
Aachen
Department of Computer Science

Technical Report

Reduction Techniques for

Nondeterministic and Probabilistic

Systems

Arpit Sharma

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2015-03

RWTH Aachen · Department of Computer Science · January 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36620914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
frontpage.eps

The publications of the Department of Computer Science of RWTH Aachen Uni-

versity are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

http://aib.informatik.rwth-aachen.de/

Reduction Techniques for
Nondeterministic and Probabilistic

Systems

Von der Fakultät für Mathematik, Informatik und

Naturwissenschaften der RWTH Aachen University zur

Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Arpit Sharma, MSc

aus

Pilani, India

Berichter: Prof. Dr. Ir. Joost-Pieter Katoen

Prof. Dr. Holger Hermanns

Tag der mündlichen Prüfung: 15. January 2015

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Arpit Sharma

Lehrstuhl für Informatik 2

arpit.sharma@cs.rwth-aachen.de

Aachener Informatik Bericht AIB-2015-03

Herausgeber: Fachgruppe Informatik

RWTH Aachen University

Ahornstr. 55

52074 Aachen

GERMANY

ISSN 0935-3232

Abstract

Model checking is an automated verification method guaranteeing that a math-

ematical model of a system satisfies a formally described property. It can be

used to assess both qualitative and quantitative properties of complex software

and hardware systems. Model checking suffers from the well-known state space

explosion problem where the number of states grows exponentially in the number

of program variables, channels and parallel components. Reduction techniques

can be used to shrink the state space of system models by hiding redundant

information and removing irrelevant details. The reduced state space can then

be used for analysis provided it preserves a rich class of properties of interest.

This thesis presents reduction techniques for a wide range of nondeterministic

and probabilistic models. Our reduction techniques are based on the notions of

equivalence relations and layering.

Equivalence relations reduce the state space of system models, by aggregating

equivalent states into a single state. The reduced state space obtained under an

equivalence relation, is called a quotient system. An example equivalence relation

that is widely used to reduce the state space of nondeterministic and probabilistic

models is bisimulation. On the other hand, layering involves carrying out struc-

tural transformations for the systems that are modeled as a network of system

models, e.g., distributed systems. As a result of these structural transformations,

the new state space obtained is smaller than the original non-layered one.

The first part of this thesis focuses on developing new equivalence relations for

nondeterministic and Markovian models. For each of these relations, we define a

quotient system, investigate its relationship with bisimulation and prove that it

preserves interesting linear-time properties.

In the second part of this thesis we focus on layering based state space re-

duction for more expressive specification formalisms that support a stepwise re-

finement methodology. We develop a framework of layering for modal transition

systems and probabilistic versions thereof. This involves a layered composition

i

0. ABSTRACT

operator, formulating communication closed layer (CCL) laws and defining a par-

tial order (po) equivalence between modal transition systems. We also prove that

the reduced model obtained as a result of applying layered transformation pre-

serves reachability properties. As a result, reachability properties can be checked

on the layered, typically smaller, model.

To summarize, this thesis presents the theoretical underpinnings of a number

of novel reduction techniques for nondeterministic and probabilistic systems.

ii

Zusammenfassung

Modelchecking ist ein automatisiertes Verfahren in der Verifikation, welches sich-

erstellt, dass ein mathematisches Modell eines Systems eine geforderte, formal

definierte Eigenschaft besitzt. Es kann benutzt werden um sowohl qualitative

als auch quantitative Eigenschaften komplexer Software- und Hardwaresysteme

zu überprüfen. Beim Modelchecking stellt die Zustandsraumexplosion ein großes

Problem dar. Dabei wächst die Anzahl der Zustände exponentiell mit der An-

zahl der Programmvariablen, Kommunikationskanäle und Komponenten. Dem

kann durch verschiedene Reduktionstechniken entgegengewirkt werden. Diese

verringern den Zustandsraum, indem sie redundante Information verstecken oder

irrelevante Details aus dem Model entfernen. Solange diese Manipulationen

keinen Einfluss auf die Gültigkeit der zu überprüfenden Eigenschaften haben,

können anschließend Analysetechniken auf dem verkleinerten Modell ausgeführt

werden. Diese Arbeit beschäftigt sich mit Reduktionstechniken für ein breites

Spektrum von nichtdeterministischen und probabilistischen Modellen. Die hier

vorgestellten Techniken beruhen auf den Konzepten der Äquivalenzrelationen und

Layering (engl. für “Schichtung”).

Äquivalenzrelationen verkleinern den Zustandsraum, indem sie äquivalente

Zustände zu einem einzigen zusammenfassen. Den auf dieser Weise reduzierten

Zustandsraum nennt man Quotientenraum. Ein prominentes Beispiel einer

Äquivalenzrelation, die zur Verkleinerung von nichtdeterministischen und prob-

abilistischen Modellen benutzt wird, ist die Bisimulation. Auf der anderen Seite

führt Layering strukturelle Transformationen auf dem gegebenen Modell durch.

Das Ergebnis dieser strukturellen Transformationen ist ein kleinerer Zustand-

sraum als im Originalsystem. Dabei eignet sich Layering insbesondere für Sys-

teme, die durch ein Netzwerk von Teilmodellen beschrieben werden, zum Beispiel

verteilte Systeme.

Der erste Teil dieser Arbeit beschäftigt sich mit der Entwicklung neuer Äquiv-

alenzrelationen für nichtdeterministische und Markow’sche Modelle. Für jede

iii

0. ZUSAMMENFASSUNG

solche Relation definieren wir ein Quotientensystem, untersuchen die Beziehung

zur Bisimulationsrelation und zeigen, dass sie interessante Linearzeiteigenschaften

erhält.

Im zweiten Teil konzentrieren wir uns auf Zustandsraumreduktion

durch Layering auf ausdrucksstärkeren Modellen, die eine schrittweise Ver-

feinerungsmethodik erlauben. Wir entwickeln einen Ansatz um Layering auf

modale Transitionssysteme und deren probabilistische Erweiterung anzuwenden.

Dieser beinhaltet einen “geschichteten” Kompositionsoperator, der Regeln für

eine geschlossene Kommunikationsschicht (communication closed layer (CCL))

vorgibt und eine partielle Ordnungsäquivalenz zwischen modalen Transitionssys-

temen definiert. Außerdem zeigen wir, dass Zustandsraumverkleinerung mit Hilfe

von Layering Erreichbarkeitseigenschaften erhält. Folglich können Erreichbarkeit-

seigenschaften auf dem typischerweise kleineren Modell überprüft werden.

Insgesamt behandelt die vorliegende Arbeit die theoretischen Grundlagen für

eine Reihe von neuen Reduktionstechniken für nichtdeterministische und proba-

bilistische Systeme.

iv

Acknowledgment

I would like to express my sincere gratitude to my PhD supervisor prof. dr.

ir. Joost-Pieter Katoen for his continuous support, stimulating suggestions and

guidance throughout the duration of my doctoral study. Professor Katoen’s var-

ious proposals and reviews on my research work has always given me motivation

and confidence in continuing my doctoral study. Without his encouragement and

suggestions, this thesis might not have seen its completion.

I would like to thank the reading and defense committee: prof. dr. Holger

Hermanns, prof. dr. Bernhard Rumpe, and prof. dr. Christof Löding. The

valuable comments and feedback provided by them has significantly improved

the material of this thesis.

I would also like to thank my (former) colleagues and friends of Software

Modeling and Verification group for their support and help during this period:

Souy, Friedrich, Sri, Falak, Sabrina, Alex, Stephen, Viet, Christian, Christina,

Jonathan, Thomas, Arnd, Haidi, Erika, Xin, Hongfei, Harold, Weijie, Xiaoxiao,

Nils, Elke and Birgit. A big thanks to Ian Larson for modeling the mutual

exclusion case study and conducting the experiments.

Finally, I would like to thank my family, especially my father, my mother,

my elder brother, bhabhi and chacha for their everlasting support, unconditional

love and care.

v

0. ACKNOWLEDGMENT

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgment v

1 Introduction 1

1.1 Background . 1

1.2 Outline of the Thesis . 7

2 Preliminaries 11

2.1 Nondeterministic Models . 11

2.1.1 Kripke Structures . 11

2.1.2 Labeled Transition Systems 14

2.2 Stochastic Models . 15

2.2.1 Discrete-Time Markov Chains 15

2.2.2 Continuous-Time Markov Chains 17

2.2.3 Probabilistic Automata . 19

2.2.4 Interactive Markov Chains 22

2.3 Modal Specification Theories . 23

2.3.1 Modal Transition Systems 24

2.3.2 Abstract Probabilistic Automata 25

2.4 Summary . 27

3 A Two Step Perspective for Kripke Structure Reduction 29

3.1 Kripke Minimization Equivalence 30

3.1.1 Quotient Kripke Structure 31

3.1.2 KME vs. Bisimulation . 34

3.1.3 Property Preservation . 35

vii

CONTENTS

3.2 Synchronous Parallel Composition 36

3.3 Weak Kripke Minimization Equivalence 36

3.3.1 Quotient Kripke Structure 38

3.3.2 WKME vs. Divergence-Sensitive Stutter Bisimulation . . . 39

3.3.3 Property Preservation . 40

3.4 Related Work . 40

3.5 Conclusions . 41

4 Weighted Probabilistic Equivalence 43

4.1 Weighted Probabilistic Equivalence 45

4.1.1 Quotient DTMC . 46

4.1.2 WPE vs. Bisimulation . 49

4.1.3 Preservation of ω-Regular Properties 49

4.2 Synchronous Parallel Composition 53

4.3 Reward Properties . 54

4.4 Related Work . 57

4.5 Conclusions . 58

5 Weighted Lumpability 59

5.1 Weighted Lumpability . 60

5.1.1 Quotient CTMC . 62

5.1.2 WL vs. Bisimulation . 65

5.1.3 Preservation of DTA Specifications 65

5.1.4 Preservation of MTL Specifications 70

5.2 Case Studies . 72

5.2.1 Restaurant System . 72

5.2.2 Job-Server System . 73

5.3 Related Work . 75

5.4 Conclusions . 76

6 Layered Reduction for Modal Specification Theories 77

6.1 Satisfaction and Refinement . 79

6.2 Composition and CCL Laws . 83

6.3 Partial Order Equivalence and Property Preservation 86

6.4 Possible Extensions . 90

6.5 Related Work . 90

6.6 Conclusions . 91

viii

CONTENTS

7 Layered Reduction for Abstract Probabilistic Automata 93

7.1 Satisfaction and Refinement . 94

7.2 Composition and CCL Laws . 98

7.3 Partial Order Equivalence and Property Preservation 102

7.4 Possible Extensions . 105

7.5 Related Work . 106

7.6 Conclusion . 107

8 Interactive Markov Chains 109

8.1 Interactive Markovian Equivalence 110

8.1.1 Quotient IMC . 111

8.1.2 IME vs. Bisimulation . 113

8.2 Weak Interactive Markovian Equivalence 113

8.2.1 Quotient IMC . 114

8.2.2 WIME vs. Weak Bisimulation 116

8.3 Layering for Interactive Markov Chains - A Failed Attempt 117

8.4 Related Work . 121

8.5 Conclusions . 122

9 Conclusions and Future Work 123

A Appendix 127

A.1 Proofs of Chapter 3 . 127

A.2 Proofs of Chapter 4 . 132

A.3 Proofs of Chapter 5 . 139

A.4 Proofs of Chapter 6 . 146

A.5 Proofs of Chapter 7 . 150

A.6 Proofs of Chapter 8 . 159

References 161

Curriculum Vitae 175

ix

CONTENTS

x

List of Figures

1.1 State space reduction under an equivalence relation R 4

1.2 Layered reduction . 6

2.1 An example KS K . 13

2.2 An example DTMC D . 16

2.3 An example CTMC C . 19

2.4 PAs P (left), P ′ (middle) and P||P ′ (right) 22

2.5 An example IMC I . 24

2.6 An example APA N . 26

2.7 Relationship between nondeterministic and probabilistic models . 27

3.1 KS aggregation under Kripke minimization equivalence 29

3.2 KS K (left) and its quotient K/R under a KME (right) 32

3.3 An example KS K . 33

3.4 Union of KMEs is not necessarily a KME 33

3.5 Repeated minimization . 34

3.6 KS K (left) and its quotient K/R under a WKME (right) 38

4.1 DTMC aggregation under weighted probabilistic equivalence . . . 44

4.2 DTMC D (left) and its quotient under a WPE D/R (right) 46

4.3 An example DTMC D . 48

4.4 Union of WPEs is not necessarily a WPE 48

4.5 Repeated minimization . 48

4.6 An example DRA . 51

5.1 CTMC aggregation under weighted lumpability 60

5.2 (a) A CTMC and (b) its quotient under weighted lumpability. . . 62

5.3 An example CTMC C . 64

5.4 Union of WL relations is not necessarily a WL relation 64

xi

LIST OF FIGURES

5.5 Repeated minimization . 64

5.6 WL related cylinder sets. 70

5.7 Restaurant system . 74

5.8 Job-server system . 75

6.1 Layered reduction . 79

6.2 An MTSM (left) and an LTS T (right) such that T |=M 80

6.3 MTSsM1 andM2 (left and middle) and their sequential compo-

sition (right) . 83

6.4 Parallel compositionM1||M2 (left) and layered compositionM1 •

M2 (right) where a † d . 86

6.5 MTS without synchronized transitions 87

7.1 An APA N (left) and a PA P (right) that satisfies N 96

7.2 APAs N1 and N2 (left) and their sequential composition (right) . 98

7.3 Parallel composition N1||N2 (left) and layered composition N1•N2

(right) where a † d . 102

8.1 An IMC I (left) and its quotient under an IME R (right) 112

8.2 An IMC I (left) and its quotient under a WIME R (right) 115

8.3 IMCs I1 and I2 . 118

8.4 Sequential composition I1; I2 (left) and parallel composition I1||I2
(right) . 119

8.5 IMCs I1 and I2 . 120

8.6 Sequential and parallel composition of I1 and I2 121

A.1 Stationary state probabilities in DTMC 137

A.2 APA without synchronized transitions 156

A.3 Property preservation under po-equivalence for APAs 158

xii

List of Tables

1.1 Parallel vs. layered composition 6

5.1 State space reduction for the restaurant system 73

5.2 State space reduction for the job-server system 73

5.3 An overview of various equivalence relations 76

xiii

LIST OF TABLES

xiv

Chapter 1

Introduction

1.1 Background

Formal verification is the process of checking whether a design satisfies some

requirements (properties). Model checking is the most popular method for au-

tomatic formal verification of safety critical software and hardware systems [9].

A model checker is a tool that allows formulating the model of the system (that

needs to be verified) and the property (that needs to be checked against the

model) using some precise mathematical language. Once the system and the

property have been formally specified, it uses a model checking algorithm which

carries out an exhaustive state space exploration to check whether the mathe-

matical model satisfies the given property. In case the property is violated, a

counterexample is generated for debugging the system. Model checking can be

used to assess both qualitative and quantitative properties of complex systems.

In the qualitative setting, the system behavior is captured using Kripke struc-

tures (KSs), i.e., directed graphs where nodes represent labeled states of the

system, and edges represent transitions. A property can be specified using tem-

poral logics or by an automaton. Some example temporal logics that can be

used to specify properties on KSs are linear temporal logic [131] (LTL), compu-

tation tree logic [35] (CTL) and CTL*. Similarly, deterministic Rabin automata

(DRA) or Büchi automata [150] can be used to specify ω-regular properties. Tools

such as the Simple Promela Interpreter (SPIN) [78], New Symbolic Model Ver-

ifier (NuSMV) [34], mCRL2 [69] and Construction and Analysis of Distributed

Processes (CADP) [59] have been developed and successfully applied to the qual-

itative analysis of a diverse range of systems.

In the probabilistic context, Markovian models are typically used to capture

1

1. INTRODUCTION

the behavior of systems that are subject to uncertainties. A discrete-time Markov

chain (DTMC) is a Kripke structure in which each transition is equipped with a

discrete probability describing the likelihood of moving from one state to another

in a single move. In addition, in a continuous-time Markov chain (CTMC) state

residence times are governed by negative exponential distributions. A probabilis-

tic automaton (PA) can be used to capture the discrete-time probabilistic and

nondeterministic behavior of systems. PAs are widely used for modeling ran-

domized distributed algorithms and communication protocols [139]. Similarly, an

interactive Markov chain (IMC) comprises both nondeterministic choices and ex-

ponentially distributed delays [74]. IMCs are compositional and have been used as

semantic model for amongst others dynamic fault trees [23], architectural descrip-

tion languages such as AADL (Architectural Analysis and Design Language) [25],

and generalised stochastic Petri nets. They are also used for stochastic extension

of Statemate [21] and for hardware design [38, 39].

Quantitative properties can be specified on these models using probabilistic

temporal logics or Büchi automata. In the discrete-time setting, LTL, probabilis-

tic CTL (PCTL) [73], PCTL* and DRA can be used as property specification

formalisms. For CTMCs, metric temporal logic (MTL) [95], deterministic timed

automata (DTA) [1], continuous stochastic logic (CSL) [10] and CSLTA [50] are

example formalisms that can be used to specify real-time objectives. An example

linear real-time objective that can be specified using DTA is: what is the probabil-

ity to reach a given target state within the deadline, while avoiding “forbidden”

states and not staying too long in any of the “dangerous” states on the way.

Model checking tools such as Probabilistic Symbolic Model Checker (PRISM)

[98], Markov Reward Model Checker (MRMC) [89] and PEPA Workbench [63]

have been successfully applied for the modeling and analysis of probabilistic sys-

tems. Tools such as CADP [59] and the Interactive Markov Chain Analyzer

(IMCA) [71] have been developed and used for the quantitative analysis of IMCs.

Besides KSs and its probabilistic variants, more expressive specification for-

malisms that support stepwise refinement methodology and compositionality have

been proposed in the literature. These formalisms can be used for the stepwise

design and analysis of complex systems. In this setting, a high level model of the

system where the implementation details are hidden is constructed and used for

the verification of interesting high level properties. More details can be added to

the model with each refinement step and a final implementation can be obtained

by applying a series of refinement steps.

For the qualitative case, modal transition systems (MTSs) [102, 106] extend

2

1.1 Background

labeled transition systems [9, 113] (LTSs1) by providing support for partial spec-

ifications. MTSs are LTSs with two kinds of transitions, termed may and must

transitions, satisfying the consistency condition that every must transition is also

a may transition. An MTS can be refined by preserving at least all must transi-

tions (and maybe adding some) while eliminating some may transitions. Model

checking MTSs involves checking whether all the implementations satisfy a given

temporal logic property or where there does exist an implementation that satis-

fies the property. MTSs have been successfully applied in program analysis [79,

138], model checking [28, 105], equation solving [107], interface theories [134, 153],

component-based software development [133] and software product lines [70, 103].

In the probabilistic context, abstract probabilistic automata (APAs) [44, 47]

have been recently defined as a complete specification and abstraction theory for

PAs. The theory of APAs is equipped with parallel and conjunction operators,

and allows comparing two APAs using a refinement relation. A satisfaction rela-

tion is used to check whether a PA is an implementation of a given APA. APA

specifications can be used for the stepwise design and analysis of randomized

distributed systems.

Model checkers both in classical and probabilistic setting, suffer from the state

space explosion problem [9]: model checkers are often unable to explore completely

any non-trivial logically bounded state space making it hard to provide any de-

gree of assurance for reliability. This is primarily due to the large number of

components running in parallel and data variables that are used while developing

the model in a high level formal specification language. To combat this problem,

various reduction techniques have been investigated. Reduction techniques in-

volve collapsing sets of concrete states to abstract states and removing irrelevant

details from the system model. The smaller model obtained after reduction can

be used for analysis provided it still preserves the behavior that needs to be ver-

ified. Some example reduction techniques that can be used to reduce the state

space of nondeterministic and probabilistic models are symmetry reduction [52,

99], bisimulation minimization [9, 10, 15], partial-order reduction [8, 9, 62, 128],

predicate abstraction [67, 156] and three-valued abstraction [53, 92]. This the-

sis presents reduction techniques for nondeterministic and probabilistic models

based on the notions of equivalence relations and layering.

Equivalence relations. Equivalence relations are used to compare the be-

1Note that LTSs are directed graphs where transitions are labeled with action names. KSs

and LTSs are equally expressive and one can find several embeddings of one of these models

into the other [42, 43, 136].

3

1. INTRODUCTION

M M′

Figure 1.1: State space reduction under an equivalence relation R

havior of two models and reduce the state space of a system model by combining

equivalent states into a single state. The reduced state space obtained under an

equivalence relation, called a quotient system, can then be used for model check-

ing provided it preserves a rich class of properties of interest. The main principle

is captured in Fig. 1.1 where quotient M′ is obtained from model M under an

equivalence relation R. For nondeterministic and probabilistic models, one usu-

ally distinguishes between linear-time and branching-time equivalence relations

[9, 10, 16, 64, 157]. Trace equivalence is one of the most widely used equivalence

relations to compare the linear-time behavior of models. For KSs, two states are

trace equivalent if the possible sequences of words starting from these states are

the same [76, 135, 148]. Additionally, for Markov chains, the possible sequences

of words need to have the same probability [16, 157]. Several extensions of trace

equivalences have been proposed for KSs and Markov chains, e.g., testing, failure

and readiness semantics [15, 16, 157]. Similarly, in the weak setting (where stutter

steps are allowed), stutter trace equivalence has been proposed where a pair of

sequences is considered to be equivalent if they differ in at most the number of

times a set of propositions may adjacently repeat.

In the branching-time setting, bisimulation relations [9, 10] are one of the

most important reduction techniques based on equivalence relations that can be

used to substantially reduce the state-space of models to be verified. Bisimulation

minimization preserves linear-time (LT) and branching-time (BT) properties [9,

10]. The condition to exhibit identical stepwise behavior is slightly relaxed in case

of simulation relations [9, 10]. Stuttering variants of bisimulation and simulation

pre-orders have also been defined for KSs and Markov models [9, 10]. Several

papers report data showing that bisimulation minimization and use of simulation

relations can substantially reduce the state-space of models to be verified [5, 55,

91]. Unfortunately, bisimulation is too restrictive as it requires equivalent states

to simulate their mutual stepwise behavior, and it is often desirable to obtain a

quotient system smaller than bisimulation such that properties of interest are still

4

1.1 Background

preserved. This is particularly important if the properties to be verified belong

to the class of linear-time properties, e.g., safety properties, liveness properties

and in general ω-regular properties. These properties can be expressed using

LTL, Property Specification Language (PSL) [81], DRA, Büchi automata and

DTA/MTL (for linear real-time objectives). An example class of systems where

bisimulation usually fails to provide any state space reduction is incremental

service systems [17] (Section 5.2).

This thesis focuses on an equivalence relation that allows for a more aggressive

state space reduction than bisimulation. Roughly speaking, two states s, s′ are

related under this new equivalence if each pair of direct predecessors of C s.t.

s, s′ ∈ C, moves to the same equivalence class in two steps via C. For Markov

chains, the weighted probability (rate) of doing so should coincide. Note that we

use a two-step perspective for combining multiple states into a single state. This

merging strategy is different from that of bisimulation which requires two states

s, s′ to exhibit identical stepwise behavior. This new equivalence relation can be

seen as a state space reduction technique induced by trace/testing equivalence

[16] (for KSs and Markov chains).

Layering. Layering is useful for the state space reduction of models cap-

turing the behavior of distributed systems [82]. Model construction in these sys-

tems involves composing several components in parallel, where each component

usually has multiple sub-components that are executed in a sequential manner.

Components cooperate through their synchronization over common actions and

through their respective action dependencies. Action dependencies between sub-

components can be either explicitly stated or derived from the operations per-

formed on data variables that are updated during an action execution (in case

of systems with data variables). Some example systems that have this structure

are distributed algorithms such as the randomized mutual exclusion algorithm by

Kushilevitz and Rabin [96], Fischer’s real-time mutual exclusion protocol [85], the

two phase commit protocol [20], and the distributed minimum weight spanning

tree algorithm [58].

The main principle of layering based reduction is illustrated in Fig. 1.2. Here

two componentsM and N are composed in parallel (left), where each component

consists of n sub-components which are executed in a sequential manner (denoted

by ;). The system obtained after performing layered transformation is shown in

Fig. 1.2 (right). All the sub-components ofM and N are assumed to be acyclic,

and can be repeated by allowing top-level recursion in M and N (as indicated

by *). In other words, every component (M and N) can have multiple rounds

5

1. INTRODUCTION















M1

;

M2

;
...

;

Mn















∗

‖















N1

;

N2

;
...

;

Nn















∗

⇒















M1

•

M2

•
...

•

Mn















∗

‖















N1

•

N2

•
...

•

Nn















∗

⇒















M1 ‖ N1

•

M2 ‖ N2

•
...

•

Mn ‖ Nn















∗

⇒















M1 ‖ N1

;

M2 ‖ N2

;
...

;

Mn ‖ Nn















∗

Figure 1.2: Layered reduction

Parallel Layered

Build time (s) 898.70 90.39

States 198063 71619

Transitions 351432 128920

Table 1.1: Parallel vs. layered composition

of execution, where a new round is started only when the last sub-component of

the previous round, i.e.,Mn has been completed. This is important as deadlocks

are usually considered to be undesirable for distributed algorithms.

Roughly speaking, layering exploits the independence between sub-

components to transform the system under consideration from a distributed rep-

resentation to a layered representation. These transformations are syntactic: the

idea is to apply a series of transformations to model descriptions, yielding a lay-

ered representation (cf. Fig. 1.2, right). For the intermediate transformations, a

layered composition operator ”•” is used to denote the layered representation of

the system. Informally, M • N allows synchronization on common actions and

interleaving on disjoint actions, except when some action a of N depends on one

or more actions ofM; in this case, a can be executed only after all the actions

of M on which it depends have been executed. This new composition operator

allows formulating Communication Closed Layer (CCL) laws [82], which are re-

quired to carry out the structural transformations and establish an equivalence

between the two systems. Since the sub-components within a component are exe-

cuted sequentially, a partial order relation is used to relate the • and ; (sequential

composition) operator. The amount of state space reduction that can be achieved

using layering is indicated in Table 1.1. Here the results of our implementation1

for the layered analysis of a randomized mutual exclusion algorithm [149] have

1This case study was modeled using the PRISM model checker [98].

6

1.2 Outline of the Thesis

been presented for 3 processes and 5 rounds. These results clearly indicate that

layered reasoning can significantly reduce the state space of system models cap-

turing the behavior of distributed systems. We propose a framework of layered

reduction for cyclic sequential composition of acyclic MTSs and APAs.

1.2 Outline of the Thesis

• Chapter 2 recalls the basic concepts of nondeterministic and probabilistic

models that form the basis of this thesis.

• Chapter 3 proposes Kripke minimization equivalence (KME) and weak

Kripke minimization equivalence (WKME) for KSs. We show that KMEs

and WKMEs can be used for repeated minimization of a KS and union of

KMEs (resp. WKMEs) is not necessarily a KME (resp. WKME). We define

the quotient system under these relations and investigate the relationship

between the new relations and strong bisimulation and divergence-sensitive

stutter bisimulation, respectively. Next, we prove that linear-time (LT)

properties and stutter-insensitive LT properties are preserved under KME

and WKME quotienting, respectively. We also prove that KME is a con-

gruence w.r.t. synchronous parallel composition. The results presented in

this chapter are based on the following work:

Arpit Sharma. A Two Step Perspective for Kripke Structure Reduction. In

39th International Conference on Current Trends in Theory and Practice

of Computer Science (SOFSEM), Student Research Forum. pages 29–41.

ISBN 978-80-87136-15-7, 2013.

• Chapter 4 proposes weighted probabilistic equivalence (WPE) for DTMCs.

We show that WPEs can be used for repeated minimization of a DTMC and

union of WPEs is not necessarily a WPE. We define the quotient system

under WPE and investigate its relationship with probabilistic bisimulation

for DTMCs. Next, we prove that the probability of satisfying ω-regular

properties is preserved under WPE quotienting. We also show that WPE is

a congruence w.r.t. synchronous parallel composition for DTMCs. Finally,

we extend these preservation results to DTMCs with rewards. The results

presented in this chapter are based on the following work:

Arpit Sharma. Weighted Probabilistic Equivalence Preserves ω-Regular

Properties. In 16th Measurement, Modeling, and Evaluation of Computing

7

1. INTRODUCTION

Systems and Dependability and Fault Tolerance Conference (MMB/DFT).

pages 121–135. Volume 7201 of LNCS. Springer Verlag, 2012.

• Chapter 5 proposes weighted lumpability (WL) for CTMCs. We show

that WL relations can be used for repeated minimization of a CTMC and

union of WL relations is not necessarily a WL. We define the quotient sys-

tem under WL and investigate its relationship with stochastic bisimulation

for CTMCs. Next, we prove that the probability of satisfying a determin-

istic timed automaton (DTA) is preserved under WL quotienting. Finally,

we show that the probability of satisfying a metric temporal logic (MTL)

formula is also preserved under WL quotienting. The results presented in

this chapter are based on the following work:

Arpit Sharma, and Joost-Pieter Katoen. Weighted Lumpability on Markov

Chains. In 8th Ershov Informatics Conference (PSI). pages 322–339. Vol-

ume 7162 of LNCS. Springer Verlag, 2012.

• Chapter 6 proposes a state space reduction technique for a network of

MTSs based on layered composition. We formulate communication closed

layer (CCL) laws and define a partial order equivalence (po) between MTSs.

Next, we show that layered and sequential composition are po-equivalent

and satisfy the same existential (∃) and universal (∀) reachability properties.

The results presented in this chapter are based on the following work:

Arpit Sharma, and Joost-Pieter Katoen. Layered Reduction for Modal Spec-

ification Theories. In 10th International Symposium on Formal Aspects of

Component Software (FACS). Volume 8348 of LNCS. Springer, 2013.

• Chapter 7 proposes a state space reduction technique for a network of

APAs based on layered composition. We formulate communication closed

layer (CCL) laws and define a partial order (po) equivalence between APAs.

Next, we show that layered and sequential composition are po-equivalent

and have the same extremal probabilities to reach the set of final states.

The results presented in this chapter are based on the following work:

Arpit Sharma, and Joost-Pieter Katoen. Layered Reduction for Abstract

Probabilistic Automata. In 14th International Conference on Application of

Concurrency to System Design (ACSD). IEEE, 2014.

• Chapter 8 proposes interactive Markovian equivalence (IME) and weak in-

teractive Markovian equivalence (WIME) for closed IMCs. Next, we show

8

1.2 Outline of the Thesis

that IMEs and WIMEs can be used for repeated minimization of a closed

IMC and union of IMEs (resp. WIMEs) is not necessarily an IME (resp.

WIME). We define the quotient system under these relations and investi-

gate the relationship between the new relations and bisimulation and weak

bisimulation for closed IMCs, respectively. We also show that the theory

of layering cannot be extended to IMCs, which can be used for analysis of

distributed algorithms with random times. More specifically, we show that

it is not possible to relate the sequential and layered composition operator

by defining a po equivalence or a simulation preorder, such that linear real-

time properties are preserved. The results presented in this chapter are new

and not published.

• Chapter 9 concludes the thesis and presents some directions for future

research.

All the proofs are contained in the Appendix A.

9

1. INTRODUCTION

10

Chapter 2

Preliminaries

2.1 Nondeterministic Models

Kripke structures (KSs) and labeled transition systems (LTSs) are convenient

formalisms for modeling and analysis of system behavior. KSs are state-based

models (states are labeled with atomic propositions) and LTSs are event-based

models (transitions are labeled with action names). KSs are commonly used for

model checking temporal logic formulas (e.g., LTL [9, 131] and CTL [9, 35]) that

specify the desired qualitative behavior of systems. On the other hand, LTSs

are often used as a semantic model for process algebraic languages, e.g., commu-

nicating sequential processes (CSP) [77] and calculus of communicating systems

(CCS) [110]. Both these models are equally expressive and several embeddings

have been proposed in the literature which show that KSs and LTSs are inter-

changeable w.r.t. equivalences and temporal logics [42, 43, 136]. In this section

we present the basic concepts of KSs and LTSs.

2.1.1 Kripke Structures

Definition 2.1 (KS) A Kripke structure (KS) is a tuple K = (S,→, AP, L, s0)

where:

• S is a non-empty finite set of states,

• →⊆ S × S, is a transition relation s.t. ∀s ∈ S∃s′ ∈ S with (s, s′) ∈→,

• AP is a finite set of atomic propositions,

• L : S → 2AP is a labeling function,

11

2. PRELIMINARIES

• s0 ∈ S is the initial state.

For simplicity, we write s−→ s′ instead of (s, s′) ∈ →. Let s ∈ S and C ⊆ S, then

Post(s, C) = {s′ ∈ C | s−→ s′}. Let Post(s) = {s′ ∈ S | s−→ s′}. For C ⊆ S, let

Pred(C) = {s′ ∈ S | ∃s ∈ C.s′−→ s}.

Definition 2.2 (KS paths) Let K = (S,→, AP, L, s0) be a KS. An infinite

path π in K is an infinite state sequence, i.e., s0−→ s1−→ s2 . . . ∈ Sω with si ∈ S.

Note that, since we do not allow KS K to have terminal states, i.e., which do not

have any outgoing transitions, we only consider infinite paths (starting from the

initial state). Let PathsK(s0) denote the set of all infinite paths in K that start

in s0. For infinite path π and any i ∈ N, let π[i] = si, the (i + 1)-st state of π.

Let π[i...] denote the suffix of path π starting in the (i+ 1)-st state.

Definition 2.3 (KS traces) Let K = (S,→, AP, L, s0) be a KS. The trace of

an infinite path π = s0−→ s1−→ s2 . . . ∈ Sω is trace(π) = L(s0)L(s1)L(s2) . . . ∈

(2AP)ω.

Intuitively a trace of an infinite path is the infinite sequence of sets of atomic

propositions that are valid in the states of the path, i.e., a trace is an infinite

word over the alphabet 2AP . Let TracesK(s0) denote the set of all infinite traces

in K that start in s0.

Example 2.4 Consider the KS K shown in Fig. 2.1, where we have S =

{s0, s1, s2, s3, s4, s5, s6, s7}, AP = {a, b} and s0 is the initial state. An exam-

ple infinite path π of K is s0−→ s1−→ s4−→ s6 Here we have π[3] = s6. The

trace for path π is given by trace(π) = {a}∅{a}{b}

Definition 2.5 (Trace-equivalence) Let K = (S,→, AP, L, s0) be a KS and

πi ∈ PathsK(s0), i = 1, 2. π1 and π2 are trace-equivalent, denoted by π1△π2, if

L(π1[i]) = L(π2[i]) for all i ≥ 0.

Definition 2.6 (Stutter step) Transition s−→ s′ in KS K = (S,→, AP, L, s0)

is a stutter step if L(s) = L(s′).

The notion of stuttering is lifted to paths as follows.

Definition 2.7 (Stutter-equivalent paths) Let K = (S,→, AP, L, s0) be a

KS and πi ∈ PathsK(s0), i = 1, 2. π1 and π2 are stutter-equivalent, denoted

12

2.1 Nondeterministic Models

s0 {a}

s1 {} s2 {b}

s3 {a} s4 {a} s5 {a}

s7 {} s6 {b}

Figure 2.1: An example KS K

by π1 , π2, if there exists an infinite sequence A0A1A2 . . . with Ai ⊆ AP and

natural numbers n0, n1, n2, . . . , m0, m1, m2, . . . ≥ 1 s.t.

trace(π1) = A0 . . . A0
︸ ︷︷ ︸
n0−times

A1 . . . A1
︸ ︷︷ ︸
n1−times

A2 . . . A2
︸ ︷︷ ︸
n2−times

. . .

trace(π2) = A0 . . . A0
︸ ︷︷ ︸
m0−times

A1 . . . A1
︸ ︷︷ ︸
m1−times

A2 . . . A2
︸ ︷︷ ︸
m2−times

. . .

where A0 . . . A0
︸ ︷︷ ︸
n0−times

denotes for all i = 0 . . . n0 − 1, L(π1[i]) = A0.

Note that A0 . . . A0
︸ ︷︷ ︸
n0−times

only refers to the first block, for other blocks it is defined in

an analogous manner. Accordingly, stutter-equivalence for any two infinite traces

ρ1, ρ2 ∈ (2AP)ω (denoted by ρ1 , ρ2) can be defined.

Assumptions. Throughout this thesis we assume that every state of KS K

has at least one predecessor, i.e., Pred(s) = {s′ ∈ S | s′−→ s} 6= ∅ for any s ∈ S.

This is not a restriction, as any KS (S,→, AP, L, s0) can be transformed into an

equivalent KS (S ′,→
′

, AP ′, L′, s′0) which fulfills this condition. This is done by

adding a new state ŝ to S equipped with a self-loop and which has a transition

to each state in S without predecessors. To distinguish this state from the others

we set L′(ŝ) = ⊥ with ⊥ 6∈ AP . (All other labels, states and transitions remain

unaffected.) Let s′0 = s0. It follows that all states in S ′ = S ∪ {ŝ} have at

least one predecessor. Moreover, the reachable state space of both KSs coincides.

We also assume that the initial state s0 of a KS is distinguished from all other

states by a unique label, say $. This assumption implies that for any equivalence

13

2. PRELIMINARIES

that groups equally labeled states, {s0} constitutes a separate equivalence class.

Both assumptions do not affect the basic properties of the KS such as linear

or branching-time properties. For convenience, we neither show the state ŝ nor

the label $ in figures. This assumption is required as Chapter 3 proposes an

equivalence relation for KSs that checks reachability from predecessors of every

equivalence class to its successor equivalence classes.

2.1.2 Labeled Transition Systems

Definition 2.8 (LTS) A labeled transition system (LTS) is a tuple T =

(S,Act, s0, Sf , V) where:

• S and s0 are defined as before,

• Act is a finite set of actions,

• Sf ⊂ S is the set of final states where s0 /∈ Sf ,

• V : S \ Sf × Act× S → B2 is a two-valued transition function.

Here B2 = {⊥,⊤}, with ⊥ < ⊤. V (s, a, s′) identifies the a-labeled transition of

the automaton in state s: ⊤ indicates its presence and ⊥ indicates its absence.

We write s a−→ s′ if V (s, a, s′) = ⊤. Labeled transition systems are basically

directed graphs where nodes represent states, and edges model transitions, i.e.,

state changes. Transitions specify how the system can evolve from one state

to another. In case a state has more than one outgoing transition, the next

transition is chosen in a purely non-deterministic fashion. A possible behaviour

in an LTS is obtained from the resolution of non-deterministic choices, described

in terms of paths. A path π of LTS T is a (possibly infinite) sequence of the form

π = s0a1s1a2s2a3 . . . where ∀n : sn
an+1−−−→ sn+1. Let last(π) denote the last state

of π (if π is finite). Let |π| be the length (number of actions) of a finite path π.

For infinite path π and any i ∈ N, let π[i] = si, the (i+1)-st state of π. For finite

path π of length n, π[i] is only defined for i ≤ n and defined as for infinite paths.

Let Pathsfin(T) be the set of all finite paths in LTS T , and Pathsinf(T) the set

of all infinite paths of T that start in state s0. Let Paths
Sf

fin(T) be the set of all

finite paths of T that start in state s0 and end in some state s ∈ Sf .

Definition 2.9 (Deterministic LTS) LTS T = (S,Act, s0, Sf , V) is determin-

istic, if for every state s and action a we have: |{s′ ∈ S | V (s, a, s′) 6= ⊥}|≤ 1.

In simple words, an LTS T is deterministic if none of its states has multiple

outgoing transitions labeled with the same action.

14

2.2 Stochastic Models

2.2 Stochastic Models

Markov chains [9, 93] have a wide applicability ranging from classical performance

and dependability evaluation to systems biology. A discrete-time Markov chain

(DTMC) is a Kripke structure in which each transition is equipped with a discrete

probability describing the likelihood of moving from one state to another in a

single move. In addition, in a continuous-time Markov chain (CTMC) state

residence times are governed by negative exponential distributions. We start

this section by recalling the basic concepts of DTMCs and CTMCs. Models

that extend Markov chains with support for nondeterminism will be discussed in

Section 2.2.3 and Section 2.2.4.

2.2.1 Discrete-Time Markov Chains

Definition 2.10 (DTMC) A (labeled) discrete-time Markov chain (DTMC) is

a tuple D = (S, P, AP, L, s0) where:

• S, AP , L and s0 are defined as before,

• P : S × S → [0, 1] is a probability matrix such that
∑

s′∈S P (s, s′) = 1 for

all s ∈ S.

Intuitively, P (s, s′) specifies the probability to move from state s to s′ in one step,

i.e., by a single transition. State s of DTMC D is called absorbing if and only if

P (s, s) = 1, and P (s, s′) = 0 for all s′ ∈ S s.t. s 6= s′.

Definition 2.11 (DTMC paths) Let D = (S, P, AP, L, s0) be a DTMC. An

infinite path π in D is an infinite state sequence si ∈ S, i.e., s0−→ s1−→ s2 . . . ∈

Sω such that P (si, si+1) > 0, for all i ≥ 0. A finite path π is a finite prefix of an

infinite path.

For path π ∈ D, inf(π) denotes the set of states that are visited infinitely often in

π. For finite DTMCs, inf(π) is nonempty for all infinite paths π. Let PathsD =

PathsDfin∪Paths
D
ω denote the set of all paths in D, where PathsDfin =

⋃

n∈N Paths
D
n

is the set of all finite paths in D and PathsDω is the set of all infinite paths in D.

For infinite path π and any i ∈ N, let π[i] = si, the (i + 1)-st state of π. For

finite path π, which is a finite prefix of length n of an infinite path, π[i] is only

defined for i ≤ n and defined as in the case of infinite paths. Let Paths(s0)

denote the set of all paths that start in s0. Let π[i...] denote the suffix of path

π starting in the (i + 1)-st state. Let Pred(s) = {s′ ∈ S | P (s′, s) > 0} and

Pred(C) =
⋃

s∈C Pred(s) for C ⊆ S.

15

2. PRELIMINARIES

s0

s1 s2 s3

s4 s5 s6 s7

1
8

1
4

5
8

1
4

3
4

1
8

6
8 1

8

3
7

1
7

3
7

1
1

1 1

Figure 2.2: An example DTMC D

Example 2.12 Consider the DTMC D shown in Fig. 2.2, where we have S =

{s0, s1, s2, s3, s4, s5, s6, s7}, AP = {a, b, c}, L(s0) = {c}, L(s7) = {}, L(s1) =

L(s2) = L(s3) = {b}, L(s4) = L(s5) = L(s6) = {a} and s0 is the initial state.

The transition probabilities are attached to the transitions. An example finite path

π of D is s0−→ s1−→ s5−→ s7. Here π[2] = s5.

Definition 2.13 (Cylinder set) Let s0, . . . , sk ∈ S with P (si, si+1) > 0 for 0 ≤

i < k. Cyl(s0, . . . , sk) denote the cylinder set consisting of all paths π ∈ Paths(s0)

such that π[i] = si for i ≤ k.

Intuitively the cylinder set spanned by the finite path π consists of all infinite

paths that start with π. The definition of a Borel space on paths of a DTMC

follows [3, 54]. Let F(Paths(s0)) be the smallest σ-algebra on Paths(s0) which con-

tains all sets Cyl(s0, . . . , sk) s.t. s0, . . . , sk is a state sequence with P (si, si+1) > 0,

(0 ≤ i < k).

Definition 2.14 The probability measure Prs0 on F(Path(s0)) is the unique

measure defined by induction on k in the following way. Let Prs0(Cyl(s0)) = 1

and for k > 0:

Pr
s0
(Cyl(s0, . . . , sk, s

′)) = Pr
s0
(Cyl(s0, . . . , sk)) · P (sk, s

′)

For T ⊆ S and s ∈ S, let P (s, T) =
∑

s′∈T P (s, s′) be the cumulative probability

to directly move from state s to some state in T ⊆ S.

Definition 2.15 (SCC) A subset T of S is called strongly connected if for each

pair (s, t) of states in T there exists a path fragment s0−→ s1 . . . sn such that si ∈ T

for 0 ≤ i ≤ n, s0 = s and sn = t. A strongly connected component (SCC) of

D denotes a strongly connected set of states such that no proper superset of T is

strongly connected.

16

2.2 Stochastic Models

Definition 2.16 (BSCC) A bottom strongly connected component (BSCC, for

short) of D is an SCC T from which no state outside T is reachable, i.e., for each

state t ∈ T it holds that P (t, T) = 1.

Let BSCC(D) denote the set of all BSCCs of D.

Theorem 2.17 [9, pp. 775-776] For each state s of a finite DTMC D:

Prs{π ∈ Paths(s)|inf(π) ∈ BSCC(D)} = 1.

In simple words this theorem states that almost surely any finite DTMC eventu-

ally reaches a BSCC and visits all states of the BSCC infinitely often.

Example 2.18 Consider the DTMC D in Fig. 2.2, the only BSCC in D is {s7}.

According to the previous theorem, any infinite path will almost surely lead to this

BSCC.

Assumptions. Like for KSs, we assume that every state of DTMC D has

at least one predecessor and s0 is distinguished from all other states by a unique

label, say $. Both assumptions do not affect the basic properties of the DTMC

such as transient or steady-state distributions. This assumption is required as

Chapter 4 proposes an equivalence relation for DTMCs that checks probabilistic

reachability from predecessors of every equivalence class to its successor equiva-

lence classes.

2.2.2 Continuous-Time Markov Chains

Definition 2.19 (CTMC) A (labeled) continuous-time Markov chain (CTMC)

is a tuple C = (S,R,AP, L, s0) where:

• S, AP , L and s0 are defined as before,

• R : S × S → R≥0 is a rate function,

The exit rate E(s) for state s ∈ S is defined by E(s) =
∑

s′∈S R(s, s′). We

assume that ∀s ∈ S : E(s) 6= 0. The semantics of a CTMC is defined as follows.

The probability of moving from s to s′ in a single step is defined by P (s, s′) =
R(s,s′)
E(s)

. The probability to exit state s within t time units is given by 1− e−E(s)·t.

The probability to move from state s to s′ within t time units equals P (s, s′) ·

(1− e−E(s)·t).

17

2. PRELIMINARIES

Definition 2.20 (CTMC timed paths) Let C = (S,R,AP, L, s0) be a CTMC.

An infinite path π in C is an alternating sequence of states si ∈ S and time

instants ti ∈ R>0, i.e., s0
t0−−→ s1

t1−−→ s2 · · · sn−1
tn−1−−−→ sn · · · such that R(si, si+1) >

0 for all i ∈ N. A finite path π is a finite prefix of an infinite path.

Let PathsC = PathsCfin ∪ PathsCω denote the set of all paths in C, where

PathsCfin =
⋃

n∈N Paths
C
n is the set of all finite paths in C and PathsCω is the set of all

infinite paths in C. For infinite path π = s0
t0−−→ s1

t1−−→ s2 · · · sn−1
tn−1−−−→ sn · · · and

any i ∈ N, let π[i] = si, the (i+1)st state of π. Let δ(π, i) = ti be the time spent in

state si. For any t ∈ R≥0 and i, the smallest index s.t. t ≤
∑i

j=0 tj , let π@t = π[i],

the state occupied at time t. For finite path s0
t0−−→ s1

t1−−→ s2 · · · sn−1
tn−1−−−→ sn,

which is a finite prefix of an infinite path, π[i], δ(π, i) are only defined for i ≤ n,

and for i < n defined as in the case of infinite paths. For all t >
∑n−1

j=0 tj,

let π@t = sn; otherwise π@t is defined as in the case of infinite paths. Let

δ(π, n) = ∞. Let α : S → [0, 1], be the intial probability distribution s.t.
∑

s∈S α(s) = 1. Since C has a single initial state s0, α(s0) = 1, and ∀s ∈ S s.t.

s 6= s0, α(s) = 0. Let Paths(s0) denote the set of all paths that start in s0.

Example 2.21 Consider the CTMC C shown in Fig. 2.3, where S =

{s0, s1, s2, s3, s4, s5, s6, s7}, AP = {a, b} and s0 is the initial state. The tran-

sition rates are associated with the transitions. An example timed path π of C is

s0
1.3−−→ s1

1.5−−→ s3
2−→ s6. Here we have π[3] = s6 and π@3 = s3.

Definition 2.22 (Cylinder set) Let s0, . . . , sk ∈ S with P (si, si+1) > 0 for

0 ≤ i < k and I0, . . . , Ik−1 be nonempty intervals in R≥0. Cyl(s0, I0, . . . , Ik−1, sk)

denotes the cylinder set consisting of all paths π ∈ Paths(s0) s.t. π[i] = si for

i ≤ k, and δ(π, i) ∈ Ii for (i < k).

The definition of a Borel space on paths of a CTMC follows [11]. Let

F(Paths(s0)) be the smallest σ-algebra on Paths(s0) which contains all sets

Cyl(s0, I0, . . . , Ik−1sk) s.t. s0, . . . , sk is a state sequence with P (si, si+1) > 0

(0 ≤ i < k) and I0, . . . , Ik−1 ranges over all sequences of nonempty intervals in

R≥0.

Definition 2.23 The probability measure Prα on F(Path(s0)) is the unique mea-

sure defined by induction on k in the following way. Let Prα(Cyl(s0)) = α(s0)

and for k > 0:

Pr
α
(Cyl(s0, I0, . . . , sk, I

′, s′)) = Pr
α
(Cyl(s0, I0, . . . , sk)) · P (sk, s

′, I ′)

where P (sk, s
′, I ′) = P (sk, s

′) ·
(
eE(sk)·a − eE(sk)·b

)
with a = inf I ′ and b = sup I ′.

18

2.2 Stochastic Models

s0 ∅

s1 {b} s2 {a}

s3 ∅ s4 ∅ s5 ∅

s6 {a} s7 {b}

1
4

1 3
3

1

22
2

7

6

4

Figure 2.3: An example CTMC C

Assumptions. Like for KSs and DTMCs, we assume that every state of

CTMC C has at least one predecessor and s0 is distinguished from all other states

by a unique label, say $. Both assumptions do not affect the basic properties of

the CTMC such as transient or steady-state distributions. This assumption is

required as Chapter 5 proposes an equivalence relation for CTMCs that checks

weighted rates from predecessors of every equivalence class to its successor equiv-

alence classes.

2.2.3 Probabilistic Automata

A probabilistic automaton (PA) resembles a labeled transition system (LTS) [113],

but its transitions target probability distributions over states instead of single

states. PAs have been developed by Segala [139, 141] and are compositional–a

parallel composition operator allows one to construct a complex PA from several

component PAs running in parallel, thus allowing to model complex systems

in a modular way. PAs are widely used for the modeling and verification of

randomized distributed algorithms and networking protocols. They have been

used as semantic model for amongst others probabilistic process algebras [127]

and the PIOA language [32]. Tools such as PRISM [98] have been successfully

applied to model check quantitative properties on PAs.

Let S be a countable set. The function µ : S → [0, 1] is a distribution

on S if
∑

s∈S µ(s) = 1. Let Dist(S) denote the set of distributions on S and

supp(µ) = {s ∈ S|µ(s) > 0} be the support of µ.

Definition 2.24 (PA) A probabilistic automaton (PA) is a tuple

(S, s0, Sf , Act, V), where:

19

2. PRELIMINARIES

• S, s0, Sf and Act are defined as before,

• V : S \ Sf × Act×Dist(S)→ B2 is a two-valued transition function.

Here B2 = {⊥,⊤}, with ⊥ < ⊤. V (s, a, µ) identifies the transition of the automa-

ton in state s: ⊤ indicates its presence and ⊥ indicates its absence. We write

s a−→µ meaning V (s, a, µ) = ⊤. Intuitively, PAs are very similar to LTSs, with

the only difference that the target of each transition is a distribution over states

instead of just a single state. Let act(s) denote the set of enabled actions from

state s, i.e., act(s) = {a ∈ Act | ∃µ : V (s, a, µ) 6= ⊥}. PA P is deterministic, if for

every state s and action a we have: |{µ ∈ Dist(S) | V (s, a, µ) 6= ⊥}|≤ 1. In sim-

ple words, a PA P is deterministic if none of its states have multiple transitions on

same action name. A possible behaviour of a PA is obtained from the resolution of

non-deterministic and probabilistic choices, described in terms of paths. A path

π of PA P is a (possibly infinite) sequence of the form π = s0a1µ1s1a2µ2s2a3µ3 . . .

where ∀n : sn
an+1−−−→µn+1, and µn+1(sn+1) > 0. Let last(π) denote the last state

of π (if π is finite). Let |π| be the length (number of actions) of a finite path π.

For infinite path π and any i ∈ N, let π[i] = si, the (i+1)-st state of π. For finite

path π of length n, π[i] is only defined for i ≤ n and defined as for infinite paths.

Let Pathsfin(P) be the set of all finite paths in PA P, and Pathsinf (P) the set

of all infinite paths of P that start in state s0. Let Paths
Sf

fin(P) be the set of all

finite paths of P that start in state s0 and end in some state s ∈ Sf . A trace of a

finite path π is the sequence of actions obtained by removing the states (and the

distributions).

Example 2.25 Consider the PA P in Fig. 2.4 (left), where S =

{s0, s1, s2, s3, s4, s5, s6, s7, s8}, Act = {c, w, r, h, t}, s0 is the initial state, and

Sf = {s7, s8}. Here s0 can move with action c to s1 and s2 with probability

0.5 and 0.5, respectively. An example finite path π is s0cµ1s1wµ2s3rµ3s5hµ4s7,

where µ1(s1) = 0.5, µ1(s2) = 0.5, µ2(s3) = 1, µ3(s5) = 1 and µ4(ss7) = 1. We

have |π|= 4, and π[2] = s3. It is easy to check that P is deterministic.

An adversary D of PA P maps a finite path π of P to a pair (a, µ) or to f, such

that if D(π) = (a, µ) for some a ∈ Act and µ ∈ Dist(S), then last(π) a−→µ, and

if there is no a ∈ Act and µ ∈ Dist(S) s.t. last(π) a−→µ then D(π) = f, where

f /∈ Act denotes the terminal action. We restrict the class of adversaries to the

class of admissible history-independent adversaries [60]. An adversary D is called

history-independent iff last(π) = last(π′)⇒ D(π) = D(π′) for any finite paths π

and π′. Since our interest is in probabilistic reachability of PAs, it is sufficient to

20

2.2 Stochastic Models

consider history-independent adversaries [9]. Such adversaries are also known as

memoryless schedulers. Admissible adversaries avoid the problem of unrealistic

upper and lower bounds for the probability values [60]. This problem of unrealistic

upper and lower bounds can be understood from the following example:

Example 2.26 [61] Consider two players modeled by PA P (Fig. 2.4 (left)) and

PA P ′ (Fig. 2.4 (middle)), are playing a game. Player P tosses a fair coin, waits

a bit, then announces publicly that he is going to reveal the result of tossing (heads

or tails), and then reveals the result. Player P ′ waits a bit, makes a guess about

the result of the coin-tossing by player P, then announces to reveal the result,

and finally reveals it. The parallel composition of P and P ′ is shown in Fig. 2.4

(right). The probability that P ′ makes a correct guess is 1
2
. However, P||P ′ in

Fig. 2.4 (right) does not suggest this probability. In order to obtain the probabili-

ties with which action ω (correct guess) is reported, adversaries or schedulers are

used to resolve the nondeterminism. There are four possible schedulers for P||P ′,

yielding the set {0, 1
2
, 1} of values of probabilities to observe action ω, which is

incorrect. Admissible adversaries can be used to overcome this problem by only

considering a subset of adversaries for computing reachability probabilities.

More formally an admissible adversary is defined as follows:

Definition 2.27 [60] An adversary is admissible if for any two finite paths π1

and π2 we have

trace(π1) = trace(π2) ∧ last(π1) ∼ last(π2) =⇒ D(π1) ≡∼ D(π2)

Intuitively, the definition of a admissible scheduler enforces that in cases when the

adversary has observed the same history (given by the traces of the paths) and

is in bisimilar states (denoted by ∼), it must schedule “the same” transitions up

to bisimilarity [139]. Here ≡∼ is an equivalence on the set of possible transition.

For PA P, let PathsDfin(P) be the set of all finite paths, and PathsDinf(P) the

set of all infinite paths of P under D that start in state s0. Let Adv(P) be the

set of all admissible history-independent adversaries of PA P. Let Paths
D,Sf

fin (P)

be the set of all finite paths under D that start in state s0 and end in some

state s ∈ Sf . For D ∈ Adv(P) let the probability measure ProbD be defined over

PathsDinf(P) in the following way. Let function A : PathsDfin(P)×PathsDfin(P)→

[0, 1] be defined for two finite paths π, π′ ∈ PathsDfin(P):

A(π, π′) =

{
µ(s′) if π′ is of the form π a,µ−−→ s′ and D(π) = (a, µ)

0 otherwise.

21

2. PRELIMINARIES

s0

s1 s2

s3 s4

s5 s6

s7 s8

c, 0.5 c, 0.5

w

r

h

w

r

t

s′0

s′1

s′2 s′3

s′5s′4

s′6 s′7

s′9s′8

w

τ
τ

r

h

ω

r

t

ω

s0s
′
0

s1s
′
0 s2s

′
0

s3s
′
1 s4s

′
1

s3s
′
2

s5s
′
4

s7s
′
6

s7s
′
8

s3s
′
3

s5s
′
5

c, 0.5

τ

τ

τ

τ

ω

τ

τ

c, 0.5

τ

s4s
′
2

s6s
′
4

τ

τ

s4s
′
3

s6s
′
5

s8s
′
7

s8s
′
9

τ

τ

τ

ω

Figure 2.4: PAs P (left), P ′ (middle) and P||P ′ (right)

The probability PD(π) for any finite path π ∈ PathsDfin(P) where |π|= n is now

defined as follows:

PD(π) =

{
1 if n = 0

A(π[0], π[1]) · . . . ·A(π[n− 1], π[n]) otherwise.

The cylinder of a finite path π is defined as follows:

cylD(π) = {π′ ∈ PathsDinf (P) | π is a prefix of π′},

and let FD is the smallest σ-field containing {cylD(π) | π ∈ PathsDfin(P)}. This

all provides the basis to define ProbD on FD as the unique measure such that

ProbD(cylD(π)) = PD(π) for all π ∈ PathsDfin(P).

2.2.4 Interactive Markov Chains

IMCs [74, 75] extend LTSs with stochastic aspects. IMCs thus support both

reasoning about nondeterministic behaviors as in LTSs and stochastic phenomena

as in CTMCs. This section presents the basic concepts of IMCs.

Definition 2.28 (IMC) An interactive Markov chain (IMC) is a tuple I =

(S, s0, Act, AP,→,⇒, L) where:

• S, s0, Act, AP and L are defined as before,

• →⊆ S ×Act× S is a set of interactive transitions,

22

2.3 Modal Specification Theories

• ⇒⊆ S × R≥0 × S is a set of Markovian transitions.

We abbreviate (s, a, s′) ∈ → as s a−→ s′ and similarly, (s, λ, s′) ∈ ⇒ by s
λ
=⇒ s′.

Let IT (s) andMT (s) denote the set of interactive and Markovian transitions that

leave s. A state is Markovian iff MT (s) 6= ∅ and IT (s) = ∅; it is interactive

iff MT (s) = ∅ and IT (s) 6= ∅. Further, s is a hybrid state iff MT (s) 6= ∅
and IT (s) 6= ∅; finally s is a deadlock state iff MT (s) = ∅ and IT (s) = ∅.

Let MS ⊆ S and IS ⊆ S denote the set of Markovian and interactive states in

IMC I. For any Markovian state s ∈ MS let R(s, s′) =
∑
{λ|s

λ
=⇒ s′} be the

rate to move from state s to state s′. The exit rate for state s is defined by:

E(s) =
∑

s′∈S R(s, s′).

It is easy to see that an IMC where MT (s) = ∅ for any state s is an LTS. An

IMC where IT (s) = ∅ for any state s is a CTMC. The semantics of IMCs can

thus be given in terms of the semantics of CTMCs (for Markovian transitions) and

LTSs (for interactive transitions). An IMC is said to be closed if it is not subject

to any further synchronization. We assume that in closed IMCs all outgoing

interactive transitions of state s are labeled with τ ∈ Act (internal action).

Definition 2.29 (Maximal progress) In any closed IMC, interactive transitions

take precedence over Markovian transitions.

Intuitively, the maximal progress assumption states that in closed IMCs, τ la-

beled transitions are not subject to interaction and thus can happen immediately,

whereas the probability of a Markovian transition to happen immediately is zero.

Accordingly, we assume that each state s has either only outgoing τ transitions or

outgoing Markovian transitions. In other words, a closed IMC only has interactive

and Markovian states.

Example 2.30 Consider the IMC I shown in Fig. 2.5 where AP = {p, q, r},

Act = {a, b, c} and s0 is the initial state. The set of interactive states is

IS = {s0, s1, s2}; MS contains all other states. Nondeterminism between ac-

tion transitions appears in state s0.

2.3 Modal Specification Theories

Specification theories are useful for the design and analysis of component-based

systems in a top-down manner, from abstract specifications to implementations.

A good specification theory should therefore support the notions of satisfaction

23

2. PRELIMINARIES

s0 {p}

{q}s1 s2 {q}

s3 {p} s4 {r}

{q}s5

{q}s6

{q}s7

{r}s9

{p}s8

a

c

b

a

4

8
4

2

2

2
2

1

1

Figure 2.5: An example IMC I

(to check whether an implementation satisfies a specification), refinement (to

compare specifications w.r.t. their implementations) and composition (to combine

specifications). Some examples of classical specification formalisms that we have

studied in the previous sections are LTSs, PAs and IMCs. Note that all these

models are compositional and support refinement through simulation relations.

In LTSs and PAs, specification and implementation represent the same object.

In this chapter we discuss the basic concepts of specification theories induced by

modal transition systems (MTSs) and abstract probabilistic automata (APAs).

MTSs are strictly more expressive than LTSs. For probabilistic systems that

support nondeterminism, APAs provide a complete specification theory which is

strictly more expressive than PAs.

2.3.1 Modal Transition Systems

Modal transition systems (MTSs) [102, 106] are labeled transition systems (LTSs)

[9, 113] equipped with two types of transitions: may transitions that any imple-

mentation (LTS) may (or may not) have and must transitions that any imple-

mentation must have. An LTS is an MTS where all the transitions are must

transitions. Next, we recall the basic concepts of modal transition systems with

a finite state space. The definitions of satisfaction and refinement can be found

in Section 6.1.

Definition 2.31 (MTS) A modal transition system (MTS) is a tuple M =

(S,Act, s0, Sf , V) where:

24

2.3 Modal Specification Theories

• S, Act, s0 and Sf are defined as before,

• V : S \ Sf × Act× S → B3 is a three-valued transition function.

Here B3 = {⊥, ? ,⊤} denotes a complete lattice with the following ordering

⊥ < ? < ⊤ and meet ⊓ and join ⊔ operators. V (s, a, s′) identifies the

a-labeled transition of the MTS in state s: ⊤, ? and ⊥ indicate a must,

a may and absence of such transition respectively. For simplicity we write

s a−→⊤ s′ instead of V (s, a, s′) = ⊤. Similarly, we write s a−→ ? s
′ instead of

V (s, a, s′) = ?. Let act(s) denote the set of enabled actions from state s, i.e.,

act(s) = {a ∈ Act | ∃s′ : V (s, a, s′) 6= ⊥}. MTS M is deterministic, if for every

state s and action a we have: |{s′ ∈ S | V (s, a, s′) 6= ⊥}|≤ 1.

In this thesis we only consider deterministic MTSs, as they are sufficient for

modeling the behavior of typical distributed algorithms [82]. An execution ρ of an

MTSM is a (possibly infinite) sequence of the form ρ = s0a1s1a2s2a3 . . ., where

∀n : sn
an+1−−−→⊤ sn+1 or sn

an+1−−−→ ? sn+1. Let Execfin(M) be the set of all finite

executions, and Execinf (M) the set of all infinite executions ofM that start in

state s0. Let Exec
Sf

fin(M) be the set of all finite executions of M that start in

state s0, and end in some state s ∈ Sf . Let |ρ| be the length (number of actions)

of a finite execution ρ. For infinite execution ρ and any i ∈ N, let ρ[i] = si, the

(i + 1)-st state of ρ. For finite execution ρ of length n, ρ[i] is only defined for

i ≤ n and defined as for infinite executions. Let last(ρ) denote the last state of

ρ (if ρ is finite). Similarly, let first(ρ) denote the first state of ρ.

2.3.2 Abstract Probabilistic Automata

Abstract probabilistic automata (APAs) [44, 45] have been proposed as a pow-

erful specification and abstraction formalism for sets of PAs. In an APA, sets of

distributions are abstracted by constraint functions. Action-labeled transitions

of an APA are typed either “must” or “may“. Hence, APAs can be seen as a

combination of modal transition systems (MTSs) [106] and constraint Markov

chains (CMCs) [30]. The theory of APAs is equipped with parallel and conjunc-

tion operators, and allows comparing two APAs using a refinement relation. A

satisfaction relation is used to check whether a PA is an implementation of a

given APA. Next, we recall the basic concepts of abstract probabilistic automata

with a finite state space. The definitions of satisfaction and refinement can be

found in Section 7.1.

Let ϕ be an arithmetic expression over variables whose values are in S. We

25

2. PRELIMINARIES

s0

s1 s2

ϕz = z1 > 0.7 ∧ z0 + z1 = 1

sf

ϕx = x0 ≤ 0.4 ∧ x0 + x1 = 1

a, x0,⊤ a, x1,⊤

c, z1,⊤

b, 1,⊤
c, z0,⊤

b, 1, ?

Figure 2.6: An example APA N

call ϕ a constraint function. We require that for every variable in the arithmetic

expression of ϕ, there exists a distribution µ that satisfies ϕ s.t. the value of the

variable is nonzero. For example, we do not allow constraint function ϕx = x1 ≥

0.7 ∧ x2 ≤ 0.3 ∧ x0 = 0 ∧ x0 + x1 + x2 = 1, since for every distribution µ that

satisfies ϕx, the value of x0 = 0. Let C(S) be the set of all allowed constraint

functions defined on S. Let Sat(ϕ) denote the set of distributions that satisfy

constraint function ϕ. Note that we do not restrict ourselves to linear constraint

functions, as polynomial constraints are needed for defining layered and parallel

composition (Chapter 7, Def. 7.11, Def. 7.14).

Definition 2.32 (APA) An abstract probabilistic automaton (APA) is a tuple

N = (S, s0, Sf , Act, V) such that:

• S, s0, Sf and Act are defined as before,

• V : S \ Sf × Act× C(S)→ B3 is a three-valued state-constraint function.

Here B3 = {⊥, ? ,⊤} denotes a complete lattice with the following ordering ⊥ <

? < ⊤ and meet ⊓ and join ⊔ operators as for MTSs. V (s, a, ϕ) identifies the

a-labeled transition of the APA in state s: ⊤, ? and ⊥ indicate a must, a may

and absence of transition respectively. For simplicity we write s a−→⊤ ϕ instead

of V (s, a, ϕ) = ⊤. Similarly, we write s a−→ ? ϕ instead of V (s, a, ϕ) = ?. Let

act(s) denote the set of enabled actions from state s, i.e., act(s) = {a ∈ Act|∃ϕ :

V (s, a, ϕ) 6= ⊥}.

Note that an APA where every transition is a must-transition and for each

constraint function ϕ, the number of distributions in Sat(ϕ) equals one, i.e.,

|Sat(ϕ)|= 1 is a PA [139, 141]. In simple words, every PA is an APA. Similarly an

APA where every may and must transition jump to the next state with probability

one is a modal transition system [106]. APA N is deterministic, if for every state

s and action a we have: |{ϕ ∈ C(S) | V (s, a, ϕ) 6= ⊥}|≤ 1.

26

2.4 Summary

APA

PA

DTMC

CTMC

IMC

KSLTS

MTS

Figure 2.7: Relationship between nondeterministic and probabilistic models

Like for MTSs, we only consider deterministic APAs. Let (a, ϕ)(s) denote

the set of states in a deterministic APA N that can be reached from state s in

one step by performing action a with constraint ϕ. Formally, (a, ϕ)(s) = {s′ ∈

S | V (s, a, ϕ) 6= ⊥ ∧ ∃µ ∈ Sat(ϕ) : µ(s′) > 0}. An abstract execution ρ of an

APA N is a (possibly infinite) sequence of the form ρ = s0a1ϕ1s1a2ϕ2s2a3ϕ3 . . .,

where ∀n : sn
an+1−−−→ ⊤ϕn+1 or sn

an+1−−−→ ?ϕn+1, and sn+1 ∈ (an+1, ϕn+1)(sn). Let

Execfin(N) be the set of all finite abstract executions, and Execinf (N) the set

of all infinite abstract executions of N that start in state s0. Let Exec
Sf

fin(N) be

the set of all finite abstract executions of N that start in state s0, and end in

some state s ∈ Sf . Let Execsfin(N) be the set of all finite abstract executions

that start in state s, and |ρ| the length (number of actions) of a finite abstract

execution ρ. For infinite abstract execution ρ and any i ∈ N, let ρ[i] = si, the

(i+1)-st state of ρ. For finite abstract execution ρ of length n, ρ[i] is only defined

for i ≤ n and defined as in the case of infinite abstract executions. Let last(ρ)

denote the last state of ρ (if ρ is finite).

Example 2.33 Consider the APA N in Fig. 2.6, where S = {s0, s1, s2, sf},

Act = {a, b, c}, s0 is the initial state, and Sf = {sf}. Here s0 has one outgoing

transition: a must a-transition (s0, a, ϕx). Similarly, s1 has two outgoing transi-

tions: a must c-transition (s1, c, ϕz), and a may b-transition (s1, b, 1). Note that

N is deterministic. An example finite abstract execution ρ is s0aϕxs1cϕzs1cϕzs2
with |ρ|= 3, and ρ[2] = s1.

2.4 Summary

This chapter presented the basic concepts of a range of nondeterministic and

probabilistic models. The relationship between these models can be understood

27

2. PRELIMINARIES

from Fig. 2.7. Here A→ B denote that model B is an extension of model A.

28

Chapter 3

A Two Step Perspective for

Kripke Structure Reduction

In this chapter we define Kripke minimization equivalence (KME) [142] and show

that it allows for a more aggressive state space reduction than strong bisimula-

tion for KSs, while preserving an interesting set of qualitative properties. In the

weak setting we define weak Kripke minimization equivalence (WKME) such that

state space reduction under WKME can potentially be larger than for divergence-

sensitive stutter bisimulation. Whereas bisimulation compares states on the basis

of their direct successors, KME considers a two-step perspective. The main prin-

ciple is captured in Fig. 3.1 where boxes denote equivalence classes. Here states

s1 and s2 are related, as for each pair of direct predecessors of the equivalence

class [s1] = [s2], i.e., in this case only s0, the same set of equivalence classes, i.e.,

C1, C2 and C3, can be reached in two steps via [s1]. For WKME, we abstract

from stutter steps and thus each predecessor of any equivalence class C should

reach the same set of equivalence classes in two or more steps such that all extra

steps are taken within C.

Contributions. The main contributions of this chapter are as follows:

s0

s1 s2

C1 C2 C3

s′0

s′1

C1 C2 C3

Figure 3.1: KS aggregation under Kripke minimization equivalence

29

3. A TWO STEP PERSPECTIVE FOR KRIPKE STRUCTURE
REDUCTION

• We provide a structural definition of KME on KSs, define the quotient under

KME and show that KME is strictly coarser than strong bisimulation.

• We show that linear-time (LT) properties defined over infinite words are

preserved under KME quotienting.

• Next, we show that KME is compositional w.r.t. synchronous parallel com-

positon (SCCS-like parallel composition [112]).

• In the weak setting, we provide a structural definition of WKME on KSs,

define the quotient under WKME and show that WKME is strictly coarser

than divergence-sensitive stutter bisimulation.

• Finally, we prove that stutter-insensitive LT properties defined over infinite

words are preserved under WKME quotienting.

Organisation of this chapter. Section 3.1 defines Kripke minimization

equivalence and discusses the preservation of LT properties under KME quoti-

enting. In Section 3.2, we prove that KME is compositional w.r.t. synchronous

parallel composition. Sections 3.3 defines weak Kripke minimization equivalence

and discusses the preservation of stutter-insensitive LT properties under WKME

quotienting. Section 3.4 discusses related work. Finally, Section 3.5 concludes

the chapter.

3.1 Kripke Minimization Equivalence

In this section, we present a technique for the state space minimization of a KS.

We first define Kripke minimization equivalence (KME) followed by the definition

of quotient KS under KME. Next to that, the relationship between KME and

strong bisimulation is explored. All the definitions in this section are relative to

a KS K = (S,→, AP, L, s0).

Definition 3.1 (Predecessor based reachability) For s ∈ S and C,D ⊆ S,

the function Pbr : S × 2S × 2S → {0, 1} is defined as:

Pbr(s, C,D) =

{
1 if ∃s′ ∈ Post(s, C) s.t. Post(s′, D) 6= ∅
0 otherwise.

Definition 3.2 (KME) Equivalence R on S is a Kripke minimization equiva-

lence (KME) on KS K if we have:

30

3.1 Kripke Minimization Equivalence

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2) and

2. ∀C,D ∈ S/R and ∀s′, s′′ ∈ Pred(C) it holds: Pbr(s′, C,D) = Pbr(s′′, C,D)

States s1, s2 are KM related, denoted by s1 ⋆ s2, if (s1, s2) ∈ R for some KME

R.

Remark 3.3 Note that ⋆ is not a KME, this is contrary to what one usually

expects from a coinductive/bisimulation-style definition.

Example 3.4 Consider the KS K in Fig. 3.2 (left). Let C = {s3, s4, s5} and

D = {s7}. Then Pbr(s1, C,D) = 1, since it is possible to move from s1 to s7 in

two steps via s3. Similarly Pbr(s2, C,D) = 1. For KS K, the equivalence relation

induced by the partitioning {{s0}, {s1}, {s2}, {s3, s4, s5}, {s6}, {s7}} is a KME.

3.1.1 Quotient Kripke Structure

Definition 3.5 (Quotient Kripke structure) For KME relation R on KS K,

the quotient KS is defined by K/R = (S/R,→
′

, AP, L′, s′0) where:

• S/R is the set of all equivalence classes under R,

• →
′

⊆ S/R×S/R is defined by: C −→
′

D iff Pbr(s′, C,D) = 1 where s′ ∈

Pred(C) and C,D ∈ S/R,

• L′(C) = L(s), where s ∈ C and

• s′0 = C where s0 ∈ C = [s0]R.

Example 3.6 The quotient KS for the Fig. 3.2 (left) under the KME relation R

induced by the partitioning {{s0}, {s1}, {s2}, {s3, s4, s5}, {s6}, {s7}} is shown in

Fig. 3.2 (right).

Definition 3.7 KS K and its quotient K/R under KME relation R are ⋆-related,

denoted by K ⋆K/R, if and only if there exists a KME relation R∗ defined on the

disjoint union S ⊎ S/R such that

∀C ∈ S/R: ∀s ∈ C =⇒ (s, C) ∈ R∗.

Theorem 3.8 For any KS K and KME R on S : K ⋆K/R.

31

3. A TWO STEP PERSPECTIVE FOR KRIPKE STRUCTURE
REDUCTION

s0 {a}

s1 {} s2 {b}

s3 {a} s4 {a} s5 {a}

s7 {} s6 {b}

s′0 {a}

s′2 {b}

s′3 {a}

s′4 {} s′5 {b}

s′1 {}

C

D

Figure 3.2: KS K (left) and its quotient K/R under a KME (right)

Remark 3.9 Note that union of KMEs is not necessarily a KME. In other words,

it is possible that R1,R2 are two KMEs on S s.t. R1 ∪ R2 is not a KME.

Intuitively it means that the original KS K can be reduced in different ways. This

can be observed from the example given below.

Example 3.10 Consider the KS K shown in Fig. 3.3. In this case, K can

be minimized in two different ways as shown in Fig. 3.4. Here KS K′ shown

in Fig. 3.4 (left) is the quotient system for the KME relation R induced by

{{s0}, {s1}, {s2}, {s3, s4, s5}, {s6, s7, s8}, {s9}, {s14}, {s10, s12}, {s11, s13}}. KS K′′

shown in Fig. 3.4 (right) is the quotient system for the KME R′ induced by

{{s0}, {s1}, {s2}, {s3}, {s4, s5, s6, s7}, {s8}, {s9}, {s14}, {s10, s12}, {s11, s13}}. It is

easy to check that R ∪R′ is not a KME.

Repeated minimization. Next, we show that KME can be used for repeated

minimization of a KS. Intuitively, this means that if a quotient system K′ has

been obtained from a KS K under KME R on S, then it might still be possible

to further reduce K′ to K′′ under some KME R′ on S ′. Consider the KS shown in

Fig. 3.5 (left). KS in Fig. 3.5 (middle) is the quotient system for the KME induced

by the partition {{s0}, {s1, s2}, {s3, s4}, {s5}, {s6}, {s7}, {s8}}. KS in Fig. 3.5

(right) is the quotient of the KS Fig. 3.5 (middle) for the KME induced by the

parttion {{s′0}, {s
′
1}, {s

′
2, s

′
3}, {s

′
4}, {s

′
5}, {s

′
6}}. It is easy to check that s3, s4, s5

in the original system cannot be merged in one shot, since s1 can reach states

labeled with atomic propositions a and b in two steps via s3 and s4 respectively,

but s2 cannot reach such states. This is no longer a problem once s1 and s2 are

32

3.1 Kripke Minimization Equivalence

{a}s0

s1 {b} s2 {c}

s3 {} s4 {} s5 {} s6 {} {}s7 s8 {}

s9 {d} s10 {a} s11 {b} s12 {a} s13 {b} s14 {c}

Figure 3.3: An example KS K

s′0 {a}

s′1 {b} s′2 {c}

s′5 {d} s′6 {a} s′7 {b} s′8 {c}

s′3 {} s′4 {}

s′′0 {a}

s′′1 {b} s′′2 {c}

s′′4 {}s′′3 {} s′′5 {}

s′′6 {d} s′′7 {a} s′′8 {b} s′′9 {c}

Figure 3.4: Union of KMEs is not necessarily a KME

33

3. A TWO STEP PERSPECTIVE FOR KRIPKE STRUCTURE
REDUCTION

s0 {a}

s1 {b} s2 {b}

s3 {} s4 {} s5 {}

s6 {a} s7 {b} s8 {c}

s′0 {a}

s′1 {b}

s′2 {} s′3 {}

s′4 {a} s′5 {b} s′6 {c}

s′′0 {a}

s′′1 {b}

s′′2 {}

s′′3 {a} s′′4 {b} s′′5 {c}

Figure 3.5: Repeated minimization

merged as shown in Fig. 3.5 (middle) as s′2, s
′
3 now have a single predecessor, i.e.,

s′1.

3.1.2 KME vs. Bisimulation

Definition 3.11 (Strong bisimulation [9]) Binary relation R on S is a

strong bisimulation on K if for any (s1, s2) ∈ R we have:

• L(s1) = L(s2),

• if s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2) with (s′1, s
′
2) ∈ R, and

• if s′2 ∈ Post(s2) then there exists s′1 ∈ Post(s1) with (s′1, s
′
2) ∈ R.

States s1, s2 are bisimilar, denoted s1 ∼ s2, if (s1, s2) ∈ R for some strong

bisimulation R.

These conditions require that any two bisimilar states, say s1, s2 are equally

labeled and that every outgoing transition of s1 must be matched by an outgoing

transition of s2 and vice versa. Note that the relation ∼ is an equivalence relation

and is the coarsest strong bisimulation.

Theorem 3.12 KME is strictly coarser than ∼.

This theorem says that state space reduction under KME can potentially be larger

than for strong bisimilarity.

34

3.1 Kripke Minimization Equivalence

For strong simulation equivalence, the condition to exhibit identical stepwise

behavior is slightly relaxed. Whenever s′ simulates s, state s′ can mimic all

stepwise behavior of s; the reverse is not guaranteed, so state s′ may perform

transitions that cannot be matched by state s. Two Kripke structures K and K′

are simulation-equivalent if their initial states mutually simulate each other.

Remark 3.13 Consider the two KSs in Fig. 3.2, here K and K/R are not strong

simulation equivalent. This shows that there are systems that can be reduced using

KME, but cannot be reduced under simulation equivalence. It would be interesting

to investigate if the proof of Thm. 3.12 can be extended showing that the quotient

obtained under simulation equivalence can be obtained by repeated application of

KME. In simple words, this would mean that if K′ can be obtained from K under

simulation equivalence, then K′ can also be obtained by repeated application of

KME.

3.1.3 Property Preservation

Linear-time properties. We investigate linear-time properties for KSs that

are preserved under KME quotienting. We study a more general class of linear-

time properties that are defined over traces, i.e., (2AP)ω. These include, e.g.,

ω-regular properties. Note that the preservation of ω-regular properties implies

the preservation of LTL formulas. These preservation results can be exploited for

model checking by reducing the KS models under consideration prior to carrying

out the verification.

Definition 3.14 A linear-time property (LT property) over the set of atomic

propositions AP is a subset of (2AP)ω.

Example 3.15 An LT property can be used to specify the desired behavior of the

system under consideration such as:

• Every time the process tries to send a message, it eventually succeeds in

sending it.

• Whenever the system is down, an alarm should ring until it is up again.

Definition 3.16 Let P be an LT property over AP and K = (S,→, AP, L, s0) a

Kripke structure. Then K satisfies P , denoted K |= P , iff TracesK(s0) ⊆ P .

Theorem 3.17 Let K be a KS and R be a KME on K. Then for any LT property

P : K |= P ⇔ K/R |= P .

35

3. A TWO STEP PERSPECTIVE FOR KRIPKE STRUCTURE
REDUCTION

Intuitively, this theorem says that if an LT property holds for the original Kripke

structure, it also holds for the quotient and vice versa. In principle this result

allows performing model checking on the quotient Kripke structure provided that

we can obtain this in an algorithmic manner.

Corollary 3.18 Let K be a KS and R be a KME on K. Then for any LTL

formula ϕ : K |= ϕ⇔ K/R |= ϕ.

3.2 Synchronous Parallel Composition

In this section we show that KME is compositional w.r.t. synchronous parallel

composition (SCCS-like parallel composition [112]) of KSs. This result is useful

for analyzing synchronous distributed algorithms and synchronous hardware cir-

cuits where processes progress in a lock-step fashion. For example say we want

to compose a large KS K1 with another KS K2 and these KSs have n and m

states respectively. Then the resulting KS K1 ⊗ K2 can have n · m states (in

the worst case) so it is worthwhile to compute this composition using a smaller

KS K′ ⋆-related to K1. Synchronous parallel composition is also at the heart of

Lustre [72], a declarative programming language for reactive systems, and is used

in many other hardware-oriented languages.

Definition 3.19 [112] Let K1 = (S1,→1, AP1, L1, s01) and K2 = (S2,→2

, AP2, L2, s02) be two Kripke structures. Then we say s−→ i s
′ if (s, s′) ∈→i

for i = 1, 2. The synchronous parallel composition of two Kripke structures is

K1 ⊗ K2 = (S1 × S2,→, AP1 ∪ AP2, L, (s01, s02)), where (s01, s02) is the initial

state, L((s1, s2)) = L(s1) ∪ L(s2), and → is given as follows:

s1−→ 1 s′1 ∧ s2−→ 2 s′2
(s1, s2)−→ (s′1, s

′
2)

.

Note that ⊗ is commutative and associative.

Theorem 3.20 Let K be a KS and R be a KME on K. Then for any Kripke

structure K1:

(K ⊗K1) ⋆ (K/R ⊗K1).

3.3 Weak Kripke Minimization Equivalence

In this section we define weak Kripke minimization equivalence (WKME). WKME

is a variant of KME that abstracts from stutter steps, also referred to as internal

36

3.3 Weak Kripke Minimization Equivalence

or nonobservable steps. To compare KSs that model a given system at different

abstraction levels, it is often too demanding to require a statewise equivalence.

Instead, a state in a KS at a high level of abstraction can be modeled by a se-

quence of states in the more concrete KS. Secondly, by abstracting from internal

steps, quotient KSs are obtained that may be significantly smaller than the quo-

tient under corresponding strong equivalence relation. Interestingly, though, still

a rather rich set of properties is preserved under such abstractions. More specifi-

cally, weak equivalences are suitable for verifying properties, for which the exact

number of transitions a system takes to accomplish some task is irrelevant.

Definition 3.21 (Weak predecessor based reachability) For s ∈ S and

C,D ⊆ S, the function WPbr : S × 2S × 2S → {0, 1} is defined as:

WPbr(s, C,D) =

{
1 if ∃s′ ∈ Post(s, C), s′′ ∈ D s.t.s′ ∗−→ s′′

0 otherwise.

where s′ ∗−→ s′′ denotes that there exists a path π = s′−→ s1−→ s2 . . . sn−→ s′′, where

n ≥ 0 and si ∈ C, i = 1, . . . , n.

Remark 3.22 Note that if n = 0 then s′ ∗−→ s′′ denotes s′−→ s′′, i.e., one step

reachability.

Definition 3.23 (WKME) Equivalence R on S is a weak Kripke minimization

equivalence (WKME) on K if we have:

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2) and

2. ∀C,D ∈ S/R s.t. C 6= D and ∀s′, s′′ ∈ Pred(C) s.t. s′, s′′ /∈ C it holds:

WPbr(s′, C,D) = WPbr(s′′, C,D).

States s1, s2 are WKM related, denoted by s1 ⊙ s2, if (s1, s2) ∈ R for some

WKME R.

Example 3.24 Consider the KS K in Fig. 3.6. Let C = {s3, s4, s5} and

D = {s6}. Then WPbr(s1, C,D) = 1, since it is possible to move from s1
to s6 in three steps via s3, s4 (where s3−→ s4 is a stutter step). Similarly

WPbr(s2, C,D) = 1. For KS K, the equivalence relation induced by the par-

titioning {{s0}, {s1}, {s2}, {s3, s4, s5}, {s6}, {s7}} is a WKME relation.

37

3. A TWO STEP PERSPECTIVE FOR KRIPKE STRUCTURE
REDUCTION

s0 {a}

s1 {} s2 {b}

s3
{a} s4 {a} s5 {a}

s6 {b}s7 {}

s′0 {a}

s′1 {} s′2 {b}

s′3 {a}

s′4 {} s′5 {b}

C

D

Figure 3.6: KS K (left) and its quotient K/R under a WKME (right)

3.3.1 Quotient Kripke Structure

Definition 3.25 (Quotient Kripke structure) For WKME relationR on KS

K, the quotient KS is defined by K/R = (S/R,→
′

, AP, L′, s′0) where:

• S/R is the set of all equivalence classes under R,

• →
′

⊆ S/R×S/R is defined by: C −→
′

D, s.t. C 6= D iff WPbr(s′, C,D) = 1

where s′ ∈ Pred(C), and C −→
′

C iff there exists s ∈ C s.t. s ∗−→ s

• L′(C) = L(s), where s ∈ C and

• s′0 = C where s0 ∈ C = [s0]R.

Example 3.26 The quotient KS for the Fig. 3.6 (left) under the WKME relation

R induced by the partitioning {{s0}, {s1}, {s2}, {s3, s4, s5}, {s6}, {s7}} is shown

in Fig. 3.6 (right).

Definition 3.27 Any Kripke structure K and its quotient K/R under WKME

relation R are ⊙-related, denoted by K⊙K/R, if and only if there exists a WKME

relation R∗ defined on the disjoint union S ⊎ S/R such that

∀C ∈ S/R: ∀s ∈ C =⇒ (s, C) ∈ R∗.

Theorem 3.28 For any KS K and WKME R on S : K ⊙K/R.

Remark 3.29 Note that WKMEs can be used for repeated minimization of a KS

K and union of WKMEs is not necessarily a WKME.

Theorem 3.30 WKME is strictly coarser than KME.

38

3.3 Weak Kripke Minimization Equivalence

3.3.2 WKME vs. Divergence-Sensitive Stutter Bisimula-

tion

Definition 3.31 Let K be a KS and R an equivalence relation on S.

• s ∈ S is R-divergence-sensitive if there exists an infinite path fragment

π = s−→ s1−→ s2... ∈ Paths(s) s.t. (s, sj ∈ R) for all j > 0.

• R is divergence-sensitive if for any (s1, s2) ∈ R: if s1 is R-divergence-

sensitive, then s2 is R-divergence-sensitive.

Definition 3.32 Divergence-sensitive relation R on S is a stutter bisimulation

on K if for any (s1, s2) ∈ R we have:

• L(s1) = L(s2),

• If s′1 ∈ Post(s1) with (s′1, s2) /∈ R, then there exists a finite path frag-

ment s2−→ u1−→ . . . un−→ s′2 with n ≥ 0 and (s1, ui) ∈ R, i = 1, . . . , n and

(s′1, s
′
2) ∈ R,

• If s′2 ∈ Post(s2) with (s1, s
′
2) /∈ R, then there exists a finite path frag-

ment s1−→ v1−→ . . . vn−→ s′1 with n ≥ 0 and (vi, s2) ∈ R, i = 1, . . . , n and

(s′1, s
′
2) ∈ R.

States s1 and s2 are divergence-sensitive stutter bisimilar, denoted by s1 ∼=
div s2,

if (s1, s2) ∈ R for some divergence-sensitive stutter bisimulation R.

Next, we investigate the relationship between WKME and divergence-sensitive

stutter bisimulation relation.

Theorem 3.33 WKME is strictly coarser than ∼=div.

This theorem asserts that WKME can achieve larger state space reduction as

compared to divergence-sensitive stutter bisimulation.

For divergence-sensitive stutter simulation equivalence [116] the conditions

provided in Def. 3.32 are slightly relaxed. Whenever s′ stutter simulates s, state

s′ can stutter mimic all stepwise behavior of s, and if there exists a path π

emanating from state s such that all the states on π are related to state s′,

then s′ has to have some successor s′n such that some state sn on π is related

to s′n, the reverse is not guaranteed, so state s′ may perform transitions that

cannot be stutter mimicked by state s. Two Kripke structures K and K′ are

divergence-sensitive stutter simulation-equivalent if their initial states mutually

stutter simulate each other according to the conditions given above.

39

3. A TWO STEP PERSPECTIVE FOR KRIPKE STRUCTURE
REDUCTION

Remark 3.34 Consider the two KSs in Fig. 3.6, here K and K/R are not

divergence-sensitive stutter simulation equivalent. It would be interesting to in-

vestigate if the proof of Thm. 3.33 can be extended showing that the quotient ob-

tained under divergence-sensitive stutter simulation equivalence can be obtained

by repeated application of WKME.

3.3.3 Property Preservation

Stutter-insensitive LT properties. We investigate stutter-insensitive LT

properties defined over infinite words for KSs that are preserved under WKME

quotienting. These include, e.g., stutter-insensitive ω-regular properties. Note

that the preservation of stutter-insensitive ω-regular properties [129] implies the

preservation of LTL\© formulas.

Definition 3.35 LT property P over AP is stutter-insensitive if for any ρ ∈ P ,

∀ρ1 ∈ (2AP)ω s.t. ρ1 , ρ⇒ ρ1 ∈ P .

Example 3.36 Consider the stutter-insensitive LT property [41]:

Pn := {w ∈ (2{p})ω : the number of occurrences of the sub-

word {p}∅ in w is divisible by n},

for natural n ≥ 2. This property cannot be expressed using LTL\©.

The satisfaction relation for stutter-insensitive LT property P , i.e., K |= P , is as

in Def. 3.16.

Theorem 3.37 Let K be a KS and R be a WKME on K. Then for any stutter-

insensitive LT property P : K |= P ⇔ K/R |= P .

Corollary 3.38 Let K be a KS and R be a WKME on K. Then for any LTL\©
formula ϕ : K |= ϕ⇔ K/R |= ϕ.

3.4 Related Work

For KSs, one usually distinguishes between linear-time and branching-time equiv-

alence relations [64]. The standard example of a linear-time equivalence is trace

equivalence [76, 135, 148]. Informally, two states are trace equivalent if the possi-

ble sequences of words starting from these states are the same. Several extensions

40

3.5 Conclusions

of trace equivalence have been proposed, e.g., failure trace semantics and readiness

trace semantics [6, 26, 77, 118, 119, 122, 130, 132, 155]. In the weak setting, stut-

ter trace equivalence has been proposed where a pair of sequences are considered

to be equivalent if they differ in at most the number of times a set of propositions

may adjacently repeat [101]. Checking trace equivalence is PSPACE-complete.

In branching-time semantics, various relations on KSs have been defined such as

strong and stutter variants of bisimulation and simulation pre-orders [27, 65, 68,

110, 111, 126]. Strong bisimulation and divergence-sensitive stutter bisimulation

coincide with Computation Tree Logic (CTL∗) and CTL∗\©, respectively [27,

120]. Strong simulation agrees with a “preorder” on the universal (or existential)

fragment of CTL [36]. Several papers report data showing that bisimulation min-

imization can substantially reduce the state-space of models to be verified [5, 55].

The use of simulation relations for abstraction has been studied in, e.g. [36, 40,

108].

3.5 Conclusions

In this chapter, we have presented two equivalence relations, Kripke minimiza-

tion equivalence (KME) and weak Kripke minimization equivalence (WKME) on

KSs. We defined the quotient system under these relations and proved that these

relations are coarser than strong bisimulation and divergence-sensitive stutter

bisimulation, respectively. Preservation results for LT properties and stutter-

insensitive LT properties have been established under KME and WKME quo-

tienting. We have also shown that KME is compositional w.r.t. synchronous

parallel composition.

41

3. A TWO STEP PERSPECTIVE FOR KRIPKE STRUCTURE
REDUCTION

42

Chapter 4

Weighted Probabilistic

Equivalence

This chapter defines weighted probabilistic equivalence (WPE) [143] and shows

that it allows for a more aggressive state space aggregation than probabilistic

bisimulation also known as lumping for DTMCs, while still preserving an inter-

esting set of quantitative properties.

Unlike bisimulation that compares states on the basis of their direct successors

—the cumulative probability to directly move to any equivalence class must be

equal— WPE considers a two-step perspective. Two states s, s′ are related if for

each pair of their direct predecessors the weighted probability to directly move

to any equivalence class via the equivalence class [s] = [s′] coincides. The main

principle is captured in Fig. 4.1 where boxes denote equivalence classes, and

pC1
= p′1·p1,1, pC2

= p′1·p1,2+ p′2·p2,1, pC3
= p′2·p2,2 with p′1 =

p1
p1+p2

and p′2 =
p2

p1+p2
.

Here states s1 and s2 are related, as for each pair of direct predecessors of the

equivalence class [s1] = [s2], i.e., in this case only s0, the weighted probability to

move to all the states in the equivalence class Ci (for i=1, 2, 3) via all the states

in [s1] is equal. This allows combining states s1 and s2 into state s′1, cf. the right

DTMC in Fig. 4.1.

We provide a structural definition of WPE on DTMCs. We define the quotient

under WPE, show that any DTMC is related to its quotient under WPE, and

prove that WPE is (strictly) coarser than bisimulation. The main contributions

of this chapter are as follows:

• We show that ω-regular properties are preserved under WPE quotienting.

• Next, we show that WPE is compositional w.r.t. synchronous parallel com-

43

4. WEIGHTED PROBABILISTIC EQUIVALENCE

s0

s1 s2

C1 C2 C3

p1 p2

p1,1
p1,2 p2,1

p2,2

s′0

s′1

C1 C2 C3

p1 + p2

pC1

pC2

pC3

Figure 4.1: DTMC aggregation under weighted probabilistic equivalence

position of DTMCs.

• Finally, we extend these results to Markov reward models, i.e., DTMCs

with rewards.

We first show that the probability of satisfying a deterministic Rabin automaton

(DRA) [150, pp. 3-21], [9, pp. 801-805] specification for any DTMC coincides with

the probability for its quotient. Since the class of languages accepted by DRAs

agrees with the class of ω-regular properties it implies that WPE preserves ω-

regular properties. We note that this also implies the preservation of Linear

Temporal Logic (LTL) [9, pp. 229-270] formulas and transient-state probabilities.

It is important to point out that there are certain interesting ω-regular properties,

e.g., every even position should always be occupied by a, that cannot be expressed

using PCTL, PCTL* (an extension of PCTL) or LTL. Model checking a DTMC

against a DRA specification can be done by solving a system of linear equations

obtained on the product of the DTMC and the DRA [9, pp. 803-805]. We also

show that WPE is compositional w.r.t. synchronous parallel composition [151,

152]. This is helpful as instead of analyzing a large DTMC, which may be very

costly, we can analyze the smaller, WPE related DTMC. Finally we extend these

preservation results to Markov reward models.

Organisation of this chapter. Section 4.1 defines weighted probabilis-

tic equivalence, treats some basic properties and discusses the preservation of

ω-regular properties. Section 4.2 shows that WPE is compositional w.r.t. syn-

chronous parallel composition. Section 4.3 presents the extension of WPE to

Markov reward models. Section 4.4 discusses related work. Finally, Section 4.5

concludes the chapter.

44

4.1 Weighted Probabilistic Equivalence

4.1 Weighted Probabilistic Equivalence

This section presents the basic concepts related to weighted probability followed

by the formal definition of weighted probabilistic equivalence. We also define the

quotient DTMC under WPE and explore its relationship with bisimulation. All

the definitions in this section are relative to a DTMC D = (S, P, AP, L, s0).

Definition 4.1 For s, s′ ∈ S and C ⊆ S, the function P : S × S × 2S → R≥0 is

defined by:

P (s, s′, C) =

{
P (s,s′)
P (s,C)

if s′ ∈ C and P (s, C) > 0

0 otherwise.

Intuitively, P (s, s′, C) is the probability to move from state s to s′ under the

condition that s moves to some state in C.

Remark 4.2 Note that P is already used and in Def. 4.1 we overload P .

Definition 4.3 (Weighted probability) For s ∈ S, and C,D ⊆ S, the func-

tion wp : S × 2S × 2S → R≥0 is defined by:

wp(s, C,D) =
∑

s′∈C

P (s, s′, C) · P (s′, D).

Intuitively, wp(s, C,D) is the (weighted) probability to move from s to some

states in D in two steps via states of C.

Definition 4.4 (WPE) Equivalence R on S is a weighted probabilistic equiv-

alence (WPE) if we have:

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2), and

2. ∀C,D ∈ S/R and ∀s′, s′′ ∈ Pred(C) it holds: wp(s′, C,D) = wp(s′′, C,D),

States s1, s2 are WP related, denoted by s1 ⊜ s2, if (s1, s2) ∈ R for some WPE

R.

These conditions require that any two related states are equally labeled and

that for any two equivalence classes C,D ∈ S/R, where S/R denotes the set

consisting of all R-equivalence classes, the weighted probability of going from

any two predecessors of C to D via any state in C must be equal. Note that, by

definition, any WPE is an equivalence relation.

45

4. WEIGHTED PROBABILISTIC EQUIVALENCE

s0

s1 s2 s3

s4 s5 s6 s7

1
8

1
4

5
8

1
4

3
4

1
8

6
8 1

8

3
7

1
7

3
7

1
1

1 1

s′0

s′1

s′2 s′3

1

41
56

3
4

1
4

15
56

1

C

D

Figure 4.2: DTMC D (left) and its quotient under a WPE D/R (right)

Example 4.5 Consider the DTMC D in Fig. 4.2 (left). Let C = {s4, s5, s6} and

D = {s7}. Let the labeling function for D be the same as in Example 2.12. Then

wp(s1, C,D)

= P (s1, s4, C)
︸ ︷︷ ︸

= 1

4

·P (s4, D)
︸ ︷︷ ︸

=0

+P (s1, s5, C)
︸ ︷︷ ︸

3

4

·P (s5, D)
︸ ︷︷ ︸

=1

=
3

4
.

Similarly, wp(s2, C,D)

= P (s2, s4, C)
︸ ︷︷ ︸

= 1

8

·P (s4, D)
︸ ︷︷ ︸

=0

+P (s2, s5, C)
︸ ︷︷ ︸

= 6

8

·P (s5, D)
︸ ︷︷ ︸

=1

+P (s2, s6, C)
︸ ︷︷ ︸

= 1

8

·P (s6, D)
︸ ︷︷ ︸

−0

=
3

4
.

4.1.1 Quotient DTMC

Definition 4.6 (Quotient DTMC) For WPE relation R on D, the quotient

DTMC D/R is defined by D/R = (S/R, P
′, AP, L′, s′0) where:

• S/R is the set of all equivalence classes under R,

• P ′(C,D) = wp(s′, C,D) where C,D ∈ S/R and s′ ∈ Pred(C),

• L′(C) = L(s), where s ∈ C and

• s′0 = C where s0 ∈ C = [s0]R.

Note that P ′(C,D) is well-defined as by Def. 4.4 for any predecessors s′, s′′ of

C it follows wp(s′, C,D) = wp(s′′, C,D). Similarly, L′ is well-defined as states in

any equivalence class C are equally labeled.

46

4.1 Weighted Probabilistic Equivalence

Example 4.7 For the DTMC D in Fig 4.2 (left), the quotient D/R under WPE

R induced by the partitioning {{s0}, {s1, s2, s3}, {s4, s5, s6}, {s7}} is shown in

Fig. 4.2 (right).

Definition 4.8 Any DTMC D and its quotient D/R under WPE relation R are

⊜-related, denoted by D ⊜ D/R, if and only if there exists a WPE relation R∗

defined on the disjoint union of state space S ⊎ S/R such that

∀C ∈ S/R, ∀s ∈ C =⇒ (s, C) ∈ R∗

.

Remark 4.9 Note that the probability matrix, say P ′′, on S ⊎ S/R is defined

by: P ′′(s, s′) = P (s, s′) if s, s′ ∈ S, P ′′(s, s′) = P ′(s, s′) if s, s′ ∈ S/R, and 0

otherwise.

Next, we show that any DTMC D and its quotient under WPE relation are

⊜-related.

Theorem 4.10 For any DTMC D and WPE R on S : D ⊜ D/R.

Note that union of WPEs is not necessarily a WPE. Intuitively it means that

the original DTMC D can be minimized in different ways. This can be observed

from the example given below.

Example 4.11 Consider the DTMC D shown in Fig. 4.3. In this case DTMC

D can be minimized in two different ways using WPEs as shown in Fig. 4.4. Here

DTMC D′ shown in Fig. 4.4 (left) is the quotient system for the WPE relation

R induced by set {{s0}, {s1}, {s2}, {s3, s4, s5}, {s6, s7, s8}, {s9}, {s10, s12}, {s14},

{s11, s13}}. DTMC D′′ shown in Fig. 4.4 (right) is the quotient system for the

WPE R′ induced by set {{s0}, {s1}, {s2}, {s3}, {s4, s5, s6, s7}, {s8}, {s9}, {s14},

{s10, s12}, {s11, s13}}. It is easy to check that R ∪R′ is not a WPE.

Repeated minimization. Next, we show that WPE can be used for re-

peated minimization of a DTMC. Intuitively, this means that if a quotient sys-

tem D′ has been obtained from a DTMC D under WPE R, then it might still be

possible to further reduce D′ to D′′ under some KME R′. Consider the DTMC

shown in Fig. 4.5 (left). DTMC in Fig. 4.5 (middle) is the quotient system for

the WPE induced by the partition {{s0}, {s1, s2}, {s3, s4}, {s5}, {s6}, {s7}, {s8}}.

DTMC in Fig. 4.5 (right) is the quotient of the DTMC Fig. 4.5 (middle) for the

47

4. WEIGHTED PROBABILISTIC EQUIVALENCE

{a}s0

s1 {b} s2 {c}

s3 {} s4 {} s5 {} s6 {} {}s7 s8 {}

1
2

1
2

1
3

1
3

1
3 1

3

1
3

1
3

s9 {d} s10 {a} s11 {b} s12 {a} s13 {b} s14 {c}

1 1 1 1 1 1

1 1 1 1 11

Figure 4.3: An example DTMC D

s′0 {a}

s′1 {b} s′2 {c}

s′5 {d} s′6 {a} s′7 {b} s′8 {c}

1
2

1
2

1 1 1 1

s′3 {} s′4 {}

1 1

1
3

1
3

1
3

1
3

1
3

1
3

s′′0 {a}

s′′1 {b} s′′2 {c}

s′′4 {}s′′3 {} s′′5 {}

s′′6 {d} s′′7 {a} s′′8 {b} s′′9 {c}

1
2

1
2

1
3

2
3

2
3

1
3

1

1
2

1
2 1

1 1 1 1

Figure 4.4: Union of WPEs is not necessarily a WPE

s0 {a}

s1 {b} s2 {b}

s3 {} s4 {} s5 {}

s6 {a} s7 {b} s8 {c}

1
2

1
2

1
2

1
2

1

111

1 1 1

s′0 {a}

s′1 {b}

s′2 {} s′3 {}

s′4 {a} s′5 {b} s′6 {c}

1 1 1

1

1
2

1
2

1
2

1
2 1

s′′0 {a}

s′′1 {b}

s′′2 {}

s′′3 {a} s′′4 {b} s′′5 {c}

1

1

1
4

1
4

1
2

1 1 1

Figure 4.5: Repeated minimization

48

4.1 Weighted Probabilistic Equivalence

WPE induced by the parttion {{s′0}, {s
′
1}, {s

′
2, s

′
3}, {s

′
4}, {s

′
5}, {s

′
6}}. It is easy to

check that s3, s4, s5 in the original system cannot be merged in one shot, since

s1 can reach states labeled with atomic propositions a and b in two steps via s3
and s4 respectively, but s2 cannot reach such states. This is no longer a prob-

lem once s1 and s2 are merged as shown in Fig. 4.5 (middle) as s′2, s
′
3 now have

a single predecessor, i.e., s′1. Next, we investigate the relationship of WPE to

bisimulation.

4.1.2 WPE vs. Bisimulation

Definition 4.12 (Bisimulation [10, 104]) Equivalence R on S is a probabilis-

tic bisimulation on D if for any (s1, s2) ∈ R we have: L(s1) = L(s2), and

P (s1, C) = P (s2, C) for all C in S/R. s1 and s2 are bisimilar, denoted s1 ∼ s2,

if (s1, s2) ∈ R for some bisimulation R.

These conditions require that any two bisimilar states are equally labeled and

have identical cumulative probabilities to move to any equivalence class C ∈ S/R.

Note that these conditions coincide with lumping.

Lemma 4.13 ∼ is strictly finer than WPE.

From [10], we know that ∼ coincides with probabilistic simulation equivalence for

DTMCs. Therefore we get the following corollary:

Corollary 4.14 Probabilistic simulation equivalence is strictly finer than WPE.

Remark 4.15 From Fig. 4.2 it can be observed that states s5 and s6 cannot be

merged under ∼, as s6 can move to s0 but there is no direct successor s of s5 with

s ∼ s0 (Note that L(s0) 6= L(s7)). Similarly, s2 and s3 cannot be merged under

∼. This shows that WPE ;∼.

4.1.3 Preservation of ω-Regular Properties

In this section we investigate the linear-time properties for DTMCs that are

preserved by WPE. We study a more general class of linear-time properties,

i.e., ω-regular properties that are defined over traces, i.e., infinite sequence of

symbols. These include, e.g., properties of the form: every time the process

tries to send a message, it eventually succeeds in sending it. Note that the

preservation of ω-regular properties implies the preservation of LTL formulas and

49

4. WEIGHTED PROBABILISTIC EQUIVALENCE

transient-state probabilities [9]. These preservation results can be exploited for

model checking, by reducing DTMC models under consideration prior to carrying

out the verification, provided there is an algorithm. This may speed up the

verification as (mostly) a smaller model needs to be checked.

In the context of branching-time equivalence relations, probabilistic bisimu-

lation coincides with the logical equivalence of the branching-time logic’s PCTL

and PCTL* [4, 49, 73]. PCTL* and ω-regular properties have incomparable ex-

pressiveness [9].

Definition 4.16 (ω-regular language) A language L ⊆ (2AP)ω is called ω-

regular if L = Lω(G) for some ω-regular expression G over 2AP .

For instance, the language consisting of all infinite words over {a, b} that contain

only finitely many a’s is ω-regular since it is given by the ω-regular expression

(a+ b)∗bω. ω-regular languages possess several closure properties: they are closed

under union, intersection and complementation [150, pp. 61-77], [9, pp. 172-198].

Definition 4.17 (ω-regular property) Linear-time property P over AP is

called ω-regular if P is an ω-regular language over the alphabet 2AP .

Theorem 4.18 [150, pp. 53-59] The class of languages accepted by DRAs agrees

with the class of ω-regular languages.

Intuitively, this theorem says that any property P that can be expressed using

ω-regular language L is also expressible using some DRA A and vice versa. Next

we show that the probability of satisfying a DRA specification for any DTMC

coincides with the probability for its quotient under WPE.

Definition 4.19 (DRA) A deterministic Rabin automaton (DRA) is a tuple

A = (Q,Σ, δ,q0, Acc) where:

• Q is a nonempty finite set of locations,

• Σ is a finite alphabet,

• δ : Q× Σ→ Q is the transition function,

• q0 is the initial location,

• Acc ⊆ 2Q × 2Q where:

the run q0q1q2 . . . is accepting if there exists a pair (Li, Ki) ∈ Acc such that

(∃n ≥ 0.∀m ≥ n.qm /∈ Li) ∧ (∃∞n ≥ 0.qn ∈ Ki).

50

4.1 Weighted Probabilistic Equivalence

q0 q1

a

¬a

¬a
a

Figure 4.6: An example DRA

Intuitively a DRA is a finite-state automaton with the same components as non-

deterministic Büchi automaton (NBA) [150, pp. 3-7], [9, pp. 173-178] except for

the acceptance condition. The acceptance condition of a DRA is given by a set

of pairs of states: {(Li, Ki)|0 < i ≤ k} with Li, Ki ⊆ Q. A run of a DRA is

accepting if for some pair (Li, Ki) the states in Li are visited finitely often and

some states (at least one) in Ki infinitely often. A DRA is deterministic since

it has a single initial state and the successor location of a transition is uniquely

determined. The edge q a−→ q′ asserts that the DRA A moves from location q

to q′ when the input symbol is a. An infinite path of DRA A has the form

ρ = q0
a0−−→ q1

a1−−→

Example 4.20 Consider the DRA A in Fig. 4.6. Let AP = {a}, Σ = {{a},∅},
Q = {q0, q1}, Acc = {({q0}, {q1})}, and q0 is the initial state. The runs accepted

by A are those which eventually stay forever in state q1. The ω-regular property

expressed by this DRA is given by: eventually forever a (32a).

Before defining the probability of paths in DTMC D that are accepted by DRA

A, we first define two auxiliary concepts namely product Markov chain (D ⊗A)

and accepting BSCCs in D ⊗A.

Definition 4.21 (Product Markov chain) [9, pp. 802-803] Let D =

(S, P, AP, L, s0) be a DTMC and A = (Q, 2AP , δ, q0, Acc) be a DRA. The product

D ⊗A is the Markov chain:

D ⊗A = (S ×Q,P ′, 〈s0, q〉, AP
′, L′)

where Li, Ki serve as atomic propositions in D ⊗ A if the acceptance condition

of A is Acc = {(L1, K1), . . . , (Lk, Kk)}. The set of these atomic propositions is

AP ′. The labeling function L′ in D⊗A is: if H ∈ {L1, . . . , Lk, K1 . . . , Kk}, then

H ∈ L′(〈s, q〉) if and only if q ∈ H. The initial state of D⊗A, i.e., 〈s0, q〉 is s.t.

q = δ(q0, L(s0)). The transition probabilities in D ⊗A are given by:

P ′(〈s, q〉, 〈s′, q′〉) =

{
P (s, s′) if q′ = δ(q, L(s′))

0 otherwise.

51

4. WEIGHTED PROBABILISTIC EQUIVALENCE

The product Markov chain is intuitively the synchronous product of DTMC D

and DRA A s.t. transition s−→ s′ in D is matched with edge q L(s)−−−→ q′.

Definition 4.22 (Accepting BSCCs in D ⊗A) A BSCC T in D ⊗ A is ac-

cepting if and only if there exists some index i ∈ {1, . . . , k} such that

T ∩ (S × Li) = ∅ and T ∩ (S ×Ki) 6= ∅.

Let us formally define the paths of DTMC D that are accepted by DRA A.

Definition 4.23 (DTMC paths accepted by a DRA) Let DTMC D =

(S, P, AP, L, s0) and DRA A = (Q, 2AP , δ, q0, Acc). The DTMC path π =

s0−→ s1−→ s2 . . . is accepted by A if there exists a corresponding DRA path

q0
L(s0)−−−−→ q1

L(s1)−−−−→ q2 . . .

such that for path 〈s0, q1〉〈s1, q2〉 . . . in D⊗A, 〈si, qi+1〉 ∈ T for some i ≥ 0, where

T is an accepting BSCC in D ⊗A.

Since the product Markov chain is also a DTMC it will eventually reach a

BSCC and visits all its states infinitely often. Let PathsD(A) = {π ∈

PathsD|π is accepted by A}. Note that for any DTMC D and DRA A, the set

PathsD(A) is measurable [9, pp. 804-805].

Definition 4.24 For DTMC D and DRA A, let Pr(D |= A) = Pr
(
PathsD(A)

)
.

Stated in words, Pr(D |= A) denotes the probability of all the paths in DTMC

D that are accepted by DRA A.

Theorem 4.25 (Preservation of DRA specifications) For any DTMC D, a

WPE R on D and DRA A:

Pr(D |= A) = Pr(D/R |= A).

Intuitively this theorem says that the probability of all the paths in Markov chain

D satisfying DRA A equals the probability of all the paths in D/R that satisfy

A.

For a DTMC D, two types of state probabilities are distinguished: transient-

state probabilities where the system is considered at a given discrete time step n,

and steady-state probabilities where the system is considered ”on the long run”,

i.e., when an equilibrium has been reached.

52

4.2 Synchronous Parallel Composition

Definition 4.26 (Transient-state probability) The probability of being in

state s′ at time instant n ∈ N starting from s is defined as follows:

T (s, s′, n) = Prs{π ∈ Paths(s)|π[n] = s′}

Definition 4.27 (Steady-state probability) The probability of being in state

s′ in the long run starting from s is defined as follows:

S(s, s′) = lim
n→∞

Prs{π ∈ Paths(s)|π@n = s′}.

Note that we only compute steady-state probability on DTMCs for which the

limit does exist. For ergodic DTMCs the initial state does not have any influence

on the value of S(s, s′), but we keep this notation as in the case of reducible

DTMCs the initial state has influence on this value.

Corollary 4.28 WPE preserves transient-state probabilities.

In Section 4.3, we also show that WPE preserves steady-state probabilities.

4.2 Synchronous Parallel Composition

In this section, we show that WPE is compositional w.r.t. synchronous paral-

lel composition of DTMCs [151, 152]. This result is useful for analyzing syn-

chronous distributed algorithms and synchronous hardware circuits where pro-

cesses progress in a lock-step fashion. For example we want to compose a DTMC

D1 with DTMC D2 and these DTMCs have n and m states respectively. Then

the resulting DTMC D1 ⊗ D2 can have n · m states (in the worst case) so it is

worthwhile to replace this composition by a smaller DTMC D′ ⊜-related to D1.

An interesting and practically relevant case study of failure behavior of Negated

AND (NAND) multiplexing has been investigated in [121]. In that paper, the

authors construct a PRISM module for each of the N NAND gates in the stage,

and then combining these modules through synchronous parallel composition.

Synchronous parallel composition operator (⊗) for DTMCs is formally defined

as:

Definition 4.29 (Synchronous parallel composition [151, 152]) Let D1 =

(S1, P1, AP1, L1, s01) and D2 = (S2, P2, AP2, L2, s02) be two DTMCs. We say that

s pi−−→ i s
′ if pi = Pi(s, s

′) > 0 for i = 1, 2. The synchronous parallel composition

53

4. WEIGHTED PROBABILISTIC EQUIVALENCE

of D1 and D2 is D1⊗D2=(S1×S2, P, AP1∪AP2, L, (s01, s02)), where L((s1, s2)) =

L(s1) ∪ L(s2), and P is given as follows:

s1
p1−−→ 1 s′1 ∧ s2

p2−−→ 2 s′2
(s1, s2)

p1·p2−−−→ (s′1, s
′
2)

.

Intuitively, both Markov chains proceed in a lock-step fashion. Transition proba-

bilities thus result in the product of individual transition probabilities. Note that

⊗ is commutative and associative.

Theorem 4.30 Let D be a DTMC and R a WPE on D. Then for any DTMC

D1:

(D ⊗D1) ⊜ (D/R ⊗D1).

4.3 Reward Properties

Rewards are costs or bonuses associated to states in S. Discrete-time Markov

reward models are useful for analyzing for instance the average behavior of ex-

ecutions in DTMCs. For example in a battery-powered embedded system, a

measure of interest is the expected power consumption during operation. An-

other example is a communication system where a sender and a receiver can

transfer messages via an unreliable channel, in this case an interesting measure

of interest is the expected number of attempts to send a message until correct

delivery. An interesting case study where the behavior of IPv4 zeroconf protocol

has been modeled as an DMRM is presented in [2, 22]. A discrete-time Markov

reward model is a DTMC where the states are augmented with rewards, which

are non-negative real-valued numbers. The reward associated with a state s is

earned when s is left. More formally, DMRMMD is defined as follows:

Definition 4.31 ([2, 9]) A discrete-time Markov reward model (DMRM)MD

is a pair (D, rew) with DTMC D = (S, P, AP, L, s0) and rew : S → R≥0 a reward

assignment function that associates a non-negative real reward to any state in S.

Real number rew(s) denote the reward earned on leaving state s.

The cumulative reward earned along a finite path π of length n is defined as

rew(π) =
∑n−1

i=0 rew(si). As rewards are earned on leaving a state, rew(sn) is not

considered in the cumulative reward of π.

54

4.3 Reward Properties

Example 4.32 Consider the DTMC D in Fig. 4.2 (left) with reward struc-

ture rew defined by rew(s0) = 1, rew(s1) = rew(s2) = rew(s3) = 2,

rew(s4) = rew(s5) = rew(s6) = 3 and rew(s7) = 0. Then the cumula-

tive reward earned along the finite path π = s0−→ s1−→ s5−→ s7 is given by

rew(s0) + rew(s1) + rew(s5) = 6.

Reward-extended LTL (RLTL)

Next we define the syntax and semantics of reward-extended LTL (RLTL).

Definition 4.33 (Syntax of RLTL)

ϕ ::= tt | a | ¬ϕ | ϕ ∧ ϕ | ©J ϕ | ϕUJ ϕ

where J ⊆ R≥0 is a nonempty interval with rational bounds, and a ∈ AP .

Definition 4.34 (Satisfaction relation for RLTL) Given an infinite path π

in DMRM MD, the satisfaction relation for RLTL, denoted by |=, is defined

inductively by:

π |= tt

π |= a iff a ∈ L(π[0])

π |= ¬ϕ iff not π |= ϕ

π |= ϕ1 ∧ ϕ2 iff π |= ϕ1 and π |= ϕ2

π |= ©J ϕ iff π[1···] |= ϕ ∧ rew(π[0]) ∈ J

π |= ϕ1UJ ϕ2 iff ∃j ≥ 0. (π[j···] |= ϕ2 ∧

∀0 ≤ i < j. π[i···] |= ϕ1 ∧
∑j−1

i=0 rew(π[i]) ∈ J).

The semantics for the propositional fragment is straightforward. Path π satisfies

©Jϕ if the path starting from the next state satisfies ϕ and the reward earned

along π up to the current state belongs to the interval J . Path π satisfies ϕ1UJ ϕ2

whenever it satisfies ϕ1Uϕ2 and the cumulative reward earned along π upto

reaching ϕ2 belongs to the interval J . The standard temporal operators like 3

(“eventually”) and its reward based variant 3J are derived in the following way:

3Jϕ = ttUJ ϕ. Similarly, 2 (“globally”) and its reward based variant are derived

as follows:

2Jϕ = ¬(3J ¬ϕ).

Example 4.35 RLTL can be used to specify various interesting properties:

55

4. WEIGHTED PROBABILISTIC EQUIVALENCE

• 2(down → 3[0,5]up), which asserts that whenever the system is down, it

should be eventually up again while accumulating a reward between 0 and 5.

• 2(down → alarmU[5,15] up), which asserts that whenever the system is

down, an alarm should ring until it is up again and the reward accumu-

lated should be between 5 and 15.

Definition 4.36 (Probability of RLTL formulas) The probability that state

s of MD satisfies RLTL formula ϕ refers to the probability for the sets of paths

for which that formula holds:

Pr(s |= ϕ) = Pr
s
(π ∈ Paths(s) | π |= ϕ).

Definition 4.37 (WPE for DMRM) To accommodate the notion of rewards

in the definition of WPE we extend the conditions in Def. 4.4 as follows:

∀(s1, s2) ∈ R it holds : rew(s1) = rew(s2).

Note that in the quotient system for any C ∈ S/R, rew(C) = rew(s) where

s ∈ C.

Definition 4.38 (Expected reward for RLTL formulas) For state s and

RLTL formula ϕ, the expected reward for s |= ϕ is defined as follows:

E(s |= ϕ) =
∞∑

r=0

r · Pr
s
{π ∈ Paths(s) | π |= ϕ ∧ rew(π) = r}.

Example 4.39 Consider the DTMC D in Fig. 4.2 (left). Let the labeling func-

tion and reward structure for D is same as in Example 2.12 and Example 4.32

respectively. Let ϕ = ((c ∨ b)U[0,5]a), then E(ϕ) is as follows:

E(ϕ) = Prs0(Cyl(s0, s1, s4)) · rew(s0−→ s1−→ s4)

+Prs0(Cyl(s0, s1, s5)) · rew(s0−→ s1−→ s5)

+Prs0(Cyl(s0, s2, s5)) · rew(s0−→ s2−→ s5)

+Prs0(Cyl(s0, s2, s6)) · rew(s0−→ s2−→ s6)

+Prs0(Cyl(s0, s2, s4)) · rew(s0−→ s2−→ s4)

+Prs0(Cyl(s0, s3, s5)) · rew(s0−→ s3−→ s5)

+Prs0(Cyl(s0, s3, s6)) · rew(s0−→ s3−→ s6) =
123

56

.

56

4.4 Related Work

Theorem 4.40 LetMD be a DMRM and R be a WPE onMD. Then for any

RLTL formula ϕ:

E(MD |= ϕ) = E(MD/R |= ϕ).

Definition 4.41 (Instantaneous reward) The expected instantaneous reward

earned by being in state s′ at time instant n starting from state s is defined as

follows:

irew(s, s′, n) = T (s, s′, n) · rew(s′).

Theorem 4.42 LetMD be a DMRM and R be a WPE onMD. Then we have:

∑

s′∈C

irew(s0, s
′, n) = irew(s′0, C, n),

where C ∈ S/R and s′0 is the initial state ofMD/R.

Definition 4.43 (Long-run reward) The expected long-run reward earned by

being in state s′ starting from s is defined as follows:

lrew(s, s′) = S(s, s′) · rew(s′).

Theorem 4.44 LetMD be a DMRM and R be a WPE onMD. Then we have:

∑

s′∈C

lrew(s0, s
′) = lrew(s′0, C),

where C ∈ S/R and s′0 is the initial state ofMD/R.

Multiple rewards. Note that the logic RLTL can be easily extended such

that properties over models equipped with multiple reward structures can be

expressed [2]. The preservation results presented in this section also carry over to

multiple reward models.

4.4 Related Work

Various branching-time relations on DTMCs have been defined such as weak

and strong variants of bisimulation equivalence and simulation pre-orders [29,

66, 86, 87, 88, 93, 104]. Their compatibility to (fragments of) probabilistic vari-

ants of Computation Tree Logic (PCTL) [73] has been thoroughly investigated

[10]. More specifically, strong bisimulation for DTMCs coincides with equivalence

57

4. WEIGHTED PROBABILISTIC EQUIVALENCE

for PCTL. Similarly, weak bisimulation for DTMCs coincides with equivalence

for PCTL without next operator. Note that strong bisimulation coincides with

strong simulation equivalence for DTMCs. In the weak setting, weak bisimula-

tion coincides with weak simulation equivalence for DTMCs. In addition, it has

been proved that strong simulation and weak simulation for DTMCs, preserve a

safe fragment of PCTL and PCTL without next operator, respectively [10].

Probabilistic model checking tools such as Probabilistic Symbolic Model

Checker (PRISM) [98] and Markov Reward Model Checker (MRMC) [89] have

been successfully used to model check PCTL properties on DTMCs. MRMC

supports bisimulation based minimization for DTMCs.

In the linear-time setting, probabilistic trace equivalences [80, 139] and prob-

abilistic testing equivalence [33, 37, 140, 141] have been defined for discrete-time

or time-abstract probabilistic models. For the continuous case, Markovian testing

equivalence has been proposed in [16]. In [157] the Markovian variants of several

linear-time equivalences have been extensively investigated.

4.5 Conclusions

This chapter defines an equivalence relation (what we refer to as) weighted prob-

abilistic equivalence (WPE) on DTMCs. The main contributions of this paper

are as follows:

• We show that ω-regular properties specified on DTMCs are preserved under

WPE quotienting.

• Next, we show that WPE is compositional w.r.t. synchronous parallel com-

position.

• Finally, these preservation results are extended to Markov reward models.

58

Chapter 5

Weighted Lumpability

This chapter focuses on a notion of lumpability that allows for a more aggressive

state-space aggregation than ordinary lumpability for CTMCs [146].

As in the case of WPE, weighted lumpability (WL, for short) also considers

a two-step perspective. Before explaining the main principle of WL, let us recall

that every transition of a CTMC is labeled with a positive real number λ. This

parameter indicates the rate of the exponential distribution, i.e., the probability

of a λ-labeled transition to be enabled within t time units equals 1 − e−λ·t. In

fact, the average residence time in a state is determined as the reciprocal of the

sum of the rates of its outgoing transitions. Roughly speaking, two states s and

s′ are weighted lumpable if for each pair of their direct predecessors the weighted

rate to directly move to any equivalence class via the equivalence class [s] = [s′]

coincides. The main principle is captured in Fig. 5.1 where λ1,1+λ1,2 = λ2,1+λ2,2,

and λC1
= p1·λ1,1, λC2

= p1·λ1,2 + p2·λ2,1, λC3
= p2·λ2,2 with p1 = λ1

λ1+λ2
and

p2 = λ2

λ1+λ2
. Here states s1 and s2 are weighted lumpable, as the probability to

move from s0 to all the states in the equivalence class Ci (for i=1, 2, 3) via all the

states in [s1] is equal. This allows for the aggregation of s1 and s2, cf. the right

CTMC in Fig. 5.1.

We define WL as a structural notion on CTMCs. We define the quotient

under WL, and show that any CTMC is related to its quotient under WL. Our

structural definition allows for a simple proof that WL is (strictly) coarser than

bisimulation, i.e., ordinary lumpability. Our main focus and motivation, how-

ever, is to investigate the preservation of linear real-time objectives under WL.

We first show that the probability of satisfying a deterministic timed automaton

(DTA) [1] specification for any CTMC coincides with that probability for its quo-

tient. This allows for an a priori state-space reduction in linear real-time CTMC

59

5. WEIGHTED LUMPABILITY

s0

s1 s2

C1 C2 C3

λ1λ2

λ1,1

λ1,2
λ2,1

λ2,2

s′0

s′1

C1 C2 C3

λ1 + λ2

λC1

λC2

λC3

Figure 5.1: CTMC aggregation under weighted lumpability

model checking [12, 31], and implies the preservation of “flat” (i.e., unnested)

timed reachability properties and CSLTA formulas [50]. In addition, we study

metric temporal logic (MTL) [95], a real-time variant of LTL that is typically

used for timed automata (and not for CTMCs). DTA and MTL have incom-

parable expressiveness [9, 24, 109]. It is shown that WL-quotienting of CTMCs

preserves the probability to satisfy any MTL formula. As a prerequisite result,

we show that MTL formulas (interpreted on CTMCs) are measurable. We also

discuss some case studies showing that WL can substantially reduce the size of

the CTMC state space.

Organisation of this chapter. Section 5.1 defines weighted lumpability,

treats some basic properties and discusses the preservation of linear real-time

properties. Section 5.2 presents some case studies. Section 5.3 discusses related

work. Finally, Section 5.4 concludes the chapter.

5.1 Weighted Lumpability

Before defining weighted lumpability, we first define some auxiliary concepts. All

definitions in this section are relative to a CTMC C = (S,R,AP, L, s0).

Definition 5.1 (Weighted rate) For s ∈ S, and C,D ⊆ S, the function wr :

S × 2S × 2S → R≥0 is defined by:

wr(s, C,D) =
∑

s′∈C

P (s, s′, C) · R(s′, D)

where R(s′, D) =
∑

s′′∈D R(s′, s′′) and P (s, s′, C) is defined as before (Def. 4.1).

Intuitively, wr(s, C,D) is the (weighted) rate to move from s to some states

in D in two steps via states of C. Since P (s′, D) = R(s′,D)
E(s′)

, wr(s, C,D) equals
∑

s′∈C P (s, s′, C) · P (s′, D) · E(s′).

60

5.1 Weighted Lumpability

Example 5.2 Consider the example in Fig. 5.2(a). Let C = {s3, s4, s5}. Then

P (s1, s3, C) = 1/4, P (s1, s4, C) = 3/4, P (s2, s4, C) = 3/4, and P (s2, s5, C) =

1/4.

Example 5.3 Consider the CTMC in Fig. 5.2(a). Let D = {s6}. Then

wr(s1, C,D)

= P (s1, s3, C)
︸ ︷︷ ︸

= 1

4

·R(s3, D)
︸ ︷︷ ︸

=2

+P (s1, s4, C)
︸ ︷︷ ︸

= 3

4

·R(s4, D)
︸ ︷︷ ︸

=0

=
1

2
.

and wr(s2, C,D)

= P (s2, s4, C)
︸ ︷︷ ︸

= 3

4

·R(s4, D)
︸ ︷︷ ︸

=0

+P (s2, s5, C)
︸ ︷︷ ︸

= 1

4

·R(s5, D)
︸ ︷︷ ︸

=2

=
1

2
.

Similarly, for D = {s7}, we get wr(s1, C,D)

= P (s1, s3, C)
︸ ︷︷ ︸

= 1

4

·R(s3, D)
︸ ︷︷ ︸

=0

+P (s1, s4, C)
︸ ︷︷ ︸

= 3

4

·R(s4, D)
︸ ︷︷ ︸

=2

=
3

2
.

and wr(s2, C,D)

= P (s2, s4, C)
︸ ︷︷ ︸

= 3

4

·R(s4, D)
︸ ︷︷ ︸

=2

+P (s2, s5, C)
︸ ︷︷ ︸

= 1

4

·R(s5, D)
︸ ︷︷ ︸

=0

=
3

2
.

The above ingredients allow for the following definition of weighted lumpabil-

ity, the central notion in this chapter.

Definition 5.4 (WL) Equivalence R on S is a weighted lumping (WL) on C if

we have:

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2) and E(s1) = E(s2), and

2. ∀C,D ∈ S/R and ∀s′, s′′ ∈ Pred(C) it holds: wr(s′, C,D) = wr(s′′, C,D).

States s1, s2 are weighted lumpable, denoted by s1 ∼= s2, if (s1, s2) ∈ R for some

WL R.

61

5. WEIGHTED LUMPABILITY

s0 ∅

s1 ∅ s2 ∅

s3 ∅ s4 ∅ s5 ∅

s6 {a} s7 {b}

1
4

1 3
3

1

22
2

C

7

6

4

(a) C

s′0 ∅

s′1 ∅ s′2 ∅

s′3 ∅

s′4 {a} s′5 {b}

4
1

4 4

1/2

3/2

7

6

4

(b) C/R

Figure 5.2: (a) A CTMC and (b) its quotient under weighted lumpability.

The first condition asserts that s1 and s2 are equally labeled and have identical

exit rates. The second condition requires that for any two equivalence classes

C,D ∈ S/R, where S/R denotes the set consisting of all R-equivalence classes,

the weighted rate of going from any two predecessors of C to D via any state in

C must be equal. Note that, by definition, any WL is an equivalence relation.

Weighted lumpability coincides with Bernardo’s notion of T-lumpability [16, 17]

that is defined in an axiomatic manner for action-labeled CTMCs. Roughly

speaking, two states are T-lumpable if their expected delays w.r.t. to any test

process, put in parallel to the CTMC, coincide for both the states.

Example 5.5 For the CTMC in Fig. 5.2(a), the equivalence relation induced by

the partitioning {{s0}, {s1}, {s2}, {s3, s4, s5}, {s6}, {s7}} is a WL relation.

5.1.1 Quotient CTMC

Definition 5.6 (Quotient CTMC) For WL relation R on CTMC C, the quo-

tient CTMC C/R is defined by C/R = (S/R, R
′, AP, L′, s′0) where:

• S/R is the set of all equivalence classes under R,

• R′(C,D) = wr(s′, C,D) where C,D ∈ S/R and s′ ∈ Pred(C),

• L′(C) = L(s), where s ∈ C and

• s′0 = C where s0 ∈ C = [s0]R.

Note that R′(C,D) is well-defined as for any predecessors s′, s′′ of C it fol-

lows wr(s′, C,D) = wr(s′′, C,D). Similarly, L′ is well-defined as states in any

equivalence class C are equally labeled.

62

5.1 Weighted Lumpability

Example 5.7 For the CTMC C in Fig. 5.2(a), the quotient C/R under the WL

R induced by the partitioning {{s0}, {s1}, {s2}, {s3, s4, s5}, {s6}, {s7}} is shown

in Fig. 5.2(b).

Next, we show that any CTMC C and its quotient under WL relation are
∼=-related.

Definition 5.8 Any CTMC C and its quotient C/R under WL R are ∼=-related,

denoted by C ∼= C/R, if and only if there exists a WL relation R∗ defined on the

disjoint union of state space S ⊎ S/R such that

∀C ∈ S/R, ∀s ∈ C =⇒ (s, C) ∈ R∗

.

Theorem 5.9 For any CTMC C and WL R on S : C ∼= C/R.

Note that union of WL relations is not necessarily a WL relation. Intuitively

it means that the original CTMC C can be reduced in different ways.

Example 5.10 Consider the CTMC C shown in Fig. 5.3. In this case CTMC

C can be minimized in two different ways as shown in Fig. 5.4. CTMC C′

shown in Fig. 5.4 (left) is the quotient system for the WL relation R induced

by set {{s0}, {s1}, {s2}, {s3, s4, s5}, {s6, s7, s8}, {s9}, {s14}, {s10, s12}, {s11, s13}}.

CTMC C′′ shown in Fig. 5.4 (right) is the quotient system for the WL R′ in-

duced by set {{s0}, {s1}, {s2}, {s3}, {s4, s5, s6, s7}, {s8}, {s9}, {s14}, {s10, s12},

{s11, s13}}. It is easy to check that R∪R′ is not a WL relation.

Repeated minimization. Next, we show that WL can be used for repeated

minimization of a CTMC. Intuitively, this means that if a quotient system C′ has

been obtained from a CTMC C under WL R, then it might still be possible to

further reduce C′ to C′′ under some WL equivalence R′. Consider the CTMC

shown in Fig. 5.5 (left). CTMC in Fig. 5.5 (middle) is the quotient system for

the WL induced by the partition {{s0}, {s1, s2}, {s3, s4}, {s5}, {s6}, {s7}, {s8}}.

CTMC in Fig. 5.5 (right) is the quotient of the CTMC Fig. 5.5 (middle) for the

WL induced by the parttion {{s′0}, {s
′
1}, {s

′
2, s

′
3}, {s

′
4}, {s

′
5}, {s

′
6}}. It is easy to

check that s3, s4, s5 in the original system cannot be merged in one shot, since s1
can reach states labeled with atomic propositions a and b in two steps via s3 and

s4 respectively, but s2 cannot reach such states. This is no longer a problem once

s1 and s2 are merged as shown in Fig. 5.5 (middle) as s′2, s
′
3 now have a single

predecessor, i.e., s′1.

63

5. WEIGHTED LUMPABILITY

{a}s0

s1 {b} s2 {c}

s3 {} s4 {} s5 {} s6 {} {}s7 s8 {}

1
3

2 2 2 4 4 4

s9 {d} s10 {a} s11 {b} s12 {a} s13 {b} s14 {c}

1 1 1 1 1 1

1 1 1 1 11

Figure 5.3: An example CTMC C

s′0 {a}

s′1 {b} s′2 {c}

s′5 {d} s′6 {a} s′7 {b} s′8 {c}

1
3

1 1 1 1

s′3 {} s′4 {}

6 12

1
3

1
3

1
3

1
3

1
3

1
3

s′′0 {a}

s′′1 {b} s′′2 {c}

s′′4 {}s′′3 {} s′′5 {}

s′′6 {d} s′′7 {a} s′′8 {b} s′′9 {c}

1
3

2
4

8 4

1

1
2

1
2 1

1 1 1 1

Figure 5.4: Union of WL relations is not necessarily a WL relation

s0 {a}

s1 {b} s2 {b}

s3 {} s4 {} s5 {}

s6 {a} s7 {b} s8 {c}

6

2
2

4

4

111

1 1 1

s′0 {a}

s′1 {b}

s′2 {} s′3 {}

s′4 {a} s′5 {b} s′6 {c}

1 1 1

10

12
5

8
5

1
2

1
2 1

s′′0 {a}

s′′1 {b}

s′′2 {}

s′′3 {a} s′′4 {b} s′′5 {c}

10

4

3
10

3
10

2
5

1 1 1

Figure 5.5: Repeated minimization

64

5.1 Weighted Lumpability

5.1.2 WL vs. Bisimulation

Next, we investigate the relationship of WL to bisimulation, i.e., ordinary lump-

ing [10, 29]. This relationship is not novel; it is also given for T-lumpability in

[16], but its proof is now quite simple thanks to the simplicity of the definition

of WL.

Definition 5.11 (Bisimulation [10]) Equivalence R on S is a stochastic

bisimulation on C if for any (s1, s2) ∈ R we have: L(s1) = L(s2), and

R(s1, C) = R(s2, C) for all C in S/R. s1 and s2 are bisimilar, denoted s1 ∼ s2,

if (s1, s2) ∈ R for some bisimulation R.

These conditions require that any two bisimilar states are equally labeled

and have identical cumulative rates to move to any equivalence class C. Note

that as R(s, C) = P (s, C) · E(s), the condition on the cumulative rates can be

reformulated as P (s1, C) = P (s2, C) for all C ∈ S/R and E(s1) = E(s2).

Lemma 5.12 ∼ is strictly finer than WL.

This lemma says that state space reduction under WL can potentially be

larger than for strong stochastic bisimilarity. Consider the equivalence class

C = {s3, s4, s5} in Fig. 5.2 (left). Here s3, s4 are WL related, but s3 6∼ s4 since s3
can reach an a-state while s4 cannot. From [10], we know that ∼ coincides with

stochastic simulation equivalence for CTMCs. Therefore we get the following

corollary:

Corollary 5.13 Stochastic simulation equivalence is strictly finer than WL.

5.1.3 Preservation of DTA Specifications

Bisimulation equivalence coincides with the logical equivalence of the branching-

time logic CSL [10], a probabilistic real-time variant of CTL [11]. This implies

that bisimilar states satisfy the same CSL formulas, a property that—thanks to

efficient minimisation algorithms [48]— is exploited by model checkers to minimise

the state space prior to verification. In order to investigate the kind of real-time

properties for CTMCs that are preserved by WL, we study in this section linear

real-time objectives that are given by Deterministic Timed Automata (DTA) [1].

These include, e.g., properties of the form: what is the probability to reach a

given target state within the deadline, while avoiding “forbidden” states and not

65

5. WEIGHTED LUMPABILITY

staying too long in any of the “dangerous” states on the way. Such properties

can neither be expressed in CSL nor in dialects thereof [50]. A model-checking

algorithm that verifies a CTMC against a DTA specification has recently been

developed [31]; first experimental results are provided in [12]. The key issue is to

compute the probability of all CTMC paths that are accepted by a DTA. In this

section, we will deal with finite acceptance conditions, i.e., a DTA accepts the

timed path if one of its final locations is reached. The results, however, also carry

over to Muller acceptance conditions.

Deterministic timed automata. A DTA is a finite-state automaton

equipped with a finite set of real-valued variables, called clocks. Clocks increase

implicitly, all at the same pace, they can be inspected (in guards) and can be

reset to the value zero. Let X be a finite set of clocks ranged over by x and

y. A clock constraint g over set X is either of the form x ⊲⊳ c with c ∈ N and

⊲⊳∈ {<,≤, >,≥}, or of the form x− y ⊲⊳ c, or a conjunction of clock constraints.

Let CC(X) denote the set of clock constraints over X .

Definition 5.14 (DTA) A deterministic timed automaton (DTA) is a tuple

A = (Σ,X , Q, q0, F,→) where:

• Σ is a finite alphabet,

• X is a finite set of clocks,

• Q is a nonempty finite set of locations with the initial location q0 ∈ Q,

• F ⊆ Q is a set of accepting (or final) locations,

• → ⊆ Q× Σ× CC(X)× 2X ×Q is the edge relation satisfying:

(q a,g,X−−−−→ q′ and q a,g′,X′

−−−−−→ q′′ with g 6= g′) implies g ∩ g′ = ∅.

Intuitively, the edge q a,g,X−−−−→ q′ asserts that the DTA A can move from location

q to q′ when the input symbol is a and the guard g holds, while the clocks in

X should be reset when entering q′ (all other clocks keep their value). DTA

are deterministic as they have a single initial location, and outgoing edges of a

location labeled with the same input symbol are required to have disjoint guards.

In this way, the next location is uniquely determined for a given location and a

given set of clock values. In case no guard is satisfied in a location for a given

clock valuation, time can progress. If the advance of time will never reach a

66

5.1 Weighted Lumpability

situation in which a guard holds, the DTA will stay in that location ad infinitum.

Note that DTA do not have location invariants.

The semantics of a DTA is given by an infinite-state transition system. We

do not provide the full semantics, cf. [1], but we define the notion of paths, i.e.,

runs or executions of a DTA. This is done using some auxiliary notions. A clock

valuation η for a set X of clocks is a function η : X → R≥0, assigning to each

clock x ∈ X its current value η(x). The clock valuation η over X satisfies the

clock constraint g, denoted η |= g, iff the values of the clocks under η fulfill

g. For instance, η |= x − y > c iff η(x) − η(y) > c. Other cases are defined

analogously. For d ∈ R≥0, η+d denotes the clock valuation where all clocks of

η are increased by d. That is, (η+d)(x) = η(x)+d for all clocks x ∈ X . Clock

reset for a subset X ⊆ X , denoted by η[X := 0], is the valuation η′ defined

by: ∀x ∈ X.η′(x) := 0 and ∀x /∈ X.η′(x) := η(x). We denote the valuation

that assigns 0 to all the clocks by ~0. An (infinite) path of DTA A has the form

ρ = q0
a0,t0−−−→ q1

a1,t1−−−→ . . . such that η0 = ~0, and for all j > 0, it holds tj > 0,

ηj+tj |= gj, ηj+1 = (ηj+tj)[Xj := 0], where ηj is the clock evaluation on entering

qj . Here, gj is the guard of the j-th edge taken in the DTA and Xj the set of

clock to be reset on that edge. A path ρ is accepted by A if qi ∈ F for some i > 0.

Since the DTA is deterministic, the successor location is uniquely determined; for

convenience we write q′ = succ(q, a, g). A path in a CTMC C can be “matched”

by a path through DTA A by regarding sets of atomic propositions in C as input

symbols of A. Such path is accepted, if at some point an accepting location in

the DTA is reached:

Definition 5.15 (CTMC paths accepted by a DTA) Let CTMC C =

(S,R,AP, L, s0) and DTA A = (2AP,X , Q, q0, F,→). The CTMC path π =

s0
t0−−→ s1

t1−−→ s2 · · · is accepted by A if there exists a corresponding DTA path

q0
L(s0),t0−−−−−→ succ(q0, L(s0), g0)

︸ ︷︷ ︸
=q1

L(s1),t1−−−−−→ succ(q1, L(s1), g1)
︸ ︷︷ ︸

=q2

· · ·

such that qj ∈ F for some j > 0. Here, η0 = ~0, gi is the (unique) guard in qi such

that ηi+ti |= gi and ηi+1 = (ηi+ti)[Xi := 0], and ηi is the clock evaluation on en-

tering qi, for i > 0. Let PathsC(A) = {π ∈ PathsC | π is accepted by DTA A}.

Theorem 5.16 ([31, 56]) For any CTMC C and DTA A, the set PathsC(A) is

measurable.

67

5. WEIGHTED LUMPABILITY

The main result of this theorem is that PathsC(A) can be rewritten as the com-

bination of cylinder sets of the form Cyl = (s0, I0,, In−1, sn) (Cyl for short)

which are all accepted by DTA A. A cylinder set (Cyl) is accepted by DTA A if

all its paths are accepted by A. That is

PathsC(A) =
⋃

n∈N

⋃

π∈PathsCn(A)

Cylπ, (5.1)

where PathsCn(A) is the set of accepting paths by A of length n and Cylπ is the

cylinder set that contains π.

Definition 5.17 (WL related cylinder sets) Two cylinder sets Cyl =

(s0, I0, . . . , In−1, sn) and Cyl′ = (s′0, I0, . . . , In−1, s
′
n) are said to be WL related,

denoted Cyl ∼= Cyl′, if they are statewise WL related: Cyl ∼= Cyl′ iff si ∼=

s′i for all 0 6 i 6 n.

Definition 5.18 (WL-closed set) The set Π of cylinder sets is WL-closed if

∀Cyl ∈ Π, and Cyl′ with Cyl′ ∼= Cyl implies Cyl′ ∈ Π.

A finite path π in the CTMC C is compatible with Π if the cylinder set for this

path Cylπ ∈ Π. Since the cylinder sets contained in Π are disjoint, we have

Prs(Π) = Prs(
⋃

Cyl∈Π Cyl) =
∑

Cyl∈Π

Prs(Cyl), where Prs(Π) is the probability of

all the paths starting in s which are compatible with Π. For paths compatible

with Π but not starting from s, the probability equals 0. We denote WL-closed

set of cylinder sets of length n by Πn. If n = 0, Πn is the set of states and

Prs(Πn) = α(s) if s ∈ Πn, 0 otherwise, where α(s) is the probability of s being

the initial state of CTMC C.

Example 5.19 Consider the CTMCs given in Fig. 5.6, here we have the

CTMC C (left) and its quotient system C/R (right). In this case if Π =

{Cyl(s0, I0, s1, I1, s3), Cyl(s′0, I0, s
′
1, I1, s

′
2)} is a WL closed set of cylinder sets in

C, and C/R that are accepted by DTA A, then:

Pr
s0
(Π) = Pr

s0
(Cyl(s0, I0, s1, I1, s3)) + Pr

s0
(Cyl(s′0, I0, s

′
1, I1, s

′
2))

= 1/2 · (e−E(s0)·inf I0 − e−E(s0)·sup I0) · (e−E(s1)·inf I1 − e−E(s1)·sup I1) + 0.

The second term is 0 as the cylinder set does not start from s0. Similarly,

Pr
s′
0

(Π) = Pr
s′
0

(Cyl(s0, I0, s1, I1, s3)) + Pr
s′
0

(Cyl(s′0, I0, s
′
1, I1, s

′
2))

= 0 + (e−E(s′
0
)·inf I0 − e−E(s′

0
)·sup I0) · 1/2 · (e−E(s′

1
)·inf I1 − e−E(s′

1
)·sup I1).

68

5.1 Weighted Lumpability

Definition 5.20 For CTMC C and DTA A, let Pr(C |= A) = Pr
(
PathsC(A)

)
.

Stated in words, Pr(C |= A) denotes the probability of all the paths in CTMC C

that are accepted by DTA A. Note that we slightly abuse notation, since Pr on

the right-hand side is the probability measure on the Borel space of infinite paths

in the CTMC. This brings us to one of the main results of this chapter:

Theorem 5.21 (Preservation of DTA specifications) For any CTMC C, a

WL R on C and DTA A:

Pr(C |= A) = Pr(C/R |= A).

The detailed proof is in the appendix and consists of two main steps:

1. We prove that for any cylinder set Cyl in the quotient CTMC C/R which

is accepted by the DTA A, there is a corresponding set of cylinder sets in

the CTMC C that are acccepted by the DTA A and that jointly have the

same probability as Cyl, cf. Lemma 5.22 below.

2. We show that the sum of probabilities of all the cylinder sets in C/R that are

accepted by DTA A equals the sum of probabilities of all the corresponding

sets of cylinder sets in C.

Lemma 5.22 Let C = (S,R,AP, L, s0) be a CTMC and R be a WL on C. If Π

is a WL-closed set of cylinder sets which are accepted by DTA A, then for any

D ∈ S/R and s′0 ∈ Pred(D):

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Π) = Pr

D
(Π).

From Lemma 5.22 we conclude

∑

D∈S/R

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Π) =

∑

D∈S/R

Pr
D
(Π). (5.2)

Corollary 5.23 WL preserves transient state probabilities.

69

5. WEIGHTED LUMPABILITY

s0 {a}

s1 {b} s2 {b}

s3

1

{a} s4

1

{b}

1
1

4 4

(a) C

s′0 {a}

s′1 {b}

s′2

1

{a} s′3

1

{b}

2

2
2

(b) C/R

Figure 5.6: WL related cylinder sets.

5.1.4 Preservation of MTL Specifications

In this section we show that the quotient CTMC obtained under WL can be used

for verifying Metric Temporal Logic (MTL) formulae [24, 95, 125]. It is interesting

to note that the expressive power of MTL is different from that of DTA. Temporal

properties like (32a) cannot be expressed using deterministic timed automata,

since nondeterminism is needed to compensate for the non causality [109]. On the

other hand, DTA expressible languages that involve counting [9], e.g., a should

only occur at even positions, cannot be expressed using MTL. We now recall the

syntax and semantics of Metric Temporal Logic [24, 125].

Definition 5.24 (Syntax of MTL) Let AP be a set of atomic propositions,

then the formulas of MTL are built from AP using Boolean connectives, and

time-constrained versions of the until operator U as follows:

ϕ ::= tt | a | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

where I ⊆ R≥0 is a nonempty interval with rational bounds, and a ∈ AP .

Whereas, typically, the semantics of MTL is defined over timed paths of timed

automata, we take a similar approach by interpreting MTL formulas over CTMC

paths.

Definition 5.25 (Semantics of MTL formulas) The meaning of MTL for-

mulas is defined by means of a satisfaction relation, denoted by |=, between

a CTMC C, one of its paths π, MTL formula ϕ, and time t ∈ R≥0. Let

π = s0
t0−−→ s1 · · · sn−1

tn−1−−−→ sn · · · be a finite or infinite path of C, then (π, t) |= ϕ

70

5.1 Weighted Lumpability

is defined inductively by:

(π, t) |= tt

(π, t) |= a iff a ∈ L(π@t)

(π, t) |= ¬ϕ iff not (π, t) |= ϕ

(π, t) |= ϕ1 ∧ ϕ2 iff (π, t) |= ϕ1 and (π, t) |= ϕ2

(π, t) |= ϕ1U
I ϕ2 iff ∃t′ ∈ t+I. ((π, t′) |= ϕ2 ∧ ∀t ≤ t′′ < t′. (π, t′′) |= ϕ1) .

The semantics for the propositional fragment is straightforward. Recall that π@t

denotes the state occupied along path π at time t. Path π at time t satisfies

ϕ1U
I ϕ2 whenever for some time point t′ in the interval I+t, defined as [a, b]+t =

[a+t, b+t] (and similarly for open intervals), ϕ2 holds, and at all time points

between t and t′, path π satisfies ϕ1. Let π |= ϕ if and only if (π, 0) |= ϕ.

The standard temporal operators like 3 (“eventually”) and its timed variant 3I

are derived in the following way: 3
Iϕ = ttUI ϕ and3ϕ = ttUϕ. Similarly, 2

(“globally”) and its timed variant are derived as follows:

2
Iϕ = ¬(3I¬ϕ) and 2ϕ = ¬(3¬ϕ).

Example 5.26 Using MTL, various interesting properties can be specified such

as:

• 2(down → 3
[0,5]up), which asserts that whenever the system is down, it

should be up again within 5 time units.

• 2(down→ alarmU[0,10] up), which states that whenever the system is down,

an alarm should ring until it is up again within 10 time units.

More complex properties can be specified by nesting of until path formulas.

Theorem 5.27 ([11]) The probability measure of the set of converging paths is

zero.

As a next result, we address the measurability of a set of CTMC paths satisfying

an MTL formula ϕ.

Theorem 5.28 For each MTL formula ϕ and state s of CTMC C, the set {π ∈

Paths(s) | π |= ϕ} is measurable.

71

5. WEIGHTED LUMPABILITY

Definition 5.29 (Probability of MTL formulas) The probability that state

s satisfies MTL formula ϕ refers to the probability for the sets of paths for which

that formula holds as follows:

Pr(s |= ϕ) = Pr
s
(π ∈ Paths(s) | π |= ϕ).

Since C has a single initial state, i.e., s0, the probability of all the paths in C that

satisfy MTL formula ϕ is given by Pr(C |= ϕ) = Pr(s0 |= ϕ).

Theorem 5.30 Let C be a CTMC and R be a WL on C. Then for any MTL

formula ϕ:

Pr(C |= ϕ) = Pr(C/R |= ϕ).

5.2 Case Studies

In [159], a first attempt has been made towards developing and implementing a

polynomial-time algorithm for WL quotienting. The worst-case time complexity

of this algorithm isO(n5). It performs repeated minimization on the input CTMC

until no further minimization is possible. This algorithm can be easily adapted

to compute KME on KSs and WPE on DTMCs. Although the algorithm is slow

and there is still room for improvement, initial experiments show that it can

substantially reduce the size of the CTMC models for incremental service case

studies. Note that for incremental service systems bisimulation usually fails to

provide any state space reduction [17]. In this section we discuss the experimental

results obtained for two case studies namely, a restaurant system and a job-server

system. Both the case studies have been modeled and analyzed using the PRISM

model checker. Since PRISM does not support bisimulation minimization, a

separate procedure was written for computing the quotient under bisimulation.

All the tests were executed on a Windows 7 machine with a Core2Duo E6550

CPU (2.33 GHz) and 2 GB RAM. The execution times are averaged over five

test runs.

5.2.1 Restaurant System

The idea behind this case study is very similar to [17]. Consider a restaurant

where a person can have single or multiple courses. For each course he or she

has to go through three phases namely, ordering, waiting and eating. The guest

is supposed to wait for the waiter until his or her order is taken. Once the

72

5.2 Case Studies

Table 5.1: State space reduction for the restaurant system

Table 5.2: State space reduction for the job-server system

food is ready, the guest can start eating his or her food. After finishing the last

course, the guest should again wait for the waiter to bring the bill and then pays

the money. It is assumed that infinitely many guests can eat in the restaurant

one after another. The main principle is captured in Fig. 5.7 where rates are

associated with every phase of the system. More specifically, let λo, λs, λf and

λp denote the rates for the time required to order food, serve food, finish eating

and pay the bill, respectively. The rates for each these phases are assumed to

remain same throughout the whole CTMC. The results for different values of n

are summarised in Table 5.1. Here n denotes the maximum number of courses

that can be ordered.

5.2.2 Job-Server System

Consider a server system that can process jobs which are added to a queue.

Every job needs several execution steps before it is completed. It is assumed

that jobs can be instantly added to the queue and the enqueueing of the job is

synchronized with the working of the server. Intuitively this means that each

time an execution step is finished by the server, either a new job is added to

the queue with parameter n or no job is added. Here n denotes the number of

execution steps required for the new job that has been enqueued. The results for

different values of l and q are summarised in Table 5.2. Here l is the maximum

number of execution steps required for processing a job and q is the length of the

queue. For this case study the original system and bisimulation quotient had the

73

crop3.eps
crop4.eps

5. WEIGHTED LUMPABILITY

Figure 5.7: Restaurant system

74

crop2.eps

5.3 Related Work

Figure 5.8: Job-server system

same number of states and transitions for all values of l, q.

5.3 Related Work

Various branching-time relations on CTMCs have been defined such as weak and

strong variants of bisimulation equivalence and simulation pre-orders [10, 11, 29,

93]. Strong bisimulation coincides with ordinary lumping equivalence [29]. Their

compatibility to (fragments of) stochastic variants of CTL has been thoroughly

investigated, cf. [10]. More specifically, strong bisimulation for CTMCs coincides

with equivalence for CSL. Similarly, weak bisimulation for CTMCs coincides with

equivalence for CSL without next operator. Note that strong bisimulation coin-

cides with strong simulation equivalence for CTMCs. In the weak setting, weak

bisimulation coincides with weak simulation equivalence for CTMCs. In addi-

tion, it has been proved that strong simulation and weak simulation for CTMCs,

preserve a safe fragment of CSL and CSL without next operator, respectively

[10]. These relations allow for a state-space reduction prior to model checking;

in particular, bisimulation minimisation yields considerable reductions and time

savings [91] thanks to an efficient minimisation algorithm [48, 154].

This chapter focuses on a notion of lumpability that allows for a more ag-

gressive state-space aggregation than ordinary lumpability. It originates by

Bernardo [16] who considered Markovian testing equivalence over sequential

Markovian process calculus (SMPC), and coined the term T-lumpability for the

induced state-level aggregation where T stands for testing. His testing equiva-

75

crop1.eps

5. WEIGHTED LUMPABILITY

lence coincides with ready trace equivalence on CTMCs [157], it is a congruence

w.r.t. parallel composition, and preserves transient as well as steady-state proba-

bilities [16]. A logical characterisation via a variant of Hennessy-Milner logic has

been given in [18, 19] establishing the preservation of expected delays. Bernardo

defines T-lumpability using four process-algebraic axioms, and alternatively, calls

two states T-lumpable if their expected delays w.r.t. any testing process coincide.

5.4 Conclusions

This chapter considered weighted lumpability (WL), a structural notion that coin-

cides with Bernardo’s T-lumpability [16] which was defined in a process-algebraic

setting. Whereas Bernardo defines T-lumpability in an axiomatic manner, our

starting point is a structural definition using first CTMC principles. The main

Equivalence (stutter) ω-regular (ω) DTA/MTL Compositional (C)

KME ω C

WKME stutter-insensitive ω

WPE ω C

WL DTA+MTL

Table 5.3: An overview of various equivalence relations

contribution of this chapter is the preservation of DTA and MTL specifications

under WL quotienting. We note that this implies the preservation of transient

probabilities as well as timed reachability probabilities. We show that MTL for-

mulas (interpreted on CTMCs) are measurable. We have also presented some case

studies showing that WL can substantially reduce the size of the CTMC state

space. The results presented in this chapter can also be extended to CTMCs

with rewards. A summary of all the equivalence relations discussed in Chapter 3,

Chapter 4 and Chapter 5 is given in Table 5.3.

76

Chapter 6

Layered Reduction for Modal

Specification Theories

Modal transition system (MTS) specifications support compositionality together

with a compositional step-wise refinement methodology, and thus are useful for

component-oriented design and analysis of distributed systems. In this setting, a

high-level model of the system which abstracts from the implementation details

is constructed and used for the verification of interesting properties. A correct

implementation can be obtained by applying a series of successive refinement

steps. Model construction involves composing several components in parallel,

where each component usually has multiple sub-components that are executed

in a sequential manner. Components cooperate through their synchronization

over common actions and through their respective action dependencies. Action

dependencies between sub-components can be either explicitly stated or derived

from the operations performed on shared data variables that are updated during

an action execution (in case of MTS with data [13]). Some example systems

that have this structure are distributed algorithms such as the distributed min-

imum weight spanning tree algorithm [58], the two phase commit protocol [20],

Fischer’s real-time mutual exclusion protocol, and the randomized mutual ex-

clusion algorithm by Kushilevitz and Rabin [96]. Composing several components

using parallel composition naturally leads to the problem of state-space explosion

[9], where the number of states grows exponentially in the number of parallel

components.

This chapter proposes a state-space reduction technique based on the notion of

layering [82, 145] for a network of acyclic MTSs. The main principle is illustrated

in Fig. 6.1. Here two acyclic MTS componentsM and N are composed in parallel

77

6. LAYERED REDUCTION FOR MODAL SPECIFICATION
THEORIES

(left), where each component consists of n sub-components which are executed in

a sequential manner (denoted by ;). The system obtained after performing layered

transformation is shown in Fig. 6.1 (right). All the sub-components ofM and N

are assumed to be acyclic, and can be repeated by allowing top-level recursion in

M and N (as indicated by *). In other words, every component (M and N) can

have multiple rounds of execution, where a new round is started only when the

last sub-component of the previous round, i.e.,Mn) has been completed. This is

important as deadlocks are usually considered to be undesirable for distributed

algorithms.

Roughly speaking, layering exploits the independence between sub-

components to transform the system under consideration from a distributed rep-

resentation to a layered representation. These transformations are syntactic: the

idea is to apply a series of transformations to model descriptions, yielding a lay-

ered representation (cf. Fig. 6.1 (right)). For the intermediate transformations

we use a layered composition operator denoted by ”•”. Informally, M1 • M2

allows synchronization on common actions and interleaving on disjoint actions,

except when some action a of M2 depends on one or more actions of M1; in

this case, a can be executed only after all the actions ofM1 on which it depends

have been executed. This new composition operator allows formulating Commu-

nication Closed Layer (CCL) laws [51, 82], which are required to carry out the

structural transformations and establish an equivalence between the two systems.

Since the sub-components within a component are executed sequentially, a partial

order relation is proposed to relate the • and ; (sequential) operators.

The reduced system obtained as a result of applying layered transformation

can be used for analysis, provided it preserves a rich class of properties of interest.

Reachability is one of the most important properties in the area of model checking

[9]. Therefore, we focus on proving that the reduced system preserves existential

(∃) and universal (∀) reachability properties for a set of final states. As a result,

existential and universal reachability properties can be checked on the layered,

typically smaller, model.

Contributions. The main contributions of this chapter are as follows:

• We define the layered (•) and sequential (;) composition operator, and

formulate communication closed layer (CCL) laws for acyclic MTSs.

• We define partial order (po) equivalence between acyclic MTSs, show that •

is po-equivalent to ;, and prove that it preserves existential (∃) and universal

(∀) reachability properties.

78

6.1 Satisfaction and Refinement















M1

;

M2

;
...

;

Mn















∗

‖















N1

;

N2

;
...

;

Nn















∗

⇒















M1

•

M2

•
...

•

Mn















∗

‖















N1

•

N2

•
...

•

Nn















∗

⇒















M1 ‖ N1

•

M2 ‖ N2

•
...

•

Mn ‖ Nn















∗

⇒















M1 ‖ N1

;

M2 ‖ N2

;
...

;

Mn ‖ Nn















∗

Figure 6.1: Layered reduction

• Finally, we show how state space reduction can be achieved by replacing •

with ; within the framework of CCL laws.

Organisation of this chapter. Section 6.1 presents the satisfaction and

refinement relations for MTSs. Section 6.2 discusses the composition operators

for MTSs, and introduces CCL laws. Section 6.3 defines po-equivalence between

MTSs, and proves that po-equivalence between • and ; preserves existential (∃)

and universal (∀) reachability properties. Section 6.4 discusses the possible ex-

tensions of our results. Section 6.5 discusses related work. Finally, Section 6.6

concludes the chapter.

6.1 Satisfaction and Refinement

This section presents the notions of satisfaction and refinement originally intro-

duced in [106]. A satisfaction relation allows to relate an LTS (implementation)

with an MTS (specification). A refinement relation is used to compare MTSs

w.r.t. their sets of implementations. We also define the notions of realisation,

existential (∃) and universal (∀) reachability properties of reaching the set of final

states computed over the implementations of an MTS.

Definition 6.1 (Satisfaction) Let T = (S,Act, s0, Sf , V) be an LTS and M =

(S ′, Act, s′0, S
′
f , V

′) be an MTS. R ⊆ S × S ′ is a satisfaction relation iff, for any

(s, s′) ∈ R, the following conditions hold:

• ∀a ∈ Act, ∀u′ ∈ S ′ : V ′(s′, a, u′) = ⊤ ⇒ (∃u ∈ S : V (s, a, u) = ⊤ ∧ uRu′),

• ∀a ∈ Act, ∀u ∈ S : V (s, a, u) = ⊤ ⇒ (∃u′ ∈ S ′ : V ′(s′, a, u′) 6= ⊥ ∧ uRu′),

• s ∈ Sf ⇔ s′ ∈ S ′
f .

We say that T satisfiesM, denoted T |=M, iff there exists a satisfaction relation

relating s0 and s′0. If T |=M, T is called an implementation ofM. Let JMK =

{T | T |=M}, the set of implementations of MTSM.

79

6. LAYERED REDUCTION FOR MODAL SPECIFICATION
THEORIES

s0

s1 s2

sf

a,⊤ d,⊤

c,⊤

b,⊤
b, ?

c, ?

s′0

s′1 s′2

a d

c

s′f

b

Figure 6.2: An MTSM (left) and an LTS T (right) such that T |=M

Intuitively, a state s in LTS T satisfies state s′ in MTSM iff any must transition

of s′ is matched by a transition of s, and s does not contain any transitions

without a corresponding transition (may or must) in s′. In addition, final states

of T can only be related to final states inM and vice versa.

Definition 6.2 Let T ∈ JMK, and π = s′0a
′
1s

′
1a

′
2s

′
2 . . . s

′
n be a finite path of T ,

i.e., π ∈ Pathsfin(T). π is said to be a realisation of ρ = s0a1s1a2s2 . . . sn where

ρ ∈ Execfin(M), denoted π |= ρ, if ∀i < n : ai+1 = a′i+1.

Example 6.3 The LTS T in Fig. 6.2 (right) is an implementation of the MTS

M in Fig. 6.2 (left). It is easy to check that there exists a satisfaction relation

relating the initial states of T and M. Note that in this example, for every

implementation ofM, Sf 6= ∅ (since there exists a finite execution from s0 to sf
with only must transitions).

Example 6.4 Finite path π = s′0as
′
1cs

′
2bs

′
f of LTS T (Fig. 6.2 (right)) is a

realisation of finite execution ρ = s0as1cs2bsf ofM (Fig. 6.2 (left)).

Note that for a deterministic MTSM with T |=M, if a path π ∈ Pathsfin(T)

is a realisation of ρ ∈ Execfin(M), then π cannot be a realisation of another

execution ofM.

Definition 6.5 (Refinement) Let M = (S,Act, s0, Sf , V) and M′ =

(S ′, Act, s′0, S
′
f , V

′) be MTSs. R ⊆ S × S ′ is a strong refinement relation iff,

for all (s, s′) ∈ R, the following conditions hold:

• ∀a ∈ Act, ∀u′ ∈ S ′ : V ′(s′, a, u′) = ⊤ ⇒ (∃u ∈ S : V (s, a, u) = ⊤ ∧ uRu′),

• ∀a ∈ Act, ∀u ∈ S : V (s, a, u) 6= ⊥ ⇒ (∃u′ ∈ S ′ : V ′(s′, a, u′) 6= ⊥ ∧ uRu′),

80

6.1 Satisfaction and Refinement

• s ∈ Sf ⇔ s′ ∈ S ′
f .

M strongly refines M′, denoted M �S M′, iff there exists a strong refinement

relation relating s0 and s′0.

Intuitively, a state s strongly refines state s′ iff any must transition of s′ is matched

by a must transition of s, s does not contain any transitions (may or must) without

a corresponding transition (may or must) in s′. In addition, final states of M

can only be related to final states inM′ and vice versa.

Remark 6.6 A satisfaction relation can be seen as a special case of refinement

relation. In simple words, if T |=M, then T �S M (since every LTS is an MTS

and all the three conditions of refinement are satisfied).

Definition 6.7 (Refinement equivalence) MTSs M and M′ are refinement

equivalent, denotedM≡M′, iffM�S M
′ andM′ �S M.

Since strong refinement implies inclusion of sets of implementations, ifM≡M′

then they have the same set of implementations, i.e., JMK = JM′K.

Assumptions. For the rest of the chapter, we assume:

• Every MTS is acyclic.

• Every MTS has a single final state, i.e., |Sf |= 1, and all its states (except

the final state) have at least one outgoing transition.

• Dependencies between actions of different components are known in ad-

vance.

The acyclicity assumption is required to establish an equivalence between the

layered operator (•) and sequential operator (;). This restriction is less limit-

ing than may appear at first sight, since in many distributed systems the sub-

components/phases are acyclic [82]. As mentioned before, we do allow the al-

gorithm to be executed multiple times, i.e., top-level recursion is allowed. The

second assumption ensures that deadlock states (which are usually undesirable)

are absent. Moreover, this assumption ensures that the control is transferred from

one component to another via a single state. This usually happens in case of dis-

tributed algorithms, e.g., randomized mutual exclusion algorithm [149], Fischer’s

real-time mutual exclusion protocol [85, 124], and two phase commit protocol

[82]. The dependency relation between actions of sub-components/phases can be

81

6. LAYERED REDUCTION FOR MODAL SPECIFICATION
THEORIES

either explicitly stated or derived from the operations performed on data vari-

ables that are updated during an action execution [82]. For instance, a read access

to a shared variable in a component depends on a write access of that variable

in another component. More formally, two actions a and b are dependent in an

MTSM extended with data variables, denoted a † b, if any one of the following

holds:

Write(b) ∩Read(a) 6= ∅,

Write(a) ∩Read(b) 6= ∅,

Write(a) ∩Write(b) 6= ∅.

Here, Write(a) denotes the set of data variables written by the action a. Similarly,

Read(a) denotes the set of data variables read by the action a. Since we consider

MTSs without data variables, we assume that the dependencies between actions

are explicitly stated by the modeler. In this chapter we focus on reachability

properties, i.e., is it possible to reach the set of final states from the initial state

in an LTS T . More formally it is defined as follows:

Definition 6.8 (LTS reachability) Let T = (S,Act, s0, Sf , V) be an LTS.

Then T reaches Sf , denoted T |= 3Sf , iff ∀π ∈ Pathsfin(T)∃π′ ∈ Paths
Sf

fin(T) :

π is a prefix of π′.

In simple words, all the finite paths starting from the initial state of T should be

extendable such that the last state of the new path obtained belongs to Sf .

Example 6.9 Consider the LTS T in Fig. 6.2 (right) where s0 is the initial state,

and sf is the only final state. Here, T |= 3Sf since every finite path of T can be

extended such that it reaches sf .

Next, we define two reachability properties of reaching the set of final states

computed over all the implementations of an MTSM. The first property requires

that for an MTS M there exists at least one implementation T such that T |=

3Sf . The second property requires that all the implementations of M should

be able to reach the set of final states. Formally, these properties are defined as

follows:

Definition 6.10 (Existential reachability) LetM = (S,Act, s0, Sf , V) be an

MTS. Then M possibly reaches Sf , denoted M |=∃
3Sf , iff ∃T ∈ JMK : T |=

3Sf .

82

6.2 Composition and CCL Laws

M1

s0

s1 sf

a,⊤ b,⊤

c,⊤

M2

s′0

s′f

d,⊤

M1;M2

s0

s1 s′0

s′f

a,⊤ b,⊤

d,⊤

c,⊤

Figure 6.3: MTSsM1 andM2 (left and middle) and their sequential composition

(right)

Definition 6.11 (Universal reachability) Let M = (S,Act, s0, Sf , V) be an

MTS. ThenM inevitably reaches Sf , denotedM |=
∀
3Sf , iff ∀T ∈ JMK : T |=

3Sf .

The problem of decidingM |=∃
3Sf is PSPACE-complete [14]. The same applies

to universal reachability.

6.2 Composition and CCL Laws

In this section we define composition operators for MTSs. We propose sequential,

and layered composition operators, and recall parallel composition from [106]. The

framework of CCL laws is also formulated, which is required for carrying out the

layered transformations.

Definition 6.12 (Sequential composition) Given MTSsMi = (Si, Acti, s0i,

{sfi}, Vi), where i ∈ {1, 2} with S1 ∩ S2 = ∅. The sequential composition of

M1 andM2, denotedM1;M2, is the MTS (S,Act1 ∪Act2, s01, {sf2}, V), where

S = S1 \ {sf1} ∪ S2 and V = V ′
1 ∪ V2. Here V ′

1 = V1[s02 ← sf1] is defined by

V ′
1(s, a, s

′) = V1(s, a, s
′) if s′ 6= sf1, and

V ′
1(s, a, s02) = V1(s, a, sf1) otherwise.

Intuitively, sequential composition of two MTSs M1 and M2 requires that the

actions ofM2 can only be executed once the final state ofM1, i.e., sf has been

reached. Note that all the incoming transitions to state sf1 are redirected to s02.

Here, s01, sf2 are the new initial and final states in the resulting MTSM1;M2,

respectively.

Example 6.13 The sequential composition of two MTSs M1,M2 (Fig. 6.3

(left)) is shown in Fig. 6.3 (right).

83

6. LAYERED REDUCTION FOR MODAL SPECIFICATION
THEORIES

Definition 6.14 (Parallel composition) Given MTSsMi = (Si, Acti, s0i,

{sfi}, Vi), where i ∈ {1, 2} with S1∩S2 = ∅. The parallel composition ofM1 and

M2, denotedM1||M2, is the MTS (S1×S2, Act1∪Act2, (s01, s02), {(sf1, sf2)}, V)

where for all (s, s′) ∈ S1 × S2, V is defined by:

• For all a ∈ Act1 ∩ Act2, if there exists u ∈ S1 and u′ ∈ S2, such

that V1(s, a, u) 6= ⊥ and V2(s
′, a, u′) 6= ⊥, define V ((s, s′), a, (u, u′)) =

V1(s, a, u)⊓V2(s
′, a, u′). If either ∀u ∈ S1, we have V1(s, a, u) = ⊥, or ∀u′ ∈

S2, we have V2(s
′, a, u′) = ⊥, then ∀(u, u′) ∈ S1 × S2, V ((s, s′), a, (u, u′)) =

⊥.

• For all (u, u′) ∈ S1 × S2, a ∈ Act1 \ Act2, define V ((s, s′), a, (u, u′)) =

V1(s, a, u) if s
′ = u′, V ((s, s′), a, (u, u′)) = ⊥ otherwise.

• For all (u, u′) ∈ S1 × S2, a ∈ Act2 \ Act1, define V ((s, s′), a, (u, u′)) =

V2(s
′, a, u′) if s = u, V ((s, s′), a, (u, u′)) = ⊥ otherwise.

Parallel composition forces synchronization on all common actions and interleav-

ing on disjoint actions. The synchronization of two must transitions results in a

must transition, and composing may-must, must-may and may-may transitions

results in a may transition. Note that || is commutative and associative.

Example 6.15 The parallel composition of two MTSs M1,M2 (Fig. 6.3 (left

and middle)) is shown in Fig. 6.4 (left).

Next, we introduce the notion of action independence which is subsequently used

to define layered composition. Let a(s) denote the unique state that can be

reached from state s in one step (may or must) by performing action a ∈ act(s)

in a deterministic MTS M. The dependency between two actions a and b is

denoted a † b. Two additional requirements for the dependency relation † are

that it is reflexive and symmetric. Two distinct actions that are not dependent

are said to be independent, where independence is defined as follows:

Definition 6.16 Let MTS M = (S,Act, s0, {sf}, V). Actions a, b ∈ Act such

that a 6= b are independent in M, denoted a ‡ b, iff for all states s ∈ S with

a, b ∈ act(s) we have:

b ∈ act(a(s)), a ∈ act(b(s)), and a(b(s)) = b(a(s)).

84

6.2 Composition and CCL Laws

The first two conditions assert that a and b should not disable each other. The

last condition asserts that the same state should be reached from s by either

performing a followed by b, or by performing b followed by a. Let act(s) ‡ a

denote ∀b ∈ act(s) : b ‡ a. This notion of action independence originates from

partial-order reduction [62, 128].

Definition 6.17 MTSs M1 and M2 are independent, denoted M1 ‡ M2, iff

every action ofM1 is independent of every action ofM2 inM1||M2.

Let s ∗−→ s′ denote that state s′ is reachable from s through an arbitrary finite

sequence of transitions in MTS M. In other words, s ∗−→ s′ means that there

exists a finite execution ρ inM that starts in state s and ends in s′.

Definition 6.18 (Layered composition) Given MTSsMi = (Si, Acti, s0i,

{sfi}, Vi), where i ∈ {1, 2} with S1∩S2 = ∅. The layered composition ofM1 and

M2, denotedM1•M2, is the MTS (S1×S2, Act1∪Act2, (s01, s02), {(sf1, sf2)}, V)

where for all (s, s′) ∈ S1 × S2, V is defined by:

• For all a ∈ Act1 ∩ Act2, if there exists u ∈ S1 and u′ ∈ S2, such

that V1(s, a, u) 6= ⊥ and V2(s
′, a, u′) 6= ⊥, define V ((s, s′), a, (u, u′)) =

V1(s, a, u)⊓V2(s
′, a, u′). If either ∀u ∈ S1, we have V1(s, a, u) = ⊥, or ∀u′ ∈

S2, we have V2(s
′, a, u′) = ⊥ then ∀(u, u′) ∈ S1 × S2, V ((s, s′), a, (u, u′)) =

⊥.

• For all (u, u′) ∈ S1 × S2, a ∈ Act1 \ Act2, define V ((s, s′), a, (u, u′)) =

V1(s, a, u) if s
′ = u′, V ((s, s′), a, (u, u′)) = ⊥ otherwise.

• For all (u, u′) ∈ S1 × S2, a ∈ Act2 \ Act1, define V ((s, s′), a, (u, u′)) =

V2(s
′, a, u′) if s = u ∧ ∀s ∗ s ∗−→ s∗ : act(s∗) ‡ a, V ((s, s′), a, (u, u′)) = ⊥

otherwise.

Note that the first two clauses of Def. 6.18 are the same as for Def. 6.14. The

crux of the definition of layered composition lies in the last clause. This clause

defines V in the same way as for parallel composition, in case the action in N2

is independent of all actions enabled in states reachable from the current state

in N1. In case an action a′ in N2 depends on one or more actions in N1, then

this clause ensures that it cannot be executed before all the actions in N1 (on

which it depends) have taken place. In other words, all finite executions, in

which d is executed before any action say a, such that a † d will not be part of

Execfin(M1 •M2).

85

6. LAYERED REDUCTION FOR MODAL SPECIFICATION
THEORIES

M1||M2

s0s
′
0

s1s
′
0 sfs

′
0 s0s

′
f

s1s
′
f sfs

′
f

a,⊤
b,⊤

d,⊤

c,⊤

d,⊤

d,⊤

c,⊤

a,⊤

b,⊤

M1 •M2

s0s
′
0

s1s
′
0 sfs

′
0

s1s
′
f sfs

′
f

a,⊤
b,⊤

c,⊤

d,⊤

d,⊤

c,⊤

Figure 6.4: Parallel compositionM1||M2 (left) and layered compositionM1•M2

(right) where a † d

Example 6.19 Let us assume that actions a, d are dependent in M1||M2

(Fig. 6.4 (left)). Then the layered composition M1 • M2 is shown in Fig. 6.4

(right). Note that the execution in which d is executed before a has been removed

inM1 •M2.

Next, we use the above mentioned composition operators for formulating the

communication closed layer (CCL) laws as follows:

Theorem 6.20 (CCL laws) For MTSs N1, N2, M1, and M2, with N1 ‡ M2

andM1 ‡N2, the following communication closed layer (CCL) equivalences hold:

1. N1 •M2 ≡ N1||M2 (IND)

2. (N1 • N2)||M2 ≡ N1 • (N2||M2) (CCL-L)

3. (N1 • N2)||M1 ≡ (N1||M1) • N2 (CCL-R)

4. (N1 • N2)||(M1 •M2) ≡ (N1||M1) • (N2||M2) (CCL)

Intuitively, CCL laws allow moving the • operator out of brackets such that the

two systems are refinement equivalent. These laws are required for carrying out

the structural transformations.

6.3 Partial Order Equivalence and Property

Preservation

This section defines the notion of partial order equivalence (≡∗
po) between MTSs

which is used to prove that sequential and layered composition of MTSs satisfy

86

6.3 Partial Order Equivalence and Property Preservation

s0 M1

sf

s′0
M2

s′f

(M1 •M2)
\sync

s0s
′
0

sfs
′
0

sfs
′
f

a,⊤ a, ? a,⊤

a, ?

M1 •M2
s0s

′
0

sfs
′
f

a, ?

Figure 6.5: MTS without synchronized transitions

the same existential (∃) and universal (∀) reachability properties. For MTSsM1

and M2, let M =M1 •M2. We define M\sync as the MTS obtained from M

such that it does not have any synchronized transitions (which are present inM

as a result of synchronization over common actions). Intuitively, this means that

executions in M with synchronized transitions and ending in some final state

can be rewritten inM\sync such that for every execution there are corresponding

executions inM\sync obtained by allowing interleaving on common actions. Note

that for every common action, we only allow interleaving (in M\sync) from the

state ofM where the synchronization over that action takes place. For example,

let M have only one transition (a may a-transition) which is a result of syn-

chronization of a must a-transition (from M1), and a may a- transition (from

M2). In this case M\sync will have a corresponding1 sequence of transitions,

i.e., a must a-transition (from M1) followed by a may a-transition (from M2).

This transformation is required as we want to establish the result that layered

composition which incorporates synchronization is po-equivalent to sequential

composition which does not incorporate synchronization. This means that for

anyM =M1;M2, it holdsM
\sync =M.

Example 6.21 Consider the MTSs M1 and M2 shown in Fig. 6.5 (left). The

layered composition of M1,M2, i.e., M1 • M2 is shown in the middle, where

M1 and M2 synchronize on common action a. A may transition is obtained

in M1 •M2 (since composing must-may results in a may transition). An MTS

(M1 • M2)
\sync without synchronized transitions is shown in Fig. 6.5 (right).

Here the common action ofM1 is executed before the common action ofM2.

1In fact, if we would not restrict ourselves to deterministic MTSs, then two corresponding

transition sequences making a diamond shape would be obtained inM\sync.

87

6. LAYERED REDUCTION FOR MODAL SPECIFICATION
THEORIES

Theorem 6.22 For MTSs M1 and M2, let M =M1 •M2, and Sf be the set

of final states inM. Then the following holds:

M |=∃
3Sf ⇔M

\sync |=∃
3Sf

M |=∀
3Sf ⇔M

\sync |=∀
3Sf

In simple words this theorem says that reasoning about M\sync in place of M

is not a restriction as the behaviour of M (w.r.t. reachability properties) is

completely mimicked by M\sync. Next, we define the notion of partial order

equivalence between two finite executions.

Definition 6.23 (po-equivalence) Let M1 and M2 be two MTSs with tran-

sition functions V1 and V2, respectively. Let ρ1 ∈ Execfin(M
\sync
1) and ρ2 ∈

Execfin(M
\sync
2). Then ρ1 ≡po ρ2 iff there exist finite executions ρ′, ρ′′ and ∃a1, b1

with a1 6= b1 such that the following holds:

• ∀i < |ρ′|: V1(si, ai+1, si+1) = V2(si, ai+1, si+1).

• ∀(|ρ′|+2) ≤ i < (|ρ′|+|ρ′′|+2) : V1(si, ai+1, si+1) = V2(si, ai+1, si+1).

• ρ1 = ρ′a1sb1ρ
′′ ∧ ρ2 = ρ′b1s

′a1ρ
′′, where a1 ‡ b1.

• V1(last(ρ
′), a1, s) = V2(s

′, a1, f irst(ρ
′′)) ∧ V1(s, b1, f irst(ρ

′′)) = V2(last(ρ
′),

b1, s
′).

Let ≡∗
po called po-equivalence denote the reflexive, transitive closure of ≡po.

In simple words, if two finite executions ρ1, ρ2 are po-equivalent, then ρ1 can be

obtained from ρ2 by repeated permutation of adjacent independent actions. Note

that the first two conditions of Def. 6.23 are required to ensure that if for example

ρ′ = s0c1s1d1s2 where c1 is a must transition and d1 is a may transition inM\sync
1 ,

then c1, d1 are also must and may transitions in M\sync
2 . Let M1 ◦ M2 denote

(M1 •M2)
\sync.

Definition 6.24 (LNF) Let Sf be the set of final states inM1 ◦M2. Then ρ ∈

Exec
Sf

fin(M1◦M2) is in layered normal form (LNF) iff it involves the consecutive

execution of actions of M1, followed by the consecutive execution of actions of

M2.

88

6.3 Partial Order Equivalence and Property Preservation

Let ExecLNF
fin (M1 ◦M2) denote the set of all finite executions in Exec

Sf

fin(M1 ◦

M2) that are in LNF.

Next we show that for each finite execution of Exec
Sf

fin(M1 ◦ M2), a po-

equivalent exceution in LNF does exist.

Lemma 6.25 (LNF existence) LetM1,M2 be two MTSs. Then we have ∀ρ ∈

Exec
Sf

fin(M1 ◦M2)∃ρ
′ ∈ ExecLNF

fin (M1 ◦M2) such that ρ ≡∗
po ρ

′.

Definition 6.26 (po-equivalence for MTSs) Two MTSs M1,M2 are said

to be po-equivalent, denoted M1 ≡
∗
po M2, iff for i ∈ {1, 2}: ∀ρi ∈

Exec
Sfi

fin(M
\sync
i)∃ρ3−i ∈ Exec

Sf3−i

fin (M\sync
3−i) such that ρi ≡∗

po ρ3−i.

Theorem 6.27 For any two MTSsM1,M2, it holds: M1 •M2 ≡∗
poM1;M2.

In simple words, this theorem says that for each finite execution in layered compo-

sition of two MTSs, a po-equivalent execution in the their sequential composition

does exist and vice versa. This result can be used to replace ; by • provided

po-equivalence preserves reachability properties.

Example 6.28 It is easy to check that MTS M1;M2 given in Fig. 6.3 (right)

is po-equivalent to MTSM1 •M2 given in Fig. 6.4 (right).

Theorem 6.29 (Property preservation) LetM,M′ be two MTSs with set of

final states Sf , and S ′
f , respectively. IfM≡

∗
poM

′ then we have:

M |=∃
3Sf iffM′ |=∃

3S ′
f

M |=∀
3Sf iffM′ |=∀

3S ′
f

This theorem asserts that po-equivalent MTSs satisfy the same reachability prop-

erties.

Proposition 6.30 Let M, M′ and M1 be three MTSs such that M ≡∗
po M

′.

Then we have:

M||M1 ≡
∗
poM

′||M1

The results of Theorem 6.27, Theorem 6.29 and Proposition 6.30 enable us to

replace ; with • and vice versa. This replacement along with CCL laws (Theo-

rem 6.20) can be used for state space reduction as follows:

State space reduction. Let N1,N2 and M1 be three MTSs, and N =

(N1;N2)||M1. Let us say we want to check whether N |=∃
3Sf or N |=∀

3Sf

89

6. LAYERED REDUCTION FOR MODAL SPECIFICATION
THEORIES

where Sf is the set of final states in N . AssumeM1 ‡ N2, and N1,N2,M1 each

consist of 20 states. In this case N1;N2 has 39 states which combined with the 20

states ofM1 gives 780 states. The results in this chapter, allow for transforming

N in the following way:

(N1;N2)||M1
︸ ︷︷ ︸

N

≡∗
po Theorem 6.27, Proposition 6.30

(N1 • N2)||M1

≡ Theorem 6.20 (CCL-R)

(N1||M1) • N2

≡∗
po Theorem 6.27

(N1||M1);N2

Note that the transformed system, i.e., (N1||M1);N2 has 419 states.

6.4 Possible Extensions

In this section we briefly discuss the extension of our results to acyclic MTSs

equipped with data variables.

MTS with data. An MTS M can be extended with data variables like

in [13] such that whenever an action is executed its associated data variables

are updated according to an assignment. These data variables can take values

in some finite range D. The definitions of satisfaction, and refinement can be

slightly modified by imposing an extra condition that ensures that related states

have the same data valuations. As mentioned earlier, for an MTS with data, two

actions are said to be dependent if one of the two writes a variable that is read or

written by the other action. Using this dependency relation, our theory can be

applied to acyclic MTSs with data. We do not go into details on these matters

here, however, refer the interested reader to [13, 82, 149].

6.5 Related Work

The decomposition of a distributed program into communication closed layers to

simplify its analysis was originally proposed in [51]. In [83], a layered composition

operator and various algebraic transformation rules have been introduced to sim-

plify the analysis of distributed database systems. Some other examples where

90

6.6 Conclusions

layering techniques have been applied for the analysis of distributed systems can

be found in [82, 84, 85]. In [84], layering techniques have been applied to derive

the implementation of a distributed minimum weight spanning tree algorithm.

An extension of layering and CCL laws to the real-time setting has been pro-

posed in [85]. This technique has been successfully applied to obtain a simpler

proof of correctness for Fischer’s real time mutual exclusion algorithm. Layered

composition for timed automata (TA) has been investigated in [123]. In [123], the

usefulness of layering based state space reduction for a network of timed automata

has been illustrated by considering a collision avoidance protocol developed for an

audio/video system. Recently, layering based structural transformations for TA

have been applied for easier verification of Fischer’s real-time mutual exclusion

protocol [124].

6.6 Conclusions

This chapter presented a state-space reduction technique for a network of MTSs,

based on the notion of layering. We proposed a layered composition operator,

and formulated communication closed layer (CCL) laws. Next, we defined the

partial order (po) equivalence between MTSs, proved that layered and sequential

compostion operators are po-equivalent and satisfy the same existential (∃) and

universal (∀) reachability properties. Finally, we discussed the possible extensions

of our results. As implementations of distributed systems typically are in terms

of layers, we believe that enabling transforming system MTS specifications into

layered form will substantially ease the proof of correct implementation.

91

6. LAYERED REDUCTION FOR MODAL SPECIFICATION
THEORIES

92

Chapter 7

Layered Reduction for Abstract

Probabilistic Automata

In the previous chapter, we have seen that layering based structural transforma-

tions can be used for reducing the state space of a network of acyclic MTSs. This

chapter proposes a complete theory of layered reduction for a network of acyclic

abstract probabilistic automata (APAs). APAs provide a powerful abstraction

and specification formalism for sets of PAs, support compositionality and a step-

wise refinement methodology. They are thus suitable for component-oriented

design and analysis of randomized distributed algorithms. As discussed in chap-

ter 6, action dependencies between sub-components can be either explicitly stated

or derived from the operations performed on data variables that are updated dur-

ing an action execution (in case of APA with data). Based on the notion of action

independence we propose a layered composition operator and use it to formulate

and prove Commuication Closed Layer (CCL) laws for acyclic APAs. We also

propose a partial order relation which is required to relate sequential composition

operator and layered composition operator. Next, we focus on proving that the

reduced system preserves maximum (resp. minimum) probability to reach its set

of final states. As a result, probabilistic reachability properties can be checked

on the layered, typically smaller, model.

Contributions. More specifically, the main contributions of this chapter are

as follows:

• We define the notions of abstract execution and realisation, which are sub-

sequently used to compare the behaviour of acyclic APAs.

• We define the layered (•) and sequential (;) composition operator, and

93

7. LAYERED REDUCTION FOR ABSTRACT PROBABILISTIC
AUTOMATA

formulate communication closed layer (CCL) laws for acyclic APAs.

• We define the partial order (po) equivalence between acyclic APAs, show

that • is po-equivalent to ;, and prove that po-equivalent APAs have the

same maximum (resp. minimum) probabilities to reach the set of final

states.

• Finally, we show how state space reduction can be achieved by replacing •

with ; within the framework of CCL laws.

Organisation of this chapter. Section 7.1 presents the satisfaction and

refinement relations for APAs. Section 7.2 discusses the composition operators

for APAs, and introduces CCL laws. Section 7.3 defines po-equivalence between

APAs, and proves that po-equivalence between • and ; preserves maximum (resp.

minimum) reachability probabilities. Section 7.4 discusses the possible extensions

of our results. Section 7.5 discusses related work. Finally, Section 7.6 concludes

the chapter.

7.1 Satisfaction and Refinement

This section presents the notions of satisfaction and refinement originally intro-

duced in [44]. A satisfaction relation allows to relate a PA (implementation) with

an APA (specification). A refinement relation is used to compare APAs w.r.t.

their sets of implementations. We also define the notions of realisation and max-

imum (resp. minimum) probabilities of reaching the set of final states computed

over all the implementations of an APA.

Definition 7.1 (Simulation relation) Let S and S ′ be non-empty sets of

states. Given µ ∈ Dist(S), µ′ ∈ Dist(S ′), a function δ : S → (S ′ → [0, 1]),

and a binary relation R ⊆ S × S ′, µ is simulated by µ′ with respect to R and δ,

denoted as µ ⋐δ
R µ′, iff

• for all s ∈ S, if µ(s) > 0, then δ(s) ∈ Dist(S ′),

• for all s′ ∈ S ′,
∑

s∈S µ(s) · δ(s)(s
′) = µ′(s′), and

• if δ(s)(s′) > 0, then (s, s′) ∈ R.

We write µ ⋐R µ′ iff there exists a function δ such that µ ⋐δ
R µ′. Such δ is called

a correspondence function.

94

7.1 Satisfaction and Refinement

Definition 7.2 (Satisfaction [44]) Let P = (S, s0, Sf , Act, V) be a PA and

N = (S ′, s′0, S
′
f ,Act, V

′) be an APA. R ⊆ S × S ′ is a satisfaction relation iff,

for any (s, s′) ∈ R, the following conditions hold:

• ∀a ∈ Act, ∀ϕ′ ∈ C(S ′) : V ′(s′, a, ϕ′) = ⊤ ⇒ ∃µ ∈ Dist(S) : V (s, a, µ) = ⊤

and ∃µ′ ∈ Sat(ϕ′) such that µ ⋐R µ′,

• ∀a ∈ Act, ∀µ ∈ Dist(S) : V (s, a, µ) = ⊤ ⇒ ∃ϕ′ ∈ C(S ′) : V ′(s′, a, ϕ′) 6= ⊥

and ∃µ′ ∈ Sat(ϕ′) such that µ ⋐R µ′,

• s ∈ Sf ⇔ s′ ∈ S ′
f .

We say that P satisfies N , denoted P |= N , iff there exists a satisfaction relation

relating s0 and s′0. If P |= N , P is called an implementation of N . Let JN K =

{P | P |= N}, the set of implementations of N .

Intuitively, a state s in PA P satisfies state s′ in APA N iff any must transition

of s′ is matched by a transition of s agreeing on the probability distributions

specified by the constraint, and s does not contain any transitions without a

corresponding transition (may or must) in s′. In addition, final states in P can

only be related to final states in N and vice versa.

Definition 7.3 (Realisation) Let P ∈ JN K, and π = s′0a
′
1µ

′
1s

′
1a

′
2µ

′
2s

′
2 . . . s

′
n be

a finite path of P, i.e., π ∈ Pathsfin(P). π is said to be a realisation of ρ =

s0a1ϕ1s1a2ϕ2s2 . . . sn where ρ ∈ Execfin(N), denoted π |= ρ, if ∀i < n : µ′
i+1 ∈

Sat(ϕi+1) ∧ a′i+1 = ai+1.

Definition 7.4 (Realisable) An implementation P ∈ JN K is said to be realis-

able, if P is deterministic and ∀π ∈ Pathsfin(P)∃ρ ∈ Execfin(N) : π |= ρ.

Example 7.5 The PA P in Fig. 7.1 (right) is an implementation of the APA N

in Fig. 7.1 (left). It is easy to check that there exists a satisfaction relation relating

initial states of P and N . Note that in this example, for every implementation

of N , Sf 6= ∅ (since the value of x1 is always greater than 0 and s2 has a must-b

transition moving to sf with probability 1). It can be checked that P is a realisable

implementation of N (since P is deterministic and every finite path π of P is a

realisation of some finite abstract execution ρ in N).

95

7. LAYERED REDUCTION FOR ABSTRACT PROBABILISTIC
AUTOMATA

s0

s1 s2

ϕz = z1 > 0.7 ∧ z0 + z1 = 1

sf

ϕx = x0 ≤ 0.4 ∧ x0 + x1 = 1

a, x0,⊤ a, x1,⊤

c, z1,⊤

b, 1,⊤
c, z0,⊤

b, 1, ?

s′0

s′1 s′2

a, 0.3 a, 0.7

c, 0.8

s′f

b, 1
c, 0.2

Figure 7.1: An APA N (left) and a PA P (right) that satisfies N

Example 7.6 Finite path π = s′0aµ
′
1s1cµ

′
2s1cµ

′
2s

′
2 of PA P (Fig. 7.1 (right)) is

a realisation of finite abstract execution ρ = s0aϕ1s1cϕ2s1cϕ2s2 of N (Fig. 7.1

(left)), where µ′
1(s1) = 0.3, µ′

1(s2) = 0.7, µ′
2(s1) = 0.2, µ′

2(s2) = 0.8, and µ′
3(sf) =

1.

From the definition of satisfaction and realisation it can be checked that for an

APA N , there can be implementations where none of the finite paths is a reali-

sation of some finite abstract execution of N . Note that for a deterministic APA

N with P |= N , if a path π ∈ Pathsfin(P) is a realisation of ρ ∈ Execfin(N),

then π cannot be a realisation of another finite abstract execution of N .

Definition 7.7 (Refinement) Let N = (S, s0, Sf , Act, V) and N ′ =

(S ′, s′0, S
′
f , Act, V

′) be APAs. R ⊆ S × S ′ is a strong refinement relation iff,

for all (s, s′) ∈ R, the following conditions hold:

• ∀a ∈ Act.∀ϕ′ ∈ C(S ′).V ′(s′, a, ϕ′) = ⊤ ⇒ ∃ϕ ∈ C(S).V (s, a, ϕ) = ⊤ and

there exists a correspondence function δ : S → (S ′ → [0, 1]) such that

∀µ ∈ Sat(ϕ).∃µ′ ∈ Sat(ϕ′) with µ ⋐δ
R µ′,

• ∀a ∈ Act.∀ϕ ∈ C(S).V (s, a, ϕ) 6= ⊥ ⇒ ∃ϕ′ ∈ C(S ′).V ′(s′, a, ϕ′) 6= ⊥ and

there exists a correspondence function δ : S → (S ′ → [0, 1]) such that

∀µ ∈ Sat(ϕ).∃µ′ ∈ Sat(ϕ′) with µ ⋐δ
R µ′.

• s ∈ Sf ⇔ s′ ∈ S ′
f .

N strongly refines N ′, denoted N �S N
′, iff there exists a strong refinement

relation relating s0 and s′0.

Intuitively, a state s strongly refines state s′ iff any must transition of s′ is matched

by a transition of s agreeing on the probability distributions specified by the con-

straint, and s does not contain any transitions (may or must) without a corre-

sponding transition (may or must) in s′. In addition, the final states in N can

only be related to final states in N ′ and vice versa.

96

7.1 Satisfaction and Refinement

Definition 7.8 (Refinement equivalence) APAs N and N ′ are refinement

equivalent, denoted N ≡ N ′, iff N �S N ′ and N ′ �S N .

Since strong refinement implies inclusion of sets of implementations, if N ≡ N ′,

then they have the same set of implementations, i.e., JN K = JN ′K [44].

Remark 7.9 A satisfaction relation can be seen as a special case of refinement

relation. In simple words, if P |= N , then P �S N (since every PA is an APA

and all the three conditions of strong refinement are satisfied).

Similar to the case of layering for MTSs (Chapter 6), we make the following

assumptions:

• Every APA is acyclic and consistent. An APA is consistent iff it admits at

least one implementation. See [44] for more details.

• Every APA has a single final state, i.e., |Sf |= 1, and all its states (except

the final state) have at least one outgoing transition.

• Dependencies between actions of different components are known in ad-

vance.

In this chapter, we focus on maximum reachability probabilities (resp. minimum)

of reaching the set of final states Sf ⊂ S in a PA, over all possible adversaries.

Maximum reachability probabilities are defined as follows:

Pmax
P (Sf) = sup

D∈Adv(P)

PD(Sf)

PD(Sf) =
∑

π∈Paths
D,Sf
fin (P)

PD(π)

Minimum reachability probabilities are defined in an analogous manner.

Next, we define the maximum reachability probabilities (resp. minimum) of

reaching the set of final states, determined over all the implementations of an

APA N . Intuitively this means that for each implementation P ∈ JN K, we are

interested in computing the maximum (resp. minimum) probability to reach the

set of states Sf , and finally we would compute the maximum (resp. minimum)

probability over all the implementations. More formally it is defined as follows:

Pmax
N (Sf) = sup

P∈JN K

Pmax
P (Sf)

Minimum reachability probabilities are defined in an analogous manner.

97

7. LAYERED REDUCTION FOR ABSTRACT PROBABILISTIC
AUTOMATA

N1

s0

s1

ϕx = x0 ≥ 0.4 ∧ x1 > 0 ∧ x0 + x1 = 1

sf

a, x0,⊤ a, x1,⊤

c, 1,⊤

N2

s′0

s′f

d, 1,⊤

N1;N2

s0

s1 s′0

s′f

a, x′
0,⊤ a, x′

1,⊤

d, 1,⊤

c, 1,⊤

Figure 7.2: APAs N1 and N2 (left) and their sequential composition (right)

7.2 Composition and CCL Laws

In this section we define composition operators that enable to combine two APAs.

We propose sequential, and layered composition operators, and recall parallel

composition from [44]. The framework of CCL laws is also formulated, which is

required for carrying out the layered transformations.

Definition 7.10 (Sequential composition) Given APAs Ni = (Si, s0i, {sfi},

Acti, Vi), where i ∈ {1, 2} with S1 ∩ S2 = ∅. Their sequential composition,

denoted N1;N2, is the APA (S, s01, {sf2}, Act1∪Act2, V), where S = S1\{sf1}∪S2

and V = V ′
1 ∪ V2. Here V ′

1 = V1[s02 ← sf1] is defined by V ′
1(s, a, ϕ

′) = V1(s, a, ϕ)

with ϕ′ the new constraint in C(S) such that for any µ, µ ∈ Sat(ϕ) iff there exists

µ′ ∈ Sat(ϕ′) with

µ′(s′) = µ(s′) if s′ 6= sf1, and

µ′(s02) = µ(sf1) otherwise.

Intuitively, the sequential composition of two APAs N1 and N2 requires that the

actions of N2 can only be executed once the final state of N1, i.e., sf has been

reached. Note that all the incoming transitions to state sf1 are redirected to s02.

Here, s01, sf2 are the new initial and final states in the resulting APA N1;N2,

respectively.

Definition 7.11 (Parallel composition) Given APAs Ni = (Si, s0i, {sfi},

Acti, Vi), where i ∈ {1, 2} with S1 ∩S2 = ∅. Their parallel composition, denoted

N1||N2, is the APA (S1 × S2, (s01, s02), {(sf1, sf2)}, Act1 ∪ Act2, V) where for all

(s, s′) ∈ S1 × S2, V is defined by:

• For all a ∈ Act1 ∩ Act2, if there exists ϕ ∈ C(S1) and ϕ′ ∈ C(S2), such

that V1(s, a, ϕ) 6= ⊥ and V2(s
′, a, ϕ′) 6= ⊥, then V ((s, s′), a, ϕ̃) = V1(s, a, ϕ)⊓

V2(s
′, a, ϕ′) with ϕ̃ the new constraint in C(S1×S2) such that µ̃ ∈ Sat(ϕ̃) iff

there exists µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′) such that µ̃(u, v) = µ(u) ·µ′(v) for

all u ∈ S1 and v ∈ S2. If either for all ϕ ∈ C(S1), we have V1(s, a, ϕ) = ⊥,

98

7.2 Composition and CCL Laws

or ∀ϕ′ ∈ C(S2), we have V2(s
′, a, ϕ′) = ⊥ then for all ϕ̃ ∈ C(S1 × S2),

V ((s, s′), a, ϕ̃) = ⊥.

• For all a ∈ Act1 \ Act2, and for all ϕ ∈ C(S1), define V ((s, s′), a, ϕ̃) =

V1(s, a, ϕ) with ϕ̃ the new constraint in C(S1×S2) such that µ̃ ∈ Sat(ϕ̃) iff

for all u ∈ S1 and v 6= s′, µ̃(u, v) = 0 and the distribution µ : t 7→ µ̃(t, s′) is

in Sat(ϕ).

• For all a′ ∈ Act2 \ Act1 and for all ϕ′ ∈ C(S2), define V ((s, s′), a′, ϕ̃′) =

V2(s
′, a′, ϕ′) with ϕ̃′ the new constraint in C(S1×S2) such that µ̃′ ∈ Sat(ϕ̃′)

iff for all u 6= s and v ∈ S2, µ̃
′(u, v) = 0 and the distribution µ′ : t′ 7→

µ̃′(s, t′) is in Sat(ϕ′).

Parallel composition forces synchronization on all common actions and interleav-

ing on disjoint actions. The synchronization of two must transitions results in a

must transition, and composing may-must, must-may and may-may transitions

results in a may transition. Note that || is commutative and associative.

Next, we introduce the notion of action independence which is subsequently

used to define layered composition. The dependency between actions a and b is

denoted a † b. Two additional requirements for the dependency relation are that

it is reflexive and symmetric. Two distinct actions that are not dependent are

said to be independent, where independence is defined as follows:

Definition 7.12 Let APA N = (S, s0, Sf , Act, V). Actions a, b ∈ Act such that

a 6= b are independent in N , denoted a‡b, iff for all states s ∈ S with a, b ∈ act(s)

we have:

• For any s′ ∈ S: s′ ∈ (a, ϕ)(s)⇒ b ∈ act(s′),

• For any s′ ∈ S: s′ ∈ (b, ϕ′)(s)⇒ a ∈ act(s′), and

• For any s′′ ∈ S:

– ∀ρ ∈ Execsfin(N) : ρ = saϕs′bϕ′s′′ ⇒ ∃ρ′ ∈ Execsfin(N) : ρ′ =

sbϕ′s′aϕs′′.

– ∀ρ ∈ Execsfin(N) : ρ = sbϕ′s′aϕs′′ ⇒ ∃ρ′ ∈ Execsfin(N) : ρ′ =

saϕs′bϕ′s′′.

The first two conditions assert that a and b should not disable each other. The

last condition asserts that the same state should be reached from s in two steps

99

7. LAYERED REDUCTION FOR ABSTRACT PROBABILISTIC
AUTOMATA

by either performing a followed by b, or by performing b followed by a. Let

act(s) ‡ a denote ∀b ∈ act(s) : b ‡ a. Note that this notion of action independence

is a purely syntactic notion, and —in contrast to action independence in partial-

order reduction [7]— does not take the transition probabilities into account.

Definition 7.13 APAs N1 and N2 are independent, denoted N1 ‡ N2, iff every

action of N1 is independent of every action of N2 in N1||N2.

Let s ∗−→ s′ denote that state s′ is reachable from s through an arbitrary finite

sequence of transitions in APA N . In other words, s ∗−→ s′ denote that there

exists a finite abstract execution ρ ∈ Execsfin(N) with last(ρ) = s′.

Definition 7.14 (Layered composition) Given APAs Ni = (Si, s0i, {sfi},

Acti, Vi), where i ∈ {1, 2} with S1 ∩ S2 = ∅. Their layered composition, denoted

N1 •N2, is the APA (S1 × S2, (s01, s02), {(sf1, sf2)}, Act1 ∪Act2, V) where for all

(s, s′) ∈ S1 × S2, V is defined by:

• For all a ∈ Act1 ∩ Act2, if there exists ϕ ∈ C(S1) and ϕ′ ∈ C(S2), such

that V1(s, a, ϕ) 6= ⊥ and V2(s
′, a, ϕ′) 6= ⊥, then V ((s, s′), a, ϕ̃) = V1(s, a, ϕ)⊓

V2(s
′, a, ϕ′) with ϕ̃ the new constraint in C(S1×S2) such that µ̃ ∈ Sat(ϕ̃) iff

there exists µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′) such that µ̃(u, v) = µ(u) ·µ′(v) for

all u ∈ S1 and v ∈ S2. If either for all ϕ ∈ C(S1), we have V1(s, a, ϕ) = ⊥,

or ∀ϕ′ ∈ C(S2), we have V2(s
′, a, ϕ′) = ⊥ then for all ϕ̃ ∈ C(S1 × S2),

V ((s, s′), a, ϕ̃) = ⊥.

• For all a ∈ Act1 \ Act2, and for all ϕ ∈ C(S1), define V ((s, s′), a, ϕ̃) =

V1(s, a, ϕ) with ϕ̃ the new constraint in C(S1×S2) such that µ̃ ∈ Sat(ϕ̃) iff

for all u ∈ S1 and v 6= s′, µ̃(u, v) = 0 and the distribution µ : t 7→ µ̃(t, s′) is

in Sat(ϕ).

• For all a′ ∈ Act2 \ Act1 and for all ϕ′ ∈ C(S2):

1. If ∀s∗ : s ∗−→ s∗ : act(s∗)‡a′ in N1||N2, then we define V ((s, s′), a′, ϕ̃′) =

V2(s
′, a′, ϕ′) with ϕ̃′ the new constraint in C(S1 × S2) such that µ̃′ ∈

Sat(ϕ̃′) iff for all u 6= s, v ∈ S2, µ̃
′(u, v) = 0, the distribution µ′ : t′ 7→

µ̃′(s, t′) is in Sat(ϕ′).

2. If ∃s∗ : s ∗−→ s∗ : act(s∗) † a′ in N1||N2, then ∀ϕ̃′ ∈ C(S1 × S2) let

V ((s, s′), a′, ϕ̃′) = ⊥.

100

7.2 Composition and CCL Laws

Note that the first two clauses of Def. 7.14 are the same as for Def. 7.11. The

crux of the definition of layered composition lies in the last clause. The first

part of this clause defines V in the same way as for parallel composition, in case

the action in N2 is independent of all actions enabled in states reachable from

the current state in N1. The second part of this clause ensures that in case an

action a′ in N2 depends on one or more actions in N1, then it cannot be executed

before all the actions in N1 (on which it depends) have taken place. In other

words, layered composition restricts the asynchronous interleaving (for the right

component), to only those actions of the right component, which are independent

to the actions of the left component.

Remark 7.15 Note that the parallel and layered composition of two APAs with

linear constraint functions may lead to an APA whose constraints are polynomial.

Example 7.16 The sequential composition of two APAs N1,N2 (Fig. 7.2 (left

and middle)) is shown in Fig. 7.2 (right). The parallel composition of N1,N2

is illustrated in Fig. 7.3 (left). If we assume that actions a, d are dependent in

N1||N2, then the layered composition N1 • N2 is illustrated in Fig. 7.3 (right).

Note that the abstract execution in which d is executed before a has been removed

in N1 • N2. To keep the figures simple, we do not show constraint functions

obtained after composing the two systems.

Next, we use the above mentioned composition operators for formulating the

communication closed layer (CCL) laws as follows:

Theorem 7.17 (CCL laws) For APAs N1, N2, M1, and M2, with N1 ‡ M2

andM1 ‡N2, the following communication closed layer (CCL) equivalences hold:

1. N1 •M2 ≡ N1||M2 (IND)

2. (N1 • N2)||M2 ≡ N1 • (N2||M2) (CCL-L)

3. (N1 • N2)||M1 ≡ (N1||M1) • N2 (CCL-R)

4. (N1 • N2)||(M1 •M2) ≡ (N1||M1) • (N2||M2) (CCL)

Intuitively, CCL laws allow moving the • operator out of brackets such that the

two systems are refinement equivalent. These laws are required for carrying out

the structural transformations.

101

7. LAYERED REDUCTION FOR ABSTRACT PROBABILISTIC
AUTOMATA

N1||N2

s0s
′
0

s1s
′
0 sfs

′
0 s0s

′
f

s1s
′
f sfs

′
f

a, x′
0,⊤
a, x′

1,⊤
d, 1,⊤

c, 1,⊤

d, 1,⊤

d, 1,⊤

c, 1,⊤

a, x′
0,⊤

a, x′
1,⊤

N1 • N2

s0s
′
0

s1s
′
0 sfs

′
0

s1s
′
f sfs

′
f

a, x′
0,⊤

a, x′
1,⊤

c, 1,⊤

d, 1,⊤

d, 1,⊤

c, 1,⊤

Figure 7.3: Parallel composition N1||N2 (left) and layered composition N1 • N2

(right) where a † d

7.3 Partial Order Equivalence and Property

Preservation

This section defines the notion of partial order equivalence (≡∗
po) between APAs

which is used to prove that if two APAs are po-equivalent then their maximum

(resp. minimum) probabilities to reach the set of final states coincide. We start

this section by showing that to obtain the maximum (resp. minimum) reachability

probabilities for an APA N , it suffices to consider only those implementations

that are realisable, i.e., deterministic and satisfy the following condition: every

finite path of the implementation is a realisation of some finite abstract execution

of N .

Proposition 7.18 Let N be an APA. Then we have:

supP∈JN K P
max
P (Sf) = supQ∈JN K P

max
Q (Sf)

where Q is realisable.

The above mentioned result can be easily extended to minimum reachability prob-

abilities. From now on, we use JN K to denote the set of implementations of N

that are realisable. For APAs N1 and N2, let N = N1•N2. Then we define N \sync

as the APA obtained from N such that it does not have any synchronized tran-

sitions (which are present in N as a result of synchronization over the common

actions). Intuitively, this means that abstract executions in N with synchronized

transitions and ending in some final state can be rewritten in N \sync such that for

every abstract execution there are corresponding abstract executions in N \sync

obtained by allowing interleaving on common actions. Note that for every com-

mon action, we only allow interleaving (in N \sync) from the state of N where

102

7.3 Partial Order Equivalence and Property Preservation

the synchronization over that action takes place. For example, let N have only

one transition (a may a-transition) which is a result of synchronization of a must

a-transition (from N1), and a may a-transition (from N2). In this case N \sync will

have a corresponding1 sequence of transitions, i.e., a must a-transition (from N1)

followed by a may a-transition (from N2). This transformation is required as we

want to establish the result that layered composition which incorporates synchro-

nization is po-equivalent to sequential composition which does not incorporate

synchronization. This means that for any N = N1;N2, it holds N \sync = N .

Theorem 7.19 For APAs N1 and N2, let N = N1 • N2. Then ∀P ∈ JN K∀D ∈

Adv(P) ∀π ∈ PathsDfin(P) : ∃P
′ ∈ JN \syncK∃D′ ∈ Adv(P ′)∃π′ ∈ PathsD

′

fin(P
′) :

PD(π) = PD′

(π′).

In stated words, this theorem says that reasoning about N \sync instead of N is

not a restriction, as the probabilistic behaviour of N (w.r.t. its implementations)

is completely mimicked by N \sync.

Definition 7.20 (po-equivalence) Let N1 and N2 be two APAs with transi-

tion functions V1 and V2 respectively. Let ρ1 ∈ Execfin(N
\sync
1) and ρ2 ∈

Execfin(N
\sync
2). Then ρ1 ≡po ρ2 iff there exist finite abstract executions ρ′, ρ′′

and ∃c1, d1 with c1 6= d1 such that the following holds:

• ρ1 = ρ′c1ϕ1sd1ϕ2ρ
′′ ∧ ρ2 = ρ′d1ϕ2s

′c1ϕ1ρ
′′, where c1 ‡ d1.

• V1(last(ρ
′), c1, ϕ1) = V2(s

′, c1, ϕ1) ∧ V1(s, d1, ϕ2) = V2(last(ρ
′), d1, ϕ2).

• ∀i < |ρ′|: V1(si, ai+1, ϕi+1) = V2(si, ai+1, ϕi+1).

• ∀(|ρ′|+2) ≤ i < (|ρ′|+|ρ′′|+2) : V1(si, ai+1, ϕi+1) = V2(si, ai+1, ϕi+1).

Let ≡∗
po, called po-equivalence, denote the reflexive, transitive closure of ≡po.

Stated in words, if two finite abstract executions ρ1, ρ2 are po-equivalent, then

ρ1 can be obtained from ρ2 by repeated permutation of adjacent independent

actions. Note that the last two conditions of Def. 7.20 are required to ensure that

if for example ρ′ = s0c1ϕ1s1d1ϕ2s2 where c1 is a must transition and d1 is a may

transition in N \sync
1 , then c1, d1 are also must and may transitions in N \sync

2 . Let

N1 ◦ N2 denote (N1 • N2)
\sync.

1In fact, if we would not restrict ourselves to deterministic APAs, then two corresponding

transition sequences making a diamond shape would be obtained in N \sync.

103

7. LAYERED REDUCTION FOR ABSTRACT PROBABILISTIC
AUTOMATA

Definition 7.21 (LNF) Let Sf be the set of final states in N1 ◦ N2. Then

ρ ∈Exec
Sf

fin(N1 ◦ N2) is in layered normal form (LNF) iff it involves the consec-

utive execution of actions of N1, followed by the consecutive execution of actions

of N2.

Let ExecLNF
fin (N1 ◦N2) be the set of all finite abstract executions in Exec

Sf

fin(N1 ◦

N2) that are in LNF.

Next we show that for each finite abstract execution of Exec
Sf

fin(N1 ◦ N2), a

po-equivalent abstract exceution in LNF does exist.

Lemma 7.22 (LNF existence) Let N1,N2 be two APAs. Then we have ∀ρ ∈

Exec
Sf

fin(N1 ◦ N2)∃ρ′ ∈ ExecLNF
fin (N1 ◦ N2) such that ρ ≡∗

po ρ
′.

Next, we define the partial order equivalence between two APAs.

Definition 7.23 (po-equivalence for APAs) Two APAs N1,N2 are said

to be po-equivalent denoted, N1 ≡∗
po N2, iff for i ∈ {1, 2}: ∀ρi ∈

Exec
Sfi

fin(N
\sync
i)∃ρ3−i ∈ Exec

Sf3−i

fin (N \sync
3−i) such that ρi ≡∗

po ρ3−i.

Theorem 7.24 For any two APAs N1,N2, it holds: N1 • N2 ≡
∗
po N1;N2.

In simple words, this theorem says that for each finite execution in layered compo-

sition of two APAs, a po-equivalent execution in the their sequential composition

does exist and vice versa. This result can be used to replace ; by • provided

po-equivalence preserves reachability properties.

Proposition 7.25 Let N , N ′ and N1 be three APAs such that N ≡∗
po N

′. Then

we have:

N||N1 ≡
∗
po N

′||N1

Theorem 7.26 (Property preservation) Let N1,N2 be two APAs with set of

final states Sf1 and Sf2 respectively. If N1 ≡
∗
po N2 then we have:

Pmax
N1

(Sf1) = Pmax
N2

(Sf2)

Pmin
N1

(Sf1) = Pmin
N2

(Sf2)

In simple words this theorem states that if two APAs are po-equivalent, then

their maximum (resp. minimum) reachability probabilities computed over all

the implementations coincide. Results of Theorem 7.24, Proposition 7.25 and

104

7.4 Possible Extensions

Thm. 7.26 enable us to replace ; with • and vice versa. This replacement along

with CCL laws (Thm. 7.17) can be used for state space reduction as follows:

State space reduction. Let N1,N2, M1 and M2 be four APAs, and

N = (N1;N2)||(M1;M2). Let us say we want to compute Pmax
N (Sf) or P

min
N (Sf).

Here, Sf is the set of final states in N . Assume M1 ‡ N2, N1 ‡ M2 and

N1,N2,M1,M2 each consist of 20 states. In this case N1;N2 has 39 states which

combined with the 39 states ofM1;M2 gives 1521 states. We can transform N

in the following way:

(N1;N2)||(M1;M2)

≡∗
po Theorem 7.24, Proposition 7.25

(N1 • N2)||(M1 •M2)

≡ CCL

(N1||M1) • (N2||M2)

≡∗
po Theorem 7.24

(N1||M1); (N2||M2)

Note that the transformed system, i.e., (N1||M1); (N2||M2) has 799 states.

7.4 Possible Extensions

In this section we briefly discuss the extension of our results to an APA equipped

with data variables and rewards.

APA with data. An APA N can be extended with data variables such

that whenever an action is executed its associated data variables are updated

according to an arithmetic expression. These data variables can take values

in some finite range D. The definitions of satisfaction, and refinement can be

slightly modified by imposing an extra condition that ensures that related states

have the same valuations. For an APA with data, two actions are said to be

dependent if one of the two writes a variable that is read or written by the other

action. More formally, two actions a and b are dependent, denoted a † b, iff

Write(b) ∩ Read(a) 6= ∅ or Write(a) ∩ Read(b) 6= ∅ or Write(a) ∩Write(b) 6=

∅. Here, Write(a) denotes the set of data variables written by the action a.

Similarly, Read(a) denotes the set of data variables read by the action a. Using

this dependency relation, our theory can be applied to APAs with data. We do

not go into details on these matters here, however, refer the interested reader to

[13, 82, 149].

105

7. LAYERED REDUCTION FOR ABSTRACT PROBABILISTIC
AUTOMATA

APA with rewards. Rewards are useful for computing, for instance, the

resource consumption in a PA under an adversary D. For example in a com-

munication system where a sender and a receiver can transfer messages via an

unreliable channel, in this case an interesting measure of interest is the maximum

(resp. minimum) expected number of attempts to send a message until correct

delivery. An APA N can be extended with rewards by augmenting state and ac-

tion pairs, i.e., (s, a) with rewards, which are non-negative real valued numbers.

This intuitively means that in every implementation of N , the state and action

pairs corresponding to some state and action pair in N also have the same reward

associated with them. The reward associated with a state and action pair, i.e.,

(s, a) is earned only when the state s is left by executing an action a. In this

setting, the expected reward earned along a finite path π of PA P (under some

adversary D) before reaching the final state is obtained by taking the product of

PD(π) and the total reward earned along π. The preservation results presented

in this paper can be easily extended to APA with rewards, i.e., if two APAs are

po-equivalent, then their maximum (resp. minimum) expected rewards earned

before reaching the set of final states computed over all the implementations

coincide.

7.5 Related Work

APA.Abstract Probabilistic Automata (APAs) were originally defined in [44, 45].

In [44], a complete abstraction and specification theory for PAs was proposed.

This theory was later extended to support specifications over dissimilar alphabets,

some additional operators, and an APA-embedding of Interface Automata [47].

A tool implementing this theory was reported in [46]. Recently, compositional

abstraction techniques for APAs have been proposed, which are based on the

notion of common combined transitions [147]. The theory presented in this paper

is based on the APA model introduced in [44].

Layering. In the probabilistic context, layering has been applied to the con-

sensus problem to prove complexity lower bounds [114]. The layered composition

operator and probabilistic counterparts of the CCL laws have been defined for

the PA model [149]. As mentioned before, the feasibility of this approach has

been demonstrated on a randomized mutual exclusion algorithm. Most recently,

the theory of layering has been extended to modal transition systems (MTSs)

[145]. In [145], it has been shown that layering can be used for the state-space

reduction of distributed systems that are modeled as a network of acyclic MTSs.

106

7.6 Conclusion

Our results can be viewed as an extension of the layering for PAs [149] and MTSs

[145] to APAs.

7.6 Conclusion

This chapter presented a state-space reduction technique for a network of acyclic

APAs, based on the notion of layering. We proposed a layered composition oper-

ator, and formulated communication closed layer (CCL) laws. Next, we defined

the partial order (po) equivalence between APAs, and proved that if two APAs

are po-equivalent, then their probabilities to reach the set of final states com-

puted over all the implementations coincide. Finally, we discussed the possible

extensions of our results.

107

7. LAYERED REDUCTION FOR ABSTRACT PROBABILISTIC
AUTOMATA

108

Chapter 8

Interactive Markov Chains

This chapter proposes two equivalence relations for closed IMCs that can be used

to reduce the state space before analysis. More specifically, we define interac-

tive Markovian equivalence (IME) that can be seen as a combination of KME

(for KSs) and WL (for CTMCs). In other words, IME coincides with KME for

any IMC without Markovian states. Similarly, IME coincides with WL for any

IMC without interactive states. We show that state space reduction under IME

can potentially be larger than for bisimulation for IMCs. In the weaker setting,

we define weak interactive Markovian equivalence (WIME) that abstracts from

internal or non-observable steps. We show that weak bisimulation for IMCs is

strictly finer than WIME. Note that the definitions of bisimulation and weak

bisimulation for IMCs (in our case) also take into account state labels. We also

show that it is not possible to extend the framework of layering to a network of

IMCs. The main contributions of this chapter are as follows:

• We provide a structural definition of IME on closed IMCs, define the quo-

tient under IME and show that bisimulation is strictly finer than IME.

• In the weak setting, we provide a structural definition of WIME on IMCs,

define the quotient under WIME and show that weak bisimulation is strictly

finer than WIME.

• We show that it is not possible to relate the sequential composition operator

and layered (parallel) composition operator by using a partial order relation

or simulation relation such that properties of interest are still preserved.

Organisation of this chapter. Section 8.1 defines interactive Markovian

equivalence and investigates its relationship with bisimulation. Sections 8.2 de-

109

8. INTERACTIVE MARKOV CHAINS

fines weak interactive Markovian equivalence and investigates its relationship with

weak bisimulation. Section 8.3 shows that the framework of layered reduction

cannot be extended to a network of IMCs. Section 8.4 discusses related work.

Finally, Section 8.5 concludes the chapter.

8.1 Interactive Markovian Equivalence

Before defining interactive Markovian equivalence, we first define some auxiliary

concepts. All the definitions in this section are relative to a closed IMC I =

(S, s0, Act, AP,→,⇒, L), where Act = {τ}. For any state s ∈ S and Act = {τ},

the set of τ -predecessors of s is defined by: Pred(s, τ) = {s′ ∈ S|s′ τ−→ s} and

Pred(s) = {s′ ∈ S|R(s′, s) > 0} ∪ Pred(s, τ). Let for C ⊆ S, Pred(C) =
⋃

s∈C Pred(s). Similarly, the set of τ -successors of any state s is defined by:

Post(s, τ) = {s′ ∈ S|s τ−→ s′} and Post(s) = {s′ ∈ S|R(s, s′) > 0} ∪ Post(s, τ).

Let Post(C) =
⋃

s∈C Post(s) and Post(s, τ, C) = {s′ ∈ C|s τ−→ s′}. Throughout

this section and Section 8.2 we assume that every state of closed IMC I has

at least one predecessor and the initial state s0 of I is distinguished from all

other states by a unique label, say $ (as in the case of KSs, DTMCs and CTMCs

(Chapter 2)).

Definition 8.1 Let C ⊆ S, then C is said to be interactive closed iff C ⊆

IS ∧ Pred(C) ⊆ IS.

Definition 8.2 Let C ⊆ S, then C is said to be Markovian closed iff C ⊆

MS ∧ Pred(C) ⊆MS.

Let I(S) denote the set of all possible subsets of S that are interactive closed.

Let M(S) denote the set of all possible subsets of S that are Markovian closed.

Definition 8.3 (Predecessor based reachability) For s ∈ S and C,D ⊆ S,

the function Pbr : S × 2S × 2S → {0, 1} is defined as:

Pbr(s, C,D) =

{
1 if ∃s′ ∈ Post(s, τ, C) s.t. Post(s′, τ, D) 6= ∅
0 otherwise.

Definition 8.4 (IME) Equivalence R on S is an interactive Markovian equiv-

alence (IME) if we have:

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2) and E(s1) = E(s2),

110

8.1 Interactive Markovian Equivalence

2. ∀C ∈ S/R s.t. C ∈ I(S), ∀D ∈ S/R and ∀s′, s′′ ∈ Pred(C) it holds:

Pbr(s′, C,D) = Pbr(s′′, C,D).

3. ∀C ∈ S/R s.t. C ∈ M(S), ∀D ∈ S/R and ∀s′, s′′ ∈ Pred(C) it holds:

wr(s′, C,D) = wr(s′′, C,D).

4. ∀C ∈ S/R s.t. C /∈ I(S) ∧ C /∈M(S), ∀s1, s2 ∈ C the following holds:

• ∀D ∈ S/R: R(s1, D) = R(s2, D),

• ∀D ∈ S/R: Post(s1, τ, D) 6= ∅⇔ Post(s2, τ, D) 6= ∅.

States s1, s2 are IM related, denoted by s1▽ s2, if (s1, s2) ∈ R for some IME R.

The first condition asserts that s1 and s2 are equally labeled and have identical

exit rates. The second condition asserts that for any interactive closed equivalence

class C, the predecessor based reachability of going from any two predecessors

of C to D via any state in C must be equal. Similarly, third condition requires

that for any Markovian closed equivalence class C, the weighted rate (Def. 5.1) of

going from any two predecessors of C to D via any state in C must be equal. The

last condition requires that for any other case all the states in C should exhibit

identical stepwise behavior.

Example 8.5 For the closed IMC in Fig. 8.1 (left), the equivalence relation in-

duced by the partitioning {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7}, {s8}, {s9}} is an

IME relation.

8.1.1 Quotient IMC

Definition 8.6 For an IME relation R on I, the quotient IMC I/R is defined

by I/R = (S/R, s
′
0, Act, AP,→

′,⇒′, L′) where:

• S/R is the set of all equivalence classes under R,

• s′0 = C where s0 ∈ C = [s0]R,

• →
′

⊆ S/R×Act× S/R is defined as follows:
C∈I(S)∧Pbr(s′,C,D)=1, s′∈Pred(C)

C
τ−→D

and C /∈I(S)∧∃s∈C,s′∈D:s
τ−→ s′

C
τ−→D

,

• ⇒
′

⊆ S/R×R≥0 × S/R is defined as follows:
C∈M(S)∧λ=wr(s′,C,D), s′∈Pred(C)

C
λ−→D

and C /∈M(S)∧λ=R(s,D), s∈C

C
λ−→D

,

111

8. INTERACTIVE MARKOV CHAINS

s0 {p}

{q}s1 s2 {q}

s3 {p} s4 {r}

{q}s5 {q}s6 {q}s7

{r}s9

{p}s8

τ

τ

τ

τ

4
8

4
2

2

2
2

1

{p}s′0

{q}s′1

{p}s′2 {r}s′3

{q}s′4

{p}s′6{r}s′5

τ

τ
τ

12
6

2
3

4
3

1 1

1

Figure 8.1: An IMC I (left) and its quotient under an IME R (right)

• L′(C) = L(s), where s ∈ C.

Example 8.7 The quotient IMC for the Fig. 8.1 (left) under the IME rela-

tion with partition {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7}, {s8}, {s9}} is shown in

Fig. 8.1 (right).

Next, we show that any closed IMC I and its quotient under IME relation

are ▽-related.

Definition 8.8 Any IMC I and its quotient I/R under IME R are ▽-related,

denoted by I ▽I/R, if and only if there exists an IME relation R∗ defined on the

disjoint union of state space S ⊎ S/R such that

∀C ∈ S/R, ∀s ∈ C =⇒ (s, C) ∈ R∗

.

Theorem 8.9 Let I be a closed IMC and R be an IME on I. Then I ▽ I/R.

Remark 8.10 We know that for any closed IMC where MS = ∅, the definition

of IME coincides with that of KME. We also know that union of KMEs is not

necessarily a KME (Example 3.10), and therefore it is easy to check that union

of IMEs is not necessarily an IME. Similarly, we can show that IMEs can be used

for repeated minimization of a closed IMC (para. 3.1.1).

112

8.2 Weak Interactive Markovian Equivalence

8.1.2 IME vs. Bisimulation

Definition 8.11 (Strong bisimulation) Let I = (S, s0, Act, AP,→,⇒, L) be a

closed IMC. An equivalence relation R ⊆ S × S is a strong bisimulation on I if

for any (s1, s2) ∈ R and equivalence class C ∈ S/R the following holds:

• L(s1) = L(s2),

• R(s1, C) = R(s2, C),

• Post(s1, τ, C) 6= ∅⇔ Post(s2, τ, C) 6= ∅.

States s1 and s2 are strongly bisimilar, denoted s1 ∼ s2, if (s1, s2) ∈ R for some

strong bisimulation R.

Theorem 8.12 ∼ is strictly finer than IME.

This theorem says that state space reduction under IME can potentially be larger

than for strong bisimulation.

8.2 Weak Interactive Markovian Equivalence

In this section we define weak interactive Markovian equivalence which results in

quotient IMCs that may be significantly smaller than the quotient under IME.

Definition 8.13 (Weak predecessor based reachability) For s ∈ S and

C,D ⊆ S, the function WPbr : S × 2S × 2S → {0, 1} is defined as:

WPbr(s, C,D) =

{

1 if ∃s′ ∈ Post(s, τ, C), s′′ ∈ D s.t. s′ τ+−−→ s′′

0 otherwise.

where s′ τ+−−→ s′′ denotes an alternationg sequence of states and τ transitions, i.e.,

π = s′ τ−→ s1
τ−→ s2 . . . sn

τ−→ s′′, where n ≥ 0 and si ∈ C, i = 1, . . . , n.

Remark 8.14 Note that if n = 0 then s′ τ+−−→ s′′ denotes s′ τ−→ s′′, i.e., one step

reachability.

Definition 8.15 (WIME) EquivalenceR on S is a weak interactive Markovian

equivalence (WIME) if we have:

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2).

113

8. INTERACTIVE MARKOV CHAINS

2. ∀C ∈ S/R s.t. C ∈ I(S), ∀D ∈ S/R s.t. C 6= D and ∀s′, s′′ ∈ Pred(C) s.t.

s′, s′′ /∈ C it holds: WPbr(s′, C,D) = WPbr(s′′, C,D),

3. ∀C ∈ S/R s.t. C ∈ M(S), ∀D ∈ S/R and ∀s′, s′′ ∈ Pred(C) it holds:

wr(s′, C,D) = wr(s′′, C,D) and ∀s1, s2 ∈ C : E(s1) = E(s2).

4. ∀C ∈ S/R s.t. C /∈ I(S) ∧ C /∈M(S), ∀s1, s2 ∈ C the following holds:

• ∀D ∈ S/R s.t. C 6= D : ∃s′ ∈ D : s1
τ+−−→ s′ ⇔ ∃s′′ ∈ D : s2

τ+−−→ s′′,

• ∀D ∈ S/R s.t. C 6= D : s1
τ∗−−→ s′ ∧ s′ ∈ MS ⇒ s2

τ∗−−→ s′′ ∧ s′′ ∈

MS ∧ R(s′, D) = R(s′′, D).

where s1
τ∗−−→ s′ denotes an alternating sequence of states and τ transitions,

i.e., π = s01
τ−→ s02

τ−→ s03 . . . s0n, where n ≥ 1, s1 = s01, s0n = s′ and

s0i ∈ C, i = 1, . . . , n.

States s1, s2 are WIM related, denoted by s1 ⊻ s2, if (s1, s2) ∈ R for some WIME

R.

The first condition asserts that s1 and s2 are equally labeled. The second condi-

tion asserts that for any interactive closed equivalence class C, the weak prede-

cessor based reachability of going from any two predecessors of C (that are not

in C) to D (where C 6= D) must be equal. Similarly, third condition requires

that for any Markovian closed equivalence class C, the weighted rate of going

from any two predecessors of C to D via any state in C must be equal and all

the states in C have identical exit rates. The last condition requires that for any

other case, all the states in C should reach the same equivalence classes in one or

more steps and all of them should reach a state in zero or more steps which has

the same rate of moving to any D (where C 6= D).

Remark 8.16 Note that if n = 1 then s1
τ∗−−→ s′ denotes s1.

Example 8.17 For the closed IMC in Fig. 8.2 (left), the equivalence relation

induced by the partitioning {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7}, {s8}, {s9}} is a

WIME relation.

8.2.1 Quotient IMC

Definition 8.18 For WIME relation R on I, the quotient IMC I/R is defined

by I/R = (S/R, s
′
0, Act, AP,→

′,⇒′, L′) where:

114

8.2 Weak Interactive Markovian Equivalence

s0

{q}s1 s2 {q}

s3 {p} s4 {r}

{q}s5
{q}

s6 {q}s7

{r}s9

{p}s8

3

1

5

1

τ
τ τ

τ

τ
τ

τ

{p}s′0

{q}s′1

{p}s′2 {r}s′3

{q}s′4

{p}s′6{r}s′5

8

3
8

5
8

τ
τ

τ
τ

τ τ

τ

τ

τ

τ

Figure 8.2: An IMC I (left) and its quotient under a WIME R (right)

• S/R is the set of all equivalence classes under R,

• s′0 = C where s0 ∈ C = [s0]R,

• →
′

⊆ S/R×Act× S/R is defined as follows:

C∈I(S)∧WPbr(s′,C,D)=1∧C 6=D, s′∈Pred(C),s′ /∈C
C

τ−→D
and C∈I(S)∧∃s∈C:s

τ+−−→ s

C
τ−→C

and C /∈I(S)∧∃s∈C,s′∈D:s
τ−→ s′

C
τ−→D

,

• ⇒
′

⊆ S/R×R≥0 × S/R is defined as follows:
C∈M(S)∧λ=wr(s′,C,D), s′∈Pred(C)

C
λ−→D

and C /∈M(S)∧λ=R(s,D), s∈C

C
λ−→D

,

• L′(C) = L(s), where s ∈ C.

Example 8.19 The quotient IMC for the Fig. 8.2 (left) under the WIME rela-

tion with partition {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7}, {s8}, {s9}} is shown in

Fig. 8.2 (right).

Definition 8.20 Any IMC I and its quotient I/R under WIME R are ⊻-related,

denoted by I ⊻ I/R, if and only if there exists a WIME relation R∗ defined on

the disjoint union of state space S ⊎ S/R such that

∀C ∈ S/R, ∀s ∈ C =⇒ (s, C) ∈ R∗

.

115

8. INTERACTIVE MARKOV CHAINS

Theorem 8.21 Let I be a IMC and R be a WIME on I. Then I ⊻ I/R.

Remark 8.22 It is easy to check that WIMEs can be used for repeated minimiza-

tion of a closed IMC and union of WIMEs is not necessarily a WIME.

8.2.2 WIME vs. Weak Bisimulation

Definition 8.23 Let I = (S, s0, Act, AP,→,⇒, L) be a closed IMC. An equiva-

lence relation R ⊆ S × S is a weak bisimulation on I if for any (s1, s2) ∈ R and

equivalence class C ∈ S/R s.t. C 6= [s1]R the following holds:

• L(s1) = L(s2),

• ∃s′ ∈ C : s1
τ+−−→ s′ ⇔ ∃s′′ ∈ C : s2

τ+−−→ s′′,

• s1
τ∗−−→ s′ ∧ s′ ∈MS ⇒ s2

τ∗−−→ s′′ ∧ s′′ ∈ MS ∧R(s′, C) = R(s′′, C) for some

s′′ ∈ S.

where s1
τ∗−−→ s′ denotes an alternating sequence of states and τ transitions, i.e.,

π = s01
τ−→ s02

τ−→ s03 . . . s0n, where n ≥ 1, s1 = s01, s0n = s′ and (s1, s0i) ∈ R, i =

1, . . . , n. States s1 and s2 are weakly bisimilar, denoted s1 ≈ s2, if (s1, s2) ∈ R

for some weak bisimulation R.

Remark 8.24 Note that different notations have been used for defining s1
τ∗−−→ s′

in Def. 8.15 and Def. 8.23, but both of them convey the same meaning. The

reason behind using different notations is that weak bisimulation [74, 75] checks

conditions for any (s1, s2) ∈ R, whereas we check it for any s1, s2 ∈ C, where

C ∈ S/R.

Theorem 8.25 ≈ is strictly finer than WIME.

This theorem asserts that WIME can achieve a larger state space reduction as

compared to weak bisimulation.

Theorem 8.26 IME is strictly finer than WIME.

This theorem asserts that WIME can achieve a larger state space reduction as

compared to IME.

116

8.3 Layering for Interactive Markov Chains - A Failed Attempt

8.3 Layering for Interactive Markov Chains - A

Failed Attempt

IMCs can be used for the modeling and analysis of distributed algorithms with

random times, e.g., mutual exclusion algorithm with random times [57]. In [115],

the modeling and analysis of mutual exclusion algorithm with random times has

been carried out using IMCs. In this setting, read and write operations per-

formed on data variables and registers are assumed to take a randomly distributed

amount of time to finish which is governed by negative exponential distributions.

These variables and registers are required to make sure that the critical section

can be accessed in a mutually exclusive manner. We do not go into details on

these matters here, however, refer interested reader to [115].

Our focus in this section is to show that it is not possible to extend the

framework of layering to a network of IMCs. In other words, while analysing a

distributed algorithm modeled as a network of IMCs, it is not possible to reduce

the state space by performing layered structural transformations. More specifi-

cally, we show that it is not possible to relate the sequential composition operator

and layered (parallel) composition operator by using a partial order relation or

simulation relation such that properties of interest are still preserved. Note that

this relation is very important for carrying out the structural transformations

within the framework of CCL laws (as shown in Section. 7.3). For the sake of

simplicity we assume that the states of IMC models are not labeled. We also

assume that IMC models are acyclic and have a single final state (Sf = {sf}) s.t.

all the states (except the final state) have at least one outgoing transition (these

assumptions are similar to Chapter 6 and Chapter 7). Thus an IMC is a tuple

I = (S, s0, Act,→,⇒, Sf) where S, s0, Act,→,⇒ are defined as for Def. 2.28 and

Sf is the set of final states with |Sf |= 1. Next, we define the composition opera-

tors for two IMCs. We propose a sequential composition operator and recall the

parallel composition from [75].

Definition 8.27 (Sequential composition) Given IMCs Ii = (S, s0i, Acti,→i

,⇒i, {sfi}), where i ∈ {1, 2} with S1 ∩ S2 = ∅. Their sequential composition,

denoted I1; I2, is the IMC (S, s01, Act1 ∪ Act2,→,⇒, {sf2}), where S = S1 \

{sf1} ∪ S2, →=→′ ∪ →2 and ⇒=⇒′ ∪ ⇒2. Here →′=→1 [s02 ← sf1] is defined

by

(s, a, s′) ∈→′ if (s, a, s′) ∈→1 ∧s
′ 6= sf1, and (s, a, s02) ∈→

′ otherwise.

117

8. INTERACTIVE MARKOV CHAINS

s01

s1

sf1

s02

s2

sf2

λ1

λ2

λ3

λ4

Figure 8.3: IMCs I1 and I2

Similarly, ⇒′=⇒1 [s02 ← sf1] is defined by

(s, λ, s′) ∈⇒′ if (s, λ, s′) ∈⇒1 ∧s
′ 6= sf1, and (s, λ, s02) ∈⇒

′ otherwise.

Intuitively, sequential composition of two IMCs I1 and I2 requires executing the

actions/delay transitions of I1 followed by actions/delay transitions of I2. Note

that all the incoming transitions to state sf1 are redirected to s02. Here, s01, sf2
are the new initial and final states in the resulting IMC, respectively.

Definition 8.28 (Parallel composition [75]) Given IMCs Ii = (S, s0i, Acti,

→i,⇒i, {sfi}), where i ∈ {1, 2} with S1 ∩ S2 = ∅. The parallel composition

of I1 and I2, denoted I1||I2, is the IMC (S1 × S2, (s01, s02), Act1 ∪ Act2,→,⇒

, {(sf1, sf2)}) where → and ⇒ are defined as follows:

• s1
a
−→1 s

′
1 and s2

a
−→2 s

′
2 and a ∈ Act1 ∩Act2 implies (s1, s2)

a−→ (s′1, s
′
2)

• s1
a
−→1 s

′
1 and a /∈ Act1 ∩Act2 implies (s1, s2)

a−→ (s′1, s2) for any s2 ∈ S2

• s2
a
−→2 s

′
2 and a /∈ Act1 ∩Act2 implies (s1, s2)

a−→ (s1, s
′
2) for any s1 ∈ S1

• s1
λ
=⇒1 s

′
1 implies (s1, s2)

λ−→ (s′1, s2) for any s2 ∈ S2

• s2
λ
=⇒2 s

′
2 implies (s1, s2)

λ−→ (s1, s
′
2) for any s1 ∈ S1

Parallel composition allows synchronization on common actions and interleaving

on disjoint actions. The last two conditions assert that IMCs can delay indepen-

dently.

118

8.3 Layering for Interactive Markov Chains - A Failed Attempt

s01

s1

s02

s2

sf2

λ1

λ2

λ3

λ4

s01s02

s1s02 s01s2

s1s2
sf1s02 s01sf2

sf1s2

sf1sf2

λ1

λ3

λ3

λ1λ2

s1sf2

λ3

λ4

λ4

λ1

λ2

λ2

λ4

Figure 8.4: Sequential composition I1; I2 (left) and parallel composition I1||I2
(right)

Example 8.29 The sequential composition of two IMCs I1, I2 (Fig. 8.3) is

shown in Fig. 8.4 (left). The parallel composition of I1, I2 is illustrated in Fig. 8.4

(right).

From the previous chapters (Chapter 6, and Chapter 7), we know that for de-

veloping the theory of layering, a partial order equivalence relation needs to be

established between the sequential and layered/parallel composition operators.

Next, we show that it is not possible to establish a partial order equivalence

between IMCs s.t. reachability probabilities are preserved.

Example 8.30 Consider the IMCs shown in Fig. 8.4. It can be checked that the

maximal (resp. minimal) probability to reach the set of final states from initial

state within t time units is different for the IMCs. In other words, sequential

composition (left) and parallel composition (right) do not have the same probabil-

ity for reachability properties. This is also true if we are considering computing

the extremal expected1 time properties for IMCs. This is due to the fact that the

exit rate of s01 is smaller than the exit rate of (s01, s02). From this observation we

can conclude that any definition of po-equivalence that relates ; and || composition

operators would not preserve the reachability probabilities.

1We do not go into details on how to compute the extremal reachability and expected time

probabilities, however, refer interested reader to [71, 75, 160].

119

8. INTERACTIVE MARKOV CHAINS

s0

s1

sf

s′0

s′1

s′f

5

b

15

a

Figure 8.5: IMCs I1 and I2

Next, we show that it is not even possible to relate the ; and || composition

operators by simulation relation for IMCs. Let s
τ
9 denote a predicate that is

true if and only if s has no outgoing τ -transition.

Definition 8.31 (Strong simulation [75]) For IMC I = (S, s0, Act,→,⇒

, Sf), R ⊆ S × S is a simulation relation, iff for any (s, t) ∈ R it holds:

• for any a ∈ Act and s′ ∈ S, s a−→ s′ implies t a−→ t′ and (s′, t′) ∈ R for some

t′ ∈ S,

• s
τ
9 implies E(s) ≤ E(t),

• s
τ
9 implies for distributions µ = P (s, ·) and µ′ = P (s′, ·) there exists ∆ :

S × S → [0, 1] such that for all u, u′ ∈ S:

1. ∆(u, u′) > 0 =⇒ (u, u′) ∈ R

2. ∆(u, S) = µ(s)

3. ∆(S, u′) = µ′(u′)

We write s � s′ if (s, s′) ∈ R for some simulation R and I � I ′ for IMCs I

and I ′ with initial states s0 and s′0, if s0 � s′0 in the disjoint union of I and

I ′. In case of two different IMCs I and I ′, we impose an extra condition which

requires that finals state in I can only be related to final state in I ′ and vice

versa. The last condition of Def. 8.31 requires the existence of a weight function

∆ that distributes µ of s to µ′ of s′ such that only related states obtain a positive

weight, and the total probability mass of u that is assigned by ∆ coincides with

µ(u) and symmetrically for u′.

120

8.4 Related Work

s0

s1

s′0

s′1

s′f

5

b

15

a

s0s
′
0

s1s
′
0 s0s

′
1

s1s
′
1

sfs
′
0 s0s

′
f

sfs
′
f

sfs
′
1 s1s

′
f

5
15

15
5b a

15 5

a
b

b
a

Figure 8.6: Sequential and parallel composition of I1 and I2

Example 8.32 Consider the two IMCs I1 and I2 shown in Fig. 8.5. The

sequential and parallel composition of I1 and I2 is shown in Fig. 8.6. Here

s0 � s0s
′
0. This is because it is not possible to fulfill the weight condition of

Def. 8.31, as the distribution to move to the states s1 and s1s
′
0 is different, i.e.,

P (s0, s1) = 1 6= 1
4
= P ((s0, s

′
0), (s1, s

′
0)). This example shows that parallel com-

position of two IMCs does not simulate the sequential composition.

From Example 8.30 and Example 8.32 it can be seen that it is not possible to

relate the sequential and parallel composition operators, and therefore the state

space of a distributed algorithm modeled as a network of IMCs cannot be reduced

using the layered transformation.

8.4 Related Work

Notions of strong and weak bisimulation for IMCs have been studied in [74, 75].

Strong simulation relation for IMCs has been proposed in [75]. Preservation of

extremal time-bounded reachability properties by bisimulation and weak bisim-

ulation for IMCs has been proved in [75]. A more aggressive abstraction frame-

work for IMCs that is congruence w.r.t. parallel composition has been defined

in [90, 94]. This reduction technique is based on three-valued abstraction and

yields lower bounds for minimal and upper bounds for maximal timed reachabil-

ity properties. In the linear time setting, several variants of trace equivalences

121

8. INTERACTIVE MARKOV CHAINS

have been analysed in [158] using button pushing experiments. More specifically,

various notions of trace equivalence have been studied in [158], based on different

types of adversaries (schedulers) that are used to resolve nondeterministic choices.

The relationship between IME/WIME and different notions of trace equivalence

studied in [158] is not clear.

8.5 Conclusions

This chapter considered two equivalence relations for reducing the state space of

closed IMCs. We proposed interactive Markovian equivalence (IME), defined quo-

tient under this relation and proved that bisimulation is strictly finer than IME.

In the weak setting, we have proposed weak interactive Markovian equivalence

WIME, defined quotient under this relation and proved that weak bisimulation

is strictly finer than WIME. We have also shown that it is not possible to extend

the framework of layered reduction to a network of IMCs.

122

Chapter 9

Conclusions and Future Work

We have presented state-space reduction techniques for a range of nondetermin-

istic and probabilistic systems. The reduction techniques for these systems are

based on the notions of equivalence relations and layering. We started with the

purely nondeterministic setting, i.e., Kripke structures and provide structural

definitions of Kripke minimization equivalence (KME) and weak Kripke mini-

mization equivalence (WKME). We have shown that KME and WKME allow for

a more aggressive state space reduction than strong bisimulation and divergence-

sensitive stutter bisimulation, respectively. Next, we have established the preser-

vation results for linear-time (LT) and stutter-insensitive LT properties under

KME and WKME quotienting. We have also proved that KME is compositional

w.r.t. synchronous parallel composition for KSs.

For discrete-time probabilistic systems, we have defined weighted probabilistic

equivalence (WPE) on discrete-time Markov chains (DTMCs). It has been proved

that WPE is strictly coarser than bisimulation for DTMCs, and preserves the

probability of satisfying ω-regular properties. As a side result, we have shown that

these preservation results can be extended to discrete-time Markov reward models

(DMRMs), and WPE is compositional w.r.t. synchronous parallel composition

for DTMCs.

In the continuous-time setting, we have provided a structural definition of

weighted lumpability (WL) on continuous-time Markov chains (CTMCs). We

have shown that WL is strictly coarser than bisimulation for CTMCs, and the

probability of satisfying a deterministic timed automaton (DTA) specification is

preserved under WL quotienting. This preservation result has also been extended

to metric temporal logic (MTL) specifications.

In the second part of this thesis, we have focused on layering based state space

123

9. CONCLUSIONS AND FUTURE WORK

reduction for distributed systems modeled as a network of acyclic modal tran-

sition systems (MTSs) and abstract probabilistic automata (APAs). For MTSs,

we have defined layered composition operator and proved communication closed

layer (CCL) laws. Next, we have defined a partial order (po) equivalence between

MTSs and prove that it preserves existential (∃) and universal (∀) reachability

properties. Similarly, for APAs we have defined a layered composition opera-

tor, formulated CCL laws and established a po equivalence. We have proved the

preservation of extremal reachability probabilities under po equivalence. We have

also shown that the theory of layering cannot be extended to IMCs, which are use-

ful for modeling distributed algorithms with random times. In addition, we have

defined interactive Markovian equivalence (IME) and weak interactive Marko-

vian equivalence (WIME) on closed interactive Markov chains (IMCs). Finally,

we have investigated their relationship with bisimulation and weak bisimulation

(for closed IMCs), respectively.

Future work

• Algorithm: As mentioned before, in [159], a polynomial-time algorithm

has been proposed for computing WL relation on CTMCs. This algorithm

repeatedly computes the WL quotient system until no further minmization

is possible. Initial experiments with two academic case studies have shown

that WL can be used for substantial reduction in size of certain CTMC

models, e.g., incremental service systems. This algorithm can easily be

adapted to compute KME (Chapter 3) on KSs and WPE (Chapter 4) on

DTMCs. Unfortunately, the algorithm is currently slow, and therefore an

interesting direction of research involves improving the time complexity of

this algorithm by changing the way weighted rates are computed. Another

challenge is to use more efficient data structures for keeping track of rates

to blocks. It needs to be investigated if it is possible to adapt this algorithm

to compute weak KME (WKME) on KSs and IME/WIME (Chapter 8) on

closed IMCs. Finally, it would be also interesting to investigate other classes

of systems where WL/WPE/KS can provide better state space reductions

as compared to bisimulation.

• Property preservation: For IME and WIME (Chapter 8), a challenging

direction of future research would be to explore the linear real-time prop-

erties that are preserved by these relations. Some example properties that

can be investigated are as follows: extremal timed reachability probabili-

124

ties [160], extremal expected time [71] and long-run average objectives [71].

For timed reachability, it would be interesting to see if an approach sim-

ilar to [117] (for CTMDPs) can be used for establishing the preservation

results. Recently, in [137] it has been proved that bisimulation for Markov

automata preserves extremal expected time and long-run average objec-

tives. This can be used as a starting point for establishing preservation

results under IME/WIME quotienting.

• Layering: It would be interesting to apply this technique to practical case

studies which involve modeling distributed systems using MTSs and APAs.

An example case study where layering based structural transformations can

be useful for reducing the state space is randomized Byzantine agreement

protocol [97]. Another interesting direction of research is to extend the

theory of layering for PAs/APAs [144, 149] and timed automata (TAs) [124]

to probabilistic timed automata (PTAs) [100].

125

9. CONCLUSIONS AND FUTURE WORK

126

Appendix A

Appendix

A.1 Proofs of Chapter 3

Proof of Theorem 3.8

Proof: Let K = (S,→, AP, L, s0) be a Kripke structure and K/R = (S/R,→′

, AP, L′, s′0) be one of its quotient under KME R. Since we have defined the

KME relation on a single state space, to prove this theorem we take the disjoint

union S ⊎ S/R. Let us define a relation R
′

⊆ (S ⊎ S/R) × (S ⊎ S/R) with

{(s, C)|s ∈ C} ⊆ R
′

. Let R∗ be the reflexive, symmetric and transitive of closure

of R
′

. Now we prove that R∗ is a KME relation. This is done by checking both

conditions of Def. 3.2. Let (s, C) ∈ R∗. The proofs for pairs (s, s′), (C, s), and

(C,C) are similar and omitted.

1. L′(C) = L(s) by definition of K/R.

2. Next we prove that ∀E, F ∈ (S ⊎ S/R)/R∗ and ∀x′
0, x

′′
0 ∈ Pred(E) it holds

Pbr(x′
0, E, F) = Pbr(x′′

0, E, F). Let x′
0, x

′′
0 ∈ Pred(E). Consider the follow-

ing three cases based on the successors of x′
0, x

′′
0 such that these successors

are in E.

2.1) The successors of both x′
0, x

′′
0 belong to S. Since we know that R is a

KME, it follows Pbr(x′
0, E, F) = Pbr(x′′

0, E, F).

2.2) The successors of both x′
0, x

′′
0 belong to S/R. In this case we know that

Pbr(x′
0, E, F) = Pbr(x′

0, E1, F1) where E1 ∈ E∩S/R and F1 ∈ F∩S/R.

We know from definition of K/R that Pbr(x′
0, E1, F1) = 1, i.e.,

E1−→
′

F1 iff ∀s′, s′′ ∈ Pred(E1)∩S, Pbr(s′, E1, F1) = Pbr(s′′, E1, F1) =

1. Similarly Pbr(x′′
0, E, F) = Pbr(x′′

0, E1, F1) = 1 iff ∀s′, s′′ ∈

127

A. APPENDIX

Pred(E1) s.t. s′, s′′ ∈ S, Pbr(s′, E1, F1) = Pbr(s′′, E1, F1) = 1.

Thus either Pbr(x′
0, E, F) = Pbr(x′′

0, E, F) = 1 or Pbr(x′
0, E, F) =

Pbr(x′′
0, E, F) = 0.

2.3) The successors of x′
0, x

′′
0 belong to S and S/R respectively. We know

from the definition of K/R, Pbr(x′′
0, E1, F1) = 1, i.e., E1−→

′

F1 iff

Pbr(x′
0, E1, F1) = 1. Therefore we can conclude that Pbr(x′

0, E, F) =

Pbr(x′′
0, E, F).

�

Proof of Theorem 3.12

Proof: Let s1 ∼ s2. We prove that both conditions for KME are satisfied, i.e.,

∼⇒ KME.

• L(s1) = L(s2), from the definition of s1 ∼ s2.

• Let S/∼ denotes the set of equivalence classes under strong bisimulation

relation. Let C,D ∈ S/∼, s1, s2 ∈ C and s′, s′′ ∈ Pred(C). Since s1 ∼ s2
we know that if s1 can reach D in one step then s2 can also do so and vice

versa. Thus from any predecessor of C we can reach D in two steps and

this holds for any D ∈ S/∼. Therefore we can conclude: Pbr(s′, C,D) =

Pbr(s′′, C,D).

Next, we show that KME ;∼. From Fig. 3.2 (left) it can be observed that

s3 ∼ s5, but states s3 and s4 cannot be merged under ∼, as s3 can move to s7
but there is no direct successor s of s4 with s ∼ s7 (Note that L(s7) 6= L(s6)). �

Proof of Theorem 3.17

Proof: In order to prove this theorem it is sufficient to show that for each path

π1 ∈ PathsK(s0) there exists a path π′
1 ∈ PathsK/

R(s′0) s.t. π1 ⋆π
′
1 and vice versa,

where π1 ⋆ π
′
1 iff si ⋆ s

′
i for all i. Since si ⋆ s

′
i =⇒ L(si) = L(s′i) (from definition

of KME), we know π1 ⋆ π′
1 ⇒ π1△π′

1. Let π1 = s0−→ s1−→ s2 . . . ∈ PathsK(s0)

be a path in K starting in s0 and assume s0 ⋆ s′0. Now we successively define

a corresponding path in K/R starting in s′0 s.t. the transitions si−→ si+1 are

matched by transitions s′i−→
′

s′i+1 where si+1 ⋆ s
′
i+1. This is done by induction on

i.

• Base Case: i = 0. From Def. 3.5 we know that for each transition s0−→ s1
in K there will be a corresponding transition C −→

′

D in K/R s.t. s0 ∈ C,

s1 ∈ D. We also know from Theorem 3.8 that s0 ⋆ C and s1 ⋆ D. Taking

s′0 = C and s′1 = D we get the path s′0−→
′

s′1.

128

A.1 Proofs of Chapter 3

• Induction step: Assume i ≥ 0 and that the path s′0−→
′

s′1−→
′

s′2 . . . s
′
i is

already constructed with si ⋆ s
′
i for j = 0, . . . , i. We consider the transition

si−→ si+1 in π1. Since si ⋆ s
′
i for transition si−→ si+1 there will be a corre-

sponding transition C −→
′

D with si+1 ⋆ D and s′i = C, s′i+1 = D. Thus we

can construct the path s′0−→
′

s′1−→
′

s′2 . . . s
′
i−→

′

s′i+1.

Similarly for each path π′
1 ∈ PathsK/

R(s′0) we can construct a path π1 ∈

PathsK(s0) s.t. π
′
1 ⋆ π1. Hence K |= P ⇔ K/R |= P . �

Proof of Theorem 3.28

Proof: Proof of this theorem is similar to the proof of Theorem 3.8. �

Proof of Theorem 3.30

Proof: Let s1 ⋆ s2. We show that s1, s2 are also WKME related, i.e., KME ⇒

WKME.

• L(s1) = L(s2) from definition of KME.

• Let s1, s2 ∈ C. Since s1 ⋆ s2, ∀D ∈ S/R and s′, s′′ ∈ Pred(C):

Pbr(s′, C,D) = Pbr(s′′, C,D). This condition also satisfies condition 2

of WKME (Def. 3.23) as Def. 3.23 only requires that for s′, s′′ /∈ C, C 6= D,

two (or more) step reachability is satisfied.

Next we show that WKME ; KME. Consider Fig. 3.6 (left), here three a

states, i.e., s3, s4 and s5 can be merged under WKME but cannot be merged

under KME. �

Proof of Theorem 3.33

Proof: Let s1 ∼=
div s2 and s1, s2 ∈ C, C ∈ S/∼=div . We prove that s1, s2 are also

WKME related. From the definition of ∼=div we know that if s1 can reach any

equivalence class D ∈ S/∼=div then s2 can also reach D in one or more steps via C

and vice versa. This also implies that from every predecessor s of C s.t. s /∈ C

it is possible to reach the same equivalence classes in two or more steps via C

(where we only consider equivalence classes that are different from C). We also

know that L(s1) = L(s2), from definition of ∼=div, hence s1, s2 are WKME related.

Next we show that WKME ;∼=div. Consider Fig. 3.6 (left), here three a states,

i.e., s3, s4 and s5 cannot be merged under ∼=div, as s4 cannot reach a state labeled

with ∅ but s3 and s5 can reach s7. Similarly s5 cannot reach a b state but s3 and

s4 can reach s6. �

Proof of Theorem 3.37

Proof: In order to prove this theorem it is sufficient to show that for each path

π1 ∈ PathsK(s0), there exists a path π′
1 ∈ PathsK/

R(s′0) s.t. π1 ⊙ π′
1 (i.e., there

129

A. APPENDIX

exists an infinite sequence of indices 0 = j0 < j1 < j2 < . . . and 0 = k0 <

k1 < k2 < . . . with sj ⊙ s′k for all jr−1 ≤ j < jr and kr−1 ≤ k < kr where

r = 1, 2, . . .). Since si ⊙ s′i ⇒ L(si) = L(s′i), we know π1 ⊙ π′
1 ⇒ π1 , π′

1. Let

π1 = s0−→ s1 . . . ∈ PathsK(s0) and assume s0 ⊙ s′0. Now we successively define

a corresponding path π′
1 ∈ PathsK/

R(s′0) in K/R starting in s′0 s.t. transition

si−→ si+1 is matched by a sequence of transitions s′i−→
′

u1 . . . un−→
′

s′i+1 (n ≥ 0)

with si+1 ⊙ s′i+1 and s′i ⊙ u1 . . .⊙ un. This is done by induction on i.

• Base Case: i = 0. From Def. 3.25, we know that for each transition

s0−→ s1 in K s.t. (s0, s1) /∈ R there will be a corresponding transition

C −→
′

D in K/R s.t. s0 ∈ C, s1 ∈ D. We also know from Thm. 3.28 that

s0 ⊙ C and s1 ⊙D. Taking s′0 = C and s′1 = D we can construct the path

s′0−→
′

u1−→
′

u2 . . . un−→
′

s′1. If (s0, s1) ∈ R then we have two subcases.

– If there exists an index j > 1 with (s0, sj) /∈ R with j being

minimal, i.e. (sj−1, sj) /∈ R then we have si ⊙ si+1 for all i =

0 . . . j − 2. Since sj−1−→ sj and s′0 ⊙ sj−1, we know there exists a

path s′0−→
′

u1−→
′

u2 . . . un−→
′

s′1 with s′0 ⊙ u1 ⊙ . . .⊙ un and sj ⊙ s′1.

– If there does not exist an index j > 1 with (s0, sj) /∈ R this means

∃s s.t. s ⊙ s0 and s +−−→ s. From Def. 3.25 and Thm. 3.28 we have

C −→
′

C, with s ∈ C. Taking C = s′0 we can construct the path

s′0−→
′

u1−→
′

u2 . . . un−→
′

s′0, with s′0 ⊙ u1 ⊙ . . .⊙ un.

• Induction Step: Assume i ≥ 0 and the path π′ =

s′0−→
′

u1 . . . un0
−→

′

s′1−→
′

u1 . . . un1
−→

′

s′2 . . . s
′
i is already constructed

with si ⊙ s′i. Consider the following three cases:

– If the transition si−→ si+1 is s.t. (si, si+1) /∈ R then we have the

transition C −→
′

D in K/R where si ∈ C and si+1 ∈ D. Taking

C = s′i, D = s′i+1 we can construct the path s′i−→
′

u1 . . . uni
−→

′

s′i+1

with si+1 ⊙ s′i+1 and s′i ⊙ u1 . . . uni
. Concatenating this path fragment

with π′ we can construct the corresponding path.

– Let the transition si−→ si+1 is s.t. (si, si+1) ∈ R and there exists

an index j > i + 1 with (si, sj) /∈ R with j being minimal, i.e.

(sj−1, sj) /∈ R. Since sj−1−→ sj and s′i ⊙ sj−1, we know there exists

a path s′i−→
′

u1 . . . uni
−→

′

s′i+1 with s′i ⊙ u1 ⊙ . . . ⊙ uni
and sj ⊙ s′i+1.

Concatenating this path fragment with π′ we can construct the corre-

sponding path.

130

A.1 Proofs of Chapter 3

– Let the transition si−→ si+1 is s.t. (si, si+1) ∈ R and there does not

exist an index j > i + 1 with (si, sj) /∈ R this means ∃s s.t. s ⊙

si and s +−−→ s. From Def. 3.25 and Thm. 3.28 we know there is a

transition C −→
′

C in K/R with si ∈ C. Thus we can construct the

path s′i−→
′

u1−→
′

u2 . . . uni
−→

′

s′i+1, with s′i ⊙ u1 ⊙ . . . ⊙ un and s′i =

s′i+1. Concatenating this path fragment with π′ we can construct the

corresponding path.

Similarly for each path π′
1 ∈ PathsK/

R(s′0) we can construct a path π1 ∈

PathsK(s0) s.t. π
′
1 ⊙ π1. Hence K |= P ⇔ K/R |= P. �

Proof of Theorem 3.20

Proof: Let K = (S,→, AP, L, s0) be a Kripke structure and K/R = (S/R,→
′

, AP, L′, s′0) be its quotient under KME R. Let K1 = (S1,→1, AP1, L1, s
′′
0)

be a Kripke structure composed in parallel to K and K/R, i.e., K ⊗ K1,

K/R ⊗ K1. Since we have defined KME relation on a single state space, to

prove this theorem we take the disjoint union (S × S1) ⊎ (S/R×S1). Let us de-

fine a relation R
′

⊆ ((S × S1) ⊎ (S/R×S1)) × ((S × S1) ⊎ (S/R×S1)) such that

R
′

= {((s, t), (C, t))|s ∈ C, t ∈ S1}, C ∈ S/R. Let R∗ be the the reflexive, sym-

metric and transitive closure of R
′

Now we prove that R∗ is a KME relation.

This is done by checking both conditions of Def. 3.2. Let ((s, t), (C, t)) ∈ R∗.

1. From the definition of K/R we know that, L′(C) = L(s). Nowe we have

to show that: L(s, t) = L(C, t). From Def. 3.19 we know that L(s, t) =

L(s) ∪ L(t) = L(C) ∪ L(t) = L(C, t).

2. Let E, F be the equivalence classes under relation R∗. Next we prove

that ∀E, F ∈ ((S × S1) ⊎ (S/R×S1)) /R∗ and ∀x′
0, x

′′
0 ∈ Pred(E) it holds

Pbr(x′
0, E, F) = Pbr(x′′

0, E, F). Let x′
0, x

′′
0 ∈ Pred(E). Consider the follow-

ing three cases based on the successors of x′
0, x

′′
0 such that these successors

are in E.

a) The successors of both x′
0, x

′′
0 belong to S×S1. Since C ∈ S/R we know

that Pbr(s′0, C,D) = Pbr(s′′0, C,D), where s′0, s
′′
0 ∈ Pred(C). Since

parallel composition is the synchronous product, where two Kripke

structures move in a lock step fashion, i.e., ∀s1, s2 ∈ C and t ∈ S1,
s1−→ s3∧s2−→ s4∧t−→ 1t′

(s1,t)−→ ⋆(s3,t′)∧(s2,t)−→ ⋆(s4,t′)
, where →⋆ is the transition relation on S ×

S1. That is all the transitions from an equivalence class, say from

C ∈ S/R to D ∈ S/R now are transitions from (C, t) to (D, t′) and

131

A. APPENDIX

therefore the two step reachability from predecessors to (D, t′) via

(C, t) is still preserved. Thus: Pbr(x′
0, E, F) = Pbr(x′′

0, E, F).

b) The successors of both x′
0, x

′′
0 belong to (S/R×S1). We have

Pbr(x′
0, E, F) = Pbr(x′

0, E1, F1) where E1 ∈ E ∩ (S/R×S1) and F1 ∈

F∩(S/R×S1). We know that Pbr(x′
0, E1, F1) = 1, i.e., E1−→ •F1 where

→• is the transition relation on S/R×S1 iff ∀s, s′ ∈ Pred(E1)∩(S×S1),

Pbr(s, E1, F1) = Pbr(s′, E1, F1) = 1. Similarly Pbr(x′′
0, E1, F1) = 1 iff

∀s, s′ ∈ Pred(E1) ∩ (S × S1), Pbr(s, E1, F1) = Pbr(s′, E1, F1) = 1.

Thus either Pbr(x′
0, E, F) = Pbr(x′′

0, E, F) = 1 or Pbr(x′
0, E, F) =

Pbr(x′′
0, E, F) = 0.

c) The successors of x′
0, x

′′
0 belong to (S×S1) and (S/R×S1) respectively.

We already know that: Pbr(x′′
0, E1, F1) = 1, i.e., E1−→ •F1 iff ∀s, s′ ∈

Pred(E1) ∩ (S × S1), Pbr(s, E1, F1) = Pbr(s′, E1, F1) = 1. Taking

x′
0 = s, we get Pbr(x′′

0, E1, F1) = Pbr(x′
0, E1, F1).

�

A.2 Proofs of Chapter 4

Proof of Theorem 4.10

Proof: Let D = (S, P, AP, L, s0) be a DTMC and D/R = (S/R, P
′, AP, L′, s′0) be

its quotient under WPE. Since we have defined the WPE relation on a single state

space, to prove this theorem we take the disjoint union S ∪ S/R. Let us define a

relation R
′

⊆ (S ∪ S/R) × (S ∪ S/R) such that R
′

= {(s, C)|s ∈ C,C ∈ S/R}.

Let R∗ be the reflexive, symmetric and transitive of closure of R
′

.

Now we prove that R∗ is a WPE relation. This is done by checking both

conditions of Def. 4.4. Let (s, C) ∈ R∗. The proofs for pairs (s, s′), (C, s), and

(C,C) are similar and omitted.

1. L′(C) = L(s) by definition of D/R.

2. Next we prove that ∀E, F ∈ (S ∪ S/R)/R∗ and ∀x′
0, x

′′
0 ∈ Pred(E) it holds

wp(x′
0, E, F) = wp(x′′

0, E, F). Let x′
0, x

′′
0 ∈ Pred(E). Consider the following

three cases based on the successors of x′
0, x

′′
0 such that these successors are

in E.

132

A.2 Proofs of Chapter 4

a) The successors of both x′
0, x

′′
0 belong to S. Since we know that R is a

WPE, it follows wp(x′
0, E, F) = wp(x′′

0, E, F).

b) The successors of both x′
0, x

′′
0 belong to S/R. In this case, wp(x′

0, E, F)

= wp(x′
0, E1, F1) where E1 ∈ E ∩S/R and F1 ∈ F ∩S/R, which equals

∑

x′∈E1

P (x′
0, x

′)

P (x′
0, E1)

· P ′(x′, F1) = P ′(E1, F1).

Similarily wp(x′′
0, E, F) = wp(x′′

0, E1, F1) = P ′(E1, F1).

c) The successors of x′
0, x

′′
0 belong to S and S/R respectively. In this case

we get, wp(x′′
0, E, F) = wp(x′′

0, E1, F1) = P ′(E1, F1). From Def. 4.6 we

know that:

P ′(E1, F1) = wp(x′
0, E1, F1) = wp(x′

0, E, F).

Since all the conditions of Def. 4.4 are satisfied by the relation R∗, it is a WPE

relation. �

Proof of Lemma 4.13

Proof: Let s1 ∼ s2. We prove that both conditions for WPE are satisfied.

• L(s1) = L(s2), follows directly from s1 ∼ s2.

• Let C,D ∈ S/∼ and s′0, s
′′
0 ∈ Pred(C). Since P (s1, D) = P (s2, D) for all

s1, s2 ∈ C, then for all s∗ ∈ C:

wp(s′0, C,D) =
∑

s∈C

P (s′0, s)

P (s′0, C)
· P (s,D)

= P (s∗, D) ·
∑

s∈C

P (s′0, s)

P (s′0, C)

= P (s∗, D)

= P (s∗, D) ·
∑

s∈C

P (s′′0, s)

P (s′′0, C)

=
∑

s∈C

P (s′′0, s)

P (s′′0, C)
· P (s,D)

= wp(s′′0, C,D).

Thus s1, s2 are WPE related. Consider the equivalence class C = {s4, s5, s6}

under WPE R in Fig. 4.2 (left). Here s4 6∼ s5 since s4 can reach a c-state while

133

A. APPENDIX

s5 cannot. Thus we can conclude that ∼ is strictly finer than WPE. �

Proof of Theorem 4.25

Proof: In order to prove this theorem it is sufficient to show that for each ac-

cepting cylinder Cyl set in D/R, there is a corresponding set of cylinder sets in

the DTMC D that are accepted by the DRA A and that jointly have the same

probability as Cyl. Consider the set Π of cylinder sets in D, and D/R that are

accepted by DRA A, s.t. ∀Cyl = (s0, s1, ..., sn), and Cyl′ = (s′0, s
′
1, ..., s

′
n) with

si ⊜ s′i, ∀0 ≤ i ≤ n implies Cyl′ ∈ Π. Then we have to prove,

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Πn) = Pr

D
(Πn). (A.1)

We will prove this equation by induction over the length of the cylinder set Cyl.

• Base Case: In this case, n = 0 and

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Π0) = 1 = Pr

D
(Π0),

if s0 ∈ D,Π0, and 0, otherwise.

• Induction Hypothesis: Assume that for cylinder sets of length n ∈ N, it
holds:

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Πn) = Pr

D
(Πn).

• Induction Step: Consider the case n+ 1:

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Πn+1)

=
∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈S

P (s1, s2) · Pr
s2
(Πn)

=
∑

s1∈D

P (s′0, s1, D) ·
∑

C∈S/R

∑

s2∈C

P (s1, s2) · Pr
s2
(Πn)

=
∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈C

P (s1, s2) · Pr
s2
(Πn).

Multiplying the above expression by
P (s1, C)

P (s1, C)
we get:

134

A.2 Proofs of Chapter 4

∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈D

P (s1, C)

P (s1, C)
· P (s1, s2) · Pr

s2
(Πn)

=
∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) · P (s1, C) ·
∑

s2∈C

P (s1, s2)

P (s1, C)
· Pr

s2
(Πn)

=
∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) · P (s1, C) ·
∑

s2∈C

P (s1, s2, C) · Pr
s2
(Πn).

From the induction hypothesis we have:
∑

s2∈C

P (s1, s2, C) · Pr
s2
(Πn) = Pr

C
(Πn).

Also from Def. 4.3 and Def. 4.6 we know that:
∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) · P (s1, C) =
∑

C∈S/R

P ′(D,C),

since
∑

s1∈D
P (s′0, s1, D) · P (s1, C) = wp(s′0, D, C) = P ′(D,C). Therefore

we get:

∑

C∈S/R

P ′(D,C) · Pr
C
(Πn) = Pr

D
(Πn+1).

�

Proof of Theorem 4.30

Proof: Let D = (S, P, AP, L, s0) be a DTMC and D/R = (S/R, P
′, AP, L′, s′0) be

its quotient under WPE R. Let D1 = (S1, P1, AP1, L1, sp) be a DTMC composed

in parallel to D and D/R, i.e., D ⊗ D1, D/R ⊗ D1. Since we have defined WPE

relation on a single state space, to prove this theorem we take the disjoint union

(S × S1) ∪ (S/R×S1). Let us define a relation R
′

⊆ ((S × S1) ∪ (S/R×S1)) ×

((S × S1) ∪ (S/R×S1)) such that R
′

= {((s, t), (C, t))|s ∈ C, t ∈ S1}, C ∈ S/R.

Let R∗ be the the reflexive, symmetric and transitive closure of R
′

Now we prove that R∗ is a WPE relation. This is done by checking both condi-

tions of Def. 4.4. Let ((s, t), (C, t)) ∈ R∗.

1. From the definition of D/R we know that, L′(C) = L(s). Nowe we have

to show that: L(s, t) = L(C, t). From Def. 4.29 we know that L(s, t) =

L(s) ∪ L(t) = L(C) ∪ L(t) = L(C, t).

135

A. APPENDIX

2. Next we prove that ∀E, F ∈ ((S × S1) ∪ (S/R×S1)) /R∗ and ∀x′
0, x

′′
0 ∈

Pred(E) it holds wp(x′
0, E, F) = wp(x′′

0, E, F). Let x′
0, x

′′
0 ∈ Pred(E).

Consider the following three cases based on the successors of x′
0, x

′′
0 such

that these successors are in E.

a) The successors of both x′
0, x

′′
0 belong to S × S1. Since C ∈ S/R

we know that wp(s′0, C,D) = wp(s′′0, C,D), where s′0, s
′′
0 ∈ Pred(C).

Since parallel composition is the synchronous product, where two

DTMCs move in a lock step fashion, i.e., ∀s1, s2 ∈ C and t ∈ S1,
s1

p1−−→ s3∧s2
p2−−→ s4∧t

p3−−→ t′

(s1,t)
p1·p3−−−→ (s3,t′)∧(s2,t)

p2·p3−−−→ (s4,t′)
. That is all the transitions from an

equivalence class, say from C ∈ S/R to D ∈ S/R get multiplied by the

same factor in the product DTMC and therefore ∀(s1, t), (s2, t) ∈ S×S1

s.t. s1, s2 ∈ C it holds: wp(x′
0, E, F) = wp(x′′

0, E, F).

b) The successors of both x′
0, x

′′
0 belong to (S/R×S1). We have

wp(x′
0, E, F) = wp(x′

0, E1, F1) where E1 ∈ E ∩ (S/R×S1) and F1 ∈

F ∩ (S/R×S1), which equals

∑

x′∈E1

P ′
s(x

′
0, x

′)

P ′
s(x

′
0, E1)

· P ′
s(x

′, F1) = P ′
s(E1, F1),

where P ′
s is the probability matrix for D/R⊗D1 defined on (S/R×S1).

Similarily wp(x′′
0, E, F) = wp(x′′

0, E1, F1) = P ′
s(E1, F1).

c) The successors of x′
0, x

′′
0 belong to (S×S1) and (S/R×S1) respectively.

We already know that:

wp(x′′
0, E, F) = wp(x′′

0, E1, F1) = P ′
s(E1, F1).

From Def. 4.6 we know that wp(s0, C,D) = P (C,D), where s0 ∈

Pred(C), and C,D ∈ S/R, therefore while taking the paral-

lel composition, corresponding transitions of both DTMCs D,D/R
get multiplied by the same factor, i.e., ∀s ∈ C and t ∈ S1,

t
p3−−→ t′∧s

p1−−→ s′∧C
p2−−→D

(s,t)
p1·p3−−−→ (s′,t′)∧(C,t)

p2·p3−−−→ (D,t′)
, so as to obtain (D ⊗D1), (D/R ⊗D1).

Thus P ′
s(E1, F1) = wp(x′

0, E1, F1) = wp(x′
0, E, F).

�

Proof of Theorem. 4.40

Proof: Since the class of languages accepted by DRAs agrees with the class of

ω-regular languages, therefore any property that can be expressed using LTL

136

A.2 Proofs of Chapter 4

s0

s1 s2

s3 s4

p1
p2

1 1

11

s′0

s′1

s′3 s′4

p1 + p2

p1
p1+p2

p2
p1+p2

11

Figure A.1: Stationary state probabilities in DTMC

can also be expressed using DRA. From the proof of Thm. 4.25 we know that

for any cylinder set Cyl in D/R which satisfies the LTL formula ϕ, there is a

corresponding set of cylinder sets in D that satisfy ϕ and that jointly have the

same probability as Cyl. It is also easy to check that the cumulative reward

earned by each of these cylinder sets is same (since in the reward setting, WPE

related states need to have the same reward). Hence we can conclude:

E(MD |= ϕ) = E(MD/R |= ϕ).

�

Proof of Theorem 4.42

Proof: From Corollary 4.28 we know that WPE preserves transient-state proba-

bilities, i.e.,
∑

s∈C T (s0, s, n) = T (s
′
0, C, n). We also know that rew(s) = rew(C)

where s ∈ C. Now the proof is straightforward. �

Proof of Theorem 4.44

Proof: In order to prove this theorem, it is sufficient to show that WPE pre-

serves stationary state probabilities. We do this by showing that the system of

linear equations for the original DTMC on the left (Fig. A.1) can be transformed

into a system of linear equations having the same number of variables, equations

and coefficient matrix as the linear system for the quotient DTMC on the right

(Fig. A.1). Let Sl(si), and Sr(s′i) be the stationary probabilities of being in state

si, s
′
i in the left and right DTMCs respectively. The system of linear equations

for the original DTMC in the Fig. A.1 given above is given as:

Sl(s0) · p1 = Sl(s1) · 1 (A.2)

Sl(s0) · p2 = Sl(s2) · 1 (A.3)

Sl(s1) · 1 = Sl(s3) · 1 (A.4)

137

A. APPENDIX

Sl(s2) · 1 = Sl(s4) · 1 (A.5)

Sl(s3) · 1 + Sl(s4) · 1 = Sl(s0) · (p1 + p2) (A.6)

For the quotient DTMC the linear system is gives as:

Sr(s
′
0) · (p1 + p2) = Sr(s

′
1) · (

p1
p1 + p2

+
p2

p1 + p2
) (A.7)

Sr(s
′
1) ·

p1
p1 + p2

= Sr(s
′
3) · 1 (A.8)

Sl(s
′
1) ·

p2
p1 + p2

= Sr(s
′
4) · 1 (A.9)

Sr(s
′
3) · 1 + Sr(s

′
4) · 1 = Sr(s

′
0) · (p1 + p2) (A.10)

By taking the sum of Eqn. A.2 and A.3 we get:

Sl(s0) · (p1 + p2) = Sl(s1) · 1 + Sl(s2) · 1

Let z = Sl(s1) + Sl(s2), then the above equation can be rewritten as:

Sl(s0) · (p1 + p2) = z · 1

From this we can see that:

Sl(s0) =
z · 1

(p1 + p2)
(A.11)

From this we also get Eqn. A.12, A.13:

Sl(s1) =
z · 1

(p1 + p2)
· p1 (A.12)

Sl(s2) =
z · 1

(p1 + p2)
· p2 (A.13)

Eqn. A.4 and A.5 can now be rewritten as:

Sl(s3) · 1 =
z · 1

(p1 + p2)
· p1 (A.14)

Sl(s4) · 1 =
z · 1

(p1 + p2)
· p2 (A.15)

138

A.3 Proofs of Chapter 5

Now these system of equations have the same form as that of quotient DTMC,

where we have:

Sl(s0) = Sr(s
′
0) (A.16)

z = Sr(s
′
1) (A.17)

Sl(s3) = Sr(s
′
3) (A.18)

Sl(s4) = Sr(s
′
4) (A.19)

Since z = Sl(s1) + Sl(s2) = Sr(s
′
1) we can conclude that stationary state proba-

bilities are preserved. �

This proof can be easily extended to any arbitrary DTMC D with finite number

of states, where the general system of linear equations for left hand and right

hand side is given as:

∑

s∈B,s 6=s′

Sl(s) · P (s, s′) = Sl(s
′) ·

∑

s∈B,s 6=s′

P (s′, s)

where
∑

s∈B Sl(s) = 1.

∑

C∈B′,C 6=D

Sr(C) · P ′(C,D) = Sr(D) ·
∑

C∈B′,C 6=D

P ′(D,C)

where
∑

C∈B′ Sr(C) = 1, and s ∈ C, C,D ∈ S/R.

A.3 Proofs of Chapter 5

Proof of Theorem 5.9

Proof: Let C = (S,R,AP, L, s0) be a CTMC and C/R = (S/R, R
′, AP, L′, s′0) be

its quotient under WL. Since we have defined the WL relation on a single state

space, to prove this theorem we take the disjoint union S ∪ S/R. Let us define

an equivalence relation R∗ ⊆ (S ∪ S/R) × (S ∪ S/R) with {(s, C)|s ∈ C} ⊆ R∗.

The exit rate E ′(C) for C ∈ S/R is defined by
∑

x∈(S∪S/R)

R′(C, x).

Now we prove that R∗ is a WL relation. This is done by checking both

conditions of Def. 5.4. Let (s, C) ∈ R∗. The proofs for pairs (s, s′), (C, s), and

(C,C) are similar and omitted.

139

A. APPENDIX

1. L′(C) = L(s) by definition of C/R. We prove that E ′(C) = E(s) as follows:

E ′(C) =
∑

x∈(S∪S/R)

R′(C, x) =
∑

D∈S/R

R′(C,D)

=
∑

D∈S/R

wr(s′0, C,D) for some s′0 ∈ Pred(C)

=
∑

D∈S/R

∑

s∈C

P (s′0, s, C) · R(s,D)

=
∑

s∈C



P (s′0, s, C) ·
∑

D∈S/R

R(s,D)





=
∑

s∈C



P (s′0, s, C) ·
∑

D∈S/R

∑

s′∈D

R(s, s′)





=
∑

s∈C

(

P (s′0, s, C) ·
∑

s′∈S

R(s, s′)

)

=
∑

s∈C

(P (s′0, s, C) · E(s))

=

(
∑

s∈C

P (s′0, s, C)

)

· E(s), since for all s′ ∈ C,E(s′) = E(s)

= E(s).

2. Finally we prove that ∀E, F ∈ (S∪S/R)/R∗ and ∀x′
0, x

′′
0 ∈ Pred(E) it holds

wr(x′
0, E, F) = wr(x′′

0, E, F). Let x′
0, x

′′
0 ∈ Pred(E). Consider the following

three cases based on the successors of x′
0, x

′′
0 such that these successors are

in E.

a) The successors of both x′
0, x

′′
0 belong to S. Since we know that R is a

WL, it follows wr(x′
0, E, F) = wr(x′′

0, E, F).

b) The successors of both x′
0, x

′′
0 belong to S/R. In this case, wr(x′

0, E, F)

= wr(x′
0, {E1}, F) where E1 ∈ E ∩ S/R, which equals

∑

x′∈{E1}

P (x′
0, x

′)

P (x′
0, E1)

· R′(x′, F) = R′(E1, F).

Similarily wr(x′′
0, E, F) = wr(x′′

0, {E1}, F) = R′(E1, F).

140

A.3 Proofs of Chapter 5

c) The successors of x′
0, x

′′
0 belong to S and S/R respectively. In this case

we get, wr(x′′
0, E, F) = wr(x′′

0, {E1}, F) = R′(E1, F).

We know that the successors of E1 ∈ S/R, hence using Def. 5.6 we

conclude:

R′(E1, F) = wr(x′
0, E1, F) = wr(x′

0, E, F).

Since all the conditions of Def. 5.4 are satisfied by the relation R∗, it is a WL

relation. �

Proof of Lemma 5.12

Proof: Let s1 ∼ s2. We prove that both conditions for WL are satisfied.

• L(s1) = L(s2), follows directly from s1 ∼ s2.

• E(s1) = E(s2), since we know that

E(s1) =
∑

s∈S

R(s1, s) =
∑

C∈S/∼

∑

s∈C

R(s1, s) =
∑

C∈S/∼

R(s1, C).

If s1 ∼ s2, then R(s1, C) = R(s2, C). Therefore:

E(s1) =
∑

C∈S/∼

R(s1, C) =
∑

C∈S/∼

R(s2, C) = E(s2).

• Let C,D ∈ S/∼ and s′0, s
′′
0 ∈ Pred(C). Since R(s1, D) = R(s2, D) for all

s1, s2 ∈ C, then for all s∗ ∈ C:

wr(s′0, C,D) =
∑

s∈C

P (s′0, s)

P (s′0, C)
· R(s,D)

= R(s∗, D) ·
∑

s∈C

P (s′0, s)

P (s′0, C)

= R(s∗, D)

= R(s∗, D) ·
∑

s∈C

P (s′′0, s)

P (s′′0, C)

=
∑

s∈C

P (s′′0, s)

P (s′′0, C)
· R(s,D)

= wr(s′′0, C,D).

141

A. APPENDIX

Thus s1, s2 are WL related. �

Proof of Lemma 5.22

Proof: We will prove this lemma by induction over the length of the cylinder set

Cyl ∈ Π. That is, we will prove for any n ∈ N :

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Πn) = Pr

D
(Πn).

• Base Case: In this case, n = 0 and

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Π0) = 1 = Pr

D
(Π0),

if s0 ∈ D,Π0, and 0, otherwise.

• Induction Hypothesis: Assume that for cylinder sets of length n ∈ N, it
holds:

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Πn) = Pr

D
(Πn).

• Induction Step: Consider the case n+ 1:

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Πn+1)

=
∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈S

P (s1, s2) · (e
−E(s1)·inf I0 − e−E(s1)·sup I0) · Pr

s2
(Πn)

Let (e−E(s1)·inf I0 − e−E(s1)·sup I0) = δ(s1, I0), then the above expression is

equal to:

∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈S

P (s1, s2) · δ(s1, I0) · Pr
s2
(Πn)

=
∑

s1∈D

P (s′0, s1, D) ·
∑

C∈S/R

∑

s2∈C

P (s1, s2) · δ(s1, I0) · Pr
s2
(Πn)

=
∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈C

P (s1, s2) · δ(s1, I0) · Pr
s2
(Πn).

Multiplying the above expression by
R(s1, C)

R(s1, C)
and using P (s1, s2) =

142

A.3 Proofs of Chapter 5

R(s1, s2)

E(s1)
yields:

∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈D

R(s1, C)

R(s1, C)
·
R(s1, s2)

E(s1)
· δ(s1, I0) · Pr

s2
(Πn).

Since ∀s1, s′1 ∈ D, E(s1) = E(s′1), we have δ(s1, I0) = δ(s′1, I0). We get:

δ(s1, I0)

E(s1)

∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) · R(s1, C) ·
∑

s2∈C

R(s1, s2)

R(s1, C)
· Pr

s2
(Πn)

=
δ(s1, I0)

E(s1)

∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) · R(s1, C) ·
∑

s2∈C

P (s1, s2, C) · Pr
s2
(Πn).

We have already proved that ∀s ∈ D, E(s) = E(D), cf. Thm. 5.9. From

the induction hypothesis we have:

∑

s2∈C

P (s1, s2, C) · Pr
s2
(Πn) = Pr

C
(Πn).

Also from Def. 5.1 and Def. 5.6 we know that:

∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) · R(s1, C) =
∑

C∈S/R

R′(D,C),

since
∑

s1∈D
P (s′0, s1, D) · R(s1, C) = wr(s′0, D, C) = R′(D,C). Therefore

we get:

δ(D, I0)

E(D)

∑

C∈S/R

R′(D,C) · Pr
C
(Πn) = Pr

D
(Πn+1).

�

Proof of Theorem 5.21

Proof: Let Cn be the set of all the cylinder sets in C, and C/R of length n that

are accepted by DTA A and Cn/Π be the set of subsets of Cn grouped according

143

A. APPENDIX

to WL-closed set of cylinder sets. Let Cylπ be the cylinder set that contains π.

Since the cylinder sets in Eq. 5.1 are disjoint, we have:

Pr(C |= A) = Pr




⋃

n∈N

⋃

π∈PathsCn(A)

Cylπ





=
∑

n∈N

∑

Cyl∈Cn

Pr(Cyl)

=
∑

n∈N

∑

Π∈Cn/Π

∑

D∈S/R

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Π).

Then we get using Eq. 5.2:

Pr(C |= A) =
∑

n∈N

∑

Π∈Cn/Π

∑

D∈S/R

∑

s1∈D

P (s′0, s1, D) · Pr
s1
(Π)

=
∑

n∈N

∑

Π∈Cn/Π

∑

D∈S/R

Pr
D
(Π)

= Pr(C/R |= A).

�

Proof of Theorem. 5.28

Proof: We prove the measurability by showing that for any path

π = s0
t0−−→ s1

t1−−→ s2 · · · sn−1
tn−1−−−→ sn ∈ PathsCn(s0 |= ϕ) where PathsCn(s0 |= ϕ)

is the set of paths of length n starting from s0 that satisfy ϕ, there ex-

ists a cylinder set Cyl(s0, I0,, In−1, sn (Cyl for short) s.t. π ∈ Cyl and

Cyl ⊆ PathsCn(s0 |= ϕ). Since the only interesting case is time-bounded

“until“, we consider ϕ = ϕ1U
[a,b]ϕ2, where a, b ∈ Q. Let

∑n−1
i=0 ti − ∆ > a

and
∑n−2

i=0 ti + ∆ < b, where ∆ =
2n

10k
, and k is large enough. We construct

Cyl by considering intervals Ii with rational bounds that are based on ti. Let

Ii = [t−i , t
+
i] s.t. t

−
i = ti = t+i if ti ∈ Q, and otherwise:

t−i < ti < t+i , t
−
i > ti −

∆

2n
and t+i < ti +

∆

2n
.

We have to show for ti /∈ Q, Eq. A.20 and Eq. A.21 hold:

n−1∑

i=0

t−i > a. (A.20)

144

A.3 Proofs of Chapter 5

Proof: We know that

n−1∑

i=0

ti −∆ > a =⇒
n−1∑

i=0

t−i + n ·
∆

2n
−∆ > a

=⇒
n−1∑

i=0

t−i +
∆

2
−∆ > a =⇒

n−1∑

i=0

t−i −
∆

2
> a =⇒

n−1∑

i=0

t−i > a. �

n−2∑

i=0

t+i < b. (A.21)

Proof: We know that
n−2∑

i=0

ti +∆ < b =⇒
n−2∑

i=0

t+i − (n− 1) ·
∆

2n
+∆ < b

=⇒
n−2∑

i=0

t+i +
(n+ 1) ·∆

2n
< b =⇒

n−2∑

i=0

t+i < b. �

One way is to pick t−i , t
+
i as follows:

t−i = ⌊ti⌋+
⌊{ti} · 10k⌋

10k
,

t+i = ⌊ti⌋ +
⌊{ti} · 10k⌋+ 1

10k
,

where {ti} represents the fractional part of the irrational number ti. It can be

checked that picking t−i , t
+
i this way satisfies the above mentioned constraints.

From this derivation we conclude that {π ∈ Paths(s0)|π |= ϕ} can be rewritten

as the combination of cylinder sets of the form Cyl = (s0, I0,, In−1, sn). That

is,

{π ∈ Paths(s0)|π |= ϕ} =
⋃

n∈N

⋃

π∈PathsCn(s0�ϕ)

Cylπ, (A.22)

where PathsCn(s0 � ϕ) is the set of paths of length n starting from s0 which satisfy

ϕ. �

Proof of Theorem. 5.30

Proof: The proof is similar to that of Thm. 5.21. We consider the WL-closed set

of cylinder sets of length n in C, C/R such that this set satisfies ϕ. The rest of

the proof remains the same. �

145

A. APPENDIX

A.4 Proofs of Chapter 6

Proof of Theorem 6.20

Proof: We provide the proof of the law CCL-L. The proofs of the other CCL

laws are similar. Let T = (N1 • N2)||M2 and U = N1 • (N2||M2). In order

to prove that T ≡ U , we have to show T �S U and U �S T . Let ((x, y), z)

and (x, (y, z)) denote states of MTSs T and U , respectively. Here x, y, z rep-

resents the state components of N1,N2 and M2, respectively. We only prove

T �S U , the proof of U �S T is very similar. To show T �S U , we have to

prove that T strongly refines U according to Def. 6.5. Let S∗ and S be the

state space of T and U . Let R ⊆ S∗ × S be a binary relation such that R =

{(((x, y), z), (x, (y, z))), (((x′, y), z), (x′, (y, z))), (((x, y′), z′), (x, (y′, z′))) . . .}. In-

tuitively R relates states of S∗ to those states in S that have the same individual

state components from N1,N2 and M2. Let us consider a state s = (x, (y, z))

from U and s∗ = ((x, y), z) from T . From the definition of R, we know that

(s∗, s) ∈ R. A transition from s in U or s∗ in T can be performed by 1) N1

individually, or 2) N2 individually, or 3) M2 individually, or 4) N1 and N2 si-

multaneously, or 5) N2 and M2 simultaneously. We show that for every case1

the conditions of Def. 6.5 are satisfied, and thus R is a strong refinement relation

between T and U . It is easy to check that condition 3 which requires final states

to be related is trivially satisfied. This is because R relates states that have the

same individual state components from N1,N2 andM2.

1) N1 individually: Let s a−→⊤s
′ (resp. s a−→ ?s

′) be a transition of N1 taken in

U , where s′ = (x′, (y, z)). Since N1 is the left operand of layering in U such a

transition is also possible from the related state s∗ = ((x, y), z), i.e., s∗ a−→ ⊤s
∗∗

(resp. s∗ a−→ ?s
∗∗), where s∗∗ = ((x′, y), z). From the definition of R we know that

(s∗∗, s′) ∈ R. Similarly, it can be shown that for every transition s∗ a−→ ⊤s
∗∗∗ (resp.

s∗ a−→ ?s
∗∗∗), there exists a corresponding transition, s a−→⊤s

′′ (resp. s a−→ ?s
′′) s.t.

(s∗∗∗, s′′) ∈ R.

2) N2 individually: Similar to case 1 above.

3)M2 individually: Let s a−→⊤s
′ (resp. s a−→ ?s

′) be a transition ofM2 taken in

U , where s′ = (x, (y, z′)). Since this transition is possible after layering operator

in U , it is also possible in T from the state related to s, i.e., s∗ as this action is not

waiting for some action of N1 to be executed, and U induces fewer interleavings

1Note that we do not consider the case where N1 andM2 move simultaneously. This is due

to the fact that N1‡M2, and therefore they cannot have common actions (since the dependency

relation is reflexive).

146

A.4 Proofs of Chapter 6

due to dominance of layered composition operator. Next, we consider a transition

ofM2 taken in T from state s∗. Since N1 ‡M2, a similar transition exists in U

from the state related to s∗, i.e., s as putting M2 after the layering operator is

not a problem as it is independent from N1.

4) N1 and N2 simultaneously: Let s a−→⊤s
′ (resp. s a−→ ?s

′) be a transition in U

as a result of a synchronization of N1 and N2 on action a, where s′ = (x′, (y′, z)).

Again as U induces fewer interleavings due to dominance of layered operator,

a similar transition is possible in T from state related to s, i.e., s∗. Similarly,

for any transition in T from s∗, a corresponding transition is enabled in U as

(N2||M2) will not block it (due to the fact that the synchronizing action is not

waiting for an action fromM2 to be executed since parallel composition does not

respect dependencies).

5) N2 andM2 simultaneously: Let s a−→⊤ϕ (resp. s a−→ ?s
′) be a transition in U

as a result of a synchronization of N2 andM2 on action a, where s′ = (x, (y′, z′)).

As this action is possible in (N2||M2), it means that this action is not waiting for

the execution of some actions from N1. It is therefore possible to take the same

transition in T from s∗ as (N1 •N2) will not block it. Similarly, for any transition

in T from s∗, there will be a corresponding transition in U . This is due to the

fact this action is not waiting for actions of N1 to be executed as N1 ‡M2. �

Proof of Theorem 6.22

Proof: (∃ reachability): We provide the proof ofM |=∃
3Sf ⇒M\sync |=∃

3Sf .

The proof ofM\sync |=∃
3Sf ⇒M |=

∃
3Sf is similar. Let T ∈ JMK be an LTS

s.t. T |= 3Sf . We know that every finite path π ∈ Paths
Sf

fin(T) is a realisation

of some finite execution ρ ∈ Exec
Sf

fin(M), and no finite path can be a realisation

of more than one finite execution inM (sinceM is deterministic). Let η be the

set of all such finite executions where η ⊆ Exec
Sf

fin(M). From the definition of

M\sync we know that for each finite execution ρ ∈ η there exists a corresponding

finite execution in Exec
Sf

fin(M
\sync) obtained by allowing interleaving on com-

mon actions s.t. common action of M1 is executed first followed by execution

of common action ofM2. Let η′ ⊆ Exec
Sf

fin(M
\sync) be the set of all such finite

executions. Let T ′ ∈ JM\syncK be an LTS s.t. for every finite execution ρ′ ∈ η′

there exists a finite path π′ in T ′ that is a realisation of ρ′ and T ′ does not contain

any path π′ ∈ Paths
Sf

fin(T
′) which is not a realisation of some finite execution

ρ′ ∈ η′. In other words we have constructed an implementation T ′ corresponding

to T s.t. T ′ |= 3Sf .

(∀ reachability): We provide the proof of M |=∀
3Sf ⇒ M\sync |=∀

3Sf . The

proof of M\sync |=∀
3Sf ⇒ M |=∀

3Sf is similar. From the definition of ∀

147

A. APPENDIX

reachability (Def. 6.11) we know thatM reaches Sf if and only if all the imple-

mentations ofM are able to reach Sf . This intuitively means thatM does not

have those may transitions that block any of its implementations from reaching

the final state. SinceM\sync is obtained fromM by allowing interleaving on com-

mon actions, such may transitions (or equivalent transition sequences) are also

absent in M\sync. In other words, every implementation T ′ ∈ JM\syncK reaches

Sf , i.e., T ′ |= 3Sf . �

Proof of Lemma 6.25

Proof: From the definition of layered normal form (Def. 6.24) we know that all

finite executions that are in LNF consists of the consecutive execution of actions

of M1, followed by the consecutive execution of actions of M2. We know that

in ((M1 • M2)
\sync), an action of M2 occurs only when all the actions in M1

on which it is dependent have been executed. This intuitively means that all

the actions of M2 that occur in a finite execution before any action of M1 are

independent of this action and thus by repeated permutation of these actions

any finite execution ρ ∈ Exec
Sf

fin((M1 • M2)
\sync) can be converted to a finite

execution that is in LNF. �

Proof of Theorem 6.27

Proof: LetM1,M2 be MTSs. From the definition of LNF (Def. 6.24), we know

that a finite execution in LNF involves the consecutive execution of actions of

M1, followed by the consecutive execution of actions ofM2. This means that for

every finite execution ρ ∈ ExecLNF
fin ((M1 •M2)

\sync) there exists a finite execu-

tion ρ′ in ((M1;M2)
\sync) that ends in the final state and where: ∀n ≥ 0 : ρ[n] ≈

ρ′[n] ∧ ρ[n] an+1−−−→ ⊤ρ[n+ 1]⇒ ρ′[n] an+1−−−→⊤ρ
′[n+ 1](resp. ρ[n] an+1−−−→ ?ρ[n+ 1]⇒

ρ′[n] an+1−−−→ ?ρ
′[n + 1]). The relation ≈ between states of ((M1 • M2)

\sync) and

((M1;M2)
\sync) is defined as follows: S1×S2 is the state space of ((M1•M2)

\sync)

and (S1 \ {sf1} ∪ S2) is the state space of ((M1;M2)
\sync) then ∀s1 ∈ S1 where

s1 6= sf1 : (s1, s02) ≈ s1 and ∀s2 ∈ S2 : (sf1, s2) ≈ s2.

In other words we have related every finite execution of ((M1 • M2)
\sync)

that is in LNF to some finite execution in ((M1;M2)
\sync) that ends in the

final state and vice-versa. It is also clear from Lemma 6.25 that for every finite

execution ρ in ((M1 •M2)
\sync) that ends in the final state, there exists a finite

execution ρ′ in ((M1 •M2)
\sync) that is LNF s.t. ρ ≡∗

po ρ
′. �

Proof of Theorem 6.29

Proof: (∃ reachability): We provide the proof of M |=∃
3Sf ⇒ M′ |=∃

3S ′
f .

The proof ofM′ |=∃
3S ′

f ⇒M |=
∃
3Sf is similar. Let T ∈ JM\syncK be an LTS

s.t. T |= 3Sf . We know that every finite path π ∈ Paths
Sf

fin(T) is a realisation of

148

A.4 Proofs of Chapter 6

some finite execution ρ ∈ Exec
Sf

fin(M
\sync), and no finite path can be a realisation

of more than one finite execution inM\sync (sinceM\sync is deterministic). Let

η be the set of all such finite executions where η ⊆ Exec
Sf

fin(M
\sync). From the

definition of po-equivalence for MTSs (Def. 6.23) we know that for set η there

exists a set η′ ⊆ Exec
S′

f

fin(M
′\sync) : ∀ρ ∈ η∃ρ′ ∈ η′ : ρ ≡∗

po ρ′ and vice versa.

Since both M\sync and M′\sync are deterministic, this intuitively means that

|η|= |η′|. Let T ′ ∈ JM′\syncK be an LTS s.t. for every finite abstract execution

ρ′ ∈ η′ there exists a finite path in T ′ that is a realisation of ρ′ and T ′ does

not contain any path π′ ∈ Paths
S′

f

fin(T
′) which is not a realisation of some finite

execution ρ′ ∈ η′. In other words we have constructed an implementation T ′

corresponding to T s.t. T ′ |= 3S ′
f .

(∀ reachability): We provide the proof ofM |=∀
3Sf ⇒M′ |=∀

3S ′
f . The proof

of M′ |=∀
3S ′

f ⇒ M |=∀
3Sf is similar. From the definition of ∀ reachability

(Def. 6.11) we know that M reaches Sf if and only if all the implementations

of M are able to reach Sf . This intuitively means that M\sync does not have

those may transitions that block any of its implementations from reaching the

final state. Since M′ is po-equivalent to M and M′ involves the consecutive

execution of actions of M1, followed by the consecutive execution of actions

of M2 before reaching S ′
f , such may transitions are also absent in M′\sync. In

other words, every implementation T ′ ∈ JM′\syncK reaches S ′
f , i.e., T

′ |= 3S ′
f . �

Proof of Proposition 6.30

Proof: Let Sf , S
′
f , Sf1 be the set of final states in M,M′ and M1, respec-

tively. We know that M and M′ are po-equivalent, which means that for any

ρ ∈ Exec
Sf

fin(M
\sync), there exists a ρ′ ∈ Exec

S′

f

fin(M
′\sync) s.t. ρ ≡∗

po ρ
′ and vice

versa. Now consider a finite execution ρ′′ in (M||M1)
\sync obtained by executing

actions of ρ and ρ1, where ρ1 ∈ Exec
Sf1

fin(M
\sync
1). It is easy to show (similar to

proof of Lemma 6.25, Thm. 6.27) that for ρ′′, there exists a finite execution ρ′′′

in (M′||M1)
\sync obtained by executing actions of ρ′ and ρ1 s.t. ρ′′ ≡∗

po ρ
′′′. �

149

A. APPENDIX

A.5 Proofs of Chapter 7

Proof of Theorem 7.17

Proof: We provide the proof of the law CCL-L. The proofs of the other CCL

laws are similar. Let T = (N1 • N2)||M2 and U = N1 • (N2||M2). In order

to prove that T ≡ U , we have to show T �S U and U �S T . Let ((x, y), z)

and (x, (y, z)) denote states of APAs T and U , respectively. Here x, y, z rep-

resents the state components of N1,N2 and M2, respectively. We only prove

T �S U , the proof of U �S T is very similar. To show T �S U we have to

prove that T strongly refines U according to Def. 7.7. Let S∗ and S be the

state space of T and U . Let R ⊆ S∗ × S be a binary relation such that R =

{(((x, y), z), (x, (y, z))), (((x′, y), z), (x′, (y, z))), (((x, y′), z′), (x, (y′, z′))) . . .}. In-

tuitively R relates states of S∗ to those states in S that have the same individual

state components from N1,N2 and M2. Let us consider a state s = (x, (y, z))

from U and s∗ = ((x, y), z) from T . From the definition of R we know that

(s∗, s) ∈ R. A transition from s in U or s∗ in T can be performed by 1) N1

individually, or 2) N2 individually, or 3) M2 individually, or 4) N1 and N2 si-

multaneously, or 5) N2 and M2 simultaneously. We show that for every case1

the conditions of Def. 7.7 are satisfied, and thus R is a strong refinement relation

between T and U . It is easy to check that condition 3 which requires final states

to be related is trivially satisfied. This is because R relates states that have the

same individual state components from N1,N2 andM2.

1) N1 individually: Let s a−→⊤ ϕ (resp. s a−→ ? ϕ) be a transition of N1 taken in

U . Since N1 is the left operand of layering in U such a transition is also possible

from the related state s∗ = ((x, y), z), i.e., s∗ a−→⊤ ϕ′ (resp. s∗ a−→ ? ϕ
′). Since

this transition is similar to the transition from s, it is easy to check that ∀µ′ ∈

Sat(ϕ′)∃µ ∈ Sat(ϕ) s.t. µ ⋐δ
R µ′. For example, let µ′(s∗∗) = p, µ′(s∗∗∗) = 1 − p

where s∗∗ = ((x′, y), z), s∗∗∗ = ((x′′, y)z), and µ′(s
′

) = p, µ′(s
′′

) = 1 − p where

s
′

= (x′, (y, z)), s
′′

= (x′′, (y, z)). Then we can do the assignment, δ(s∗∗)(s
′

) = 1

and δ(s∗∗∗)(s
′′

) = 1. Since δ(s∗∗)(s
′

) > 0, δ(s∗∗∗)(s
′′

) > 0, these states should be

related, i.e., (s∗∗, s′) ∈ R and (s∗∗∗, s
′′

) ∈ R (which is indeed the case from the

definition ofR). Similarly it can be checked that for s∗ a−→⊤ ϕ′ (resp. s∗ a−→ ? ϕ
′),

there exists a corresponding transition, s a−→⊤ ϕ (resp. s a−→ ? ϕ) s.t. the condi-

tion on relating distributions is satisfied.

1Note that we do not consider the case where N1 andM2 move simultaneously. This is due

to the fact that N1‡M2, and therefore they cannot have common actions (since the dependency

relation is reflexive).

150

A.5 Proofs of Chapter 7

2) N2 individually: Let s a−→ ⊤ ϕ (resp. s a−→ ? ϕ) be a transition of N2 taken in

U . Since this transition is possible in U , this intuitively means that action a is

not waiting for actions from N1 to be executed. AsM2 is in parallel composition

it also does not respect dependencies. Thus a similar transition also exists in T .

Similarly, for every transition in T , a similar transition exists in U . The rest of

the proof, showing that distributions are related is similar to case 1 above.

3)M2 individually: Let s
a−→⊤ ϕ (resp. s a−→ ? ϕ) be a transition ofM2 taken in

U . Since this transition is possible after layering operator in U , it is also possible

in T as this action is not waiting for some action of N1 to be executed, and U

induces fewer interleavings due to dominance of layered composition operator.

Thus such a transition also exists in T . Next, we consider a transition of M2

taken in T . Since N1 ‡M2, a similar transition exists in U , i.e., puttingM2 after

the layering operator is not a problem as it is independent from N1. The relation

between distributions of the corresponding states can be shown similar to case 1.

4) N1 and N2 simultaneously: Let s a−→⊤ ϕ (resp. s a−→ ? ϕ) be a transition in U

as a result of a synchronization of N1 and N2 on action a. Again as U induces

fewer interleavings due to dominance of layered operator, a similar transition is

possible in (N1 • N2), i.e., T . Similarly, for any transition in T , a similar transi-

tion is enabled in (N2||M2) (due to the fact that the synchronizing action is not

waiting for an action fromM2 to be executed since parallel composition does not

respect dependencies). The relation between distributions of the corresponding

states can be shown similar to case 1.

5) N2 and M2 simultaneously: Let s a−→⊤ ϕ (resp. s a−→ ? ϕ) be a transition in

U as a result of a synchronization of N2 and M2 on action a. As this action is

possible in (N2||M2), it means that this action is not waiting for the execution

of some actions from N1. It is therefore possible to take the same transition in T

as (N1 • N2) will not block it. Similarly, for any transition in T , there will be a

corresponding transition in U . This is due to the fact this action is not waiting

for actions of N1 to be executed and also we know that N1 ‡ M2. The relation

between distributions of the corresponding states can be shown similar to case 1.

�

Proof of Proposition 7.18

Proof: Let N be an APA, and JN K be the set of all implementations of N .

We prove this proposition in two steps. In first step we show that to com-

pute Pmax
N (Sf) and Pmin

N (Sf), it is sufficient to consider only a subset of im-

plementations of N that are deterministic, i.e., I ⊂ JN K where ∀P ∈ I :

P is deterministic. In the second step, we show that infact only those determin-

151

A. APPENDIX

istic implementations are sufficient which satisfy the following condition: every

finite path of the implementation is a realisation of some finite abstract execu-

tion of N . More formally, T ⊂ I where ∀P ∈ T : ∀π ∈ Pathsfin(P)∃ρ ∈

Execfin(N) : π |= ρ. As mentioned in the paper we only consider deterministic

APAs. Let N be a deterministic APA, i.e., no state in N can have two tran-

sitions on the same action. This intuitively means, that in an implementation

P ∈ JN K, if any state s has more than one outgoing transition on same action,

then this is due to the single corresponding transition from the related state s′ in

APA N . In other words, every distribution on the same action transition in P

from state s is simulated by some distribution that satisfies the single constraint

in the corresponding transition from s′ (from the definition of satisfaction). Let

P ∈ JN K s.t. only the initial state of P, i.e., s0 has n transitions on an action say

a. In other words, P is nondeterministic only because s0 has multiple transitions

on action a. Let the distributions for these n transitions on action a are denoted

by µ1, µ2, . . . , µn. This means that in state s0 if some adversary1 decides to take

a action transition then it can choose one of these n transitions. Now consider n

other implementations of N corresponding to P denoted by P1,P2, . . . ,Pn where

each implementation Pi (where 0 < i ≤ n) is obtained by taking a copy of P

and removing all the a action transitions (and states that can be only reached by

these transitions) from s0 except the one with distribution µi. Note that these

n implementations are deterministic (since P was nondeterministic only because

of multiple a labeled transitions from s0 and now in every implementation Pi

we have only one transition on action a from s0). Now if some adversary D in

P takes a non-a transition from s0, say action b then such a transition can be

taken in every implementation from state s0 by some adversary Di ∈ Adv(Pi)

(since by construction we know that such a transition is possible in every Pi).

Since for this case any transition taken by D starting from initial state can also

be taken in every Pi by some Di, D and all the corresponding Di give the same

reachability probability to reach the set of final states. On the other hand, if an

adversary D in P takes a transition from s0 labeled with action a and distribu-

tion µi, then such a transition can also be taken in a specific implementation,

i.e., Pi by some adversary Di from s0 s.t. reachability probabilities to reach the

set of final states coincide. Again, the reachability probabilities coincide as both

D in P and Di in Pi take the same actions with same probabilities starting from

initial states. Thus, we can safely remove P from the set of implementations of

1As mentioned earlier, we only consider history-independent adversaries, and therefore the

next action is chosen based on the current state.

152

A.5 Proofs of Chapter 7

JN K, and only consider the n corresponding implementations for computing the

extremal reachability probabilities in P.

Now, if for some P ∈ JN K, s0 has m transitions on action a and n transitions

on action b and all other states are deterministic, then we can consider m×n other

implementations of N corresponding to P where each implementation, i.e., Pi,j

(where 0 < i ≤ m, 0 < j ≤ n) is obtained by taking a copy of P and removing all

the a and b action transitions (and staes that can be only reached by these tran-

sitions) from s0 except one a transition and one b transition with distributions

µi and µj, respectively. Again it can be observed that all these implementations

are deterministic and Pmax
P (Sf) = sup0<i≤m,0<j≤nP

max
Pij

(Sf). The same holds for

minimum reachability properties. Thus we can safely remove P from implemen-

tations of N and consider the m×n deterministic implementations in place of P

for computing the Pmax
N (Sf) and Pmin

N (Sf). Similarly, for every arbitrary nonde-

terministic implementation of N (where any state can have multiple transitions

on every action that is enabled), we have a set of corresponding deterministic

implementations of N s.t. if we remove the nondeterministic implementation

from JN K then we still get the same values for Pmax
N (Sf) and Pmin

N (Sf). Thus

we can safely remove all the nondeterministic implementations from JN K. Let

I ⊂ JN K be the set of all deterministic implementations of N that are sufficient

for computing extremal reachability properties.

Next, we show that we do not need to consider all the deterministic imple-

mentations in I for computing Pmax
N (Sf) and Pmin

N (Sf), and it is sufficient to

consider only a subset T ⊂ I that satisfy the condition that ∀P ∈ T : ∀π ∈

Pathsfin(P)∃ρ ∈ Execfin(N) : π |= ρ. Let P ∈ I that satisfies this condition.

We know that every PA is an APA. If we consider P to be an APA, then we can

relate many PAs in I with P via satisfaction relation (Def. 7.2). It is easy to see

that all the implementations in I that can be related with P are deterministic

(since I is set of deterministic implementations). Since in P every transition is

a must transition, any action that can be taken from state s in P, can also be

taken from all the related states in every implementation of P. In other words,

if two states s, s′ are related by the satisfaction relation, then act(s) = act(s′).

From the definition of satisfaction we know that the initial states of all these

implementations agree on the probability distributions with the initial state of

P. This means that if an adversary D from the initial state of P takes the a

labeled transition with distribution µ, then in every implementation of P, say

Pi ∈ I, some Di can also take the a labeled transition from the intial state with

some distribution µ′ s.t. µ′ ⋐R µ, where R is the satisfaction relation. Since

153

A. APPENDIX

every transition taken by D in P with distribution µ is matched by a correspond-

ing transition taken by Di in Pi with distribution µ′ s.t. µ′ ⋐R µ, thus they

all have the same maximum (resp. minimum) probability to reach set of final

states. For this reason, it is sufficient to just consider P and remove all the im-

plementations of P from I (that are related by satisfaction relation). Similarly,

all the other deterministic implementations that do not satisfy the condition that

∀π ∈ Pathsfin(P)∃ρ ∈ Execfin(N) : π |= ρ can be removed from I.

�

Proof of Theorem 7.19

Proof: In order to prove this theorem we show that for every P ∈ JN1 • N2K and

every D ∈ Adv(P), we can construct a corresponding P ′ ∈ J(N1 • N2)
\syncK and

D′ ∈ Adv(P ′) s.t. for every finite path π under D where last(π) = s′, there is

a finite path π′ (where last(π′) = s′) without synchronized edges in D′ with the

same probability. Let N = N1•N2, P ∈ JN K, D ∈ Adv(P) and Π ⊆ Pathsfin(P)

s.t. π ∈ Π iff π ∈ PathsDfin(P). We know that every path π ∈ Pathsfin(P) is

a realisation of some finite abstract execution ρ ∈ Execfin(N) and no two finite

paths of P can be the realisation of same ρ ∈ Execfin(N) (by Proposition 7.18).

We also know that for all such finite abstract executions, say set η, there are

corresponding finite abstract executions inN \sync, say set η′, obtained by allowing

interleaving on common actions s.t. the common action of N1 is executed first

followed by the common action ofN2. Let η∗ ⊆ η s.t. for every abstract execution

ρ ∈ η∗, there is a path π ∈ Π that is a realisation of ρ, and every path π ∈ Π

is a realisation of some ρ ∈ η∗. Consider P ′ to be an implementation of N \sync

s.t. for every finite abstract execution ρ′ ∈ η′ there exists a path in P ′ that is a

realisation of ρ′ and P ′ does not contain any path π which is not a realisation of

some ρ′ ∈ η′. From proposition 7.18 we also know that no two paths of P ′ can

be the realisation of same ρ′ ∈ Execfin((N1 • N2)
\sync) (since we only consider

realisable implementations). For this P ′, let D′ ∈ Adv(P ′), and let η′′ ⊆ η′ where

for every finite abstract execution ρ′ ∈ η′′ there is a path π′ ∈ PathsD
′

fin(P
′) with

π′ |= ρ′ and every path π′ ∈ PathsD
′

fin(P
′) is a realisation of some ρ′ ∈ η′′ (this is

possible as we only consider realisable implementations, from Proposition 7.18).

We choose this adversary D′ ∈ Adv(P ′) such that for every finite path π′ (under

D′) we have π′ |= ρ′ for some ρ′ ∈ η′′, and for every ρ ∈ η∗, there is a corresponding

finite abstract execution without synchronized transitions in the set η′′. Note that

from the definition of parallel composition it is known that for any synchronized

transition in a finite abstract execution, the new constraint ϕ̃ is s.t. µ̃ ∈ Sat(ϕ̃)

iff there exists µ ∈ Sat(ϕ) and µ′ ∈ Sat(ϕ′) such that µ̃(u, v) = µ(u) · µ′(v) for

154

A.5 Proofs of Chapter 7

all u ∈ S1, v ∈ S2.

So far we have constructed an implementation P ′ and adversary D′, but it can

be clearly observed that there can be multiple implementations of (N1 •N2)
\sync

that satisfy the condition that every finite abstract execution ρ′ ∈ η′ there exists

a path in P ′ that is a realisation of ρ′ and P ′ does not contain any path π

which is not a realisation of some ρ′ ∈ η′. We therefore choose P ′ from these

implementations s.t. 1) for every non-synchronized transitions of type s a−→⊤ ϕ

or s a−→ ? ϕ, if µ ∈ Sat(ϕ) is a distribution in P then µ ∈ Sat(ϕ) is also a

distribution in P ′ for every corresponding transition of type s a−→⊤ ϕ or s a−→ ? ϕ.

2) similarly, for every synchronized transition, if µ̃ ∈ Sat(ϕ̃) is a distribution in

P, then for the corresponding sequence of transitions where common action of

N1 is executed first followed by common action of N2, we have distributions

µ ∈ Sat(ϕ), µ′ ∈ Sat(ϕ′) in P ′ where µ̃(u, v) = µ(u) · µ′(v). These conditions

make sure that for every finite path π in P under D, there exists a corresponding

finite path π′ in P ′ under D′ with the same probability. More formally, P ′ and

D′ have been constructed s.t., ∀P ∈ JN K∀D ∈ Adv(P)∀π ∈ PathsDfin(P) : ∃P
′ ∈

JN \syncK∃D′ ∈ Adv(P ′)∃π′ ∈ PathsD
′

fin(P
′) : PD(π) = PD′

(π′). �

Example A.1 (Intuition behind Thm. 7.19) Consider the APA N1 and N2

(left) shown in Fig. A.2. The layered composition of N1,N2, i.e., N1•N2 is shown

in the middle, where synchronization takes place on common action a. A may

transition is obtained in N1 •N2 (since synchronization of must-may results in a

may transition). Now consider the APA (N1•N2)
\sync where we allow interleaving

on common actions s.t. the common action of N1 is executed before the common

action of N2. It is easy to check that for every implementation of N1 • N2 (that

satisfies the conditions of Proposition 7.18) and adversary D, we can construct

a corresponding implementation of (N1 •N2)
\sync (that satisfies the conditions of

Proposition 7.18) and adversary D′ s.t. every path under D is matched by a path

under D′ with the same probability. Note that if we did not restrict an APA to

be deterministic, (N1 •N2)
\sync would yield the automaton shown in the Fig. A.2

(extreme right).

Proof of Lemma 7.22

Proof: From the definition of layered normal form (LNF) we know that all finite

abstract executions that are in LNF consists of the consecutive execution of ac-

tions of N1, followed by the consecutive execution of actions of N2. We know

that in ((N1 • N2)
\sync), an action of N2 occurs only when all the actions in N1

155

A. APPENDIX

s0 N1

sf

s′0
N2

s′f

(N1 • N2)
\sync

s0s
′
0

sfs
′
0

sfs
′
f

s0s
′
0

sfs
′
0 s0s

′
f

sfs
′
f

a, 1,⊤ a, 1, ? a, 1,⊤

a, 1, ?

a, 1,⊤

a, 1, ?

a, 1, ?

a, 1,⊤

N1 • N2
s0s

′
0

sfs
′
f

a, 1, ?

Figure A.2: APA without synchronized transitions

on which it is dependent have been executed. This intuitively means that all the

actions of N2 that occur in a finite abstract execution before any action of N1

are independent of this action and thus by repeated permutation of these actions

any finite abstract execution ρ ∈ Exec
Sf

fin((N1 • N2)
\sync) can be converted to a

finite abstract execution that is in LNF. �

Proof of Theorem 7.24

Proof: Let N1,N2 be APAs. From the definition of LNF (Def. 7.21)

we know that a finite abstract execution in LNF involves the consec-

utive execution of actions of N1, followed by the consecutive execution

of actions of N2. This means that for every finite abstract execution

ρ ∈ ExecLNF
fin ((N1 • N2)

\sync) there exists a finite abstract execution ρ′

in ((N1;N2)
\sync) that ends in the final state and where: ∀n ≥ 0 :

ρ[n] ≈ ρ′[n] ∧ ρ[n] an+1−−−→⊤ ϕn+1 ⇒ ρ′[n] an+1−−−→⊤ ϕn+1(resp. ρ[n]
an+1−−−→ ? ϕn+1 ⇒

ρ′[n] an+1−−−→ ? ϕn+1) ∧ ∀µ ∈ Sat(ϕn+1) : µ(ρ[n + 1]) = µ(ρ′[n + 1]). The rela-

tion ≈ between states of ((N1 • N2)
\sync) and ((N1;N2)

\sync) is defined as fol-

lows: S1 × S2 is the state space of ((N1 • N2)
\sync) and (S1 \ {sf1} ∪ S2) is the

state space of ((N1;N2)
\sync) then ∀s1 ∈ S1 where s1 6= sf1 : (s1, s02) ≈ s1 and

∀s2 ∈ S2 : (sf1, s2) ≈ s2.

In other words we have related every finite abstract execution of ((N1 •

N2)
\sync) that is in LNF to some finite abstract execution in ((N1;N2)

\sync) that

ends in the final state and vice-versa. It is also clear from Lemma 7.22 that for

every finite abstract execution ρ in ((N1 • N2)
\sync) that ends in the final state

there exists a finite abstract execution ρ′ in ((N1 • N2)
\sync) that is LNF s.t.

ρ ≡∗
po ρ

′. Hence proved. �

Proof of Proposition 7.25

Proof: The proof of this proposition is similar to the proof of Proposition 6.30.

156

A.5 Proofs of Chapter 7

�

Proof of Theorem 7.26

Proof: Let P ∈ JN \sync
1 K be an implementation and D ∈ Adv(P) s.t. the prob-

ability to reach the set of final states in P under D is maximum over all imple-

mentations. We know that every finite path of P that ends in the final state,

i.e., Sf1, is a realisation of some finite abstract execution ρ ∈ Exec
Sf1

fin(N
\sync
1)

and no two paths of P that ends in the final state can be a realisation of same

ρ ∈ Exec
Sf1

fin(N
\sync
1) (proposition 7.18). Let η be the set of all such finite abstract

executions. Since N1 ≡∗
po N2, we know that there is a set η′ of finite abstract

executions in N \sync
2 s.t. ∀ρ ∈ η ∃ρ′ ∈ η′ : ρ ≡∗

po ρ
′ and vice versa. Let P ′ be an

implementation of N \sync
2 , i.e., P ′ ∈ JN \sync

2 K s.t. for every ρ′ ∈ η′ there is a path

π′ ∈ Paths
Sf2

fin(P
′) which is a realisation of ρ′ and P ′ does not contain any path

that ends in the final state and is not a realisation of some finite abstract execu-

tion ρ′ ∈ η′. From Proposition 7.18 we also know that no two paths in P ′ that

ends in the final state can be the realisation of same ρ′ ∈ Exec
Sf2

fin(N
\sync
2). Let

η∗ ⊆ η be the set of finite abstract executions s.t. for every ρ ∈ η∗, there is a path

π ∈ Paths
D,Sf1

fin (P) which is a realisation of η∗, and every path in Paths
D,Sf1

fin (P)

should be a realisation of some finite abstract execution ρ ∈ η∗. Similarly we

construct η′′ ⊆ η′ s.t. for every ρ′ ∈ η′′ there is path π′ ∈ Paths
D′,Sf2

fin (P ′) which is

a realisation of ρ′ and every path π′ ∈ Paths
D′,Sf2

fin (P ′) should be a realisation of

some ρ′ ∈ η′′. We choose this adversary D′ ∈ Adv(P ′) such that for every finite

path π′ (under D′) that ends in the final state, we have π′ |= ρ′ for some ρ′ ∈ η′′,

and ∀ρ ∈ η ∗∃ρ′ ∈ η′′ : ρ ≡∗
po ρ

′ and vice versa. So far we have constructed an im-

plementation P ′ and adversary D′, but there can be multiple implementations of

N \sync
2 that satisfy the condition that every finite abstract execution ρ′ ∈ η′ there

exists a path in P ′ that is a realisation of ρ′ and P ′ does not contain any path π

that ends in the final state and is not a realisation of some ρ′ ∈ η′. We therefore

need to choose an implementation P ′ (which is constructed according to the above

mentioned steps) and for which D′ gives the maximum probability to reach set of

final states (and exactly the same value that D provides for P). We choose P ′ s.t.

for every transition of type s a−→⊤ ϕ or s a−→ ? ϕ, if µ ∈ Sat(ϕ) is a distribution

in P under D, then µ ∈ Sat(ϕ) is also a distribution for corresponding transi-

tion of type s′ a−→⊤ ϕ or s′ a−→ ? ϕ in P ′ under D′. For all other transitions, any

distributions that satisfies the corresponding constraints (according to satisfac-

tion relation) can be choosen. If we choose P ′ according to the above mentioned

condition then for every path π = π∗a1µ1s1a2µ2π
∗∗ in Paths

D,Sf1

fin (P) we either

157

A. APPENDIX

s0

s1 s′0

s′f

a, 0.4,⊤ a, 0.6,⊤

d, 1,⊤

c, 1,⊤

s0s
′
0

s1s
′
0 sfs

′
0

s1s
′
f sfs

′
f

a, 0.4,⊤

a, 0.6,⊤
c, 1,⊤

d, 1,⊤
d, 1,⊤

c, 1,⊤

Figure A.3: Property preservation under po-equivalence for APAs

have a path π′ = π∗a2µ2s
′
1a1µ1π

∗∗ or π′′ = π∗a1µ1s
′
1a2µ2π

∗∗ in Paths
D′,Sf2

fin (P ′)

s.t. π′ can be obtained from π by repeated permutation of adjacent independent

actions and PD(π) = PD′

(π′). A similar proof can be constructed showing the

preservation of minimum reachability probabilities computed over all the imple-

mentations. �

Example A.2 (Intuition behind Thm. 7.26) Consider the APA N1;N2 in

Fig. 7.2 (right) and APA N1 • N2 in Fig. 7.3 (right). From Thm. 7.24 we know

that N1;N2 ≡∗
po N1 • N2. Now let us consider an implementation of N1 • N2,

say P shown in the Fig. A.3 (right). According to our construction in proof of

Thm. 7.26 we can always construct a corresponding implementation of N1;N2,

say P ′ shown in Fig. A.3 (left). From the adversary construction in proof of

Thm. 7.26 for any adversary D ∈ Adv(P) we can construct a corresponding

adversary D′ ∈ Adv(P ′) s.t. for every path π under D that ends in the final state

there is a corresponding path π′ under D′ from which π can be obtained by repeated

permutation of independent actions. From Fig. A.3, it is easy to check that this is

indeed the case. For example, if on the right hand side adversary chooses c action

from state s1s
′
0 then for all paths in this system we have corresponding paths in

the system on the left. On the other hand if some other adversary chooses d

action from state s1s
′
0, then for path that executes action a, d and then c we have

a corresponding path in system on left where actions d and c can be permuted to

get the same sequence. Note that probability of paths is preserved.

158

A.6 Proofs of Chapter 8

A.6 Proofs of Chapter 8

Proof of Theorem 8.9

Proof: The proof of this theorem is similar to proof of Thm. 5.9 and proof of

Thm. 3.8. �

Proof of Theorem 8.12

Proof: Let s1 ∼ s2. We show that all the conditions of IME are satisfied, i.e.,

∼⇒ IME. The labeling condition is trivially satisfied. Let s1, s2 ∈ C then there

can be following three cases:

• C ∈ I(S): the proof for this case is similar to proof of Thm. 3.12.

• C ∈M(S): the proof of this case is similar to proof of Lemma 5.12.

• C /∈ M(S) ∧ C /∈ I(S): Since the last two conditions of Def. 8.11 coincide

with the fourth condition of Def. 8.4, it is easy to see that C is also an

equivalence class under IME.

Since all the conditions of IME are satisfied, we can conclude that ∼⇒ IME.

From Fig. 8.1 (left) it is easy to see that states that are not bisimilar can still be

merged in one equivalence class under IME. Thus ∼ is strictly finer than IME. �

Proof of Theorem 8.21

Proof: The proof of this theorem is similar to proof of Thm. 5.9 and proof of

Thm. 3.8. �

Proof of Theorem 8.25

Proof: Let s1 ≈ s2. We show that all the conditions of WIME are satisfied, i.e.,

≈⇒ WIME. The labeling condition is trivially satisfied. Let s1, s2 ∈ C then

there can be following three cases:

• C ∈ I(S): the proof for this case is similar to proof of Thm. 3.33.

• C ∈M(S): the proof of this case is similar to proof of Lemma 5.12.

• C /∈ M(S) ∧ C /∈ I(S): Since the last two conditions of Def. 8.23 coincide

with the fourth condition of Def. 8.15, it is easy to see that C is also an

equivalence class under IME.

Since all the conditions of WIME are satisfied, we can conclude that≈⇒ WIME.

From Fig. 8.2 (left) it is easy to see that states that are not weak bisimilar can

still be merged in one equivalence class under WIME. Thus ≈ is strictly finer

than WIME. �

159

A. APPENDIX

Proof of Theorem 8.26

Proof: Let s1, s2 are IME related. We show that s1, s2 are also WIME related,

i.e., IME ⇒WIME.

• L(s1) = L(s2) from definition of IME.

• Let s1, s2 ∈ C and C ∈ M(S). Then ∀D ∈ S/R, s
′, s′′ ∈ Pred(C) we have

wr(s′, C, ,D) = wr(s′′, C,D) (from definition of IME).

• Let s1, s2 ∈ C and C ∈ I(S). Then ∀D ∈ S/R, ∀s′, s′′ ∈ Pred(C) we have

Pbr(s′, C,D) = Pbr(s′′, C,D). This condition also satisfies condition 2 of

Def. 8.15 as condition 2 only requires that for s′, s′′ /∈ C,C 6= D, two (or

more) step reachability is satisfied.

• Let s1, s2 ∈ C and C /∈ I(S) ∧ C /∈ M(S). Then ∀s1, s2 ∈ C : R(s1, D) =

R(s2, D) for any D ∈ S/R. This condition also satisfies the subcondition 2

of condition 4 (Def. 8.15) as subcondition 2 only requires that if s1 reaches

s′ in zero or more steps then s2 should also reach s′′ in zero or more steps

s.t. R(s1, D) = R(s2, D) for any D 6= C. Similarly subcondition 2 of

condition 4 (Def. 8.4) also satisfies subcondition 1 of condition 4 (Def. 8.15)

and therefore we can conclude that IME ⇒WIME.

From Fig. 8.2 (left) it is easy to check that states s5, s6, s7 cannot be merged

under IME. Thus IME is strictly finer than WIME. �

160

Bibliography

[1] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. In: Theor.

Comput. Sci. 126.2 (1994), pp. 183–235.

[2] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. “Discrete-

Time Rewards Model-Checked”. In: FORMATS. LNCS 2791. Springer,

2003, pp. 88–104.

[3] Robert B. Ash and Catherine A. Doléans-Dade. Probability and Measure

Theory. Academic Press, 2000.

[4] Adnan Aziz, Vigyan Singhal, and Felice Balarin. “It Usually Works: The

Temporal Logic of Stochastic Systems”. In: CAV. LNCS 939. Springer,

1995, pp. 155–165.

[5] Adnan Aziz, Vigyan Singhal, Gitanjali Swamy, and Robert K. Bray-

ton. “Minimizing Interacting Finite State Machines: A Compositional Ap-

proach to Language Containment”. In: ICCD. 1994, pp. 255–261.

[6] Jos C. M. Baeten, Jan A. Bergstra, and Jan W. Klop. “Ready-Trace Se-

mantics for Concrete Process Algebra with the Priority Operator”. In:

Comput. J. 30.6 (1987), pp. 498–506.

[7] Christel Baier, Pedro R. D’Argenio, and Marcus Größer. “Partial Order

Reduction for Probabilistic Branching Time”. In: Electr. Notes Theor.

Comput. Sci. 153.2 (2006), pp. 97–116.

[8] Christel Baier, Marcus Größer, and Frank Ciesinski. “Partial Order Re-

duction for Probabilistic Systems”. In: QEST. IEEE, 2004, pp. 230–239.

[9] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.

MIT Press, 2008.

[10] Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena Wolf.

“Comparative branching-time semantics for Markov chains”. In: Inf. Com-

put. 200.2 (2005), pp. 149–214.

161

BIBLIOGRAPHY

[11] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-

Pieter Katoen. “Model-checking algorithms for continuous-time Markov

chains”. In: IEEE Trans. Software Eng. 29.6 (2003), pp. 524–541.

[12] Benôıt Barbot, Taolue Chen, Tingting Han, Joost-Pieter Katoen, and

Alexandru Mereacre. “Efficient CTMC model checking of linear real-time

objectives”. In: TACAS. LNCS 6605. Springer, 2011, pp. 128–142.

[13] Sebastian S. Bauer, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej

Wasowski. “A Modal Specification Theory for Components with Data”.

In: FACS. LNCS 7253. Springer, 2011, pp. 61–78.

[14] Nikola Benes, Ivana Cerná, and Jan Kret́ınský. “Modal Transition Sys-

tems: Composition and LTL Model Checking”. In: ATVA. LNCS 6996.

Springer, 2011, pp. 228–242.

[15] Jan A. Bergstra. Handbook of Process Algebra. Elsevier Science Inc., 2001.

[16] Marco Bernardo. “Non-bisimulation-based Markovian behavioral equiva-

lences”. In: J. Log. Algebr. Program. 72.1 (2007), pp. 3–49.

[17] Marco Bernardo. “Towards State Space Reduction Based on T-

Lumpability-Consistent Relations”. In: EPEW. LNCS 5261. Springer,

2008, pp. 64–78.

[18] Marco Bernardo. “Uniform Logical Characterizations of Testing Equiva-

lences for Nondeterministic, Probabilistic and Markovian Processes”. In:

ENTCS 253.3 (2009), pp. 3–23.

[19] Marco Bernardo and Stefania Botta. “A survey of modal logics charac-

terising behavioural equivalences for non-deterministic and stochastic sys-

tems”. In: Math. Structures in Comp. Sci. 18.1 (2008), pp. 29–55.

[20] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-

rency Control and Recovery in Database Systems. Addison-Wesley, 1986.

[21] Eckard Böde, Marc Herbstritt, Holger Hermanns, Sven Johr, Thomas

Peikenkamp, Reza Pulungan, Jan Rakow, Ralf Wimmer, and Bernd

Becker. “Compositional Dependability Evaluation for STATEMATE”. In:

IEEE Trans. Software Eng. 35.2 (2009), pp. 274–292.

[22] Henrik C. Bohnenkamp, Peter van der Stok, Holger Hermanns, and Frits

W. Vaandrager. “Cost-Optimization of the IPv4 Zeroconf Protocol”. In:

DSN. 2003, pp. 531–540.

162

BIBLIOGRAPHY

[23] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. “A Rigorous,

Compositional, and Extensible Framework for Dynamic Fault Tree Anal-

ysis”. In: IEEE Trans. Dependable Sec. Comput. 7.2 (2010), pp. 128–143.

[24] Patricia Bouyer. “From Qualitative to Quantitative Analysis of Timed

Systems”. Mémoire d’habilitation. Université Paris 7, France, Jan. 2009.

[25] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen

Nguyen, Thomas Noll, and Marco Roveri. “Safety, Dependability and

Performance Analysis of Extended AADL Models”. In: Comput. J. 54.5

(2011), pp. 754–775.

[26] Stephen D. Brookes, Charles A. R. Hoare, and Andrew W. Roscoe. “A

Theory of Communicating Sequential Processes”. In: J. ACM 31.3 (1984),

pp. 560–599.

[27] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. “Charac-

terizing Finite Kripke Structures in Propositional Temporal Logic”. In:

Theor. Comput. Sci. 59 (1988), pp. 115–131.

[28] Glenn Bruns. “An industrial application of modal process logic”. In: Sci.

Comput. Program. 29.1-2 (July 1997), pp. 3–22.

[29] Peter Buchholz. “Exact and ordinary lumpability in finite Markov chains”.

In: J. of ApplṖrob. (1994), pp. 59–75.

[30] Benôıt Caillaud, Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L.

Pedersen, and Andrzej Wasowski. “Constraint Markov Chains”. In: Theor.

Comput. Sci. 412.34 (2011), pp. 4373–4404.

[31] Taolue Chen, Tingting Han, Joost-Pieter Katoen, and Alexandru

Mereacre. “Quantitative Model Checking of Continuous-Time Markov

Chains Against Timed Automata Specifications”. In: LICS. IEEE, 2009,

pp. 309–318.

[32] Ling Cheung, Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager.

“Switched PIOA: Parallel composition via distributed scheduling”. In:

Theor. Comput. Sci. 365.1-2 (2006), pp. 83–108.

[33] Ivan Christoff. “Testing Equivalences and Fully Abstract Models for Prob-

abilistic Processes”. In: CONCUR. LNCS 458. Springer, 1990, pp. 126–140.

[34] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco

Roveri. “NUSMV: A New Symbolic Model Checker”. In: STTT 2.4 (2000),

pp. 410–425.

163

BIBLIOGRAPHY

[35] Edmund M. Clarke and Ernest A. Emerson. “Design and Synthesis of

Synchronization Skeletons Using Branching-Time Temporal Logic”. In:

Logic of Programs. 1981, pp. 52–71.

[36] Edmund M. Clarke, Orna Grumberg, and David E. Long. “Model Check-

ing and Abstraction”. In: ACM Trans. Program. Lang. Syst. 16.5 (1994),

pp. 1512–1542.

[37] Rance Cleaveland, Scott A. Smolka, and Amy E. Zwarico. “Testing Pre-

orders for Probabilistic Processes”. In: ICALP. LNCS 623. Springer, 1992,

pp. 708–719.

[38] Nicolas Coste, Hubert Garavel, Holger Hermanns, Richard Hersemeule,

Yvain Thonnart, and Meriem Zidouni. “Quantitative Evaluation in Em-

bedded System Design: Validation of Multiprocessor Multithreaded Ar-

chitectures”. In: DATE. 2008, pp. 88–89.

[39] Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, and Wendelin

Serwe. “Towards Performance Prediction of Compositional Models in In-

dustrial GALS Designs”. In: CAV. LNCS 5643. Springer, 2009, pp. 204–

218.

[40] Patrick Cousot and Radhia Cousot. “On Abstraction in Software Verifi-

cation”. In: CAV. LNCS 2404. Springer, 2002, pp. 37–56.

[41] Christian Dax, Felix Klaedtke, and Stefan Leue. “Specification Lan-

guages for Stutter-Invariant Regular Properties”. In: ATVA. LNCS 5799.

Springer, 2009, pp. 244–254.

[42] Rocco De Nicola and Frits W. Vaandrager. “Action versus State based

Logics for Transition Systems”. In: Semantics of Systems of Concurrent

Processes. 1990, pp. 407–419.

[43] Rocco De Nicola, Alessandro Fantechi, Stefania Gnesi, and Gioia Ristori.

“An Action Based Framework for Verifying Logical and Behavioural Prop-

erties of Concurrent Systems”. In: CAV. LNCS 575. Springer, 1991, pp. 37–

47.

[44] Benôıt Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel

L. Pedersen, Falak Sher, and Andrzej Wasowski. “Abstract probabilistic

automata”. In: VMCAI. LNCS 6538. Springer, 2011, pp. 324–339.

164

BIBLIOGRAPHY

[45] Benôıt Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel

Pedersen, Falak Sher, and Andrzej Wasowski. “Abstract Probabilistic Au-

tomata”. In: Inf. Comput. 232 (2013), pp. 66–116.

[46] Benôıt Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and

Andrzej Wasowski. “APAC: A Tool for Reasoning about Abstract Proba-

bilistic Automata”. In: QEST. IEEE, 2011, pp. 151–152.

[47] Benôıt Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel

L. Pedersen, Falak Sher, and Andrzej Wasowski. “New Results on Abstract

Probabilistic Automata”. In: ACSD. IEEE, 2011, pp. 118–127.

[48] Salem Derisavi, Holger Hermanns, and William H. Sanders. “Optimal

state-space lumping in Markov chains”. In: Inf. Process. Lett. 87.6 (2003),

pp. 309–315.

[49] Josee Desharnais, Abbas Edalat, and Prakash Panangaden. “A Logical

Characterization of Bisimulation for Labeled Markov Processes”. In: LICS.

IEEE, 1998, pp. 478–487.

[50] Susanna Donatelli, Serge Haddad, and Jeremy Sproston. “Model Checking

Timed and Stochastic Properties with CSLTA”. In: IEEE Trans. Software

Eng. 35.2 (2009), pp. 224–240.

[51] Tzilla Elrad and Nissim Francez. “Decomposition of Distributed Pro-

grams into Communication-Closed Layers”. In: Sci. Comput. Program.

2.3 (1982), pp. 155–173.

[52] Ernest A. Emerson and Thomas Wahl. “Dynamic Symmetry Reduction”.

In: TACAS. Vol. LNCS 3440. Springer, 2005, pp. 382–396.

[53] Harald Fecher, Martin Leucker, and Verena Wolf. “Don’t Know in Proba-

bilistic Systems”. In: SPIN. LNCS 3925. Springer, 2006, pp. 71–88.

[54] William Feller. An Introduction to Probability Theory and Its Applications.

John Wiley and Sons, 2001.

[55] Kathi Fisler and Moshe Y. Vardi. “Bisimulation Minimization in an

Automata-Theoretic Verification Framework”. In: FMCAD. LNCS 1522.

Springer, 1998, pp. 115–132.

[56] Hongfei Fu. “Approximating acceptance probabilities of CTMC-paths on

multi-clock deterministic timed automata”. In: HSCC. 2013, pp. 323–332.

165

BIBLIOGRAPHY

[57] Eli Gafni and Michael Mitzenmacher. “Analysis of Timing-Based Mu-

tual Exclusion with Random Times”. In: SIAM J. Comput. 31.3 (2001),

pp. 816–837.

[58] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. “A Dis-

tributed Algorithm for Minimum-Weight Spanning Trees”. In: ACM

Trans. Program. Lang. Syst. 5.1 (1983), pp. 66–77.

[59] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.

“CADP 2010: A Toolbox for the Construction and Analysis of Distributed

Processes”. In: TACAS. LNCS 6605. Springer, 2011, pp. 372–387.

[60] Flavio D. Garcia, Peter van Rossum, and Ana Sokolova. “Probabilistic

Anonymity and Admissible Schedulers”. In: CoRR abs/0706.1019 (2007).

[61] Sonja Georgievska. “Probability and Hiding in Concurrent Processes”.

PhD thesis. Eindhoven University, 2011.

[62] Rob Gerth, Ruurd Kuiper, Doron Peled, and Wojciech Penczek. “A Partial

Order Approach to Branching Time Logic Model Checking”. In: ISTCS.

1995, pp. 130–139.

[63] Stephen Gilmore and Jane Hillston. “The PEPA Workbench: A Tool to

Support a Process Algebra-based Approach to Performance Modelling”.

In: Computer Performance Evaluation. 1994, pp. 353–368.

[64] Rob J. van Glabbeek. “The Linear Time-Branching Time Spectrum I -

The Semantics of Concrete, Sequential Processes”. In: Handbook of Process

Algebra. Elsevier, 2001, pp. 3–99.

[65] Rob J. van Glabbeek and Peter Weijland. “Branching Time and Abstrac-

tion in Bisimulation Semantics”. In: J. ACM 43.3 (1996), pp. 555–600.

[66] Rob J. Van Glabbeek, Scott A. Smolka, and Bernhard Steffen. “Reactive,

Generative and Stratified Models of Probabilistic Processes”. In: Informa-

tion and Computation 121 (1990), pp. 130–141.

[67] Susanne Graf and Hassen Säıdi. “Construction of Abstract State Graphs

with PVS”. In: CAV. LNCS 1254. Springer, 1997, pp. 72–83.

[68] Jan Friso Groote and Frits W. Vaandrager. “An Efficient Algorithm for

Branching Bisimulation and Stuttering Equivalence”. In: ICALP. LNCS

443. Springer, 1990, pp. 626–638.

166

BIBLIOGRAPHY

[69] Jan Friso Groote, Aad Mathijssen, Michel A. Reniers, Yaroslav S.

Usenko, and Muck van Weerdenburg. “The Formal Specification Language

mCRL2”. In: MMOSS. Dagstuhl Seminar Proceedings 06351. 2006.

[70] Alexander Gruler, Martin Leucker, and Kathrin D. Scheidemann. “Mod-

eling and Model Checking Software Product Lines”. In: FMOODS. 2008,

pp. 113–131.

[71] Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer. “Quantitative Timed Analysis of Interactive Markov Chains”.

In: NASA Formal Methods. LNCS 7226. Springer, 2012.

[72] Nicolas Halbwachs. Synchronous Programming of Reactive Systems.

Kluwer Academic Publishers, 1992.

[73] Hans Hansson and Bengt Jonsson. “A Logic for Reasoning about Time

and Reliability”. In: Formal Asp. Comput. 6.5 (1994), pp. 512–535.

[74] Holger Hermanns. Interactive Markov Chains: And the Quest for Quanti-

fied Quality. Springer, 2002. Chap. volume 2428 of LNCS.

[75] Holger Hermanns and Joost-Pieter Katoen. “The How and Why of Inter-

active Markov Chains”. In: FMCO. LNCS 6286. Springer, 2009, pp. 311–

337.

[76] Charles A. R. Hoare. “Communicating Sequential Processes”. In: Com-

mun. ACM 21.8 (1978), pp. 666–677.

[77] Charles A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,

1985. isbn: 0-13-153271-5.

[78] Gerard Holzmann. Spin Model Checker, The: Primer and Reference Man-

ual. Addison-Wesley Professional, 2003.

[79] Michael Huth, Radha Jagadeesan, and David A. Schmidt. “Modal Tran-

sition Systems: A Foundation for Three-Valued Program Analysis”. In:

ESOP. 2001, pp. 155–169.

[80] Dung T. Huynh and Lu Tian. “On some equivalence relations for proba-

bilistic processes”. In: Fundam. Inform. 17.3 (1992), pp. 211–234.

[81] “IEEE standard for Property Specification Language (PSL)”. In: IEEE

Std 1850TM (2005).

[82] Wil Janssen. “Layered Design of Parallel Systems”. PhD Dissertation.

Universiteit Twente, 1994.

167

BIBLIOGRAPHY

[83] Wil Janssen, Mannes Poel, and Job Zwiers. “Action Systems and Action

Refinement in the Development of Parallel Systems - An Algebraic Ap-

proach”. In: CONCUR. LNCS 527. Springer, 1991, pp. 298–316.

[84] Wil Janssen and Job Zwiers. “From Sequential Layers to Distributed Pro-

cesses: Deriving a Distributed Minimum Weight Spanning Tree Algorithm

(Extended Anstract)”. In: PODC. ACM, 1992, pp. 215–227.

[85] Wil Janssen, Mannes Poel, Qiwen Xu, and Job Zwiers. “Layering of Real-

Time Distributed Processes”. In: FTRTFT. LNCS 863. Springer, 1994,

pp. 393–417.

[86] Cliff Jones and Gordon D. Plotkin. “A probabilistic powerdomain of eval-

uations”. In: LICS. IEEE, 1989, pp. 186–195.

[87] Bengt Jonsson and Kim G. Larsen. “Specification and Refinement of Prob-

abilistic Processes”. In: LICS. IEEE, 1991, pp. 266–277.

[88] Chi-Chang Jou and Scott A. Smolka. “Equivalences, Congruences, and

Complete Axiomatizations for Probabilistic Processes”. In: CONCUR.

LNCS 458. Springer, 1990, pp. 367–383.

[89] Joost-Pieter Katoen, Maneesh Khattri, and Ivan S. Zapreev. “A Markov

reward model checker”. In: QEST. IEEE, 2005, pp. 243–244.

[90] Joost-Pieter Katoen, Daniel Klink, and Martin R. Neuhäußer. “Composi-

tional Abstraction for Stochastic Systems”. In: FORMATS. LNCS 5813.

Springer, 2009, pp. 195–211.

[91] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N. Jansen.

“Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Check-

ing”. In: TACAS. LNCS 4424. 2007, pp. 87–101.

[92] Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf.

“Three-Valued Abstraction for Continuous-Time Markov Chains”. In:

CAV. LNCS 4590. Springer, 2007, pp. 311–324.

[93] John George Kemeny and James Laurie Snell. Finite Markov Chains. Van-

Nostrand, 1969.

[94] Daniel Klink. “Three-Valued Abstraction for Stochastic Systems”. PhD

thesis. RWTH Aachen, 2010.

[95] Ron Koymans. “Specifying Real-Time Properties with Metric Temporal

Logic”. In: Real-Time Systems 2.4 (1990), pp. 255–299.

168

BIBLIOGRAPHY

[96] Eyal Kushilevitz and Michael O. Rabin. “Randomized Mutual Exclusion

Algorithms Revisited”. In: PODC. ACM, 1992, pp. 275–283.

[97] Marta Z. Kwiatkowska and Gethin Norman. “Verifying Randomized

Byzantine Agreement”. In: FORTE. LNCS 2529. Springer, 2002, pp. 194–

209.

[98] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “PRISM 2.0:

A tool for probabilistic model checking”. In: QEST. IEEE, 2004, pp. 322–

323.

[99] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. “Symme-

try Reduction for Probabilistic Model Checking”. In: CAV. LNCS 4144.

Springer, 2006, pp. 234–248.

[100] Marta Z. Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi

Wang. “Symbolic model checking for probabilistic timed automata”. In:

Inf. Comput. 205.7 (2007), pp. 1027–1077.

[101] Leslie Lamport. “What Good is Temporal Logic?” In: IFIP Congress.

1983, pp. 657–668.

[102] Kim G. Larsen. “Modal Specifications”. In: Automatic Verification Meth-

ods for Finite State Systems. LNCS 407. Springer, 1989, pp. 232–246.

[103] Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. “On Modal Re-

finement and Consistency”. In: CONCUR. LNCS 4703. Springer, 2007,

pp. 105–119.

[104] Kim G. Larsen and Arne Skou. “Bisimulation Through Probabilistic Test-

ing”. In: POPL. 1989, pp. 344–352.

[105] Kim G. Larsen, Bernhard Steffen, and Carsten Weise. “A Constraint

Oriented Proof Methodology Based on Modal Transition Systems”. In:

TACAS. LNCS 1019. Springer, 1995, pp. 17–40.

[106] Kim G. Larsen and Bent Thomsen. “A Modal Process Logic”. In: LICS.

IEEE, 1988, pp. 203–210.

[107] Kim G. Larsen and Liu Xinxin. “Equation Solving Using Modal Transition

Systems”. In: LICS. IEEE, 1990, pp. 108–117.

[108] Claire Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. “Prop-

erty Preserving Abstractions for the Verification of Concurrent Systems”.

In: FMSD 6.1 (1995), pp. 11–44.

169

BIBLIOGRAPHY

[109] Oded Maler, Dejan Nickovic, and Amir Pnueli. “Checking Temporal Prop-

erties of Discrete, Timed and Continuous Behaviors”. In: Pillars of Com-

puter Science. 2008, pp. 475–505.

[110] Robin Milner. A Calculus of Communicating Systems. LNCS 92. Springer,

1980.

[111] Robin Milner. “An Algebraic Definition of Simulation Between Programs”.

In: IJCAI. 1971, pp. 481–489.

[112] Robin Milner. “Calculi for Synchrony and Asynchrony”. In: Theor. Com-

put. Sci. 25 (1983), pp. 267–310.

[113] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.

[114] Yoram Moses and Sergio Rajsbaum. “A Layered Analysis of Consensus”.

In: SIAM J. Comput. 31.4 (2002), pp. 989–1021.

[115] “Mutual Exclusion with Random Times”. In: AVACS S3 Benchmark

(2010).

[116] Shiva Nejati. “Refinement relations on partial specifications”. Master the-

sis. University of Toronto, July 2003.

[117] Martin R. Neuhäußer and Joost-Pieter Katoen. “Bisimulation and Log-

ical Preservation for Continuous-Time Markov Decision Processes”. In:

CONCUR. LNCS 4703. Springer, 2007, pp. 412–427.

[118] Rocco De Nicola. “Extensional Equivalences for Transition Systems”. In:

Acta Inf. 24.2 (1987), pp. 211–237.

[119] Rocco De Nicola and Matthew Hennessy. “Testing Equivalences for Pro-

cesses”. In: Theor. Comput. Sci. 34 (1984), pp. 83–133.

[120] Rocco De Nicola and Frits W. Vaandrager. “Three Logics for Branching

Bisimulation (Extended Abstract)”. In: LICS. IEEE, 1990, pp. 118–129.

[121] Gethin Norman, D. Parker, M. Kwiatkowska, and S. Shukla. “Evaluating

the Reliability of NAND Multiplexing with PRISM”. In: IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems 24.10

(2005), pp. 1629–1637.

[122] Ernst-Rüdiger Olderog and Charles A. R. Hoare. “Specification-Oriented

Semantics for Communicating Processes”. In: Acta Inf. 23.1 (1986), pp. 9–

66.

170

BIBLIOGRAPHY

[123] Ernst-Rüdiger Olderog and Mani Swaminathan. “Layered Composition for

Timed Automata”. In: FORMATS. LNCS 6246. Springer, 2010, pp. 228–

242.

[124] Ernst-Rüdiger Olderog and Mani Swaminathan. “Structural transforma-

tions for data-enriched real-time systems”. In: Formal Asp. Comput. (2014

(to appear)).

[125] Joël Ouaknine and James Worrell. “Some Recent Results in Metric Tem-

poral Logic”. In: FORMATS. LNCS 5215. Springer, 2008, pp. 1–13.

[126] David Park. “Concurrency and Automata on Infinite Sequences”. In:

Proceedings of the 5th GI-Conference on Theoretical Computer Science.

Springer-Verlag, 1981, pp. 167–183.

[127] Augusto Parma and Roberto Segala. “Axiomatization of Trace Seman-

tics for Stochastic Nondeterministic Processes”. In: QEST. IEEE, 2004,

pp. 294–303.

[128] Doron Peled. “Combining Partial Order Reductions with On-the-fly

Model-Checking”. In: CAV. LNCS 818. Springer, 1994, pp. 377–390.

[129] Doron Peled and Thomas Wilke. “Stutter-invariant temporal properties

are expressible without the next-time operator”. In: Inf. Process. Lett.

65.5 (1997), pp. 243–246.

[130] Amir Pnueli. “Linear and Branching Structures in the Semantics and Log-

ics of Reactive Systems”. In: ICALP. LNCS 194. Springer, 1985, pp. 15–

32.

[131] Amir Pnueli. “The Temporal Logic of Programs”. In: FOCS. 1977, pp. 46–

57.

[132] Lucia Pomello. “Some equivalence notions for concurrent systems. An

overview”. In: Applications and Theory in Petri Nets. 1985, pp. 381–400.

[133] Jean-Baptiste Raclet. “Residual for Component Specifications”. In: Electr.

Notes Theor. Comput. Sci. 215 (2008), pp. 93–110.

[134] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benôıt Caillaud,

and Roberto Passerone. “Why Are Modalities Good for Interface Theo-

ries?” In: ACSD. IEEE, 2009, pp. 119–127.

[135] Martin Rem. “Trace Theory and Systolic Computations”. In: PARLE (1).

Vol. 258. LNCS. Springer, 1987, pp. 14–33.

171

BIBLIOGRAPHY

[136] Michel A. Reniers and Tim A. C. Willemse. “Folk Theorems on the Corre-

spondence between State-Based and Event-Based Systems”. In: SOFSEM.

LNCS 6543. Springer, 2011, pp. 494–505.

[137] Sergey Sazonov. “Property Preservation under Bisimulations on Markov

Automata”. Master thesis. RWTH Aachen University, August 2013.

[138] David A. Schmidt. “From Trace Sets to Modal-Transition Systems by Step-

wise Abstract Interpretation”. In: 2001, pp. 53–71.

[139] Roberto Segala. “Modelling and Verification of Randomized Distributed

Real Time Systems”. PhD thesis. MIT, 1995.

[140] Roberto Segala. “Testing Probabilistic Automata”. In: CONCUR. LNCS

1119. Springer, 1996, pp. 299–314.

[141] Roberto Segala and Nancy A. Lynch. “Probabilistic Simulations for Prob-

abilistic Processes”. In: Nord. J. Comput. 2.2 (1995), pp. 250–273.

[142] Arpit Sharma. “A Two Step Perspective for Kripke Structure Reduction”.

In: CoRR abs/1210.0408 (2012).

[143] Arpit Sharma. “Weighted Probabilistic Equivalence Preserves Omega-

Regular Properties”. In: MMB/DFT. 2012, pp. 121–135.

[144] Arpit Sharma and Joost-Pieter Katoen. “Layered Reduction for Abstract

Probabilistic Automata”. In: ACSD. IEEE, 2014 (to appear).

[145] Arpit Sharma and Joost-Pieter Katoen. “Layered Reduction for Modal

Specification Theories”. In: FACS. 2013, pp. 329–347.

[146] Arpit Sharma and Joost-Pieter Katoen. “Weighted Lumpability on

Markov Chains”. In: Ershov Memorial Conference (PSI). Vol. 7162. LNCS.

Springer, 2012, pp. 322–339.

[147] Falak Sher and Joost-Pieter Katoen. “Compositional Abstraction Tech-

niques for Probabilistic Automata”. In: IFIP TCS. LNCS 7604. Springer,

2012, pp. 325–341.

[148] Jan L. A. van de Snepscheut. Trace Theory and VLSI Design. Vol. 200.

LNCS. Springer, 1985.

[149] Mani Swaminathan, Joost-Pieter Katoen, and Ernst-Rüdiger Olderog.

“Layered reasoning for randomized distributed algorithms”. In: Formal

Asp. Comput. 24.4-6 (2012), pp. 477–496.

172

BIBLIOGRAPHY

[150] Wolfgang Thomas and Thomas Wilke. Automata Logics, and Infinite

Games: A Guide to Current Research. LNCS 2500. Springer-Verlag, 2002.

[151] Chris M. N. Tofts. “Compositional Performance Analysis”. In: TACAS.

LNCS 1217. Springer, 1997, pp. 290–305.

[152] Chris M. N. Tofts. “Processes with Probablities, Priority and Time”. In:

Formal Asp. Comput. 6.5 (1994), pp. 536–564.

[153] Sebastián Uchitel and Marsha Chechik. “Merging partial behavioural mod-

els”. In: SIGSOFT FSE. ACM, 2004, pp. 43–52.

[154] Antti Valmari and Giuliana Franceschinis. “Simple O(m log(n)) Time

Markov Chain Lumping”. In: TACAS. LNCS 6015. 2010, pp. 38–52.

[155] Simone Veglioni and Rocco De Nicola. “Possible Worlds for Process Alge-

bras”. In: CONCUR. LNCS 1466. Springer, 1998, pp. 179–193.

[156] Björn Wachter, Lijun Zhang, and Holger Hermanns. “Probabilistic Model

Checking Modulo Theories”. In: QEST. IEEE, 2007, pp. 129–140.

[157] Verena Wolf, Christel Baier, and Mila E. Majster-Cederbaum. “Trace Ma-

chines for Observing Continuous-Time Markov Chains”. In: ENTCS 153.2

(2006), pp. 259–277.

[158] Verena Wolf, Christel Baier, and Mila E. Majster-Cederbaum. “Trace Se-

mantics for Stochastic Systems with Nondeterminism”. In: Electr. Notes

Theor. Comput. Sci. 164.3 (2006), pp. 187–204.

[159] Christoph Worreschk. “Weighted Lumpability on Markov chains”. Bache-

lor thesis. RWTH Aachen University, August 2012.

[160] Lijun Zhang and Martin R. Neuhäußer. “Model Checking Interactive

Markov Chains”. In: TACAS. LNCS 6015. 2010, pp. 53–68.

173

BIBLIOGRAPHY

174

BIBLIOGRAPHY

Curriculum Vitae

Arpit Sharma was born on the 2nd of September 1984 in Pilani, India. He studied

computer science at the University of Rajasthan, Jaipur, India and obtained

the degree of Bachelor in Computer Science and Engineering in May, 2006. In

September 2009 he obtained a M.Tech. degree in Software Engineering from

Manipal Institute of Technology, India and a M.Sc. degree in Computer Science

from Eindhoven University of Technology, The Netherlands. Since June 2010 he

is a Ph.D. student at the Software Modeling and Verification Group, Department

of Computer Science, RWTH Aachen University, Germany.

175

	Abstract
	Zusammenfassung
	Acknowledgment
	1 Introduction
	1.1 Background
	1.2 Outline of the Thesis

	2 Preliminaries
	2.1 Nondeterministic Models
	2.1.1 Kripke Structures
	2.1.2 Labeled Transition Systems

	2.2 Stochastic Models
	2.2.1 Discrete-Time Markov Chains
	2.2.2 Continuous-Time Markov Chains
	2.2.3 Probabilistic Automata
	2.2.4 Interactive Markov Chains

	2.3 Modal Specification Theories
	2.3.1 Modal Transition Systems
	2.3.2 Abstract Probabilistic Automata

	2.4 Summary

	3 A Two Step Perspective for Kripke Structure Reduction
	3.1 Kripke Minimization Equivalence
	3.1.1 Quotient Kripke Structure
	3.1.2 KME vs. Bisimulation
	3.1.3 Property Preservation

	3.2 Synchronous Parallel Composition
	3.3 Weak Kripke Minimization Equivalence
	3.3.1 Quotient Kripke Structure
	3.3.2 WKME vs. Divergence-Sensitive Stutter Bisimulation
	3.3.3 Property Preservation

	3.4 Related Work
	3.5 Conclusions

	4 Weighted Probabilistic Equivalence
	4.1 Weighted Probabilistic Equivalence
	4.1.1 Quotient DTMC
	4.1.2 WPE vs. Bisimulation
	4.1.3 Preservation of -Regular Properties

	4.2 Synchronous Parallel Composition
	4.3 Reward Properties
	4.4 Related Work
	4.5 Conclusions

	5 Weighted Lumpability
	5.1 Weighted Lumpability
	5.1.1 Quotient CTMC
	5.1.2 WL vs. Bisimulation
	5.1.3 Preservation of DTA Specifications
	5.1.4 Preservation of MTL Specifications

	5.2 Case Studies
	5.2.1 Restaurant System
	5.2.2 Job-Server System

	5.3 Related Work
	5.4 Conclusions

	6 Layered Reduction for Modal Specification Theories
	6.1 Satisfaction and Refinement
	6.2 Composition and CCL Laws
	6.3 Partial Order Equivalence and Property Preservation
	6.4 Possible Extensions
	6.5 Related Work
	6.6 Conclusions

	7 Layered Reduction for Abstract Probabilistic Automata
	7.1 Satisfaction and Refinement
	7.2 Composition and CCL Laws
	7.3 Partial Order Equivalence and Property Preservation
	7.4 Possible Extensions
	7.5 Related Work
	7.6 Conclusion

	8 Interactive Markov Chains
	8.1 Interactive Markovian Equivalence
	8.1.1 Quotient IMC
	8.1.2 IME vs. Bisimulation

	8.2 Weak Interactive Markovian Equivalence
	8.2.1 Quotient IMC
	8.2.2 WIME vs. Weak Bisimulation

	8.3 Layering for Interactive Markov Chains - A Failed Attempt
	8.4 Related Work
	8.5 Conclusions

	9 Conclusions and Future Work
	A Appendix
	A.1 Proofs of Chapter 3
	A.2 Proofs of Chapter 4
	A.3 Proofs of Chapter 5
	A.4 Proofs of Chapter 6
	A.5 Proofs of Chapter 7
	A.6 Proofs of Chapter 8

	References
	Curriculum Vitae

