
A Hierarchical Modeling and Virtual
Prototyping Methodology for Functional
Verification of RF Mixed-Signal SoCs

Von der Fakultät für Elektrotechnik und Informationstechnik
der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines Doktors der

Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Ingenieur

Yifan Wang

aus Wuhan

Berichter: Universitätsprofessor Dr.-Ing. Stefan Heinen
Universitätsprofessor Dr.-Ing. Gerd Ascheid

Tag der mündlichen Prüfung: 22.11.2013

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über
http://dnb.d-nb.de abrufbar.

ISBN 978-3-8439-1837-4

D 82 (Diss. RWTH Aachen University, 2013)

© Verlag Dr. Hut, München 2014
Sternstr. 18, 80538 München
Tel.: 089/66060798
www.dr.hut-verlag.de

Die Informationen in diesem Buch wurden mit großer Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen
werden. Verlag, Autoren und ggf. Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für eventuell
verbliebene fehlerhafte Angaben und deren Folgen.

Alle Rechte, auch die des auszugsweisen Nachdrucks, der Vervielfältigung und Verbreitung in besonderen Verfahren wie
fotomechanischer Nachdruck, Fotokopie, Mikrokopie, elektronische Datenaufzeichnung einschließlich Speicherung und
Übertragung auf weitere Datenträger sowie Übersetzung in andere Sprachen, behält sich der Autor vor.

1. Auflage 2014

To my parents

Acknowledgment

First and foremost, I would like to express my gratitude to Prof. Dr.-Ing. Stefan
Heinen, my research supervisor, for providing me the opportunity to work on
this exciting research topic and sharing his rich experience in RF system design
and simulator theories with me. While allowing me considerable freedom to
conduct research on my own, his valuable suggestions and guidance helped me
to steer this work in the right direction.
I would also like to extend my grateful thanks to Dr.-Ing. Ralf Wunderlich,

for the good advices and the great organizational support during my time at
IAS.

Furthermore, I would like to express my appreciation to all the colleagues and
students who helped me to test, enhance and carry out the proposed verification
flow on the tapeout projects: Dirk Bormann for the first class EDA-tooling
support, Niklas Zimmermann for leading the RF-DAC top-level design and
tapeout, Lei Liao for leading the Low Power Bluetooth Transceiver top-level
design, Martin Schleyer for his great contribution to the functional verification
of the BT transceiver tapeout.
In addition, I would like to thank all colleagues and students at IAS for the

good working atmosphere, in particular my office mates Junqing Guan, Ahmed
Farouk Aref, Stefan Kählert, and Zhimiao Chen, for the great team work and
countless fruitful technical discussions.

I would also like to thank Aytac Attac and Tobias D. Werth for proof reading
parts of this work.

Last but not least, I am indebted to my family and friends for their support,
encouragement, understanding, and patience through all these years of my study.

Contents

List of Figures xi

List of Tables xv

List of Abbreviations xix

1 Introduction 1
1.1 Objective of this work . 4
1.2 Structure of this work . 5

2 Fundamentals of Verification Techniques 7
2.1 Formal verification methods . 8

2.1.1 Equivalence checking . 8
2.1.2 Model checking . 9

2.2 Simulation-based verification methods 11
2.2.1 Simulation of digital circuits and systems 12
2.2.2 Simulation of analog circuits and systems 15
2.2.3 Simulation of mixed-signal systems 17
2.2.4 Co-Simulation approaches 21
2.2.5 Assertions . 22
2.2.6 Verification coverage . 23

2.3 Simulation-based mixed-signal verification methods 24
2.3.1 Performance verification 24
2.3.2 Functional verification 25

2.4 Fundamentals of hierarchical verification approach for RF mixed-
signal SoCs . 26
2.4.1 Design methodology for integrated mixed-signal circuits . 27
2.4.2 Levels of abstraction . 29
2.4.3 Hierarchical Verification 32

vii

3 Hardware Description Languages and Modeling Techniques for Mixed-
Signal Verification 39
3.1 Overview of available HDLs . 39

3.1.1 Classical HDL . 40
3.1.2 Modern HDL . 42
3.1.3 Comparison between mentioned HDLs 45

3.2 Modeling techniques for mixed-signal verification 46
3.2.1 Analog modeling . 48
3.2.2 Event-driven modeling . 51
3.2.3 Equivalent Baseband Model 54

3.3 Issues and limits of presented modeling techniques for verification 57
3.3.1 Sampling issues for event-driven models 57
3.3.2 Pin compatibility issue . 62
3.3.3 Connectivity and synchronization issues 65

4 A Verilog-AMS Based Modeling and Verification Methodology for RF
Mixed-Signal SoCs 71
4.1 Model implementation and functional verification flow 71

4.1.1 Available methods . 71
4.1.2 Proposed hierarchical verification methodology 74

4.2 Key concepts for hierarchical verification 74
4.2.1 Verification planning . 74
4.2.2 Hierarchical design partitioning 76
4.2.3 Hierarchical model implementation 78
4.2.4 Assertion and debug concepts 84
4.2.5 Automated parameter extraction and update 87
4.2.6 Top-level simulation and sign off 95

4.3 Summary of the proposed methodology 96

5 A SystemC-Based RF Virtual Prototyping Methodology 99
5.1 Requirements for RF virtual prototype implementation 100
5.2 Hierarchical SystemC model frame generation flow 101

5.2.1 Comparison of different approaches 102
5.2.2 Hierarchical generation of pin-accurate SystemC models . 103

5.3 SystemC RF building blocks library 110
5.3.1 Simulation performance aspects 111
5.3.2 Switchable baseband models of RF blocks 112

5.4 Summary of the proposed RF VP methodology 116

6 Application Examples 117
6.1 A fractional-N PLL based transmitter 117

6.1.1 Verilog-AMS block-level model implementation 117

viii

6.1.2 Top-level simulation of the PLL 126
6.1.3 Pin-accurate SystemC VP of the PLL 132

6.2 A RF-DAC based multi standard transmitter 140
6.2.1 Block-level of the RF-DAC based transmitter 140
6.2.2 Model implementation and virtual prototyping 140

6.3 A low power Bluetooth transceiver 147
6.3.1 System overview . 149
6.3.2 System partitioning and model implementation 149
6.3.3 Top-level functional verification of the low power Bluetooth

transceiver . 153

7 Conclusions 161
7.1 Outlook . 164

Bibliography 165

Curriculum Vitae 175

ix

List of Figures

1.1 RF simulation problem: the RF signal bandwidth is often decades
higher than the baseband data. Generating a large payload for
the simulator. 3

2.1 Overview of the two general verification categories. 8
2.2 Overview of equivalence checking flow. 9
2.3 Overview of model checking flow. 10
2.4 NAND gate (a) and the corresponding state transition graph (b). 10
2.5 Overview of simulation-based verification flow. 11
2.6 Example of simulating a NAND logic gate. 13
2.7 General algorithm for the transient simulation in a digital circuit

simulator e. g. NCSIM. 14
2.8 General algorithm for the transient simulation in an analog circuit

simulator [HW10] e. g. SPICE [Nag75]. 16
2.9 Simple mixed-signal system example. 18
2.10 Mixed-signal netlist of the system shown in Fig. 2.9. 19
2.11 Details of a logic to electrical interface element. 20
2.12 Time step synchronization between analog and digital solver

during a mixed-mode simulation. Here, backtracking algorithm. . 21
2.13 Assertion-based verification flow. 23
2.14 Conventional design flow for AMS circuits. 27
2.15 Design hierarchy for the RF front-end of a state of the art wireless

communication SoC. 30
2.16 Levels of abstraction in analog design. 33

3.1 Part of the available modeling language and their reachable design
hierarchy. 40

3.2 Standard SystemC AMS MoCs and the synchronization ap-
proach with the current SystemC kernel. 44

3.3 Currently available SystemC AMS formalisms according to [Sys08a]. 44

xi

3.4 Models at different levels of abstraction within the mixed-signal
design flow. 48

3.5 Associated branch, potential and flow in Verilog-A according
to [FM98]. 49

3.6 Time domain representation of sample-based analog signals. . . . 54
3.7 Obtain the equivalent baseband signal representation by shifting

the passband signal towards zero in the frequency domain. 55
3.8 Equivalent baseband signal representations of a passband signal

consisting higher order harmonics. 56
3.9 Simulated constellation plot of a 16-QAM signal. 58
3.10 View switching as provided by the HED. 63
3.11 Connectivity representation for passband and baseband signals. . 63
3.12 Proposed parameterizable CM with proper impedance. 66
3.13 Testbench with switchable levels of abstraction and different CMs. 67
3.14 Transient simulation results using different cross domain CMs. . 68

4.1 Overview of the verification flow with strong focus on analog/RF
subsystems. 72

4.2 Key concepts for proposed hierarchical verification methodology. 75
4.3 Design partitioning of a generic RF receiver front-end. 77
4.4 Detailed illustration of proposed model implementation flow. . . 80
4.5 Overview of the proposed automated parameter extraction and

update flow. 88
4.6 Proposed simulation flow for model parameter extraction. 90
4.7 Geometrical extrapolation method to estimate IIP3. 92
4.8 Polyphase filter using Butterworth filter prototype. 93
4.9 Automated hierarchical model update flow. 95

5.1 Proposed SystemC model refinement and RF virtual prototyping
approach. 102

5.2 Accessible schematic information via SKILL 103
5.3 General flow of the automatic SystemC model frame generation 104
5.4 Flow chart for generating the intermediate file 105
5.5 Overview of the schematic hierarchy and its corresponding SystemC

model frames . 106
5.6 General flow description of the SystemC model frame generation 107
5.7 Special cases of schematic naming conventions in Cadence® DFII 109
5.8 Net resolution function for SystemC VP. 111
5.9 Structure representation of the automatically generated SystemC

model. 112

6.1 Block-level of the investigated fractional-N PLL based transmitter 118

xii

6.2 Event-driven VCO model structure. 120
6.3 Phase noise comparison between analog and wreal VCO model. . 121
6.4 Third order MASH 1-1-1 ∆Σ modulator used in the PLL. 123
6.5 Phase noise contribution of the 3rd order ∆Σ modulator used in

the PLL. 124
6.6 The 15-Bit LFSR used for dithering. 124
6.7 Structure of the PFD and it’s limited linear range. 125
6.8 A second order loop filter. 126
6.9 Comparison of different LPF implementations. 127
6.10 The timing diagram of the proposed LPF implementation. 127
6.11 The overall phase noise of the PLL system based on model simu-

lation. 128
6.12 Block-level overview of the integer-N PLL based Bluetooth trans-

mitter. 129
6.13 Transient simulation result of the Bluetooth transmitter. 132
6.14 Spectrum plot of the Bluetooth PLL output signal at 2.45 GHz. 133
6.15 VCO control voltage during the PLL lock-in process. 135
6.16 PLL phase noise evaluation based on SystemC VP. 137
6.17 The signal structure of the VCO output. 138
6.18 Detailed block diagram of the RF-DAC based transmitter accord-

ing to [Zim11]. 141
6.19 Block diagram of the event-driven RF-DAC unit cell model. . . . 143
6.20 Top-level schematic of the RF-DAC based transmitter. 144
6.21 Top-level testbench of the RF-DAC based transmitter. 145
6.22 Functional errors of the RF-DAC found by the top-level verification.146
6.23 Top-level simulation output spectrum of the RF-DAC based trans-

mitter. 148
6.24 Block diagram of the low power Bluetooth transceiver chip. . . . 149
6.25 Top-level partitioning of the low power Bluetooth transceiver chip.151
6.26 Direct-form I IIR filter. 152
6.27 General state space description of the quadrature bandpass ∆Σ-

ADC. 153
6.28 Top-level testbench of the low power Bluetooth transceiver chip. 154
6.29 Simulation Results of the Bluetooth front-end Virtual Prototype.

Output Spectra in the Receiver Path. 155
6.30 Bit-stream of the transmitted and demodulated GFSK signal. . . 157

xiii

List of Tables

2.1 Comparison of the solver characteristics between analog and digital
simulator. 17

3.1 Comparison of the mentioned modeling languages 47

4.1 Naming conventions for parameters and variables in Verilog-AMS. 82

5.1 Schematic naming conventions in Cadence® DFII. 109
5.2 Remapped naming conventions in SystemC. 110

6.1 Part of the PLL specification. 128
6.2 Basic Bluetooth transmitter specification according to [The02] . 130
6.3 Timing diagram for tuning and transmission processes during one

hopping interval. 130
6.4 Comparison of the top-level simulation performance of the Bluetooth

transmitter for 1 ms system time. 133
6.5 Simulation times of the PLL models 135
6.6 Transistor count and top-level simulation time of the RF-DAC

based transmitter. 146
6.7 Timing diagram for the full chip power up. 156
6.8 Simulation times of the low power Bluetooth front-end for 1 ms

at different levels of abstraction 157
6.9 Part of the Bluetooth LE compliance simulation results, test cases

are selected according to [Blu10]. 159

xv

List of Abbreviations

3GPP 3rd Generation Partnership Project
ADC Analog-Digital Converter
AMS Analog and Mixed-Signal
BDD Binary Decision Diagram
BER Bit Error Rate
CAD Computer Aided Design
CDF Component Description Format
CM Connect Module
CMOS Complementary Metal Oxide Semiconductor
CP Charge Pump
DAC Digital-to-Analog Converter
DAE Differential Algebraic Equation
DRC Design Rules Check
DUV Design Under Verification
EDA Electronic Design Automation
ESL Element Selection Logic
FFT Fast Fourier Transformation
FHSS Frequency Hopping Spread Spectrum
FPGA Field Programmable Gate Array
FSM Finite State Machine
GFSK Gaussian Frequency Shift Keying
GSM Global System for Mobile Communications
GUI Graphical User Interface
HB Harmonic Balance
HDL Hardware Description Language
HED Hierarchy Editor
IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
IF Intermediate Frequency
IIP3 Input-referred third-order Intercept Point
IIR Infinite Impulse Response

xvii

IP Intellectual Property
ISM Industrial, Scientific and Medical
KCL Kirchhoff’s Current Law
KVL Kirchhoff’s Voltage Law
LFSR Linear Feedback Shift Register
LNA Low Noise Amplifier
LO Local Oscillator
LPF Loop Filter
LSB Least Significant Bit
LTE Long Term Evolution
LvS Layout vs. Schematic
MCC Modulation Compensation Circuit
MNA Modified Nodal Analysis
MoC Model of Computation
MODEM Modulation Demodulation
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MSB Most Significant Bit
NF Noise Figure
OCEAN Open Command Environment for Analysis
ODE Ordinary Differential Equation
OFDM Orthogonal Frequency Division Multiplex
OSCI Open SystemC Initiative
OSR Oversampling Ratio
PA Power Amplifier
PDF Probability Density Function
PFD Phase Frequency Detector
PLL Phase-Locked Loop
PRBS Pseudo Random Bit Stream
PSL Property Specification Language
PSS Periodic Steady State
QAM Quadrature Amplitude Modulation
RF Radio Frequency
RFIC Radio Frequency Integrated Circuit
RTL Register Transfer Level
RVM Real Valued Modeling
SNR Signal to Noise Ratio
SoC System on Chip
SPICE Simulation Program with Integrated Circuit Emphasis
SVA SystemVerilog Assertions
UVM Universal Verification Methodology
VCO Voltage Controlled Oscillator
VCVS Voltage-Controlled Voltage Source

xviii

VHDL VHSIC-HDL
VHSIC Very-High-Speed Integrated Circuits
VP Virtual Prototype
VPI Verilog Procedural Interface
ZOH Zero-Order Hold

xix

1
Introduction

With almost 6 billion mobile cellular subscriptions world-wide in 2011 [ICT11],
the impact of mobile wireless communication devices such as smartphones on
our daily life has become more and more inevitable. Its commercial success has
revolutionized the way of personal communication and information interchange
through wireless freedom.
In general, the constant evolution of seamless wireless connectivity with

increasing data rates and the constant development of low-cost, power efficient,
fully integrated system solutions are the main reasons for their commercial
success. On the one hand, the ultimate user experience, such as augmented
reality, can only be achieved by simultaneously getting high volumes of data
through different wireless communication channels simultaneously. On the other
hand, the mass market demands reduced production costs. This mainly drives the
trend towards higher integration and smaller die size. This can only be facilitated
by exploiting the shrinking and integration potential of the key building elements
inside every smartphones; namely, the integrated CMOS-based wireless SoCs
including RF subsystems, at advanced technology nodes.

The RF subsystem plays a critical role by providing the interface between the
end user and the data rate intensive communication within the whole system.
Recent wireless SoCs incorporate GSM, UMTS with receiver diversity and GPS
in their RF subsystems [HC+09]. Their future successor will come with an
even higher wireless communication data rate, plus every imaginable wireless
connectivity solution such as Bluetooth and WiFi in a single chip. To put it
briefly, the only way to enhance the feature and flexibility of the smartphone
while keeping them economically attractive is to cover a broad range of wireless

1

Chapter 1 Introduction

communication standards and eliminate off-chip components. This vision can be
achieved by developing advanced nano-scale CMOS RF subsystem concepts such
as a reconfigurable RFDAC-based multi standard transmitter [Zim11]; SAW-
less receiver front-end with interference cancellation technique [Wer11]; and
substantially enriching the functionalities of each RF front-end by incorporating
digital control, calibration, and compensation algorithms, which tightly interact
with the analog/RF front-ends. Following this development trend, more and
more digital functionalities are merging into the former analog-only RF circuit
blocks. Hence, functional complexity of today’s wireless SoCs, especially in
the analog/RF subsystems, is increasing drastically, while the technology nodes
continue to shrink. Consequently, the rising functional complexity inside the
RF subsystems make them prone to functional errors in the design. Unlike
performance issues, functional errors considerably decrease the post silicon test
and evaluation possibility of the chip and its software. Serious functional errors
can even make a chip fail to start up! Such errors result in re-spins, which
could be a bitter loss for the industry, considering the time and money spent on
the design and fabrication. Recent studies [Meh10] have shown that in current
mixed-signal SoC design flows the probability of producing a functional error
due to design failures during the first tapeout lies around 45%. More than 50%
of SoC design re-spins at 65 nm and below are due to functional errors, such
as connectivity bugs, misinterpreted digital control bits, or wrongly inverted
signals [Che09]. Hence, the overall system, including the analog/RF subsystems,
demand rigorous functional verification prior to tapeout, which is one of the
most critical and challenging tasks in the whole design flow [CK07] [KC09a].
Considering the two fundamental verification categories, both the formal

and simulation-based verification methods are well established for pure digital
designs [Mey04] [WGR05]. However, both of them are limited at the borderline of
analog/RF blocks [KC09b] [HR04]. The reason lies in the basic nature of analog
and digital signals; while digital signals only take a limited set of pre-defined
logic values at discrete times, analog signals possess infinite states in a certain
range at any point of time. Therefore, formal verification for analog/RF circuits
is only applicable for small building blocks with a low number of elements.
Otherwise, it has to face the state explosion problem [Pel09], which makes
this method unfeasible for the large scale RF subsystem inside a SoC. The
simulation-based method presupposes the description of the system behavior.
The digital behavior is described by boolean relations and the analog by non-
linear differential algebraic equation systems. A digital simulator has only to
evaluate the logic relations at discrete time points, triggered by the change of
logic states(event-driven). The analog simulator, such as SPICE [Nag75], has to
solve a set of non-linear differential equations in an iterative fashion in order to
meet the desired convergence criteria. Any slight change in signal or time will
lead to a recalculation of the whole system. Hence, digital simulators possess

2

much higher simulation efficiency and coverage compared to the analog one.
Simulation of a mixed-signal system requires not only the execution of both
simulators at the same time, but also continuous synchronization with each
other. Although the most straight forward approach for detecting functional
bugs would be brute-force, simulating the whole design at the transistor-level
using a mixed-signal simulator. The carrier frequencies in the RF subsystems
which are usually decades higher than the bandwidth of the transferred data and
therefore generate tremendous overhead for the simulator (s. Fig. 1.1). Plus, the
convergence and small time-step issues due to the non-linearity, accompanied
by the large transistor count of today’s SoC, and the tough schedule due to the
gradual shortening of time-to-market, make such simulation absolutely infeasible.
With the increasing size and functional complexity of analog/RF subsystem

I(t)

Q(t)

f

A

BWbaseband

f
fcarrier

A

BWRF

1000 ~ 100000 times

Figure 1.1: RF simulation problem: the RF signal bandwidth is often decades
higher than the baseband data. Generating a large payload for the
simulator.

designs, the analog simulator becomes the major bottleneck of the simulation-
based functional verification!Over the last years, the EDA industry has made
numbers of contributions through different ways to address this challenge. One
way is the development of advanced SPICE-level and FAST-SPICE simulators
through optimizing and parallelizing the solver in order to increase simulation
efficiency of RF/analog subsystems [Cad] [Bda]. Still, advancements in these
fields cannot keep up with the continuously growing size of the mixed-signal RF
subsystem design.
Another contribution is the extension of the classical Hardware Description

Languages (HDL) with mixed-signal capabilities, such as Verilog-AMS or

3

Chapter 1 Introduction

VHDL-AMS, and rising the level of abstraction by substituting the circuit at
the transistor-level with their pin-compatible behavioral models. This signifi-
cantly increases the simulation time step and thus reduces the simulation time.
Behavioral models for the analog/RF blocks are mostly implemented manually.
They are only good as long as they are kept in sync with the design changes.
Without automated tooling, model refinement will occupy a lot of manpower.
Hence, behavioral models require not only modeling expertise, but also extensive
tooling support through the whole design flow. Despite the mentioned drawbacks,
simulating the whole design in a pure digital simulator including pin-compatible
event-driven behavioral models of the analog/RF part is the only feasible way
of applying functional verification for complex, mixed-signal RF SoCs for the
time being, since any analog construct used in the models invokes the analog
solver and therefore slows down the digital simulation by orders of magnitude!
A hierarchical modeling and verification methodology with consideration of
different event-driven analog modeling techniques, accompanied by automated
model validation and refinement approaches will be addressed in this work. In
addition to proving the functionality, since the hardware itself only serves as
part of the system, the Virtual Prototype of the whole chip, which captures the
latest snapshot of the hardware part, is also necessary to ensure correct HW/SW
interaction. Modern C-based modeling languages such as SystemC can effec-
tively address higher levels of abstraction while being compatible with software
design. However, it lacks a direct link to the analog/RF design environment.
The approach to create a consistent link between circuits and models at different
levels of abstraction, while hierarchically verifying the functionality of the whole
system will be investigated and elaborated in this work.

1.1 Objective of this work

The goal of this work is to develop a functional verification methodology that is
suited for the modern SoC systems including analog/RF subsystems prior to
tapeout. First, an overview of different verification methods, modeling languages,
and approaches, including their advantages and disadvantages has to be provided.
Based on the investigation the most suitable method is defined. It should consist
of efficient modeling methods that enable fast simulation at different levels of
design hierarchy and different phases of the design process. In addition to being
fast, methods maintaining the consistency between models and circuits, including
the pin-compatibility and design parameter parity, also have to be given. Once
the flow is defined, automation concepts will also be worked out.

An automated hierarchical SystemC virtual RF prototyping method targeting
model creation that is based on the circuit design database will also be imple-
mented, which seamlessly links the system level and block/circuit level design

4

1.2 Structure of this work

by generating a pin accurate, specification oriented virtual prototype with high
simulation performance. Finally, the feasibility of the proposed modeling and
verification methodology has to be exemplified by the results of industry-oriented
projects.

1.2 Structure of this work

This work is organized as follows:

• Chapter 2 introduces and compares the basic methods of verification, which
generally can be categorized into two categories: formal and simulation-
based(non-formal). Moreover, the elements and requirements of simulation-
based verification for mixed-signal RF subsystems, especially the funda-
mental differences between functional and performance verification, are
explained in detail. The general prerequisites of hierarchical verification
flow, focusing on system partitioning and behavioral modeling, are given.

• Chapter 3 provides an overview of different HDLs regarding their simulation
performance, reachable levels of abstraction, and model creation effort.
Different modeling techniques from the functional verification point of view
are shown. The issues and limitations of application of these mentioned
modeling techniques are given and evaluated.

• Chapter 4 describes the proposed hierarchical functional verification con-
cept in detail. The focus of this concept is maintaining the consistency
between models and circuits within the design environment. Therefore,
several techniques, including design partitioning, hierarchical model im-
plementation, assertion coding, as well as automated model parameter
extraction and update, are worked out. This chapter concludes with the
influence and known limitations of the mentioned verification concepts on
existing projects.

• Chapter 5 describes a new SystemC-based RF virtual prototyping Method
based on insights gained in chapter 3 and chapter 4. First, the basic ideas
and requirements of the RF VP implementation are given. Subsequently,
two key points of the VP methodology, namely the automated hierarchical
pin-accurate SystemC model frame generation based on design database
and a unified SystemC RF building block library are pointed out. Finally,
the corresponding implementations of the mentioned points are shown in
the same chapter.

• The main target of this work is to develop modeling and VP methodology
that focuses on fast and reliable function verification for state-of-the-art
RF SoC design. The best way to demonstrate the effectiveness of the flow

5

Chapter 1 Introduction

is to apply it to the current project and design environment. This has been
done in chapter 6.

• Chapter 7 concludes the thesis with a brief summary of the findings and
achievements from this work. Further research directions are given.

6

2
Fundamentals of Verification Techniques

According to the IEEE Standard Glossary of Software Engineering Terminology
[IEE90], verification is defined as "The process of evaluating a system or compo-
nent to determine whether the product of a given development phase satisfy the
conditions imposed at the start of that phase." In electronic design automation
(EDA), verification is defined as a process used to demonstrate the functional
correctness of a design [Ber03].

Generally, the verification methods can be classified into two categories: formal
and simulation-based(non-formal) verification [Lam08]. The simulation-based
methods require an simulation environment. By applying input stimuli (or
input test vector) to the design under verification (DUV), the DUV is verified
by comparing its outputs to the specified/expected outputs. Formal methods
do not need a simulation environment, the main focus of formal verification is
the attempt to prove with mathematical certainty the correctness of a design
[WGR05].

The substantial difference between the two categories is the existence of input
stimuli (also called test vector). Simulation based methods are purely input
stimuli driven and explore some of the possible behaviors and cases of a circuit
system. Formal methods concentrate only on the output properties of the design
[Lam08] and conduct an exhaustive exploration of all possible behaviors based
on the formal specification. Fig. 2.1 gives a very general overview of the two
mentioned verification methods according to [WGR05], which will be described
in detail in the following.

7

Chapter 2 Fundamentals of Verification Techniques

Verification

categories

Formal-based Simulation-based

Model

 checking

Equivalence

checking
Stimulus

Assertions Coverage

Regression

Testbench

Figure 2.1: Overview of the two general verification categories.

2.1 Formal verification methods

The main idea of formal verification for analog and mixed-signal (AMS) circuits
and systems is to use mathematical formulation to rigorously prove the correct-
ness of the design based on specification [Dre04]. Formal verification methods
are widely used in the hardware design industry mainly targeting digital domain
[Har03], since this is the only way to completely detect potential errors in the
integrated circuits, which often results in costly re-spins1. According to [Lam08],
two techniques of formal verification can be distinguished further: equivalence
checking and model checking2.

2.1.1 Equivalence checking

Equivalence checking proves or disproves the complete functional consistency be-
tween implementation and specification, or equivalence of two circuit descriptions,

1The term re-spin in the mixed-signal design means a complete redesign and reproduction
of the silicon due to bug/s in the previous design

2Also called property checking in the literature. A property checking program is called
model checker [Lam08]. The notion model checking can be regarded as the established
academic term for property checking

8

2.1 Formal verification methods

e. g. the register transfer level (RTL) model and synthesized gate-level model
in the digital design [MM04]. Fig. 2.2 illustrates the general flow of equivalence
checking.

System

specification

DUV
Alternative

design

Equivalent?

Figure 2.2: Overview of equivalence checking flow.

Equivalence checking is well established in the digital design due to the
finite input and output state of digital circuits. Since the logic cones can be
represented as Binary Decision Diagram (BDD) [Ake78], which has a canonical
form, the equivalence of two digital designs can be verified by comparing if their
respective canonical forms are identical. Additionally, the logical operations can
be mapped to BDDs very efficiently with further order reduction possibilities
[Bry86], which lead to the fact, that this method is widely acknowledged in the
industry and widely applied to RTL and gate-level of the digital design. For
equivalence checking of AMS circuits and systems, additional equivalence metrics
are required, since there is no complete equivalence in the analog part of the
circuits such as Boolean equivalence of digital systems [Ste11].

2.1.2 Model checking

Model checking [CGP00], illustrated in Fig. 2.3, is a verification technique that
compare the functional properties with the models of circuits and systems.
Therefore, the task of model checking requires the accurate modeling of the DUV
and the formal description of the property to be verified. The models have to
describe every possible system behavior of the DUV in a mathematically precise
and unambiguous manner, so that all possible system states can be explored in a
brute-force way [BKe08]. The result of the model checker, which is the software
tool that performs the task of model checking, will report true if every state of
the system model satisfies the property. Otherwise, it points out the property
violations and provides debug information.

9

Chapter 2 Fundamentals of Verification Techniques

System

specification

Formalized

requirement

Model
Property

specification

Design

Model

checker

Satisfied?

Figure 2.3: Overview of model checking flow.

For digital circuits, the model of the finite state system is described in state
transition system (s. Fig. 2.4). The model checker verifies if the state transition
system satisfies the given specification. This leads to the main issue of model

A

B 1 0

AB

01

10

11AB

00

AB

00

AB

01

10

11
(a) (b)

Figure 2.4: NAND gate (a) and the corresponding state transition graph (b).

checking technique: it is basically a reachability analysis, which suffers from the
state-space explosion problem [Pel09]. Since the number of states, which has to
be examined, increases exponentially with the number of state-space dimensions.
The number of states required to accurately map the system can easily exceed the
available memory and computational power. Especially in case of AMS systems,
the state space of analog circuits can be regarded as infinite. One possibility
is to map the transient response of an analog circuit under all possible input
waveforms to an finite state machine (FSM) by numbers of repeated transient
mixed-signal simulations, so that the continuous state space can be limited and
discretized [DC05]. Still, the demand of exhaustive simulation in this case makes

10

2.2 Simulation-based verification methods

the model checking process impracticable. Additionally, since model checking
only verifies the model, but not the actual design, any verification result is
therefore only depending on the quality of the model itself. Based on the two
aforementioned facts, the model checking technique is applicable on pure digital
systems with moderate size, but still not feasible for the verification of complex
AMS systems.

2.2 Simulation-based verification methods

Although formal verification methods are the only way to prove the complete
correctness of the system, it consists several drawbacks mentioned in section
2.1.1 and 2.1.2, the extensive usage of memory and long runtime for certain
verification result makes them not feasible for the complexity and time-to-market
requirement of today’s RF mixed-signal System on Chips (SoC). Therefore, the
simulation-based verification method still remains the most popular and widely
established method in the industry [Ber03].

System

specification

Input stimuli DUV

Reference

output

Output

Monitor

Testbench

Figure 2.5: Overview of simulation-based verification flow.

As Fig. 2.5 illustrated, a typical simulation-based verification environment
consists of four components:

• The DUV, which consists the implemented circuits based on system
specification.

• The input stimuli, which consists the patterns and sets of the test vectors.

• The reference(or the expected) output, which has been derived from the
system specification.

• The monitor, which is in charge of comparing the output of the DUV
with the reference output.

11

Chapter 2 Fundamentals of Verification Techniques

Together, the input stimuli and monitor are considered as the testbench for the
DUV [Ber03]. During the simulation, the set of input stimuli, which has been
defined based on the specification, applies to the DUV, the output of the DUV
will be checked against the reference output according to the specification. If
any mismatch is found, further debug or design change process will be initiated
by the verification engineer or the designer.
Normally, every design errors can be found with this approach, if the input

of the DUV can cover all possible scenarios. However, this would lead to the
demand of means of stimulus sets and simulations, which again makes the time
required for the verification unreasonably long. Therefore, only a limited number
of simulations will be executed by the designer. The designer has to choose the
test cases based on their priority and usefulness according to the specification.
E. g. the gain of a low noise amplifier(LNA) can only be determined correctly,
if the input matching holds the specification. Additionally, the evaluation of
simulation results based on the reference output, which is the task of the monitor
shown in Fig. 2.5, is often a manual task. Especially in the analog verification
environment, lots of simulation results have to be checked manually, or even
post processed further by the designer, in order to determine the correctness
of the DUV for certain test case. Moreover, the specification from the system
level, e. g. signal to noise ratio (SNR), has to be converted into circuit level
conforming specifications such as noise figure (NF) or noise voltage by the
designer, which increases the possibility of misinterpreted specification and leads
to wrong verification results.

The human error made by manually examining the simulation results is also an
unneglectable, but a daunting factor. While still practicable for the verification
of circuit blocks with reasonable size, checking numbers of signals from different
simulations of a RF front-end manually is clearly beyond the feasibility limit
of a manual task. Thus, additional tools and methods are required to assist
the simulation-based verification task. Before introducing the assistant tools, it
is important to firstly distinguish available simulation algorithms for different
systems, in order to highlight the limit and critical bottleneck of simulation-based
verification methods for today’s RF mixed-signal circuits and systems.

2.2.1 Simulation of digital circuits and systems
The digital system uses discrete values to represent signals and information. The
signal level of a digital system contains two states, which can be considered
as 0 and 1. Based on this binary property of the system, its behavior can
be represented by Boolean algebra [Whi95], so that each part of the system
can be striped down and mapped to the basic Boolean operators: conjunction
∧, disjunction ∨ and negation ¬ [Boo54]. Thus, the digital systems can be
implemented based on logic gate, which in general is the hardware representation

12

2.2 Simulation-based verification methods

of the basic Boolean operators. In digital system, the output of the logic gate
only changes if the input has been changed into a certain state (s. the state
transition graph in section 2.1.2).

For the simulation-based verification of digital designs, the event-driven simu-
lation is the broadly established simulation algorithm in the industry. During
the simulation, every building blocks of a logic network are interconnected with
each other [WGR05], serves as the netlist3 for the digital simulator. The signals
transport the simulation data from the outputs of the blocks to the adjacent,
interconnected inputs of the gates. Each state change of the outputs could lead
to the change of the internal states of the connected gates. This may lead to the
transfer of new information through the whole logic network. Such transfer of
information is regarded as event [WGR05]. During the simulation, if an event is
generated, the information and its corresponding time will be put into an event
list.

a

b

out

t

t

t [ns]10 20 30

outa

b
Tdelay = 5 ns

sig. t 0 5 10 20 25 30

a x 1 1 1 1 1

b x 0 0 1 1 1

out x x 1 1 0 0

Eventlist t=5, a, b=1 t=10, out=1 t=20, b=1 t=25, out=0 … …

t=20, b=0 t=20, b=1

Figure 2.6: Example of simulating a NAND logic gate.

The events traverse through the network, activating only blocks triggered by
the signal flow. When the simulator reaches a certain time point, it will only
evaluate the events occurred at that time point, all events occurred before that
time point must have been already evaluated. Fig. 2.6 gives an Example of
simulating a NAND gate. The general flow chart of the event-driven simulation
algorithm has been shown in Fig. 2.7.

3The term netlist is defined as the input of a circuit simulator, consisting the structural
description of the overall testbench units and DUV.

13

Chapter 2 Fundamentals of Verification Techniques

Events?

Find active gates

Calculate output signal

Changes at

outputs?

Load time point of

changes into event list

Final step?

Stop

yes

no

yes

no

8

7

5

4

3

yes

t=t+dt

6

9

no

1 Initialize

Load input signals

into the event list,

t=0, timestep=dt

2

Figure 2.7: General algorithm for the transient simulation in a digital circuit
simulator e. g. NCSIM.

14

2.2 Simulation-based verification methods

2.2.2 Simulation of analog circuits and systems
Conservative systems are described using conservation laws at their connection
points [FM98]. Such system always consists two components within each nods
and signals: potential and flow. In electrical systems, the equivalent description
for the potential and flow are voltage and current. The value of the mentioned
components are continuous and any modification of the value can be characterized
in the continuous time domain. This kind of system is defined as analog
system. The relation between voltage and current can be described via Ohm’s
law [Ohm27], which states that the current through a conductor between two
electrical nodes is directly proportional to the potential difference across the
nodes.

Analog integrated circuits (ICs) consists linear (passive electronic device such
as resistor, capacitor and inductor) and nonlinear (active device such as metal-
oxide-semiconductor field-effect transistor: MOSFET) components. The overall
system is defined by the network of the interconnected analog devices. The
classical method of CAD (computer aided design) based analog circuit simulation
is due to the fact that all connection-nodes are following the Kirchhoff’s laws
[Kir47]. Each active and passive device has its corresponding physical device
model, described by ordinary differential equations (ODEs). The netlist of an
analog system consists every interconnect-nodes of the devices, serving as the
input for the analog simulator. The device model of the netlist elements forms
the differential algebraic equation (DAE) system by obeying the Kirchhoff’s
voltage (KVL) and current(KCL) laws.

Modified Nodal Analysis (MNA) [HRB75] is one of the most used network
analysis techniques by analog circuit analysis tools to set up the DAE system of
the circuit. The nonlinear DAE system are then converted to a set of nonlinear
difference equations by a multi step integration method [KG95] such as the
backward Euler [JNT90] [BW03]. By having the DAE system representation of
the circuit, nonlinear difference equations are solved simultaneously by using
the numerical method based on the Newton-Raphson algorithm [Ypm95], which
involves the conversion of non-linear equations into linear ones and their solutions
by applying the sparse Gaussian elimination 4 to them [KG95] [TS94] [Nag75].
Fig. 2.8 illustrates a typical flow chart of a transient simulation by using the

analog simulator. Here, the simulator generates the initial operating value of
conservative components for all nodes in the circuit. At the second step, the
equivalent linear model of the nonlinear device are generated, mapping the small
signal behavior [TS94] of the device at its operating point. The solution of
the DAE system can be found based on the inner loop (2-6), if every node of
the system fulfills the error tolerance (convergence). The outer loop (2, 7-9) is

4Since the DAEs are presented in the matrix form, the LU factorization are applied to the
nodal matrix.

15

Chapter 2 Fundamentals of Verification Techniques

Stop

yes

no

yes

no

Initial operating

point

1

Create linear

comapanion models

for non-linear devices

2

Load conductances

and currents into

Nodal Matrix

YU=I

3

Solve Linear Nodal

Equations for U

4

Convergence?
5

Select time step h(n)

Calculate next time

point

t(n+1)=t(n)+h(n+1)

7

End of time?
8

Create linear

companion models for

capacitors, inductors,

etc ...

9
Select new

operating point

6

Figure 2.8: General algorithm for the transient simulation in an analog circuit
simulator [HW10] e. g. SPICE [Nag75].

16

2.2 Simulation-based verification methods

in charge of controlling the simulation time step, depending on the degree of
the nonlinear system, the time step h(n) will be adjusted dynamically by the
simulator.
For highly nonlinear circuit system such as a switch-mode CMOS(Comp-

lementary Metal Oxide Semiconductor) RF power amplifier(PA), the step size
of h(n) depends not only on the nonlinearity but also strongly related to the
maximal frequency in the system, resulting in very small time steps and slows
down the overall simulation speed.

2.2.3 Simulation of mixed-signal systems

Systems containing both discrete event and continuous time parts are considered
as mixed-signal system, where logic components closely interact with analog
devices. Due to the different simulation algorithms for digital and analog systems
(s. table 2.1), a mixed-signal system consisting analog and digital system in
one silicon, has resulted in one of the main challenges for the simulation-based
verification approach.

A simulator, which is compatible with both analog and digital netlist and
their simulation domains, can be regarded as a mixed-mode simulator [AD+90]
[New78]. As table 2.1 shows, numbers of substantial differences exist in both
simulation domains. First, the analog system is conservative, the simulator has

Analog simulator Digital simulator
solves DAE system calculates discrete events
solves implicit functionsa solves explicit functions
continuous time & value discrete time & valueb

solves whole DAE system iteratively data flow simulation
Simulation time step:
depends on the accuracy setup predefined time scale & resolution
controlled by the simulator already inherently specified

aExplicit function is also possible, but will lead to stability issues according to [KG95].
bContinuous value, represented as 64-bit real number, can also exist in digital simulator.

Table 2.1: Comparison of the solver characteristics between analog and digital
simulator.

to solve the DAE system based on the analog netlist in an iterative fashion,
trying to meet the desired convergence criteria (accuracy). Each change in a
single node of the system leads to the recalculation of the whole DAE system. In
contrary, simulation of digital system requires only computing of the triggered

17

Chapter 2 Fundamentals of Verification Techniques

logic gates/networks, but not the whole system. This often leads to a speed up
of 10 to 100 times compare to analog simulator [SN90]. Secondly, an electrical
analog signal consists two components: voltage and current, in a continuous
value representation. The digital signal contains only finite states (1, 0, X and
Z). During the transient simulation, the time step of the analog simulator are
depending on the accuracy setup of the simulator and the linearity of the circuit,
while digital simulator only processes the existing events at each time point,
which has been defined by the time scale and resolution.

Based on these facts, a mixed-mode simulator has to fulfill the following
criteria, in order to overcome the basic issues resulting from the mentioned
difference between the simulators:

• Unified netlist: A netlist serves as the input of the simulator, due to the
different component representation and simulation algorithms of analog
and digital systems, a mixed-mode simulator require an unified structural
representation of the overall system. Fig. 2.9 shows a simple example,
where the output of an digital inverter serves as the input of an analog
inverter.

Digital Analog

?

Figure 2.9: Simple mixed-signal system example.

Both analog and digital netlist are shown in Fig. 2.10. The mixed-signal
netlist shown in the same figure contains following modification. First, it
introduces the term hierarchy for the whole system. As one can observe,
the analog netlist is a "flat" description of the components’ interconnection,
while the digital netlist consists both components’ interconnection and
their hierarchical structure. Second, the mixed-signal netlist introduces a
more formalized language structure5. For the netlist shown in Fig. 2.10,

5The mixed-signal netlist shown in Fig. 2.10 uses the Verilog hardware description language
format, which is the default netlist format for the mixed-signal design in Cadence design

18

2.2 Simulation-based verification methods

module inverter_dig (out, in);

output out;

input in;

INV inst1(.o(out) .i(in))

endmodule

module TB_mixed_inverter(vout, in)

inverter_dig inv (.o(vout), .i(in));

PM0 (vout, vin, globals.\vdd! , globals.\vdd!)...;

NM0 (vout, vin, globals.\gnd! , globals.\gnd!)...;

vsource #(.type("dc"), .dc(1.2)) V0 (globals.\vdd!, globals.\gnd!);

additional connect modules

PM0 (vout vin vdd! vdd!) p_xx_m130e w=2u \

l=120.00n as=6.8e-13 ad=6.8e-13 ...

NM0 (vout vin gnd! gnd!) n_xx_m130e w=2u \

l=120.00n as=6.8e-13 ad=6.8e-13

V0 (vdd! gnd!) vsource dc=1.2 type=dc

...

Analog netlist Digital netlist

Mixed-signal netlist

Analog part

Digital part

Interface

Figure 2.10: Mixed-signal netlist of the system shown in Fig. 2.9.

the analog devices are hierarchically embedded into a netlist format similar
to the digital one. An more advanced feature of the mixed-signal netlist is,
that it can also help the designer to describe different part of the system
at different levels of abstraction.

• Uniformed signal representation: An uniform signal representation in both
simulation domains is important for accurate simulation results [AD+90].
Analog simulator uses 64-bit double precision to present the value of voltage
and currents, while digital simulator basically only using "0" and "1" to
describe the logic signal. Thus a proper conversion between analog and
logic signal has to be considered during the simulation. One possibility
is to consistently use double precision for both signal forms according to
[AD+90], [SN90] and [New78]. Other approaches such as converting the
analog value into a 64-bit logic representation [Che09] or adding double
precision support in the logic simulator [HC09] involve the application of
HDL, which will be described in detail in chapter 3.

• Seamlessly linking the simulation modes (or interfacing the signal domains):
When both analog and digital nodes are connected together, special in-
terface elements have to be applied in order to convert digital states into
analog/electrical values (voltage6 or current) and vice versa. Basically,

tools, please refer the chapter3 for more detailed description.
6By default, digital states are converted to specific analog voltage levels, except for current

19

Chapter 2 Fundamentals of Verification Techniques

two cases have to be considered: electrical-to-logic and logic-to-electrical,
the order of the names indicates the direction of signal conversion. Logic
values are considered as more abstract compare to electrical value [JH06],
a conversion from electrical to logic signal implies converting analog values
to a higher abstraction level with less details, e. g. removing the current
information. In contrary, converting from logic to electrical means a con-
version from higher levels of abstraction to lower levels [SN90]. The major
issue, which has to be addressed here, is that the logic states don’t possess
enough information to be handled in the analog simulator.

Digital Analog

V1

R1
…

Vn

Rn

Figure 2.11: Details of a logic to electrical interface element.

Fig. 2.11 illustrates the interface element for the example shown in Fig. 2.9.
The output of the logic gate is directly connected to the input of the
analog inverter. In order to overcome the mentioned issue, the interface
elements acts as an array of switchable voltage source, each alteration
of the logic state leads to the switching to specific voltage source in the
array. Higher number of the array elements in the interface will result in
higher accuracy, but will also slow down the simulation [SN90]. Similar
approaches such as the automatic insertion of HDL connect modules (CM)
during the simulation [Mey03] will be discussed in detail in chapter 3.

• Synchronization of simulation time: During the simulation, time is ex-
pressed as a real number in analog simulator and as an integer multiple of
the time resolution (minimum time unit) in digital simulator. Thus the
mixed-modes simulator should be capable of handling both time repre-

mode logics.

20

2.2 Simulation-based verification methods

sentations. One of the existing approaches is to unify the minimum time
resolution for both simulator [New78]. Besides unifying the simulators’

tanalog

tdigital

Analog time steps

Digital events

Figure 2.12: Time step synchronization between analog and digital solver during
a mixed-mode simulation. Here, backtracking algorithm.

time resolution, there are essentially two methods for the synchronization
of the simulation time steps [ZG+95]:

1.) The backtracking algorithm, illustrated in Fig. 2.12, which allows both
simulators to progress in its own time step until its internal activity has
ceased [ZG+95]. If e. g. a digital event has triggered the analog simulator
before the end of the analog time interval, all results generated after the
digital event are discarded. The analog simulator has to track back to
the time point of the event and re-simulate with a smaller time step, in
order to get accurate results. This technique has been used in [Vla91] and
[AD+90].

2.) The lockstep algorithm, in which both simulator progress with same pre-
defined time step. The analog simulator can reduce the size of the time
step further, when convergence issues occur. If any digital events happens
between two adjacent time points, the unified time steps will be refined.

Simulators exhibit the mentioned characteristics are capable of assisting the
simulation-based verification approach for AMS circuits and systems.

2.2.4 Co-Simulation approaches
Besides simulating both analog and digital domain with an unified simulator,
some tools also offers the support for the interaction with external simulators.
Co-simulation require not only the proper synchronization between the analog
and digital systems, but also additional data and time step alignment between the
internal and external simulators, which leads to higher demand for computational
power.

21

Chapter 2 Fundamentals of Verification Techniques

Most modern mixed-signal systems are designed with a mixture of hardware
and software algorithm components. The specification and implementation of
the algorithm can be done with system simulator or tools at higher abstraction
level. Verification of the complete system require sometimes the interaction
between hardware and the specified algorithm, especially for the case of RF MS
SoC, where the algorithm, software and hardware are tightly meshed.
Typically, co-simulation is only feasible, if part of the system is extremely

optimized and designed with the help of the external simulator. In that way,
the overall simulation performance and the time savings compare to merging
the design into the main simulator are still high, despite of all additional data
and time step synchronization difficulties. Besides the mentioned case, the
acquisition of external intellectual property (IP) may also lead to the application
of co-simulation approach for the verification of the whole system. Part of
existing co-simulation approaches are: Matlab® simulink with Cadence® AMS-
Designer [Ams], Verilog/ VHDL-AMS with SystemC-AMS [ZGH10], SMASH
with simulink [Sma] and Ptolemy [BH+94].

2.2.5 Assertions

A typical simulation-based verification scenario comprises a set of test cases
with their corresponding input stimuli for the DUV, the results are checked
according to the specification. Such kind of tasks are often done manually by
the designer/verification engineer. Especially for the analog subsystem, the most
common verification task is to manually inspect the output waveform of the
DUVs.
Assertions are statements that unambiguously express the property of a

model to be true [CD+10], if one of the statements is false by any reason, it
automatically indicates an error. With the help of assertion generated error
reports, the verification engineer can debug and analyze the design without
spending too much time to inspect the output waveforms of the DUV. Each
statements may contain logical and temporal conditions, which have to describe
design properties unambiguously and precisely [CD+10]. For digital design,
assertions are comment-like statements coded within the DUV [WGR05]. For
AMS Design, assertions can be implemented either as post processing evaluation
expressions or as macro models placed in the netlist.

Assertion-based verification

Assertion-based verification, as shown in Fig. 2.13, returns true, when every
conditions in the statements has to be fulfilled during the simulation [Mey04].
While originated in software design and thus well supported in digital design
and verification flows, assertion-based verification is a rather new concept for

22

2.2 Simulation-based verification methods

System

specification

DUV

Property

statements

Input

Stimuli

True/False ?

Assertion-based verification

Figure 2.13: Assertion-based verification flow.

AMS verification environment [JPB10]. Currently, the idea of putting assertions
into AMS design and verification flow are partly supported during mixed-signal
simulations [Cad10] [JPB10]. Still, they suffer from various implementation
restrictions due to the nature of analog signals, most AMS assertions still require
model representation of analog circuits at higher abstraction level (s. chapter 3).
Assertion-based verification approach cannot cover all possible states of the

system, due to the incomplete state space coverage of the simulation-based
verification approach. However, implementing the statements leads to better
formalization of the system specification.

2.2.6 Verification coverage

An AMS design cannot be verified exhaustively using simulation-based verifi-
cation approach, due to its almost infinite inputs and states [WGR05] [Ste11].
However, the verification team still needs metrics to determine the quality and
completeness of the verification, in order to deliver the design to tapeout with
sufficient confidence. Verification coverage can be regarded as a measure of
the mentioned confidence [Lam08]. Unlike the coverage measurement approach
for digital design, for which a bunch of mature tools [Cad11d], standardized
languages [Ber06] and flows already exists, define a proper coverage for the
analog circuit is still an ongoing research topic. Generally, the concept of analog
verification coverage suffers from two aspects:

1. Analog circuit verification still relies too much on manual interaction.
Firstly, manual inspection of the DUV’s output waveform is still a major
task of the analog design flow, analog designers stick to this tradition.
Secondly, verifying some of the specified parameters requires additional
post processing and calculation of the DUV’S output waveform, this kind
of specification is difficult to implement as assertions.This is also part of the

23

Chapter 2 Fundamentals of Verification Techniques

reasons, why analog design is still not well formalized and require designers’
working experience based assumptions in addition to the specification.

2. Lack support: neither the language nor the tool are mature enough to be
integrated into existing design flow.

In order to overcome the mentioned difficulties for AMS verification, the
simulation-based verification method for analog centric mixed-signal circuits has
to be classified further, so that the motivation of the proposed AMS verification
flow can be outlined.

2.3 Simulation-based mixed-signal verification methods

On a finer scope, the simulation-based verification for AMS circuits and systems
can be further classified into two different types: performance verification and
functional verification. Although the boundaries between the respective types
partially overlap, it is important to distinguish the main goals of both performance
and functional verification, especially for the development of today’s nano-scale,
highly complex integrated RF mixed-signal designs.

2.3.1 Performance verification
As the name already indicates, the performance verification of mixed-signal
circuits is a set of tasks to assure the circuits and systems are meeting their
designated performance specification [IEE90], such as speed, linearity, gain or
noise. Performance of the circuit is still the main concern of analog designers,
thus, analog circuit verification still relies on performance verification and a lot
of time in the analog design flow are spent to verify whether the noise figure or
linearity fulfill the specified performance requirements.

One of the most established tools for the performance verification of integrated
analog circuits is the Simulation Program with Integrated Circuit Emphasis
(SPICE)[Nag75]. Since its first release, SPICE has got various improvements in
terms of the solve stability, simulation efficiency and additional algorithm for
RF circuits. Recent developments and optimizations have increased simulation
efficiency of RF/analog subsystems by parallelizing and eliminating the need
of solving large sets of differential equations at high speed [Cad] [Bda]. Still,
analog design is a difficult task, complexity and chip size of todays RF SoCs are
increasing drastically while technology nodes continue shrinking. This leas to
the down scaling of supply voltage level and geometry size of the transistors,
which makes the design of analog block even harder to meet the performance
requirement.
Simulation of RF mixed-signal SoCs suffers generally from two aspects. One

is the demand for small simulation time steps, arising from the high frequency

24

2.3 Simulation-based mixed-signal verification methods

signals and analog nonlinearity, the other one is the purely tremendous size
and complexity of today’s circuits. While there are some enhanced simulation
options for RF circuits such as periodic steady state analysis (PSS) [Cad11f] or
harmonic balance (HB) [Cad11g] [Hei92] they all suffer from the fact, that they
are not applicable to large and complex mixed-signal circuits [Kun05], which
in general don’t provide those basic periodic conditions. The only simulation
method that is currently implemented in an acceptable fashion for mixed-signal
verification is transient! Some other strategies, like Fast-Spice, try to fight the
simulation requirements by using pre-compiled table models for the transistors,
but in the praxis, these are not accurate enough for the desired simulations,
when using aggressive simplification settings.

According to industry estimates in [Meh10], more than 50% of SoC design
re-spins at 65 nm and below are due to mixed-signal and functional errors,
such as connectivity bugs, misinterpreted digital control sequences or wrongly
inverted signals [Che09]. This leads to the fact, that the complexity of analog
blocks in mixed-signal design is increasing in a more functional way, performance
verification of analog circuits using efficient analog solvers cannot cover all
the functional state space of modern mixed-circuits. In order to achieve high
confidence of the design, verification engineers have also to focus on ensuring
the functionality of the system. The so called functional verification methods
will be described in the following.

2.3.2 Functional verification
According to [Mey04], functional verification have to determine that the design
will operate as intended based in the overall system specification. It is a structured
and iterative process. Historically, functional verification was done when the
hardware prototype has been built. If any issue is found, the prototype will be
modified to fix the error, design change will also follow accordingly. This leads
to following assumptions [Mey04], which has to be fulfilled:

1.) The internal operation of the prototype has to be visible for the verification
engineer, in order to determine the source of the errors.

2.) The prototype has to be modifiable, in order to fix the error, so that the
original design can be changed accordingly.

3.) Besides the quantity of the error has to be kept small, there should not
be any severe errors in the prototype. If the prototype cannot power up,
assumption 1 and 2 cannot be hold true.

For integrated mixed-signal systems, the prototyping causes significant costs.
Additionally, the internal operation of a highly integrated SoC is barely visible for
measurements, all measurements and performance evaluations are only possible

25

Chapter 2 Fundamentals of Verification Techniques

at the edge of the chip. A small functional error could mean that not any
evaluation would be possible at all, which subsequently prevents the possibility
to discover the source for the malfunction. Based on these facts, neither of the
mentioned assumptions can be hold true. Therefore, it must be guaranteed that
the chip itself is functional before a prototype is built(prior to tapeout), this
leads to the purpose of functional verification for the state of art RF mixed-signal
SoC.
What is functional verification of a typical design prior to tapeout about?

For the chip’s mask layout, there are plenty of tools available to do a physical
verification [Cad09] [Men07] in order to ensure that the schematic and layout
match each other. These methods are sufficient to guarantee that there are no
further discrepancies between the schematic and the layout. Still, the physical
verification cannot proof the functional correctness of top-level schematic itself
down to each single building block. Functional verification is not solely about
checking if all wires are connected on the top level, it’s more about verifying
whether timing requirements are met, if phase assignments are correct, if servo-
loops are working and also if they are trimming the system into the right direction.
In addition to this proof of functionality, it should be verified, that the correct
version of a block has been implemented. To put it briefly, functional verification
prior to tapeout conducts a set of simulations in order to prove the correct
functionalities of the whole chip. It is a simulation-based verification, which
requires high coverage in order to grant high confidence to the tapeout. While
one might argue that the formal verification methods(s. section 2.1) are the
only way to guarantee that the system is error free, but with the rising of the
complexity level of the mixed-signal systems, the formal methods reach their
limits considering the tremendous computational power required to solve and
prove the exhaustive mathematical models.

Both formal and simulation-based verification techniques suffer from a common
issue: neither there are tools capable of simulating the whole chip at transistor-
level on time, nor there are enough memory or computational power to formally
prove the functional correctness of the chip. The subsequent chapters and
sections will introduce and illustrate the mentioned verification challenge and
some ideas for its solutions in detail.

2.4 Fundamentals of hierarchical verification approach for RF
mixed-signal SoCs

In order to understand and meet the verification challenge mentioned above, it is
necessary to introduce two terms, hierarchy and level of abstraction. Both terms
are the foundation of a formalized design methodology for mixed-signal systems.

26

2.4 Fundamentals of hierarchical verification approach for RF mixed-signal
SoCs

2.4.1 Design methodology for integrated mixed-signal circuits

According to [IEE90] Hierarchy is defined as "A structure in which components
are ranked into levels of subordination; each component has zero, one, or more
subordinates; and no component has more than one superordinate component."
Fig. 2.14 shows the conventional mixed-signal design flow. it comprises both

Figure 2.14: Conventional design flow for AMS circuits. The architecture of the
design for analog and digital circuits are derived from the system
specification. Unlike the formalized and automated digital design
flow, most part of the analog design flow are manual tasks. The
derivation of specification from the system down to each block are
mostly based on the individual interpretation and experience of the
designer.

analog and digital design as parallel paths and unifies both designs at the end
of the design cycle. For the digital design flow, the algorithm for the system
can be derived from the system specification. Based on the confirmed algorithm.
The design of each blocks are done hierarchically using HDLs. A software
controlled synthesis tool generates the proper hardware based on the HDL

27

Chapter 2 Fundamentals of Verification Techniques

design automatically. After the synthesis, the place & route tool generates the
corresponding layout of the system and extracts the timing specification based
on the transistor specification and routing parasitics. The overall digital design
flow is therefore well formalized and automated.
In contrary to the digital flow, traditional analog design hierarchy is build

up by interconnecting the devices such as transistors and passive components.
In this way, small sub blocks are connected to larger functional units, design
exploration, performance and functional verification are applied more or less
together. This so called bottom-up approach has been standard for many years
although it is hardly applicable for today’s mixed-signal SoCs. On the one hand,
the bottom-up approach could increase the probability of misinterpretation of
the specification, which could lead to functional design errors. Since all the
blocks are connected together at very late stage of the design flow, the chance
to discover and correct the bug is low and the effort is high. On the other hand,
most architecture problems of modern mixed-signal SoCs can only be disclosed,
if all blocks, or at least a large subset, are merged and investigated together.
If any error are found at this level, the cost and effort for re-design with the
mentioned bottom-up approach will consume a significant part of the project
resource. Still, the bottom-up approach remains the dominant design flow for
small performance-critical AMS system [KC+00].
The top-down approach, proposed from [CM+92], [DS+94] and [CE+97],

tries to address the mentioned issues and has been widely accepted in the
industry. It is now the standard method to design complex mixed-signal SoCs.
Here, the architecture is firstly defined and optimized at system level. The
system is proven to work by system simulation tools [FH+05] (e. g. Matlab®
simulink). The requirement for the subsequent blocks and corresponding circuits
are derived right after. Still, designers have to derive the specification of their
blocks manually based on their own interpretation and experience. Commonly,
the specification of an analog system is done in a hierarchical way. In the
literature, this method is referred as Hierarchical decomposition [IEE90]: "A
type of modular decomposition in which a system is broken down into a hierarchy
of components through a series of top-down refinements."
For example, in a state of the art wireless communication SoC, shown in

Fig. 2.15, the RF transceiver front-end is specified in 4 hierarchy levels:

• System level At this level, the overall system requirement is defined
based on the specific communication standards. The standards dictates
system parameters such as the allowed frequency range, the data rate, the
signal dynamic range, the modulation scheme and the maximum allowed
bit error rate (BER). Generally, the standard itself cannot explicitly define
the system architecture, as along as the architecture derived from the
standards fulfill the mentioned specification and requirements. For a

28

2.4 Fundamentals of hierarchical verification approach for RF mixed-signal
SoCs

communication system capable of handling multiple standards, personal
experience and interpretation of the system designer plays an important
role at the construction of the architecture.

• Macro level As the system architecture is fixed, the basic requirements of
the RF front-end can be firstly derived. Here, the transceiver architecture
within its corresponding parameter, such as reference sensitivity level,
interference level, dynamic range and overall noise figure, will be specified
in detail.

• Block level Based on the architectural specification of the system, require-
ments for each block at the signal path can be derived subsequently. For
Example, in Fig. 2.15, the frequency synthesizer of the receiver has to fulfill
the specified phase noise and settling time requirements, these requirements
can be used for the dimensioning of the charge pump current, loop filter
band width and VCO (voltage controlled oscillator) circuit topology.

• Module level At the module level, the detailed circuit topology and
parameters are decided. The circuit designer uses the specification here to
implement and verify their design.

One essential issue during the hierarchical specification of the system exists in
the fact, that the way to specify the analog part from system to module level
is not explicit without ambiguity. E. g. there are several receiver architectures,
which can fulfill the communication requirement, different receiver architectures
leads also to different requirements for the subsequent blocks at lower hierarchy
levels. Therefore, it is important to ensure the chosen architecture down to each
module is the most optimized one for the application. Additionally, an adequate
verification flow have to be established, in order to accompany the design flow
at every hierarchy level. Directly verifying the whole system can be difficult for
a numerous reasons: long simulation time, verification software limitation and
reduced observability can clearly decrease the chance of finding bugs. Therefore,
a large system has to be hierarchically decomposed into small subsystems or
blocks recursively, until their sizes can be handled by verification tools [Lam08]
with acceptable simulation performance.

2.4.2 Levels of abstraction
Today’s wireless SoC contain several RF front-end in different operation modes
for diversity, connectivity and communication. Each front-end operates over
different channels and various gain states. Additionally, there are numbers of
calibration loops and power saving modes controlled by the digital back-ends.
Extensive simulation-based verification with reasonable coverage therefore can
span large numbers of simulation-runs. Even the latest mixed-signal simulators

29

Chapter 2 Fundamentals of Verification Techniques

Figure 2.15: Design hierarchy for the RF front-end of a state of the art wireless
communication SoC.

30

2.4 Fundamentals of hierarchical verification approach for RF mixed-signal
SoCs

cannot handle a millisecond of chip level simulation [Che09]. Even the system can
be hierarchically decomposed into small subsystems, the mixed-signal simulation
at transistor-level can still take days or weeks to finish. Therefore, abstract
representations of the system are required to increase the simulation performance.
According to [IEE90], abstraction is "A view of an object that focuses on

the information relevant to a particular purpose and ignores the remainder of
the information." Respectively, level of abstraction is the degree to which
inforamtion about non-ideal effect or structure of the object is neglected compare
to the dominant behavior of the entire system [MG08]. For digital design, the
idea of using abstraction is clearly defined through the whole design flow There
are 4 abstraction levels in general:

• Behavioral - At behavioral level (also referred as functional level), designer
defines the arbitrary functional blocks, so that they can be used for system
level simulation. A behavioral of the block contains the relationship
between its input and output. Normally, only I/O behavior is specified,
emphasizing the systems operation principles and there is no information
about the internal structure of the system.

• RTL - Register transfer level description consists of logic combinational
(multiplexer, adder) and sequential (latch, counter) components. RTL level
is referred as an implementational view [Lam08], it is used for the data
path design and evaluation of alternative architectures. It doesn’t provide
inforamtion about race condition or timing issues.

• Gate-level - At gate-level of the digital design, the blocks are grouped
into basic logic gates, which describes the transistor-level behavior in
discrete logic states and simple boolean operations. It can provide timing
information of each gates and the overlying blocks and information about
hazards, glitches and race conditions. Normally, the gate-level description
is automatically synthesized based on the RTL level. After the layout
generation with place and route tool, more detailed timing information
include path delay can be provided at gate-level.

• Electrical - At electrical level, the digital design can be simulated with
SPICE-like simulator. Although it is not common to perform an electrical
level simulation for conventional digital design, it is required in some
timing critical applications. Additionally, electrical level is also required
for detailed physical level verification such as mixed-signal layout versus
schematic.

As one can observe, the implementation of a digital system passes through
multiple abstraction levels, from functional all the way down to the electrical
level. From the RTL down to layout, each intermediate abstraction levels can

31

Chapter 2 Fundamentals of Verification Techniques

be subsequently generated using synthesis tools. Additionally, it is evident that
the higher level of abstraction of the system, the faster it will simulate. Since
digital circuits dominate most of the mixed-signal chip area, its design can profit
significantly from the multi abstraction level structure for the simulation-based
verification.

For the analog side, there are also corresponding levels of abstraction, shown
in Fig. 2.16. The description of the various levels of abstraction in the analog
design are based on the example of a continuous time filter shown in the same
figure.

• Pure functional - This level is considered as the highest level of abstrac-
tion [MG08], the behavior of the analog system are described by simple
mathematical equations consisting only the relation between input and
output signal. In Fig. 2.16, the filter is described by its Laplace transfer
function H(s) in frequency domain.

• Ideal behavioral - At this level, circuit components, such as ideal opamps,
capacitors and voltage-controlled voltage sources (VCVS) are connected
together to realize the transfer function mentioned above. Similar to RTL
level, it allows the designer to quickly check to architecture before the
design goes more into detail.

• Non-ideal behavioral - Similar to the ideal behavioral description, this level
consists additionally first order and second order non-ideal effects, such as
nonlinear properties or dynamic behavior are included. E. g. in Fig. 2.16,
the I/O resistance and basic dynamic behavior of the opamp has been
included in the description.

• Transistor-level - Also referred as circuit level. Here, the opamp is repre-
sented in terms of the MOSFETS with detailed physical models provided
by the technology foundry. All the performance parameter of the opamp
can be simulated and evaluated. This is also the abstraction level, at which
the analog designer are mainly focused during the whole design flow.

Although similar levels of abstraction in analog design are available, the possibility
to automatically generate the corresponding lower levels of abstraction are very
limited. Especially for the transistor-level design, there are no general tools for
analog circuit synthesis [CR88]. Thus, the creation of the abstraction above the
transistor-level has to be done manually, it is also one of the most important
task for the verification engineers.

2.4.3 Hierarchical Verification
As mentioned in section 2.4.1, the design flow of mixed-signal circuits is organized
in a hierarchical fashion. If the design process steps further, more detailed

32

2.4 Fundamentals of hierarchical verification approach for RF mixed-signal
SoCs

Figure 2.16: Levels of abstraction in analog design.

33

Chapter 2 Fundamentals of Verification Techniques

specification for the blocks at lower level will be given. At the end of the design
process, the whole system has to be verified as a single unit, in order to deliver
the silicon with enough functional confidence. How can this requirement to be
met without consuming too much project time? One way is to seamlessly embed
the mentioned levels of abstraction (s. section2.4.2) into the whole design flow.

Hierarchical modeling

During the top-down design process, depending on the concrete flow, the ab-
straction representation of the system down to block level has to be implemented
either by the designer or verification engineer. This allows a very fast architecture
exploration, so that the structure of the system can be determined quickly by
benefiting form the high simulation efficiency of the highly abstract system rep-
resentation. This requires the work of model generation or behavioral modeling.
Here, the term modeling is referred as a method to abstract from the detailed
description of the system or block and replace them by simplified equation or
I/O relationship.

For the digital design, the modeling and design work are unified, both abstract
model at RTL level and detailed model at gate-level can be described with
a single modeling language in a consistent way. E. g. using Verilog HDL or
VHDL (VHSIC-HDL: very-high-speed integrated circuits HDL). In this way,
mixed-level simulation [MG96]7 of digital circuit at different abstraction levels
can be done in a single simulator.
In contrary to the digital design, there is no automatic way to translate

the abstract analog models into its transistor-level representations. Thus, the
verification engineers have to transform the specifications into analog models in
a language different from the design language8. This leads to the manual model
implementation of the analog system though the whole hierarchy. According to
[IEE90], this task is also called hierarchical modeling: "A technique used in
computer performance evaluation, in which a computer system is represented
as a hierarchy of subsystems, the subsystems are analyzed to determine their
performance characteristics, and the results are used to evaluate the performance
of the overall system." Still, the analog models implemented according to the
definition are performance oriented, which targets the main concern of the
designer but might not consist enough details for the functional verification.
Models for functional verification have to catch the latest snapshot of the actual

7Also referred as multi-level simulation [SN90]. Here, the term mixed-level simulation
refers to the possibility of simulating sets of blocks at lower abstraction level, such as
transistor-level, with the rest of the system described in higher abstraction levels [KZ04].

8Although some simple analog models can be described in SPICE macro modeling language,
which is compatible to SPICE netlist, the model implementation for analog systems uses
mixed-signal HDLs (s. chapter 3). Since the SPICE netlist language set is not capable of
handling higher abstractions.

34

2.4 Fundamentals of hierarchical verification approach for RF mixed-signal
SoCs

design specification down to each block in the system. Therefore, additional
requirements have to be made for the modeling task, in order to achieve reasonable
coverage of functional verification.

Requirements for hierarchical modeling and verification

For a state of the art SoC, verification engineer has to face 4 major challenges
during the modeling and verification process:

• Enormous state space size yields lack of comprehensive coverage. Simulation-
based verification requires to simulate each possible current state and input
combination, in order to verify exhaustively that a chip is full functional.

• Finding source of incorrect behavior. finding source of the bugs, especially
due to mixed-signal functional error out of thousands of signals, is time
consuming and messy.

• No golden reference model. Especially for the analog side, since all the
models are manually implemented, there is no models that can be served
as reference.

• Absence of effective automation approach for analog modeling. As already
mentioned, analog models are primarily targeting the performance issue
of the analog design, there is no automatic way to generate additional
functional details in the model for functional verification.

In order to meet the challenge and deliver a functional design, following require-
ments has to be fulfilled.

1.) Rather then verifying the entire system at once, tackle down the system
into subsystems and verify them separately. Once the smaller, but more
manageable subsystems are verified, the whole system can be assembled
together and the verification engineer can simulate the more abstract
version of them to ensure the functionality of the whole system.

2.) Determine the intent and the function of the DUV. Define the verification
goals and make verification plans in advance. Use assertion instead manual
inspection to disclose the bugs.

3.) Since the circuitry is organized in a hierarchical fashion, the models devel-
oped during the top-down design can never cover the required functional
details for the functional verification. Thus, model refinement has to be
done at certain stage of the design flow. Refinement is the process of turn-
ing a more abstract description into a more concrete description [Lam08].
The model refinement is typically processed bottom-up wise: using SPICE
level simulation to accurately extract the blocks’ properties at transistor-
level, so that the model based on these properties can correctly map the

35

Chapter 2 Fundamentals of Verification Techniques

required functional and performance parameters for higher abstraction
levels.

4.) Improve the design and verification flow. Although there is no automatic
way to generate mixed-models, a more formalized design and verification
flow can certainly reduce the manual interaction and yields less functional
errors in the design.

In addition to the above mentioned requirements, the design and verification
flow has to consider their different goals, namely, the different focus of designer
and verification engineer.

For a typical top-down design approach, designer starts developing their models
and testbenches at top-level9 using very abstract and fast behavioral models.
After the architecture exploration at top-level is done, the design of subsystems
at transistor-level will follow piece by piece. The abstract behavioral models will
be subsequently replaced by the transistor-level design. Since simulating the
whole system at top-level is too time-consuming, the verification team has to
start the model refinement and validation work as soon as the circuit design is
partially finished. In this way, depending on the accuracy requirement of the
test case, the top-level verification can be done by simulating circuits and refined
models at different levels of abstraction in a reasonable time frame.

Basically, each model has to be simulated side by side with their transistor-level
representation, during the model refinement flow, in order to check if they map
the essential circuit behavior, if the pins of the I/O between circuit and model
are match and if the simulation performance of the model is high enough for the
top-level functional verification. Additionally, it has to be kept in mind, that
the functional verification doesn’t lend itself to performance verification. So the
designer will still need to run SPICE simulation for their design. The difference
between both teams are the input stimuli of the testbench: designer focuses
more on a specific operation mode of the circuit and measure its performance,
verification engineer, in contract, has to focus on the controls, switches of different
operation modes and configurations. Only models with functional correctness
and accuracy can find out if the bias current is wrong, or the control is inverted
from what the specification requires.
Furthermore, the choice of modeling languages and techniques though the

whole design hierarchy also plays an important role in the design and verification
flow. Modeling targets between designer and verification engineer are different,
which demands a modeling language capable of handling both requirements.
The modeling language has also to be compatible with mixed-signal simulators,
so that the mixed-level and mixed-domain can be supported without considering
to co-simulate with an external simulator. Randomly choosing a temporary

9The term top-level is referred as the highest hierarchy level of the chip in the design flow.

36

2.4 Fundamentals of hierarchical verification approach for RF mixed-signal
SoCs

suitable modeling language could lead to usage of different HDLs, which can
lead to "HDL chaos" in the whole verification flow. In worst case, it can cause
netlist or elaboration error, which prevents the simulator to execute or leads to
wrong simulation result. Part of the available HDLs, their suitability for the
functional verification of mixed-signal system and different modeling techniques
at various levels of abstraction will be addressed in detail in the next chapter.

37

3
Hardware Description Languages and Modeling

Techniques for Mixed-Signal Verification

Behavioral modeling of RF/mixed-signal blocks at different levels of abstraction
is the core part in the state of the art SoC design. At higher level of abstrac-
tion, unnecessary implementation details will be reduced, the model consists
only essential functional details. Hence, the system behavioral becomes more
understandable and the simulation performance will also increase. It is a method
consistently getting more usage in the industry as a part of the design and
verification flow for highly complex integrated systems. This chapter will provide
an overview of the HDLs and modeling techniques used in this work.

3.1 Overview of available HDLs

Standardized mixed-signal HDLs, which are implemented by several companies
and open source initiatives, offer a possibility to model the behavioral of the
circuits and systems. They reduce the number of equations, by substituting
the abstract coherences between the components with simplified mathematical
descriptions. Modeling techniques and HDLs are consistently developing, in
order to challenge the escalating complexity of today’s SoCs. Fig. 3.1 shows part
of the current available HDLs with their optimized task fields in the SoC design
and verification flow.

39

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

Transistor

Gate-level

RTL

Functional behavior

HW/SW

System Architecture

SPICE

& derivative

Verilog

-AMS

Verilog-A

VHDL

-AMS

SystemC

AMS

Matlab

C, C++System

Verilog?

Figure 3.1: Part of the available modeling language and their reachable design
hierarchy. Deduced and adapted from [BD+09]. The languages
highlighted in ellipses are in the focus of this work.

As one can observe, there is no HDL currently, which is capable to handle
the complete design hierarchy. For design focusing on chip level, Verilog and
VHDL are most suitable. As the design hierarchy moves up, most HDLs are
C-based. Needlessly to mention, that a seamless link between the levels of
hierarchy and the corresponding HDLs is strongly required for modern SoC
design.

3.1.1 Classical HDL

From the prospective of reachable abstraction levels within the design hierarchy
and due to historical reasons, the current available HDLs can be segmented into
two groups: classical and modern1. The classical ones are widely established and
fully supported by most of the simulators in a state of the art design flow. The
modern HDLs are more flexible and located at a higher abstraction level from the
very beginning. Although the boundary between these to groups overlap at some
points, the development of HDLs clearly shows a trend toward compatibility to
software programming languages, such as C++. Still, classical HDLs dominates
the lower level of design hierarchy, which is more hardware-related.

Verilog-AMS and VHDL-AMS

In the 80’s the design of integrated circuits was netlist-based: designer creates
the netlist of corresponding circuits manually, the resulting netlist served as
the input for the simulator and physical verification tools. Classical HDLs such
as Verilog [IEE01] and VHDL [IEE08] are the main languages for digital

1This kind of classification may not be very accurate. The intention of the author here is
to show the HDL development trend, which is moving toward higher abstraction level
and more capable of handling a wide range of design hierarchies.

40

3.1 Overview of available HDLs

design. The emergence of complex SoCs has created a vital demand for mixed-
signal modeling and simulation, both HDLs became their AMS extensions (i. e.
Verilog-AMS [Ver09]; [Cad11c] and VHDL-AMS [IEE07]). Although different
standards, both HDL extensions offer additional capabilities to support the
mxied-signal design and verification flow. The usage of individual HDL is
strongly flow dependent, which is in turn rely on the tools used for the design.
For the work presented in this thesis, design and verification tools with more
focus on the Verilog HDL are used. Therefore, only the Verilog language
will be briefly introduced here.

Verilog is a hardware description language that is very similar to the program-
ming language C. However, in contrast to C, Verilog supports the important
concept of time, which is crucial for the desired modeling of time dependent
behavioral blocks. The initial goal in the development of this language standard
was to provide a HDL, that supports digital as well as analog constructs. Since
this is a high aim for two commonly completely different simulation strategies,
several subsets have been developed over time: Verilog supporting only dis-
crete time events and Verilog-A as the all-analog subset. Since a few years,
Verilog-AMS is now available as a derivative of the original language. It
provides both continuous-time and event-driven modeling semantics, and is
therefore suitable for analog, digital, and mixed-signal circuits. Current sim-
ulators are able to split the mixed-signal system into an analog (continuous
time) and event-driven (discrete time) partition, each having its own solving
approach2 using a synchronization procedure to couple both simulation domains.
For electrical systems, Verilog-AMS supports the predefined continuous time
discipline electrical (consisting of potential and flow) and the data type wreal,
which is handled by the event-driven engine and commonly interpreted as analog
voltage value with double precision(although it could also be treated as current
in the same way). Furthermore, common digital logic types are also available.
It also has to be mentioned that in addition to Verilog, SystemVerilog

[IEE09] and its mixed-signal extension SystemVerilog-AMS is a new standard-
ization approach targeting to gain more market share. Compared to Verilog,
SystemVerilog especially introduces structures, pointers and recursive sub-
routine capabilities. At the moment, library extensions such as the Universal
Verification Methodology for SystemVerilog (UVM) provide reusable build-
ing blocks for architectural modeling and verification environments [Acc11].
SystemVerilog can be considered as the advanced development of Verilog
with object-oriented feature, which could come in handy for the baseband mod-
eling approaches described in section 3.2.3. Still, SystemVerilog itself focuses
more on digital design at the moment and its mixed-signal subset is still under
standardization process. Thus, it is a maturing and promising HDL, but not all

2Please refer section 2.2.1, 2.2.2 and 2.2.3 for detailed description.

41

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

simulators support the full capabilities of the language.
In a similar way as the relationship between Verilog and Verilog-AMS,

VHDL is a subset of the all-in-one language definition VHDL-AMS. Due to
historical and regional reasons mentioned in [RS09], VHDL is commonly used for
digital designs and rarely for analog modeling, which maybe because the language
is less intuitive for analog designers than Verilog. Although its possibilities
to define new data type constructs outperform Verilog, most state of the art
layout and design software only support Verilog for top level netlisting, since
the Verilog-AMS language construct is closer to the circuit design.

3.1.2 Modern HDL

As already mentioned, the trend of HDL development is moving toward higher
level of abstraction, since this is the only way to handle the rising complexity of
today’s SoC design. Additionally, expanding through the whole design hierarchy
shown in Fig. 3.1 is also the focus of modern HDLs such as SystemVerilog
and SystemC AMS, in order to meet the requirement of software/hardware
co-design. This is also the reason, why most of the modern HDLs are C-based.
In the following, a brief introduction of SystemC AMS will be given.

SystemC and its AMS extension

SystemC [AC06] [GL+02] [BD+09] is an standardized open-source C-based
HDL for modeling both hardware and software at different abstraction levels. It
is a modeling platform based on special C/C++ classes, libraries and a simulation
kernel for designs from the system-level, behavioral-level to register transfer level.
SystemC has enjoyed huge popularity since its introduction in 1999. Since then,
it has gained a wide acceptance and support from the industry side. Its IEEE
standardization in 2006 [AC06] has been coordinated by the Open SystemC
Initiative(OSCI) [Ope]. For hardware design, SystemC offers the Discrete-event
(DE) model of computation (MoC) [Gro02].

A typical SystemC module contains at least three parts [GL+02]. The first
part comprises the definition of ports, signals and variables. Using SystemC
classes sc_in, sc_out, sc_inout, sc_signal, the designers can define the ports and
signals used for this module. The second part consists both the initialization
of internal data and variables. The third part is the declaration of SystemC
processes as the member functions of the module, which describes the module’s
functionality. Basically, there are two types of process in SystemC, which are
typically created statically, namely the SC_THREAD and SC_METHOD. Both types of
process are created prior to the simulation execution. The SC_THREAD process will
be executed automatically at the start of the simulation. Commonly, it uses
infinite loops to model hardware logic. The SC_METHOD process is similar to the

42

3.1 Overview of available HDLs

Verilog always@ block [BD+09], which can be used to model the event-driven
behavior of the model. Since the main focus of standard SystemC DE MoC
are pure digital hardware, numerous approaches has been pursuit in parallel, in
order to push the AMS extension of SystemC to standardization.
The SystemC-A approach presented in [AJK05] uses a similar approach as

SPICE simulator. It supports systems variables, analog components and user-
defined equations as a set of ordinary differential and algebraic equations for
the analog solver. The analog solver uses the lock-step method for mixed-signal
time step synchronization (s. section 2.2.3) with SystemC and requires the
modification of the standard SystemC kernel.

The SystemC-WMS approach in [OBC05] allows to model the analog behavior
by implementing an wave theory-based analog interfaces(wave channel) and
accounting the load effect at the interface, which is used to connect the subsequent
analog blocks. This approach is fully compatible with the current version of
SystemC, but require the knowledge of the scatter parameter of each single block,
which might not be easy to find out for an integrated mixed-signal system3.
Additionally, SystemC-WMS require small discrete time steps for it analog
solver, which leads to the slow down of overall simulation in SystemC.
In contrary to both the mentioned approaches, the standardized AMS ex-

tension for SystemC, namely SystemC-AMS4 [Sys08b], uses a layer-based
synchronization mechanism to synchronize with the desiccate event SystemC
simulation kernel [BS+11]. Fig. 3.2 shows the detailed architecture of the OSCI
SystemC AMS extension 1.0 standard based on the information from [Sys08a];
[BS+11]. In order to support AMS behavioral modeling at different levels of
abstraction, it consists three modeling formalisms(also called MoCs: Models
of Computation): Timed Data Flow (TDF), Linear Signal Flow (LSF) and
Electrical Linear Network (ELN) MoCs [DH+08] synchronizing on top of the
existing standard SystemC kernel. In the following, the three mentioned MoCs
will be briefly introduced.

SystemC AMS model abstractions

Fig. 3.3 shows the three current MoC implementations for the AMS extension of
SystemC.

3On chip S-parameter is hardly to estimate. Commonly the impedance between the blocks
on chip is assumed to be high. Finding out the actual value and S-parameter, require
either new testbench or on chip measurement, both are not feasible.

4During the standarization process, the Proof of Concept(PoC) implementaion of AMS
extension to SystemC, which has been implemented from Fraunhofer IIS/EAS, is called
SystemC-AMS. In the following, only the standard name SystemC AMS will be used,
although most simulation results are based on the PoC implementation.

43

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

OSCI SystemC 2.2 discrete event simulator kernel

Synchronization layer

SystemC

methodology-

specific elements

- TLM

- Event-driven MoC

- Etc.

SystemC Layer

Sync. Layer

Solver Layer

View Layer

AMS methodology-specific elements

Linear DAE solver

Linear Signal

Flow (LSF)

Electrical Lin.

Networks (ELN)

TDF solver

Timed Data

Flow (TDF)

Figure 3.2: Standard SystemC AMS MoCs and the synchronization approach
with the current SystemC kernel according to [DH+08]; [Sys08a]
and adapted from [BS+11]. The standardized synchronization layer
will offer the freedom to integrate used-defined MoCs and solvers
built upon it.

f(V(t), I(t))

V(t)

I(t)

t t

Y(t) Y(t)

t

Level of abstraction

Electrical Linear Networks Linear Signal Flow Timed Data Flow

Figure 3.3: Currently available SystemC AMS formalisms according to [Sys08a].
As one can observe, the TDF MoC possesses the highest abstraction
level in the current implementation of the AMS extension.

44

3.1 Overview of available HDLs

Electrical linear networks (ELN) define the basic behavior and components
of electrical networks. The MoC can instantiate predefined linear network
primitives such as resistors, capacitors, inductors and controlled source. Similar
to the SPICE netlist, the modeled network of electrical components in ELN
MoC require the simulator to solve the corresponding DAE(s. chapter 2). Due
to its similarity to SPICE, the ELN MoC can describe the continuous-time
relationships between voltage and current in a conservative system, thus it
can be considered as the lowest abstraction level out of the three. Needlessly
to mention, that the simulation time and modeling effort for ELN are high.
Additionally, in the current PoC implementation, only linear DAE solver is
realized, which restricts the modeling capability to linear component only.

Linear signal flow models (LSF) supports the modeling of analog behavior by
using a set of basic mathematic operations such as addition, multiplication or
first-order time derivation. Similar to ELN, a LSF model is built up on a network
of such primitives represent the time or frequency domain behavior of the system,
which is also solved by the build-in linear DAE solver. However, since the LSF
models are generally non-conservative, it can be regarded as a higher level of
abstraction compare to ELN. Still, its capability to model a complex system is
limited.

Timed dataflow models (TDF) is used to simulate the sampled, discrete-time
signals, which can represent any C++ type. TDF is implemented to avoid the
overhead of the dynamic discrete-event scheduling imposed by the SystemC
execution semantics. There for, it can accelerate the simulation by defining a
static schedule [Sys08a]. For model representation of electrical systems, TDF
signal can represent voltage or current at the given time point. Both mentioned
features come very handy for the modeling of a complex transceiver system,
which will be described in section 5.3.2 and 6.3.2.

3.1.3 Comparison between mentioned HDLs
As Fig. 3.1 has been shown, both Verilog and VHDL HDLs are targeting the
same design hierarchy. Both languages support the description of networks as
conservative or signal flow based. Both are capable to describe AMS system with
its mixed-signal extension. Small difference: VHDL is ADA [WWF87] like and
therefore case insensitive, Verilog is C like and therefore case sensitive. Since
both HDLs have very strong tool dependency, It is therefore a choice of used
tools for design and verification, which will decide the usage of the HDL. The
primary advantage of VHDL is clearly its capabilities to handle used defined
data type constructs, which offers more modeling freedom but may leads to
model-incompatibility to the circuit level counter part. E. g. if the signal is

45

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

defined as an array or matrix type, it is not compatible to the netlister for
mixed-signal simulation. This leads direct to the primary advantage of Verilog:
most of the AMS design is netlisted as a Verilog-AMS netlist, which gives
both the designer and verification engineer all the features of Verilog [IEE01]
as well as its AMS extensions [Ver09]. Additionally, Verilog-AMS also offers
a vital feature for mixed-signal simulation, namely the automatic insertion of
predefined connect modules5(CM) at the interface between both analog and
digital domains during the elaboration phase which will described in detail in
chapter 4.
For pure digital implementation, both Verilog and VHDL are more closed

implementations, SystemC in contrary is open source. In SystemC, open
source allows kernel-level extensions [Pat05] as well as layer-based synchroniza-
tion approaches such as SystemC AMS. Furthermore, VHDL or Verilog
provides mainly the RTL abstraction, but SystemC provides the simulation
kernel suitable for designs from RTL level to System designs [Pat05]. This
also allows the model reuse at different levels of abstraction within the design
hierarchy [CA03]. Last but not least, SystemC AMS is targeted to model a
heterogeneous system, and therefore supports software and hardware co-design
[Pan01]; [CS+06]. The AMS extension of the classical HDLs are still focusing
on the hardware level. Apart from the mentioned facts, the flexibility offered
by SystemC AMS is one of the most important key points to use it for system
integration. E. g., SystemC AMS allows users to define their own signal type,
which will bring a lot of convenience to build the baseband equivalent models
without changing of the structure of ports. However, both ELN and LSF MoCs
provided by SystemC AMS will invoke the analog solver for the simulation,
which will greatly degrade the simulation efficiency. Hence, only the TDF MoC
and pure SystemC discrete time MoC will be used for the functional verification
approaches provided in this work. Table 3.1 shows a comparison of the mentioned
modeling languages.
Due to the tooling used in this work, the choice of modeling languages are

Verilog-AMS and SystemC, targeting different design hierarchies and sup-
porting the functional verification of the whole chip.

3.2 Modeling techniques for mixed-signal verification

Model generation, also called modeling, is the key components of today’s mixed-
signal design and verification. HDLs offer a possibility to model the behavioral of
the circuits. They reduce the number of equations, by substituting the abstract
coherences between the components with simplified mathematical descriptions.

5Please refer section 2.2.3 for the explanation of the mixed-domain interface.

46

3.2 Modeling techniques for mixed-signal verification

L
an

gu
ag
e

M
at

la
b®

si
m
ul
in
k

V
er

il
og

-A
V

er
il

og
-A

M
S

Sy
st

em
C

Si
m
ul
at
io
n
do

m
ai
n

V
ar
.a

A
na

lo
g

M
ix
ed
-s
ig
na

l,
ev
en
t-
dr
iv
en

ev
en
t-
dr
iv
en

b

Si
gn

al
va
lu
e

C
on

ti
nu

ou
s,

di
sc
re
te

C
on

ti
nu

ou
s

C
on

ti
nu

ou
s,

di
sc
re
te

C
on

ti
nu

ou
s,

di
sc
re
te

Si
m
ul
at
io
n
p
er
fo
rm

an
ce

Fa
st

c
Sl
ow

M
ed
iu
m

d
Fa

st

P
in

co
m
pa

ti
bl
e
?

N
o

Y
es

Y
es

e
Y
es

M
od

el
va
lid

at
io
n
eff

or
t

M
ed
iu
m

Lo
w

M
ed
iu
m

M
ed
iu
m

-
H
ig
h

M
od

el
cr
ea
ti
on

eff
or
t

Lo
w

M
ed
iu
m

M
ed
iu
m

M
ed
iu
m

-
H
ig
h

R
ea
ch
ab

le
ab

st
ra
ct
io
n

M
ed
iu
m

Lo
w

Lo
w

H
ig
h

a
D
ep

en
di
ng

on
th
e
Si
m
ul
in
k
si
m
ul
at
or

de
fin

it
io
n
of

si
gn

al
,
in

m
os
t
ca
se

di
sc
re
te

ti
m
e.

b T
he

A
M
S
1.
0
ex
te
ns
io
n
al
so

off
er
s
lin

ea
r
an

al
og

so
lv
er
.
H
ow

ev
er
,
an

y
ca
se

of
so
lv
in
g
D
A
E

w
ill

sl
ow

do
w
n
th
e
si
m
ul
at
io
n.

H
en

ce
,

on
ly

th
e
T
D
F
an

d
D
E

M
oC

w
ill

be
co
ns
id
er
ed

.
c U

si
ng

on
ly

th
e
Si
m
ul
in
k
di
sc
re
te

ti
m
e
si
m
ul
at
or

d
D
ep

en
di
ng

on
th
e
us
ag
e
of

th
e
an

al
og

su
bs
et
.
In

m
os
t
ca
se
,
th
e
an

al
og

su
bs
et

w
ill

sl
ow

do
w
n
th
e
si
m
ul
at
io
n
du

e
to

th
e
D
A
E

so
lv
in
g
pr
oc
es
s.

H
en

ce
,
us
e
on

ly
w
re
al

da
ta

ty
pe

w
ill

sp
ee
d
up

si
m
ul
at
io
n.

e B
ot
h

V
er

il
og

-A
an

d
V

er
il

og
-A

M
S
off

er
on

ly
pi
n-
co
m
pa

ti
bi
lit
y
fo
r
pa

ss
ba

nd
m
od

el
s.

Fo
r
ba

se
ba

nd
m
od

el
in
g
ap

pr
oa
ch
,o

nl
y

V
H

D
L

an
d

Sy
st

em
V

er
il

og
off

er
th
e
pi
n
co
m
pa

ti
bi
lit
y.

Ta
bl
e
3.
1:

C
om

pa
ri
so
n
of

th
e
m
en
ti
on

ed
m
od

el
in
g
la
ng

ua
ge
s.

V
H

D
L
an

d
Sy

st
em

V
er

il
og

ar
e
no

t
sh
ow

n
he

re
,

du
e
to

si
m
ila

rit
ie
s
to

th
e

V
er

il
og

H
D

L.

47

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

Fig. 3.4 shows the required models within the proposed mixed-signal design and
verification flow.

Figure 3.4: Models at different levels of abstraction within the mixed-signal
design flow. Each model in digital design are compatible with the
digital simulator. In contrary, for analog design, only analog models
can be simulated in an pure analog simulator.

For pure digital design, the modeling and design task are tightly integrated
into each other, since the design flow is well formalized and automated. This
is the reason, why digital blocks require almost no additional modeling work.
Furthermore, digital simulators work directly with any state of the actual design
and models. Thus, for the mixed-signal verification flow discussed in section
2.4.1, the required levels of abstraction through the whole design hierarchy at
chip level are available. In contrary to the modeling tasks in digital design flow,
analog blocks require hand-crafted models at every state of the design. In the
following, modeling techniques at different levels of abstraction for the analog
blocks will be discussed.

3.2.1 Analog modeling
Analog modeling using Verilog-A

Verilog-A supports behavioral and structural descriptions of an analog block.
Structural descriptions define the system by interconnecting components such as
other modules or pre-defined components. In contrary, behavioral descriptions

48

3.2 Modeling techniques for mixed-signal verification

are mathematical relations describing the I/O behavioral. Analog modeling can
be categorized further in three approaches: conservative modeling, signal-flow
modeling and event modeling.

Conservative modeling In conservative models, both potential and flow are
required to describe the system’s behavior. One useful concept for modeling
of conservative systems within Verilog-A is the concept of a branch [FM98].
It is defined as a path of flow between two nodes, where a node represents the
interconnection of two or more branches [Cad03]. For an electrical system, every
branch has an associated potential(voltage V(p,n)) and a flow(current I(p, n)).
The reference directions for branch and flow are shown in figure 3.5.

p n
flow

potential+ -

I(p,n)

V(p,n)

p n
+ -

a.) b.)

Figure 3.5: Associated branch, potential and flow in Verilog-A according to
[FM98]. a.) Abstract representation. b.) Electrical voltage and
current reference direction for a branch.

The contribution statement <+ assigns an expression to a branch (either poten-
tial or flow). The KVL and KCL are used to resolves the relationships between
the interconnected nodes, resulting in the admittance matrix for the MNA. Us-
ing behavioral description, only abstract mathematical operations are necessary
to define the blocks’ I/O behavioral. Therefore, less nodes and equations are
required to describe the same functionality. This also leads to the reduced of
entries of the matrices to be solved, which is the major reason why simulation
with analog behavioral models benefits from a significant speedup.

Signal-flow modeling In some cases, it is sufficient to describe the signal flow of
the electrical system based on only one of the two mentioned quantities [KZ04].
E. g. use only voltage discipline to model the output of a voltage controlled
oscillator(VCO). Here, the signal flow at the VCO output can be described in a
more abstract way. The can be connected to conservative models, but exhibit
higher simulation efficiency. So the signal flow models are frequently used during
the analog top down design phase.

Modeling analog event In order to model event-based analog behavior, such
as sample and hold, or relay, the event operators are used to evaluate the input

49

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

signals. Commonly the cross function is in charge to detect the clock signal or
some threshold behavior. Analog events allow Verilog-A models to execute
code conditionally if a certain event has occurred. The conditional execution
allows to detect e. g. zero crossings. Here the cross and timer are commonly used to
model such digital, reactive behavior in analog models. In this way, mixed-signal
circuit such as ∆Σ ADC can be modeled in pure analog fashion without using a
mixed-signal environment. More modeling possibilities for events can be found
in the current version of the Verilog-A and Verilog-AMS standard [Cad11c].
The output signal of the event-driven blocks will remain unchanged, as long as
no input events occur. This leads to the relaxation of analog time steps and
therefore even higher simulation performance compare to signal-flow models.
Nevertheless, event-based analog models still remain in analog domain. For
higher abstraction, it should be superseded by real valued modeling as described
in section 3.2.2.

Arithmetical and Analog Operators Both mathematical and analog operators
are available to support the behavioral modeling in Verilog-A.

• Mathematical operators - Verilog-A includes basic exponential and trigono-
metrical functions and operators for arithmetical and logical operations.
Additionally, numbers of random distribution functions are available.

• Analog operators - maintain an internal state and thus are subject of several
restrictions. They are not supported in functions or loop statements. If
applied in a conditional statement, only static input expressions can be
used. The analog operators include functions for time derivatives and
integrals of signals, as well as various filter implementations.

Analog modeling using SystemC AMS

Similar to the modeling techniques in Verilog-A, the ELN and LSF MoCs in
SystemC AMS can be used for conservative and signal-flow modeling in the
analog domain. Still there are three reasons showing that the analog modeling
capability of SystemC AMS is limited compare to the Verilog-A models.

1.) Limited option for analog operator: Compare to Verilog-A models,
the ELN or LSF MoCs don’t offer additional analog operator for event
detection, signal limitation or transition of signals. Although this operators
can be extended by user-defined module due to the flexibility of C++, it
limits the usability of the HDL.

2.) Limited support for analog analysis: The current PoC implementa-
tion of SystemC AMS only has a linear DAE solver for analog simulation,

50

3.2 Modeling techniques for mixed-signal verification

which generally limits the implementation freedom of analog models. Be-
sides that, only transient and AC, but no steady-state or periodic stability
analysis are supported. Additionally, the simulation time step has to be
pre-defined by the user, which may leads to convergence issue or inaccurate
results.

3.) Issues at mixed-domain interface: Verilog-AMS offers the auto-
matic insertion of necessary connect modules at the mixed-domain interface
for mixed-signal simulation, whereas the CMs have to be inserted manually
at the interface between ELN and TDF MoCs [Sys08a].

Based on these facts, it can be seen that SystemC AMS cannot show it true
potential by only modeling analog behavioral at low abstraction level. The usage
of analog MoCs in SystemC AMS is only feasible, if a large digital or mixed-
discipline system require certain dynamic behavior of the analog system, e. g.
a sensor front-end in the electronic stability control system(ESC). For general
analog model implementation in RF/analog design, Verilog-A is still the first
choice at the moment, due to the better but only commercially available analog
solver support.

Furthermore, the analog simulation performance is also not sufficient enough
for long term simulation of a whole mixed-signal SoC, especially if multiple
RF front-end are involved. Even with optimized analog models which reduces
the number of equations for the simulation at minimum and state of the art
high-performance simulators, it can take days and weeks to simulation just
a couple of millisecond chip-level action of a modern RF SoC [Che09]. The
bottleneck of the simulation performance for mixed-signal systems originates
from the solver mechanism of the analog simulator, which solves the whole
system matrix at variable step size depending on the highest frequency and
grade of nonlinearity in the system(s. section 2.2). In worst case, even with the
models, the problem arising from the nonlinearity and high frequency will still
force the simulator to solve the whole system for many small time steps and
run into convergence issues. In order to speed up the simulation and hence to
increase functional verification coverage, the only choice at the moment is to
move the analog behavior into digital domain and exploit the speed and capacity
of a purely event-driven simulator. In consequence, event-driven or equivalent
baseband models of analog blocks have to be implemented for the top-level and
chip-level functional verification.

3.2.2 Event-driven modeling
Analog behavioral model require SPICE-like simulator to solve the DAEs, which
can be regarded as the main bottleneck in the simulation performance for the
simulation-based functional verification. Especially for RF and nonlinear circuits,

51

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

the resulting small time step of analog simulator by solving the whole system
matrix and additional mixed-domain synchronization process will greatly reduce
or even wipe out the coverage of functional verification prior tapeout.

Event-driven modeling using Verilog-AMS

Fundamentally different to analog simulation, the digital simulation uses an
event-driven (also known as data flow) approach, which leads to a sensitivity list,
where each signal change triggers new evaluation of logical expressions at the
connected nodes in a sequential manner [HC09], but not for the whole system as
the analog simulator. It is obvious, that the digital domain uses the aspect of
time (data flow: one calculation after the other) and therefore does only provide
transient simulation possibilities. One important aspect here is to mention, that
digital solvers are not capable of iterating backward in time to the author’s
knowledge. Digital simulation concepts therefore can’t handle iterative features
as used in backward Euler and other formulas.

The Event-Driven modeling approach excludes the high frequency signal path
from the analog domain, e.g. using the wreal data type introduced by Verilog-AMS
[KZ04]; [JGH07]; [HC09]. It possesses continuous value(floating point numbers)
in discrete time domain6, so that analog values and behavior can be partially
mapped into an digital simulator based on the principle of oversampling. In
other literature [HC09], this modeling technique is also referred as Real Valued
Modeling(RVM) or real number modeling [WVM+09]. Using the wreal data type,
the analog signal path, especially the RF and nonlinear part, can be extracted
from the analog matrix and put into the digital, event-driven domain. Although
keeping the high frequency signals does not lead to less calculations per period
(they even might be increased depending on the sampling procedure [JGH07]),
but the number of equations that have to be solved for each of these time steps
will be reduced dramatically, since only isolated portions are calculated but not
the whole system matrix like the analog solver. The theoretical accuracy of wreal

(64-bit double precision) is comparable to standard analog signals and offers
even a better dynamic range as signals in the analog domain [Joe08]. Since the
whole system is modeled in a data flow manner, issues such as convergence error
coming from analog simulator can be avoided, resulting in reduced simulation
overhead and hence in a significant simulation speedup. [JGH07]; [WJ+09]
report a speed-up of over 25x compared to transistor-level simulation, and 16x
compared to analog behavioral models.

6wreal in Verilog-AMS is similar to real in VHDL-AMS.

52

3.2 Modeling techniques for mixed-signal verification

Event-driven modeling using SystemC

As one can observe in Fig. 3.2, there are two options to implement event-driven
model in SystemC. Either use the TDF MoC from the AMS extension or use
the pure SystemC DE MoC. Although different in semantics between SystemC
and Verilog-AMS, the principle to implement the models are almost the same.
However, it has to be mentioned, that the TDF MoC is a discrete time modeling
style, which only considers the signal in pre-defined and fixed sampling time
steps [Sys08a]. This mechanism uses its own local time annotation and does not
interact with the SystemC’s discrete-event kernel [Sys08a]. Therefore, using the
TDF MoC can reduce the overhead of the dynamic discrete-event scheduling
imposed by the SystemC execution semantics. In general, the TDF MoC can be
considered as a special case of event-driven modeling technique. Still, interaction
between TDF and DE MoCs requires additional synchronization process, which
can be done using additional I/O converter port 7.

Sample-based representation of analog signals

The aforementioned event-driven modeling technique uses real value to represent
analog signals in event-driven domain. Higher level of abstraction can be achieved
by only characterizing either potential or flow of the conservative system in
the discrete time simulator. The digital simulation kernel reconstructs the
signal with the model of zero-order hold(ZOH) [BN+05]. Therefore, real valued
representation of analog signals in event-driven domain are sample-based. In
order to achieve reasonable accuracy with the sample-based representation of
real valued signals, the sampling rate of the signal must come up with certain
oversampling ratio.

Mathematically speaking, the minimum sampling frequency of an analog signal
has to be twice higher than the highest frequency component, this is referred as
the Nyquist sampling rate. However, as one can observe in Fig. 3.6, applying
such low sampling rate in the practice cannot properly illustrate the signal in
the time domain and therefore hinder further debug possibilities. To avoid this
problem, a common rule of thumb in the practice is to set the sampling rate
from 10 to 20 times the highest frequency of interest [Joe08]; [Wan08]; [Lyo10].
In general, an oversampling ratio(OSR) of NOSR ≥ 10 ·NNyquist has to be used
in order to accurately represent the analog signal in the discrete-event time
domain.

Besides the mentioned OSR estimation, the corresponding time step has also
to be defined in the digital simulator. Therefore, an event-driven model of the
analog block requires either its own internal clock(also called virtual clock) for

7The detailed description of the synchronization process between TDF and DE is not the
main focus of this work, please refer [Sys08a], section 2.4 for more information.

53

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

A(t)

t

A(t)

t

A(t)

t

High OSR

Low OSR

Figure 3.6: Time domain representation of sample-based analog signals. Here, a
sinusoidal has been sampled with different OSRs, one can observe that
the signal with low OSR cannot properly illustrate the original signal
form in the time domain and thus reduce the debug possibilities.

determining the corresponding time step or a reactive behavior triggered by
changes of the input signals. Sometimes, both requirements are necessary in
order to accurately model the analog behavior in the event-driven domain.

3.2.3 Equivalent Baseband Model

While models at higher levels of abstraction in general can lower the number of
equations to be solved, the signal, that is treated as the models’ in- and outputs,
can be implemented in several ways. Each signal, that is to be simulated, consists
of data, typically modulated upon a carrier frequency. The real-world/physical
representation of a signal value, which especially includes the carrier frequency
as well as the modulated data packet itself is defined as Passband signal

A typical abstraction of this physical identity is to use a mathematical approach
to strip the carrier frequency from the signal itself, leading to lower frequencies
in simulation and therefore larger time steps. Especially for the simulation of
RF mixed-signal SoCs, where the typical bandwidth of the actual data is several
decades lower than the carrier frequency. Since the carrier frequency (assumed
as a constant value) is of no additional information for the system and hence
does not need to be taken into account during the simulation.
A modulated data x(t) with the carrier ω0 can be denoted as

x(t) = A(t) · cos [ω0t+ Φ (t)] = A(t) · <
{
ej(ω0t+Φ(t))} , (3.1)

54

3.2 Modeling techniques for mixed-signal verification

where A(t) and Φ(t) represent the amplitude and phase information of the data
packet. As shown in Fig. 3.7 and according to [JBS00], this can be shifted
towards zero carrier frequency, so that the equivalent baseband signal can be
described as:

-f0 f0

A

f

Figure 3.7: Obtain the equivalent baseband signal representation by shifting the
passband signal towards zero in the frequency domain.

xBB(t) = A(t) · ej(ω0t+Φ(t)) · e−jω0t = A(t) · ejΦ(t) (3.2)
= A(t) · [cos (Φ (t)) + j · sin (Φ (t))]

The complex equivalent baseband signal, which is independent to the carrier
frequency ω0 can be denoted as:

xBB(t) = I (t) + jQ (t)

The transformation back to its passband representation can be achieved using

x(t) = <
{
xBB(t) · ejω0t

}
. (3.3)

The information which is necessary to describe a passband signal using its
equivalent baseband representation consists therefore at least of three parts:
in-phase component I(t), quadrature-phase component Q(t) and the carrier
frequency itself ω0 = 2πf0. An equivalent representation using the polar form
can be achieved by using Cartesian to polar transformation:

A(t) =
√
I(t)2 +Q(t)2 (3.4)

Φ(t) = arctan(Q(t)
I(t)) (3.5)

Since the equivalent baseband representation is a further abstraction of the
signal itself, the baseband modeling technique is not restricted to specific simula-
tion/modeling domains. However, the obvious thing to do would be to combine
both baseband and event-driven modeling techniques, in order to achieve even

55

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

higher simulation performance.

Baseband representation of multiple signals

For simulations including multiple signals(e. g. blocker, nonlinearity effects,
harmonics. see Fig. 3.8(a)), each single signal should be converted to its own
baseband representation, which leads to a representation in the spectra as shown
in Fig. 3.8(c) - otherwise the resulting bandwidth will soon become so large,
that there is no further speedup (see Fig. 3.8(b)). The composed signal shown
in Fig. 3.8(c) can be denoted using a matrix notation as shown in equation 3.6.

ff1-f2f1-f0

A

f

Aff0

A

f1 f2

Single baseband

component

Multiple baseband

components

BWsingle
BWmulti

a.)

b.) c.)

BWpassband

Figure 3.8: Equivalent baseband signal representations of a passband signal con-
sisting higher order harmonics. a.) The passband representation. b.)
Equivalent baseband representation using only one set of baseband
component. c.) Equivalent baseband representation using multiple
sets of baseband component.

xBB,multi(t) =

I0(t) Q0(t) f0
I1(t) Q1(t) f1
.
In(t) Qn(t) fn

 (3.6)

The number of necessary calculation packages in a specific time period for
each representation, can be roughly estimated as (assuming BW � fn and an
specified OSR)

Passband Fig. 3.8(a) : OSR ·max(f0, f1, . . . fN) (3.7)
Single basebandFig. 3.8(b) : 2 ·OSR ·max(f0 − fn, . . .)
Mult. Baseband Fig. 3.8(c) : 2 ·OSR ·BW · n,

56

3.3 Issues and limits of presented modeling techniques for verification

For BW � f1 � f2 the baseband representation with multiple sets of baseband
signal components is for a reasonable number of simultaneous signals n obviously
more efficient than the others.

3.3 Issues and limits of presented modeling techniques for
verification

Although presented modeling techniques can achieve high simulation performance
by increasing the levels of abstraction, several obstacles and limits of them and
the resulting effects on the modeling approaches for functional verification have
to be explained and discussed.

3.3.1 Sampling issues for event-driven models
Event-driven models uses sample-based real value to represent analog signals. In
order to reduce the approximation errors coming from the sampling process, the
oversampling rate NOSR has to be around NOSR ≥ 10 ·NNyquist according to
section 3.2.2. This leads to the main issue of sample-based signal representation:
the sampling rate of the RF signal for a communication system, e. g. 2.4GHz
for Bluetooth, has to be set to 48GSamples/s. If higher order harmonics have
to be considered, the sampling rate has to be increase at least by the factor of
three, in order to cover the third order nonlinear effects. Additionally, taking the
frequency response of the RF filter into account demands even higher sampling
rate. As a result, the computational effort required for the high oversampling
ratio will significantly slow down the simulation and therefore exceeds the benefit
of accuracy. For the functional verification, the details of the model including
mentioned nonlinear and memory effect has to be chosen properly, in oder to
trade the model accuracy against the simulation speed.

Post processing of sample-based signal

The event-driven simulator will only process and generate new data point, if the
adjacent sample values are different. This mechanism results in less calculation
and hence higher simulation performance. However, incorrect post processing
and evaluation of the resulting data might lead to false results. As one can
observe in Fig. 3.9(a), once the adjacent samples in In-phase path have the same
values and in the Quadrature path not be the case, the interpolation mechanism
during post processing will occur, so that the direct evaluation of the simulated
16-QAM signal without re-sampling results in unexpected/wrong constellation
plot. Since this issue originates from the basic principle of event-driven simulation
mechanism, it can only be avoided by re-sampling the signal under observation
with its corresponding clock signal, as shown in Fig. 3.9(b).

57

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

(a) Constellation plot without re-sampling.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

In−phase

Q
u
a
d
ra

tu
re

(b) Constellation plot after re-sampling the output signal.

Figure 3.9: Simulated constellation plots of a 16-QAM signal. The errors are
highlighted in circles. The correct constellation can only be obtained
by re-sampling the signal with the corresponding clock.

58

3.3 Issues and limits of presented modeling techniques for verification

Discrete time amplitude noise

The standard deviation arising from the noise power that has to be realized
using the white noise source can be calculated according to [Che05] as 8

σ =
√

4 · kB · T ·R · (10NFdB/10 − 1) ·BW, (3.8)

which will end up with a white noise source having the defined voltage in the
given bandwidth BW . The bandwidth BW is used in the simulator to determine
the update ratio of the random process that calculates the noise amplitude to be
added to the input signal. Using an event-driven simulation approach, one is not
necessarily interested in generating additional events due to this sampling process
of the noise source, so the noise voltage is added at the sampling instances of the
signal (assuming that the oversampling ratio is large enough). To keep identical
noise voltages, the bandwidth BW must be adjusted according the OSR of the
input signal, which leads to

BW = 1
∆t , (3.9)

with ∆t being the time difference between two samples. However, there will
always be a slight error in this bandwidth calculation due to the issue mentioned
in section 3.3.1, since the time difference is a simple forward prediction. For the
case of the verification approach, this can be neglected if a sufficient oversampling
ratio is used.

Determine OSR for signals

A modern RF SoC has to operate at different frequency band with different
communication standards. Therefore, the sampling rate of different signals
during the simulation has to be calculated carefully. E. g. the event-driven
passband model of a RF system operating at the Industrial, Scientific and
Medical(ISM) band exhibits not only the oversampled RF signal in 2.4 GHz
range, but also baseband clocks and additional virtual clocks for the equivalent
discrete-time filters. Here the OSRs of different signals must have a common
integer denominator, otherwise, additional calculation due to the mismatch in
the time step might occur, resulting in unwanted components in the frequency
domain and hence in false simulation results.

Discrete time simulator limitations

The fixed OSR in a discrete time simulator leads to some problems concerning
effects that require a high timing resolution, especially when simulating the phase

8kB : Boltzmann constant R: Resistance

59

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

noise. The calculations from [HLL99]; [Abi06]; [Kun03] lead to the specification of
the equivalent standard deviation J of the time-domain jitter from the frequency
domain phase noise PNdB as

J = στ =
√
σ2
τ =

√
10

PNdB
10 · ∆f2

f3
0
. (3.10)

While this only takes care of phase noise due to white noise sources, 1/f3

noise can be generated by adding a filter that adjusts the normalized delay
∆Tn between two transitions of an oscillating signal (assuming fc is the corner
frequency of the 1/f3 noise) according to

jn = f(στ)
∆Tn,1/f3 = jn · fc ·∆Tn−1 + ∆Tn−1,1/f3

∆Tn = 1
2 · f0

+ jn + ∆Tn,1/f3 , (3.11)

jn is the jitter results from J . n − 1 and n are the numbers of two sequent
transitions. f0 is the frequency of the noise free oscillating signal.

In both cases, the event-driven simulator must be capable to accurately
display the time steps that occur due to the additional timing jitter. Assuming
a probability density function(PDF) of

PDFGauss(∆τ) = 1√
2π · στ

· e
− ∆τ2

2σ2
τ , (3.12)

the corresponding probability of the random timing jitter between (i− 1
2) ·∆t

to (i+ 1
2) ·∆t:

Pi =
∫ (i+ 1

2)·∆t

(i− 1
2)·∆t

PDFGauss(x)dx. (3.13)

The resulting values at the discrete sampling points i can now be interpreted as
discrete distributed probability, so that the variance from −N · σ to N · σ can
be calculated as

varτ,Discrete(∆t) =

+N·σ
∆t∑

i= −N·σ
∆t

i2 · Pi ·∆t2. (3.14)

The resulting phase noise can then be estimated from the quantized timing jitter

60

3.3 Issues and limits of presented modeling techniques for verification

as

PNDiscrete(∆t,∆f) = 10 · log
(
σ2
τ,Discrete(∆t) · f3

0

∆f2

)
= 20 · log (στ,Discrete(∆t)) + 30 · log(f0)− 20 · log(∆f). (3.15)

Although mathematically proven, that for a very long simulation period, every
mean value for the standard deviation of the timing jitter can be reached, it
is obvious that there’s a fundamental limit of usability for the time dependent
simulations. In the author’s experience, a jitter specification of up to 10 fs
can be modeled accurately enough with a quantized time step of 1 fs, which
is the highest time resolution in current digital simulator [Cad11c]. Everything
below this threshold is not feasible to simulate. E. g., GSM9 has a phase noise
specification of −141dBC/Hz at 3 MHz offset from its center frequency of
1.8 GHz according to [3gp], resulting in an equivalent timing jitter of 3.5 fs
according to [WJ+09], which shows that the simulation limits are already reached.
To permit the phase noise calculation from simulation to be in between a range
of ±3dB, the jitter specifications shouldn’t deviate more than

∆J
J

= 0.414 . . .− 0.293 (3.16)

which can be derived from equation 3.15. Still, it has to be mentioned, that
verifying the non-ideal effect resulting from the timing jitter is only a part
of the functional verification task. As the complexity and size of the system
increases, alternative phase noise modeling approaches such as the one shown in
[WCH10] have to be considered, in oder to overcome the limitation. In some
cases, depending on the focus of the verification, the effect of phase noise has to
be neglected for the sake of simulation speed.

Non-uniform sampling issue

As already mentioned in section 3.3.1 and 3.3.1, non-uniform sampling will
occur, if an event-driven model is only trigged by its input signal. One way
to capitalize this effect is the implementation of event-driven filter. Since the
time in simulation of the discrete time kernel can only be increased (there’s no
iterative possibility like in the analog domain), the only possible method to do a
discrete time filtering is using a Forward Euler approximation as mentioned in
[Cot90]. E. g. a second order filter with the general transfer function:

H(s) = Y (s)
X(s) = b0 + b1 · s+ b2 · s2

a0 + a1 · s+ a2 · s2 (3.17)

9GSM stands for Global System for Mobile Communications

61

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

can be displayed in time domain with following differential equation:

a0y(t) + a1ẏ(t) + a2ÿ(t) = b0x(t) + b1ẋ(t) + b2ẍ(t). (3.18)

Substituting u(t) = ẏ(t), v(t) = ẋ(t) and integrating on both sides leads to

a0u(t) + a1y(t) + a2ẏ(t) = b0v(t) + b1x(t) + b2ẋ(t). (3.19)

With these auxiliary variables u and v, an equivalent filter using a Forward Euler
approximation can be realized as :

yn = ẋnhnb2 + hnxnb1 + hnvnb0 + yn−1a2 − hnuna0

hna1 + a2
. (3.20)

Although this modeling approach for event-driven filter can provide sufficient
accuracy and reduce reasonable amount of simulation time compare to discrete
time filter implementation with fixed sampling rate, as shown in section 6.1.1.
The Forward Euler method itself is an explicit integration method based on a
truncated Taylor series expansion, which is very fast [KG95], but has very small
numerical stability region [GST01]. So event-driven model implementation based
on this method can only be applied to lower order filters with careful consideration
of the maximum time step between two adjacent samples with different values
during the whole simulation. Furthermore, according to [Joe08], not only the
evaluation of non-uniform sampled simulation data is difficult due to the fact
that the typical simulation tools don’t offer high-level reconstruction algorithms,
but also high computational power are required for such data to provide accurate
Fourier transformations [Fre80]. Thus, the non-uniform sampling issue has to be
handled with care for further model implementation. For reliable verification
results, it’s strongly recommended to avoid such kind of implementation.

3.3.2 Pin compatibility issue
For functional verification and consecutive debugging, it is important to be able
to switch between different abstraction levels of the modeling "on the fly". This
especially comes in handy, when being able to do a top level simulation with
abstract models of the complete system, keeping only a very small portion of
the design on transistor-level, for a fast verification prior to checking that part
into the system database (Fig. 3.10).
The view switching itself is a well established method. For analog circuit

design, designer often switch the views between the transistor- and layout/ex-
tracted10-level to verify the performance of their circuits. It can be achieved
10The term extracted simulation is often used for the circuit level simulation with back

annotated layout parasitics. In this way, simulation can deliver more realistic results but
also consumes more computational power.

62

3.3 Issues and limits of presented modeling techniques for verification

Model A
Model B

Model CSwitchable

Model A

Model C
Model B

Figure 3.10: View switching as provided by the HED.

by using available tools in the design environment, such as Cadence® hierarchy
editor(HED) [Cad12].

One of the main issues is to ensure pin compatibility while switching between
different implementation variants of models. Using models with unmatched
pin definitions or numbers leads to obscure and often false-friend verification
results and is therefore strongly unrecommended. This is the main reason, that
the baseband modeling approach is strongly limited by using Verilog-AMS
HDL. Verilog-AMS doesn’t provide any type constructs for the signal in its
current language status. Fig. 3.11 illustrates this problem. While a passband
signal uses the uses solely the values of x(t) and y(t) for the I/O, the baseband
representation consists of at least three components to characterize the signal,
each having a much lower frequency(consider the carrier frequency as a constant
or slowly varying over time).

x(t) y(t)

xBBI(t)

xBBQ(t)

f0

yBBI(t)

yBBQ(t)

fout

Switchable

Passband model

Baseband model

Figure 3.11: Connectivity representation for passband and baseband signals.

While one can overcome this issue by diverting differential signals from their
intended use to carry I/Q signals [JH06], this method fails when trying to simulate
with more than one signal at the same time as introduced in the section 3.2.3.

63

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

Additionally, this workaround is limited by the circuit design: once the circuit
structure is single ended, the baseband modeling possibility by using available
Verilog-AMS HDL feature will also end. Furthermore, using baseband models
by diverting the original pin definition is often the primary source for unreliable
verification results. This is where the need for new data type constructs and
further extensions using pointer structures and dynamic arrays arises, in order
to enhance simulation time while maintain the pin compatibility.

To the author’s knowledge, there are currently two solutions to the aforemen-
tioned problem:

• Extend current HDL: The feature of Verilog HDL can be enhanced
by implementing additional functions via the Verilog Procedural Inter-
face(VPI) [DPR96]. In [Che09] and [Che10], the author implemented the
aforementioned data type constructs for baseband signal via the VPI, it
combines the real number and baseband modeling techniques in order to
get the highest simulation performance. Still, such extension of the current
HDL is often close sourced and only available for commercial usage. In
the author’s opinion, this kind of implementation doesn’t offer enough
transparency for reliable verification results. Moreover, it could increase
the verification overhead in worst case, since the verification engineer has
also to spend time to debug the HDL.

• Use alternative HDLs: Both SystemVerilog and VHDL offer the
possibilities to implement new data type constructs as mentioned in sec-
tion 3.1. However, the usage of the HDL is strongly depending on the
design and verification flow. SystemVerilog is a still-maturing language
and VHDL-AMS offers less compatibility for mixed-signal simulation com-
pare to Verilog-AMS, which makes the overhead for using the language
exceeds the benefit of its feature. Furthermore, recalling Fig. 3.1 and
3.4, even with the help of baseband modeling technique, the reachable
abstraction level of classical HDLs are still limited. In contrary to the
classical HDLs, SystemC fulfills all the mentioned requirements for base-
band modeling with more implementation transparency and possibilities
to reach higher abstraction level, but no direct link to the circuit level
design. In order to benefit the feature offered by SystemC without losing
the link to circuit level design, the consistency between models at different
levels of abstraction has to be maintained. This topic will be discussed in
detail in chapter 5

64

3.3 Issues and limits of presented modeling techniques for verification

3.3.3 Connectivity and synchronization issues
Event-driven model in the presence of multiple drivers

This issue mainly concerns the event-driven models using wreal data type. The
mentioned wreal is a discrete time data type, which is optimized for event-driven
data flow simulations. However, it is not designated to model analog effects
such as current summation at a single node, e. g. if two active wreal outputs
are connected together, discipline resolution for wreal has to be determined in
advance, in order to describe the signal condition in the presence of multiple
drivers11. Otherwise, the simulation won’t deliver proper results. It has to
be kept in mind, that depending on the modeled output(voltage or current),
different corresponding resolution functions has to be applied. There are two
ways to define the discipline at one node, either globally or locally. Global
definition is more well-arranged, but it will only accept one certain behavior for
all wreal nets consisting multiple drivers. Local definitions can handle different
model behavior at different node, but it will also cause more debug overhead
due to multiple resolution functions.

Synchronization overhead between TDF and DE MoCs

As already presented in section 3.2.2, although both MoCs uses discrete time
simulation mechanism, converter ports and exact synchronization semantics are
required to connect both TDF and DE MoCs. This is due to the facts, that TDF
MoCs run independently from the SystemC kernel and SystemC-AMS uses a
layered synchronization concept to interact with SystemC’s simulation kernel.
Still, with fixed time step, discrete-time event from SystemC between the delta
cycle will be neglected. Reducing the time step and hence increase the chance
to catch the discrete event will again resulting in the slow down of simulation.
A detailed evaluation of this issue can be found in section 6.1.1 and 6.1.3.

Cross domain connect module issue

Unlike the analog model, the event-driven model can’t characterize frequency
dependent load using impedance or Laplace transfer functions. An appropriate
CM therefore has to be inserted to join the two different modeling domains.
Currently available CMs use pure resistance and apply predefined delays to
convert analog signals into discrete event and vice versa [JGH07], which is
insufficient in some case. Assume the impedance is matched at the center
frequency, gives us the possibility to do a sufficient system simulation in the
band of interest. However, this doesn’t take the critical impact of RF impedance
matching into consideration and is therefore not sufficient for simulation with
11Please refer [Cad11e] for the supported resolution functions.

65

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

blockers or wide band signals. Fig. 3.12 illustrates the mentioned issue. Although
Verilog-AMS provides the possibility to automatically resolve the different
discipline and insert CMs [FO00], the frequency dependency of the I/O impedance
has to be considered in following cases.

Wreal model

G(z)
CM

Analog model

Zout Uin

Zineq

Analog model

G(s)
CM

Uin

Zouteq

Wreal model

Uout

2Uout(Zouteq)

Zin

a.) b.)

Figure 3.12: Proposed parameterizable CM with proper impedance. a.) From
analog to event-driven domain. b.) From event-driven to analog
domain.

From analog to digital domain (Fig. 3.12 a.)), the input of event-driven model
works like an open clamp, thus it appears that the input voltage of the event-
driven model is Uin = 2Uout, if both models are connected directly. The connect
module should provide an equivalent load impedance Zineq at the input wire of
event-driven model. The built-in CM from Cadence® provide only a resistance
Zin of 50 Ω per default, which is not sufficient to cover all the analog to event-
driven cross domain connection possibilities(mostly, Zin and Zout are frequency
dependent). E. g. A wreal wire can only map the value of voltage or current from
an analog model, resulting in information loss, so that a proper input or output
impedance cannot be clearly defined in the event-driven model. If there is a cross
domain connection between an event-driven and an analog model(Fig. 3.12 b.)),
the output of an event-driven model works like an ideal voltage source. In this
case Uout and Uin at the interface of the adjacent models are always the same. A
change in the voltage characteristic cannot be detected. The CM hereby have to
convert the output voltage of the event-driven model in an equivalent, non-ideal
voltage source as shown in Fig. 3.12 b.). For a parameterizable CM, the output
voltage of the event-driven model should be converted to 2 · Uout(Zouteq). At
the moment, two steps are required for implementing a proper CM: first, the
CM it self has to be realized as shown in listing 3.1. Second, the connect rules
has to be defined as shown in listing 3.2.� �
1 discipline electrical_zin

2 domain continuous;

66

3.3 Issues and limits of presented modeling techniques for verification

3 potential Voltage;

4 flow Current;

5 enddiscipline

6

7 connectmodule E2wreal(Ain, Dout);

8 input Ain;

9 electrical_zin Ain;

10 wreal Dout;

11 real Dreg;

12 assign Dout = Dreg;

13 ...

14 always @(absdelta(V(Ain), vdelta, ttol, vtol))

15 Dreg = V(Ain);

16 analog begin

17 //parameterizable impedance: Zin_num and Zin_denom are based on block specs!

18 V(Ain)<+laplace_nd(I(Ain),{Zin_num}, {Zin_denom});

19 end

20 endmodule� �
Listing 3.1: User-defined electrical to wreal connect module example.

Clearly, this method is limited by the numbers of cross domain interfaces with
different complex impedances at the top level schematic and their complexities.
Therefore, such method is not feasible for top-level verification due to its high
time expense and error-proneness. It should only be used, if the impedance
effect at the cross domain interface has to be considered during the verification,
e. g. during a mixed-level simulation.� �
1 connectrules user_def_wreal;

2 electrical,electrical_zin resolveto electrical;

3 endconnectrules� �
Listing 3.2: User-defined electrical to wreal connect rule example.

Single tone input

Different CMs

- built-in

- user-defined

Transistor-level

Analog model

Transistor-level

Wreal model

Figure 3.13: Testbench with switchable levels of abstraction and different CMs.

67

Chapter 3 Hardware Description Languages and Modeling Techniques for
Mixed-Signal Verification

30 35 40 45 50 55 60

−0.1

−0.05

0

0.05

0.1

0.15

Time [ns]

A
m

p
lit

u
d
e
 [
V

]

transitor−level

wreal model with user defined CM

wreal model with built−in CM

Figure 3.14: Transient simulation results using different cross domain CMs.

68

3.3 Issues and limits of presented modeling techniques for verification

In order to demonstrate the mentioned issue resulting from CM, a simple
testbench consisting only of an amplifier and a matching network has been build
up, as shown in Fig. 3.13. Firstly, the whole testbench is simulated at transistor-
level in order to get the reference result. After that, the amplifier is kept at the
transistor-level, the filter however, has been switched to its event-driven model
implementation. Here, both user-defined and built-in CMs has been applied to
the cross domain interface subsequently for the comparison. The user-defined
CM uses a Laplace transfer function to model the impedance effect at the filter
input, while the built-in CM consisting only a 50 Ω resistance.
Fig. 3.14 shows the clipped result of the transient simulations by applying

a sinusoidal signal at the input of the amplifier. The transient responses show
significant difference between different CMs: While the user-defined CM with the
correct impedance implementation showing good agreement with the reference
result at transistor-level. The result with built-in CM shows a completely
different response, which clearly will lead to false verification results.

Furthermore, applying cross domain CMs during the simulation will definitely
lead to higher mixed-signal synchronization overhead and hence lower simulation
performance as shown in section 2.2.3. It is therefore important to firstly partition
the whole system properly and build up a corresponding modeling plan, so that
the number of CMs can be reduced at minimum, or even avoided completely.

69

4
A Verilog-AMS Based Modeling and Verification

Methodology for RF Mixed-Signal SoCs

In order to meet performance specification in the design of integrated RF/MS
blocks in a RF MS SoC, high degree of skills and expertise gained though expe-
rience are required. Since the chip size of today’s wireless SoCs are increasing
drastically while technology nodes continue shrinking, the challenge of analog RF
circuit design is not only the performance requirement, but also the increasing
functional complexity within of them. Moreover, severe functional failures might
result in silicons, that might cause the chip not to be powered up. Such errors
have to be detected and corrected prior to tapeout, otherwise, no performance
evaluation is possible, forcing the whole project time frame to extend, which
will lead to significant amount loss of financials. Thus, advanced verification
methodologies which closely interacts with the design flow and seamlessly inte-
grates into the existing tool link, are critical in successfully delivering functional
silicons, while meeting the increasingly tight time-to-market constraints.

4.1 Model implementation and functional verification flow

4.1.1 Available methods

However, applying modeling technique alone is not enough to overcome the
mentioned issue. Besides running fast, a more formalized verification flow has to
be developed, part of this flow is in charge to control the model implementation
and refinement process. Fig. 4.1 depicts the verification flow with strong focus

71

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

Figure 4.1: Overview of the verification flow with strong focus on analog/RF
subsystems, adapted from [CK07]. The dashed line highlights the
critical path for model generation.

on analog/RF subsystems proposed from [CK07]. The functional verification
flow described here serves as an addition to the existing verification techniques
such as timing analysis, DRC, LvS and other advanced digital verifications.

Based on the system specification and design documentation, the verification
team will start to develop the corresponding top-down models based on the
proper verification plan, while the analog team starts to design the system at
block level. Both teams have to cooperate at very early design stage to develop
the verification plan and testbench according to the design documentation. At
this point, the testbench will still be kept very general with small discrepancies
between both teams due to different focuses: analog design team will focus on the
performance evaluation, while the verification focusing on the stimuli development
and functional check for the circuits. Later on, as the design hierarchy moves to
the top-level, different simulation tasks based on the simulation plan are executed.
Regression runs will help both teams to increase the verification coverage and

72

4.1 Model implementation and functional verification flow

hence to keep the project proceed as scheduled and to avoid any regressions. At
the end, sign-off runs consisting top-level model are required in order to achieve
a reasonable degree of functional confidence prior tapeout.
Although the tasks shown in Fig. 4.1 of both teams are clearly defined and

described in [CK07] and the flow seems to be straight forward. Certain details
and the resulting additional overheads of the flow has to be discussed further.
Especially the model generation path, which is substantial and critical for the
verification in the author’s opinion.

Model implementation flow: Traditional top-down analog/RF design applying
modeling techniques to speed up the whole design process. However, there is
still no "formal" model refinement method for the functional verification. This is
due to the fact, that there is no general or mature synthesize method for analog
circuits based on higher levels of description. So there is no automated way
either to generate analog circuits based on higher levels of description nor to
refine the models based on the circuit. Hence, models for analog/RF blocks has
to be hand crafted. there is always a point in the verification flow, where the
top-down models has to be refined in order to map more circuit-level information
such as pin description, I/O extension or functional details. One might argue,
that bottom-up model generation can avoid such extensive model refinement
process. However, if models are created firstly after design process is advanced in
certain stages, the model implementation overhead will be much larger, so that
it exceeds the time benefit of using models for block integration. Additionally,
even the bottom-up modeling cannot prevent inevitable design changes at some
point. Thus, model implementation has to be considered as an iterative process
with large amount of refinement overhead.

In contrary to the statement in [CK07], where only one top-level model is
required, which

...serves as the "sign-off" quality executable specification delivered to
the integrator of the functional unit.

Top-level models with different abstraction has to be implemented to support
the functional verification. Due to the increasing complexity of the RF front-end,
one model can neither cover all the required functional details nor the certain
performance metrics. Thus, top-level models at different levels of abstraction
are required for the sign-off simulations containing different verification aspects
such as start sequence, connectivity check, demodulation algorithm or just data
integrity.

Testbench and assertion implementation Testbench is the essential part for
simulation-based verification, its components has been described in section 2.2.

73

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

In addition to the testbench, assertions have to be implemented for the stimuli
and output monitor, so that part of the functional errors or even errors in the
testbench due to misinterpreted specifications can be detected without large
amount of visual inspections. Furthermore, model validation and refinement
rely on the testbench, a significant amount of model parameters can only be
extracted from extensive simulation results at transistor-level. Besides that,
regression tests require automated execution of testbenches.

Model refinement process As states above, analog/RF models are mostly
handcrafted. Although the modeling and the respective refinement process is
an iterative and time-consuming process, changing models manually will lead
to more chance of coding error and hence to false verification results. Thus, an
automated model refinement flow is inevitable to keep the manual interactions
to a minimum.

Based on the mentioned details, it can be seen that the functional verification
for RF MS SoC is neither a stand alone process nor a pure model generation
flow. It is a process consistently accompanying and supporting the design, which
has to be seamlessly integrated into the current mixed-signal design tool link
and flow. In order to complete and improve the available method, a hierarchical
verification methodology is proposed.

4.1.2 Proposed hierarchical verification methodology
Both terms level of abstraction and hierarchy are in focus of the proposed
methodology. In addition to the fundamental requirements of the methodology
described in section 2.4, it must be mentioned here, that the intention of proposed
method and flow is not trying to completely neglect manual interactions. On
the contrary, it requires even higher workload of the verification team at the
beginning of the design process, in order to keep the flow as automated and
formalized as possible. Fig. 4.2 illustrates the proposed flow as an extension of
the critical model generation path pointed out in Fig. 4.1. The key concepts of
the proposed methodology will be described in the following sections.

4.2 Key concepts for hierarchical verification

4.2.1 Verification planning
A comprehensive verification plan contains a wide range of topics based on the
system specification and design documentation shown in Fig. 4.1. It serves as
the initial point of the verification flow. For analog/RF part of the system,
besides meeting the tapeout schedule, a verification plan has to account for all

74

4.2 Key concepts for hierarchical verification

Verification

goals

Modeling plan

- Set abstraction level

- Simulation domain

- Functional details

Model implementation

- Behavioral of the block

- Mixed-level capability

- I/O, supply... assertions

Design partitioning

- Get hierarchy level

- Simulation domain

- Interconnection check

Testbench creation

- TB available?

- TB reuseable?

- Stimuli creation & optim.

Auto. model param.

extract. & update

- Set updateable param.

- Simulation script

- Sim. result evaluation.

Model

Validation

Figure 4.2: Key concepts for proposed hierarchical verification methodology.

75

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

architectural features and ensure the test cases can cover its full functionality.
Starting from the system specification and design documentation, the analog and
digital top-level interface, configuration buses and chip I/O are defined. During
the planing phase, critical signal paths in the design can be identified by both
teams, one possible candidate is e. g. the signal path of the RF front-end. In
this case, all connections and the signal flow from the top-level down to each
single block has to be the main concern or goal of the functional verification. In
conjunction with that, the simulation and modeling strategies can be derived.
Furthermore, the verification plan is important to track the actual status of the
verification process and in charge to schedule the available man power for the
verification goal. For the proposed flow, the main work for the verification team
at the start consists not only the model implementation, but also the translation
of the testbenches. Here, testbenches inside the analog design environment are
commonly GUI-based1, so they have to be translated to their equivalent script
based version, in order to execute them unattended in the later design stage.

4.2.2 Hierarchical design partitioning
For hierarchical verification, the main target is to facilitate the full-chip simulation
in a reasonable time frame. Thus, only using one testbench or one model for
the whole system can neither justify the mentioned proposition, nor it is feasible
enough to bring us close to the verification goals in time. The only possibility
at the moment is to apply hierarchical decomposition to the whole system
recursively, so it can be divided into small and hence manageable parts, as states
in section 2.4. Once the system is partitioned into reasonable size, the simulation
performance will increase and this results in the increasing verification coverage.
However, since the verification coverage is also depending on the chosen level of
abstraction, there will always be a trade-off between the levels of abstraction
through the hierarchy and the coverage. On the one hand, the hierarchy level of
a certain design part, to which models are applied, has to be determined. On
the other hand, the functional and behavioral details of the applied model has
to be chosen. Again, due to the hierarchical partitioning, there won’t be one
model for all test cases, but rather a set of models with different grade of details
focusing on different verification goals.

For a single receiver front-end shown in Fig. 4.3, starting from the top-level, the
whole design can be firstly divided into analog, digital, mixed-signal, power and
equipment parts according to the system specification. Although the boundary
between the analog and mixed-signal part is slowly disappearing (digital part
will take more and more control and configuration of analog parts), it is still
valid to define the partition as analog, as long as the main signal processing

1In contrary to digital design flow, which is mostly command line based. The analog design
flow uses a lot of GUI based tools.

76

4.2 Key concepts for hierarchical verification

Figure 4.3: Design partitioning of a generic RF receiver front-end. The mentioned
equipment part is regarded as component of the testbench, hence it
is not shown here.

path is done in analog domain. In this case, the RF front-end is regarded as the
analog part of the receiver, whereas the PLL and ADC are considered as the
mixed-signal parts. For further hierarchical partitioning, following factors have
to be taken into consideration:

• Complexity of the block - The complexity of each single block inside one
partition have to be kept in a reasonable range. Otherwise, proper behavior
implementation of the model will consider too many design variables. On
one hand, model validation might take too much simulation time for a
complex block; On the other hand, complex models tends to slow down
the simulation. However, if the complexity and hierarchy of the partition
is kept too low, lots of simple models are required, which in turn requires
higher amount of testbenches and hence increasing the model maintenance
overhead.

• Model abstraction applied to the hierarchy level - Higher abstraction level
for a partition at certain hierarchy level has significant influence on the
simulation performance and accuracy. Besides running fast, critical details
of the blocks’ behavior has to be considered in the model. Hence, simulation
speed has to be traded against the grade of details in the models and the
resulting accuracy decrease.

• Signal integrity and block integration - As mentioned in section 3.3.3, too
many cross domain synchronization will also slow down the simulation,
even at higher levels of abstraction. Still, using switchable analog and event-
driven models based on common partitioning of the design is inevitable.
This is the only way to keep the consistency between models at different
levels of abstraction in a hierarchy. Consistent models lead to better signal
integrity check and faster block integration.

77

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

As one can see, there is no straight forward guideline for determining the design
partitioning and its corresponding levels of abstraction. For complex systems,
the verification plan have to define the general partitioning directives with the
consideration of simulation speed, end-to-end signal integrity and orders of non
ideal effects described in the model.

4.2.3 Hierarchical model implementation
Fig. 4.4 shows the proposed model generation flow for the analog/RF part.
To allow proper verification of the SoC, at least all functional units need to
be modeled for full-chip simulation. Behavioral models can be considered as
a higher level of abstraction for the transistor-level AMS design. The main
reason of using models at different abstraction levels within the whole design
hierarchy, either during top-down design or by bottom-up verification, is to
allow a full-chip/overall-system simulation in a reasonable time frame. While
significant work on RF modeling exists, most of them focus either on fast
behavioral models supporting system design [SFB05a]; [MSPM03]; [HY+06],
or models supporting additional noise and spectral analysis to accelerate the
circuit design [RWT03]; [ZWB03]; [SN08]. Model implementation for functional
verification however, does not necessarily require circuits’ performance metrics,
while simulation performance is the main concern. Thus the only non ideal effects
included in models target functions verification are those for which a functional
compensation algorithm is designed for. Such compensation algorithm can be
implemented in the digital signal processing unit, or a mixed-signal calibration
loop. Still, the detailed targets of applying models in certain design phase can
still vary: In [MMS07], models has been used to reduce the complexity of analog
blocks and to accurately map their critical performance characteristics in order
to evaluate the overall performance of the SoC from a system-centric perspective.
In [Che09], pin-compatible models at high abstraction level are deployed, mainly
targeting to verify the functionality of the whole SoC.
Models at different abstraction levels serve different purpose. Pure analog

models written in Verilog-A allow the side-by-side simulation of behavioral
models with the transistor-level circuit blocks. Hence, they are the first choice
for mixed-level simulation, helping the designer to implement sub system and
estimate its performance at lower hierarchy level. Additionally, analog models can
help the modeling/verification engineers to communicate with circuit designer,
in order to align the model accuracy and to find out bugs in the model. However,
study [WJ+09] shows, that the simulation performance of analog models is not
sufficient as the design hierarchy and thus the system complexity moves up.
Still, the analog models can serve as reference for further abstraction levels. The
wreal/real number models for the analog blocks push the whole simulation into
the digital domain. Since the higher abstraction of the wreal models significantly

78

4.2 Key concepts for hierarchical verification

reduces the computational effort, they are implemented targeting the high
simulation efficiency for the final top-level verification of the whole chip. Digital
subsystems require less modeling work, since the modeling task for all hierarchy
and abstraction levels is done during the design flow (functional, RTL, gate
level), as shown in Fig. 2.14 and Fig. 3.4.

The usage of wreal signal in Verilog-AMS can significantly increase simulation
efficiency. But the wreal data type allows only to transfer one real number,
in one direction all the time [Cad11c], which limits the usage of equivalent
baseband model to get higher abstraction. Hence, for the proposed modeling
and verification methodology, passband real number models are regarded as the
highest level of abstraction in the design environment and will be used for the
top-level sign off due to this tool constrain.

Nevertheless, as Fig. 4.4 depicts, the implementation of sign off quality models
is not straightforward, but demands comprehensive iteration and validation
process. In addition to that, critical model parameters have to be determined
for the model refinement.
Basically, the top-down models can be used to describe the system specifi-

cation at the top-level, so it can be executed in the simulation environment.
However, starting from the block-level of the design, the top-down model require
consistently refinement, sometimes, even a complete rework of the model is
inevitable due to radical design changes. Hence, at the start of a design project,
the top-down model serves only as alternative specification document, whereas
lots of additional models at lower block-level have to be implemented according
to the circuit design status in a bottom-up manner.

Coding style

Starting from the first model of the project, it has to be kept in mind, that
sustainable source code is the main factor for the model refinement and reliable
verification result. Debugging and validating foreign models can be a very
time-consuming task, if the source code of the model is too obscure. Therefore,
a strict and unified coding style is preferred, the format of the code have to
be distributed in the verification team. Since a large part of the analog/RF
models are handcrafted, proper coding style and guideline is also for the model
reuse and validation though other team members. In addition to the mentioned
benefits, model refinement process can also profit from a formalized coding style.

General model structure Based on the mentioned requirement, the general
code structure has been determined and shown in listing 4.1.� �
1 // General VAMS model code structure

2

3 ‘include "constants.vams"

79

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

Figure 4.4: Detailed illustration of proposed model implementation flow. As
one can observe, the model generation is not a straightforward
process, but more a consistently iterating task. The three highlighted
collective tasks require tight cooperation between the design and
verification team.

80

4.2 Key concepts for hierarchical verification

4 ‘include "disciplines.vams"

5 ‘define SUPPLYCHECK 1

6

7 module model_name(module I/O)

8 ///

9 // SIGNAL ports

10 ...

11 ///

12 // BIAS ports

13 ...

14 ///

15 // PARAMETER definition

16 ...

17 ///

18 // VARIABLE definition

19 ...

20 ///

21 // ANALOG BEHAVIOR

22 analog begin ... end

23 ///

24 // MS BEHAVIOR

25 always @(...) begin ... end

26 ...� �
Listing 4.1: General model structure.

Naming conventions Besides a consistent model structure, strict naming con-
vention is inevitable, for debugging and automated model parameter update.
Table 4.1 shows the naming conventions proposed by [Sch11].

Requirements for the modeling task

The main target of analog/RF model implementation is to assist the functional
verification at top-level and gain simulation performance by increasing the level
of abstraction and exploiting the simulation speed of a pure digital simulator.
Following criteria must be met, in order to rise the abstraction level without
loosing the functional accuracy of a model:

Portability Besides exhibiting high simulation performance, the handcrafted
models must be capable of working both analog and digital design environments,
so that both analog and digital design teams are able to run the models for their
own simulation. Additionally, models capable in both simulation domain can
also serve as a kind of communication medium between both design teams.

81

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

Pre-/postfix Type Nature Example Description

p_ parameter - p_ppf_gain Gain in dB

r_ real - r_gain_dec Gain in decimal factor

v_ real voltage v_out_i Output voltage of I

path

i_ real current i_in_q Input current of Q path

pwr_ real power pwr_noise Noise power at output

port

int_ integer - int_counter Integer counter

f_ integer file identifier f_inputfile File Identifier for

input file

s_ integer/reg supply check s_supply_inst Instance’s supply check

- Set to "1" when proper

supply is detected

..._apx - - p_inst_gain_apx gain parameter for

automated refinement

d_ reg - d_out Digital output signals

Table 4.1: Naming conventions for parameters and variables in Verilog-AMS.

Compatibility Models at lower abstraction level must be fully compatible with
the analog simulator due to the four following reasons:

• Handcrafted models of analog/RF blocks must fully support the analog
simulator. Only in this way, model validation can be done by executing
side-by-side simulation of the model and schematic. In the analog design
environment, lots of parameters cannot be determined by simple transient
simulation. Therefore, misalignment between the model and schematic can
only be exposed by applying advanced simulation techniques, as mentioned
in section 2.3.1. Although most analog simulation technique are targeting
the performance evaluation, the chance of fully debugging the analog model
aside from the schematic is only given at this point. Here, Verilog-A
models offer the full analog compatibility, which will also serve as the
reference model for further abstraction.

• At lower design hierarchy, analog designer proses the best know-how and
experience. Hence, analog models can be validated even faster.

• Mixed-level simulation with analog models can speed up the block integra-
tion, since analog models exhibit higher simulation performance compare
to transistor-level. Also, models can be validated again at higher design
hierarchy by using them for the block integration.

• As stated in [Che09], model based testbench creation can also speed up
the performance evaluation of the analog circuits.

82

4.2 Key concepts for hierarchical verification

Rules for verification engineers Since handcrafting the analog/RF model is a
daunting and error-prone task, the verification team has to obey the following
rules, in order to keep the project in track:

• Schematic cannot be touched! This is one of the most important rules
for a successful design flow. The task of verification team is to support the
design and facilitate comprehensive verification. As soon as the verification
team starts to change the designed schematic(due to model complexity or
unfitting signal routing) the project will fail. Any change in design has to
be discussed in detail, since this change will also leads to the reiteration of
the model implementation process and eventually delay the schedule.

• Keep the change in track As already mentioned, any changes in the
design or model will result in new iteration of model generation and
validation process. If design change cannot be caught, verification will fail.

• Focus on the signal path One of the most important part of the design
is the signal path and the signal processing blocks. For the full chip
verification, the complete end-to-end signal path has to be verified in
detail.

Hierarchical modeling

So far, only the analog model implementation part of Fig. 4.4 has been discussed.
As design hierarchy moves up, complexity of the system also increases. Here, only
applying analog model is not feasible, since more mixed-signal functionalities
and digital controls comes into the design. Therefore, the existing analog models
has to be refined to map the mixed-signal behavioral. The only mixed-signal
simulation technique applicable here is transient. Block-level integration will
lead to another simulation slow down, so the full chip verification cannot deliver
the required coverage. Hence, the analog behavior in mixed-signal models has to
be abstracted further for macro-level (s. section 2.4.1) integration. Mixed-signal
simulation at transistor-level for model validation at complex block-level, not to
mention the macro level, will consume too much time and computational power.
Therefore, analog and the top-down models will serve as reference for further
abstraction and refinement. At this point both event-driven model set from
the top-down and the bottom-up modeling will be aligned. One of the benefits
for using consistent and strict coding style will emerge: since the most analog
behavior has to be adapted to event-driven real number models (s. section 3.2.2),
the sustainable code will result in a short adaption time.

One might start questioning the sign off quality of the highly abstract models,
since the event-driven ones are derived from the analog models and lots of
information regarding the performance are neglected at top-level for the sake
of simulation speed. Firstly, since the whole model refinement process is in

83

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

an iterative manner, especially the analog model has been through a very
comprehensive validation process, i. e. they are commonly aligned with the
design on the basis of side-by-side simulation with the actual designs. Therefore,
analog models are capable of serving as reference for further model abstraction.
Secondly, since the functional verification mainly targets to find functional
errors, which is more crucial for the design at advanced technology nodes. The
verification team has to trust analog designers to deliver the right performance,
especially at higher level of the design hierarchy.

4.2.4 Assertion and debug concepts
Debug concepts and assertions(s. section 2.2.5) have to be considered during
the model implementation flow, since they are inevitable components for the
functional verification.

Debug macro During the model validation phase, embedded debug macro in
the model will significantly rise the clarity of the error source. Depending on
the actual model implementation, different internal details of the model will be
printed to the simulation logs. E. g. if the debug mode is enabled, a filter model,
which gets its coefficients via an external database should strobe out the file
path, file status and the coefficients from the database. In this way, some of the
frequent error source can be detected untimely. Since debug macros will cause
additional simulation overhead, it call be gradually grouped into different levels
depending on the model’s complexity.� �
1 ‘define display_coefficients_dig(az_R, bz_R, az_Q, bz_Q, j, order) \

2 $display(" %12s %12s %12s %12s", "az_R", "bz_R", "az_Q", "bz_Q"); \

3 j = order; \

4 for (j = order; j >= 0; j = j - 1) \

5 begin \

6 $display(" [%d] %12.64e %12.64e %12.64e %12.64e", j, az_R[j], ←↩
↪→ bz_R[j], az_Q[j], bz_Q[j]); \

7 end� �
Listing 4.2: Debug macro for filter coefficients.

Assertion implementation Verilog-A doesn’t support the assertion language
such as PSL(Property Specification Language) or SVA(SystemVerilog Asser-
tions)2. Therefore, the assertions in the analog models are realized as external
modules, which will be instantiated in the model if required. The main aspect
of the assertions in both analog and event-driven models is to ensure the signals

2Both are standardized and well established digital assertion-based verification languages.

84

4.2 Key concepts for hierarchical verification

under surveillance are in the specified range and the correct interconnection
between the blocks are given.� �
1 module voltage_check (vdd,gnd,assert_result); // module used to check supplies

2

3 input vdd, gnd;

4 output assert_result;

5

6 electrical vdd, gnd;

7 reg assert_result ;

8

9 parameter real p_vcheck_range = 0.1; //define the voltage uncertainty range in percent ←↩
↪→ of Vmin or Vmax

10 (* desc="min. voltage to check", units="V" *)

11 parameter real p_vcheck_min_voltage = 0.2 from (-inf : inf);

12 (* desc="max. voltage to check", units="V" *)

13 parameter real p_vcheck_max_voltage = 1.2 from (p_vcheck_min_voltage : inf);

14

15 always @(above(V(vdd, gnd) - (p_vcheck_max_voltage*(1.0+p_vcheck_range))) begin // V > ←↩
↪→ max?

16 assert_result = 1’b0;

17 ‘ifdef __DEBUG__

18 $strobe("%M: @ %3.1f: maximum voltage exceeded, vdd: %3.1f, assert_result : ←↩
↪→ %1b", $abstime, V(vdd, gnd), assert_result);

19 ‘endif

20 end

21

22 always @(above(V(vdd,gnd)-0.5*(p_vcheck_max_voltage-p_vcheck_min_voltage)) begin //min ←↩
↪→ < V < max?

23 if (p_vcheck_max_voltage*(1+p_vcheck_range)>V(vdd,gnd) && ←↩
↪→ V(vdd,gnd)>p_vcheck_max_voltage*(1-p_vcheck_range)) begin

24 assert_result = 1’b1;

25 ‘ifdef __DEBUG__

26 $strobe("%M: @ %3.1f: vdd: %3.1f, assert_result : %1b", $abstime, ←↩
↪→ V(vdd,gnd), assert_result);

27 ‘endif

28 end else begin

29 assert_result = 1’b0;

30 ‘ifdef __DEBUG__

31 $strobe("%M: @ %3.1f: vdd: %3.1f, assert_result : %1b , please check the ←↩
↪→ voltage", $abstime, V(vdd,gnd), assert_result);

32 ‘endif

33 end

34 end

35

36 always @(above(p_vcheck_min_voltage*(1.0-p_vcheck_range)-V(vdd,gnd))) begin // V < min

37 assert_result = 1’b0;

38 ‘ifdef __DEBUG__

39 $strobe("%M: @ %3.1f: voltage too low, check connection first, vdd: %3.1f, ←↩
↪→ assert_result : %1b", $abstime,V(vdd,gnd) , assert_result);

85

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

40 $strobe("%M: max: %3.1f, min %3.1f", p_vcheck_max_voltage, p_vcheck_min_voltage);

41 ‘endif

42 end

43

44 endmodule //voltage_check� �
Listing 4.3: Assertion model for voltage check.� �

44 ‘include "voltage_check.vams"

45 ‘define __DEBUG__

46 ‘define VOLTAGE_CHECK

47 module testmodel(v1, v2...);

48 //IO, port definitions

49 ...

50 electrical v1, v2;

51 logic v_check;

52

53 parameter real p_testmodel_max_voltage=1.0;

54 parameter real p_testmodel_min_voltage=0.1;

55

56 ’ifdef VOLTAGE_CHECK

57 voltage_check #(.p_vcheck_min_voltage(p_testmodel_min_voltage),

58 .p_vcheck_max_voltage(p_testmodel_max_voltage))

59 voltage_check(.vdd(v1),.gnd(v2),.assert_result(v_check));

60 ’endif

61 analog begin

62 ...

63 end

64 endmodule� �
Listing 4.4: Instanciating assertion module in a mixed-signal model.

In addition to that, since the assertions will continuously monitor the signal, it
will cause a significant simulation overhead. Using conditional compiler directives
to control the assertions is therefore necessary. Listing 4.3 shows an assertion
module for monitoring the voltage between two ports, a deviation of ±10%
is given for uncertainties. The debug output is activated at line 45 and the
assertion is set to active at line 46, via compile directives. The instantiation of
assertion is done in listing 4.4 at line 57. Alternatively, analog assertions can
also be realized via macros in Verilog-AMS as proposed in [Sch11].
For mixed-signal or event-driven models in Verilog-AMS, PSL assertions

can be applied to them according to [JPB10]. However, analog value, real number
or wreal expressions have to be converted into Boolean or clock expressions, e. g.
instead using external assertion module in listing 4.3 at line 57, following PSL
assertion code can be used:� �
86

4.2 Key concepts for hierarchical verification

1 //psl assert (V(v1, v2) < 1.1*p_testmodel_max_voltage) && (V(v1, v2) > ←↩
↪→ 0.9*p_testmodel_max_voltage) ←↩
↪→ @(above(V(v1,v2)-0.5*(p_testmodel_max_voltage-p_testmodel_min_voltage)))

2

3 //psl assert (V(v1, v2) < 1.1*p_testmodel_min_voltage) && (V(v1, v2) > ←↩
↪→ 0.9*p_testmodel_min_voltage) ←↩
↪→ @(above(0.5*(p_testmodel_max_voltage-p_testmodel_min_voltage)-V(v1,v2)))� �

Listing 4.5: PSL assertion for voltage check in mixed-signal model.

The main advantage of using a well established assertion-based verification
language such as PSL or SVA consists of the fact, that the tool support in this
case is much advanced compare to the analog assertion macro, which generally
relies on if(...)then $strobe ’message’ approach. For PSL assertions, advanced digital
verification tools, such as assertion browser or coverage estimation are already
available, which will increase the reliability of functional verification at top-level.
Additionally, the assertion unit can be built in the testbench outside the

module and hierarchically access different analog nodes by using the system task
$cds_get_analog_value(...), whereas the analog assertion macro is still a part of the
model, which might interfere with the simulation, e. g. causing hidden state.� �
1 module hidden(out, in);

2 //IO, port definitions

3 electrical out, in;

4

5 parameter real p_hidden_thresh=0.5;

6 parameter real p_hidden_ttime=1p;

7 real r_tmpout;

8

9 if (analysis("pss")) begin

10 @(cross(V(in)-p_hidden_thresh) ; //place a time step by creating a empty statement

11 V(out) <+ transition((V(in)-p_hidden_thresh)), 0 , p_hidden_ttime);

12 end

13 else begin //if only non steady state analysis

14 @(cross(V(in)-p_hidden_thresh) r_tmpout = V(in)-p_hidden_thresh;

15 V(out) <+ transition(r_tmpout, 0, p_hidden_ttime);

16 end� �
Listing 4.6: Code example to avoid hidden state.

4.2.5 Automated parameter extraction and update
Hierarchical modeling leads to models at various levels of abstraction through
the whole hierarchy. Model maintenance and refinement at later project phase
will consume remarkable time and resource. Additionally, the lower levels of
abstraction is chosen, the more parameters are required to accurately map the

87

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

Figure 4.5: Overview of the proposed automated parameter extraction and up-
date flow.

behavior of the circuit. In some cases, a model with high detail grade require
hundreds of parameters. Since the models up-to-dateness will also significantly
affect the verification result, its parameters has also to be synchronized with
the current design version. Any changes in design will lead to a rework of
the model or rearrangement of the parameter values. Manually updating the
models of tracking the design changes is clearly unfeasible. Hence, for the sake
of the project’s success, an automated model parameter extraction and updating
process is proposed.
Fig. 4.5 shows the basic architecture and tasks for the model parameter

extraction and update. First it executes the testbenches, provided by the circuit
designer as schematic. All simulation runs unattended, so that required parameter
or results can be extracted on a daily schedule. Later on, if further processing
steps of the simulation results are required in order to get the model parameter, an
additional Matlab® routine for post processing will be executed. The obtained
results and parameters will be stored in an model parameter database. Part of
the model parameters can be updated and stored through the CDF(component
description format) parameter in the corresponding schematic. Other parameter

88

4.2 Key concepts for hierarchical verification

in the database can be accessed by the models dynamically during the simulation.
The automation is based on the heavy usage of SKILL/OCEAN(Open Command
Environment for Analysis) language, which will be briefly introduced in the
following.

Brief introduction to SKILL

SKILL is a high-level, interactive programming language based on the artificial
intelligence language, LISP [Bar90]. It is designed to support command entry,
access the design database and user interface and procedural customization
in Cadence Design Framework [Cad11b]. So most of the functions of cadence
tools can be accessed via SKILL. Hence it is the first choice to extend the
functionality of the current design environment and get access to its underneath
design database and simulation controls. Additionally, the OCEAN language,
which is basically an extension to the SKILL command sets, can be used to
access the simulation settings and data [Cad08].

Model parameter extraction flow

Fig. 4.6 depicts the detailed parameter extraction flow. Two key elements of
the flow are testbench execution and result evaluation routine for parameter
extraction .

Testbench The simulation environment, as shown in Fig. 4.5 consists two
equivalent parts: the front-end GUI and the back-end SKILL/OCEAN scripts.
Both parts are equivalent. This allows both circuit design team and verification
team to access and maintain the testbenches. In this way, they can be executed
by both team members, so that simulation runs for model refinement are tightly
synced with design progress. However, since analog design tools are mainly GUI
based, the whole back-end script has to be done by the verification team. This
will increase the work load of the corresponding team at the early phase of the
project: they are in charge both in model implementation and coding for the
back-end script generation for the testbench.

The back-end script consists of a set of SKILL scripts with additional OCEAN
functions for post processing of the simulation data. A top-level script is in
charge of initializing the Cadence environment followed by sequential execution
of the equivalent testbench scripts. The testbench scripts contain both the
setting for different analysis and the post processing routine for the collected
date from simulation. For further evaluation tasks, the simulation data will be
passed to Matlab®.

89

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

Yes

Simulation run

Evaluation &

Parameter Extraction

Simulation setup & run

Write data

All analysises

done?

Yes

All testbenches

processed?

Netlisting

Clean up

- Close files

- Matlab postprocessing

- Link to current database

Set up environment

- Open log & output

- Load functions

- Simulator settings

No

No

Figure 4.6: Proposed simulation flow for model parameter extraction.

90

4.2 Key concepts for hierarchical verification

Extraction Since simulating the design alone can’t lead to the model parameter,
further processing steps are required for their acquisition. After the simulation is
done, the SKILL back-end starts the post processing routine for the simulation
results.
For straightforward parameters, functions provided by SKILL respective

OCEAN are sufficient. For sophisticated tasks, e. g. filter property and transi-
tion delay, additional routines have been developed. If all analyses have been
processed, the extracted parameters of the corresponding simulation are stored
in the respective files. In the following, two typical examples for parameter
extraction are given.

LNA IIP3 extraction Assuming two sinusoidal signals with equal power at the
input of the LNA, the nonlinear effect can be described by the third-order Taylor
series Vout = α1Vin + α3V

3
in according to [Raz98]. The output signal of the LNA

then can be approximated to

Vout =
(
α1 + 9

4α3A
2
)
A cosω1t+

(
α1 + 9

4α3A
2
)
A cosω1t

+ 3
4α3A

3 cos(2ω1 − ω2) + 3
4α3A

3 cos(2ω2 − ω1) + (4.1)

The IIP33 amplitude AIIP3 is considered as the input amplitude, by which
both the first order(ω1 or ω2) and third order output signal components(2ω1−ω2
or 2ω2 − ω1) could get the same power. Wenn

|α1|AIIP3 = 3
4 |α3|A3

IIP3. (4.2)

Which leads to the input amplitude:

AIIP3 =
√

4
3

∣∣∣α1

α3

∣∣∣ . (4.3)

To get the IIP3 parameter for the model, the geometrical relation between the
first order and third order input power are used, as shown in Fig. 4.7. This code
performs exactly the same IIP3 extraction as the GUI-based version from the
designer, but can be executed automatically. A simulation with two different
input powers Pin1 and Pin2 can be executed by following OCEAN command, in
order to extract the IIP3 parameter.

1 ;; Set up simulator

2 simulator(’spectre)

3

3Input-referred third-order Intercept Point.

91

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

P
o

u
t [

d
B

m
]

Pin [dBm]PIIP3

~1 ~3

P1interp(1, 2)

P3interp(1, 2)

Pin1 Pin2

Figure 4.7: Geometrical extrapolation method to estimate IIP3.

4 ;; Set up design

5 current_design = "TB_LNA"

6 design("design_lib" current_design "config" "r")

7

8 ;; Set up path to result dir

9 ;; Create the netlist

10 scs_input = createNetlist(?recreateAll ’t)

11

12 ;; Set simulation options

13 saveOption(’save "selected")

14 save(’v "/IN" "/INX" "/OUT" "/OUTX") ;voltage of the chosen nets

15 temp(27) ;temperature

16

17 ;; Set up design variables

18 ;; Set control bit, input signal power etc.

19 ;; Set up swept multi tone HB and HBAC analysis for IIP3 and run

20 analysis(’hb ?oversample list("3") ?fundfreqs list("2.4G") ?maxharms list("3")

21 ?errpreset "moderate" ?tstab "10n" ?param "prf" ?start "-50"

22 ?stop "0" ?lin "10")

23 analysis(’hbac ?start "2.402G" ?stop "" ?maxsideband "5")

24 run(’hb ’hbac)

25 ;extract iip3 by extrapolation

26 r_lna_iip3 = ipnVRI((v("/OUT" ?result "hbac_mt") - v("/OUTX" ?result "hbac_mt")) ’(1 ←↩
↪→ -2) ’(-1 0) ?rport 1 ?epoint -45)

27 ;;write out parameter to database

28 iasLogParam("rffe_lna_ip3", r_lna_iip3, "%g")

Listing 4.7: Simplified back-end script for LNA IIP3 extraction.

Filter coefficients extraction For the extraction of a filter’s coefficient, the filter
type must be known before any further processing steps. Commonly. the filter

92

4.2 Key concepts for hierarchical verification

type is described in the design document. Fig. 4.8 shows a polyphase filter(PPF)
using a Butterworth filter as prototype.

H(s) = R + jQ

+

R = H(s)+H*(s) Q = H(s)-H*(s)

-

+

R

R

Q

Q

I

Q

f [Hz]

A [dB]

fcenter

Amax
-3dB

3dB bandwidth

=

a.) b.)

Figure 4.8: Polyphase filter using Butterworth filter prototype. a.) Signal flow of
the complex transfer function. b.) Using two real transfer functions
R and Q to realize the complex transfer function.

According to [ST+05], the complex transfer function HPPF (s) of a polyphase
filter can be realized by two real transfer functions R and Q.

HPPF (s) = Hprototype(s− jωcenter) = R+ jQ⇔ (4.4)

R = Re {HPPF (s)} = H(s) +H∗(s)
2 (4.5)

Q = Im {HPPF (s)} = H(s)−H∗(s)
2 . (4.6)

SKILL back-end routine can only extract relevant filter characteristic, but not
the actual filter coefficients. Therefore, Matlab® functions are triggered after
the simulation in order to get the filter coefficients based on the extracted
filter characteristic. For a first order polyphase filter using Butterworth filter
prototype, three parameters: gain, −3 dB bandwidth and center frequency are
required.

1 ;; save the IO signals

2 save(’v node_in_i node_in_ix node_out_i node_out_ix node_in_q node_in_qx ←↩
↪→ node_out_q node_out_qx)

93

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

3 ;; Set simulation options and run AC simulation

4 analysis(’ac ?start "-10M" ?stop "10M" ?lin "100")

5 run(’ac)

6

7 ;; determine the differential output and input amplitudes in dB

8 voltage_i_in = db20(v(node_in_i ?result "ac") - v(node_in_ix ?result "ac"))

9 voltage_i_out = db20(v(node_out_i ?result "ac") - v(node_out_ix ?result "ac"))

10 ;same for Q path

11 gain_ppf_i = voltage_i_out - voltage_i_in

12 gain_ppf_q = voltage_q_out - voltage_q_in

13

14 ;; find out center frequency and the -3db bandwidth

15 range_ppf_center = ymax(voltage_i_out - voltage_i_in)

16 range_ppf_left = cross((voltage_i_out - voltage_i_in) (range_ppf_center - 5) 1 ’←↩
↪→ rising)

17 range_ppf_right = cross((voltage_i_out - voltage_i_in) (range_ppf_center - 5) 1 ’←↩
↪→ falling)

18 ;same for Q path

19

20 ;; determine the bandwidth

21 bandwidth_ppf = cross(gain_ppf_i (ymax(gain_ppf_i) - 3) 1 ’falling) - ←↩
↪→ range_ppf_center

22

23 ;; send following parameters to matlab for coefficient evaluation

24 ;gain_ppf_i, gain_ppf_q, bandwidth_ppf, range_ppf_center

Listing 4.8: Skill back-end script for PPF parameter extraction.

Listing 4.8 shows part of the back-end script code for filter parameter extraction.
The obtained values are exported to Matlab® to get the filter coefficients, which
will be stored in the parameter database afterwards.

Model parameter update flow

As already mentioned in section 4.2.5, there are two ways to refine the models’
parameter: via CDF update in the top-level schematic, e. g. LNA IIP3, or let
the model itself access the up-to-date parameter during the simulation, e. g.
the filter coefficients. Since the same model in different schematics will also
have different CDF parameter database, it is important to automatically update
the CDF parameter in every schematic in the design environment. Clearly,
this method has the drawback of consuming too much time. Furthermore, not
all the schematic are accessible for update, since they can be checked out by
other designer for circuit modifications. In order to avoid the error introduced
by missing CDF update, the parameter update has to be initiated every time
when schematic consisting models is accessed for simulation, in order to avoid
inconsistencies in the CDF parameter and hence increase the reliability of the
verification. For this purpose, all parameters shown in Fig. 4.5 are stored in an

94

4.2 Key concepts for hierarchical verification

external database and the model parameter update procedure is integrated into
the design framework ad initio.

va / vams view?

End

Yes

No

Open top-level cell

open parameter DB

For each instance

Apply

parameters to

CDF

schematic view?

No

Yes

D
e

s
c
e

n
d

 i
n

to
 c

e
ll

v
ie

w

Figure 4.9: Automated hierarchical model update flow.

The main CDF update procedure is implemented in SKILL, it allows a
recursive update of the CDF parameter through the whole schematic hierarchy.
Fig. 4.9 depicts the model update flow. The function is embedded into the
schematic editing GUI, so it can be accessed easily. In addition to the SKILL
procedure, the naming convention of testbench schematics has been established
from the beginning, every testbench schematic will have the prefix TB_ and the
parameters with update feature get the postfix _apx. An alternative procedure
will go through the whole testbench schematics, if accessible, and update the
corresponding CDF parameters on a daily basis.

4.2.6 Top-level simulation and sign off

Once the design moves to top-level assembly, besides refining models at higher
level of abstraction through the hierarchy, a comprehensive top-level verification

95

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

strategy is required to achieve a reasonable level of confidence. Following aspect
have to be considered:

Full chip integration For the full chip integration, large amount connections
for analog as well as the interface to digital part have to be done. In contrary
to block-level, where every model can be validated with their transistor-level
representation side-by-side, models at top-level require an accurate refinement
based on the lower level models and exact description of their interface. Therefore,
when refining the event-driven models from the top-down process, the primary
concern should be preserving the correct functionality and accurate interface
description of the block. This is also the reason, why the verification team is not
allowed to change the schematic from the beginning as mentioned in section 4.2.3.
Second or third order effects in the top-level model should be avoided as they
will generally slow down the model development and the simulation speed.
Additionally, each subsystem has to be simulated and verified standalone, before
gradually moving them into the macro-level, and later on top-level schematic.
Furthermore, assuming the digital part has been already verified standalone, it
has to be ensured that the current working copy of the digital part, regardless
RTL code or synthesized Verilog netlist is checked out from the repository.

End-to-end signal flow simulation Once the subsystems have been merged into
top-level, simulation with simple stimuli won’t be enough to verify the complete
signal path in detail. Typically, for the top-level simulation, modulated signals
for the testbench are required. In this way, signals from the input to the output
of the chip, crossing all blocks and paths can be checked. In addition to that, the
digital configuration and algorithm can also be verified in the presence of their
analog counter part. This is also the best method in practice to disclose further
implementation errors in the digital part and to ensure the signal integrity of
the whole chip.

4.3 Summary of the proposed methodology

This chapter presented a modeling methodology for the verification of a complex
RF SoC. Several techniques, such as design partitioning, hierarchical model im-
plementation, assertion coding, as well as automated model parameter extraction
and update are discussed. The proposed modeling flow shifts part of the model
refinement work to the early project phase, as the benefit of automated model
refinement later on prevails the higher initial workload. The overall modeling
flow can be summarized in the following 4 steps.

1. Starting with block-level design, build up the analog models and validate
them side-by-side in the same simulator with the circuit. At the same

96

4.3 Summary of the proposed methodology

time, the key model parameters are identified, testbenches used by the
designer will be translated into equivalent SKILL/OCEAN script for their
automated execution. Needless to mention, most details of the block-level
circuits, especially the start-up time, condition and sequence have to be
documented in the design document for better debugging process later on.

2. Implement the event-driven models for each block, use the analog models
as reference. Additional event-driven testbenches have to be built up by
the verification team according to the analog ones in the first step. At this
step, key parameters identified before can be updated automatically with
the update approach proposed in section 4.2.5 and 4.2.5. For analog/RF
blocks, the wreal data type is used to move the analog potential/flow into
digital domain with higher abstraction. Frequency behavior in RF band
should be mapped into equivalent delays. Otherwise, it will consume too
much simulation time. Assertions have to be implemented into the models.
At this step, the automated parameter extraction and update approach
starts to be beneficial, since lots of model parameter refinement can be
done without manual intervention.

3. Build up top-level testbench, implement input stimuli in addition to the
ones available in th top-down model sets. Especially for the signal path,
besides some signal tone sources for some initial check, real modulated
signals are inevitable. The single tone signals are way better traceable
through the hierarchy compare to the real modulated ones, but the real
modulated signal is the only source to determine the functional correctness
of the system. Refine the top-down model with detailed pin/port descrip-
tion. Validate the top-level testbench, define the simulation set for the
top-level regression run and determine the required levels of abstraction for
each test case. Furthermore, an early simulation performance estimation
can be done by enabling the profiling options in the mixed-signal simulator,
in order to find out if there is any unnecessary cross domain connections,
which slows down the simulation.

4. Verify the system according to the specification. Apply the real modulated
signal to the input, if any modem4 activities is required for the functional
verification. Run regression tests, find out available functional errors,
communicate with design team for possible bugs.

The event-driven model for the top-level functional verification in the mentioned
flow still uses passband modeling technique instead of the baseband one, due to
the mentioned language limitation of Verilog-AMS. Although the simulation
performance thereby is significantly increased compare to the analog simulation

4modulation and demodulation

97

Chapter 4 A Verilog-AMS Based Modeling and Verification Methodology for
RF Mixed-Signal SoCs

at model or transistor-level. The reasonable system time for the simulation
is therefore limited in the millisecond range. For simulating systems with
increasing complexity or digital algorithm requiring even longer system time to
converge, higher simulation performance is desirable. Hence, implementation
of pin-accurate event-driven baseband models is an inevitable further step to
facilitate functional verification at higher system design hierarchy.
Although part of the models can be updated automatically, radical design

changes, such as add/remove pins, change digital control polarity from active low
to active high still require manual intervention. That’s also the reason for using
a strict coding style, so that human errors can be reduced as far as possible.
Furthermore, model parameters stored in an external data base can also be
accessed by external tools and programs, this is especially beneficial for the
SystemC virtual prototype, as will be discussed in the next chapter.

98

5
A SystemC-Based RF Virtual Prototyping

Methodology

This chapter presents a method to generate pin-accurate SystemC models based
on the RF circuit schematics, using a SKILL based routine. This method
addresses the verification and modeling of the analog/RF circuits in the event-
driven digital domain using SystemC, based on the same database created by
the circuit designer.
Recalling Fig. 3.1, the reachable design hierarchy using Verilog-AMS is

confined from the transistor implementation to functional behavior level. This
is also the mainly targeted design hierarchies in the current mixed-signal design
environment e. g. Cadence® DFII. However, in addition to prove the functionality,
since the hardware itself only serves as a part of a system, the Virtual Prototype
(VP) of the whole chip, which captures the latest snapshot of the hardware part
(think of IP reuse), is also necessary to ensure the correct hardware/firmware
interaction. Hence, two factors have to be considered if moving to higher design
hierarchy. First, the consistency of the design. As already mentioned, each tool
has only limited coverage of its targeted design hierarchy. In our case, if the whole
design hierarchies from HW/SW to circuit level have to be covered, different
modeling languages is here inevitable1. Considering the system level design, most
models have been created by using Matlab® or C-based HDLs(s. section 3.1.2)

1Although Fig. 3.1 indicates, that SystemVerilog as an extension to Verilog-AMS can
cover higher design hierarchy, it is still a maturing language, which doesn’t offer the high
degree of openness as those from SystemC.

99

Chapter 5 A SystemC-Based RF Virtual Prototyping Methodology

like SystemC, whereas Verilog-AMS2 is mainly used in the circuit design
hierarchy. Therefore, the consistency between the database from system level
model to the circuit level is mandatory. Second, the simulation performance
has to be increased, especially for the RF part of the SoC. Passband modeling
methods used in Verilog-AMS cannot provide high enough simulation speed
to come up with the increasing complexity in the whole system. Design and
verification at higher hierarchy demand the introduction of models with higher
levels of abstraction. However, most of the models of the analog/RF subsystems
are handcrafted, therefore, adding a further level of abstraction will also increase
the work of the modeling and verification team for updating and validating
the models to ensure the design changes have also been covered by the models
through the whole hierarchy.
The proposed method intends to refine system level models based on the

schematic information, this leads to the possibility to keep the consistency
between the system level models and those from schematic level. On the one
hand, the connectivity information of the analog/RF subsystem can be extended
into the system level and verified, therefore the consistent virtual RF prototype
can be provided. On the other hand, the behavioral models in SystemC can
be executed more efficiently, thus helps the development of further system
components as well as SoC verification. The remainder of this chapter will
describe the requirements and ideas of generating pin-accurate SystemC models
based on the schematic database. Furthermore, pin-accurate baseband model
implementation technique in SystemC to increase the simulation performance
will be presented.

5.1 Requirements for RF virtual prototype implementation

For a consistent system level RF virtual prototype based on circuit design
database, the model generation and refinement process has to be done automati-
cally, capturing every possible design changes and reducing the human errors
introduced by manual model implementation to minimum.
One might argue with extending the classical HDLs via their available C-

interface, such as VPI. While the authors of [Che09]; [Che10] combines the
real number and baseband modeling methods via VPI in order to get the most
simulation performance, were the main target of the authors in [MZ+08] to add
vector and matrix operation semantics in Verilog-AMS. Both of them share
the same idea: bring the different levels of design abstraction into an unified
simulation environment. However, such extensions of classical HDLs cannot

2Generally, classical HDLs such as VHDL or Verilog family can be used here, but in this
work, as mentioned in early chapter, Verilog-AMS is the main HDL used in circuit design
level.

100

5.2 Hierarchical SystemC model frame generation flow

offer the same degree of openness and flexibility of a C-based HDL such as
SystemC. If more HW/SW interaction is required, the VPI approach will reach
its limit with respect to flexibility. Additionally, extending a HDL will cause
additional debug overhead. Hence, SystemC has been chosen for the proposed
RF prototype.
Generally speaking, the proposed RF prototyping approach is a bottom-up

model refinement process by creating pin-accurate system models in order to keep
the consistency of models at every levels of abstraction from circuit to system
design. In this case, the proposed approach has to fulfill following requirements:

• Circuit and system level models should share the same database.

• The schematic database serves as the reference for the model refinement
process, it cannot be modified.

• The virtual prototype must preserve the pin-accuracy and reflect the
hierarchical structure of the circuit level design.

• The virtual prototype has to be portable and can be simulated in an unified
simulation environment with other components of system design.

5.2 Hierarchical SystemC model frame generation flow

As already mentioned in section 5.1, the virtual prototyping and functional
verification of the RF systems have to be done in a pure digital simulator and
require HDL which can handle higher levels of abstraction, in order to achieve the
most simulation efficiency in the whole SoC. SystemC fulfill this requirement,
hence the automatic generation of pin-accurate SystemC RF models is required.
By generate the mostly part of the VP automatically, the error source introduced
by handcrafting an additional model set can be excluded. Fig. 5.1 illustrates
the proposed system level model refinement and virtual prototyping approach,
which comprises of 3 components:

(1) Automatic generation of pin-accurate SystemC model frame based on the
schematic information.

(2) Automatic extraction of model parameters based on transistor-level simu-
lations.

(3) A comprehensive set of standard SystemC core behavioral models for
analog/RF building blocks.

The groundwork of the proposed methodology is a formalized AMS design and
verification flow, consisting of both top down model generation, as well as bottom
up model refinement, which has been discussed in chapter 4.

101

Chapter 5 A SystemC-Based RF Virtual Prototyping Methodology

SystemC/-AMS System Level

Model

Circuit design

database

SystemC std.

RF blocks

SystemC model frame

generation

Automatic model

parameter extraction1 2

3

Figure 5.1: Proposed SystemC model refinement and RF virtual prototyping
approach.

5.2.1 Comparison of different approaches
Two possibilities have been considered in order to get the hierarchy and structure
information of the existing circuits/subsystems and export them accordingly:

1.) A pure SPICE netlist translator, which converts the whole netlist into
SystemC model frames. This approach needs two steps to generate pin-
accurate models: first, it has to build up the hierarchy from the already
flattened netlist, which is based on the schematic information. Second, it
generates the SystemC model frame and compares the SystemC instance
with existing instances in the schematic database. While this approach is
generic and almost universal for every SPICE-type netlist, it needs intensive
keyword training and extension to understand the mixed-signal netlist3,
which contains analog/digital circuit information, simulation controls and
HDL based behavioral models. Additionally, the analog part of a mixed-
signal netlist typically doesn’t contain any I/O port direction information,
which is essential for data flow simulation of the SystemC models. This
will cause a subsequent manual modification of the SystemC models,
which is error prone since the models in SystemC don’t have any graphical
representations.

2.) A direct translator of the given schematic using the SKILL language.
Since the schematic already comprises the hierarchy structure of the given

3Although the mixed-signal netlist is SPICE-like, some of the netlists uses Verilog-AMS to
declare the instances(s. section 2.2.3), which generally will increase the keyword training
for hierarchically parsing the netlist instances into equivalent SystemC models.

102

5.2 Hierarchical SystemC model frame generation flow

System, the SKILL language features the possibility to access and translate
this information directly into SystemC. Additionally, the property of the
ports can be invoked from SKILL to determine the I/O direction in
the equivalent, pin-accurate SystemC models. Fig. 5.2 shows the major
accessible schematic information via SKILL.

Figure 5.2: Accessible schematic information via SKILL

The SKILL based approach for the automatic SystemC model frame generation
has been chosen, since the required information regarding schematic hierarchy,
instance I/O and connectivities are already available in the design database,
which is directly accessible using the SKILL based routine. Additionally, the
SKILL code offers better integration possibilities into the available design flow.
Therefore, possible errors through netlist re-mapping, keyword training and
manual interaction can be reduced to the minimum.

5.2.2 Hierarchical generation of pin-accurate SystemC models

The overall model frame generation procedure is illustrated in figure 5.3. First,
the hierarchical structure of the whole circuit inclusive the I/O direction of
each instances and their connectivities will be analyzed. Second, connectivity
validation and resolution e.g. naming conventions of schematic data will be
considered to ensure correctness for the model translation. The corresponding
names for instances, pins, and nets will be converted or expanded to fit the
naming rules in SystemC syntax.

103

Chapter 5 A SystemC-Based RF Virtual Prototyping Methodology

Schematic

database

SystemC AMS

RF VP

database

Generate

hierachical

netlist

information

Generate

SystemC AMS

model frame

Figure 5.3: General flow of the automatic SystemC model frame generation

Map the hierarchical structure

The entry point of the proposed flow is the top-level schematic, all instances
in the schematic will be listed and sorted to prepare for further iteration. For
each instance4, two processes will be executed. First, the structure of the
instance, including pins, IO directions and the subsequent interconnection to
other available instances will be stored in a temporary database for further
processing. Second, the available views5 of each instance will be analyzed. If
a "schematic"-view is available for the instance, the procedure will be executed
recursively, until either the defined hierarchy level for the VP is reached or
all instances don’t have the "schematic"-view anymore. At the end of this
process, the hierarchical structure of the targeted circuit will be mapped to
an intermediate file, which will be passed on for the SystemC model frame
generation. This intemediate file will be referred as hierarchy database in the
following The flow chart of the mentioned process is shown in Fig. 5.4. The
output hierarchy database consists of information about the schematic name,
subsequent instance names, the corresponding library names, view names and
the number of instances. Listing 5.1 shows part of its SKILL implementation.
1 defun(HierSchTree (@key (cv (geGetEditCellView))

2 (exList nil)

3 (port poport)

4 (layer 0))

5

6 let((sortedHeaders count s1 sv)

7 ;sortedHeaders: Sorted header of the list file

8 ;count: Number of instances

9 ;s1: Tmp obj for cache instances database

10 ;sv: New cellview object

11

12 sortedHeaders = sort(cv~>instHeaders ’abCompareCellName);

13 foreach(header sortedHeaders

14 when(!member(header~>libName exList)

4Basically, the instance in the schematic can either be the circuit element, stimuli or
sub-circuits.

5Views refer to the actual used abstraction of the instance for the top-level, e. g. extracted,
layout, schematic, Verilog-A, Verilog-AMS, etc.

104

5.2 Hierarchical SystemC model frame generation flow

Open Schematic,

list all instances in the

current cell

List all views of each

instances e.g.

`schematic`, `vams`...

Save hierarchy info, I/O,

connectivities

Bottom level?

S
te

p
 i
n

to
 s

c
h

e
m

a
ti
c
 v

ie
w

in
 l
o

w
e

r
h

ie
ra

rc
h

y
 l
e

v
e

l

Generate intermediate

netlist based on SystemC

AMS model frame

elements

Yes

- Define hierarchy level to step in

- Define abstraction level of certain block

- Map schematic instances to SystemC

 AMS model frame elements

No

Figure 5.4: Flow chart for generating the intermediate file

105

Chapter 5 A SystemC-Based RF Virtual Prototyping Methodology

15 s1 = header~>instances;

16 count = length(setof(inst s1 nequal(inst~>purpose "pin")));

17 when(greaterp(count 0)

18 sv = dbGetAnyInstSwitchMaster(car(s1) "schematic");

19 TreeOutputElement(port layer header count)

20 when(sv

21 HierSchTree(?cv sv ?exList exList ?port port ?layer layer+1);

22);when(sv

23);when(greaterp(count 0)

24);when(!member(header~>libName exList)

25);foreach(header sortedHeaders

26 t);let..

27)

Listing 5.1: Source code for generating the hierarchy database.

Generate SystemC model frames

The model frame for the VP will be generated based on the information provided
by hierarchy database. Since the schematic and the VP will share the same
hierarchy structure, some similarities between the schematic and its corresponding
SystemC VP is also given, as shown in Fig. 5.5. The detailed SystemC model

Schematic

database
SystemC VP

database

Top-level testbench

e.g. „main.cpp“

Connectivity,

hierarchy, IO...
Pin accurate SystemC

modules (.h + .cpp files)

Top-level

testbench

Figure 5.5: Overview of the schematic hierarchy and its corresponding SystemC
model frames

frame including the model construction part, the hierarchical connection to its
sub modules, its IO ports and signals are now generated. Since not all instances
in the schematic contain sub-circuits, the model frame generator has to treat
the cases differently. Three functions: genSC_MAIN(), genSC_Module() and genSC_Cell()

are available to handle different mentioned cases. For instances without any

106

5.2 Hierarchical SystemC model frame generation flow

Determine the type of model frame element:

 Top-level à Main

 Subsystem à Module

 Block-level à Module

Translate the hierachy database

to SystemC AMS conform Syntax

- Net resolution

- Naming convention

Figure 5.6: General flow description of the SystemC model frame generation

sub-circuit, the genSC_Cell() is called to generate the corresponding SystemC
model frame, the corresponding SKILL code is shown in listing 5.2.
1 procedure(genSC_Cell(cv_, default_path_)

2 let((s1 s2 port pin_sc)

3 ;s1: tmp string to save cellName of cellview

4 ;s2: tmp string to save SystemC module and pin name

5 ;port: port to generate SC_Cell

6 ;default_path_: the default path to access VP database

7

8 s1 = cv_~>cellName;

9 port = outfile(sprintf(nil "%s/%s.h" default_path_ s1));

10

11 /*header part of SC_Cell*/

12 ...

13 fprintf(port "SC_MODULE(%s){\n\n" cv_~>cellName);

14

15 /*generate pins declaration and port direction*/

16 fprintf(port "//\tport declaration\n");

17 foreach(pin cv_~>terminals

18 pin_sc = pinSch2SC(pin~>name "" "string");

19 case(pin~>direction

20 ;generate the port + direction

21);case

22);foreach

23

24 /*inner signals defination*/

25 fprintf(port "// signal declaration\n");

26 foreach(pin cv_~>terminals

27 s2 = pinSch2SC(pin~>name "_sig" "string");

107

Chapter 5 A SystemC-Based RF Virtual Prototyping Methodology

28 fprintf(port "\tsc_signal<T> %s;\n" s2);

29)

30 ...

31);let..

32);procedure

Listing 5.2: Source code for generating a single SystemC cell.

Otherwise, the genSC_Module() will be executed and go through the specific path
of the instance’s own hierarchy. During traversing of the instance’s hierarchy,
genSC_Module() will also generate the hierarchical interconnections based on the
information from the hierarchy database, including the basic information in the
model frame mentioned in the former case. At the end, depending on the user’s
choice, the genSC_MAIN() will be executed to finish the top-level of the SystemC
VP. Fig. 5.6 shows the general steps of the mentioned process. The last step will
be described in the next section.

Naming conventions and resolution functions

Besides generating pin-accurate SystemC model frames, the naming conventions
for the schematic design has also to be considered to ensure correctness for the
model translation. The corresponding names for instances, pins, and nets will
be converted or expanded to fit the naming rules in SystemC syntax. Some
of the naming conventions used for net and bus in the design environment(s.
Fig. 5.2) [Cad11a] e.g. <∗2>net02(two times net02) or net<0:12>(bus with the
width of 13) are not directly supported in SystemC. Hence, a proper net name
remapping functional has to accompany the model frame generation process.
Fig. 5.7 shows part of the special cases of naming conventions in schematic,

which should be resolved and remapped during the model frame generation
process. Understanding the meaning of the naming conventions in schematic,
the remapping keyword can be trained. The resulting names in SystemC
corresponding to cases in table 5.1 are listed in table 5.2.

Three functions are implemented PortSch2SC(), NetSch2SC(), and InstSch2SC() in order
to cover different naming convention cases in the nets, ports and instances.
While different naming conventions can be covered using different mapping

functions, further processing steps are required to resolve some special net
connection cases. In the analog design, it is common to connect some nets to
a single node. The potential(voltage) keeps the same at one node, whereas
the current sums up(s. section2.2.2). Models at higher level of abstraction
in SystemC cannot resolve such relationship as mentioned in section 3.3.3.
Therefore, a proper resolution function has to be implemented for such cases
to avoid the multi driver on single node issue in digital simulation. e. g. case 1
shown in Fig. 5.7 the three parallel nets with the name of net1 < 2 : 0 > are

108

5.2 Hierarchical SystemC model frame generation flow

C

outinst.3

B

outinst.2

A

outinst.1 net2

net2

net2
D

in
<*3>net2

Case 3

inst.4<2:0>

C

outinst.3

B

outinst.2

A

outinst.1 net1<0>

net1<2>

net1<1>
D

in<2:0>
net1<2:0>

Case 2

inst.4

A Bout in

in<2:0>out

inst.1<2:0>

net1<2:0>

<*3>net2

inst.2

Case 1

Figure 5.7: Special cases of schematic naming conventions in Cadence® DFII,
which is not natively supported in SystemC.

Instance name Terminal name Net name
Ix out net01
Ix out net02<0>
Ix out<14:0> net03<14:0>

Ix<1:0> out <∗2>net01
Ix<1:0> out net02<0:1>
Ix<1:0> out <∗2>net03<0>
Ix<1:0> out<14:0> net01<29:0>
Ix<1:0> out<14:0> <∗2>net02<14:0>

Table 5.1: Schematic naming conventions in Cadence® DFII.

109

Chapter 5 A SystemC-Based RF Virtual Prototyping Methodology

Instance name Terminal name Net name
Ix out net01
Ix out net02[0]
Ix out[14]∼[0] net03[14]∼[0]

SYSC_par_0_Ix out SYSC_par_0_net01
SYSC_par_1_Ix out SYSC_par_1_net01
SYSC_par_0_Ix out net02[0]
SYSC_par_1_Ix out net02[1]
SYSC_par_0_Ix out SYSC_par_0_net03[0]
SYSC_par_1_Ix out SYSC_par_1_net03[0]
SYSC_par_0_Ix out[14]∼[0] net01[29]∼[15]
SYSC_par_1_Ix out[14]∼[0] net01[14]∼[0]
SYSC_par_0_Ix out[14]∼[0] SYSC_par_0_net01[14]∼[0]
SYSC_par_1_Ix out[14]∼[0] SYSC_par_1_net01[14]∼[0]

Table 5.2: Remapped naming conventions in SystemC.

connected to a single node at the input of the instance B. For SystemC VP, the
name of the net has to be firstly remapped. Afterwards, the resolution function
will generate a piece of code, which generally let the user to choose the behavior
at the input of instance B. E. g. if multiple current sources are driving a single
node:

net1 = SYSC_par_0_net1
+ SYSC_par_1_net1
+ SYSC_par_2_net1

Which generally creates a virtual summation node for the currents at the input
of instance B, as shown in Fig. 5.8. After the net resolution process is done, the
overall model frames for the SystemC VP are complete.

5.3 SystemC RF building blocks library

A library that contains a model set of RF building blocks and AMS components
has also been implemented. The library is mainly targeting to describe the
core functionalities and behavior of the RF blocks and subsystem for system
level. All models are implemented in a way, so that they are highly flexible
and customizable. Furthermore, the models have to be optimized in terms
of simulation performance compare to the event-driven passband models in
Verilog-AMS. Fig. 5.9 depicts the structure of the generated SystemC model

110

5.3 SystemC RF building blocks library

A Bout in

in<2:0>out

inst.1<2:0>

net1<2:0>

<*3>net2

inst.2

SYSC_par_0_net1

SYSC_par_1_net1

SYSC_par_2_net1

SYSC_par_0_out

SYSC_par_2_out

SYSC_par_1_out in

Figure 5.8: Net resolution function for SystemC VP. Here, both the output and
input ports of instance 1 and instance 2 are considered as current
ports. Hence, the resolution function will sum up the input signals.

based on the proposed methodology. It consists of the automatically generated
model frame and the hierarchical connection information, as well as the basic
characteristics taken from the SystemC RF building block library, such as e. g.
gain, noise and linearity. Parameters for each of the mentioned behavior will be
updated from the model parameter database mentioned in section 4.2.5, which
has been extracted from the design environment. The only manual intervention
for completing the model is to map the functional response of the block if digital
controls apply, e. g. control sequence for gain and bandwidth switching, power
on/off states.

5.3.1 Simulation performance aspects

The usage of wreal signal in Verilog-AMS can significantly increase simulation
efficiency. However, the wreal data type allows only to transfer one real number,
in one direction all the time [Cad11c], which limits the possibility to use equivalent
baseband model to get higher abstraction: Either the wires and pins in signal
path of the models has to be modified or the signal has to be changed externally
via VPI to fulfill the requirement. Both will increase the functional verification
effort in different ways: Changing pins means to change the design, which is
not allowed for verification engineers. Using VPI means embedding additional
C code into Verilog-AMS models, which will reduce the transparency of the
models, hence reducing the reliability of the models for verification.
Since the SystemC models are not limited regarding their signal types, not

only real numbers can be passed through between the models like the wreal
approach mentioned in [WVM+09], but also user-defined signal types, such as
those mentioned in section 3.2.3. The simulation of the SystemC models can

111

Chapter 5 A SystemC-Based RF Virtual Prototyping Methodology

In
p

u
t

O
u

tp
u

t

SystemC AMS model

Autom. generated model frame

Core functionality

A
c
c
e
s
s

SC/SCA_IN / OUT <T> ...

SC_MODULE(…)

get_param_value(...)

void processing(...)

SC_METHOD(...)

SC/SCA_SIGNAL <T> ...

Parameter

database
SystemC AMS

RF library

Figure 5.9: Structure representation of the automatically generated SystemC
model.

only be done in the time domain, thus some of the analog specifications in the
frequency domain like phase noise or filter characteristics have to be mapped
into the event-driven time domain, which has been discussed in [WVM+09];
[WJ+09]. The SystemC model library consisting of the RF building blocks,
must be able to pass complex numbers or even arrays through the ports for
realizing the pin-accurate multi tone baseband modeling approach. In this
way, the aforementioned limitation of Verilog-AMS can be vanquished while
preserving the pin-accuracy, so that the simulation efficiency can be increased
further. The whole models and signal types are implemented in a pure C++
environment with high code transparency, which makes the verification more
reliable compare to embedding C code via VPI interface.

5.3.2 Switchable baseband models of RF blocks

In addition to the mentioned performance aspect, the RF core models exhibits
the property to automatically switch between the passband and baseband signals,
depending on the type of the input signal. Baseband models commonly require
more signal components compare to the passband ones [Che05]. One baseband
signal should contain at least three components: in-phase (I), quadrature-phase
(Q) and carrier frequency (ω0). If more concern about the nonlinear effects
or higher order harmonics has to be made, additional components have to

112

5.3 SystemC RF building blocks library

be considered and append to the existing baseband signal. The key feature
of the proposed methodology is the consistent pin-accuracy in all levels of
abstraction, from the circuit design to the SystemC VP environment. As
previously anticipated in earlier section, the advantages of the SystemC modeling
approach lies in the fact that the SystemC modules are based on the C++
classes and offers its object oriented features, new signal type can be manually
defined as a C++ class [DG03]. By overloading the operators in SystemC, the
operators’ functions can be defined according to the type of its operands. Hence,
the representation of a signal is not limited in real number, moreover it can also
be represented in vectors and matrices. A class called BB_double containing
8 parameters DC, I1, Q1, I2, Q2, I3, Q3 and w0 are defined based on Taylor
series approximation:

s(t) = DC(t) + I1(t)cos(w0t) +Q1(t)sin(w0t)
+ I2(t)cos(2w0t) +Q2(t)sin(2w0t)
+ I3(t)cos(3w0t) +Q3(t)sin(3w0t) (5.1)

Basically, the +, -, /, *, = and == operators have been overloaded, both operand
BB_double and double have been considered. Listing 5.3 shows the current imple-
mentation of the mentioned BB_double class, where only the overload of * operator
is shown in detail.

1 class BB_double{ //baseband double;

2 public:

3 double f0; //passband frequency;

4 double DC; //s(t) = DC + I1*cos(w0t) + Q1*sin(w0t)

5 double I1, Q1, I2, Q2, I3, Q3;; //+ I2*cos(2w0t) + Q2*sin(2w0t)+ ←↩
↪→ I3*cos(3w0t) + Q3*sin(3w0t);

6

7 public:

8 ...

9 BB_double operator * (double A) const{ //overload * if operand is double

10 BB_double result;

11 result.f0 = f0;

12 result.DC = DC * A;

13 result.I1 = I1 * A;

14 result.Q1 = Q1 * A;

15 ...

16 return result;

17 }

18 ... //overload / if operand is double

19 ... //overload /int_number for quantization effeects

20 BB_double operator * (BB_double & rhs) const{ //operator * overloading;

21 BB_double result; //In case BB_double * BB_double;

22 if(rhs.f0 == f0){

23 result.f0 = f0;

113

Chapter 5 A SystemC-Based RF Virtual Prototyping Methodology

24 result.DC = DC * rhs.DC + I1*rhs.I1/2 + I2*rhs.I2/2 + I3/2*rhs.I3/2

25 + Q1*rhs.Q1/2 + Q2*rhs.Q2/2 + Q3*rhs.Q3/2;

26 result.I1 = DC*rhs.I1 + rhs.DC*I1

27 + (Q1*rhs.Q2)/2 + (rhs.Q1*Q2)/2 + (Q2*rhs.Q3)/2 + (rhs.Q2*Q3)/2

28 + (I1*rhs.I2)/2 + (rhs.I1*I2)/2 + (I2*rhs.I3)/2 + (rhs.I2*I3)/2;

29 result.Q1 = DC*rhs.Q1 + rhs.DC*Q1

30 + (rhs.I1*Q2)/2 + (rhs.I1*Q2)/2 - (rhs.I2*Q1)/2 - (rhs.I2*Q1)/2

31 + (I2*rhs.Q3)/2 + (rhs.I2*Q3)/2 - (I3*rhs.Q2)/2 - (rhs.I3*Q2)/2;

32 result.I2 = DC*rhs.I2 + rhs.DC*I2

33 + (I1*rhs.I1)/2 + (I1*rhs.I3)/2 + (rhs.I1*I3)/2

34 + (Q1*rhs.Q3)/2 - (Q1*rhs.Q1)/2 + (rhs.Q1*Q3)/2;

35 result.Q2 = DC*rhs.Q2 + rhs.DC*Q2

36 + (I1*rhs.Q1)/2 + (rhs.I1*Q1)/2 + (I1*rhs.Q3)/2

37 + (rhs.I1*Q3)/2 - (I3*rhs.Q1)/2 - (rhs.I3*Q1)/2;

38 result.I3 = DC*rhs.I3 - (rhs.Q1*Q2)/2 - (Q1*rhs.Q2)/2

39 + rhs.DC*I3 + (I1*rhs.I2)/2 + (rhs.I1*I2)/2;

40 result.Q3 = DC*rhs.Q3 + (I1*rhs.Q2)/2 + (rhs.I1*Q2)/2

41 + rhs.DC*Q3 + (I2*rhs.Q1)/2 + (rhs.I2*Q1)/2;

42 }

43 else {

44 if(rhs.f0 == 0){

45 result.f0 = f0;

46 result.DC = DC * (rhs.DC + rhs.I1 + rhs.I2 + rhs.I3);

47 result.I1 = I1 * (rhs.DC + rhs.I1 + rhs.I2 + rhs.I3);

48 result.Q1 = Q1 * (rhs.DC + rhs.I1 + rhs.I2 + rhs.I3);

49 result.I2 = I2 * (rhs.DC + rhs.I1 + rhs.I2 + rhs.I3);

50 result.Q2 = Q2 * (rhs.DC + rhs.I1 + rhs.I2 + rhs.I3);

51 result.I3 = I3 * (rhs.DC + rhs.I1 + rhs.I2 + rhs.I3);

52 result.Q3 = Q3 * (rhs.DC + rhs.I1 + rhs.I2 + rhs.I3);

53 }else if(f0 == 0){

54 result.f0 = rhs.f0;

55 result.DC = rhs.DC * (DC + I1 + I2 + I3);

56 result.I1 = rhs.I1 * (DC + I1 + I2 + I3);

57 result.Q1 = rhs.Q1 * (DC + I1 + I2 + I3);

58 result.I2 = rhs.I2 * (DC + I1 + I2 + I3);

59 result.Q2 = rhs.Q2 * (DC + I1 + I2 + I3);

60 result.I3 = rhs.I3 * (DC + I1 + I2 + I3);

61 result.Q3 = rhs.Q3 * (DC + I1 + I2 + I3);

62 }else{

63 cout<<"Multiplication with unbalanced frequency!!!!!"<<endl;

64 }

65 }

66 return result;

67 }

68 ...// overload + operator, considering different cases regarding f0s

69 ...// overload - operator

70 };

Listing 5.3: Source code of the mentioned BB_double class.

114

5.3 SystemC RF building blocks library

Additionally, the baseband model has to share the same code with its passband
counterpart. Otherwise, seamless switch between passband and baseband signal
type would take too many code and resource changes, which is not feasible.
Hence, the only change, which has to be made for switching between those two
signal abstractions has to be limited to the change of the signal type. Listing
5.4 shows such implementation.

1 template<class T>

2 SC_MODULE(SC_LNA){

3 public:

4 sc_in<T> SC_LNA_INPUT;

5 sc_out<T> SC_LNA_OUTPUT;

6

7 public:

8 SC_HAS_PROCESS(SC_LNA);

9 SC_LNA(sc_module_name, ...);

10

11 private:

12 void proc(void);

13 //parameters for LNA model such as ICP IIP3...

14 };

15

16 template<class T>

17 SC_LNA<T>::SC_LNA(sc_module_name n, double Gain_, double NF_, double BW_, double IIP3_,

18 double RISO_, double IRL_, double ORL_, double Rin_, double Rout_, double Load_){

19

20 c1 = sqrt(pow(10, Gain/10)) * Rout / Rin;

21 c3 = 2 * c1 / pow(10, (IIP3-30)/10) / Rin / 3;

22 rms = sqrt(kB * LNA_T * (pow(10, NF/10)-1) * BW);

23 Amax = sqrt(4/3 * c1 / c3);

24

25 SC_METHOD(proc);

26 sensitive<<SC_LNA_INPUT;

27 };

28

29 template<class T>

30 void SC_LNA<T>::proc(){

31 T noise_signal_in = AWGN(SC_LNA_INPUT.read(), 0, rms);

32 noise_signal_in = limit(noise_signal_in*ref_Loss, Amax);

33 T third_harm = noise_signal_in * noise_signal_in * noise_signal_in;

34 T tmp_out_sig = (noise_signal_in*c1) + (third_harm * c3);

35 SC_LNA_OUTPUT.write(tmp_out_sig);

36 };

Listing 5.4: Source code of a switchable SystemC LNA model.

115

Chapter 5 A SystemC-Based RF Virtual Prototyping Methodology

5.4 Summary of the proposed RF VP methodology

Based on the methodology proposed in this chapter, pin-accurate SystemC
RF VP according to the circuit-level hierarchy and interconnections can be
generated automatically. The multi frequency simulation capability of SystemC
can be demonstrated by realizing the pin-accurate RF baseband models without
any further modifications of the connectivity information. The flexibility and
portability of an open source C++ based HDL allows us to verify the complete
signal path based on the same hierarchical information from schematic level.
Thus increases the speed and reduces the error proneness of the VP generation
process. In order to demonstrate the effectiveness of the methodology, some
application examples and their results will be shown in the next chapter.

116

6
Application Examples

This chapter consists of three application examples that are results of industry
cooperated projects, in order to demonstrate the effectiveness of the proposed
verification and virtual prototyping methodology.

Based on the rules of design partitioning and the criteria for model implemen-
tation given in the early chapters, the examples shown here will also point out
some experience and notes gained through the projects in addition, especially in
terms of determining modeling domains and approaches, defining the partition
of the design and how to trade simulation performance against accuracy for a
fast and reliable functional verification.

6.1 A fractional-N PLL based transmitter

Fig. 6.1 shows the structure of the PLL frequency synthesizer, which is the core
part of the investigated transmitter. It consists of the VCO, multi-modulus
divider with a digital ∆Σ-modulator, phase frequency detector(PFD), charge
pump(CP) and a loop filter(LPF).

6.1.1 Verilog-AMS block-level model implementation
The mentioned PLL can be considered as a typical mixed-signal system, where
the analog VCO generates the high frequency oscillation, while the digital part
is in charge of controlling the center frequency and modulation. Although
the structure shown in Fig. 6.1 is clear, the long simulation time, especially
when modulation comes into consideration, will greatly slow down the project’s

117

Chapter 6 Application Examples

Vvco

t

Icp(t)Control
Vref(t)

N
N+X

LPF

ΔΣ-

Modulator

PFD

Ref

Vcontrol(t)
V
d
iv
(t
)

Divider

Modulator input

VVCO(t)

CP

Figure 6.1: Block-level of the investigated fractional-N PLL based transmitter

progress. Therefore, implementing models of corresponding blocks for the
functional verification is an inevitable task. The main target of the verification
in this case, besides to check the functionality of the whole system, is to provide
the overall phase noise parameter based on the circuit level simulation of each
block.

Considering the different modeling contributions for PLL frequency synthesiz-
ers, different approaches has been presented in the past:

1.) The phase domain approach, which has been presented in [HMW07] and
[YCK07], uses linear phase-domain models to predict the influence of phase
noise. In this case, the VCO model is the most time consuming block in
the PLL, since it was implemented in the analog domain. In [HMW07]
and [Kun06], the model of divider has been merged into the VCO model in
order to increase the simulation efficiency. While this modeling approach
is well suited for the top-down design to estimate the overall noise of the
PLL system, it has some drawbacks when it comes to the verification for
given design. On the one hand the realization of merged VCO plus divider
doesn’t correspond to the block-level circuit structure, which makes the
verification of connectivities and debugging of single blocks on transistor-
level almost impossible. On the other hand, using analog operator like
@cross() or analog system function like $transition in the VCO model is not
efficient enough as we will see later in section 6.1.1.

2.) The event-driven approach [SFB05b] is originally developed for pure digital
circuits. It formulates the phase noise into its equivalent jitter in the
time domain. Compare to the phase-domain models, the digital models

118

6.1 A fractional-N PLL based transmitter

have much higher simulation efficiency, but the target of the mentioned
implementation was to estimate the overall phase noise performance of
the PLL. Hence, it didn’t consider aspects in the model for the functional
verification.
The proposed approach combines the advantages of the aforementioned
methods. On the one hand it is possible to model each of the blocks in the
event-driven domain in order to increase the simulation efficiency. On the
other hand the models can be embedded into testbenches on transistor-
level for a mixed-level simulation, since the wreal data type enables analog
precision in the event-driven domain. However, special calculations have to
be done in order to accurately map the block-specification from frequency-
into time-domain while keeping the simulation efficiency as high as possible,
as we will see in the following sections.

Commonly, the PLL is partitioned into the high and low frequency part during
the design period. The designer tries to use analog models to substitute the
VCO and the divider in order to reduce the simulation time and hence to make
a proper overall phase noise estimation by mixed-level transient simulation.
Since the analog models of the PLL system can only provide limited simulation
performance enhancement and no special RF simulation techniques can be
applied to the whole PLL. It has been come to the conclusion that the analog
model set of the given PLL will only serve as an auxiliary aid for the designer
in order to estimate some performance parameters, e. g. phase noise. For the
functional verification at the PLL top-level, mainly the event-driven model set
will be used.

VCO

The event-driven analog VCO model structure is shown in figure 6.2. The
modeling target is to provide a VCO model with high simulation efficiency,
which also maps the given specification from circuit level accurately enough in
order to fulfill the aforementioned verification requirements. First the input
voltage signal is converted to the output frequency or rather the desired oscillation
period. Then the timing jitter, which is computed according to equations 3.10
and 3.15, is added to the period, which leads to the noisy VCO output signal.

Listings 6.2 and 6.1 show the analog and event-driven VCO model implementa-
tions in each case. The phase noise specification given from circuit level simulation
result is −91.5 dBc/Hz at an offset frequency of 1 MHz and f0 = 433 MHz.
The VCO model uses dist normal() system function to map the white noise
equivalent timing jitter.� �
1 module wrealVCO(out, Vcontrol)

2 output out;

119

Chapter 6 Application Examples

KVCO

Vcontrol(t) fVCO

0.5(TVCO+J(t))

J(t)~$dist_normal()

Tdelay

VCOout

Figure 6.2: Event-driven VCO model structure.

3 input Vcontrol;

4 wreal out, in;

5 //...parameters

6 //...check configuration

7 always@(Vcontrol) begin

8 //calculate the freqeuncy

9 freq=Vcontrol*Kvco

10 end

11 always begin

12 #next

13 ...

14 c=pow(10,phase_noise/10.0)*pow(Deltaf,2)/(pow(freq,2));

15 accJitter=sqrt(c/(freq*2.0));

16 dT0=accJitter*$dist_normal(dSeed,0,1);

17 dT1= dT*fc*next+dT1_last;

18 next= 0.5/freq+dT0+dT1;

19 dT1_last = dT1;

20 ...

21 end

22 assign out= vco_out;

23 ...

24 endmodule� �
Listing 6.1: Event-driven VCO model.� �

1 freq=Vcontrol*Kvco

2 accJitter = sqrt(pow(10,phase_noise/10)*pow(Deltaf,2)/pow(freq,3));

3 n = pow(accJitter/1.414,2)*pow(freq,3)*2;

4 freq_n= freq/(1+noise*freq);

5 phi = 2*‘M_PI*idt(freq_n,0);

6 V(phase) <+ 2*‘M_PI*(idtmod(freq_n,0.0,1.0,-0.5));

7 @(cross(V(phase)-0.5*‘M_PI,1,ttol) or cross(V(phase)+0.5*‘M_PI,1,ttol))

8 begin

9 noise = accJitter*sqrt(2)*$rdist_normal(seed,0,1);

10 end

11 V(out) <+ cos(phi) ;� �
Listing 6.2: Simplified analog VCO model.

120

6.1 A fractional-N PLL based transmitter

As one can observe, the output of the analog VCO model uses cross() to detect
the change of phases, in order to apply the phase noise to the output. The cor-
responding output signal is generated using cos(phi). Here, the analog simulation
time step has to be reduced by applying the $bound_step() system function, in
order to ensure the accurate cross() detection. Consequently, the simulation of
3·105 oscillation cycles with wreal VCO model needs about 1 seconds to complete,
while the simulation with the phase model, which also has been used in [YCK07]
with the same specification and condition needs about 6.1 minutes. Fig. 6.3
shows the comparison of the results of phase noise simulation between analog
and wreal model implementations according to the aforementioned specifications.

Analog VCO model

Wreal VCO model

10
4

10
5

10
6

10
7

10
8

10
9

−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

Freqeuncy [Hz]

L
(∆

f)
 [
d
B

c
/H

z
]

Figure 6.3: Phase noise comparison between analog and wreal VCO model.

Fig. 6.3 clearly demonstrates that the wreal model can achieve higher simula-
tion efficiency while keeping sufficient accuracy for verification purpose. However,
the random delay of the timing jitter is quantized to the timing accuracy settings
of the digital simulator and the implementation, as mentioned in section 3.3.1.
Hence, proper timescale setting has to be considered during the model imple-
mentation process.

121

Chapter 6 Application Examples

Divider

The divider shown in Fig. 6.1 reacts to falling and rising edges of the VCO output
signal. Since the wreal signal doesn’t offer edge detection, the input signal has to
be converted into logic value. One possibility to do this is to use an internal wire
to convert the wreal signal, as shown in listing 6.3. The counter implemented
in the model increments by one when the VCO signal creates a rising or falling
edge. The divider output will remain unchanged until the counter has reached
the divider ratio. Additionally, the synchronous jitter is added to the output in
order to map the circuit level specification.� �
1 module divider_wreal(out, in, dsm_in) ;

2 input in ; wreal in ;

3 input dsm_in; wreal dsm_in;

4 output out; wire out;

5 parameter real vlo, vhi;

6 ...parameters of jitter and divider ratio...

7 integer counter, fp, dSeed, dratio;

8 wire vin_intern;

9 reg vintern ;

10 real diff, prev, now, dT;

11 assign out = vintern;

12 assign vin_intern=(in==Vhi ? 1’b1 : 1’b0);

13 initial begin

14 ...

15 end

16 always@(posedge vintern or negedge vintern) begin

17 if (counter == dratio-1) begin

18 dT=syncjitter*$dist_normal(dSeed,0,1) ;

19 counter = 0 ;

20 #((td+dT)/1f) vintern=~vintern;

21 end

22 else

23 counter = counter + 1 ;

24 end

25

26 always@(dsm_in) begin

27 //change the divider ratios

28 end

29 endmodule� �
Listing 6.3: Part of the divider source code.

The output signal of the divider serves also as clock signal for the ∆Σ modulator,
which changes the divider ratio pseudorandomly in order to produce its fractional
part.

122

6.1 A fractional-N PLL based transmitter

∆Σ modulator

Modulator The ∆Σ modulator used in the mentioned PLL minimizes the phase
noise close-by the center frequency by pushing the phase error towards higher
frequency bands. Due to its pure digital implementation, no additional modeling
work for the ∆Σ modulator is required. Fig. 6.4 shows its transfer function. The
output Y of the modulator is used to set the current divider ratio.

X

Y

1Z

1Z1Z1Z

1Z

Figure 6.4: Third order MASH 1-1-1 ∆Σ modulator used in the PLL.

The noise contribution of the ∆Σ modulator to the overall PLL phase noise
is shown in Fig. 6.5. The spurious are in multiples of the reference frequency,
which is 13 MHz.

Dithering Dithering is a mechanism used to intentionally provide irregularity in
the quantization errors of the ∆Σ modulator. If the quantization error is subject
to a certain periodicity and is correlated with the input signal of the modulator,
it is called a cyclically repetitive and deterministic errors, this error will result
in unwanted large spurs in the output signal spectrum. Hence, dithering has
to be applied to the modulator, in order to reduce the spurs in the output
signal. Linear-Feedback-Shift-Register(LFSR) is commonly used to generate
pseudo random numbers for the dithering mechanism. For the mentioned PLL,
a 15-Bit LFSR is used for the random number generation. It will be added to
the modulator input signal at the first accumulator.

PFD and charge pump

Based on circuit level simulation and the theory from [LP+03], the PFD cannot
detect small phase errors between reference and divider output signals. Thus it
loses its linearity in small phase errors. The ∆Σ modulator is very sensitive to
such nonlinearity and responds to increased phase noise and spurious emissions.
Therefore, additional delay elements shown in Fig. 6.7(a) have been inserted

123

Chapter 6 Application Examples

10
4

10
5

10
6

10
7

10
8

10
9

−220

−200

−180

−160

−140

−120

−100

−80

Frequency [Hz]

L
(∆

f)
 [
d
B

c
/H

z
]

Figure 6.5: Phase noise contribution of the 3rd order ∆Σ modulator used in the
PLL.

15 bit_dither

...........

......

MSB

......

=1

LSB

D R1

SET

D R2

SET

D R14

SET

D R15

SET
fsfs fs fs

Figure 6.6: The 15-Bit LFSR used for dithering.

124

6.1 A fractional-N PLL based transmitter

between the "AND" gate and the reset signal input of the flip flops in order to
reduce the influence of small phase errors.

D

Q

R

T

Vref(t)

Vdiv(t)

D

Q

R

(a) The PFD structure with additional
delay element.

-2π 2π

Δ

1

-1

ΦRef

(b) The PFD behavior in the phase do-
main, dahsed line shows the reduced
linear range ∆.

Figure 6.7: Structure of the PFD and it’s limited linear range.

This also leads to a reduced linear range of the PFD [LP+03]: only phase
errors between 0 and 2π −∆ , where ∆ = 2π·τdelay

Tref
, can be corrected. However,

the delay time τdelay has to be kept as small as possible, otherwise, it will signif-
icantly increase the PLL lock-in time and cause additional unwanted metastable
oscillation on the output signal.

Loop filter

For the implementation of the loop filter model in Verilog-AMS, three different
approaches are available: analog, equivalent digital IIR filter with constant
sampling rate or non-uniform sampled. For analog implementation, the Laplace
operators in Verilog-A laplace_nd() or laplace_zp() can be used. For the event-
driven implementations, the filter specification has to be firstly converted to
the discrete time domain, e. g. using Matlab®. listings 6.4 and 6.5 depicts the
different event-driven implementations for a second order loop filter, shown in
Fig. 6.8, in each case.� �
1 assign out=yn ;

2 always@(in) begin

3 xn=in; act_time=$realtime;

4 hn=1.0f*(act_time-prev_time);

5 dxn=(xn-xn1)/hn;

6 vn=vn1+hn*xn1; un=un1+hn*yn1;

7 yn=((z0*vn+z1*xn+z2*dxn-p0*un)/p1+p2/p1*yn1/hn)/(1.0+p2 /(p1*hn));

8 end� �
125

Chapter 6 Application Examples

C1 C2

R

Figure 6.8: A second order loop filter.

Listing 6.4: Non-uniform sampled LPF model.� �
1 assign out=y0;

2 always #ts begin

3 x2 = x1; x1 = x0; x0 = in;

4 y2 = y1; y1 = y0;

5 y0 = ((n0*x0)+(n1*x1)+(n2*x2)-(d1*y1+d2*y2))/d0;

6 end� �
Listing 6.5: Equivalent IIR filter with equidistant sampling points.

Consider the analog implementation as reference. Fig. 6.9 shows the AC
simulation results of the analog and non-uniform sampled LPF implementations.
As one can observe, both implementations show good match in the lower fre-
quency range between 10 KHz and 10 MHz. However, in the range between
10 MHz and 100 MHz, the non-uniform sampled version clearly deviates from
the specification, due to the stability issues mentioned in section 3.3.1. This
will considerably affect the final phase noise result. Therefore, an alternative
event-driven loop filter implementation, which is triggered by both its input and
an internal system clock has been done, in order to accurately map the phase
noise specification. The timing error ∆T , shown in Fig. 6.10, will be corrected
by an additional calculation of the corresponding amplitude error ∆A, in order
to improve the accuracy of the non-uniform sampled model.

6.1.2 Top-level simulation of the PLL
Each block of the PLL has been modeled and refined according to the method
presented in the chapter 4. Subsequently, the top-level has been built up by
combining the blocks. In addition to model the required second order effects
such as overall phase noise and limited linear region of PFD, the correct start-up
time of each block is also considered in the model. Since the mentioned PLL is
designed for low power applications. The timing of the chip’s start-up also plays
an essential role for the verification. For a low power operation, each block of the
chip will only be activated if needed. E. g. the most part of the digital circuits

126

6.1 A fractional-N PLL based transmitter

Analog implementation

Non−uniform sampled filter

10
4

10
5

10
6

10
7

10
8

0

20

40

60

80

100

120

Frequency [Hz]

G
a
in

 [
d
B

]

Figure 6.9: Comparison of different LPF implementations.

Sampling clock

Charge pump

Sampling events

Input events

Δt

ΔA

Figure 6.10: The timing diagram of the proposed LPF implementation.

127

Chapter 6 Application Examples

will be turned off during the standby. The activation of the required blocks will
also obey a fixed schedule. Further more, since powering off the digital part
will also cause the loss of its current configuration, the correct sequence for the
settings has to be in the focus of the assertions. E. g. the digital configuration
can only be applied, if the main clock(which typically depends on the reference
clock) is up and ready.

Starting from the supply and biasing network, the PLL will be activated after
200 µs, when the reference clock is settled. Wrong start-up sequence due to
twisted pin or mis interpreted specification will result in the failure of the chip.
Table 6.1 shows the basic PLL specification. While the top level simulation on

Reference VCO tuning range Overall phase noise
25 MHz 368 MHz 450 MHz −100 dBc/Hz@ ∆f = 1 MHz

Table 6.1: Part of the PLL specification.

10
3

10
4

10
5

10
6

10
7

10
8

10
9

−180

−170

−160

−150

−140

−130

−120

−110

−100

−90

−80

Frequency [Hz]

L
(∆

f)
 [
d
B

c
/H

z
]

Figure 6.11: The overall phase noise of the PLL system based on model simula-
tion.

128

6.1 A fractional-N PLL based transmitter

circuit level could take several days to complete, apart from the consideration of
convergence and memory problems, the verification based on the wreal models
took 16 minute to complete the start-up check, the configuration check and
the phase noise simulation in 10 ms system time. So that every small design
changes caught by the automatic parameter extraction routine can be verified
at the top-level "over night". Fig. 6.11 shows the overall phase noise of the
PLL based on the event-driven simulation. The phase noise at ∆f = 1 MHz is
101.5 dBc/Hz, which is about 1.5 dB off from the silicon measurement.

While the above example clearly shows the feasibility of the top-level functional
verification based on the event-driven models. Same approach has been applied
to a more complex Bluetooth PLL transmitter system shown in Fig. 6.12. The

Ref
Deviation

pre-tuning

Gauss

filter

N
N+1

LPF

ROM

PFD

Divider

Channel selection word

VCO

pretuning

DACout

Lock-in

detection

MCC
Tx_bits

Tx_bits

Refdelayed

Vfast_locking

Vmodulation

CP
Ctrl

Figure 6.12: Block-level overview of the integer-N PLL based Bluetooth trans-
mitter.

Bluetooth transmitter system has to fulfill the basic requirements shown in table
6.2.

Compare to the PLL architecture shown in Fig. 6.1, the Bluetooth transmitter
design shown in Fig. 6.12 is based on an integer-N PLL. The reference clock
is at 2 MHz, so each Bluetooth signal channel frequency can be covered by
multiplication between the divider ratio and the reference. However, the slow
reference clock will also increase the lock-in time of the PLL, which has to be
compensated for the sake of Bluetooth standard. According to the standard, the
Bluetooth transmitter operates with frequency hopping spread spectrum(FHSS),
which generally spread the signal over the 79 channel at the rate of 1600 times
per second in transmission mode and 3200 in paging mode respectively. For such
kind of operation mode, a precise timing diagram is inevitable for the functional

129

Chapter 6 Application Examples

Specification Parameter
Frequency range 2.400− 2.4835 GHz
RF channels f = 2402 + k MHz, k = 0...79

Lower & Upper guard 2 MHz& 3.5 MHz
Modulation scheme GFSKa

Basic data rate 1 Mbit/s
BT 0.5

Modulation index [0.8 : 0.35]
Frequency deviation 140− 175 KHz
-20dB bandwidth < 1 MHz

Transmitter settling time < 220µs
Hopping interval paging/transmission 312.5µs / 625µs

aGaussian Frequency Shift Keying

Table 6.2: Basic Bluetooth transmitter specification according to [The02]

verification. Therefore, the modeling task has to focus not only on the timing
and functional behavior at RF side according to the specification, but also on the
resulting non-ideal effects which causes additional delays, as well as the required
baseband functions for the calibration and tuning process. Table 6.3 depicts
the timing requirement for the transmission mode. In the following, only the
background and the model implementations of the transmitter blocks highlighted
in blue and red in Fig. 6.12 will be discussed in detail.

Processes Timing requirement
VCO pre-tuning 0− 11µs

Lock-in at channel N-1 12− 62µs
Lock-in at channel N+1 62− 112µs
Lock-in at channel N & 112− 162µsmodulation deviation calibration
Signal transmission 220− 625µs

Table 6.3: Timing diagram for tuning and transmission processes during one
hopping interval.

Lock-in detection In addition to the limited linear region in the PFD(s. sec-
tion 6.1.1), the charge pump possesses similar non-ideal behavior. Assume the
PLL is nearly locked and the τdelay is small compare to the period of the reference

130

6.1 A fractional-N PLL based transmitter

clock, so that the phase error Φerr between reference and feedback clock becomes
nearly zero, In this case, the up and down control pulse at the output of the
PFD(see Fig. 6.1) become so short, that neither the PMOS nor the NMOS
current source in the charge pump can be properly turned on due to the finite
rising time and the internal logic signal propagation delay. The time interval, in
which the CP cannot generate current pulse for the phase correction, is defined
as backlash [SYR02]. Common approach to combat the mentioned issue, besides
to extend the delay time τdelay in the PFD, is to lower the CP’s current as soon
as the PLL is considered as locked. The lock-in detector evaluates the delay
time between the up and down pulses, if the delay is small, it indicates a lock-in
condition of the PLL. In this case, the lock-in detector will send the control
signal to lower the CP current and reduce the LPF bandwidth at the same time,
in order to reduce the overall phase noise. The lock-in control signal has to be
synchronized with the reference clock. Otherwise, switching the CP’s current
will cause additional unwanted phase distortion.

Deviation and VCO pre-tuning In order to keep modulation index of GFSK
between 0.28 and 0.35, the peak modulation voltage has to be adjusted every time
before the transmission for each Bluetooth channel, due to variations come from
the chip’s fabrication. Hence, the actual VCO gain KV CO has to be estimated,
before the transmission starts at certain channel N . For this purpose, the PLL
will be locked at the N − 1 N + 1 and N three times before the transmission.
Based on the output voltage of the LPF at the first two lock-in points, the
deviation pre-tuning block will extrapolate the actual tuning characteristic of
the VCO for the channel N and set the proper modulation voltage Vmodulation
accordingly. The VCO pre-tuning pursuits the similar goal. If the transmitter is
going to hop into a new channel, the VCO will be disconnect from the loop and
coarsely set to the wanted frequency with a tolerance of 5 MHz within 11.5 µs,
in order to speed up the PLL lock-in process.

Modulation compensation circuit(MCC) During the transmission of modu-
lated GFSK signal, each transmitted bit will lead to the change of the VCO
output frequency. Due to the feedback nature of the PLL, a long sequence of
"1"s or "0"s will force the PLL to regulate VCO frequency, which will negatively
affect the transmission. The MCC is in charge of temporarily adjusting the
divider ratio and the reference clock delay, so that the PLL loop won’t affect the
transmission.

The blocks can be modeled and simulated stand alone for model validation.
However, correctness of each single block is not enough. The tight interaction
between the mentioned blocks, each required timing activities and the resulting

131

Chapter 6 Application Examples

functional correctness can only be verified by executing a top-level simulation.
Fig. 6.13 shows the top-level simulation result of the functional verification, As

VCO pre-tuning

GF. deviation calibration
Tx. GFSK modulation

Figure 6.13: Transient simulation result of the Bluetooth transmitter.

one can observe, the VCO is firstly pre-tuned to about 2.47 GHz. Afterwards,
the PLL loop is locked at 2.471GHz after 50µs and at 2.473GHz after 100µs
respectively. Finally, PLL is locked at 2.472GHz after 150µs and the transmission
starts after 200µs. As shown in the zoomed-in plot in Fig. 6.13, the modulated
signals fulfills the mentioned requirements for Bluetooth shown in table 6.2.
Fig. 6.14 shows the spectrum of the transmitted signal at 2.45 GHz. Table 6.4
shows the simulation times at different levels of abstraction for the PLL based
Bluetooth transmitter.

6.1.3 Pin-accurate SystemC VP of the PLL
Top-level PLL VP simulation results The SystemC virtual prototyping process
has been initiated right after the top-level testbench has been built up. Since the
SystemC PLL models have also been implemented based on the event-driven
approach, same modeling fundamentals discussed in the early section apply
here. Part of the SystemC VCO model has been shown in listing 6.6. Since the

132

6.1 A fractional-N PLL based transmitter

2448 2448.5 2449 2449.5 2450 2450.5 2451 2451.5 2452
−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Frequency [MHz]

P
o
w

e
r

[d
B

/H
z
]

Figure 6.14: Spectrum plot of the Bluetooth PLL output signal at 2.45 GHz.

Level of abstraction for top-level CPU time
Verilog-AMS event-driven model 0.213 H

Transistor-level est. 100 Ha

aTransistor-level simulation for 1 ms was impossible due to some convergence issues in the
mixed-signal simulator. Thus, the simulation time shown here is only estimated based on
a 20µs simulation run.

Table 6.4: Comparison of the top-level simulation performance of the Bluetooth
transmitter for 1 ms system time.

133

Chapter 6 Application Examples

equivalent jitter implementation (line 23-25) requires the generation of normal
distributed numbers, the box-muller1 [BM58] algorithm has been used to fulfill
this task (line 15-21). The PLL VP therefore cannot only verify the functionality
of the chip, but also deliver the overall phase noise performance estimation. Till
now, the PLL model sets are available both in Verilog-AMS and SystemC,
the transient simulation time for 500 µs for different HDLs have been compared
in the table 6.5.

1 //*** begin automatic generated part:

2 SC_MODULE(block_3stage_vco_calibration_dnw){

3 sc_in<double>VCON

4 sc_in<bool>HIGHER_FREQ

5 sc_in<double>VSS

6 sc_in<double>VDD

7 sc_out<PLL_BB>VCO_OUT

8 //other hierarchical connection information

9 ...

10 //*** begin hand crafted part

11 - Define model parameters

12 - Calculate the VCO frequency Freq=f(Vcontrol, Kvco)

13 - Generate normal distribution based on

14 uniform distributed random numbers:

15 double x1, x2, y1, y2, w;

16 do{ x1=2.0*(double)rand()/(double)RAND_MAX -1.0;

17 x2=2.0*(double)rand()/(double)RAND_MAX -1.0;

18 w=x1*x1+x2*x2;

19 } while(w>=1.0);

20 w=sqrt((-2.0*log(w))/w);

21 y1=x1*w; y2=x2*w;

22 //Calculate the phase noise equivalent timing jitter

23 accSD = sqrt(pow(10, phasenoise/10)*pow(deltaf, 2)/pow(freq_org, 3))/sqrt(2.0);

24 Jitter = accSD/std * (mean + std * y1);

25 - Update the VCO frequency

26 //write out the VCO signal

27 VCO_OUT.write(...); };

Listing 6.6: Part of the SystemC VCO model.

The lock-in processes during the transient simulation of both model sets are
shown in Fig. 6.15.
As expected, no significant difference, either in the simulation time or in the

lock-in process, can be observed, given the fact that both simulations are done
in the event-driven simulator. Listing 6.7 shows the automatically generated
PLL top-level testbench in SystemC.

1Basically, there are other implementation variants in C++ for generating normal distributed
random numbers. The box-muller algorithm has been chosen, due to its implementation
simplicity(it requires only two uniform distributed random numbers).

134

6.1 A fractional-N PLL based transmitter

HDLs Simulation time
SystemC 2.2.0 31s
Verilog-AMS(wreal) 40s

Table 6.5: Simulation times of the PLL models

50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time [µs]

V
C

O
 c

o
n
tr

o
l
v
o
lt
a
g
e
 [
V

]

SystemC

Verilog−AMS

Figure 6.15: VCO control voltage during the PLL lock-in process.

1 int sc_main(int argc, char* argv[]){

2 sc_signal<bool> net028, net027;

3 sc_signal<bool> vco_tune[2];

4 sc_signal<double> vdd;

5 sc_signal<BB_SIG> VCO_outn;

6 sc_signal<bool> net48;

7 sc_signal<bool> net048

8 sc_signal<bool> freq_out

9 sc_signal<double> gnd

10 sc_signal<bool> net61, net043, net9;

11 sc_signal<bool> net023, net037, net050;

12 sc_signal<BB_SIG> VCO_outp;

13 sc_signal<double> net047;

135

Chapter 6 Application Examples

14 sc_signal<bool> net026;

15

16 PLL_toplevel i0_PLL_toplevel("PLL_toplevel");

17 i0_PLL_toplevel.VCO_Out_N(VCOoutn);

18 i0_PLL_toplevel.VCO_Out_P(VCOoutp);

19 i0_PLL_toplevel.F_Reference(net61);

20 i0_PLL_toplevel.Fast_calibration(vco_tune[1]);

21 i0_PLL_toplevel.Ibias_100u_source(net047);

22 i0_PLL_toplevel.Slow_calibration(vco_tune[0]);

23 i0_PLL_toplevel.Switch_Reference(net028);

24 i0_PLL_toplevel.VDD(vdd);

25 i0_PLL_toplevel.VSS(gnd);

26 i0_PLL_toplevel.frac_mode(net027);

27 i0_PLL_toplevel.reset(net026);

28 i0_PLL_toplevel.sdin(net9);

29

30 digital_config_interface

31 i0_("digital_config_interface");

32 i0_.DIV_RATIO(net9);

33 i0_.DS_RST(net026);

34 i0_.FRAC_MODE(net027);

35 i0_.REF_SEL(net028);

36 i0_.VCO_TUNE(vco_tune);

37 i0_.CFG_DATA(net037);

38 i0_.CFG_PCLK(net48);

39 i0_.CFG_SCLK(net023);

40

41 //models for testbench configuration

42 //and monitoring

43 freq_meter i0_freq_meter("freq_meter");

44 i0_freq_meter.average_freq(net048);

45 i0_freq_meter.out(freq_out);

46 i0_freq_meter.in(VCO_outp);

47

48 cfg_data i0_cfg_data("cfg_data");

49 i0_cfg_data.data(net037);

50 i0_cfg_data.pclk(net023);

51 i0_cfg_data.sclk(net48);

52

53 clk_gen i0_clk_gen("clk_gen_verilog");

54 i0_clk_gen.clk_out(net61);

55 ...

56 sc_start(...);

57 \end{lstlisting}

Listing 6.7: Automatically generated top-level testbench in SystemC.

Involving AMS extension into the VP concept While SystemC was initially
developed to model digital systems, the TDF MoC offered by its AMS extension

136

6.1 A fractional-N PLL based transmitter

allows the direct implementation of continuous time Laplace transfer functions,
which makes the model implementation of the LPF much easier. Hence, a the
LPF in the mentioned PLL VP has been replaced with an TDF MoC. The TDF
time step is set as same as the sampling freqeuncy of the event-driven LPF
implementation. The synchronization therefore between TDF and SystemC
kernel slows down the simulation around 100 seconds. As a result here, it can be
stated that the TDF MoC cannot show its true potential in a pure event-driven
implementation environment.

Increase the VP simulation performance In addition to the simulation results
of the PLL lock-in process, the overall phase noise performance of the SystemC
VP is shown in Fig. 6.16. Compare to the phase noise evaluation result shown
in Fig. 6.11, it can be observed that the SystemC models exhibits the best
simulation efficiency without losing the accuracy of the models by considering
some major performance characteristics of the PLL.

10
3

10
4

10
5

10
6

10
7

10
8

10
9

−180

−170

−160

−150

−140

−130

−120

−110

−100

−90

−80

Frequency [Hz]

L
(∆

f)
 [
d
B

c
/H

z
]

Figure 6.16: PLL phase noise evaluation based on SystemC VP.

However, the presented simulation performance of the PLL cannot satisfy the
speed requirement for the VP. Especially for a multi-mode, multi-standard RF

137

Chapter 6 Application Examples

SoC, in which the PLL is mainly used for generating the center frequency for
the analog signal processing path. The events generated by the VCO output
will trigger the RF front-end, causing the degradation of the overall simulation
performance. As previously mentioned in earlier section, the advantages of the
SystemC modeling approach lies in the fact that the SystemC modules are
based on the C++ classes and offers its object oriented features. As shown in
Fig. 6.17, the output signal structure of the PLL can be extended to a baseband
signal version without any modification of the connectivity information, by
creating the signal with user-defined data types as shown in listing 6.8.

VCOevent

I(t), Q(t), f0, ∆t

PLL_BB_type{ VCOevent, I(t), Q(t), f0, ∆t }

PLL

loop
:2
90°

0°

Eq. baseband models of a

generic receiver chain
A

D

Figure 6.17: The signal structure of the VCO output.

In the new signal type PLL_BB_type, six parameters are assigned: vco_event, ←↩

↪→ f_noise, f_0, I_1, Q_1, t_step. The signal vco_event is Boolean type used generate
the VCO output events for the PLL feedback path. The signal f_noise represents
the instantaneous noisy frequency. The f_0, I_1, Q_1 are similar to the BB_double

signal type shown in section 5.3.2. Equations 6.1 show their derivation.

ϕ(t) = 2π(f0 − fnoise)t (6.1)
V COevent = cos(2πf0t+ ϕ(t)) (6.2)

= cos(2πf0t)cos(ϕ(t))− sin(2πf0t)sin(ϕ(t))
= I(t)cos(2πf0t)−Q(t)sin(2πf0t) (6.3)

1 class PLL_BB_type{

2 public:

3 bool vco_event; //square wave from VCO;

4 double fnoise; //Instanious noisy frequency ;

5 double f0; //Center frequency (f=ref*N) of the PLL;

6 double I1; //eq. BB phase noise

7 double Q1;

8 double t_step; //phase noise sampling time for ←↩
↪→ baseband signal

138

6.1 A fractional-N PLL based transmitter

9 public:

10 PLL_BB_type(){

11 vco_event = 0;

12 fnoise = 0;

13 f0 = 0;

14 I1 = 0;

15 Q1 = 0;

16 t_step = 1e-9; // set a typical time step value

17 }

18 PLL_BB_type(bool vco_event_, double fnoise_, double f0_, double I1_, double Q1_, ←↩
↪→ double t_Step_){

19 vco_event = vco_event_;

20 fnoise = fnoise_;

21 f0 = f0_; I1 = I1_; Q1 = Q1_;

22 t_step=t_step_;

23 }

24 operator bool() const{ //convert to bool type;

25 return vco_event;

26 }

27 bool operator == (const PLL_BB_type& rhs){

28 return (vco_event == rhs.vco_event);

29 }

30 PLL_BB_type & operator = (const PLL_out_type& rhs){

31 vco_event = rhs.vco_event; //operator = overloading;

32 fnoise = rhs.fnoise;

33 f0 = rhs.f0;

34 I1 = rhs.I1;

35 Q1 = rhs.Q1;

36 t_step=rhs.t_Step;

37 return *this;

38 }

39 };

Listing 6.8: Signal Type of the VCO output.

For the RF receiver chain shown in Fig. 6.17, only the slow varying part of the
VCO output is used for baseband models. In this case the equivalent baseband
amplitudes I(t), Q(t), the center frequency f0 and the instantaneous phase phi(t)
describing a potential phase modulation as well as the phase noise present in the
VCO signal, respectively. For the detailed PLL model, the divider is triggered
by the passband VCO oscillation event vco_event, in order to get the accurate
response of the equivalent SystemC RF blocks in the PLL. This can be realized
by overloading the == operator in the PLL_BB_type class, which permits only the
changes in the vco_event are considered in the sensitive list. Further considerations
like the interaction between the PLL output signal and RF baseband signal can
be resolved by overloading the operators.

139

Chapter 6 Application Examples

6.2 A RF-DAC based multi standard transmitter

6.2.1 Block-level of the RF-DAC based transmitter
Fig. 6.18 shows the block diagram of the RF-DAC2 based transmitter targeting
the WiFi and 3GPP(3rd generation partnership project) LTE(Long Term Evolu-
tion) band. Most part of the chip are high performance digital circuits. Starting
from the baseband data(I, Q and CLK) generated from an external FPGA3, the
deserializer converts the sequential input Bits to a 12-Bit parallel signal feeding
into the dynamic clock domain conversion block(CDC). The CDC resamples the
input signal with the LO(local oscillator) frequency and decimates the resampled
signal to an integer fraction of the RF carrier, in order to convert the signals’
clock domain from off-chip to on-chip. A detailed description of this block can
be found in [TZN10]. The upsampling block implemented here is intended to
realize a fractional upsampling factor of M/N , in order to increase the possible
frequency schemes.
The digital lowpass ∆Σ modulator(DSM) has a resolution of 9-Bits, its

transfer function has been optimized both for achieving a good SNR in the
wanted band and reducing the unwanted emission far from the carrier frequency.
The output signals of DSM feed into the element selection logic cell(ESL), which
is implemented to digitally compensate the static and dynamic mismatch error
in the DAC.
The analog part of the transmitter comprises different dividers providing

required frequency component in the digital part, biasing block and the RF-DAC
itself. The RF-DAC consists of 16 unary unit cells for the MSBs(most significant
Bit) and 15 binary unit cells for the LSBs(least significant Bit) for each I- and
Q- path. Due to the ESL algorithm, the number of unary unit cells is increased
to 18 and 30 for the binary unit cell respectively.

6.2.2 Model implementation and virtual prototyping
Block-level model implementation The maximum output frequency of the high
performance digital part is around 870 MHz, while the LO operates at around
2.6 GHz. Due to these high frequencies, implementing analog models is in this
case not feasible, especially when the high speed outputs of the DSM are going
to connect the analog part directly. Hence, the proposed modeling flow shown in
section 4.2.3 has to be slightly modified to adapt to the given circuit architecture:

1. Due to the large high speed digital part, the analog model in this case
cannot deliver reasonable speed up for block-level integration, since the
most blocks are embedded into the digital netlist. Hence, the only analog

2Radio frequency digital to analog converter.
3Field Programmable Gate Array

140

6.2 A RF-DAC based multi standard transmitter

Fi
gu

re
6.
18
:D

et
ai
le
d
bl
oc
k
di
ag

ra
m

of
th
e
R
F-
D
A
C

ba
se
d
tr
an

sm
it
te
r
ac
co
rd
in
g
to

[Z
im

11
].
T
he

di
gi
ta
ls

ec
ti
on

do
m
in
at
es

th
e
w
ho

le
R
FI

C
a .

H
ow

ev
er
,t

he
R
F/

m
ix
ed

-s
ig
na

lp
ar
t
at

tr
an

sis
to
r-
le
ve
lc

on
su
m
e
th
e
m
os
t

si
m
ul
at
io
n
re
so
ur
ce
.

a
R
ad

io
fr
eq
ue

nc
y
in
te
gr
at
ed

ci
rc
ui
t.

141

Chapter 6 Application Examples

models implemented here are the ideal ADCs and DACs, in oder to generate
proper input stimuli for the analog front-end.

2. Fig. 6.18 also shows a large part of off-chip equipment, which is also required
for the top-level simulation. Therefore, event-driven models for signal and
configuration generation have to be implemented and validated upfront.
In this case, Matlab® is used to generate and to store baseband signals
and configuration commands in binary form, the event-driven models
then read the binary data and feed them into the DUV. A co-simulation
with Matlab® simulink is also possible, however, it will slow down the
simulation due to additional synchronization between simulators.

3. The large bandwidth(around 20 MHz) and the high sampling frequency
of the digital output make the baseband modeling approach unattractive
for the RF-DAC. Additionally, the actual digital to analog conversion is
taking place inside each of the DAC unit cell, making the baseband models
even less feasible. Therefore, only event-driven models are implemented
for the RF-DAC cells.

4. The output of the RF-DAC unit cells are in current domain, the overall
amplitude is achieved by connecting all the outputs of the unit cells
together, leading to the multiple drivers issue for the event-driven models
mentioned in section 3.3.3. In order to overcome this issue while preserving
pin-accuracy, two possible solutions are given: first, increase the level of
abstraction of the RF-DAC, model only the analog sub-block and make
the necessary calculation internally. Second use the global wreal resolution
function for the sub-blocks, so that the outputs can be connected together
and behave like a current summation node. The first solution is obviously
the fastest one, but the risk of missing hierarchal connection errors is also
given, which will miss the target of the functional verification. Therefore,
the second solution is chosen. Since the wreal resolution function applies
globally, the uniqueness of the current summation point at the RF-DAC’s
output has to be determined up-front, otherwise it will aggravate the
functional verification for the analog front-end.

The key modeling task for the RF front-end is to implement event-driven model
of the RF-DAC. Fig. 6.19 shows the internal structure of the corresponding event-
driven model. Basically, the digital input signal is converted into corresponding
current and multiplied with its sign. The LO signal works like a switch, which
samples the signed amplitude of the DAC to the output. Besides the mentioned
functional behavior of the block, assertions of the bias current, sign Bit and other
digital configurations are implemented in the model. Performance parameter,
such as nonlinearity and mismatch of the DAC, has been neglected during the
modeling process, based on two facts: 1.) The performance of the analog front-end

142

6.2 A RF-DAC based multi standard transmitter

D

A
SgnBias current

Digital bit

Sign input

LO input

Unit cell

output

Figure 6.19: Block diagram of the event-driven RF-DAC unit cell model.

can be simulated at transistor-level with existing LTE signal. 2.)Modeling non-
ideal effects will significantly slow down the top-level simulation and hence reduce
the coverage of functional verification. Since both model set are implemented in
pure event-driven manner and digital part dominates the design, the SystemC
VP exhibits almost the same simulation performance. Hence, only the top-level
simulation results of Verilog-AMS based models will be presented here.

Top-level verification of the RF-DAC Before moving to the top-level, two major
blocks are assembled and simulated stand alone:

1. RF-DAC analog front-end : simulation has been done at transistor-
level with Verilog-A coded OFDM4 and single tone input stimuli for
determining the analog performance.

2. Digital part: The overall signal block has been synthesized and partially
simulated with baseband signal.

Fig. 6.20 shows the top-level schematic of the transmitter. For the top-level
verification of the RF-DAC, the CML to CMOS converter and PLL models are
switched to the highest level of abstraction. The PLL is only modeled as a state
machine, which only generates the output signal based on the product of divider
ratio and reference clock.
Besides the event-driven models of the building blocks, some peripheries for

the top-level testbench are also required:
1. Frequency detector: for checking the PLL output frequency.
2. Baseband signals and configuration command: both bit sequences have

been generated using Matlab®, a Verilog model is used to read the bit
stream and send them to the chip.

The baseband signals contain not only typical LTE signal, but also simple single
tone signals for a better traceability through the design hierarchy. Fig. 6.21
shows the top-level testbench schematic. For the top-level verification, different

4Orthogonal Frequency Division Multiplex.

143

Chapter 6 Application Examples

B
a

s
e

b
a

n
d

 d
ig

ita
l c

o
re

C
M

L
 to

 C
M

O
S

 c
o

n
v

e
rte

r
R

F
-D

A
C

 T
x

 a
n

a
lo

g

fro
n

t-e
n

d

P
L

L

B
lo

c
k

in
g

 C
a

p
s

S
u

p
p

ly

p
in

s

E
x

te
rn

a
l L

O
 in

p
u

t

T
ri-w

ire

c
o

n
fig

u
ra

tio
n

 in
te

rfa
c

e

Figure
6.20:Top-levelschem

atic
ofthe

R
F-D

A
C

based
transm

itter.

144

6.2 A RF-DAC based multi standard transmitter

R
e

fe
re

n
c

e
 c

lo
c

k

B
a

s
e

b
a

n
d

 s
ig

n
a

l

F
re

q
u

e
n

c
y

 d
e

te
c

to
r

R
F

IC

A
n

a
lo

g
 s

u
p

p
ly

C
o

n
fi

g
u

ra
ti

o
n

 u
n

it

P
L

L
 s

u
p

p
ly

D
ig

it
a

l
s

u
p

p
ly

I/
O

 s
u

p
p

ly

E
x

te
rn

a
l
L

O

Fi
gu

re
6.
21
:T

op
-le

ve
lt
es
tb
en

ch
of

th
e
R
F-
D
A
C

ba
se
d
tr
an

sm
itt

er
.

145

Chapter 6 Application Examples

A

t

clk fast

clk slow
clk_800M

clk_200M
clk fast

clk slow
clk_200M

clk_800M

Inst. A Inst. B

a0a4 a3 a2 a1

a0 a4a3a2a1

Inst. A

Inst. B

a) b) c)

Figure 6.22: Functional errors of the RF-DAC found by the top-level verification.

configuration commands setting up the chip within several ms need to be
simulated. For such extensive simulations a Matlab® pre-processor breaks the
commands into 50 µs chunks and the simulation is distributed on a cluster of
workstations. In this way, results from each workstation can be analyzed and
evaluated more efficiently. Fig. 6.22 shows some functional errors found out
through the top-level functional verification.
By applying a pure sinusoidal baseband signal with the maximum allowed

OFDM amplitude, an overflow error has been found in the digital processing
part shown in Fig. 6.22 a). This error could be hardly found with typical
OFDM baseband signals, since the likelihood of reaching maximum amplitude by
OFDM signal is small. The assertions inside the PLL have detected the twisted
connections shown in Fig. 6.22 b), since the wrong divider ratio is out of the
defined range. The connect-by-name error shown in Fig. 6.22 c) has been found
by an other assertion, which checks the input clock frequency.

Table 6.6 shows the transistor count for analog and digital part of the RF-DAC
with their corresponding simulation time for 50 µs. The simulation has been

Circuit partition Transistor count simulation time
Analog ca. 3341 Transistor-level:

50 µs for 2 days
Digital 4.12 · 105 gates Gate-level:

50 µs for 1.22 H
Mixed-signal 4.12 · 105 Event-driven model+

Gate-level: 50 µs in 1.36 H

Table 6.6: Transistor count and top-level simulation time of the RF-DAC based
transmitter.

executed on a workstation with a Q9550 CPU clocked at 2.83 GHz and 8 Gb
RAM. Based on the shown simulation time for both analog and digital part,

146

6.3 A low power Bluetooth transceiver

the overall simulation time of the transmitter for 50 µs at transistor-level with
gate-level netlist would take approximately 57 days to complete, without regard
to possible mixed-signal simulator synchronization overhead and the resulting
analog convergence issues. These facts again emphasize the importance and
usefulness of model based top-level functional verification. The project time
frame starting from top-level to tapeout is around three months, simulating the
whole design at the transistor-level might indeed detect the mentioned functional
errors shown in Fig. 6.22. However, the bugs cannot be corrected in time, which
will result in functional failure of the chip.

Fig. 6.23 shows the simulated output spectrum of the transmitter. For this
simulation, event-driven models have been applied to the RF-DAC through
the circuit hierarchy. An OFDM signal with 20 MHz is used at the baseband,
the carrier frequency is set at 2.4 GHz. The transmitter is configured with its
default setting, which implies that the CDC is on bypass mode, upsampling
filter is operating with its default filter coefficients and the DSM uses only the
first order feedback.

Preliminary conclusion Both VPs of the presented PLL and RFDAC based
transmitters show no significant speed improvement compare to the event-driven
passband Verilog-AMS model, due to two reasons:

1. The baseband modeling technique talked in section 3.2.3 cannot be applied
to the presented RF systems, which generally forces the sampling frequency
of the RF signal at fifteen times of gigahertz and hence slows down the
overall simulation.

2. The development trend of the nano-scale RF transmitter architecture is
clearly converging to the digital domain. The number of analog signal
processing blocks in the transmitter are consistently decreasing, the re-
maining ones are continuously pushed towards the antenna. Simulating
large digital part with high RF frequency will also rise the demand for
higher simulation performance. This is also the reason. why the VP of
RF-DAC doesn’t show noticeable simulation speed up compare to the
event-driven Verilog-AMS models.

However, system with large part of analog signal processing block will benefit
from the SystemC VP, as will be shown in the next section.

6.3 A low power Bluetooth transceiver

The experience gained in the virtual prototyping processes for the PLL and RF-
DAC serves as the starting point for the low power Bluetooth (LPBT) [Blu10]
transceiver system project.

147

Chapter 6 Application Examples

0 1 2 3 4 5 6 7
−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Frequency [GHz]

P
S

D
 [

d
B

m
/H

z
]

(a) Wideband plot.

2.35 2.36 2.37 2.38 2.39 2.4 2.41 2.42 2.43 2.44 2.45
−80

−75

−70

−65

−60

−55

−50

−45

−40

−35

−30

Frequency [GHz]

P
S

D
 [

d
B

m
/H

z
]

(b) Narrowband plot

Figure 6.23: Event-driven model based top-level simulation output spectrum of
the RF-DAC transmitter.

148

6.3 A low power Bluetooth transceiver

6.3.1 System overview
Figure 6.24 shows the simplified block diagram of the mentioned transceiver.

Figure 6.24: Block diagram of the low power Bluetooth transceiver chip.

For the receiver path, the analog front-end uses a low-IF5 architecture. Fol-
lowing the LNA, the signal is down converted to the −1 MHz IF frequency
by using the passive mixer and the PLL-driven LO, which separates the signal
into its I and Q components. A 3rd order complex bandpass filter with the
bandwidth of 1.3 MHz centered at -1 MHz rejects the image signal. The IF
signal is converted into digital domain by using a 3rd order, single bit quadra-
ture bandpass ∆Σ-ADC. The output bit stream of the ADC is connected to
the digital down conversion mixer in the baseband and decimated with lower
sampling rate. The digital signal then will be demodulated by a quadricorrelator
demodulator. For the transmitter path, a PLL based two-point modulation
transmitter architecture is used. The core building block is a fractional-N PLL
which will also be configured as the frequency synthesizer for the receiver path.
Due to the architectural similarity to the first example, only the results of the
receiver path will be described in detail.

6.3.2 System partitioning and model implementation
The verification environments consolidates different testbenches and evaluation
tasks in different levels of abstraction. In the presented example, two verification
environments has been chosen to demonstrate the proposed verification and
virtual prototyping methodology: top-level and VP of the chip.

5low intermediate frequency

149

Chapter 6 Application Examples

System partitioning of the low power Bluetooth transceiver

Fig. 6.25 shows the top-level schematic of the low power Bluetooth transceiver
consisting 4 large blocks: RF macro, ∆Σ-ADC, Bias block and the PLL with
digital baseband. Basically, the system is also partitioned into these 4 parts du
to following reasons:

1. For the RF macro partition, the most important consideration to make
is to enable the steady state simulation methods for fast performance
verification and model parameter extraction. One might argue for moving
the ∆Σ-ADC(DSM-ADC) also into the partition. However, DSM-ADC
doesn’t provide the required condition for steady state analysis, which
makes the analysis of the circuit and post evaluation of the simulation
results difficult. Therefore, the RF macro consists of only the LNA, mixer
and PPF. For the LO signal, the output signals of the I-Q divider are
stored in a data file, which will be read from a PWL source. The RF macro
itself has been further divided into the RF front-end part, which consists
of LNA and mixer, and the IF part consisting of the PPF.

2. As previously mentioned, the DSM-ADC block has been separated from
the RF macro due to the steady state simulation problem. In addition
to the simulation limitation, the DSM-ADC requires very long transient
system time. Only in this way, long enough bit streams can be provided
for a reasonable FFT6 result, in order to analyze the output spectra and
the resulting SNR of the ADC.

3. The PLL and digital baseband are partitioned together, since the experience
of PLL model implementation and reusable models are given, so the
event-driven model set can be realized quickly. Additionally, the PLL in
transmission mode requires tight interaction with the digital part.

4. The bias block has been put into the top-level for a better wiring possibility.
Although it will not cause degradation of simulation performance, models
with assertions for the BIAS are still required to check the input bias
current and supplies.

Model implementation of the low power Bluetooth transceiver

Both analog and event-driven model sets are implemented for the RF macro and
the DSM-ADC according the criteria mentioned in section 4.2.3. The analog
model set are used for block integration and top-level assembly, whereas the
event-driven set is mainly targeting the top-level verification.

6Fast Fourier Transformation.

150

6.3 A low power Bluetooth transceiver

R
F

F
E

 M
a

c
ro

P
L

L
 T

x
 +

B
a

s
e

b
a

n
d

A
D

C

B
ia

s

Fi
gu

re
6.
25
:T

op
-le

ve
lp

ar
tit

io
ni
ng

of
th
e
lo
w

po
w
er

B
lu
et
oo

th
tr
an

sc
ei
ve
r
ch
ip
.

151

Chapter 6 Application Examples

One note regarding the event-driven filter implementation has to be mentioned
here. As equations 4.4, 4.5 and 4.6 show, a complex transfer function H of
a filter can be realized by two filters R and Q with real coefficients. While
Verilog-A provides build-in Laplace operator for continuous time filter, the
equivalent filter coefficients of the event-driven model have to be converted firstly
based on the analog ones [Hor63]. Basically, a discrete time IIR(Infinite Impulse
Response) filter can be converted based on its continuous time counter part and
implemented according to Fig. 6.26.

z
-1

x(n) y(n)

bn -an

z
-1

z
-1

b1 -a1

z
-1

b0

Figure 6.26: Direct-form I IIR filter.

Modeling such discrete time filter has to face two challenges. First, the feed
back structure is prone to numerical errors of its coefficients. Therefore, proper
transformation method has to be chosen. For the loop filter inside DSM-ADC,
the matched transformation method is preferred [Sch03]; [Kim09]. Second, the
direct-form I implementation is prone to value overflow in the summation path.
Especially for complex valued transfer function, both the equivalent R and
Q filter have the twice the order compare to the complex one, resulting in
higher overflow probability. While these issues can be avoided in the PPF
by dividing the filter into smaller stages according the circuit structure, it
causes simulation errors in the 3rd order DSM-ADC model. Therefore, the PPF
model implementation inside DSM-ADC uses the state-space approach shown
in Fig. 6.27. This approach offers two advantages over the IIR implementation.
First, state-space implementation requires half of the registers compare to the
IIR one, consequently it also requires less multiplications and additions, so that
the potential risk of overflow errors can be reduced. Second, the DSM-ADC has
been designed using the delta-sigma toolbox [ST+05]; [Sch03], which also uses
the state-space approach to describe the DSM-ADC. In this way, the coefficients
of the ADC can be directly exported from Matlab® to the models.

152

6.3 A low power Bluetooth transceiver

H(z)

B

A

z
-1

D

C
u(k) y(k)x(k)

u1(k)

u0(k)

Registers

Quantizer

Figure 6.27: General state space description of the quadrature bandpass ∆Σ-
ADC.

6.3.3 Top-level functional verification of the low power Bluetooth
transceiver

Fig. 6.28 shows the top-level testbench of the low power Bluetooth transceiver
chip. For the top-level functional verification in the circuit design environment,
the examination of the end-to-end signal flow is required, in order to trace the
signals crossing the whole design hierarchy. In most projects, this is the only
method to prove the functional correctness of the chip prior to tapeout. Due
to the complexity of system, it is not feasible to run this kind of simulation
on transistor-level. The pin-accurate wreal models are mainly used for the
end-to-end signal simulation of the whole chip. In this case, an ideal GFSK
baseband signal is up-converted to RF and oversampled with a ratio of 20, in
order to accurately resolve small amplitude changes at the receiver input. The
digital part of the receiver front-end (gatelevel netlist + timing back annotation)
sets all the analog blocks in the appropriate mode and demodulates the signal
at the ADC output.

While sufficient for tracing the signals in all the blocks, simulations on higher
abstraction levels are required in order to roughly evaluate the receiver per-
formance in terms of the BER. Thus the pin-accurate SystemC VP of the
transceiver has been implemented. The testbench of the receiver front-end
VP consists of following elements: An input signal source, which is capable of
generating GFSK signal in the wanted and various blocker signals at interference
frequency band (not shown in figure 6.24) depending on the test case. An evalua-
tion unit, which computes the bit error rate. A configuration unit, which contains
all the configurations and mode settings of the chip for different test scenarios
according to [Blu10]. Additionally, there are two simulation versions depending

153

Chapter 6 Application Examples

S
tim

u
li

T
ra

n
s

c
e

iv
e

r

A
S

IC

Figure
6.28:Top-leveltestbench

ofthe
low

pow
er

B
luetooth

transceiver
chip.

154

6.3 A low power Bluetooth transceiver

on the structure of the input signal. One is the passband version, similar to
the simulation using wreal model. The other one is the equivalent baseband
version, which uses the manually defined signal class BB_double mentioned in the
section 5.3.2. Since the pin-accuracy is preserved for all simulation versions of
the VP, tracing connectivity issues and signal flow between the subsystems at
higher design hierarchy is also possible.

−15 −10 −5 0 5 10 15
−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Frequecy [MHz]

A
m

p
lit

u
d
e
 [
d
B

]

(a) Spectrum of the transmitted GFSK signal.

−15 −10 −5 0 5 10 15
−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Frequecy [MHz]

A
m

p
lit

u
d
e
 [
d
B

]

(b) Mixer output.

−15 −10 −5 0 5 10 15
−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Frequecy [MHz]

A
m

p
lit

u
d
e
 [
d
B

]

(c) Second Filter Stage.

−15 −10 −5 0 5 10 15
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

Frequecy [MHz]

A
m

p
lit

u
d
e
 [
d
B

]

(d) ∆Σ ADC output spectrum.

Figure 6.29: Simulation Results of the Bluetooth front-end Virtual Prototype.
Output Spectra in the Receiver Path.

Fig. 6.29 shows the equivalent baseband simulation results of the SystemC
VP. For this simulation, the wanted signal is placed at -1 MHz with a symbol
rate of 1 MSamples/s. In figure 6.29(b), it is clearly visible that the wanted
signal is properly amplified. Fig. 6.29(c) shows the wanted signal in the passband
of the PPF. At the ∆Σ ADC output(Fig. 6.29(d)), the typical quantization noise

155

Chapter 6 Application Examples

shaping curve is visible. Since the PPF and the ADC are designed from different
team members, it is very important to ensure that there is no twisted I/Q signal
paths due to wiring errors or mis-interpreted specs. The signal is down-converted
to the baseband in the digital block and passes through a decimation filter and
processed by an FIR filter before the actual demodulation is performed.

Top-level start-up and Bluetooth LE standard verification The top-level start-
up verification has been done based on the Verilog-AMS sign-off models.
The simulation environment consists of not only the wreal models of the low
power Bluetooth front-end, but also the digital gate-level netlist with timing
back-annotation. Table 6.7 shows the specified start-up timing diagram of
the transceiver. Due to the language limitation of Verilog-AMS, the wanted
passband signal is sampled with around 80 GHz, resulting in the main bottleneck
of the simulation performance. Hence, the PLL lock-in time has been neglected
at the top-level, in order to speed up the simulation a little.

Processes Timing requirement
Digital supply on 0− 10µs
Chip global reset 10− 30µs
Analog supply on 30− 40µs

Power up RF front-end 40− 76µs
Power up DSM-ADC 76− 102µs
Set PLL divider ratio 102− 138µs

Set up IQ switch 138− 164µs
Release PLL reset 164− 190µs
PLL supply on 190− 200µs
PLL lock-in 200− 270µs

Table 6.7: Timing diagram for the full chip power up.

Fig. 6.30 shows the transmitted and demodulated Bit-stream. In this case,
the power of the transmitted wanted signal has been set to −66 dBm. One can
observe the path delay between the transmission and demodulation.
The Bluetooth LE7 verification has been done in the SystemC VP environ-

ment, in order to exploit the simulation performance of the pin-accurate baseband
event-driven models. For the Bluetooth LE standard test, a PRBS(Pseudo Ran-
dom Bit Stream) source generates the random bit stream8 according to the
regulations mentioned in [Blu10].

7Bluetooth Low Energy standard according to [Blu10].
8Basically, the PRBS is generated using the LFSR shown in section 6.1.1.

156

6.3 A low power Bluetooth transceiver

200 220 240 260 280 300 320 340 360 380 400

0

0.2

0.4

0.6

0.8

1

Time [µs]

T
x
−

b
it
s
tr

e
a
m

200 220 240 260 280 300 320 340 360 380 400

0

0.2

0.4

0.6

0.8

1

Time [µs]

R
x
−

b
it
s
tr

e
a
m

Figure 6.30: Bit-stream of the transmitted and demodulated GFSK signal.

Table 6.8 shows the simulation time of 1 ms at different levels of abstraction, it
can be observed that the pin-accurate SystemC VP exhibits the best simulation
performance. Since the model generation is automatized, the planned verification
cases for the whole chip in different conditions can be set up and distributed to
the workstation cluster.

Receiver front-end model Simulation time
Transistor-level 723800s
Analog model(Verilog-A) 26400s
Wreal model (Verilog-AMS) 376s
SystemC AMS VP 9.2s

Table 6.8: Simulation times of the low power Bluetooth front-end for 1 ms at
different levels of abstraction

Table 6.9 shows part of the BER simulation results according to the Bluetooth
LE standard [Blu10], which specified, that the maximum BER in all test cases
cannot exceed 0.1%. For each of the simulation, run time between 10 ms to 100
ms are required in order to evaluate the BER. As the result overview in table

157

Chapter 6 Application Examples

6.9 shows, most of the required verification cases in terms of the BER based on
the standard have been passed.

Achieved level of confidence With the help of the SystemC VP, all control
connections have been traced and verified to the block/subsystem level hierarchy
during the simulation. End-to-end signal flow simulation in various operation
modes, including most test scenarios according to the Bluetooth LE standard,
such as interference and receiver sensitivity tests, can be done with very high
simulation efficiency.

The digital subsystem has been simulated with the front-end VP, so that every
control signal for the front-end and the demodulator can be verified from the
RTL to final Verilog netlist with timing back annotation. Some timing issues
regarding the digital clock can be detected.
The twisted I/Q path between DSM-ADC and the RF front-end has been

found out and during the top-level simulation. Furthermore, during the block-
level model validation, the mismatch in the dynamic range between ADC and
front-end has been detected.

All the mentioned issues has been corrected before tapeout. The final top-level
has been verified through numbers of regression runs. It can be expected, that
the chip is functional.

158

6.3 A low power Bluetooth transceiver

W
an

te
d

In
te
rf
er
er

Si
ng
le

To
ne

Te
st

V
ar
ia
nt

B
E
R

R
es
ul
t

P
ow

er
Fr
eq
.
off

se
t

P
ow

er
Fr
eq
.

P
ow

er
M
in
im

al
Se
ns
it
iv
ity

N
or
m
al

0.
05
72

%
-7
0
dB

m
–

–
–

–
M
ax

im
um

In
pu

t
Le

ve
l

0.
0%

-1
0
dB

m
–

–
–

–
C
o-
C
ha

nn
el

In
te
rf
er
en
ce

0.
0%

-6
7
dB

m
2.
41

G
H
z

-8
8
dB

m
–

–
A
dj
ac
en
t
In
te
rf
er
en
ce

1
M
H
z

0.
0%

-6
7
dB

m
+
1
M
H
z

-8
2
dB

m
–

–
2
M
H
z

0.
00
96

%
-6
7
dB

m
+
2
M
H
z

-5
0
dB

m
–

–
Im

ag
e
In
te
rf
er
en
ce

0.
0%

-6
7
dB

m
-2

M
H
z

-5
8
dB

m
–

–
A
dj
.
-1
M
H
z

0.
0%

-6
7
dB

m
-3

M
H
z

-5
2
dB

m
–

–
In
te
rm

od
ul
at
io
n

n=
3

0.
0%

-6
4
dB

m
+
6
M
H
z

-5
0
dB

m
2.
41
3
G
H
z

-5
0
dB

m
n=

4
0.
0%

-6
4
dB

m
+
8
M
H
z

-5
0
dB

m
2.
41
4
G
H
z

-5
0
dB

m
n=

5
0.
0%

-6
4
dB

m
+
10

M
H
z

-5
0
dB

m
2.
41
5
G
H
z

-5
0
dB

m

Ta
bl
e
6.
9:

Pa
rt

of
th
e
B
lu
et
oo

th
LE

co
m
pl
ia
nc
e
si
m
ul
at
io
n
re
su
lts

,t
es
t
ca
se
s
ar
e
se
le
ct
ed

ac
co
rd
in
g
to

[B
lu
10
].

159

7
Conclusions

In this thesis the author’s contribution to the hierarchical modeling and virtual
prototyping methodologies for the functional verification of RF-SoC has been
presented.
First, the basic verification techniques and simulation methods are classified

and the simulation-based verification described in detail. The main challenges of
the simulation-based functional verification for RF-SoCs is identified; namely, the
rapidly rising functional complexity of the RF front-end that comes from today’s
multi-mode, multi-standard communication and connectivity requirements. As a
consequence, there is currently no simulator capable of simulating such a complex
RF SoC design at transistor-level within an acceptable simulation time. The
analog simulator with its iterative way of solving non-linear DAEs according
to the circuits’ behavior has been identified as the major bottleneck for the
functional verification.

From the above-mentioned challenges it is found that the only way to combat
the high complexity and tremendous simulation time of the RF-SoCs is to
improve and formalize the existing design and verification flow. This can be done
by hierarchically decomposing the large design into small but more manageable
partitions and implementing models at different levels of abstraction through
the whole design hierarchy. Especially for the RF subsystem, the only way to
get reasonable simulation performance for the functional verification is to verify
the whole system in a pure digital simulator using event-driven RF models.

For model implementation targeting high simulation performance while keeping
the consistency of the design database, it is desirable to find a suitable HDL

161

Chapter 7 Conclusions

that is capable of modeling the analog/RF part of the design in the event-
driven domain and keeping the pin-accuracy through all the levels of abstraction.
Therefore, different HDLs have been evaluated and compared regarding the
mentioned requirements. Based on the results of this comparison it is apparent
that the only way to handle a broad range of abstraction levels in the design
hierarchy, while keeping the consistency of the design database, is to combine the
advantages of different HDLs while consistently improving the verification and
model refinement flow. Hence, two HDLs, namely Verilog-AMS and SystemC,
have been selected to demonstrate the proposed hierarchical verification and
virtual prototyping methodologies.

In a following step the key concepts in the hierarchical model implementation
and verification in the design environment are presented. First, the critical
path for model generation in the verification flow proposed by [CK07] has been
identified. Afterwards, a novel methodology including design partitioning, hierar-
chical model implementation, assertion coding, as well as the automated model
parameter extraction and update is introduced. The proposed methodology
mainly aims to improve the model generation and validation process. It is
noticed that the model refinement process has to be automated as much as
possible in order to avoid the human error factor that is introduced during
the model refinement process. Hence, the verification team has to accompany
the design team from the early project phase based on the verification flow
proposed in this work. Starting with block-level design, besides implementing
and validating the analog models side-by-side in the same simulator with the
circuit, the verification team has to identify the key parameters of the model
and to translate the testbenches into equivalent SKILL/OCEAN script for auto-
mated execution. Most details of the block-level circuits, especially the start-up
time, condition and sequence have to be documented in the model for a better
debugging process later on. With the help of automatically executed testbenches,
key model parameters can be extracted regularly; most of these parameters
can be automatically applied to the models via a SKILL based CDF parameter
update routine. Although the testbench script translation and the additional
SKILL based parameter update routine indeed increase the initial workload of
the verification team, it pays off for the model refinement in the later project
phase. Due to the language constraints in the current Verilog-AMS version, a
pin-accurate baseband model cannot be realized. Hence, the usage of wreal data
type and the resulting event-driven models are considered as the highest level of
abstraction in the circuit design environment. The event-driven wreal models
indeed increase the simulation performance for the RF front-end by shifting the
whole design into the digital simulator. However, it also shows the limitation of
the classical HDL in terms of simulation performance, modeling capabilities, and
reachable levels of abstraction. For example, the RF signals in the wreal models
are sampled at the passband, resulting in sampling frequencies in the range of 80

162

~100 GHz depending on the actual signal bandwidth and its modulation, which
greatly degrades the digital simulation performance. The only way to reach a
higher level of abstraction, and therefore increase the simulation performance
further, is to introduce new modeling language and formalisms while preserving
the consistency of the design database at a higher level of design hierarchy.
Finally, a SystemC-based RF virtual prototyping methodology, targeted at

fulfilling the abovementioned modeling requirements, is introduced. The whole
flow consists of two parts:
1.) Automated generation of pin-accurate SystemC model frame based on

the schematic information. The whole process is implemented in SKILL
language, which is compatible with the current circuit design environment.
Starting from the top-level schematic, the hierarchical structure of the whole
design will be analyzed and stored in an intermediate file. Each element of
the design will be translated into its corresponding SystemC model frame
based on the schematic information; e. g. pin, port I/O direction, and
instance name. Subsequently, naming conventions and resolution functions
are implemented while connecting the SystemC model frames according
to the schematic. The corresponding names for instances, pins, and nets
will be converted or expanded to fit the naming rules in SystemC syntax.
In order to resolve some analog wiring issues, e.g. multiple ports driving
a single node, which are common in the analog but not allowed for the
digital simulation, the resolution function will remap the connectivity of
the SystemC models depending on the signal taken into consideration
for the model(current or voltage). At the end of this step a pin-accurate
SystemC netlist based on the RF schematic is created.

2.) A SystemC RF library that contains a model set of basic RF components
has also been implemented. Each model in the library mainly targets
to describe the core functionalities and behavior, e. g. parameterizable
gain, noise and linearity, in order to maintain its flexibility. The model
parameters can then be updated from the parameter database shown in
section 4.2.5. They can be directly instantiated in the model frames in
step 1. The only manual modification for completing the modes is to map
the digital control states and settings for power on/off, bandwidth or gain
switching. With the advantage of the C-based HDL, a user defined complex
data type "BB_double" is implemented. This not only enables the seamless
switching between the baseband and passband simulation with the same
model through operator overloading, but also enables equivalent baseband
simulation using multiple sets of baseband components (s. Fig. 3.8), with
the highest simulation performance.

The proposed modeling and virtual prototyping methodology has been demon-
strated through three different application examples from different projects. For

163

Chapter 7 Conclusions

the PLL system the SystemC VP shows, on the one hand, matched phase noise
and lock-in simulation results compared to the Verilog-AMS models. On the
other hand, it exhibits the best simulation performance, especially in conjunction
with the usage of user defined PLL signal: PLL_BB_type shown in Fig. 6.17
for analyzing the modulated GFSK signal of a PLL-based polar transmitter. In
the RF-DAC based transmitter example, the model based simulation perfor-
mance is around 1000 times higher than the simulation at the transistor-level. In
this way different functional bugs(s. Fig. 6.22), which could be a show-stopper
for the chip, can be detected and corrected before the tapeout. However, the
difference in simulation time between the VPs of both mentioned systems and
their Verilog-AMS models are not significant due to the large portion of
high frequency digital part in the system. The receiver part of the Bluetooth
transceiver system consists of a large portion of analog and RF subsystem with
the digital part operating at comparatively low frequency. The simulation time
of the SystemC VP with baseband data type only takes 9.2 seconds, which
is 7.8e4 times faster than the transistor-level simulation. The VP simulation
enables the end-to-end signal flow simulation in various operation modes, while
verifying all the control connections down to the block level hierarchy so that
the twisted I/Q path issue and some digital timing issue in conjunction with
the RF front-end mentioned in section 6.3.3 can be fixed before tapeout. In
addition to that, pre-silicon simulation based BER tests according to [Blu10]
can be executed in time, which significantly increases the level of confidence for
the tapeout.
All three mentioned examples are taped out and the measurements show no

functional errors in the chip, which confirms that the proposed modeling and
VP methodology can speed up and enhance the functional verification of the
advanced nano-scale CMOS RF subsystems.

7.1 Outlook
Although already available, the graphical user interface of the proposed VP can
be improved further in order to provide better overview of the circuit hierarchy
and thus reduce possible errors introduced during the VP process. Furthermore,
it is desirable not only to verify the chip’s functionality, but also the correctness of
the measurement setup before it goes to the hardware. In this way a verification
platform with virtual instruments and the SoC’s VP can be built up on a unified
verification environment. On top of that the vanishing boundary between the
hardware and software, due to the complexity of today’s SoCs, requires an overall
system simulation. This includes not only the hardware, but also the interaction
between the firmware and the pin-accurate hardware VP. This is required in
order to increase the confidence level of the design and shorten the development
of the overall system. This can be done by unifying both the RF-SoC and its
firmware verification environments.

164

Bibliography

[3gp] 3GPP TS45.005 V7.9.00: Radio transmission and reception. Technical
Specification Group GSM/EDGE, Feb. 2007.

[Abi06] A. Abidi. „Phase noise and jitter in CMOS ring oscillators“. In: Solid-
State Circuits, IEEE Journal of 41.8 (2006), pp. 1803–1816.

[AC06] D. Automation and S. Committee. „IEEE Standard SystemC Language
Reference Manual“. In: IEEE Computer Society 2002.March (2006),
1666–2005. url: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1617
814.

[AD+90] E. Acuna, J. Dervenis, et al. „Simulation techniques for mixed analog/dig-
ital circuits“. In: Solid-State Circuits, IEEE Journal of 25.2 (1990),
pp. 353–363.

[AJK05] H. Al-Junaid and T. Kazmierski. „Analogue and mixed-signal extension
to SystemC“. In: Circuits, Devices and Systems, IEE Proceedings - (Dec.
2005), pp. 682 –690. issn: 1350-2409. doi: doi:10.1049/ip-cds:20045204.

[Ake78] S. Akers. „Binary decision diagrams“. In: Computers, IEEE Transactions
on 100.6 (1978), pp. 509–516.

[Ams] Virtuoso Multi-Mode Simulation. Datasheet. Cadence Design Systems,
2011. url: http://www.cadence.com/rl/resources/datasheets/virtuoso_mmsim.pdf.

[Bar90] T. Barnes. „SKILL: a CAD system extension language“. In: Design
Automation Conference, 1990. Proceedings., 27th ACM/IEEE. June
1990, pp. 266 –271. doi: 10.1109/DAC.1990.114865.

[BD+09] D. C. Black, J. Donovan, et al. SystemC: From the Ground Up, Second
Edition. Springer, 2009. isbn: 0387699570.

[Bda] Analog FastSPICE Platform. Berkeley Design Automation. url: http:

//www.berkeley-da.com/prod/datasheets/Berkeley_DA_Platform_DS.pdf.
[Ber03] J. Bergeron. Writing Testbenches: Functional Verification of HDL Mod-

els. 2nd ed. Springer US, Feb. 2003. isbn: 1402074018.
[Ber06] J. Bergeron. Writing testbenches using system Verilog. Springer-Verlag

New York Inc, 2006.
[BH+94] J. Buck, S. Ha, et al. „Ptolemy: A framework for simulating and proto-

typing heterogeneous systems“. In: (1994).
[BKe08] C. Baier, J. Katoen, and I. ebrary. Principles of model checking. Vol. 950.

MIT press, 2008.

165

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1617814
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1617814
http://dx.doi.org/doi:10.1049/ip-cds:20045204
http://www.cadence.com/rl/resources/datasheets/virtuoso_mmsim.pdf
http://dx.doi.org/10.1109/DAC.1990.114865
http://www.berkeley-da.com/prod/datasheets/Berkeley_DA_Platform_DS.pdf
http://www.berkeley-da.com/prod/datasheets/Berkeley_DA_Platform_DS.pdf

Bibliography

[BM58] G. E. P. Box and M. E. Muller. „A Note on the Generation of Random
Normal Deviates“. In: Annals Of Mathematical Statistics 29.2 (1958),
pp. 610–611.

[BN+05] F. Bouchhima, G. Nicolescu, et al. „Discrete-continuous simulation
model for accurate validation in component-based heterogeneous SoC
design“. In: Rapid System Prototyping, 2005.(RSP 2005). The 16th
IEEE International Workshop on. IEEE. 2005, pp. 181–187.

[Boo54] G. Boole. An investigation of the laws of thought: on which are founded
the mathematical theories of logic and probabilities. Vol. 2. Walton and
Maberly, 1854.

[Bry86] R. Bryant. „Graph-based algorithms for boolean function manipulation“.
In: Computers, IEEE Transactions on 100.8 (1986), pp. 677–691.

[BS+11] M. Barnasconi, N. Semiconductors, et al. „Advancing the SystemC
Analog/Mixed-Signal (AMS) Extensions“. In: (2011).

[BW03] J. Butcher and J. Wiley. Numerical methods for ordinary differential
equations. Vol. 2. Wiley Online Library, 2003.

[CA03] L. Charest and E. Aboulhamid. „A VHDL/SystemC comparison in
handling design reuse“. In: System-on-chip for real-time applications
(2003), p. 41.

[CD+10] E. Cerny, S. Dudani, et al. The power of assertions in systemverilog.
Springer Verlag, 2010.

[CE+97] H. Chang, C. E., et al. A top-down constraint-driven design methodology
for analog integrated circuits. Springer, 1997.

[CGP00] E. Clarke, O. Grumberg, and D. Peled. Model checking. The MIT Press,
2000. isbn: 0262032708.

[Che05] J. Chen. „Modeling RF systems“. In: The Designer’s Guide Community,
Tech. Rep 2005 (2005), pp. 1–41.

[Che09] J. E. Chen. „A Modeling Methodology for Verifying Functionality of
a Wireless Chip“. In: Behavioral Modeling and Simulation Workshop,
2009. BMAS 2009. IEEE. 2009, pp. 96–101. doi: 10.1109/BMAS.2009.5338892.

[Che10] J. E. Chen. Pat. 20100286807 (Sunnyvale, CA, US). Nov. 2010.
[CK07] H. Chang and K. Kundert. „Verification of Complex Analog and RF

IC Designs“. In: Proceedings of the IEEE 95 (2007), pp. 622–639. issn:
0018-9219.

[CM+92] E. Charbon, E. Malavasi, et al. „A constraint-driven placement method-
ology for analog integrated circuits“. In: Proc. IEEE CICC. Vol. 28.
Citeseer. 1992, pp. 1–4.

[Cot90] R. Cottrell. „Event-driven behavioural simulation of analogue transfer
functions“. In: Design Automation Conference, 1990. EDAC. Proceedings
of the European. IEEE. 1990, pp. 240–243.

[CR88] L. R. Carley and R. A. Rutenbar. „How to automate analog IC designs“.
In: IEEE Spectrum 25.8 (1988), pp. 26–30. doi: 10.1109/6.7160.

166

http://dx.doi.org/10.1109/BMAS.2009.5338892
http://dx.doi.org/10.1109/6.7160

Bibliography

[CS+06] E. Cheung, P. Satapathy, et al. „Runtime deadlock analysis of SystemC
designs“. In: High-Level Design Validation and Test Workshop, 2006.
Eleventh Annual IEEE International. IEEE. 2006, pp. 187–194.

[DC05] T. Dastidar and P. Chakrabarti. „A verification system for transient
response of analog circuits using model checking“. In: VLSI Design,
2005. 18th International Conference on. IEEE. 2005, pp. 195–200.

[DG03] R. D. D. Grosse G. Fey. „Modeling multi-valued circuits in SystemC“. In:
Multiple-Valued Logic, 2003. Proceedings. 33rd International Symposium
on. 2003.

[DH+08] M. Damm, J. Haase, et al. „Bridging MoCs in SystemC specifications of
heterogeneous systems“. In: EURASIP J. Embedded Syst. 2008 (2008),
7:1–7:16. issn: 1687-3955. doi: http://dx.doi.org/10.1155/2008/738136. url:
http://dx.doi.org/10.1155/2008/738136.

[DPR96] C. Dawson, S. Pattanam, and D. Roberts. „The Verilog Procedural
Interface for the Verilog Hardware Description Language“. In: Verilog
HDL Conference, 1996. Proceedings., 1996 IEEE International. Feb.
1996, pp. 17 –23. doi: 10.1109/IVC.1996.496013.

[Dre04] R. Drechsler. Advanced Formal Verification. Norwell, MA, USA: Kluwer
Academic Publishers, 2004. isbn: 1402077211.

[DS+94] S. Donnay, K. Swings, et al. „A methodology for analog high-level syn-
thesis“. In: Custom Integrated Circuits Conference, 1994., Proceedings
of the IEEE 1994. IEEE. 1994, pp. 373–376.

[FH+05] R. Frevert, J. Haase, et al. Modeling and Simulation for RF System
Design. 1st ed. Springer, 2005, p. 291. isbn: 0387275843.

[FM98] D. FitzPatrick and I. Miller. Analog Behavioral Modeling with the Verilog-
A Language. 1.0. Springer, Sept. 1998. isbn: 9780792380443.

[FO00] P. Frey and D. O’Riordan. „Verilog-AMS: Mixed-signal simulation and
cross domain connect modules“. In: Behavioral Modeling and Simulation,
2000. Proceedings. 2000 IEEE/ACM International Workshop on. IEEE.
2000, pp. 103–108.

[Fre80] H. Freeman. Discrete-time systems: an introduction to the theory. Robert
E. Krieger, 1980.

[GL+02] T. Grötker, S. Liao, et al. System design with SystemC. Springer, 2002.
[Gro02] T. Grotker. System Design with SystemC. Norwell, MA, USA: Kluwer

Academic Publishers, 2002. isbn: 1402070721.
[GST01] S. Gottlieb, C. Shu, and E. Tadmor. „Strong stability-preserving high-

order time discretization methods“. In: SIAM review (2001), pp. 89–
112.

[Har03] J. Harrison. „Formal Verification at Intel“. In: Proc. 18th Annual IEEE
Symp. Logic in Computer Science. 2003, pp. 45–54. doi: 10.1109/LICS.200
3.1210044.

[HC+09] A. Hadjichristos, M. Cassia, et al. „Single-chip RF CMOS UMTS/EGSM
transceiver with integrated receive diversity and GPS“. In: Solid-State
Circuits Conference-Digest of Technical Papers, 2009. ISSCC 2009.
IEEE International. IEEE. 2009, pp. 118–119.

167

http://dx.doi.org/http://dx.doi.org/10.1155/2008/738136
http://dx.doi.org/10.1155/2008/738136
http://dx.doi.org/10.1109/IVC.1996.496013
http://dx.doi.org/10.1109/LICS.2003.1210044
http://dx.doi.org/10.1109/LICS.2003.1210044

Bibliography

[HC09] W. Hartong and S. Cranston. Real Valued Modeling for Mixed Signal
Simulation. Application Note. Cadence Design Systems, Inc., Jan. 2009.

[Hei92] S. J. Heinen. CAD-Verfahren für die Signal-und Rauschanalyse analoger
linearer und nichtlinearer Schaltungen im eingeschwungenen Zustand.
1992.

[HLL99] A. Hajimiri, S. Limotyrakis, and T. Lee. „Jitter and phase noise in
ring oscillators“. In: Solid-State Circuits, IEEE Journal of 34.6 (1999),
pp. 790–804.

[HMW07] S. Huang, H. Ma, and Z. Wang. „Modeling and Simulation to the Design
of Fractional-N Frequency Synthesizer“. In: Design, Automation & Test
in Europe Conference & Exhibition, 2007. DATE ’07. 2007, pp. 1–6.
doi: {10.1109/DATE.2007.364606}.

[Hor63] I. Horowitz. Synthesis of feedback systems. Vol. 1663. Academic Press
New York, 1963.

[HR04] M. Huth and M. Ryan. Logic in Computer Science: Modelling and
reasoning about systems. Cambridge University Press, 2004.

[HRB75] C. Ho, A. Ruehli, and P. Brennan. „The modified nodal approach to
network analysis“. In: Circuits and Systems, IEEE Transactions on 22.6
(1975), pp. 504–509.

[HW10] S. Heinen and R. Wunderlich. Grundlagen der Schaltungstechnik I.
Institut of Integrated Analog Circuits and RF systems, 2010.

[HY+06] J. He, J. Yang, et al. „System-Level Time-Domain Behavioral Modeling
for A Mobile WiMax Transceiver“. In: Behavioral Modeling and Sim-
ulation Workshop, Proceedings of the 2006 IEEE International. IEEE.
2006, pp. 138–143.

[ICT11] ICT. „ICT FACTS AND REPORTS“. In: ITU Telecom (2011). url:
http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf.

[IEE90] IEEE. „IEEE Standard Glossary of Software Engineering Terminology“.
In: IEEE Std 610.12-1990 (1990), p. 1. doi: 10.1109/IEEESTD.1990.101064.

[JBS00] M. C. Jeruchim, P. Balaban, and K. S. Shanmugan. Simulation of
Communication Systems: Modeling, Methodology and Techniques. 2nd
ed. Springer, Oct. 2000, p. 924. isbn: 0306462672.

[JGH07] S. Joeres, H.-W. Groh, and S. Heinen. „Event driven analog modeling of
RF frontends“. In: Behavioral Modeling and Simulation Workshop, 2007.
BMAS 2007. IEEE International. 2007. doi: 10.1109/BMAS.2007.4437523.

[JH06] S. Joeres and S. Heinen. „Functional Verification of Radio Frequency
SoCs using Mixed-Mode and Mixed-Domain Simulations“. In: Behavioral
Modeling and Simulation Workshop, Proceedings of the 2006 IEEE
International. 2006. doi: 10.1109/BMAS.2006.283485.

[JNT90] C. Johnson, Y. Nie, and V. Thomée. „An a posteriori error estimate
and adaptive timestep control for a backward Euler discretization of
a parabolic problem“. In: SIAM journal on numerical analysis (1990),
pp. 277–291.

168

http://dx.doi.org/{10.1109/DATE.2007.364606}
http://www.itu.int/ITU-D/ict/facts/2011/material/ICTFactsFigures2011.pdf
http://dx.doi.org/10.1109/IEEESTD.1990.101064
http://dx.doi.org/10.1109/BMAS.2007.4437523
http://dx.doi.org/10.1109/BMAS.2006.283485

Bibliography

[Joe08] S. Joeres. „Systemsimulationen zur funktionalen Verifikation von HF-
und Mixed-Signal-Schaltungen“. PhD in Electrical Engineering. RWTH
Aachen University, Germany, 2008, p. 176.

[JPB10] D. O. John Pierce and P. K. Bhattacharya. „Mixed-Signal Assertion
Based Verification“. In: ARM Technology Conference. 2010.

[KC+00] K. Kundert, H. Chang, et al. „Design of mixed-signal systems-on-a-chip“.
In: Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 19.12 (2000), pp. 1561–1571.

[KC09a] K. Kundert and H. Chang. „Verifying all of an SOC-analog circuitry
included“. In: IEEE Solid-State Circuits Magazine 1.4 (2009), pp. 26–32.
issn: 1943-0582. doi: 10.1109/MSSC.2009.933430.

[KC09b] K. Kundert and H. Chang. „Verifying all of an SOC-analog circuitry
included“. In: Solid-State Circuits Magazine, IEEE 1.4 (2009), pp. 26–32.
issn: 1943-0582. doi: 10.1109/MSSC.2009.933430.

[KG95] K. Kundert and P. Gray. The Designer’s Guide to SPICE and SPEC-
TRE. Kluwer Academic Publishers, 1995.

[Kim09] S.-B. Kim. „A Contribution to Continuous-Time Quadrature Band-
pass Sigma-Delta Modulators for Low-IF Receivers“. PhD in Electrical
Engineering. RWTH Aachen University, Germany, 2009, p. 149.

[Kir47] G. Kirchhoff. „Ueber die Auflösung der Gleichungen, auf welche man bei
der Untersuchung der linearen Vertheilung galvanischer Ströme geführt
wird“. In: Annalen der Physik 148.12 (1847), pp. 497–508.

[Kun03] K. Kundert. „Predicting the phase noise and jitter of PLL-based fre-
quency synthesizers“. In: Phase-Locking in High-Performance Systems
(2003), pp. 46–69.

[Kun05] K. Kundert. „Challenges in RF simulation“. In: Radio Frequency inte-
grated Circuits (RFIC) Symposium, 2005. Digest of Papers. 2005 IEEE.
2005, pp. 105–108. isbn: 1529-2517.

[Kun06] K. Kundert. „Predicting the Phase Noise and Jitter of PLL-Based
Frequency Synthesizers“. In: Designers Guide Community (2006).

[KZ04] K. Kundert and O. Zinke. The Designer’s Guide to Verilog-AMS.
first. Kluwer Academic Publishers, Boston, May 2004, p. 270. isbn:
1402080441.

[Lam08] W. K. Lam. Hardware Design Verification: Simulation and Formal
Method-Based Approaches. 1st. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2008. isbn: 0137010923, 9780137010929.

[LP+03] K. Lee, B. Park, et al. „Phase frequency detectors for fast frequency ac-
quisition in zero-dead-zone CPPLLs for mobile communication systems“.
In: Solid-State Circuits Conference, 2003. ESSCIRC’03. Proceedings of
the 29th European. IEEE. 2003, pp. 525–528.

[Lyo10] R. G. Lyons. Understanding Digital Signal Processing (3rd Edition).
3rd ed. Prentice Hall, Nov. 2010. isbn: 9780137027415.

169

http://dx.doi.org/10.1109/MSSC.2009.933430
http://dx.doi.org/10.1109/MSSC.2009.933430

Bibliography

[Meh10] S. Mehndiratta. „Solutions Mitigate Mixed-Signal SoC Implementation
Headaches“. In: Electronic Design (2010). url: http://electronicdesign.co
m/article/design-solutions/solutions_mitigate_mixed_signal_soc_implementation_

headaches.aspx.
[Mey03] S. J. Meyer. „MIXED SIGNAL SIMULATION“. Pat. EP1305765. May

2003.
[Mey04] A. Meyer. Principles of Functional Verification. illustrated edition.

Bertrams Print on Demand, Apr. 2004. isbn: 0750676175.
[MG08] E. Martens and G. Gielen. High-level modeling and synthesis of analog

integrated systems. Springer Verlag, 2008.
[MG96] T. Murayama and Y. Gendai. „A top-down mixed-signal design method-

ology using a mixed-signal simulator and analog HDL“. In: Design
Automation Conference, 1996, with EURO-VHDL’96 and Exhibition,
Proceedings EURO-DAC’96, European. IEEE. 1996, pp. 59–64.

[MM04] P. Molitor and J. Mohnke. Equivalence checking of digital circuits:
fundamentals, principles, methods. Springer, 2004.

[MMS07] K. Muhammad, T. Murphy, and R. Staszewski. „Verification of Digital
RF Processors: RF, Analog, Baseband, and Software“. In: Solid-State
Circuits, IEEE Journal of 42.5 (May 2007), pp. 992 –1002. issn: 0018-
9200. doi: 10.1109/JSSC.2007.894327.

[MSPM03] P. Mak, U. Seng-Pan, and R. Martins. „A front-to-back-end modeling
of I/Q mismatch effects in a complex-IF receiver for image-rejection
enhancement“. In: Electronics, Circuits and Systems, 2003. ICECS 2003.
Proceedings of the 2003 10th IEEE International Conference on. Vol. 2.
IEEE. 2003, pp. 631–634.

[MZ+08] E. S. Morales, G. Zucchelli, et al. „Novel Methodology for Functional
Modeling and Simulation of Wireless Embedded Systems“. In: EURASIP
Journal on Embedded Systems 2008 (2008).

[Nag75] L. W. Nagel. „SPICE2: A Computer Program to Simulate Semiconductor
Circuits“. PhD thesis. EECS Department, University of California, Berke-
ley, 1975. url: http://www.eecs.berkeley.edu/Pubs/TechRpts/1975/9602.html.

[New78] A. R. Newton. „The Simulation of Large-Scale Integrated Circuits“.
PhD thesis. EECS Department, University of California, Berkeley, 1978.
url: http://www.eecs.berkeley.edu/Pubs/TechRpts/1978/9605.html.

[OBC05] S. Orcioni, G. Biagetti, and M. Conti. „SystemC-WMS: a wave mixed
signal simulator“. In: Proceedings of the 8th International Forum on
Specification & Design Languages (FDL). 2005, pp. 27–30.

[Ohm27] G. Ohm. Die galvanische Kette. 1827.
[Pan01] P. . Panda. „SystemC - a modeling platform supporting multiple de-

sign abstractions“. In: System Synthesis, 2001. Proceedings. The 14th
International Symposium on. 2001.

[Pat05] S. . Patel H.D. ; Shukla. „Towards a heterogeneous simulation kernel
for system-level models: a SystemC kernel for synchronous data flow
models“. In: Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 24.8 (Aug. 2005), pp. 1261–1271.

170

http://electronicdesign.com/article/design-solutions/solutions_mitigate_mixed_signal_soc_implementation_headaches.aspx
http://electronicdesign.com/article/design-solutions/solutions_mitigate_mixed_signal_soc_implementation_headaches.aspx
http://electronicdesign.com/article/design-solutions/solutions_mitigate_mixed_signal_soc_implementation_headaches.aspx
http://dx.doi.org/10.1109/JSSC.2007.894327
http://www.eecs.berkeley.edu/Pubs/TechRpts/1975/9602.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1978/9605.html

Bibliography

[Pel09] R. Pelánek. „Fighting state space explosion: Review and evaluation“. In:
Formal Methods for Industrial Critical Systems (2009), pp. 37–52.

[Raz98] B. Razavi. RF Microelectronics. Ed. by T. S. Rappaport. Prentice Hall,
Nov. 1998. isbn: 9780138875718.

[RS09] J. Reichardt and B. Schwarz. VHDL-Synthese: Entwurf digitaler Schal-
tungen und Systeme. Oldenbourg Wissenschaftsverlag, 2009.

[RWT03] D. Root, J. Wood, and N. Tufillaro. „New techniques for non-linear
behavioral modeling of microwave/RF ICs from simulation and nonlinear
microwave measurements“. In: Proceedings of the 40th annual Design
Automation Conference. ACM. 2003, pp. 85–90.

[Sch03] R. Schreier. „The delta-sigma toolbox“. In: (2003).
[Sch11] M. Schleyer. „Hierarchical Functional Verification Approaches for a Low

Power Bluetooth RF-Frontend“. MA thesis. RWTH Aachen University,
2011.

[SFB05a] R. Staszewski, C. Fernando, and P. Balsara. „Event-driven simulation
and modeling of phase noise of an RF oscillator“. In: Circuits and
Systems I: Regular Papers, IEEE Transactions on 52.4 (2005), pp. 723–
733.

[SFB05b] R. Staszewski, C. Fernando, and P. Balsara. „Event-driven Simulation
and modeling of phase noise of an RF oscillator“. In: Circuits and
Systems I: Regular Papers, IEEE Transactions on 52.4 (2005), pp. 723–
733. issn: 1549-8328. doi: {10.1109/TCSI.2005.844236}.

[Sma] A Simulink/SMASH co-simulation interface. Application Note. DOL-
PHIN INTEGRATION, Oct. 2003. url: http://www.dolphin.fr/medal/smash/
notes/simulinksmash.pdf.

[SN08] A. Soury and E. Ngoya. „Using sub-systems behavioral modeling to
speed-up RFIC design optimizations and verifications“. In: Integrated
Nonlinear Microwave and Millimetre-Wave Circuits, 2008. INMMIC
2008. Workshop on. IEEE. 2008, pp. 165–168.

[SN90] R. Saleh and A. Newton. Mixed-mode simulation. Kluwer Academic
Publishers, 1990.

[ST+05] R. Schreier, G. Temes, et al. Understanding delta-sigma data converters.
IEEE press NJ, 2005.

[Ste11] S. Steinhorst. „Formal Verification Methodologies for Nonlinear Analog
Circuits“. PhD thesis. Goethe University Frankfurt am Main, 2011.

[SYR02] S. Soliman, F. Yuan, and K. Raahemifar. „An overview of design tech-
niques for CMOS phase detectors“. In: Circuits and Systems, ISCAS
IEEE International Symposium on 5 (May 2002), pp. 457–460.

[The02] D. Theil. „Entwicklung eines optimierten Transmitterkonzeptes für Blue-
tooth“. PhD thesis. Universität Dortmund, Sept. 2002.

[TS94] Y. Tsividis and K. Suyama. „MOSFET modeling for analog circuit CAD:
Problems and prospects“. In: Solid-State Circuits, IEEE Journal of 29.3
(1994), pp. 210–216.

171

http://dx.doi.org/{10.1109/TCSI.2005.844236}
http://www.dolphin.fr/medal/smash/notes/simulinksmash.pdf
http://www.dolphin.fr/medal/smash/notes/simulinksmash.pdf

Bibliography

[TZN10] B. Thiel, N. Zimmermann, and R. Negra. „Digital asynchronous signal
interpolation and clock domain crossing“. In: Microwave Conference
Proceedings (APMC), 2010 Asia-Pacific. IEEE. 2010, pp. 1420–1423.

[Vla91] M. Vlach. „Mixed-Mode-Simulator Interface“. Pat. US4985860. Jan.
1991.

[Wan08] Y. Wang. „Frontendmodellierung von HF Funksystemen für die Full-
Chip-Verifikation“. MA thesis. RWTH Aachen University, 2008.

[WCH10] Y. Wang, Z. Chen, and S. Heinen. „Hierarchical generation of pin accu-
rate SystemC models based on RF circuit schematics“. In: Behavioral
Modeling and Simulation Conference (BMAS), 2010 IEEE International.
IEEE. 2010, pp. 25–30.

[Wer11] T. D. Werth. „A Feedback Interference Cancellation Technique for Miti-
gation of Blockers in Wireless Receivers“. PhD in Electrical Engineering.
RWTH Aachen University, Germany, 2011, p. 166.

[WGR05] B. Wile, J. Goss, and W. Roesner. Comprehensive Functional Verifica-
tion: The Complete Industry Cycle (Systems on Silicon). San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2005. isbn: 0127518037.

[Whi95] J. Whitesitt. Boolean Algebra and its applications. Dover Pubns, 1995.
[WJ+09] Y. Wang, S. Joeres, et al. „Modeling Approaches for Functional Verifica-

tion of RF-SoCs: Limits and Future Requirements“. In: Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on 28.5
(May 2009), pp. 769 –773. issn: 0278-0070. doi: 10.1109/TCAD.2009.2014533.

[WVM+09] Y. Wang, C. Van-Meersbergen, et al. „Event driven analog modeling for
the verification of PLL frequency synthesizers“. In: Behavioral Modeling
and Simulation Workshop, 2009. BMAS 2009. IEEE. Sept. 2009, pp. 25
–30.

[WWF87] D. Watt, B. Wichmann, and W. Findlay. Ada language and methodology.
Prentice Hall International (UK) Ltd., 1987.

[YCK07] Z. Ye, W. Chen, and M. P. Kennedy. „Modeling and Simulation of
DeltaSigma Fractional-N PLL Frequency Synthesizer in Verilog-AMS“.
In: IEICE Trans Fundamentals E90-A.10 (Oct. 2007), pp. 2141–2147.
doi: 10.1093/ietfec/e90-a.10.2141. url: http://ietfec.oxfordjournals.org/cgi/c
ontent/abstract/E90-A/10/2141.

[Ypm95] T. Ypma. „Historical development of the Newton-Raphson method“. In:
SIAM review (1995), pp. 531–551.

[ZG+95] M. Zwolinski, C. Garagate, et al. „Anatomy of a simulation backplane“.
In: Computers and Digital Techniques, IEE Proceedings-. Vol. 142. 6.
IET. 1995, pp. 377–385.

[ZGH10] Y. Zaidi, C. Grimm, and J. Haase. „On Mixed Abstraction, Languages,
and Simulation Approach to Refinement with SystemC AMS“. In:
EURASIP Journal on Embedded Systems 2010 (2010).

[Zim11] N. Zimmermann. „Design and Implementation of a Broadband RF-
DAC Transmitter for Wireless Communications“. PhD in Electrical
Engineering. RWTH Aachen University, Germany, 2011, p. 151.

172

http://dx.doi.org/10.1109/TCAD.2009.2014533
http://dx.doi.org/10.1093/ietfec/e90-a.10.2141
http://ietfec.oxfordjournals.org/cgi/content/abstract/E90-A/10/2141
http://ietfec.oxfordjournals.org/cgi/content/abstract/E90-A/10/2141

Bibliography

[ZWB03] A. Zhu, M. Wren, and T. Brazil. „An efficient Volterra-based behavioral
model for wideband RF power amplifiers“. In: Microwave Symposium
Digest, 2003 IEEE MTT-S International. Vol. 2. IEEE. 2003, pp. 787–
790.

[Acc11] Accellera Organization. Standard Universal Verification Methodology
Class Reference Manual. June 2011. url: http://www.accellera.org/download
s/standards/uvm/UVM_1.1_Class_Reference_Final_06062011.pdf.

[Blu10] Bluetooth SIG. Specification of the Bluetooth System - Version 4.0.
4th ed. Bluetooth Special Interest Group. June 2010.

[Cad] Cadence Design Systems, Inc. Virtuoso Accelerated Parallel Simulator.
Cadence Design Systems. url: http://www.cadence.com/rl/Resources/datashee
ts/virtuoso_mmsim.pdf.

[Cad03] Cadence Design Systems, Inc. Creating Analog Behavioral Models -
Verilog-AMS Analod Modeling. Platform Application Note. 2003.

[Cad08] Cadence Design Systems, Inc. OCEAN Reference. Product Version
5.1.41. Sept. 2008.

[Cad09] Cadence Design Systems, Inc. ASSURA PHYSICAL VERIFICATION.
Datasheet. 2009. url: http://www.cadence.com/rl/Resources/datasheets/490

3_VirtuosoALVS_DSfnl.pdf.
[Cad10] Cadence Design Systems, Inc. Assertion Checking in Simulation. 10.2.

Nov. 2010.
[Cad11a] Cadence Design Systems. Virtuoso schematic editor user guide. Product

Version 6.1.5. 2011.
[Cad11b] Cadence Design Systems, Inc. Cadence SKILL Language User Guide.

Cadence Design Systems. Nov. 2011.
[Cad11c] Cadence Design Systems, Inc. Cadence® Verilog®-AMS Language Ref-

erence. Jan. 2011.
[Cad11d] Cadence Design Systems, Inc. Incisive Enterprise Specman Products.

Datasheet. 2011. url: http://www.cadence.com/rl/Resources/datasheets/specma
n_elite_ds.pdf.

[Cad11e] Cadence Design Systems, Inc. Virtuoso AMS Designer Simulator User
Guide. Product Version 10.25. Jan. 2011.

[Cad11f] Cadence Design Systems, Inc. Virtuoso® Spectre® Circuit Simulator
Reference. Product Version 10.1.1. June 2011.

[Cad11g] Cadence Design Systems, Inc. Virtuoso® Spectre® Circuit Simulator RF
Analysis Theory. Product Version 10.1.1. June 2011.

[Cad12] Cadence Design Systems, Inc. Virtuoso Hierarchy Editor User Guide.
Product Version 6.1.5. Jan. 2012.

[IEE01] IEEE Design Automation Standards Committee. „IEEE Standard Verilog
Hardware Description Language“. In: IEEE Std 1364-2001 (2001), 0_1–
856. doi: 10.1109/IEEESTD.2001.93352.

173

http://www.accellera.org/downloads/standards/uvm/UVM_1.1_Class_Reference_Final_06062011.pdf
http://www.accellera.org/downloads/standards/uvm/UVM_1.1_Class_Reference_Final_06062011.pdf
http://www.cadence.com/rl/Resources/datasheets/virtuoso_mmsim.pdf
http://www.cadence.com/rl/Resources/datasheets/virtuoso_mmsim.pdf
http://www.cadence.com/rl/Resources/datasheets/4903_VirtuosoALVS_DSfnl.pdf
http://www.cadence.com/rl/Resources/datasheets/4903_VirtuosoALVS_DSfnl.pdf
http://www.cadence.com/rl/Resources/datasheets/specman_elite_ds.pdf
http://www.cadence.com/rl/Resources/datasheets/specman_elite_ds.pdf
http://dx.doi.org/10.1109/IEEESTD.2001.93352

Bibliography

[IEE07] IEEE Design Automation Standards Committee. „IEEE Standard VHDL
Analog and Mixed-Signal Extensions“. In: IEEE Std 1076.1-2007 (Revi-
sion of IEEE Std 1076.1-1999) (2007), pp. c1 –328. doi: 10.1109/IEEESTD.
2007.4384309.

[IEE08] IEEE Design Automation Standards Committee. „Std 1076–2008, IEEE
Standard VHDL Language Reference Manual“. In: IEEE, New York,
NY, USA (2008).

[IEE09] IEEE Design Automation Standards Committee. „IEEE Standard for
System Verilog-Unified Hardware Design, Specification, and Verification
Language“. In: IEEE STD 1800-2009 (2009), pp. C1 –1285. doi: 10.110
9/IEEESTD.2009.5354441.

[Men07] Mentor Graphics Corporation. Calibre nmLVS. 2007. url: http://www.men
tor.com/products/ic_nanometer_design/verification-signoff/circuit-verificatio

n/calibre-nmlvs/upload/nmlvs_datasheet.pdf.
[Ope] Open SystemC Initiative. „SystemC 2.2.0“. In: url: http://www.systemc.org.
[Sys08a] SystemC AMS working group. „OSCI SystemC AMS Users Guide“. In:

Open SystemC Initiative (OSCI) (Mar. 2008). url: http://www.accellera.o
rg/downloads/standards/systemc/ams.

[Sys08b] SystemC AMS working group. „Standard SystemC AMS Language
Reference Manual“. In: Open SystemC Initiative (OSCI) (Mar. 2008).
url: http://www.accellera.org/downloads/standards/systemc/ams.

[Ver09] Verilog-AMS Technical Subcommittee. „Verilog-AMS Language Refer-
ence Manual, Release 2.3.1“. In: Accellera Systems Inititative Standards
(June 2009). url: http://www.accellera.org/downloads/standards/v-ams/VAMS-LR
M-2-3-1.pdf.

174

http://dx.doi.org/10.1109/IEEESTD.2007.4384309
http://dx.doi.org/10.1109/IEEESTD.2007.4384309
http://dx.doi.org/10.1109/IEEESTD.2009.5354441
http://dx.doi.org/10.1109/IEEESTD.2009.5354441
http://www.mentor.com/products/ic_nanometer_design/verification-signoff/circuit-verification/calibre-nmlvs/upload/nmlvs_datasheet.pdf
http://www.mentor.com/products/ic_nanometer_design/verification-signoff/circuit-verification/calibre-nmlvs/upload/nmlvs_datasheet.pdf
http://www.mentor.com/products/ic_nanometer_design/verification-signoff/circuit-verification/calibre-nmlvs/upload/nmlvs_datasheet.pdf
http://www.systemc.org
http://www.accellera.org/downloads/standards/systemc/ams
http://www.accellera.org/downloads/standards/systemc/ams
http://www.accellera.org/downloads/standards/systemc/ams
http://www.accellera.org/downloads/standards/v-ams/VAMS-LRM-2-3-1.pdf
http://www.accellera.org/downloads/standards/v-ams/VAMS-LRM-2-3-1.pdf

Curriculum Vitae

Name Yifan Wang
Date of Birth 24. February 1981
Place of Birth Wuhan, V.R. China

Professional Experience

since 10/2013 Mixed-Signal verification engineer, Intel Mobile Commu-
nications GmbH, Munich, Germany

05/2012 - 10/2013 Verification engineer for RF-IC, Intel Mobile Communica-
tions GmbH, Duisburg, Germany

04/2008 - 05/2012 Research assistant and Ph.D. student at the Chair of
Integrated Analog Circuits, RWTH Aachen University

10/2007 - 02/2008 Student worker at the Chair of Integrated Analog Circuits,
RWTH Aachen university

04/2006 - 10/2006 Internship at Philips Medical Systems, Böblingen, Ger-
many

05/2004 - 06/2005 Student worker at Institute of Electronic Materials II,
RWTH Aachen university

Education
10/2001 - 02/2008 Studies on Electrical Engineering and Information Tech-

nology at RWTH Aachen University, Aachen, Ger-
many. Diploma thesis: “Frontendmodellierungen von HF
Funksystemen für die Full-Chip-Verifikation”

06/2001 Abitur, Duisburg

175

	Titlepage
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Objective of this work
	1.2 Structure of this work

	2 Fundamentals of Verification Techniques
	2.1 Formal verification methods
	2.1.1 Equivalence checking
	2.1.2 Model checking

	2.2 Simulation-based verification methods
	2.2.1 Simulation of digital circuits and systems
	2.2.2 Simulation of analog circuits and systems
	2.2.3 Simulation of mixed-signal systems
	2.2.4 Co-Simulation approaches
	2.2.5 Assertions
	2.2.6 Verification coverage

	2.3 Simulation-based mixed-signal verification methods
	2.3.1 Performance verification
	2.3.2 Functional verification

	2.4 Fundamentals of hierarchical verification approach for RF mixed-signal SoCs
	2.4.1 Design methodology for integrated mixed-signal circuits
	2.4.2 Levels of abstraction
	2.4.3 Hierarchical Verification

	3 Hardware Description Languages and Modeling Techniques for Mixed-Signal Verification
	3.1 Overview of available HDLs
	3.1.1 Classical HDL
	3.1.2 Modern HDL
	3.1.3 Comparison between mentioned HDLs

	3.2 Modeling techniques for mixed-signal verification
	3.2.1 Analog modeling
	3.2.2 Event-driven modeling
	3.2.3 Equivalent Baseband Model

	3.3 Issues and limits of presented modeling techniques for verification
	3.3.1 Sampling issues for event-driven models
	3.3.2 Pin compatibility issue
	3.3.3 Connectivity and synchronization issues

	4 A Verilog-AMS Based Modeling and Verification Methodology for RF Mixed-Signal SoCs
	4.1 Model implementation and functional verification flow
	4.1.1 Available methods
	4.1.2 Proposed hierarchical verification methodology

	4.2 Key concepts for hierarchical verification
	4.2.1 Verification planning
	4.2.2 Hierarchical design partitioning
	4.2.3 Hierarchical model implementation
	4.2.4 Assertion and debug concepts
	4.2.5 Automated parameter extraction and update
	4.2.6 Top-level simulation and sign off

	4.3 Summary of the proposed methodology

	5 A SystemC-Based RF Virtual Prototyping Methodology
	5.1 Requirements for RF virtual prototype implementation
	5.2 Hierarchical SystemC model frame generation flow
	5.2.1 Comparison of different approaches
	5.2.2 Hierarchical generation of pin-accurate SystemC models

	5.3 SystemC RF building blocks library
	5.3.1 Simulation performance aspects
	5.3.2 Switchable baseband models of RF blocks

	5.4 Summary of the proposed RF VP methodology

	6 Application Examples
	6.1 A fractional-N PLL based transmitter
	6.1.1 Verilog-AMS block-level model implementation
	6.1.2 Top-level simulation of the PLL
	6.1.3 Pin-accurate SystemC VP of the PLL

	6.2 A RF-DAC based multi standard transmitter
	6.2.1 Block-level of the RF-DAC based transmitter
	6.2.2 Model implementation and virtual prototyping

	6.3 A low power Bluetooth transceiver
	6.3.1 System overview
	6.3.2 System partitioning and model implementation
	6.3.3 Top-level functional verification of the low power Bluetooth transceiver

	7 Conclusions
	7.1 Outlook

	Bibliography
	Curriculum Vitae

