα1α2
J i12J

j
21(δjzL

1
i − δijL1

z) (11.2.11)

where this expression has only contributions ∼ L1
x, L

1
y. To compute the current, we

have to multiply this current kernel with the density matrix. When the magnetic field

points in z-direction and is of O(1) (otherwise, this contribution would be either way of

higher order), the diagonal parts of the density matrix are of O(1) and the off-diagonal

are of higher order. As L1
x and L1

y act only on the off-diagonal matrix elements, the

expression Σ
γ(11)
∆ ρ does not have any contributions linear in J . Nevertheless, the second

order contributions to Σ
γ(11)
∆ could lead to a current, which would not be included in

a PMS-approach. To discuss this, we computed the (11), (12) and (3) part of the

current for two different generic models (see Fig. 11.1). The (3) part denotes the

contribution from the low-energy regime Λ < Λc. Obviously, the (11) contribution to

the total current is of higher order in J than both others, such that it can be neglected

completely.

2The higher order contributions can differ significantly from this form, as also contributions to Iγαα
can arise.
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Figure 11.1: Decomposition of the various contributions to the current for two different

generic two-level QDs to show that the Σ
(11)
∆ part is of higher order and therefore can

be neglected. In the left plot, the QD is coupled to two spinless reservoirs with tL1 =
10−2(−0.3377 + 1.4355i), tL2 = 10−2(1.7754 + 0.4888i), tR1 = 10−2(−0.5989 − 0.7406i)
and tR2 = 10−2(1.6641 + 0.4501i), and in the right one, the hopping amplitudes read
tL1 = 10−2(0.3381− 0.9112i), tL2 = 10−2(−2.0778− 0.0993i), tR1 = 10−2(−1.4489 + 1.1025i)
and tR2 = 10−2(−0.8992 + 0.5443i). In both cases, the amplitude of the hopping matrix
elements are chosen such that J ≈ 0.01.

After discussing the contributions of the (11)-parts, in a next step we investigate L
(12)
∆ .

We first evaluate the differential equation for G(11). Starting this discussion by splitting

G
(11)
12 = G

(11a)
12 +G

(11b)
12 , (11.2.12)

where G
(11a)
12 ∼ J and G

(11b)
12 ∼ J2, the differential equation for G(11a) reads

Λ
dG

(11a)
12

dΛ
= G

(11a)
13 G

(11a)
32 −G(11a)

32 G
(11a)
13 +O(J3), (11.2.13)

with the initial condition G
(11a)
12

∣∣
E=iΛ0

= [g
(1)
12 , ·]. Comparing with the PMS-equations

(10.10.1) and (10.10.2), which are identical to those of the RTRG in leading order, it is

easy to verify that G
(11a)
12 keeps its form of the initial condition with renormalized g

(1)
12 .

So the leading order of the vertex function G
(11)
12 can always be written as a commutator

of some vertex function g
(1)
12 in Hilbert space. We furthermore define

G̃
(11a)
12 = {g(1)

12 , ·} (11.2.14)

which yields the differential equation

Λ
dG̃

(11a)
12

dΛ
=G

(11a)
13 G̃

(11a)
32 − G̃(11a)

32 G
(11a)
13 +O(J3). (11.2.15)
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With these definitions, it was shown in Ref. [Sch09b] that also G
(12)
12 keeps the form of

its initial condition during the RG-flow in leading order

G
(12)
12 = −π

2
G

(11a)
13 G̃

(11a)
32 +

π

2
G

(11a)
32 G̃

(11a)
13 . (11.2.16)

In the same sense, we can check if L
(12)
∆ is given in leading order by its initial condition

with renormalized coupling vertices G. We calculate the difference of L
(12)
∆ and the

derivative of the initial condition

Λ
d

dΛ

[
L

(12)
∆ + i

π

2
G

(11a)
12

(
µ12 − L(0)

∆

)
G̃

(11a)
21

]
=− iπ

4
G

(11a)
12

[
G

(11a)
23 G̃

(11a)
31 −G(11a)

31 G̃
(11a)
23 − G̃(11a)

23 G
(11a)
31 + G̃

(11a)
31 G

(11a)
23

]
L

(0)
∆ .

(11.2.17)

For our two-level model under consideration, we insert our Liouville space basis, and

it was shown in Ref. [Sch09c] that G(11a) ∼ L2, G̃(11a) ∼ L1 + L3 and L
(0)
∆ ∼ L2 in

leading order. Due to the algebra defined in appendix B, it is easy to prove that the

r.h.s. of eq. (11.2.17) vanishes in O(J3), so also L
(12)
∆ is exactly the same as its initial

condition with renormalized vertices up to higher orders, meaning it coincides with the

PMS-solution. The same statement holds for Σ
γ(12)
∆ as the difference between its flow

equation in RTRG and the derivative of the initial condition

Λ
d

dΛ

[
Σ
γ(12)
∆ + i

π

2
I
γ(11a)
12

(
µ12 − L(0)

∆

)
G̃

(11a)
21

]
=− iπ

4
I
γ(11a)
12

[
G

(11a)
23 G̃

(11a)
31 −G(11a)

31 G̃
(11a)
23 − G̃(11a)

23 G
(11a)
31 + G̃

(11a)
31 G

(11a)
23

]
L

(0)
∆ ,

(11.2.18)

also vanishes due to the Liouville space algebra and Iγ(1a) ∼ L1 + L3.

The results for the Liouvillian and the current kernel in the regime Λ < Λc are already

equivalent between RTRG and PMS as only the lowest order of the effective two-point

vertex (which is similar) evaluated at Λ = Λc enters into the equation (10.8.20). To

conclude, the RG-flow of L
(1)
∆ produces an effective magnetic field, which is not captured

in the PMS-approach. Beside this, all other contributions to the Liouvillian and the

current kernel are the same to O(J2), so a PMS-approach with some empirical magnetic

field is sufficient to determine the low-energy behavior of the Anderson impurity model

with ferromagnetic leads in the Coulomb blockade regime. It has to be mentioned that

this statement holds only for our two-level QD, as we need the special Liouville space

algebra for this model to show that the (12) parts keep their initial form. A short

discussion for more than two levels will be done in section 12.5.





Chapter 12

Results

In this chapter, we will present the results for the stationary dot density matrix

and the stationary current for the Anderson impurity model with ferromagnetic leads

in the Coulomb blockade regime derived in chapter 9. As shown in the previous

chapter, it is sufficient to solve the PMS-flow-equations (10.10.2) and (10.10.3) in

the regime Λ > Λc and insert those results into the solution for L∆ and Σγ
∆ be-

low Λc (10.8.20) with L
(1)c
∆ containing an effective magnetic field given by L

(11)c
∆ and

L
(12)c
∆ = −iπ2G

(11)c
12

(
µ12 − L(0)

∆

)
G̃

(11)c
21 . Σγ

∆ can again be calculated analogously by re-

placing the first vertex with the current vertex. The stationary dot density matrix can

then be calculated from eq. (10.2.15) and the current is given by eq. (10.3.11).

To perform those steps, we show that the generic Anderson impurity model with fer-

romagnetic leads can be rotated to the anisotropic Kondo model with an additional

spin-density interaction for the calculation of the reference solution. With this solution

known from previous works [Sch09c] we can calculate the leading order correction to

the effective magnetic field. Furthermore, also the magnetization and the current are

presented for the generic model and we will discuss those for the special case of two

reservoirs and the system being in the scaling limit in detail.

12.1 Singular Value Decomposition

The reference solutions in the regime Λ > Λc were defined by setting all physical energy

scales like E, µ and h equal to zero. Therefore, the reservoirs are all equivalent with

respect to their chemical potentials and we could rotate the system in the reservoir

space so that the dot couples only to one effective reservoir. This is achieved by a

singular value decomposition (SVD) of the hopping matrix tασ,σ′ = (tα)σσ′ containing

all hopping matrices of the various reservoirs, which are defined in eq. (9.1.55). The

97
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SVD reads

t = V t̃W †, (12.1.1)

where V and W are unitary transformation matrices in reservoir and dot space, re-

spectively, and t̃ασ,σ′ = δα1δσσ′λσ is the diagonal coupling matrix between the dot and

the remaining reservoir. The hopping matrix elements can be chosen as λ↑ ≥ λ↓ > 0,

where we excluded the exotic case λ↓ = 0 meaning that one level completely decouples

so that the stationary values would crucially depend on the initial conditions of the

system. We can omit the matrix W by an appropriate rotation of the dot space leading

to the tunneling matrices tα = V αλ. Furthermore, for the RG-calculations the matrix

V can also be omitted, such that we have to consider a QD coupled to one effective

reservoir via the tunneling matrix elements λσ. This equilibrium system has also been

studied in Ref. [Kas07] and the 2× 2 exchange coupling matrix defined in eq. (9.2.52)

can be written as

~J =
2

D
λ~σ λ (12.1.2)

and be parametrized by the couplings Jz =
(
λ2
↑ + λ2

↓

)
/D and J⊥ = 2λ↑λ↓/D via

Jx/y = J⊥σ
x/y, Jz = c1 + Jzσ

z, (12.1.3)

with c2 = J2
z − J2

⊥ and Jz ≥ J⊥ > 0. This is the antiferromagnetic anisotropic Kondo

model, which was treated in Ref. [Sch09c], with an additional spin-density interaction

proportional to the anisotropy parameter c. The PMS-flow equation (10.10.2) can be

rewritten for this parametrization to

Λ
d

dΛ
Jz =− 2J2

⊥, (12.1.4)

Λ
d

dΛ
J⊥ =− 2JzJ⊥, (12.1.5)

which solution was found to be

Jz =c
1 +

(
TK
Λ

)4c

1−
(
TK
Λ

)4c , (12.1.6)

J⊥ =2c

(
TK
Λ

)2c

1−
(
TK
Λ

)4c , (12.1.7)
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with the two invariants given by

c2 =J2
z − J2

⊥, (12.1.8)

TK =Λ

(
Jz − c
Jz + c

) 1
4c

. (12.1.9)

Hence, the exchange couplings of the anisotropic Kondo model are increased during the

flow towards the well-known isotropic fixed point

Jz = J⊥ =
1

2 ln Λ
TK

, (12.1.10)

which is reached in the scaling limit defined by Jz
∣∣
Λ0
, J⊥

∣∣
Λ0
→ 0 and Λ0 → ∞ such

that Jz/J⊥
∣∣
Λ0

= const and TK = const. We can evaluate all expressions at each step

of the RG-flow and find at Λ = Λc the effective hybridization matrix

Γα = 2πλV α,† V α λ, (12.1.11)

with

λ2 =
Λc
2

(
Jz1 + cσz

)
. (12.1.12)

The matrices V α follow from the first two columns of the matrix V defined by the SVD

of t and do not flow under the RG-treatment. From the properties of the SVD follows

that V is unitary, and we get the property∑
α

V α,† V α = 1. (12.1.13)

In a next step, we decompose the hybridization matrix into the basis given by the unity

and the Pauli matrices

Γα =
1

2
Γx

α
(12.1.14)

with x
α

= xα1+ ~dα · ~σ,
∑

α xα = 1, |~dα| = xαpα and 0 ≤ xα, pα ≤ 1. Here, xα, pα

and ~dα are the parameters of the effective model with ferromagnetic leads. By using

the property (12.1.13) we obtain

Γ = 2πΛcJz, d = |~d| = c

Jz
, ~d =

∑
α

~dα = d~ez, (12.1.15)
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which shows that by omitting the matrix W of the SVD of t we have rotated the dot

space such that the vector ~d points in z-direction. Furthermore, the system tends to

minimize the vector ~d during the RG-flow. Additionally, the vanishing ~d in the scaling

limit explains why the Kondo effect appears generically in the equilibrium case, as all

reservoirs can be taken together such that the spin polarization vanishes, which is in

agreement with Refs. [Kas07, Mar03a, Mar03b, Sin07]. However, in the nonequilibrium

case the reservoirs cannot be taken together generically, so the fixed point model is not

the Kondo model with unpolarized leads but a spin-1/2 coupled to several leads with

individual spin vectors ~dα.

Comparing the equations (12.1.11) and (12.1.14) the matrix x
α

can be defined by

x
α

= xα1 + ~dα · ~σ =

(
1 +

c

Jz
σz
)1/2

V α,† V α

(
1 +

c

Jz
σz
)1/2

. (12.1.16)

So from the SVD of the exchange matrix t of the original model one determines the

rotation matrix V and the coupling parameters λσ and this equation provides now the

algorithm to calculate the parameters of the effective model with ferromagnetic leads.

It is important to notice that the individual parameters xα and ~dα for all reservoirs have

to be determined to discuss the nonequilibrium properties of the system even in the

scaling limit, which is in contrast to the equilibrium situation discussed in Ref. [Kas07].

The Kondo model with unpolarized leads is only realized in the scaling limit when the

initial spin vectors have all been equal ~d
(0)
α = ~d (0) (and pα = p 6= 1). Starting with

slight differences in the initial polarizations pα, one reaches a fixed point with pα � 1

such that the Kondo model with unpolarized leads might still be a good approximation,

but a small angle between the ~d
(0)
α would lead to a rotation of the spin orientations

with finite polarizations. So the Kondo model with unpolarized leads is a rather ar-

tificial situation, such that we can assume that the physical properties of the generic

Anderson impurity model with ferromagnetic leads even in the scaling limit show new

generic behavior.

Defining an effective tunneling matrix and the effective exchange coupling matrix de-

scribing the model in the Coulomb blockade regime (see eq. (9.2.52))

Γα =2πtα,† tα, (12.1.17)

tα =

√
Γ

4π

√
x
α

=

√
ΛcJz

2

√
x
α
, (12.1.18)

~J
αα′

=
2

Λc
tα ~σ tα

′,† = Jz
√
x
α
~σ
√
x
α′
, (12.1.19)
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the in the following occurring vertices are given by

G12 = ~J12 ·
(
L+ + L−

)
= −2 ~J12 · L2, (12.1.20)

G̃12 = ~J12 ·
(
L+ − L−

)
= ~J12 ·

(
L1 + L3

)
, (12.1.21)

Iγ12 =cγαα′G̃12, (12.1.22)

where we omit the superscript (11a) for the reference solution from now on.

12.2 Determination of the Effective Magnetic Field

First, we investigate the leading order correction to the bare magnetic field after the

Schrieffer-Wolff transformation (9.2.49). Therefore, we have to solve the leading order

differential equation of L
(11)
∆ (11.1.21)

Λ
∂

∂Λ
L

(11)
∆ =µ12G

(11a)
12 G

(11a)
21 −G(11a)

12 L
(0)
∆ G

(11a)
21 +O(J3). (12.2.1)

As an intermediate step, we find

TrσJ
αα′,i Jα

′α,j = 2J2
z

[
δij

(
xαxα′ − ~dα · ~dα′

)
+ iεijk

(
dkα − dkα′

)
+ diαd

j
α′ + djαd

i
α′

]
(12.2.2)

where we did not sum over α and α′. With a straightforward calculation by using the

equation (10.10.1) it is easy to prove that the term ∼ µ on the r.h.s. of eq. (12.2.1) can

be integrated and reformulated in Hilbert-space leading exactly to the term ∼ µ on the

r.h.s. of (9.2.49) with renormalized g. The term ∼ L(0)
∆ on the r.h.s. of eq. (12.2.1) can

also be integrated and leads to a total effective Hamiltonian H̃eff
1

H̃eff = h0(1− Jz)Sz − 2Jzd
idzhSi + 4c2didzh ln

D

Λc
Si +

∑
α

µαTrσg
αα. (12.2.3)

So, also the correction term to the bare magnetic field in eq. (9.2.49) is reproduced and

the additional corrections in eq. (12.2.3) vanish in the scaling limit. To sum up, the

RTRG calculation of the effective magnetic field reproduces the bare one with effective

vertices in leading order in the scaling limit, only away from this limit one gets an ex-

tra contribution. All in all, we have shown that the results for the Anderson impurity

model with ferromagnetic leads in the Coulomb blockade regime can be computed by a

1In the flow equations always the combination Z′L∆ occurs (see eq. (10.7.5)) such that the effective
magnetic field is also determined by Z′L∆ and not by L∆ itself. This effect is already included in H̃eff

and changes the sign of the correction to the bare magnetic field from h0(1 + Jz)Sz to h0(1 − Jz)Sz.
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perturbative expansion of the Liouvillian where the vertices and the bare magnetic field

have to be renormalized via the PMS-equations, when one considers the scaling limit.

Away from it, the perturbative treatment is still valid, but the effective magnetic field

has either to be calculated within the RTRG-approach or it has to be determined em-

pirically. From now on, the magnetic field h will always denote the total one including

the external and the exchange field.

12.3 Magnetization and Current for the Generic Case

In second order perturbation theory, the Liouvillian and the current kernel follow from

eq. (10.8.20) without a specification of the basis

L∆ =L
(0)
∆ +G12

[
−iπ

2

(
µ12 − L(0)

∆

)
G̃21 +H

(
µ12 − L(0)

∆

)
G21

]
, (12.3.1)

Σγ
∆ =Iγ12

[
−iπ

2

(
µ12 − L(0)

∆

)
G̃21 +H

(
µ12 − L(0)

∆

)
G21

]
, (12.3.2)

with the vertices given by eqs. (12.1.20 - 12.1.22) and

L
(0)
∆ =− 2~h · L2, H(x) = x ln

−ix
Λc

= −iπ
2
|x|+ x ln

∣∣∣∣ xΛc
∣∣∣∣ ≈ −iπ2 |x|, (12.3.3)

as the logarithmic real part of the function H(x) leads to a weak renormalization of the

level splitting and thus changes the results only to higher orders so that we can omit

it in the following. Inserting the definitions results in

L∆ =L
(0)
∆ + iπ

(
TrσJ

αα′,i Jα
′α,j
)
Li2

×
[(
µαα′ + 2~h · L2

)(
Lj1 + Lj3

)
− 2

∣∣∣µαα′ + 2~h · L2

∣∣∣Lj2] , (12.3.4)

Σγ
∆ =− iπ

2
cγαα′

(
TrσJ

αα′,i Jα
′α,j
) (
Li1 + Li3

)
×
[(
µαα′ + 2~h · L2

)(
Lj1 + Lj3

)
− 2

∣∣∣µαα′ + 2~h · L2

∣∣∣Lj2] . (12.3.5)

Here, one can insert the 4 × 4-matrices of the Liouville algebra defined in Appendix

B.2 and perform the multiplications by using the decomposition of the absolute value

of
∣∣∣µαα′ + 2~h · L2

∣∣∣ given in Appendix B.3. In matrix form we represent the Liouvillian

by choosing the order of the basis elements

|↑↑〉 , |↓↓〉 , |↑↓〉 , |↓↑〉 , (12.3.6)
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and obtain after a lengthy algebra

L∆ =

(
A B

C D

)
, (12.3.7)

A =− iγ1 (1− σx)− iγ2 (σz + iσy) , (12.3.8)

B =−
(
hx
2

+ γ3

)
(1− σx)− i

(
hy
2
− γ4

)
(σz + iσy) , (12.3.9)

C =−
(
hx
2
− γ3

)
(1− σx) + i

(
hy
2

+ γ4

)
(σz − iσy)− iγ5 (1 + σx)− γ6 (σz + iσy) ,

(12.3.10)

D =hzσz − iγ71 + iγ8σx + iγ9σy. (12.3.11)

The parameters read

γ1/(πJ
2
z ) =xαxα′ |µαα′ |+

1

4
xαxα′(1 + φzφz) (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |)

− φzxα′dzα(|µαα′ + h| − |µαα′ − h|)

− 1

2
~dα · ~dα′(|µαα′ + h|+ |µαα′ − h|)

+
1

4
(dxαd

x
α′ + dyαd

y
α′)(|µαα′ + h|+ |µαα′ − h|+ 2|µαα′ |)

+
1

4
[2~dα · ~φ(dxα′φ

x + dyα′φ
y) + (εxijεxkl + εyijεykl)d

i
αφ

jdkα′φ
l]

× (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |), (12.3.12)

γ2/(πJ
2
z ) =xαxα′hz − 2xα′d

z
αµαα′ − ~dα · ~h dzα′ , (12.3.13)

γ3/(πJ
2
z ) =− 1

4
xαxα′φyφz (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |)

+
1

2
(φyxα′d

z
α + φzxα′d

y
α)(|µαα′ + h| − |µαα′ − h|)

+
1

4
dyαd

z
α′(|µαα′ + h|+ |µαα′ − h|+ 2|µαα′ |)

+
1

4
[~dα · ~φ(dyα′φ

z + dzα′φ
y) + εyijεzkld

i
αφ

jdkα′φ
l)]

× (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |), (12.3.14)

(12.3.15)
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γ4/(πJ
2
z ) =− 1

4
xαxα′φxφz (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |)

+
1

2
(φxxα′d

z
α + φzxα′d

x
α)(|µαα′ + h| − |µαα′ − h|)

+
1

4
dxαd

z
α′(|µαα′ + h|+ |µαα′ − h|+ 2|µαα′ |)

+
1

4
[~dα · ~φ(dxα′φ

z + dzα′φ
x) + εxijεzkl)d

i
αφ

jdkα′φ
l]

× (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |), (12.3.16)

γ5/(πJ
2
z ) =xαxα′hx − 2xα′d

x
αµαα′ − ~dα · ~h dxα′ , (12.3.17)

γ6/(πJ
2
z ) =xαxα′hy − 2xα′d

y
αµαα′ − ~dα · ~h dyα′ , (12.3.18)

γ7/(πJ
2
z ) =2xαxα′ |µαα′ | −

1

4
xαxα′(φzφz − 3) (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |)

− (φxxα′d
x
α + φyxα′d

y
α)(|µαα′ + h| − |µαα′ − h|)

− ~dα · ~dα′(|µαα′ + h|+ |µαα′ − h|)

+
1

4
(dxαd

x
α′ + dyαd

y
α′ + 2dzαd

z
α′)(|µαα′ + h|+ |µαα′ − h|+ 2|µαα′ |)

+
1

4
[2~dα · ~φ(dxα′φ

x + dyα′φ
y + 2dzα′φ

z)

+ (εxijεxkl + εyijεykl + 2εzijεzkl)d
i
αφ

jdkα′φ
l]

× (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |), (12.3.19)

γ8/(πJ
2
z ) =− 1

4
xαxα′(φxφx − φyφy) (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |)

+ (φxxα′d
x
α − φyxα′dyα)(|µαα′ + h| − |µαα′ − h|)

+
1

4
(dxαd

x
α′ − dyαd

y
α′)(|µαα′ + h|+ |µαα′ − h|+ 2|µαα′ |)

+
1

4
[2~dα · ~φ(dxα′φ

x − dyα′φ
y) + (εxijεxkl − εyijεykl)diαφjdkα′φl]

× (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |), (12.3.20)

γ9/(πJ
2
z ) =− 1

2
xαxα′φxφy (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |)

+ (φxxα′d
y
α + φyxα′d

x
α)(|µαα′ + h| − |µαα′ − h|)

+
1

2
dxαd

y
α′(|µαα′ + h|+ |µαα′ − h|+ 2|µαα′ |)

+
1

2
[~dα · ~φ(dxα′φ

y + dyα′φ
x) + εxijεykld

i
αφ

jdkα′φ
l]

× (|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |), (12.3.21)

where all contain an implicit sum over α and α′ and we defined φi = hi/h, h = |~h|.
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From this, we can calculate a reduced Liouvillian to determine the diagonal part of the

dot density matrix via eq. (10.2.15)

Lred

(
ρ↑↑

ρ↓↓

)
=0, Lred = A−B 1

D
C = i

(
−Γ↓→↑ Γ↑→↓

Γ↓→↑ −Γ↑→↓

)
, (12.3.22)

with

Γ↑→↓ =(γ1 − γ2) + 2
(
h2
z + γ2

7 − γ2
8 − γ2

9

)−1

×
[(hx

2
+ γ3

)(
− γ6γ7 − hzγ5 + γ6γ8 − γ5γ9 +

hx
2
γ7 − γ3γ7

− hy
2
hz − hzγ4 −

hx
2
γ8 + γ3γ8 −

hy
2
γ9 − γ4γ9

)
+
(hy

2
− γ4

)(
γ5γ7 − hzγ6 + γ5γ8 + γ6γ9 +

hy
2
γ7 + γ4γ7

+
hx
2
hz − hzγ3 +

hy
2
γ8 + γ4γ8 −

hx
2
γ9 + γ3γ9

)]
, (12.3.23)

Γ↓→↑ =(γ1 + γ2) + 2
(
h2
z + γ2

7 − γ2
8 − γ2

9

)−1

×
[(hx

2
+ γ3

)(
γ6γ7 + hzγ5 − γ6γ8 + γ5γ9 +

hx
2
γ7 − γ3γ7

− hy
2
hz − hzγ4 −

hx
2
γ8 + γ3γ8 −

hy
2
γ9 − γ4γ9

)
+
(hy

2
− γ4

)(
− γ5γ7 + hzγ6 − γ5γ8 − γ6γ9 +

hy
2
γ7 + γ4γ7

+
hx
2
hz − hzγ3 +

hy
2
γ8 + γ4γ8 −

hx
2
γ9 + γ3γ9

)]
, (12.3.24)

Γ =Γ↑→↓ + Γ↓→↑

=2γ1 + 4
(
h2
z + γ2

7 − γ2
8 − γ2

9

)−1

×
[(hx

2
+ γ3

)(hx
2
γ7 − γ3γ7 −

hy
2
hz − hzγ4 −

hx
2
γ8 + γ3γ8 −

hy
2
γ9 − γ4γ9

)
+
(hy

2
− γ4

)(hy
2
γ7 + γ4γ7 +

hx
2
hz − hzγ3 +

hy
2
γ8 + γ4γ8 −

hx
2
γ9 + γ3γ9

)]
,

(12.3.25)

Γ∆ =Γ↑→↓ − Γ↓→↑

=− 2γ2 + 4
(
h2
z + γ2

7 − γ2
8 − γ2

9

)−1

×
[(hx

2
+ γ3

)(
− γ6γ7 − hzγ5 + γ6γ8 − γ5γ9

)
+
(hy

2
− γ4

)(
γ5γ7 − hzγ6 + γ5γ8 + γ6γ9

)]
, (12.3.26)
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we get

ρ↑↑ =
Γ↑→↓

Γ
, (12.3.27)

ρ↓↓ =
Γ↓→↑

Γ
. (12.3.28)

The non-diagonal parts of the dot density matrix can be calculated by(
ρ↑↓

ρ↓↑

)
= − 1

D
C

(
ρ↑↑

ρ↓↓

)
, (12.3.29)

and read

ρ↑↓ =
(
h2
z + γ2

7 − γ2
8 − γ2

9

)−1

×
[
− γ5γ7 + hzγ6 − γ5γ8 − γ6γ9 + iγ6γ7 + ihzγ5 − iγ6γ8 + iγ5γ9

+
Γ∆

Γ

(
i
hx
2
γ7 − iγ3γ7 − i

hy
2
hz − ihzγ4 − i

hx
2
γ8 + iγ3γ8 − i

hy
2
γ9 − iγ4γ9

+
1

2
hyγ7 + γ4γ7 +

hx
2
hz − hzγ3 +

hy
2
γ8 + γ4γ8 −

hx
2
γ9 + γ3γ9

)]
.

(12.3.30)

From these results for the stationary density matrix, we can determine the magnetiza-

tion

Mx = Re(ρ↑↓), My = −Im(ρ↑↓), Mz =
1

2
(ρ↑↑ − ρ↓↓), (12.3.31)

and derive

Mz =

{
− γ2

(
h2
z + γ2

7 − γ2
8 − γ2

9

)
+ 2
[(hx

2
+ γ3

)
(−γ6γ7 − hzγ5 + γ6γ8 − γ5γ9)

+
(hy

2
− γ4

)
(γ5γ7 − hzγ6 + γ5γ8 + γ6γ9)

]}
×
{

2γ1

(
h2
z + γ2

7 − γ2
8 − γ2

9

)
+ 4
[(hx

2
+ γ3

)(hx
2
γ7 − γ3γ7 −

hy
2
hz − hzγ4 −

hx
2
γ8 + γ3γ8 −

hy
2
γ9 − γ4γ9

)
+
(hy

2
− γ4

)(hy
2
γ7 + γ4γ7 +

hx
2
hz − hzγ3 +

hy
2
γ8 + γ4γ8 −

hx
2
γ9 + γ3γ9

)]}−1

,

(12.3.32)
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Mx =
(
h2
z + γ2

7 − γ2
8 − γ2

9

)−1 ×
[
− γ5γ7 + hzγ6 − γ5γ8 − γ6γ9

+ 2Mz

(hy
2
γ7 + γ4γ7 +

hx
2
hz − hzγ3 +

hy
2
γ8 + γ4γ8 −

hx
2
γ9 + γ3γ9

)]
,

(12.3.33)

My =
(
h2
z + γ2

7 − γ2
8 − γ2

9

)−1 ×
[
− γ6γ7 − hzγ5 + γ6γ8 − γ5γ9

+ 2Mz

(
− hx

2
γ7 + γ3γ7 +

hy
2
hz + hzγ4 +

hx
2
γ8 − γ3γ8 +

hy
2
γ9 + γ4γ9

)]
.

(12.3.34)

The current follows from eq. (10.3.11) and reads

Iγ =− πcγαα′J
2
z

{
3xαxα′µαα′ + 2xαxα′(|µαα′ + h| − |µαα′ − h|)~φ · ~M

− 4xα′ ~dα · ~h− 8|µαα′ |xα′ ~dα · ~M

− 2(|µαα′ + h|+ |µαα′ − h| − 2|µαα′ |)xα′ ~dα ·
(
~M + ~φ(~φ · ~M)

)]
− µαα′ ~dα · ~dα′ − 2(|µαα′ + h| − |µαα′ − h|)~dα · ~φ ~dα′ · ~M

}
, (12.3.35)

where the sums over α and α′ still have to be performed.

Golden-Rule Regime The golden-rule regime is defined by h � γ ∼ J2
z,⊥Λc. In

this regime, the result for the magnetization simplifies significantly and reads

~M = M~φ

= ~φ

{
− h

[
1−

(
~d · ~φ

)2
]

+ 2~µ · ~φ
}

×
{(

xαxα′ − ~dα · ~φ ~dα′ · ~φ
)

(|µαα′ + h|+ |µαα′ − h|)

+ 2xα~dα′ · ~φ(|µαα′ + h| − |µαα′ − h|)
}−1

, (12.3.36)

where we defined the vector ~µ =
∑

α(µα−µ̄)~dα with µ̄ =
∑

α xαµα. This magnetization

is zero for a magnetic field pointing to the surface of an ellipsoid, which can be fully

characterized by the vectors ~d and ~µ and the stretching factor of the ellipsoid in the

direction of ~d given by

s =
1√

1− d2
=

1√
1− c2/J2

z

=
Jz
J⊥
≥ 1. (12.3.37)
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Figure 12.1: (Left) Dot magnetization M as function of hz and h⊥ coupled to two
reservoirs for model 1 of table (12.1). The dashed white line indicates the ellipsoid which
describes the minimum of M . The region at h ≈ V has to be taken with care in both
plots as logarithmic enhancements have been neglected in our calculation. (Right) Dot
magnetization M as function of hx and hy with the same parameters as before and hz =
s2µz. The rotational invariance is only given because of the special choice of the parameters.

This ellipsoid is rotationally invariant around ~d and reads

(h⊥ − µ⊥)2 +

(
h‖ − s2µ‖

s

)2

= µ2
⊥ + s2µ2

‖, (12.3.38)

where we decomposed the vectors ~h and ~µ into their components parallel and perpen-

dicular to ~d. This is the main result of this part of the thesis and provides a smoking

gun for experiments to determine the distance to the scaling limit via the stretching

factor s, which becomes s = 1 in this limit turning the ellipsoid into a sphere. We note

further that outside the ellipsoid the magnetization is antiparallel to ~h, whereas it is

parallel inside. Additionally, the rotational invariance around the vector ~d is only valid

for the root of the magnetization and not the full magnetization itself, as therefore all

the individual scalar products ~dα · ~h appear.

To visualize this ellipsoid we want to maximize the stretching factor and the ellipsoid

itself. As the stretching factor rises with increasing d = |
∑

α
~dα| and the ellipsoid

becomes larger for larger |~µ| = |
∑

α(µα − µ̄)~dα|, a compromise has to be found. Just

maximizing d would lead to a nearly vanishing |~µ| and vice versa. In Fig. 12.1 we present

the magnetization for two reservoirs coupled to the QD with the parameters given in

table 12.1 (Model 1). The dashed white line indicates where M is minimal. Of course,

for this specific choice the rotational symmetry in the xy-plane is valid not only for

the ellipsoid describing the minimal magnetization but for the complete magnetization

itself. Another example is shown in Fig. 12.2, where three reservoirs are coupled to
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Model 1 Model 2

i 1 2 1 2 3

xi 0.50 0.50 0.25 0.40 0.35

pi 0.95 0.25 0.80 0.70 0.90

Θi 0 π π
6

π
3 asin0.14

√
3−0.1

0.315

φi 0 0 0 π 0

µi 0.50 −0.50 0.25 0.35 −0.60

Jz 0.01 0.01

Table 12.1: Effective model parameters for model 1 and 2 discussed in this section. Θi

and φi are the azimuth and the polar angle of the normalized spin polarization axis ~̂di.

Figure 12.2: Dot magnetization M as function of hx, hy and hz, respectively. The third,
not varied part of the magnetic field is chosen as hi = µi. We defined V = max(µi) −
min(µj). The dot is coupled to three reservoirs [Model 2 of table (12.1)]. The dashed white
line indicates the ellipsoid which describes the minimum of M . The region at h ≈ V has
to be taken with care in all plots as logarithmic enhancements have been neglected in our
calculation. Here, the broken rotational invariance for the magnetization becomes obvious.

the QD (Model 2 of table 12.1). Here, also the broken rotational invariance for the

magnetization is seen (except for the ellipsoid).
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Figure 12.3: (Left) Current I1 from the first lead to the QD in terms of πJ2
zV as function

of hz and h⊥. The reservoirs are coupled with the coupling parameters given in table (12.1)
(Model 1). The dashed line represents the minimum of the magnetization. (Lower right)
Current I1 in terms of πJ2

zV as function of hx and hy.

All the previously mentioned features are an important difference to the Kondo model

with unpolarized leads, for which ~d = ~µ = 0 such that the magnetization only vanishes

at ~h = 0.

Finally, the current in the golden-rule regime reads

Iγ =− πcγαα′J
2
z

{
µαα′(3xαxα′ − ~dα · ~dα′)

+ 2M(|µαα′ + h| − |µαα′ − h|)(xαxα′ − ~dα · ~φ ~dα′ · ~φ)

+ 4xα~dα′ · ~φ [h+M(|µαα′ + h|+ |µαα′ − h|)]
}
. (12.3.39)

The current of model 1 is shown in Fig. 12.3 but does not have such obvious features

as the magnetization.

In the next section we will specify the previous results for the case of two reservoirs in

the scaling limit and will also investigate the quantum interference regime h . γ.

12.4 Solution for Two Reservoirs in the Scaling Limit

In the case of two reservoirs, labeled by the indices α = L/R and in the scaling limit

(Jz = J , c/Jz = 0), eq. (12.1.15) leads to

~dL = −~dR, xLpL = xRpR, (12.4.1)
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where we choose ~dL to point in the z-direction. For this special case not only the

surface of vanishing magnetization but the complete magnetization itself is rotational

invariant around the spin polarization axis given by ~ez. The bias voltage is given by

V = µL − µR and we choose the magnetic field to be in the xz-plane breaking the

rotational invariance. The rates (12.3.12 - 12.3.21) simplify to

γ1

πJ2
=

1

2
h(1 + 2xLxR − 2xLxRpLpR)(1 + φz)

2 + V xLxR(1 + pLpR)(1− φ2
z)

+ (|V + h| − |V − h|)xLpLφz +
1

2
(|V + h|+ |V − h|)xLxR(1 + pLpR)(1 + φ2

z),

(12.4.2)
γ2

πJ2
=hφz − 2V xLpL, (12.4.3)

γ3

πJ2
=0, (12.4.4)

γ4

πJ2
=− 1

2
h(1 + 2xLxR + 2xLxRpLpR)φxφz +

1

2
(|V + h| − |V − h|)xLpLφx

− 1

2
(|V + h|+ |V − h| − 2V )xLxR(1 + pLpR)φxφz, (12.4.5)

γ5

πJ2
=hφx, (12.4.6)

γ6

πJ2
=0, (12.4.7)

γ7

πJ2
=− 1

2
h(1 + 2xLxR)(φ2

z − 3)− 1

2
hxLxRpLpR(1− 3φz)

+ V xLxR[7 + 3pLpR(1 + φ2
z)]

− 1

2
(|V + h|+ |V − h|)xLxR[3− φ2

z − pLpR(1− 3φ2
z)], (12.4.8)

γ8

πJ2
=− 1

2
h(1 + 2xLxR − 2xLxRpLpR)φ2

x

− 1

2
(|V + h|+ |V − h| − 2V )xLxR(1− pLpR)φ2

x, (12.4.9)

γ9

πJ2
=0. (12.4.10)

The magnetizations read

Mx =
(
h2
z + γ2

7 − γ2
8

)−1
[
Mzhxhz + (2Mzγ4 − γ5)(γ7 + γ8)

]
, (12.4.11)

My =
(
h2
z + γ2

7 − γ2
8

)−1
[
Mzhx(γ8 − γ7) + 2Mzhzγ4 − γ5hz

]
, (12.4.12)

Mz =
[
− γ2

(
h2
z + γ2

7 − γ2
8

)
− hxhzγ5 − γ4γ5(γ7 + γ8)

]
×
[
2γ1

(
h2
z + γ2

7 − γ2
8

)
+ h2

x(γ7 − γ8)− 4hxhzγ4 − γ2
4(γ7 + γ8)

]−1
, (12.4.13)
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and the current

Iγh=0/κ =
1

4
(3 + pLpR)− (pL + pR)M0, (12.4.14)

IγV >h/κ =
1

4
(3 + pLpR)− (pL + pR)Mz +

hx
V
Mx +

hz
V

(1 + pLpR)Mz −
1

2

hz
V

(pL + pR)

=Iγh=0/κ+
~h⊥
V

~M⊥ + (1 + pLpR)(Mz −M0)

(
hz
V
− 2M0

)
, (12.4.15)

IγV <h/κ =
1

4
(3 + pLpR)− (pL + pR)Mz + φxMx + φz(1 + pLpR)Mz −

1

2

hz
V

(pL + pR)

− 1

2
(h− V )[φxφzMx +Mz(1 + φ2

z)](pL + pR)

=IγV >h/κ−
1

2
(h− V )[φz~φ⊥ · ~M⊥ +Mz(1 + φ2

z)](pL + pR), (12.4.16)

where we defined the Korringa rate κ = 4xLxRπJ
2V and the magnetization

M0 = Mh=0 =
1

2

pL + pR
1 + pLpR

. (12.4.17)

Golden-Rule Regime In the regime hz � κ or hx ∼ O(V ) or hx � κ we obtain

the golden-rule result

~M ≈ ~φ
xLpLV φz − 1

2h

2xLxRV (1 + pLpRφ2
z) + h− 2xLxRh(1 + pLφz)(1 + pRφz)

, (12.4.18)

where we can read off that the minimum of the magnetization is now given by a sphere

centered around hz = xLpLV , h⊥ = 0 with a radius of xLpLV . It is easy to prove

that this sphere will always lie inside the region h < V as 2xLpL = 2xLxR(pL + pR) ≤
1
2(pL + pR) ≤ 1. For h ≥ V we get ~M = −1

2
~φ which follows directly from energy

conservation as only the low-lying energy-level of the QD can be occupied. The global

direction of the magnetization can also be understood easily in this case. The majority

of the spins of the left lead are ↑ as ~dL is chosen to point in the z-direction. Applying

a small transverse magnetic field h⊥ and a not to large longitudinal one hz, the upper

dot-level consists mainly of the spin-↑-state such that it will be occupied due to the

coupling to the reservoir with µL = V
2 . This higher energy-level of the dot has nearly

no transition amplitude to the right reservoir with µR = −V
2 as this contains mostly

↓-spins. Hence, the magnetization is parallel to the external field. Increasing the

transverse magnetic field yields an increased transition rate between the two dot levels

until they are equally occupied, defining the minimum of the magnetization. Further

increasing this field up to h⊥ ∼ O(V ) reduces the available phase space for transitions

from the lower to the upper dot level such that the population of the lower level rises
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and the magnetization becomes antiparallel to the external field. For the case hz < 0

this discussion becomes more trivial as the lower energy level of the dot has always a

higher occupation and the magnetization does not change its direction with respect to

the magnetic field.

From eq. (12.4.18) we can determine the magnetization at the special point hx = 0

leading to

Mx =My = 0, (12.4.19)

Mz =
xLpLV − 1

2h sign(hz)

h+ 2xLxR(1 + pLpR)(V − h)− 2xLpLh sign(hz)
, (12.4.20)

giving rise to a characteristic jump of the first derivative at hz = 0

∂M
∂hz
|hz=0+,hx=0

∂M
∂hz
|hz=0−,hx=0

=
(1 + pL)(1 + pR)

(1− pL)(1− pR)
· 1− 2xLpL

1 + 2xLpL
. (12.4.21)

This jump can be used in experiments to determine the strength of the external mag-

netic field such that it compensates the exchange field generated by the ferromagnetic

leads so that the total magnetic field vanishes h = 0. Furthermore, also the z-axis can

be determined in this way.

The current in this regime can be evaluated by inserting eq. (12.4.18) into eqs. (12.4.15)

and (12.4.16) but does not simplify significantly. The maximum of the current for fixed

hz as function of h⊥ is roughly at the same order as the minimum of the magnetization

due to enhanced inelastic processes, which increase the current. However, this maxi-

mum is rather broad so it cannot be used to determine the model parameters. Instead,

we can evaluate eq. (12.4.16) at h = V leading to

ILh=V /κ =
1

4

[
1− pLpR

(
2
h2
z

V 2
− 1

)]
, (12.4.22)

which yields

ILhz=0,h⊥=V /κ =
1

4
(1 + pLpR), (12.4.23)

ILhz=V,h⊥=0/κ =
1

4
(1− pLpR). (12.4.24)

Using eq. (12.4.14), we can calculate pL, pR and J and with xL+xR = 1, xLpL = xRpR

follow xL and xR.

The results for the magnetization and the current in the golden-rule regime are shown

in the main part of Fig. 12.4 for xL = xR = 0.5, pL = pR = 0.75, J = 0.01/
√
π.
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Figure 12.4: (Upper) Dot magnetization M as function of hz and h⊥ coupled to two
reservoirs in the scaling limit with xL = xR = 0.5, pL = pR = 0.75, µL = −µR = 0.5
and J = 0.01/

√
π. The dashed white line indicates the circle with radius xLpL which

describes the minimum of M . Inset: The same plot on a logarithmic scale for hz > 0. The
region at h ≈ V has to be taken with care in all plots as logarithmic enhancements have
been neglected in our calculation. (Lower) The current IL/κ in units of the Korringa rate
κ = 10−4V . The black line corresponds to the white one of the left plot.
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Quantum-Interference Regime The golden-rule theory from the previous para-

graph breaks down for small magnetic fields hz . κ and J2V . hx . JV as quantum

interference processes become important. Here, a finite magnetization in y-direction

arises. For hz ∼ κ, hx � V we obtain

Mx ≈
1

2

hz
hx
x2
pL + pR − h2

x
2xLxRhzV

1 + pLpR + x2
, (12.4.25)

My ≈
1

2

κ

hx
x2 pL + pR

1 + pLpR + x2
, (12.4.26)

Mz ≈
1

2

pL + pR − hzx2

2xLxRV

1 + pLpR + x2
, (12.4.27)

with x = hx/
√
h2
z + κ2. These results hold also for hz � κ and hx � V except for

hz � κ and hx . κ where Mx changes to

Mx ≈
1

4xLxR

hx
V

(
pLpR

1 + pLpR + x2
− 1

)
. (12.4.28)

However, as hx . κ ∼ J2, also Mx . J2 such that it can be neglected. All in all, we

get for hz . κ . hx � V the total magnetization

M ≈
√
π2J4x2 +M2

z (1 + x2), (12.4.29)

Mz ≈
1

2

pL + pR − hzx2

2xLxRV

1 + pLpR + x2
=

1

2

pL + pR − 2πJ2x2hz/κ

1 + pLpR + x2
. (12.4.30)

It is important to note that due to the quantum-interference processes the position of

the minimum of the magnetization saturates at h⊥ ∼ O(JV ) and by a further reduction

of h⊥ the magnetization increases again (see inset of Fig. 12.4).

To calculate the current in this regime, we can neglect all terms proportional to h in

eq. (12.4.15) yielding

(IγV >h − I
γ
h=0)/κ ≈ −(pL + pR)(Mz −M0). (12.4.31)

Inserting the magnetization (12.4.30) the term proportional to hzx
2/V in the numerator

can be neglected as it only becomes important for x2 ∼ V/hz & 1/J2 where the

magnetization itself becomes of O(J2) such that it will be neglected anyhow. Therefore,

for hz . κ and J2V . hx . JV we get the result

(IγV >h − I
γ
h=0)/κ ≈ (pL + pR)M0x

2

1 + pLpR + x2
. (12.4.32)
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12.5 Problems for more than 2 Dot-Levels

In section 10.7 we derived the initial conditions for the Liouvillian and the current

kernel of a generic QD. Their form is independent of the number of dot levels and

contains a nonuniversal term proportional to the high-energy cutoff function D. For

a two-level QD it is easy to prove that this term vanishes exactly. The form of the

initial conditions of the vertices [eqs. (11.1.11) and (11.1.12)] is conserved during the

RG-flow. The nonuniversal term in the initial condition of L is proportional to G12G̃2̄1̄

which can be evaluated

G12G̃2̄1̄ = 2G12G̃21 =− 4J i12L
2
i J

j
21(L1

j + L3
j )

=2iεijkJ
i
12J

j
21L

3
k

=2iεijkJ
j
12J

i
21L

3
k

=0, (12.5.1)

where we exchanged 1 ↔ 2 in the thirdline. Therefore, for a two-level QD the initial

conditions are independent of the precise choice of the cutoff function. For more than

two levels, this statement does not hold any longer. Generically, we find [Sch11a](
G12G̃2̄1̄

)
s1s2,s3s4

=2
[
(g12)s1s′(g21)s′s3δs2s4 + (g12)s1s3(g21)s4s2

− (g12)s4s2(g21)s1s3 − (g12)s′s2(g21)s4s′δs1s3

]
, (12.5.2)

where si is an index in the Hilbert dot-space and with eq. (9.2.47)

g12 = − 1

D

∑
ll′

t1l t
2∗
l′ [cl, c

†
l′ ]. (12.5.3)

This yields

(
G12G̃2̄1̄

)
s1s2,s3s4

=8

[
δs2s4

(
t1s3t

1∗
s1

∑
l

|t2l |2 − t1s3t
2∗
s1

∑
l

t2l t
1∗
l

)

− δs1s3

(
t1s2t

1∗
s4

∑
l

|t2l |2 − t1s2t
2∗
s4

∑
l

t2l t
1∗
l

)]
. (12.5.4)
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Defining the matrix

γij =
∑

1

t1i t
1∗
j = γ∗ji, (12.5.5)

γi =γii = γ∗i (12.5.6)

the conditions that the initial conditions of the Liouvillian do not depend on the cutoff

function D, meaning that the term G12G̃2̄1̄ vanishes, can be written as

γij
∑
k

γk =
∑
k

γikγkj for i 6= j, (12.5.7)

(γi − γj)
∑
k

γk =
∑
k

γikγki −
∑
k

γjkγkj . (12.5.8)

In matrix notation, these read

γijTrγ =(γ2)ij for i 6= j, (12.5.9)

(γi − γj)Trγ =(γ2)ii − (γ2)jj . (12.5.10)

Introducing the matrix Mij = γij/Trγ, this matrix has to fulfill

TrM =1, (12.5.11)

M =M †, (12.5.12)

Mii >0, (12.5.13)

Mij =(M2)ij for i 6= j, (12.5.14)

Mii − (M2)ii =Mjj − (M2)jj ≡ C independent of i, j. (12.5.15)

A self-adjoint matrix can always be diagonalized. Choosing one eigenvector x with

eigenvalue λ we find

Mixi +
∑
j 6=i

Mijxj =λxi, (12.5.16)

(M2)iixi +
∑
j 6=i

(M2)ijxj =λ2xj . (12.5.17)

Taking the difference of these equations and inserting the conditions (12.5.14) and

(12.5.15) leads to

C = λ− λ2 ⇒ λ = λ± =
1

2
(1±

√
1− 4C), (12.5.18)
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where we choose the root
√

1− 4C > 0. So, the matrix M can only have the two

eigenvalues λ±, which occur n± times with n+ + n− = n, where n is the number of

dot-levels. From eq. (12.5.11) we get the condition

n+λ+ + n−λ− = 1 ⇒ λ+ =
1− n−
n+ − n−

=
1

2
(1 +

√
1− 4C), (12.5.19)

such that

C =
(n+ − 1)(1− n−)

(n+ − n−)2
. (12.5.20)

As we have chosen
√

1− 4C > 0, only the solutions with n− > n+ are allowed. Other-

wise, one would get an inconsistency as for n+ ≥ n− we find λ+ ≤ 1
n ≤

1
2 .

For n+ = 0 we get λ− = 1
n and Mij = 1

nδij so that the vectors tl in reservoir space

must be orthogonal to each other.

For n+ = 1 we find C = 0 such that λ+ = 1 and λ− = 0. Therefore, we get the solution

Mij = (x+)i(x+)∗j ,
∑
i

|(x+)i|2 = 1, (12.5.21)

where x+ is the eigenvector corresponding to λ+. To fulfill this condition, the tunneling

matrix has to decompose into a part for the reservoir and one for the dot-level t1i = a1bi.

If the QD consists of three or four levels, no additional solutions are possible. To sum up,

only for very special points in parameter-space the initial conditions of the Liouvillian

and the current kernel do not depend on the high-energy cutoff function. Generically,

for three or more levels the precise form of the bandwidth in the reservoirs has to be

taken into account and the results are no longer universal.

Additionally, also the proofs that the (12) parts of the Liouvillian and the current

kernel are equivalent to their initial conditions with renormalized couplings (11.2.17,

11.2.18) are based on the superoperator-algebra for the two-level QD and therefore this

statement could become invalid for more than two levels.



Chapter 13

Conclusion and Outlook

13.1 Conclusion

In this part of the thesis, we discussed a generic QD coupled to an arbitrary number

of noninteracting reservoirs. At first, we were able to show that for the calculation of

physical observables local to the dot, namely the dot density matrix and the current,

only the hybridization matrix Γ
α

and not the reservoir density of states and the hopping

matrix themselves are important. Thus, we could shift parts of the hopping matrix in

the reservoir density of states or vice versa. Therefore, a generic two-level QD can be

mapped to the Anderson impurity model with ferromagnetic leads which are character-

ized by their spin polarizations ~dα. Being interested in the Coulomb blockade regime,

we performed a standard Schrieffer-Wolff transformation such that the multiple- and

the unoccupied dot states are projected out resulting in an effective dot Hamiltonian

and an effective dot-reservoir interaction.

Afterwards, we presented the technical details to tackle this model with the RTRG.

Starting with the von-Neumann equation, we rephrased the problem in Liouville space

and showed that the stationary dot density matrix is given as the eigenvector to the

eigenvalue zero of an effective Liouvillian. A perturbative expansion of this Liouvillian

in the dot-reservoir interaction leads to logarithmic divergent frequency integrals, such

that a RG-treatment becomes necessary. Therefore, we introduced the E-Flow scheme

of the RTRG. It relies on the basic idea that the Laplace-variable E occurs always

in combination with the frequencies, such that a second derivative of the Liouvillian

with respect to E can solve the divergency problems of the frequency integrations. We

derived the corresponding flow-equations for the Liouvillian and the effective vertex

and performed the frequency integrals within those. For those quantities, we con-

sidered the weak-coupling regime and solved the flow-equations in the high- and the

low-energy regime separately. To compute the stationary current the current kernel is

119
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treated analogously.

In a next step, we compared those solutions with a PMS-approach and find that for

a two-level QD the results coincide up to an effective magnetic field, which is only

generated in the RTRG-calculations.

Furthermore, we were able to show analytically that for this two-level QD the flow-

equations in the high-energy regime agreed with those of the anisotropic Kondo model,

whose solutions are known. We clarified that the Kondo model with unpolarized leads

is only realized if all spin polarizations of the different reservoirs are equal ~dα = 1/Zres
~d,

such that this is generically not the correct fixed point. Exploiting the solution of the

anisotropic Kondo model, we could calculate the effective magnetic field generated by

the RTRG, the stationary magnetization of the dot and the current. The minimum of

the magnetization as a function of the magnetic field in various directions is given by

an ellipsoid, which is stretched in the direction of ~d =
∑

α
~dα, and the stretching factor

relates with the distance of the scaling limit of the model.

Afterwards, we described this results for the special case of two reservoirs coupled to the

QD in the scaling limit. The equations for the magnetization and the current simplifies

significantly, such that we could present detailed results not only in the golden-rule

regime h� J2
zΛc but also in the quantum-interference regime h . J2

zΛc. Additionally,

we discussed the current for special values of the magnetic field from which one can

determine the effective model parameters ~dα in experiments.

Last but not least, we also considered the case of more than two dot-levels, where

problems of nonuniversal terms generated by the Schrieffer-Wolff transformation arises.

Furthermore, it is not clear whether the RTRG- and PMS-results for the Liouvillian

and the current still coincide.

13.2 Outlook

Here, we will present some open questions arising from this thesis, which could pose

avenues of future research.

As mentioned before, the Schrieffer-Wolff transformation of a generic Z-level QD leads

to nonuniversal terms proportional to the high-energy cutoff function D, which domi-

nates the physics. Therefore, the proceeding presented in this thesis is no longer useful.

Probably, for more than two dot-levels, one needs to incorporate the charge fluctuations

of the original model and cannot integrate them out in an universal way. C. Lindner

follows this line currently.

In this thesis, we considered the weak-coupling regime, meaning that at least one phys-

ical scale like the magnetic field or the voltage is much larger than the Kondo temper-
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ature, such that the renormalized dot-reservoir couplings stay small until the RG-flow

is cut by this scale. It would be of strong interest to extend this to the strong coupling

regime and calculate the universal properties of the model. This could perhaps been

done in a more refined version of the E-Flow scheme of the RTRG, which was success-

fully applied to the isotropic Kondo model [Ple12, Rei14]. Also the Keldysh effective

action theory seems promising [Smi13a]. Other possible candidates are the density-

matrix renormalization group [Sch11b] and QMC [Gul11, Coh13] which could analyze

the strong-coupling regime numerically exact and not only perturbatively, but both

have their individual problems which have to be solved first. Furthermore, the FRG

could tackle this regime from a contrary ansatz, as it is exact in Γ, but perturbatively

in the Coulomb interaction U on the dot.

Finally, we want to emphasize an additional aspect, namely the time-evolution. Here,

we focused on the stationary magnetization and current through the dot, but as quan-

tum quenches become more and more of physical interest theoretical and in experiments

[Han07, Kin06], also the time evolution into this stationary state is important. The

previously mentioned methods could also be useful for this problem. Calculating the

transient time-regime within the RTRG should be a straightforward extension of this

work. While we only solved the flow-equations for the Laplace-variable E = 0, one

needs to solve them in the complete Laplace-space to determine the time-evolution,

which has at least been done for the Kondo model [Rei14]. The FRG has been ex-

tended to the transient-time regime by Kennes et al. [Ken12] and can again be used as

a complementary ansatz.
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Appendix A

Flow Equations for the Vertices of

the Spin-FRG

The final flow equations for Σ and Γ, which are solved numerically, are derived by

inserting the parametrizations eq. (5.5.6) and eq. (5.5.7) into the generic flow equations

eq. (5.5.2) and eq. (5.5.3). Defining the function

PΛ(ω1, ω2) =
δ(|ω1| − Λ)Θ(|ω2| − Λ)

(ω1 + iΣΛ(ω1))(ω2 + iΣΛ(ω2))

+ i

(
d

dΛ
ΣΛ(ω1)

)
Θ(|ω1| − Λ)Θ(|ω2| − Λ)

(ω1 + iΣΛ(ω1))2(ω2 + iΣΛ(ω2))

and using the symmetry relations with respect to the the frequencies s, t and u, the

flow equations read

i
d

dΛ
ΣΛ(ω) =

{
− 2

∑
j

[
ΓΛ
d|~i−~j|1

(ω + Λ, 0, ω − Λ)− ΓΛ
d|~i−~j|1

(ω − Λ, 0, ω + Λ)
]

+ ΓΛ
z0(ω + Λ, ω − Λ, 0)− ΓΛ

z0(ω − Λ, ω + Λ, 0)

+ 2
[
ΓΛ
xy0(ω + Λ, ω − Λ, 0)− ΓΛ

xy0(ω − Λ, ω + Λ, 0)
]

+ ΓΛ
d0(ω + Λ, ω − Λ, 0)− ΓΛ

d0(ω − Λ, ω + Λ, 0)

}
1

2π(Λ + iΣ(Λ))
,

I



II APPENDIX A. FLOW EQUATIONS FOR THE VERTICES OF THE SPIN-FRG

d

dΛ
ΓΛ
z|~i−~j|1

(s, t, u) =
1

2π

∫ ∞
−∞

dω′

{
[
− 2ΓΛ

xy|~i−~j|1
(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ

xy|~i−~j|1
(s, ω2 + ω′, ω1 + ω′)

+ ΓΛ
z|~i−~j|1

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
d|~i−~j|1

(s, ω2 + ω′, ω1 + ω′)

+ ΓΛ
d|~i−~j|1

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
z|~i−~j|1

(s, ω2 + ω′, ω1 + ω′)
]

×
[
PΛ(ω′, ω′ + s) + PΛ(ω′ + s, ω′)

]
+
[
2
∑
~k

ΓΛ
z|~i−~k|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
z|~k−~j|1

(ω2 + ω′, t,−ω2′ + ω′)

− ΓΛ
z|~i−~j|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
z0(ω2 + ω′,−ω2′ + ω′, t)

+ 2ΓΛ
z|~i−~j|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
xy0(ω2 + ω′,−ω2′ + ω′, t)

− ΓΛ
z|~i−~j|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
d0(ω2 + ω′,−ω2′ + ω′, t)

− ΓΛ
z0(ω1′ + ω′, ω1 − ω′, t)ΓΛ

z|~i−~j|1
(ω2 + ω′, t,−ω2′ + ω′)

+ 2ΓΛ
xy0(ω1′ + ω′, ω1 − ω′, t)ΓΛ

z|~i−~j|1
(ω2 + ω′, t,−ω2′ + ω′)

− ΓΛ
d0(ω1′ + ω′, ω1 − ω′, t)ΓΛ

z|~i−~j|1
(ω2 + ω′, t,−ω2′ + ω′)

]
×
[
PΛ(ω′, ω′ + t) + PΛ(ω′ + t, ω′)

]
−
[
2ΓΛ

xy|~i−~j|1
(ω2′ − ω′,−ω1 − ω′, u)ΓΛ

xy|~i−~j|1
(ω2 − ω′, ω1′ + ω′, u)

+ ΓΛ
z|~i−~j|1

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
d|~i−~j|1

(ω2 − ω′, ω1′ + ω′, u)

+ ΓΛ
d|~i−~j|1

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
z|~i−~j|1

(ω2 − ω′, ω1′ + ω′, u)
]

×
[
PΛ(ω′, ω′ + u) + PΛ(ω′ + u, ω′)

]}
,



III

d

dΛ
ΓΛ
xy|~i−~j|1

(s, t, u) =
1

2π

∫ ∞
−∞

dω′

{
[
− ΓΛ

z|~i−~j|1
(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ

xy|~i−~j|1
(s, ω2 + ω′, ω1 + ω′)

− ΓΛ
xy|~i−~j|1

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
z|~i−~j|1

(s, ω2 + ω′, ω1 + ω′)

+ ΓΛ
xy|~i−~j|1

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
d|~i−~j|1

(s, ω2 + ω′, ω1 + ω′)

+ ΓΛ
d|~i−~j|1

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
xy|~i−~j|1

(s, ω2 + ω′, ω1 + ω′)
]

×
[
PΛ(ω′, ω′ + s) + PΛ(ω′ + s, ω′)

]
+
[
2
∑
~k

ΓΛ
xy|~i−~k|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
xy|~k−~j|1

(ω2 + ω′, t,−ω2′ + ω′)

+ ΓΛ
xy|~i−~j|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
z0(ω2 + ω′,−ω2′ + ω′, t)

− ΓΛ
xy|~i−~j|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
d0(ω2 + ω′,−ω2′ + ω′, t)

+ ΓΛ
z0(ω1′ + ω′, ω1 − ω′, t)ΓΛ

xy|~i−~j|1
(ω2 + ω′, t,−ω2′ + ω′)

− ΓΛ
d0(ω1′ + ω′, ω1 − ω′, t)ΓΛ

xy|~i−~j|1
(ω2 + ω′, t,−ω2′ + ω′)

]
×
[
PΛ(ω′, ω′ + t) + PΛ(ω′ + t, ω′)

]
−
[
ΓΛ
z|~i−~j|1

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
xy|~i−~j|1

(ω2 − ω′, ω1′ + ω′, u)

+ ΓΛ
xy|~i−~j|1

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
z|~i−~j|1

(ω2 − ω′, ω1′ + ω′, u)

+ ΓΛ
xy|~i−~j|1

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
d|~i−~j|1

(ω2 − ω′, ω1′ + ω′, u)

+ ΓΛ
d|~i−~j|1

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
xy|~i−~j|1

(ω2 − ω′, ω1′ + ω′, u)
]

×
[
PΛ(ω′, ω′ + u) + PΛ(ω′ + u, ω′)

]}
,



IV APPENDIX A. FLOW EQUATIONS FOR THE VERTICES OF THE SPIN-FRG

d

dΛ
ΓΛ
d|~i−~j|1

(s, t, u) =
1

2π

∫ ∞
−∞

dω′

{
[
2ΓΛ

xy|~i−~j|1
(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ

xy|~i−~j|1
(s, ω2 + ω′, ω1 + ω′)

+ ΓΛ
z|~i−~j|1

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
z|~i−~j|1

(s, ω2 + ω′, ω1 + ω′)

+ ΓΛ
d|~i−~j|1

(s,−ω2′ − ω′, ω1′ + ω′)ΓΛ
d|~i−~j|1

(s, ω2 + ω′, ω1 + ω′)
]

×
[
[PΛ(ω′, ω′ + s) + PΛ(ω′ + s, ω′)

]
+
[
2
∑
~k

ΓΛ
d|~i−~k|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
d|~k−~j|1

(ω2 + ω′, t,−ω2′ + ω′)

− ΓΛ
d|~i−~j|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
z0(ω2 + ω′,−ω2′ + ω′, t)

− 2ΓΛ
d|~i−~j|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
xy0(ω2 + ω′,−ω2′ + ω′, t)

− ΓΛ
d|~i−~j|1

(ω1′ + ω′, t, ω1 − ω′)ΓΛ
d0(ω2 + ω′,−ω2′ + ω′, t)

− ΓΛ
z0(ω1′ + ω′, ω1 − ω′, t)ΓΛ

d|~i−~j|1
(ω2 + ω′, t,−ω2′ + ω′)

− 2ΓΛ
xy0(ω1′ + ω′, ω1 − ω′, t)ΓΛ

d|~i−~j|1
(ω2 + ω′, t,−ω2′ + ω′)

− ΓΛ
d0(ω1′ + ω′, ω1 − ω′, t)ΓΛ

d|~i−~j|1
(ω2 + ω′, t,−ω2′ + ω′)

]
×
[
[PΛ(ω′, ω′ + t) + PΛ(ω′ + t, ω′)

]
−
[
2ΓΛ

xy|~i−~j|1
(ω2′ − ω′,−ω1 − ω′, u)ΓΛ

xy|~i−~j|1
(ω2 − ω′, ω1′ + ω′, u)

+ ΓΛ
z|~i−~j|1

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
z|~i−~j|1

(ω2 − ω′, ω1′ + ω′, u)

+ ΓΛ
d|~i−~j|1

(ω2′ − ω′,−ω1 − ω′, u)ΓΛ
d|~i−~j|1

(ω2 − ω′, ω1′ + ω′, u)
]

×
[
[PΛ(ω′, ω′ + u) + PΛ(ω′ + u, ω′)

]}
.

For completeness, the initial conditions are again mentioned

ΣΛ=∞(ω) =0,

ΓΛ=∞
z|~i−~j|1

(s, t, u) =
∆

4
J|~i−~j|1 ,

ΓΛ=∞
xy|~i−~j|1

(s, t, u) =
1

4
J|~i−~j|1 ,

ΓΛ=∞
d|~i−~j|1

(s, t, u) =0.



Appendix B

Liouville Algebra and Useful Re-

lations

B.1 Superoperator Basis for the 2-Level Quantum Dot

The local Hamiltonian of the 2-level QD described in chapter (9) is given by a product

of an effective magnetic field times a spin-1/2-operator (see eq. (9.2.43)). Thus, the

basis of the dot Liouville space is spanned by the superoperators L+ and L− with

L+b = Sb, L−b = −bS, (B.1.1)

according to the left and right acting spin-operator S on some arbitrary operator b.

Furthermore, we define the scalar basis superoperators

La =
3

4
1 + L+ · L−, (B.1.2)

Lb =
1

4
1− L+ · L−, (B.1.3)

the vector basis superoperators

L1 =
1

2

(
L+ − L− − 2iL+ × L−

)
, (B.1.4)

L2 =− 1

2

(
L+ + L−

)
, (B.1.5)

L3 =
1

2

(
L+ − L− + 2iL+ × L−

)
, (B.1.6)

and the symmetric tensor superoperator

T ij = L3
iL

1
j + L3

jL
1
i − 2δijL

a. (B.1.7)

V
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With the additional relation
∑

i T
ii = −4La, we have a complete basis set of superop-

erators for the four dimensional Liouville space.

The bare dot Liouvillian after the Schrieffer-Wolff transformation can be deduced from

eq. (9.2.43) and is given in this basis by

L
(0)
D = −2~heff · L2 (B.1.8)

B.2 Superoperator Algebra

All products of La,b and components of L1,2,3 are summarized in the following table,

where the row and the column correspond to the first and second factor of the product,

respectively:

La Lb L1
j L2

j L3
j

La La 0 0 L2
j L3

j

Lb 0 Lb L1
j 0 0

L1
i L1

i 0 0 − i
2εijkL

1
k δijL

b

L2
i L2

i 0 0 − i
4εijkL

2
k −

1
8T

ij − i
2εijkL

3
k

L3
i 0 L3

i −iεijkL2
k + 1

2T
ij + δijL

a 0 0

(B.2.1)

Multiplying the superoperator T ij with another superoperator from the right yields

T ijLa = T ij , (B.2.2)

T ijLb = 0, (B.2.3)

T ijL1
k = 0, (B.2.4)

T ijL2
k = −δijL2

k −
1

2
δikL

2
j −

1

2
δjkL

2
i −

i

4

(
εjkmT

im + εikmT
jm
)
, (B.2.5)

T ijL3
k = δjkL

3
i + δikL

3
j − 2δijL

3
k, (B.2.6)

and multiplying T ij with another superoperator from the left yields

LaT ij = T ij , (B.2.7)

LbT ij = 0, (B.2.8)

L1
iT

jk = δijL
1
k + δikL

1
j − 2δjkL

1
i , (B.2.9)

L2
iT

jk = −δjkL2
i −

1

2
δikL

2
j −

1

2
δijL

2
k −

i

4

(
εijmT

mk + εikmT
mj
)
, (B.2.10)

L3
iT

jk = 0. (B.2.11)
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The product of two components T ij and T jk reads

T ijT kl =− i (δjkεilm + δjlεikm + δikεjlm + δilεjkm)L2
m

+

(
1

2
δjkT

il +
1

2
δjlT

ik +
1

2
δikT

jl +
1

2
δilT

jk − 2δijT
kl − 2δklT

ij

)
+ 2 (δjkδil + δikδjl − 2δijδkl)L

a. (B.2.12)

B.3 Spectral Decomposition of the Bare Liouvillian

The bare Liouvillian is given by

L
(0)
∆ = −2~h · L2, (B.3.1)

with some effective magnetic field ~h = h~φ. The eigenvalues read

λ1,2 =0, (B.3.2)

λ3 =h, (B.3.3)

λ4 =− h, (B.3.4)

with the projection operators

P1 =Lb, (B.3.5)

P2 =La +
1

2
φiφjT

ij , (B.3.6)

P3,4 =∓ φiL2
i −

1

4
φiφjT

ij . (B.3.7)

With this decomposition, we can rewrite any function f as

f(µαα′ − L
(0)
∆ ) =f(µαα′)1

+ [f(µαα′ + h)− f(µαα′ − h)]φiL
2
i

− 1

4
[f(µαα′ + h) + f(µαα′ − h)− 2f(µαα′)]φiφjT

ij (B.3.8)

which is helpful to perform the superoperatorproducts in eqs. (12.3.4) and (12.3.5).



VIII APPENDIX B. LIOUVILLE ALGEBRA AND USEFUL RELATIONS

B.4 Useful Relations

In this part of the appendix, we mention some useful relations for the vertices and the

Liouvillian, which has been proven, e.g., in Ref. [Rei09]. For any superoperator A, we

first define the c-transform

(Ac)ss′,s̄s̄′ = A∗s′s,s̄′s̄. (B.4.1)

The list of the relations is then given by

G11′(E) =−G1′1(E), (B.4.2)

Iγ11′(E) =− Iγ1′1(E), (B.4.3)

TrD

{
Leff

D (E)b
}

=0, (B.4.4)

TrD {G11′b} =0, (B.4.5)[
Leff

D (E)
]c

=− Leff
D (−E∗), (B.4.6)

[Σγ(E)]c =− Σγ(−E∗), (B.4.7)

[G11′(E)]c =−G1̄′1̄(−E∗), (B.4.8)[
Iγ11′(E)

]c
=− Iγ

1̄′1̄
(−E∗), (B.4.9)

with

1 ≡ ηασω, 1′ ≡ η′α′σ′ω′ (B.4.10)

which are preserved under the RG-flow.



Supplements

IX





Bibliography

[Abr65] A. Abrisokov. Electron scattering on magnetic impurities in metals and anoma-

lous resistivity effects. Physics, 2 5 (1965).

[Ale05] F. Alet, S. Wessel and M. Troyer. Generalized directed loop method for quantum

monte carlo simulations. Phys. Rev. E, 71 036706 (2005).

[And52] P. W. Anderson. An approximate quantum theory of the antiferromagnetic

ground state. Phys. Rev., 86 694 (1952).

[And70] P. W. Anderson. A poor man’s derivation of scaling laws for the kondo problem.

Journal of Physics C: Solid State Physics, 3 2436 (1970).

[And04] S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwöck and
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[Gö15a] S. Göttel, F. Reininghaus and H. Schoeller. The generic fixed point model

for pseudo-spin-1/2 quantum dots in nonequilibrium: Spin-valve systems with

compensating spin polarizations. (Submitted to Phys. Rev. Lett.) ArXiv e-

prints, 1411.4460 (2015).
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a kondo dot in a magnetic field: Perturbation theory and poor man’s scaling.

Phys. Rev. Lett., 90 076804 (2003).

[Sac99] S. Sachdev. Quantum Phase Transitions. Cambridge University Press (1999).

[Sal01] M. Salmhofer and C. Honerkamp. Fermionic renormalization group flows.

Progress of Theoretical Physics, 105 1 (2001).

[San99] A. Sandvik. Stochastic series expansion method with operator-loop update.

Phys. Rev. B, 59 R14157 (1999).

[Sch66] J. R. Schrieffer and P. A. Wolff. Relation between the anderson and kondo

hamiltonians. Phys. Rev., 149 491 (1966).
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