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Kurzfassung
Metabolic Engineering ist eine gerichtete und wissensbasierte Methode, um die Produktions-
eigenschaften von Mikroorganismen zu verbessern. Sie zielt darauf ab, die Produktbildung
der Mikroorganismen zu erhöhen, um ökonomische Produktionsprozesse zu schaffen. Das
Fluxom, die Gesamtheit metabolischer Reaktionsraten, des Mikroorganismus wird durch ma-
thematische Modellierung abgebildet. Das leistungsfähigste Werkzeuge der Fluxomanalyse,
die 13C metabolische Stoffflussanalyse (13C-MFA), verwendet isotopisch markierte Substrate
zur Kultivierung von Mikroorganismen. Die nach der Aufnahme und metabolischen Umset-
zung entstehende Markierungsmuster in den Metaboliten werden durch hoch präzise Messap-
parate (zum Beispiel Massenspektrometer) quantifiziert. Aus diesen Messungen können die
intrazellulären Reaktionsraten abgeschätzt werden.
Die vorgelegte Arbeit befasst sich mit der 13C-MFA in komplexen Systemen. Dazu wur-
de P. chrysogenum BCB1 verwendet und unter industriellen Bedingungen die Bildung des
Antibiotikums von Penicillin V untersucht. “Komplex” bezeichnet hier nicht nur das Wachs-
tumsverhalten von P. chrysogenum, sondern auch die komplexe Nebenproduktbildung und
Kompartimentierung des Metabolismus. Zudem zielt “komplex” auf die Übertragung der
13C-MFA von einer wissenschaftlichen Anwendung unter idealen Bedingungen zu einem in-
dustriellen Standard ab. Aus diesem Grund werden Voraussetzung und Annahmen für die
Durchführung der Technik diskutiert und die notwendigen Anpassungen für den Einsatz im
industriellen Umfeld beschrieben.
Um gesicherte Erkenntnis über den Organismus zu erlangen, wird der Arbeitsablauf zur
Durchführung der 13C-MFA vorgestellt. Durch die Untersuchungen werden die Defizite und
Limitierungen der Technik aufgedeckt. Zuerst wurde die Technik in Chemostat Experimenten
etabliert und auf Fed-batch Kultivierungen nahe am industriellen Prozess übertragen. Als
Resultat liegen erstmals Stoffflusskarten unter diesen Prozessbedingungen vor.
Die beiden Prozesse wurden mittels kinetischer Modellierung abgebildet um extrazelluläre
Raten für die 13C-MFA abzuschätzen. Um die 13C-MFA anwenden zu können, mussten die
zeitaufgelösten Markierungsanreicherungen extrapoliert und um die natürliche Markierung
korrigiert werden. In der Arbeit wurden Toolboxen zur nichtlinearen Regression und globalen
Sensitivitätsanalyse entwickelt.
Großskalige metabolische Modelle wurden für P. chrysogenum aufgebaut, wobei experimen-
telle Daten und Datenbanken, sowie Literatur-Quellen, zum Einsatz kamen. Stammspezi-
fische Messungen der Biomassezusammensetzung wurden in das Modell integriert. Um die
Modelle auf ihre Anwendbarkeit zur Flussschätzung zu prüfen, wurde erstmals eine globale
Sensitivitätsanalyse für die 13C-MFA durchgeführt. Zudem wurde diese Technik auf die zuvor
beschriebenen Bioprozesse angewendet um die intrazellulären Reaktionsraten zu berechnen.
Die erhaltenen, statistisch hochaufgelösten, Stoffflusskarten wurden weiter verbessert durch
den Einsatz gezielter Versuchsplanung.
Dazu wurden die konventionellen Versuchsplanungstechniken um die optimale Planung von
sequentiellen Experimenten und Mehrzieloptimierung erweitert. Durch letzteres konnten op-
timale, und dennoch ökonomische, Versuche geplant und gleichzeitig die Nachteile konven-
tioneller Techniken vermieden werden.
Die Interpretation der generierten Stoffflusskarten zeigte, dass neben der Penicillinproduk-
tion das Wachstum einen größeren Einfluss auf den oxidativen Pentosephosphatweg besitzt
als bisher in der Literatur diskutiert. Dies führt zu einer sorgfältigen Ausbalancierung von
Wachstum im Produktionsprozess und der gleichzeitigen Stammoptimierung.
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Summary

Metabolic engineering is a targeted and knowledge-based approach to improve production ca-
pabilities of microorganisms. It aims at increasing metabolic reaction rates towards product
formation to obtain economic production processes. The fluxome, i.e. the computation of
all metabolic reaction rates, is one cornerstone of metabolic engineering. For fluxomics, the
study of intracellular reaction rates, several methods have been established. The most pow-
erful one, 13C-metabolic flux analysis (13C-MFA), uses isotopically labeled substrates which
are fed to cells. Emerging labeling patterns in the synthesized metabolites are measured
by high-precision measurement devices like mass spectrometry. From the measured labeling
pattern, the intracellular reaction rates can be estimated by mathematical modeling.

The present work faces 13C-MFA of complex systems. The non-model organism P. chryso-
genum strain BCB1 is investigated in industrial environment with special focus on peni-
cillin V production. The term “complex” is not only referring to the growth behavior
of P. chrysogenum, but also includes side-product formation and compartmentalization of
metabolism. This thesis aims at the transfer of 13C-MFA from a scientific application in a
nearly ideal environment to an industrial standard. For this reason, the prerequisites needed
and compromises made for 13C-MFA work-flow are thoroughly discussed and adaption of the
industrial process is highlighted.

To systematically gain knowledge about the organism, the state-of-the-art work-flow for
13C-MFA is presented, pitfalls and limitations of the technique are revealed for a close-to-
industrial context. The technology is established using chemostat experiments. In a second
step, close-to-industrial fed-batch cultivations are investigated and the first quantitative flux
map of P. chrysogenum for industrial process conditions is presented.
Therefore, a kinetic model was implemented for the processes aiming at an accurate extra-
cellular rate estimation. To apply 13C-MFA, stationary labeling patterns are derived from
time resolved labeling data by extrapolation and correction for natural abundance.
Large scale metabolic models for P. chrysogenum were built based on experimental, liter-
ature and database knowledge. Strain specific measurements of biomass compounds were
introduced into the models. Using the constructed model, the first global sensitivity analysis
was performed for 13C-MFA to evaluate its suitability for flux elucidation. Finally, 13C-MFA
was conducted to gain knowledge about intracellular fluxes within P. chrysogenum BCB1
and experimental design was used to increase the information content of isotope labeling
experiments.
The conventional experimental design tools were extended by diversification-driven and multi-
objective experimental design. The design space was explored and compared to single-
objective applications. Thereby optimal, yet economic, experimental designs can be planed,
fighting shortcomings of conventional techniques.

From the results of the deduced flux maps, hints for strain and process development are de-
rived. One major finding was that the flux in oxidative pentose phosphate pathway is strongly
influenced by the biomass formation, leading to carefully balanced growth in cultivations and
strain optimization.
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Publications and Further Work
Courses

The 1st and 2nd Advanced Course on 13C-based Metabolic Flux Analysis (each 5 day long)
were run in 2012 and 2013, respectively. Materials were prepared for oral presentation and
exercises. Most lectures were given. The course was prepared with Katharina Nöh, Birgit
Stute and co-workers.

Papers

• Beste, D.; Nöh, K.; Niedenführ, S.; Mendum, T.; Hawkins, N.; Ward, J.; Beale, M.;
Wiechert, W.; McFadden J.
Carbon fixation and a mixed diet for the intracellular tuberculosis bacillus.
Cell: Chemistry and Biology (accepted)

• Weitzel, M.; Nöh, K.; Dalman, T.; Niedenführ, S.; Stute, B.; Wiechert, W.
13CFLUX2-high-performance software suite for 13C-metabolic flux analysis.
Bioinformatics 29, 1 (2013), pp. 143–145.

• Droste, P.; Miebach, S.; Niedenführ, S.; Wiechert, W. and Nöh, K.
Visualizing multi-omics data in metabolic networks with the software Omix: a case
study.
Biosystems 105, 2 (2011), pp. 154–161.

Talks

• Niedenführ, S.; Stute, B.; Weitzel, M.; Wiechert, W.; Nöh, K.
Multiobjective experimental design for carbon labeling experiments: a case study.
1st European Congress of Applied Biotechnology (Berlin, Germany, September 25,
2011).

• Niedenführ, S.; Meinert, S.; Schmitz, K.; Hönlinger, C.; Hardiman, T.; Kornfeld, G.;
Mitterbauer, R.; Wiechert, W.; Noack, S.; Nöh, K.
Industrial Production of Penicillin V with Penicillium chrysogenum: Towards efficiency
Optimization by Systems Understanding.
ECCE9/ECAB2 (Den Haag, Netherlands, April 22, 2013)

Posters

• Niedenführ, S.; Meinert, S.; Hardiman, T.; Kornfeld, G.; Wiechert, W.; Nöh, K.
Fluxome analysis for Penicillium chrysogenum – lessons from an industrial collabora-
tion project.
30. DECHEMA-Jahrestagung der Biotechnologen und ProcessNet-Jahrestagung (Karl-
sruhe, Germany, September 10–13, 2012).

• Niedenführ, S.; Weitzel, M.; Wiechert, W.; Nöh, K.
Multi-objective experimental design for carbon labeling experiments: a case study.
8th ASIM Workshop 2011 (Garching, Germany, March 14, 2011).
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• Niedenführ, S.; Schmitz, K.; Wiechert, W.; Noack, S.; Nöh, K.; Meinert, S.; Hönlinger,
C.; Hardiman, T.; Mitterbauer, R.; Kornfeld, G.
Industrial Fluxome Analysis for P. chrysogenum: Systems Understanding for Efficiency
Optimization.
Copenhagen Bioscience Conference, Cell Fatories and Biosustainability (Copenhagen,
Denmark, May 5-8, 2013)

• Beste, D.J.V.; Nöh, K.; Niedenführ, S.; Mendum, T.; Hawkins, N.; Ward, J.L.; McFad-
den, J.
13C isotopologue profiling of intracellular Mycobacterium tuberculosis
Tuberculosis 2012 (Paris, France, September 11, 2013)

Developed Toolboxes

• Nonlinear Regression Toolbox (NoReTo)

• Global Sensitivity Analysis Toolbox (GloSA)

Further work was conducted:

• 13C-MFA for P. chrysogenum BCB1 in cooperation with Katja Schmitz for bi-phasic
growth in batch cultivations

• 13C-MFA for Mycobacterium tuberculosis in cooperation with D. J. V. Beste and J.
McFadden (University of Surrey)
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This work was conducted at Forschungszentrum Jülich IBG-1:Biotechnologie in close
collaboration with Sabine Meinert, Georg Kornfeld and Timo Hardiman at Sandoz in

Kundl, where most wet-lab experiments were conducted. At the Kundl site penicillin V was
discovered in 1952 [209].
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Chapter 1

Penicillin

To date, more than 80 years after its discovery, penicillin is still one of the predominantly
used antibacterial agents. Penicillin is produced in biotechnological processes by use of the
fungus Penicillium chrysogenum. In the 1940ies penicillin was the first efficient pharmaceu-
tical compound used for infection control and health care. Moreover, the first defined and
successful chemotherapeutic product was isolated from a microbial source, founding the era
of therapeutic biotechnology [118].

1.1 History of Penicillin Production
In 1929, Alexander Fleming detected the antibacterial effects of Penicillium towards the
Gram-positive pathogenic bacterium Staphylococcus aureus [81]. This newly found mold was
later identified as Penicillium notatum [118]. The agent obtained via filtration of the lysed
mold was non-toxic for animals and was named penicillin. However, penicillin is in-stable and
in 1932, Fleming stopped work on it, because its purification and stabilization was difficult
[118]. In the 1930ies sulphonamides, another class of chemically synthesized antibacterial
agents, possessed a small spectrum of activity, had severe side effects and bacterial resis-
tances developed rapidly [118, 57].

Howard Florey, Ernst Chain, Norman Heatly, and Edward Abraham were the first recognizing
Flemings work. They continued purifying penicillin using solvent/water mixtures, stabilized
the extract, and used it as pharmaceutical for the first clinical trials [118, 83]. Later, in
1945, Alexander Fleming, Ernst Boris Chain, and Howard Walter Florey received the Noble
price "for the discovery of penicillin and its curative effect in various infectious diseases"
[274]. In 1940-1941 the enormous potential of penicillin as antibacterial agent became clear
as it was tested on humans for the first time [83]. In the subsequent years, the Northern
Regional Research Laboratory (NRRL), the US Department of Agriculture (USDA), and
several companies (including Pfizer, Merck, and Squipp) were involved in the development
of a production process for penicillin [118, 34, 83, 12].
Starting in 1943, pilot plants for penicillin production were developed by Pfizer, Merck,
Squipp, and the Commercial Solvents Corporation and penicillin was used for the first time
for those wounded in World War II [118, 31]. Later, penicillin helped curing gonorrhea and
syphilis which was widespread at the end of World War II and lead to a fast post-war recovery
[121, 118]. The US government subsidized entry into the penicillin production at that time,

3



4 CHAPTER 1. PENICILLIN

broadening the spectrum of manufacturers. Hand in hand with the steep production increase
by strain and process optimization, prices of penicillin decreased (see figure 1.2) [12, 196].
Between 1943 and 1945 the US production increased from about 0.64 kg to 1,180 kg penicillin
per month.
Simultaneous to the development of production processes, the first "strain development" in
history took place (cf. figure 1.1). The first isolate P. chrysogenum NRRL 1951 was taken
from a moldy cantaloupe. The strain was capable of producing 60-150 mg L−1 penicillin (see
figure 1.2) which was 11-15 fold more than Flemings Penicillium notatum strain (production
titer: 1 mg L−1) [118, 110]. X-ray treatment of P. chrysogenum resulted in a mutant strain X-
1612 which was capable of producing 161-300 mg L−1 [118, 54, 196]. Finally, the strain Q-176
was obtained by ultraviolet induced mutation at the University of Wisconsin. It was capable
of producing up to 550 mg L−1 [54, 196, 66]. Based on this mutant, the Wisconsin family
of strains was generated. Titers up to 1.8 g L−1 for Wisconsin 54-1225 are reported [25,
66, 110]. In 1973, 2.8-7.3 g L−1 penicillin were produced by the P2 strain emerged from
Wisconsin 54-1225 (cf. figure 1.1) [110, 174, 18].

NRRL
1951

Q 176

X1612

Wis54-
1255AS-P-78 P2

figure 1.1: Strain development for
P. chrysogenum. Solid lines in-
dicate one type of treatment (X-ray,
UV, ...) used for mutagenesis,
dashed lines indicate multiple
treatments [18].

Penicillin is produced by P. chrysogenum af-
ter addition of a side-chain precursor. It was
in the 1950s when it became evident that
P. chrysogenum could use other acyl-group
precursors than phenylacetic acid (PAA) un-
locking production of further penicillins [219,
118]. One of them was penicillin V (phe-
noxymethylpenicillin, V refers to the Ger-
man word “vertraulich” which translates to
confidential) [118, 31].
In parallel to the strain optimization pro-
grams, the production process for penicillin
was continuously developed. Early on, the
production of penicillin was shown to be
catabolite repressed by glucose [200]. Thus,
the first media was optimized for growth
of P. chrysogenum and penicillin production.
It was found that continuous addition of
glucose results in high penicillin produc-
tion [223].
The first established processes for penicillin
production used lactose as carbon source and
were performed in uncontrolled batch mode.

Today, glucose/sucrose or other crude sugars are used in a fed-batch process with additional
feeds for precursor supply and pH control. Cultivations are performed in 100-400 m3 biore-
actors and process duration is 120 to 200 h, the growth form is pelleted [66]. A production of
at least 66 g L−1 penicillin V is needed for a modern fed-batch process to be amortized. The
final biomass concentration is around 45 g L−1 (data estimated by Monte-Carlo simulations
by Biwer et al.[26]). The strong increase in production of penicillin since 1929, resulting in
titers 10,000-fold higher than the ones produced by the initial isolate of Alexander Fleming
(see figure 1.2), is a result of a simultaneous strain and process improvement. Current data
from industrial processes were not available, estimates for them are present in literature and
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figure 1.2: Product titer and market prices for penicillin G. Measured and estimated product titers
( ) and were taken from: [120, 144, 25, 66, 118, 142, 174, 54, 26, 11]. Market price
for penicillin G taken from: Nielsen [174] ( ), King [120] ( ) and data taken from
Scott and Oldenhof [215] ( ).

shown in figure 1.2.
To date, penicillins and cephalosporins are the most widely used antibiotics in therapeutic
medicine. In 2009, the market for antibiotics possessed a volume of US$ 42 billion which
makes up 5 % of the world wide pharmaceutical market. Penicillins and cephalosporins
possess similar sales data and penicillin alone accounted for 16 % of the sales in 2009 for
antibiotics [92]. The annual production of penicillin G and penicillin V in 2006 was 16,900
and 7,500 tons, respectively.
In the last 30 years a high amount of pharmaceutical ingredients were produced in India and
China, which led to a strong decrease of the price for penicillin (figure 1.2). The price of
penicillin G crushed to its minimum of 9.28 US$ from 16.8 US$ in April 2003 [24]. In the
following years, the price rose again until a strong increase in 2007 was observed, due to a
high market share of China mainly influencing prices. China was in the last years the major
producer of penicillin G accounting for up to 75 % of the world production [24, 215].

1.2 Growth Behavior
P. chrysogenum is a filamentous growing fungus (cf. figure 1.3). Growth occurs at the tip
of the hypha in the apical part. Below, the sub-apical and hyphal part of the cell are
located. The growth is, thus, polarized and strong activity is found only in specialized parts
of the cells. In contrast to the apical part, the sub-apical region contains septa that are
not yet fully developed. It is only the hyphal part of the cell where the septa lead to a
full compartmentalization of nutrients. Concomitantly with further differentiation, highly
vacuolized cell parts are formed in the hyphal region [121, 249, 281, 184, 89].
Due to these aging effects, penicillin producing cultures of P. chrysogenum undergo active
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changes during cultivations and the cellular states are diverse [249]. Roughly 5 % of the
overall cells are active in their apical parts, 45 % consist of sub-apical parts and 20 % are in
an hyphal differentiation state and up to 40 % of the cells can be lysed [249]. The sub-apical
parts of the cell and to some extent also parts of the hyphal segments are assumed to produce
most of the penicillin [281, 249].

figure 1.3: Microscopic picture taken from
P. chrysogenum strain BCB1 used
in this thesis. Kindly provided
by Alexander Grünberger (IBG-1,
Forschungszentrum Jülich) .

Usually three forms of growth are distin-
guished: (I) dispersed growth, with the for-
mation of branched and unbranched hyphae
(free dispersed), (II) dispersed growth with
the formation of clumps (aggregates), and
(III) pellet growth. Due to the polarized
growth of P. chrysogenum, the separate re-
gions of the cell are in different aging and
physiological states, leading to continuous
changes in growth. One influencing factor
on cell morphology and also on production
are mechanical shear forces during bioreactor
cultivations which cause breakage or aggre-
gation of cells [114, 185]. Furthermore, the
pH, growth rate, inoculation/germination,
and nutrition may cause differences in the

morphology of P. chrysogenum [174, 159, 114, 176, 177].

1.3 Penicillin Biosynthesis in P. chrysogenum
Penicillins are composed of a nucleus, formed from amino acids, and a side-chain precursor,
which is specific for the type of penicillin. The side-chain determines its activity spectrum and
is added to the cultivation medium. For penicillin G and penicillin V the side-chain precursors
are phenylacetate and phenoxyacetate, respectively. Penicillin V outperforms penicillin G in
terms of stability towards acids, making it more effective for the oral administration [103].
In figure 1.4 the chemical structure of penicillin G and V (PenG and PenV) are shown.

O

N

S

O

OH

NH

O

Penicillin G

O

OH

N

O

S
HN

O

O

Penicillin V

figure 1.4: Penicillin G and V chemical structures.

The main building blocks of penicillin were elucidated in the 1950s by inhibition of biosyn-
thesis using structural analogs and tracer studies, it was deduced that L-cysteine (CYS) and
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L-valine (VAL) form the nucleus of penicillin [53, 11, 227]. Penicillin V is formed in three
subsequent steps. Figure 1.5 provides an overview of the penicillin pathway starting from
the main precursors. Initially, the amino acids L-valine, L-cysteine and the diamino acid
L-2-aminoadipate (AAA) form the tripeptide L-α-aminoadipyl-L-cysteinyl-D-valine (ACV)
by a non-ribosomal peptide ACV synthase (ACVS). Following, the isopenicillin N synthetase
(IPNS) catalyzes the β-lactam ring formation by closing the β-lactam and thiazolidin ring.
This reaction requires an equi-molar amount of oxygen [14, 164]. Finally, L-2-aminoadipate
is substituted with the acyl-side-chain precursor added to the medium by the acyltransferase
(AT). Previously, the acyl-chain precursor is activated by phenoxyacetic acid-CoA ligase
(PCL). The side-product L-2-aminoadipate is recycled or used for lysine synthesis.
The genes encoding for the enzymes ACVS, IPNS and AT are arranged in a gene cluster
consisting of pcAB, pcbC and penD. The clustering of genes is a feature often found in
secondary metabolite pathways, because they are subjected to a tight control. Several other
open reading frames were detected in this region, but had no significant effect on the penicillin
production [240]. The gene encoding for phenoxyacetic acid-CoA ligase (PCL) is not located
in this cluster [179].
In P. chrysogenum, the formation of penicillin is taking place within two compartments. The
reactions catalyzed by the ACVS and IPNS are assumed to occur in the cytoplasm [164, 239].
The final steps of penicillin synthesis, the activation of the side-chain precursor and side-chain
substitution catalyzed by the acyltransferase, take place in the peroxisomes [165, 164, 241].
The peroxisomes are thus crucial for penicillin production in P. chrysogenum [154, 119].

Energy Consumption

The energy demand for penicillin production is high, for CYS biosynthesis 5-8 mol mol−1
CYS

and for VAL 1 mol mol−1
VAL cytosolic NADPH is used [282]. The energy demand of penicillin

synthesis will be later thoroughly discussed.

Side Products

In penicillin biosynthesis several side-products have been observed emerging from the pre-
cursors and penicillin itself (cf. figure 1.5). One of the penicillin precursors, L-2-aminoadipic
acid, is found in significant amounts in the medium supernatant. By cyclization of L-2-
aminoadipate the lactam 6-oxo-piperidine-2-carboxylic acid (OPC) is formed as a side prod-
uct [188, 55]. ACV is formed from the three precursor metabolites L-valine, L-cysteine and
L-2-aminoadipate. From ACV the formation of bis-ACV is favorable, it is formed by utiliza-
tion of oxygen. The reverse reaction is catalyzed by the thioredoxin-thioredoxin reductase
system (TR). Besides this, glutaredoxin system might also be involved in the reverse reac-
tion [188, 55, 121]. Next, acyltransferase catalyzes the formation of 6-aminopenicillanic acid
(6APA) from isopenicillin N, by release of L-2-aminoadipic acid. 6APA can re-enter the peni-
cillin formation pathway by conversion to penicillin V by action of acyltransferase [188, 55].
Besides this, a side-product 8-hydroxy-penillic acid (8HPA) is formed by decarboxylation of
6APA [188, 55].
The final product penicillin V is subject to degradation by penicillin amidase (PA) to 6APA
or it can be converted into several side-products which cannot re-enter the penicillin V
pool. Penicillin V can either be converted to penicilloic acid (PIO), which can be further
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decarboxylated to penilloic acid (PIA) or POA and penicillin V can be converted to p-
hydroxypenicillin V (HOPenV) and p-hydroxyphenoxyacetate (HOPOA) [188, 55].

figure 1.5: Penicillin pathway and side-product formation in P. chrysogenum. Main penicillin
pathway is colored in red.

1.4 Penicillin - A Global View
In summary, the production processes for penicillin V in industry have to face low market
prices and, still, need to be profitable. This demands for economic production processes that
are competitive with the global market. One of the central aims for process improvement is an
increase in the production capabilities of the penicillin V producing organism P. chrysogenum.
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To enhance the production of the organism, the complex formation of penicillin V has to be
elucidated.
In the next chapter, tools will be introduced that elucidate the complex interaction of peni-
cillin formation and reaction rates in the metabolism.



10 CHAPTER 1. PENICILLIN



Chapter 2

Fluxomics Tools

Modern industrial biotechnology aims at producing valuable compounds by microorganisms.
The ultimate goal is to develop economic processes by increasing production rate and yield
of the desired product. To achieve this, targeted improvements of the strains are needed via
means of metabolic engineering. Several (omics) disciplines are applied to identify bottlenecks
in metabolism to increase production [113]. Besides, most omics techniques like genomics,
transcriptomics, and proteomics provide only indirect and limited information about the
intracellular reaction rates [104, 84, 106]. However, providing information about metabolic
reaction rates of a cell, or synonymously the fluxome, is crucial to understand the function of
the cell‘s metabolism and, ultimately, to provide hints for strain improvement. To quantify
and describe the fluxome or parts of it, several fluxomics tools were developed for more than
a decade and were established for prokaryotic and eukaryotic model organisms [268, 261,
183, 74, 75, 140, 277]. Fluxes describe the material transport through metabolic pathways.
They are, usually, normed to cell dry weight (CDW) as reference system and are expressed
in [mmol g−1

CDW h−1]. Important Fluxomics tools used in this work will be introduced in this
chapter.

Stoichiometric Reactions

One of the prerequisites for applying fluxomics tools is the knowledge about the set of reac-
tions in a cell, which is also called the metabolic reaction network. Nowadays, the complete
sequence of an organism‘s genome can be generated in a high throughput manner [218].
This enables the reconstruction of metabolic reaction networks from known enzymatic func-
tions by sequence analysis. However, these “genome scale metabolic network reconstruc-
tions” approaches can provide a metabolic blueprint, the network topology, rather than
quantitative information [234]. Several fluxomics tools were established to quantify in vivo
fluxes for a given metabolic network (flux balance analysis, 13C-MFA, kinetic flux profil-
ing,. . . ) [74, 210, 269, 277]. Metabolic flux analysis is the core technique to understand
metabolism and to implement metabolic engineering for targeted strain improvement for
production of such valuable compounds as penicillin V.
In all of these techniques, the metabolic network is described by a set of mass balance
equations [251]. In a reaction sequence of A −→

v1
B −→

v2
with fluxes v1 and v2, the mass

balance equation for metabolite B can be written for a time point t, with CX denoting the
concentration of a metabolite X:

11
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d(CB)
dt

= v1 − v2 (2.1)

Assembling mass balance equations for all intracellular metabolites can be re-formulated as
an equation system with X being a vector of metabolite concentrations in the cell, G is a sto-
ichiometric matrix (including in- and effluxes) that comprises the stoichiometric coefficients
of the reactions, v is the flux vector, and b is a vector referring to fluxes over the system‘s
boundaries:

dX
dt

= G · v + b (2.2)

By suitable process realization a dynamical equilibrium, called steady-state, is accomplished
for the bio-process under investigation. This is done by maintaining constant state variables
in the process. If this macroscopic steady-state is accomplished, it is assumed that also a
microscopic steady-state is found within the cell. Thus, the metabolite concentrations X and
reaction rates v are constant. This state is also called metabolic steady-state of the system.
At metabolic (pseudo-)steady-state no changes in the concentrations of metabolites are found
(dCX

dt
= 0). The underlying mathematical system is simplified as it holds that G · v + b = 0 .

Thus, the influx into a pool equals its effluxes (for the example above: v1 = v2). Importantly,
for real metabolic networks, the system of mass balance equations is under-determined. One
possibility solve the system is flux balance analysis.

2.1 Flux Balance Analysis
Flux balance analysis (FBA) is commonly applied in systems biotechnology to understand
metabolism and to obtain hints for strain optimization. The technique is appealing as it
can provide fast results and predictive information about potential states of the metabolism.
The metabolic network model is typically under-determined, thus, the solution is not unique.
To circumvent this a so called objective function (usually a reaction rate) is minimized or
maximized to obtain a single solution. Commonly, maximizing product, biomass yield, or
energy generation are used as objectives [183]. Thus, it is assumed that the biological system
under investigation is behaving goal-oriented towards highest evolutionary pressure. Similar
techniques can also be applied to estimate lower and upper boundaries for fluxes in a reaction
network (called flux variability analysis, short: FVA) [90].
Metabolic networks used for FBA rely heavily on cofactor balancing. Thus, additional as-
sumptions for energy consumptions are introduced into the network, although it is known
that complete cofactor balancing is difficult to achieve [245].
In order to perform flux balance analysis, a stoichiometric reaction network is built, describing
the metabolism of the organism under investigation. By the underlying steady-state assump-
tion, mass balance equations can be formulated for the stoichiometric reaction network. It
is expressed in the form of the stoichiometric matrix S with size m × nS (m metabolites and
nS reactions). This matrix determines the stoichiometric relation between substrates and
products of a reaction. It does not contain in- and effluxes of the system.

S · v = 0 with vi,lower ≤ vi ≤ vi,upper (i = 1, 2, 3, . . . ns) (2.3)
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Here, lower vi,lower and upper vi,upper bounds are defined for each flux in vector v based on ther-
modynamical, process, or physiological data (e.g. capacity of enzymatic activity). Thereby,
the flux values are restricted to biologically feasible solutions. Importantly, measurements
with standard deviations are not used, but lower and upper bounds for fluxes [183].
Finally, if degrees of freedom are left within the given system (nS > m), the system is under-
determined. Usually a unique solution cannot be obtained from equation 2.3 by measuring
extracellular rates. Thus, FBA searches either the minimum or maximum of the user-defined
objective function consisting of a linear combination of fluxes weighted by user chosen factors
in vector c (with length nS). The objective value is Z = cᵀv.
From the infinite number of solutions in such a network only one is obtained in the end.
However, the chosen flux distribution is not representing the actual state of the cellular
metabolism but only a possible state.

To estimate in vivo fluxes (intracellular fluxes), further information is needed. Therefore,
adding measurements containing information about intracellular fluxes is necessary. For
this, labeled material is introduced into the cells by the fed substrate. How this can increase
the information content of fluxes, will be described in the next section.

2.2 13C Metabolic Flux Analysis
In contrast to FBA, 13C-metabolic flux analysis (13C-MFA) explores the fluxome by rely-
ing on extracellular fluxes and intracellular labeling measurements. In this state-of-the-art
technology metabolic fluxes are inferred from isotope labeling experiments using 13C labeled
substrates. The resulting labeling patterns in metabolites are quantified. Finally, fluxes are
inferred based on a model describing the distribution of (13C and 12C) carbon atoms in the
metabolism.
Next, the practices to obtain experimental data for 13C-MFA are described.

2.2.1 Carbon Labeling Experiment
To conduct a 13C-MFA, a carbon labeling experiment is performed (see figure 2.2) [280].
Importantly, this work deals with stationary 13C-MFA and, thus, also the isotopic labeling
in the metabolites needs to be stationary (isotopic steady-state).
In a metabolic steady-state all extracellular and, thus, intracellular reaction rates are con-
stant. To establish an isotopic steady-state needed for 13C-MFA, first a metabolic steady-state
needs to be established. This is usually accomplished in a process called chemostat, it aims
at preserving the steady-state conditions by a constant feed and withdrawal of bioreactor
content throughout the cultivation. The organism under investigation is, thus, cultivated
under controlled conditions to reach the metabolic steady-state. At this stage, natural la-
beled substrates are exchanged by isotopically labeled ones. In turn, driven by the metabolic
activity of the cells, characteristic labeling patterns emerge in the metabolite pools; first in
the vicinity of the carbon source, later in pools further downstream. This can take up to
hours or even days in eukaryotic organisms [96, 284]. The speed of labeling distribution
depends on the pools size (intracellular concentration) and the flux through the pool under
observation, it is referred to as turnover (see figure 2.1). Metabolites in glycolysis possess
small pool sizes and high fluxes (high turnover) and show fast equilibration of labeling. In
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figure 2.1: Turnover of metabolite pools and the time resolved spread of labeling in metabolism.

figure 2.2: Experimental work-flow for 13C-MFA

this case, the so called isotopic steady-state is reached fast. Pools of amino acids are usually
larger with low fluxes and exhibit, thus, slow labeling enrichment (low turnover) and reach
the isotopic steady-state later in an experiment [96, 284].

In stationary 13C-MFA, a sample is taken at isotopic steady-state. Cells are quenched to
stop metabolism and preserve metabolites containing labeling information, the metabolites
are extracted by specialized protocols [236]. Their respective labeling pattern is measured
by state-of-the-art techniques, e.g. nuclear magnetic resonance spectroscopy (NMR) or mass
spectrometry (MS). MS is one of the techniques which is frequently applied for 13C-MFA. By
MS, the measured ions can be separated by their masses, emerging from the labeling state in
the metabolite [271]. Finally, the measured labeling pattern can be used for flux estimation
in 13C-MFA.

Summarizing for stationary 13C-MFA, a metabolic steady-state has to be maintained for
a sufficient time to also obtain isotopic stationary conditions (isotopic steady-state). Thus,
prerequisites for the application of (stationary) fluxomics tools are optimally met in chemostat
cultivations.
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bij=1

figure 2.3: Metabolite B contains two carbon atoms. The metabolite pool of B consists of a
mixture of four isotopomers (B#00, B#10, B#01, B#11), the fraction of the separate
isotopomers can be measured and sum up to one.

2.2.2 Modeling of Labeling Experiment
In this section the ingredients for modeling of carbon labeling experiments are presented:

• the labeling patterns of metabolites and substrates

• simulation of labeling patterns for given fluxes

• modeling of labeling measurements

The main steps of the 13C-MFA work-flow are visited by usage of a toy example. At the end
of the chapter a summary is given and the state-of-the-art work-flow is recapitulated.

Isotopomers

The stable carbon isotope 13C is present in about 1.07 % of natural carbon. This labeling
is referred to as natural labeling [22]. Labeled substances possesses 13C atoms enriched at
specified carbon atom positions. Labeling patterns are often described in binary notation:
12C is denoted by a “0” and 13C is denoted by a “1”.
For a metabolite with nC carbon atoms 2nC labeling patterns are possible. Metabolite B
contains two carbon atoms and thus four different isotopomers are possible B#00, B#10,
B#01, B#11 (cf. figure 2.3).
If isomer forms of a molecule share the same isotopic composition, but differ in their posi-
tions, they are called isotopomers. By measurements, the fractions of the isotopomers for a
metabolite can be elucidated (see figure 2.3). The fractions of all isotopomers of a compound
sum up to one. Thus, labeling patterns for 13C metabolic flux analysis are using relative
amounts of isotopomers.

Substrates

Labeled substrates are used in an carbon labeling experiment. Frequently used substrate for
carbon labeling experiment are:

• glucose labeled at the first position, called 1-13C glucose or Glc#100000,

• uniformly labeled glucose, called U-13C glucose or Glc#111111,

• naturally labeled glucose Glc#000000.
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figure 2.4: Atom transition for glucose-6-phosphate isomerase. Numbering of carbon atoms by
INCHI™ strings to identify uniquely the carbon atoms, see Mu et al. for details [163].
Figure generated using OMIX [60].

Further, more or less costly, substrates and labeling patterns are commercially available [1].
The labeled substrates are not only differing in their prices, but also in purity. Usually 99%
atom purity is used. It refers to the purity of 13C at the enriched positions in the substrates.
In the experiments a mixture of them is used, called input substrate mixture. The labeling
state of an input substrate is denoted xinp.

Isotopomer Balancing

To balance isotopomers in a metabolic network, the mass balance equations for a metabolite
pool can be extended. For the reaction sequence A −→

v1
B −→

v2
, it is assumed that each

metabolite contains two carbon atoms. In equation 2.1 isotopomer pools can be integrated
by resolving the metabolite pool concentration into separate isotopomer pools for which the
steady-state assumption can be applied as well.
The fate of the carbon atoms need to be specified for each reaction containing carbon atoms
and are called atom transitions, an example can be seen in figure 2.4. For the reaction of
glucose-6-phosphate isomerase the fate of carbon atoms in glucose-6-phosphate is assigned
to fructose-6-phosphate.
Similar to metabolite pool balances, isotopomer pools are balanced, whereas the isotopomer
fraction of metabolite A and B are denoted by a and b and their labeling pattern is given in
subscripts:

d(CBb00)
dt

= v1a00 − v2b00

d(CBb10)
dt

= v1a10 − v2b10

d(CBb01)
dt

= v1a01 − v2b01

d(CBb11)
dt

= v1a11 − v2b11
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The input substrate, here A, is labeled. The labeling is distributed by the reactions (here
v1 and v2) through the metabolic network, resulting in labeling patterns in the emerging
metabolites (here: B).
A general formulation of the above described reactions can be given in compact notation.
The function f describes the labeling change over time and depends on the fluxes v, the
input substrate labeling state xinp and the labeling state of the system x [181]:

diag(X) · dx

dt
= f(v, xinp, x) (2.4)

At metabolic and isotopic steady-state, the labeling fractions x are constant and the left
hand side of equation 2.4 vanishes:

diag(X) · dx

dt
= 0 (2.5)

In contrast to purely stoichiometry-based analysis like FBA, in modeling carbon labeling
experiments the exchange of labeled material in reversible reaction steps has to be accounted
for.

Flux Coordinate System

To model the labeling patterns in the metabolites, transport of labeled material needs to
be fully described by isotopomer balance equations. This is important for reactions close to
thermodynamic equilibrium. They are called reversible reactions [262]. In these reactions,
transport of material occurs in both directions denoted by two arrows in the reaction equation.
For example:

q : B � E
In reaction q, a fraction of the labeled material is transported in the direction of reaction
equation (left to right) B ⇀

vq,forward
E by a so called forward flux and another fraction is

reacting in the opposite direction B ↽
vq,backward

E, called backward flux. Both fluxes possess
by definition positive values and are acting at a time, resulting in equilibration of the pools
B and E. Forward and backward fluxes are hard to interpret in the context of a biological
network, thus they are converted to net and exchange fluxes.

vnet = vforward − vbackward (2.6)
vxch = min(vforward, vbackward) (2.7)

Having defined the metabolic network stoichiometry, the rank of the stoichiometric matrix
S determines the number p of free fluxes vfree [263]. They can be converted to all net and
exchange fluxes vnet and vxch by using the kernel matrix N and a transformation Φ−1 [263]:

v� = Φ−1
(

vnet

vxch

)
= Φ−1(N · vfree) (2.8)

Setting up all equations as described above, results in a large system of differential algebraic
equations (cf. equation 2.4). By specifying input substrate and a feasible set of free fluxes,
the system can be solved; the labeling state of the system x can now be calculated [267]:
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f(xinp, v�, x) = 0 (2.9)

In general, nonlinear terms arise in reactions using multiple labeled substrates. For small scale
systems, isotopomer balance equations can be efficiently applied to describe the labeling state.
For larger systems, the number of isotopomers increases significantly, because metabolites
with up to 11 (or even more) carbon atoms are contained. In a genome scale network
metabolites with an even larger carbon skeleton may exist. Such large system can no longer
be handled efficiently by simulating all 2nC isotopomers. Thus, mathematical transformations
like EMUs, cumomers and topological network reduction by forward/backward tracing were
developed to make these systems computationally feasible [259]. A multitude of techniques
have been published so far, nevertheless they are not subject of discussion in this work
[226, 225, 7, 267]. Throughout this work 13CFLUX2 is used, which uses both cumomer or
EMU transformation. For illustrative purposes only isotopomers are discussed.

Measurements

Finally, from the labeling state x the labeling measurements need to be calculated. The
labeling state can be converted to a simulated labeling measurement yM by the help of a
measurement matrix M [266].

yM = M · x(vfree, xinp, ...) (2.10)

Likewise a measurement matrix can be built for the simulated flux measurements yv. From
the given ny + nv labeling and flux measurements, p free fluxes are estimated.

Assumptions on 13C-MFA

Summarizing, the assumptions on which stationary 13C metabolic flux analysis and (in parts)
flux balance analysis rely on are discussed (taken and adapted from Wiechert [261], Wiechert
and de Graaf [263]):

1. The biological system can be represented by a finite set of homogeneously distributed
pools. Compartmentalization may lead to separate pools for a metabolite per compart-
ment. Besides, it is assumed that the cultivated organism‘s population is homogeneous.

2. The observed system must be kept in a well-defined physiological stationary state.
Thus, state variables like temperature, pressure, concentrations in liquid and gas phase
need to be kept constant. The metabolic and isotopic steady-state has to be reached.

3. The set of relevant reactions and atom transitions are known and incorporated in the
network model.

4. No isotopic mass effects can be observed in the system under study.

Several counter-arguments exist for the conduction of the analysis. In P. chrysogenum the
hyphae structure, the spatially resolved metabolism, aging and changing product formation
is known [249]. In this study, these effects are neglected for conduction of 13C-MFA, because
the technique is not capable of resolving them. Besides, fungi exhibit significant changes of
the metabolism during the cell cycle. Thus, performing analysis of labeling patterns will give
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averaged results over the cell cycle in these cells. To give an example, in Saccharomyces cere-
visiae even synchronization of cell cycle was frequently observed in chemostat culture [190].

To introduce the application and the work-flow for 13C-MFA, an illustrative example is subject
of the next section.

2.2.3 Illustrative Toy Example: The Spiral Model

13C-MFA is usually dealing with high dimensional metabolic models with 20-40 degrees of
freedom. Most of the characteristics can be seen also in lower dimensions. In this section cer-
tain aspects of 13C-MFA, becoming later important for large scale system, will be introduced
with an artificial toy example.

This model, called Spiral model, was first introduced by Wiechert et al. [267]. The metabolic
network model consists of nine reactions with an input pool A, see figure 2.5a. The influx
uin is fixed to 1.0. Two free fluxes exist qnet and qxch. The exchange fluxes will be rescaled to
match the interval [0, 100%] by applying the transformation qxch01 = 100 · qxch/(1 + qxch)%,
whereas 0 means no exchange flux and 100 % means an infinite exchange flux [263]. As qnet

depends on the influx uin which is constrained to a value of 1.0, it can only be varied within
the interval [0, 1].

The atom transition network is shown in figure 2.5b. It specifies the fate of the carbon atoms
for each reaction. The atom transition network and the metabolic network can be formulated
in the short notation including atom transitions:

uin :A#ab −→ B#ab

q :B#ab −→ E#ab

v :B#ab + E#cd −→ C#abcd

w :C#abcd −→ F#a + D#dcb

p :D#abc −→ E#cb + G#a

r :E#ab −→ H#ab

Fout :F#a −→
Gout :G#a −→
Hout :H#a −→

For this network the isotopomer balance equations can be written in short notations, with
subscripts i, j, k, l ∈ {0, 1} denoting labeling of single atoms. The lower case letters are
referring to the respective isotopomer fractions of an metabolite:
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figure 2.5: Spiral network model posses one influx uin and several effluxes Fout, Gout and Hout.
(a) Metabolic network and (b) carbon atom transition network for the Spiral model.

Pool Change =Arriving −Leaving

B :d([B]bij)
dt

=uin · aij −(v + q) · bij

C :d([C]cijkl)
dt

=v · bkl · eij −w · cijkl

D :d([D]dijk)
dt

=w · (cijk0 + cjkl1) −p · dijk

E :d([E]eij)
dt

=p · (d0ij + d1ij) + q · bij−(r + v) · eij

In these isotopomer balancing equations, a special feature of the 13C-MFA models can be
seen: In the balance equation of metabolite C a nonlinear term bkl · eij is introduced as
two metabolites (B and E) react to a new metabolite C. Thus, it is a system of nonlinear
differential algebraic equations.
Following, it is assumed that all isotopomers for metabolite H are measurable and the system
is in metabolic and isotopic steady-state (d([X]x)

dt
= 0). Now, the labeling pattern in H can be

calculated by specifying the free fluxes qnet and qxch and an input substrate. In this example,
the input substrate Ain is labeled at the second position A#01. Equation 2.9 is solved and
the isotopomers fractions for H are obtained. This procedure is called henceforth (forward)
simulation.
Calculating the labeling pattern for all flux values of qnet and qxch results in the surface
plots seen in figure 2.6. The resulting isotopomer fractions are smooth, but several of them
(H#00 and H#10) show only small changes in value. Additionally, some isotopomer fractions
show strong changes in function values with respect to the net flux (cf. H#01). For higher
exchange fluxes qxch01 within 75-100 %, small changes are observed in the labeling patterns,
because pools H and B are equilibrated. At a high net flux qnet = 1.0 all flux is redirected
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figure 2.6: Simulation results for isotopomers of metabolite H in Spiral model with varying free
fluxes qnet and qxch. Influx uin was constrained to 1.0. Input substrate was chosen to
be Ain#01.

from metabolite A via B to E, bypassing the route via C and D. Thus, the exchange flux
between pool B and E becomes non-influential as both metabolites share already the same
labeling pattern.
However, if two sets of flux distributions are chosen, we can see that they possess different
isotopomers fractions in metabolite H. Thus, to determine the fluxes for this model, the
measurements of the isotopomers of H need to be known. This is true, as long as the qnet

flux is not equal to 1.0. In this case, no information content about this exchange flux is
found in the labeling pattern, because two flux values for qxch possess the same isotopomer
measurements. This is called structural non-identifiability [199]. Thus, qxch is only locally
structural non-identifiable at high fluxes of qnet.

2.2.4 From Labeling Patterns to Fluxes

It was shown that measuring the labeling distribution of the metabolite H will determine
the fluxes of the Spiral model. Nevertheless, there are some drawbacks emerging from this:
(I) measuring the whole isotopomers of a metabolite is cumbersome, if not impossible for
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large molecules, and (II) measurements are never exact.
Here we will see how mass spectrometic measurements of a metabolite are built from the
simulated isotopomer distribution. Metabolite H is measured by mass spectrometry and
possesses the isotopomers H#00, H#10, H#01 and H#11. The mass spectrometric devices
can separate metabolite H by mass m and quantify the masses. The fraction of completely
unlabeled H (m+0; H#00), labeled at one position (m+1; H#10 + H#01 ) and labeled at
two positions (m+2; H#11) can be measured. The detected part of H contains nC carbon
atoms and thus m + 0, 1 . . . (nC + 1) so called mass traces are measured (here: three were
measured). Thus, a single MS measurement can only measure a subset of the isotopomers
information content. By solving equation 2.9, the full labeling state of H is obtained, de-
scribing the fractions of all simulated isotopomers x. The measurements can be calculated
from the labeling state using the measurement matrix M . For this case, equation 2.10 can
be reformulated for metabolite H:

yM,H = MH · xH⎡⎢⎣ yH,m+0
yH,m+1
yH,m+2

⎤⎥⎦ =

⎡⎢⎣ 1 0 0 0
0 1 1 0
0 0 0 1

⎤⎥⎦
⎡⎢⎢⎢⎣

h00
h10
h01
h11

⎤⎥⎥⎥⎦
The results for the Spiral models metabolite H can be seen in figure 2.7. Clearly, at high
flux values of the net flux qnet low changes are found compared to the full set of isotopomers.
Here, the loss of information is reflected in the MS measurements‘ surface plots.
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figure 2.7: Simulation results for MS measurement of metabolite H in Spiral model with varying
free fluxes qnet and qxch. Influx uin was constrained to 1.0. Input substrate was chosen
to be A#01.

2.2.5 Sensitivities and Jacobian

Sensitivities describe the local effect of the input parameters on the output of the model.
Usually, the partial derivative for one flux with respect to its output y is calculated at a
specific flux distribution v̂:

∣∣∣∣∣ ∂y

∂vi

∣∣∣∣∣
v̂

The output of the model y can be a labeling yM and/or flux measurement yv.
This local sensitivity analysis indicates, at the point in flux space, the strength of the depen-
dency between a measurement and a free flux. Calculating all local sensitivities for fluxes
and measurement, one obtains the Jacobian with dimension p × (ny + nv):
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figure 2.8: Sensitivities (absolute values) calculated for Spiral model with influx uin=1.0 and input
substrate 100 % A#01. The Jacobian was evaluated and the maximal gradient was
extracted for (a) flux qnet and (b) flux qxch. Only maximal absolute values are of all
MS measurements of metabolite H.

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂yM,1
∂v1

· · · ∂yM,1
∂vp... . . . ...

∂yM,ny

∂v1
· · · ∂yM,ny

∂vp
∂yv,1
∂v1

· · · ∂yv,1
∂vp... . . . ...

∂yv,nv

∂v1
· · · ∂yv,nv

∂vp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
v̂

The Jacobian describes the local approximation of the change of all model outputs to a
change in the free fluxes. The sensitivities were calculated for the Spiral model for the MS
measurements of H for both fluxes qnet and qxch. Only the maximal absolute values for
the sensitivities for each parameter with respect to the labeling measurements are shown in
figure 2.8. Both fluxes exhibit high gradients at low qnet and qxch. Finally, both fluxes possess
(close to) zero gradient in J when the qnet flux is high.
Until now, it was assumed that the measurements yM possess no measurement error. How-
ever, measurements are subject to uncertainty and are in general assumed to possess normal
distributed error. To quantify the uncertainty by error propagation from the measurements
to the fluxes, statistics need to be evaluated. This can be achieved for the nonlinear model
by linearization at the flux distribution v̂. Therefore, the Jacobian J(xinp, v̂free) is calculated
and the measurement‘s covariance matrix Σ = diag(s2

meas,1, s2
meas,2, . . . , s2

meas,nM +nv
) can be

build from the measurement‘s standard deviation smeas neglecting covariances/correlation
between the measurements [197]. Using these matrices, the Fisher Information matrix is
calculated:

Fish = JᵀΣ−1J (2.11)
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figure 2.9: Work-flow for flux estimation based on measurements. Adapted from Wiechert [261].

Inverting the Fisher Information will yield the covariance matrix of the free fluxes (Cov =
Fish−1). It describes the shape and size of the free fluxes‘ covariance ellipsoids and is a
measure for the statistical identifiability of the fluxes [85].

Summing up, from a metabolic network and carbon atom transitions a unified description
of the isotopomer balance equation was deduced. Labeling measurements were calculated
by isotopomers and sensitivities were evaluated for the measurements with respect to the
fluxes to perform a globalized sensitivity analysis in flux space. Finally, by assuming some
error on the measurement it was shown that calculation of error propagation from fluxes to
measurements is straightforward and closely related to sensitivity analysis.
Estimation of the free fluxes for a given set of measurements is the focus of the next chapter.

2.2.6 Flux Estimation
Up to now, a toy example was used and it was shown that there is a correspondence be-
tween isotopomers and fluxes. However, direct calculation of the fluxes from the labeling
measurements is not possible. Besides 13C-MFA deals usually with high dimensional systems
(p = 20 − 40) and thus plotting of isotopomers (as in the case of the Spiral model) is not
possible. The work-flow for estimating the fluxes from the experimental measurements is
shown in figure 2.9.
First, an experiment is performed in the wet-lab with a chosen substrate mixture and the
resulting stationary labeling patterns in the cell is measured. In the dry-lab the estimation of
the unknown in vivo metabolic fluxes from the labeling patterns is started by choosing a set
of free fluxes. With the same input substrate used in the model, the labeling measurements
are simulated and compared to the real measurements. By minimizing the difference between
simulated data and measurements, the simulated flux distribution is getting similar to the in
vivo fluxes. If the difference is minimal, one assumes that the found flux distribution is the
same as in vivo.
Each MS and flux measurement is prone to errors, thus they posses a standard deviation by
the stochastic error introduced during experimental/measurement procedures. To measure
how good a measurement fits the simulated data, an adequate measure is needed. The
weighted residual sum of squares (WRSS) provides a measure for the goodness of fit [266].
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The WRSS weighs the squared deviate of measured and simulated measurement values by
their experimentally determined standard deviations smeas.
Measurements given in arbitrary unit or incomplete mass spectrometric measurements (e.g.
m+0 measurement missing) are scaled to the simulated measurements by a scaling factor ω.
If all mass traces were available and scaled to sum up to 1, ω is set to 1. Thus, the weighted
deviate of simulated and measured labeling patterns and fluxes are minimized [259]:

v̂ = arg min
vfree

WRSS (2.12)

= arg min
vfree

‖ymeas − ω · yM(vfree, xinp)‖Σ + ‖vmeas − yv‖Σ (2.13)

= arg min
vfree

∑
i

(ymeas,i − ω · yM,i(vfree, xinp, ...))2

s2
meas,i

+
∑

j

(vmeas,j − yv,j(vfree))2

s2
meas,j

(2.14)

The optimization landscape given by the WRSS is visualized in figure 2.10a. For the Spiral
example, a subset of the isotopomers of H were measured: H#00 0.02 ± 0.004; H#00 0.15 ±
0.01; H#10 0.17 ± 0.01. Minimizing the value of the WRSS results in a good fit of simulated
and real measurements. It is assumed, that the flux distribution v̂ at the minimal value of
the WRSS resembles the true fluxes in the cell. In this example, two optima are obtained,
one at qnet=0.18 and qxch=0.05 with a WRSS of 37. The second optimum, is at qnet=0.62
and qxch=0.74 with a value of WRSS=22. Due to the lower score, the latter is the global
optimum and assumed to be the in vivo fluxes.
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figure 2.10: Plot of WRSS for the Spiral model for varied free fluxes qnet and qxch. Influx uin was
constrained to 1.00. Measured were isotopomers of metabolite h: H#00 0.02 ± 0.004,
H#00 0.15 ± 0.01 H#10 0.17 ± 0.01. With global optimum of at with qnet=0.62 and
qxch=0.74 and WRSS=22. And local minimum at qnet=0.18 and qxch=0.05 with a
WRSS of 37. (a) WRSS values. (b) Contour plot of WRSS and paths of MATLAB®
fmincon optimizer. Black dots are starting points, green dots mark the optima. Red
lines indicate search path.
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The problem is a constrained nonlinear optimization problem. In figure 2.10b the trail of
an optimizer started at separate points in flux space is shown. Depending on the starting
point the optimizer may be stuck in a local minimum. Clearly, the constrained nonlinear
optimization problem can be solved by heuristic or global optimization strategies. This
circumvents local but sub-optimal solutions. In the figure 2.10b a globalized multi-start
strategy was applied. For this, several starting points were chosen to identify separate optima.
Two out of five optimization runs found the local optima and stopped. Three found the global
optimum.

2.2.7 Experimental Design
Experimental design aims at improving quality of the information about the estimated quan-
tities of the system under investigation. Besides other potentially possible measures for
quality (like costs, duration of experiment,...), it usually aims at improving the statistical
identifiability of the estimated model parameters. In 13C-MFA it is aimed at improving the
statistical identifiability of the estimated fluxes v̂. This can be achieved by changing the set of
design variables directly influencing the information content of an experiment: (I) standard
deviation, (II) measurement configurations, and/or (III) the input substrate.
The quality of the experiments is intended to be increased by shrinking the volume of the
covariance ellipsoids leading to better identifiable fluxes. However, the calculation of the
covariance matrix depends on the input substrate mixture xinp. Choosing the substrate
mixture is crucial for the statistical quality of the estimated fluxes. For example, using only
uniformly labeled substrate (12C or 13C) results in no information at all.
In classical experimental design the covariance matrix of the parameters (here: free fluxes)
is converted to a single value which describes the overall statistical estimation quality of the
system. The criteria are called alphabetical design criteria as they are denoted by capital
letters. Examples for frequently applied criteria are in figure 2.11, an overview can be found
in Franceschini and Macchietto [85]. Maximizing the information criteria for the Fisher
Information or minimizing them for the covariance matrix results in the same outcome. The
inversion step in the calculation of the covariance matrix may introduce numerical errors.
Therefore, the Fisher Information is used.
If frequently used substrates in a experimental design study are applied, an optimal substrate
mixture can be found. Frequently applied substrates are uniformly labeled glucose, 1-labeled
glucose and naturally labeled glucose.

Switching back to the Spiral model: it is used to perform an experimental design study
at separate points in a ternary mixture triangle of the substrates A#00, A#01 and A#11.
At each point in mixture triangle information criterion calculation is performed, using the
respective mixture (see figure 2.11).
A distinct optimum can be found for A#01. All other mixtures show a lower potential to
increase statistical identifiability for the chosen fluxes indicated by lower D-criteria values.
For performing an experimental design study, like shown above, preliminary information
about the flux values are needed (a posteriori experimental design), because the Jacobian
and thus also the Fischer Information and covariance matrix provide local measures for a
given flux distribution v̂. To summarize: for another flux distribution the mixture traingle
may look different. Next light is shed on this issue. For the mixture of 100% A#01, the
statistics for the overall flux space is calculated (see figure 2.12). At each point the separate
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figure 2.11: Experimental design study for spiral model with fluxes qnet = 0.2 qxch = 0.01 based on
Fisher information matrix. A full MS measurement (m+0, m+1, m+2) of metabolite
H was used. Logarithmic D-criterion values were scaled to interval [0, 1]. A value
of 1 corresponds maximal statistical identifiability. In the table the optimal experi-
mental design criteria are given, where λminis the minimal eigenvalue of the Fisher
information [192, 250].

criteria are evaluated. The criterion values are strongly dependent on the fluxes and showing
deviating behavior as their optima are located at different positions. This poses a problem
on the conduction of the experimental design: Preliminary knowledge about the fluxes from
literature or an reference experiment is needed. In the event that some fluxes are weakly
statistical identifiable, obtaining an optimal substrate mixtures becomes harder, because the
criterion value of these fluxes may vary strongly within their range of uncertainty.
In contrast to the classical experimental design, where an estimate for the parameter is al-
ready available, an experimental design without preliminary information about parameters
is called a priori experimental design henceforth.

The used statistics in this section were founded on local approximation of the change of
model outputs to a change in fluxes (Jacobian). Thus, this type of statistic is a so-called
linearized statistics. In the next section, the more general nonlinear statistics will be applied
to the Spiral model.

2.2.8 Nonlinear Statistics

The Spiral model is nonlinear, thus, evaluation of introduced bias by the linearized statistics
(cf. equation 2.11) needs to be performed. Nonlinear statistics can be based on a nonlinear
measure or a bootstrap method, both types are explained in section 4.2.2 and 4.2.4. As
already introduced, the linearized statistics are a local approximation specific for given flux
values. In contrast to that, nonlinear statistics are not a local measure as they are not
calculated for a single point in flux space.
Based on a given set of measurements linearized, bootstrap, and nonlinear statistics (based on
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figure 2.12: Changes in optimal experimental design criteria by altering flux distribution for the
spiral model with a fixed mixture of A#01 as input substrate. A full MS measurement
(m+0, m+1, m+2) of metabolite H was used.
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equation 4.30) were calculated for the free fluxes qnet and qxch (see figure 2.13). The linearized
statistics results in standard deviations of the free fluxes: qnet = 0.75 ± 0.03 and qxch =
0.65 ± 0.20 mmol g−1

CDW h−1. The bootstrap method predicts a confidence interval of qnet of
[0.71, 0.77] and for qxch of [0.05, 3.87]. For the nonlinear statistics (based on equation 4.30),
the confidence interval is greater compared to the bootstrap and linearized statistics: qnet =
[0.70, 0.80] and qxch = [0.31, ∞) (upper boundary not determinable). The confidence intervals
of the net flux corresponds well to the two methods of nonlinear statistics. However, the
exchange flux shows strong deviation.
After transformation of exchange flux from qxch to qxch01 by using qxch01 = qxch/(1 + qxch),
the exchange flux in the Spiral model is close-to-linear in its behavior, see figure 2.13d. By
this transformation of the exchange fluxes to the interval [0, 1], linearized statistics provides
a good approximation. The effect of transformation to obtain close-to-linear behavior for
confidence intervals was also extensively described by Ratkowsky [197].
To sum up, linearized statistics applied on these nonlinear models can result in false approxi-
mations of the confidence intervals. Thus, care has to be taken in interpretation of the results.

By using the Spiral model as a toy example, basic steps of the work-flow for 13C-MFA were
introduced. Next, the major aim of this study is shown and the big picture of the complex
work-flow for applying 13C-MFA is demonstrated for real-world examples.
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figure 2.13: Nonlinear and linearized statistics for Spiral model using NoReTo (cf. section 4.2.4).
(a-b) Result of Monte Carlo bootstrap to calculate error propagation to the flux qnet

and qxch, exchange flux qxch was rescaled to “01” coordinates in (b). Calculations were
performed according to Joshi et al. [112]. (c-d) Comparison of nonlinear error prop-
agation by bootstrap ( ), linearized ( ) and nonlinear ( ) confidence intervals
both with significance level of 0.32, exchange flux qxch was rescaled to “01” coordi-
nates in (d). Measurements were: H#01 0.15, H#01 0.17, H#00 0.02, H#01 0.14,
H#01 0.16, H#00 0.02. For bootstrap the same measurement values and standard
deviation of 0.012 was used, it was estimated using the best fit‘s residual to calculate
the variance of unit weight σ2

0 = RSSmin
n−p applying the NoReTo toolbox [5].
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Chapter 3

Transferring 13C-MFA to an
Industrial Process

The ultimate aim of this study is to elucidate the fluxome of P. chrysogenum under indus-
trially relevant conditions. As discussed in the beginning, P. chrysogenum is cultivated on
glucose/sucrose or other crude sugars in controlled fed-batch processes in industry. The pro-
duction process takes place in 100-400 m3 bioreactors and process duration is 120 to 200 h,
the growth form is pelleted [66]. A production of at least 66 g L−1 penicillin V is needed for
a modern fed-batch process to be amortized, while the final biomass concentration is in the
order of 40-50 g L−1 (data estimated by Monte-Carlo simulations by Biwer et al.)[26]. Thus,
high cell densities are found within such a process. The increased biomass density in a pellet
can result in substrate limitation in the center [89].
In order to perform 13C-MFA, certain prerequisites are to be met. Ideally, 13C-MFA is per-
formed in well-controlled chemostats under metabolic and isotopic steady-state. As valuable
labeled compounds are used, the investigated process is scaled down to the liter scale. Im-
portantly, this step is also done to obtain homogeneous conditions in the bioreactor and to
prevent effects by slow mixing, because this can result in heterogeneous conditions within the
cultivation. Finally the varying conditions result in a multitude of metabolic states that are
not resolvable by 13C-MFA. Besides it is known that different metabolic states can be found
within the pellets formed by P. chrysogenum [130, 89]. The sum of these different states
will ultimately result in the macroscopic, averaged, characteristics of the cultivation process
yielding the final product (penicillin) of interest. Thus, the inhomogeneities are important
for the understanding of the process.
Aiming at characterization of the industrial process 13C-MFA needs to be conducted as
close to the industrial process as possible, without severely compromising the basic modeling
assumption beforehand mentioned. Nevertheless, this requires simplifications: The industrial
process was scaled down and the growth form was changed to dispersed growth with reduced
biomass to minimize inhomogeneities emerging from mixing and transport processes within
the pellets to optimally apply 13C-MFA. Thus it was a balancing act between the shortcomings
of the technique and the industrial application. By these changes, the adapted process differs
from the original process and is, henceforth, called close-to-industrial.
To mimic the large scale processes, the sensor bioreactor concept was applied (see figure 3.1)
[61, 62, 150]. A large scale bioreactor with 150 liter working volume, representative for the
industrial process, and a small “sensor” bioreactor with 1 liter working volume were used.
The sensor bioreactor is controlled in master/slave mode with respect to the large fermenter,

33
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figure 3.1: Experimental setup of the sensor bioreactor for 13C-MFA

resulting in close-to-industrial conditions in the small sensor bioreactor. This approach has
the advantages that, due to the sensor bioreactor‘s considerable smaller volume, the usage
of costly labeled material is significantly reduced. Additionally, several labeling experiments
can be conducted sequentially within one cultivation to enable time-resolved monitoring of
the process. Moreover, it provides less heterogeneous areas although it is comparable in
process conditions to the process in the large scale fermenter.
Furthermore, implications caused by the non-model organism P. chrysogenum have to be
solved when establishing 13C-MFA. First, aging of culture and potentially decreasing prod-
uct titer (degeneration) were often observed [59]. Second, polarized growth results in sub-
population of cells have been found, whereas 13C-MFA will only represent averaged values
for the overall cultivation.
As the culture undergoes subsequent changes and P. chrysogenum is a slow growing organ-
isms, the time frame for experimental observation was shifted from estimated process duration
of about 120-200 h to a time frame of 95 h for the fed-batch process. By this time saving,
experimental cycles with subsequent experimental design could be conducted.
Additionally, further constraints were present for evaluation of the experimental data used in
this study. Time constants of labeling are heterogeneous leading to the observed labeling data
in transient as well as stationary labeling regimes. In order to apply 13C-MFA to estimate
intracellular fluxes, stationary values have to be estimated from the measured enrichment.
Unfortunately, quantitative pool size measurements protocols and highly time resolved data
for central carbon metabolism were missing, preventing conduction of non-stationary 13C-
MFA for the data-sets [181].
Having these measurements at hand, stationary 13C-MFA was applied to several process
conditions. First, chemostat experiments were conducted to establish the 13C-MFA for the
organism and to circumvent the shortcomings of a fed-batch process. Afterward, the fed-batch
process was carried out using the sensor bioreactor concept for close-to-industrial conditions.
Additionally, experimental design was applied to increase statistical significance of the results.

As motivated with the simple Spiral example, the work-flow for 13C-MFA was introduced. It
is revisited in the next section, to provide the outline of this work.
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figure 3.2: Work-flow of 13C-MFA.

3.1 State-of-the-Art Work-Flow for 13C-MFA
13C-MFA is applied in the industrial environment to gain knowledge about the organism and
get hints for strain improvements to increase its production capabilities. Here, the optimal
work-flow for conduction of this analysis is presented that generally applies to all 13C-MFA
studies (see figure 3.2). It is important to note, that the work-flow considers all steps related
to model based evaluation and analysis.

13C-MFA Model

Construction of a metabolic network with reactions and atoms transitions is the first step in
every 13C-MFA study. Necessary organism-specific information can be taken from databases
or literature. Besides, it is also possible to build or use a genome scale metabolic network and
to reduce the number of reactions for the 13C-MFA. The generation process of these networks
cannot clearly be classified as bottom-up or top-down, since it depends on the actual state
of knowledge about the organism [175]. This also includes atom transitions which can be
specified by literature and text-book knowledge [265].
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Assumptions about the directionality of reactions are introduced in the model. They can be
based on pool size measurements for thermodynamic analysis [265]. Enzymatic tests can be
used to exclude “inactive” reactions from the network or characterize the enzymes preferred
directionality like shown by Stols and Donnelly [228].
Next, measurements‘ specifications are introduced in the model for the potentially measur-
able metabolites; experimental data are not yet introduced. Up to this point only the raw
model without measurement data is built. Nevertheless, at this point the first (forward) sim-
ulation can be performed, simulating the measurement values for an arbitrarily chosen flux
distribution as previously shown for the Spiral model. This unlocks the basis for investigation
of the model. Based on the simulation model a priori experimental design can be performed.
This may be done by, for example, choosing several flux distributions from literature and
assuming an error model for the measurements to estimate the optimal substrate mixture.
The determined mixture is used henceforth to conduct subsequent steps.

The models build for P. chrysogenum and their generation process are described in chapter 5.
From a large scale network, including cofactors, a focused network was built and assumptions
were stated. The effluxes to biomass compounds are calculated and introduced into the model.
A substrate mixture was chosen based on literature data and measurements are specified.
Finally, FBA is used to perform yield analysis.

Exploration of 13C-MFA

To determine sensitivity of the model parameters, i.e. fluxes, a global sensitivity analysis is
performed. This is important in order to prevent over-parametrization. Usually, the sensitiv-
ity analysis is accompanied by uncertainty analysis taking also into account the measurements
uncertainties. Next, a structural analysis is accomplished to check which fluxes are struc-
turally non-identifiable, i.e. cannot be resolved even assuming error-free measurements [45].
By the results of these analyses, either fluxes may need to be removed or set constant leading
to cycles of model adaption. Besides, if important fluxes for the to-be-answered biological
question are not sensitive or identifiable, cycles of experimental design need to be conducted
to find measurements that increase their sensitivity.

In this work, the first global sensitivity analysis for 13C-MFA models is performed. Adequate
visualization and influences of the fluxes on the labeling pattern are shown in chapter 6. Global
uncertainty and structural identifiability analysis are not subject of this work.

Data Pre-Processing and Conduction of 13C-MFA

After construction and theoretical investigation of the model, the measured experimental
data can be introduced to perform parameter estimation. For this, the extracellular rates
and the steady-state labeling patterns are needed.

In this work, extracellular rates are estimated by kinetic modeling of the complex close-to-
industrial fed-batch and chemostat cultivations. The steady-state labeling data are derived
by model-driven data extrapolation, followed by their correction for natural abundance and,
finally, a statistical reconciliation step (see chapter 4).
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Proceeding in the work-flow, parameter estimation has to be performed by globalized (heuris-
tic) strategies to circumvent local minima. At this point it might happen that flawed mea-
surement data are found which need to be removed from the model. Likewise, the model
(including stoichiometry and flux directionality) may be subject to a thorough review proce-
dure. This results in cycles of adaption by re-specification of the model or measurements in
the work-flow and re-performing of some steps. Finally, the results of parameter estimation
need to be re-examined, to detect whether alternative local or multiple, equally good, optima
are present. If several optima are present, these need to be carefully analyzed. Infeasible
solutions (identified by expert knowledge about thermodynamics, biology, . . . ) may be dis-
carded. If the resulting flux maps represent distinct but different possible solutions, further
experimental data are needed to exclude the one or the other hypothetical flux map.

Results of parameter estimation, statistical analysis of results for chemostat and fed-batch
cultivations are shown in chapter 7.

Experimental Design

If the resulting flux maps is weakly statistical identifiable, flux maps can be improved, in
a statistical sense, by a second a posteriori experimental design and a thereafter performed
carbon labeling experiment. Finally, after calculation of the statistics, the flux map is inter-
preted and hints for strain improvement can be obtained.

Experimental design is conducted and further experiments are performed, see chapter 7.1.2.
The results of the outcome of the studies are discussed chapter 8. Conventional experimental
design is extended by diversity-driven experimental design chapter 9. Finally, planing of
optimal, yet economic, experimental design facing several optimality criteria is described in
chapter 10.
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Part II

13C Metabolic Flux Analysis for
P. chrysogenum
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Chapter 4

Data Pre-Processing

For 13C-MFA, two types of measurements are required: (I) labeling patterns of intracellular
intermediates and (II) extracellular rate measurements, i.e. substrate uptake and product
secretion rates, need to be provided. From the design of the study and the constraints imposed
by the biological system in combination with the close-to-industrial process, limitations arise
which need to be accounted for in the pre-processing pipeline for 13C-MFA (see also figure 4.1):

1. Sample withdrawal from the sensor bioreactor is only possible at certain time intervals
to preserve the metabolic steady-state. Overall ~40 % of the reactor volume is removed
by sampling in a fed-batch cultivation. This hampers direct calculation of extracellular
rates. Additionally, side-product formation is complex in P. chrysogenum. Therefore, a
kinetic model is used to estimate rates based on experimental concentration measure-
ments, weight measurements of withdrawn samples, and feeds. The model is fit to the
concentration data and rates are estimated. The same procedure was likewise applied
for the chemostats (in section 4.1).

2. Beside the concentration data, the labeling pattern of the metabolites were measured
time resolved. Several metabolites possessed labeling far from isotopic steady-state
(in tricarboxylic acid (TCA) cycle and amino acid synthesis pathways). This forces
extrapolation to steady-state labeling enrichment (see section 4.2).

3. The extrapolated MS measurements need to be corrected for natural abundance (see
section 4.3).

These three steps will be conducted in this chapter.

figure 4.1: Data pre-processing pipeline for 13C-MFA established in this work.
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4.1 Model-Based Extracellular Rate Estimation for
P. chrysogenum Cultivations

In this section, the cultivations in chemostat and fed-batch processes are described by kinetic
models to obtain consistent specific rate estimates for 13C-MFA with closed mass balances.
The cultivations of P. chrysogenum were described by an unstructured kinetic model for cel-
lular growth [178]. The kinetic model describes all reactions participating in the formation
of all known side- and main products measured in the chemostat and fed-batch cultivations.
Extracellular concentration measurements were supplied for biomass, glucose, penicillin V,
IPN, HOPenV, HOPOA, penicillamine (PeNH2), PIA, PIO, 6APA, 8HPA, and OPC. Ad-
ditionally, off-gas analysis (of carbon dioxide) was used. bis-ACV was not detected during
cultivations. Additionally, the uncertainty of the obtained rates is assessed by calculating
standard deviations. In kinetic models, the mathematically expressed correlations between
reaction rates q and the concentration C of a reactant are inserted into mass balances r. This
allows description of whole bio-processes (e.g. cultivation in chemostat) [178]. In this chapter
kinetic models are used to describe the complex side-product formations and growth of the
P. chrysogenum BCB1 strain. In the end, estimates for the specific rates of the chemostat
and fed-batch processes are derived from the primary cultivation data.
Next, the general nomenclature will be introduced in this section by starting with simple
examples. For a product P the change in concentration CP can be expressed by a equation
rP . It depends on the reactions q which consume or produce P . In this work only simple
kinetics are used. To give an example:

qP,1 = k · CS

In qP,1 the formation of P is linearly dependent on the concentration of the substrate S,
with the reaction rate constant k. Furthermore Michaelis Menten kinetic are used describing
the reaction catalyzed by a single enzyme [178, 262]. Using these kinetics a second reaction
rate qP,2 with the maximal possible reaction rate kmax and a Michaelis constant KM can be
formulated:

qP,2 = kmax
CS

KM + CS

A similar type of kinetics are called Monod kinetics. They are formally identical to Michaelis
Menten kinetics and describe the growth behavior of an organism and not the reaction of a
single enzyme as it is the case for Michaelis Menten kinetics [178]. In Monod kinetics the
Michaelis Menten constant is changed to an affinity constant KS.
The parameters (reaction rate constants) in the reactions rates q need to be estimated by
parameter fitting to experimentally derived concentration data. Usually, estimates for these
constants are available in literature and can be used to specify lower/upper boundaries.

In this work, an unstructured general kinetic model is built to consistently describe, both,
chemostat and fed-batch process.

4.1.1 Penicillin and Side-Product Formation Revisited
The side product formation is important because it interferes with the penicillin production.
A multitude of side-products are formed and can reduce the yield of the penicillin V. The
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penicillin degradation pathway modeled in this study is sketched in figure 4.2. It is comprised
of the main penicillin formation pathway (red) and the side-product formations (gray). Most
side-products were detected and quantified in chemostat and fed-batch of the BCB1 strain.
In addition to the degradation pathways which were already described in chapter 1.3, further
degradation of PIO can occur. It is degraded to penaldic acid (PeA) and penicilllamine
(PeNH2). PeA can be further degraded to penilloaldehyde (PeAl).
It was already described that degradation of penicillin V to HOPenV can occur. Additionally,
POA is known to be degraded to p-hydroxy-phenoxyacetate (HOPOA), which can serve as
a substrate for penicillin production to produce HOPenV [55].

4.1.2 Kinetic Model

An unified kinetic model was constructed for both, chemostat and fed-batch cultivations.
In total five experiments, three chemostat and two fed-batch cultivations were performed,
whereby the fed-batch processes were conducted in the sensor-bioreactor.
The reaction pathway of penicillin was based on the work of Pissara et al. [188]. In contrast
to his work, intracellular concentration data were not available for the process under study
and, thus, modeling was conducted purely based on extracellular measured concentrations.
The underlying model of Pissara et al. was used as a reference and extended based on recent
publications on side-product formation in P. chrysogenum.
All parameters, their limits and units used for parameter estimations are given in the ap-
pendix B.3.

Growth and Penicillin Formation

Growth of P. chrysogenum was modeled with standard Monod growth kinetics with the
growth rate μ, the maximal growth rate μmax, glucose concentration CGlc and an affinity
constant KS,Glc [178]:

μ = μmax · CGlc

(CGlc + KS,Glc)
(4.1)

The substrate uptake rate can be calculated based on the amount of substrate used for
growth, penicillin production and maintenance. The maintenance coefficient ms describes the
amount of substrate used for processes not directly linked to biomass or product formation.
To give some examples: it describes the amount of substrate/energy used for osmoregulation,
turnover of macromolecules and cellular organization [187, 201]. To describe the substrate
uptake rate the specific growth rate μ, penicillin production, and side-product formation
rates (rP enV , rHOP enV,2, rIP N , rOP C) are taken into account. Moreover, biomass Y

′
XS and

product yield Y
′

P S, and maintenance coefficient ms are incorporated[178]:

qGlc = μ

Y
′

XS

+ (qP enV + qHOP enV,2 + qIP N + qOP C)
Y

′
P S

+ ms (4.2)

Here, only one yield coefficient was used for all formed side products, because determining
separate yield coefficients was not possible based on the provided data-sets.
To prevent modeling of intracellular pools, product formation was represented by formation
of the product “Base” (the penicillin nucleus, see figure 4.3). From this, the formation of
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figure 4.2: Penicillin degradation pathways involved in fed-batch and chemostat cultivations. In
comparison to figure 1.5 side-product formation was extended by the degradation of
PIA and formation of HOPOA and HOPenV.
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figure 4.3: Modeling of penicillin V, OPC, HOPenV and IPN formation. From the precurso glu-
cose, a base

penicillin V, HOPenV, 6APA and OPC were modeled. In the conducted simulations signifi-
cant product inhibition by glucose was not found to be important and was removed from the
model. This was also described by Tiller et al. [237]:

qBase = CBM · CGlc

(CGlc + KS,Base)
(4.3)

From this product formation rate, the separate substances are formed: penicillin V, OPC,
HOPenV and IPN. The formation of penicillin V is assumed to be dependent on the extra-
cellular POA concentration [102]:

qP enV = kP enV,max · qBase · CP OA

(CP OA + KS,P OA) (4.4)

Side-Product Formation

A multitude of side-products can be accumulated in cultivations of P. chrysogenum. They
are generated by enzymatic and non-enzymatic catalyzed reactions. The reactions and their
kinetics are stated below.
The cyclic lactam OPC is formed from AAA by cyclization. It was indicated by Pissara et al.
[188] that the formation is dependent on the isopenicillin N amidohydrolase activity. Addi-
tionally, it was mentioned that the reaction is not spontaneous, because formation rates were
high. The current status in literature suggests a formation path either from aminoadipate or
as a by-product of 6APA formation (for a discussion see Henriksen et al.)[101]. Formation of
OPC is modeled as fraction of the substrate flux into the products:

qOP C=kOP C
· qBase (4.5)

Another side-product IPN is one product of ACV besides penicillin V and obeys first order
kinetics with respect to oxygen [14]. Throughout the performed cultivations, dissolved oxygen
concentration was kept constant high. Thus, the kinetic is simplified to:

qIP N = kIP N · qBase · CO2 ≈ k‘IP N · qBase (4.6)
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The penicillin nucleus 6APA is formed by action of AT by releasing AAA. This reaction
was simplified compared to Pissara et al. (who assumed Michaelis Menten kinetics) and
approximated by first order kinetics:

qIP N→6AP A = kIP N→6AP A · CBM · CIP N

Furthermore, 6APA can also be formed from penicillin V by penicillin amidase [188]:

qP enV →6AP A = kP enV →6AP A,max · CBM · CP enV

CP enV + KM,6AP A

(4.7)

The side-product 8HPA reacts spontaneously to 6APA: The reaction is first order with respect
to the concentration of carbon dioxide and 6APA concentration [99]. Besides, POA is released
by this reaction. As the concentration of carbon dioxide is constant throughout cultivations,
the equation is simplified to:

q8HP A = k8HP A · CCO2 · C6AP A ≈ k
′
8HP A · C6AP A (4.8)

Degradation of penicillin to PIO is spontaneous and depends on the phosphate concentrations
[43]. Phosphate was added at the beginning of the cultivation, the equation was simplified:

qP IO = kP IO · CP O4 · CP enV ≈ k
′
P IO · CP enV (4.9)

PIO is further degraded to PIA by decarboxylation [42]:

qP IA = kP IA · CP IO (4.10)

Note that the last three equations do not contain dependency on the biomass (CBM), because
they are not catalyzed by the action of any enzyme (biomass component). It is a speciality of
the penicillin pathway that a number of sideproducts are formed by nonenzymatic catalyzed
reactions.
Furthermore, according to Desphande et al. PIA can be degraded to PeA and PeNH2 in
an acidic environment. PeA can be further degraded to PeAl [55]. Of these three side-
products (PeNH2, PeA and PIA), only PeNH2 was measurable but it was not detected.
Additionally, sinks for PIA and PIO were included to model not-accounted side-products:
qP IA,sink = ksink ·CP IA and qP IO,sink = ksink ·CP IO, see Deshpande et al. for further description
[55].

Products Formed by Hydroxylation

The hydroxylation products are formed by enzymatic activity. The activity of a monooxy-
genase was proposed by Emri et al. [71]. For the side-chain precursor phenoxyacetic acid,
which was used in this work, elucidation of the complete degradation pathways is missing.
Therefore, the degradation was assumed to be driven by enzymatic reaction steps. Thus, the
following Michaelis Menten kinetics is assumed:

qHOP OA = kHOP OA,max · CBM · CP OA

CP OA + KM,HOP OA

(4.11)

Further degradation of POA and usage as carbon source was not incorporated into the model,
because no evidence was found for this hypothesis in the data-sets at hand.
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The formation of HOPenV can occur either by hydroxylation or by incorporation of hy-
droxylated phenoxyacetate into penicillin. Emri et al. and Chang et al. demonstrated that
experimentally [70, 35]. The formation of HOPOA was modeled by

qHOP enV,1 = kHOP enV,1,max · CBM · CP enV

CP enV + KM,HOP OA

(4.12)

qHOP enV,2 = kHOP enV,2,max · qBase · CHOP OA (4.13)

In the model it is assumed that penicillin V possesses the same affinity constant as POA.
The resulting HOPenV is potentially subject of degradation via PIO to the other compounds
(PIA, PeAl, . . . ). An efflux from HOPenV was used to model this sink:

qHOP enV,sink = kHOP enV,sink,max · CHOP enV

(CHOP enV + KM,sink) (4.14)

Mass Balances

To model the whole bio-process, mass balances are required for each compound. All reactions
stated above were calculated based on concentrations in gram per kilogram of reactor broth.
Thus conversion from mass to molar concentrations need to be applied for mass balances.
This is done by normalizing the reactions by the molar masses M of the separate compounds:

dCBM

dt
= rBM = μCBM (4.15)

dCGlc

dt
= rS = −qGlc (4.16)

dCP enV

dt
= rP enV = qP enV − qHOP enV,1 · MP enV

MHOP enV

− qP enV →6AP A · MP enV

M6AP A

−qP IO · MP enV

MP IO

(4.17)

dCOP C

dt
= rOP C = qOP C (4.18)

dC6AP A

dt
= r6AP A = qIP N→6AP A + qP enV →6AP A − q8HP A · M6AP A

M8HP A

(4.19)

dC8HP A

dt
= r8HP A = q8HP A (4.20)

dCP OA

dt
= rP OA = qP enV →6AP A · MP OA

M6AP A

− qP enV · MP OA

MP enV

−qHOP OA · MP OA

MHOP OA

(4.21)

dCHOP OA

dt
= rHOP OA = qHOP OA − qHOP enV,2 · MHOP OA

MHOP enV

(4.22)

dCP IO

dt
= rP IO = qP IO − qP IA · MP IO

MP IA

− qP IO,sink (4.23)
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dCP IA

dt
= rP IA = qP IA − qP enNH2 · MP IA

MP enNH2
(4.24)

dCHOP enV

dt
= rHOP enV = qHOP enV,1 + qHOP enV,2 − qHOP enV,sink (4.25)

dCIP N

dt
= rIP N = qIP N − qIP N→6AP A · MIP N

M6AP A

(4.26)

Carbon dioxide in off-gas was modeled by balancing carbon flux for all substances. Here,
the i separate rates were normalized by a factor νi describing the carbon fraction in the
metabolite of the respective reaction rate qi.

rCO2 =
∑

i

νi,educt · qi,educt −∑
i

νi,product · qi,product (4.27)

These rate expressions can be inserted into bioreactor‘s mass balance equations to calculate
concentration data for each compound.
Materials and methods of the conducted experiments and simulation studies can be found in
the appendix B.1.

4.1.3 Results of Rate Estimation
In this section, the results for (kinetic) model-based rate estimation for chemostat and fed-
batch are shown. Concentration data for both cultivations in chemostat and fed-batch were
available. Two chemostats were conducted with a dilution rate of 0.03 h−1 (chemostat 1 and
2) and one with 0.05 h−1 (chemostat 3). The fed-batch process was executed in duplicate
using the sensor bioreactor concept (fed-batch 1 and 2).
The model described beforehand was constructed in Dymola. Concentration measurements
were introduced and SSmGO toolbox was used for global optimization [65]. The parameters
(rate constants, affinity constants, . . . ) were constrained to biological meaningful limits, see
appendix B.2. The simulated concentration data were fitted to the concentrations measure-
ments of the cultivations. From the best fit model, estimates for reaction rate r were obtained
(see appendix B.3). Here only the specific substrate uptake and product formation rates are
shown and discussed, because they will be used later for the 13C-MFA.

Chemostat

For chemostat experiments a batch phase of 20 h was conducted. Afterward the measurements
were used to fit the constructed kinetic model. Measured concentration of PIA and PIO acid
were added to penicillin V as they could not be described by the model.
The best obtained fit of the model to the experimental data for chemostat 2 at a dilution rate
of 0.03 h−1 can be seen in figure 4.4. The measured cell dry weight was changing between 3.2
and 4.0 g kg−1 during chemostat phase. Phenoxyacetate concentration were at ca. 1.3 g kg−1

throughout the cultivation process. Glucose concentrations were below detection limit. The
measured penicillin V concentrations were ranging from 0.2 to 0.3 g kg−1 and showed fluctu-
ations. The simulated data could not account for these fluctuations in cell dry weight and
penicillin V concentration. Potentially, they were caused by effects of changing from batch
to chemostat process.
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figure 4.4: Results of process simulation for chemostat 2 with a growth rate of 0.03 h−1. The
marker indicate measured concentrations and lines represent simulation results. Feed
was started at 20 h cultivation time.

Concentration measurements of OPC, 6APA, IPN and 8HPA are in good agreement with
the simulated data. For those side-products experimental and simulated data showed a
decrease from high concentrations at the beginning of the chemostat (at 20 hours) to low
concentrations till the end of the process.
The yield coefficient for biomass was calculated to 0.41 gCDW g−1. The specific growth rate
of the strain was 0.031 h−1.
The resulting substrate consumption and product formation rates can be found in table 4.1.
Chemostat 1 and 2 were conducted with a growth rates of 0.03 h−1 and their biomass and
glucose uptake rates were comparable. Penicillin V production was 35 % lower in chemostat 1
compared to chemostat 2. The simulation results indicates for chemostat 1 five times higher
net production of IPN, although it was not measured for this experiment. OPC and 8HPA
were formed as major side-products. In the third chemostat with higher growth rate of
0.05 h−1, the specific penicillin production was strongly reduced. Side-product formation was
similar compared to the chemostat with a growth rate of 0.03 h−1, although higher production
of 8HPA was found.

Fed-Batch

The fed-batch data (see figure 4.5) showed flat curve progression in dry cell weight with 12-
14 g kg−1, and 1.5-2.3 g kg−1 POA. Penicillin production was high and resulted in 4 g kg−1

penicillin V. This is surprising, because low cell dry weight was present for the production
of penicillin. The simulated products showed qualitatively a good fit with the measured
concentrations. The side product PIO and PIA indicate a decrease in formation towards
the end of cultivation. In contrast, the estimated concentration profiles, based on first order
kinetics for these products, were further increasing. Simulated IPN data show an increase
till the end of cultivation, where a sharp drop of concentration was detected experimentally.
Introduction of backward reaction from 6APA to penicillin V by AT showed no improvement.
OPC and HOPOA were fitted with good agreement to the data.
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figure 4.5: Results of process simulation for fed-batch 1 with growth rate of 0.008 h−1. The marker
indicate measured concentrations and the lines represent simulation results.
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table 4.1: Specific substrate uptake/product formation rates for the chemostat process in
[mmol g−1

CDW h−1]. Contribution of HOPenV and HOPOA formation to the POA con-
sumption rate was corrected, because these metabolites were not detected in the cultiva-
tion. IPN production rate of chemostat 1 was neglected for the conduction of 13C-MFA.
n.d. = not detected.

Chemostat 1 Chemostat 2 Chemostat 3

Labeled substrate [%]
1-13C/U-13C/12C

60/20/20 70/30/0 70/30/0

Total Process duration 262 h 270 h 264 h
vGlc 0.389 ±0.015 0.420 ±0.018 0.517 ±0.028
vBM 0.030 ±0.002 0.031 ±0.002 0.045 ±0.003
vP enV 5.362 ±0.061·10-3 8.211 ±0.144·10-3 2.966 ±0.184·10-3

vP OA 5.362 ±0.061·10-3 8.400 ±0.146·10-3 2.966 ±0.184·10-3

vIP N 5.108 ±0.003·10-3(n.d.) 1.178 ±0.000·10-3 1.502 ±0.078·10-3

v6OP C 1.189 ±0.001·10-3 1.148 ±0.000·10-3 1.186 ±0.061·10-3

v6AP A 0.014 ±0.001·10-3 0.090 ±0.002·10-3 0.127 ±0.007·10-3

v8HP A 0.844 ±0.107·10-3 0.846 ±0.009·10-3 1.116 ±0.030·10-3

The estimated specific production and consumption rates are shown in table 4.2. The specific
substrate uptake rates were reduced in fed-batch process compared to the chemostat pro-
cess (0.251-0.263 mmol g−1

CDW h−1 versus 0.389-0.517 mmol g−1
CDW h−1). Biomass formation was

reduced to low specific growth rates (0.007-0.008 h−1), although specific production rates of
penicillin were increased in fed-batch (9.8-10.9·10−3 mmol g−1

CDW h−1) compared to the chemo-
stat processes (3.0-8.2·10−3 mmol g−1

CDW h−1 ).
Besides, side product formation in fed-batch was revealed to be more complex compared
to chemostats. IPN was not formed as major side-product, but OPC and HOPOA. Even
PIA and PIO were detected in significant amounts and were well described by the model.
Whereat PIA showed lowest specific production rate of all side-products.
The biomass yield was significantly reduced compared to chemostat data with 0.17 gCDW g−1.

4.1.4 Discussion
The concentration data in chemostat and fed-batch process were fitted with an unified kinetic
model. Although fluctuations in the concentrations were measured, most data could be rep-
resented by the constructed model. Some simulated side-products (e.g. PIA, PIO, PeNH2,
and IPN) were deviating with respect to the measurements. Potentially, these deviations
are caused by degradation effects in analytics or after sample withdrawal. Specific product
formation and substrate uptake rates were computed. Their standard deviations were calcu-
lated based on the simulated rates and are shown in table 4.1 and 4.2. Bootstrap methods for
error propagation were not accessible because parameter estimation took approximately 45
minutes for the model and experimental uncertainties of the measurements were not known.
It was shown that the side-product formation was increased in fed-batch cultivations com-
pared to chemostat. Importantly, P. chrysogenum strain BCB1 can produce high amounts
of penicillin V in fed-batch processes with a reduced growth rate. The penicillin forma-
tion was reduced at elevated dilution rate in the chemostats; this is an known effect from
literature [242]. The estimated rates for the 13C-MFA were calculated and the standard de-
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table 4.2: Specific substrate uptake and product formation rates for the fed-batch process in
[mmol g−1

CDW h−1].

Fed Batch 1 Fed Batch 2

Labeled substrate [%]
1-13C/U-13C/12C

60/20/20 60/20/20

Total Process duration 94.5 h 94.5 h
vGlc 0.251 ±0.014 0.263 ±0.021
vBM 7.611 ±0.701·10-3 6.738 ±0.824·10-3

vP enV 10.925 ±1.021·10-3 9.823 ±0.793·10-3

vP OA 12.616 ±0.971·10-3 11.950 ± 0.780·10-3

vIP N 0.563 ±0.209·10-3 0.711 ±0.226·10-3

vP IO 0.366 ±0.105·10-3 0.569 ±0.183·10-3

vP IA 0.040 ±0.010·10-3 0.000 ±0.000·10-3

v6OP C 1.526 ±0.067·10-3 1.415 ±0.100·10-3

v6AP A 0.509 ±0.090·10-3 0.121 ±0.0018·10-3

v8HP A 0.225 ±0.125·10-3 0.588 ±0.269·10-3

vHOP enV 0.753 ±0.054·10-3 0.484 ±0.489·10-3

vHOP OA 0.532 ±0.050·10-3 1.034 ±0.562·10-3

viations obtained for the rate measurements in fed-batch process were higher compared to
the chemostats.

Next, the labeling measurements are preprocessed for 13C-MFA.
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figure 4.6: Transient labeling enrichment data and estimation of steady-state value. Only transient
data ( ) have been measured. Steady-state data ( ) were not measured.

4.2 Extrapolation of Measurement Data
In chemostat and fed-bath cultivations samples were drawn throughout cultivations and
analyzed by LC-MS/MS (a mass spectrometric measurement device). By this, labeling mea-
surements are provided for central carbon metabolites of glycolysis, citrate cycle, pentose
phosphate pathway, amino acids, and their precursors. The measurement data show time
resolved labeling enrichment. Additionally, the number of samples and time points were
varying throughout the cultivations (see table B.1).
For stationary 13C-MFA only steady-state labeling measurements are used. In this chapter
the extrapolation from transient to stationary labeling data is explained and the results are
discussed.

4.2.1 Extrapolation
A set of measurements is given by isotopic labeling enrichment data derived from isotopic la-
beling experiments in chemostat and fed-batch. The measurement values were determined by
a mass-spectrometric device at time points distributed evenly in the experimental time frame.
To obtain measurement values at isotopic-steady-state a labeling experiment has to be per-
formed until all the labeling patterns are in steady-state within the cell. For P. chrysogenum
this may take in the order minutes or up to several hours [96, 284]. In figure 4.6 the transient
labeling enrichment of a (hypothetical) mass trace of an MS measurement is shown.
It is assumed, based on previously conducted transient labeling experiments, that enrichment
follows an exponential growth/decay law. This provides the opportunity for model-based
extrapolation. Thus, nonlinear regression is used to extrapolate the data, as the kinetics
of labeling enrichment are described by nonlinear functions. Confidence intervals for the
extrapolated data are calculated to evaluate the error introduced by the extrapolation method
and the measurements‘ error.
To illustrate the effect of sample points on the confidence region of labeling data, three
artificial example data sets were generated. In the examples the turnover of the metabolites
are changed from low to high values. In figure 4.7 confidence regions are given for the fitted
curves, depending on the distribution of the measurements points. In the first case the quasi-
steady-state is not reached (it is defined as > 99 % of the final enrichment value), i.e. only
transient labeling data points are available. The resulting confidence (red dotted line) regions
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are large. Not enough data were provided to extrapolate with the given transient data to
a well defined steady-state labeling measurement. In the other examples further data are
provided in the steady-state region, thus the calculated confidence region provided covers
smaller region and the extrapolated data are statistically well determined.

It was already mentioned that labeling enrichment data show the behavior of exponential
(growth/decay) functions. It originates from the similarity to a dilution/wash-out kinetic.
For each intracellular pool reached by labeling the abundance of labeled species will increase
and the abundance of unlabeled species will decrease. This is explained by simultaneous
growth and uptake of substrate from the environment, which will dilute each of the pools
consecutively.

4.2.2 Regression Model
Next, the regression model is introduced which is used to fit each mass trace of the MS
measurement separately. For simplicity, the process will be explained for MS-measurements
but can be easily extended for MS/MS data-sets. The observed fragment of a metabolite
possesses nC carbon atoms. In the optimal case, nC + 1 mass isotopomers can be measured
per metabolite (l = 0, 1, 2, 3 . . . nC). The first equation (shown below) can be used to fit the
behavior of m + 0 measurements as they are decreasing. The second equation can be used to
fit the enrichment of higher masses (m + l , l > 0) as they are increasing during an labeling
experiment. Besides these assumptions about the system, the parameters θ1 and θ2 in the
equations have to be positive. The model equation is shown in the next equation, where t
denotes the time and y is the mass trace of an MS measurement:

ym+l(t, θ1,l, θ2,l) =
⎧⎨⎩θ1,l + (1 − θ1,l)exp−θ2,l·t + cinit,m+l for l = 0

θ1,l · (1 − exp−θ2,l·t) + cinit,m+l for l = 1, 2, . . . nC

(4.28)

The parameters (θ1 and θ2) are estimated and, in turn, the simulated measurement values
ym+l(t) will provide a good estimate of the measurement data‘s course. The parameter θ1
gives information about the steady-state labeling enrichment and θ2 about the turnover of
the metabolite pool. In contrast to these parameters, the constant cinit,m+l accounts for nat-
ural labeling and is calculated for each mass trace of a metabolite. Calculation of natural
labeling for MS and MS/MS mass traces will be explained in the next chapter 4.3.

The regression model f is build using equation 4.28. The unknown model parameters (θ1 and
θ2) are to be estimated from the values ym+l(t) at n measurement values at specific time points
t1, t2, . . . tn. The errors of the measurements ε(t) are assumed to be identically distributed
normal random variables with zero mean and a finite variance σ2, which is unknown and has
to be estimated from the data. The regression model can be defined, and the general form
is fm+l(t, θ1,l, θ2,l) = ym+l(t, θ1,l, θ2,l) + ε(t).

Residual Sum of Squares

From the definition of the model, the residual sum of squares is defined (RSS). The RSS is
used as a measure for discrepancy between model and data. A smaller residual corresponds
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(a) Low turnover, measurement data far from steady-state
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(b) Low turnover, measurement data close to steady-state
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(c) High turnover, measurement data at steady-state

figure 4.7: Regression model used for estimating steady-state data point. Three examples are
shown with labeling measurement (a) far away, (b) close and (c) at steady-state.
Metabolite pool in (a) and (b) show low turnover and in (c) a high turnover.
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to a better fit, thus the RSS is minimized in order to estimate the parameters θ̂ :

θ̂ = arg min
θ

RSS =
n∑

i=1
(yti

− fm+l(ti, θ1,l, θ2,l))2 subject to θs,lower ≤ θs ≤ θs,upper (s = 1, 2)

(4.29)
The lower and upper limits θs,lower and θs,upper were set to the interval [0, 1]. The best fit
results in optimal parameters θ̂1 and θ̂2 with the RSSmin.

Estimation of Confidence Intervals

Here, the boundaries of a 100 · (1 − α) % confidence interval and region are defined for θ
and y, respectively. F is the F-distribution with a significance level of α. The F-distribution
gives the ratio of χ2 values of two independent χ2-distributed random variables with p and
n − p degrees of freedom. The above given model ym+l was used with p = 2 parameters and
n measurements. Based on the principle of maximizing likelihood a maximal value for the
RSS is defined [197]:

RSSmax(θ̂) = RSSmin(θ̂)
[
1 + p

n − p
F (α; p, n − p)

]
(4.30)

Minimizing/Maximizing the parameters θ within the boundary of RSSmax results in lower
θconf,lower and upper θconf,upper confidence bounds. The intervals of θ1 can be used to calculate
the confidence band on the estimated steady-state confidence intervals (by using θ1); they
can be asymmetric. However, symmetric intervals are required for 13CFLUX2, these are
calculated according to the following protocol for θ1:

s = max(θi − θconf,lower,i, θconf,upper,i − θi) (4.31)

Model fits with bad fit quality were sorted out manually and are excluded from further
analysis.

4.2.3 Results of Extrapolation
Samples are drawn time resolved from the bioreactor, the measurements for the fed-batch
process are visualized in figure 4.8. The estimation of a confidence interval is dependent
on the deviation of the sample points to the regression model. The more the data points
deviate from the regression curve in the optimal fit, the more the confidence interval of the
parameters will increase. This is also indicated in figure 4.8a by time resolved labeling data
derived from fed-batch 2. Pyruvate mass traces are more variable. Thus, also the final
confidence interval is higher for the m+0.0 trace compared to the m+0 trace of malate.
As shown in the example, uncertainties in the measurements are directly propagated to the
steady-state MS measurement values.
Nevertheless, beside using parameter θ̂1 for the estimation of steady-state values of labeling
data, θ̂2 can be interpreted. It describes the speed of the labeling enrichment in the respective
pool. This parameter is defined as the ratio of influx into this pool in relation to the pool-
size at steady-state, this ratio is known as turnover [264, 180]. Using this parameter, direct
estimation of fluxes was not possible because pool size measurements were not available.
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figure 4.8: Examples for extrapolation of pyruvate and malate with confidence region ( ) for
measurement data of 68.2 %. Each mass trace was fitted separately.
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figure 4.9: Turnover estimate for θ̂2 with lower and upper confidence interval (confidence of 68.2 %)
determined for fed-batch 2 experiment. θ2 was taken from fitted curves of m+0 mass
traces. Estimate for θ̂2 ( ) and its confidence interval ( ) computed by nonlinear
regression.

Nevertheless, it is possible to evaluate the spread of the labeling through the reaction network
by comparing the turnover rates (in figure 4.9). For this, sequences of reactions are compared
with respect to their turnover to test consistency of the data, with respect to published
reaction networks.
The spread of the labeling through pools of upper glycolysis and pentose phosphate pathway
was too fast to be observable with the drawn samples. After dihydroxyacetonephosphate
(DHAP), 2- and 3-phosphoglycerate (2/3PG) and finally pyruvate (PYR) were labeled. Ser-
ine is produced from its precursor 3-phosphoglycerate. Although the turnover rate of in-
termediate 3-phosphoserine for serine synthesis is weakly determined, we can see that the
estimates for turnover show the same sequence of reactions. From pyruvate originates the
pathway via dihydroxyisovalerate (DHIV) and ketoisovalerate (KIV) to valine, which shows
perfect fit of the reaction sequence proposed. From ketoisovalerate, one step before valine
synthesis, isoleucine is formed via ketoisoleucine (KILE) and leucine is formed from pyruvate
in the mitochondria. Interestingly, aspartate is labeled faster compared to pyruvate. This
can be explained by the compartmentalization. The cytosolic pool of pyruvate is fueling
anaplerotic reactions, probably, via pyruvate carboxylase resulting in the formation of ox-
aloacetate. These pools are faster labeled in the cytosol. However, aspartate can be formed
in the cytosol and in the mitochondria. As proposed by Kleijn, it is predominantly formed
in the cytosol [121]. The data obtained underpin this finding as the pools assumed to be
predominantly in the mitochondria are considerably later labeled, compared to the aspartate
pool.
The labeling enrichment in glutamate and glutamine is faster than in their respective pre-
cursor α-ketoglutarate. This finding is at first contradictory. An explanation can be differing
pool-sizes in the separate compartments. Besides, α-ketoglutarate can also be formed in
the cytosol by NADPH dependent cytosolic isocitrate dehydrogenase and could, thus, be
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faster labeled compared to mitochondrial α-ketoglutarate. The amino acids glutamate and
glutamine are expected to be formed in the cytosol, according to Kleijn [121].
The main flow direction in the cell of the TCA cycle intermediates can also be seen in the
data from α-ketoglutarate to the pool malate, although cis-aconitate (ACO) shows lower
turnover rate.
To sum up, the turnover of metabolite pools estimated by nonlinear statistics correspond in
general well with literature data. However, deviating examples were also found (i.e. ACO).

4.2.4 Nonlinear Regression Toolbox: Work-flow of Nonlinear Re-
gression

All extrapolated results were computed by nonlinear statistics. Here, a short introduction
to work-flows for nonlinear regression problems is given. There are basically two methods to
perform a nonlinear regression: the first is founded on least squares method and the second
is a bootstrap method.
The method using least squares can be applied in two ways. First, checks for non-linearity are
performed according to local non-linearity measures of Bates and Watts [145, 146, 19, 197].
Thus the combination of model/data-set is tested for parameter effects non-linearity and
intrinsic non-linearity. If the model behavior is close to linear (I), most of the quantities
(covariance matrix, confidence intervals, etc.) can be derived directly by using linearized
statistics [197]. These derivatives can be calculated based on finite difference or complex-
step approximation [148].
If the model behavior is nonlinear (II), the confidence regions have to be derived by a
iterative process using solvers for nonlinear problems. Confidence regions are estimated for
the regression model according to Dolan et al. [58]. The bootstrap method can also provide
the user with approximations for confidence regions of the parameters. Additionally it can be
used to verify the estimates produced by least square method, because tests for non-linearity
of the model are based on local measures [197, 216, 162, 5, 112].
The Nonlinear Regression Toolbox (NoReTo) was developed to extrapolate measurement
data and implemented in MATLAB 2013a. It can be used to compare linearized and non-
linear statistics. Both described work-flows (bootstrap and least square) were implemented
including all techniques described above.
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4.3 Correction for Natural Abundance
The measurement of isotopomers by mass spectrometry is of crucial importance to the out-
come of a 13C-MFA study. In 13C-MFA the measured labeling state of the metabolite‘s
carbon atoms are used. However, several of the elements found in metabolites contain a
considerable fraction of natural isotopic labeling, which can alter the labeling state of the
metabolite [22]. For 13C-MFA the measurement need to be corrected for this natural labeling
to obtain exclusively the carbon atom‘s labeling state.
Tools and algorithms for the correction of tandem MS measurements are still lacking, while
several tools can be found for the correction of simple MS measurements [255]. Besides,
the description of correction procedures are spread over wide parts of literature. Here, the
complete correction procedure is described in formal notation.
In this section the method for correction is described and applied to the extrapolated MS/MS
measurements.

4.3.1 Introduction
Frequently found elements in metabolites possessing naturally occurring isotopes (e.g. 2H,
18O, 13C...) are given in table 4.3. High abundances of natural occurring isotopes are found
in carbon and sulfur. Some sample preparation procedures for measurement techniques (e.g.
GC-MS or GC-MS/MS) introduce additional natural labeling in the measured analyte by
derivatization. Here large side-groups are attached by sylilation, e.g. reaction with N-(tert-
butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) or tert-butyldimethylsylil (tB-
DMS). These side groups increase volatility of the substances in GC separation [49, 189]. In
particular introduced silicon (besides introduced carbon) contains high amounts of heavy iso-
topes (92.223 % 28Si, 4.685 % 29Si and 3.092 % 29Si) and will thus alter the labeling pattern
significantly [22].

table 4.3: Isotopic compositions of elements
found in biologically relevant sub-
stances [22].

Element Mass number Mole fraction [%]
H 1 99.9885

2 0.0115
C 12 98.93

13 1.07
N 14 99.757

15 0.364
O 16 99.757

17 0.038
18 0.205

P 31 100.0
S 32 94.99

33 0.75
34 4.25
36 0.01

The measurements of metabolites contain-
ing non-carbon atoms are biased as the nat-
urally occurring isotopes of these atoms will
alter the mass of the measured metabolite.
Thus, the natural abundance of the non-
carbon atoms need to be corrected in order
to receive the measurements representing ex-
clusively the skeletal carbon atom‘s labeling
state. The corrected measurements for the
carbon atom skeleton can be used to per-
form 13C-MFA. The described method can
be applied for correction of MS/MS measure-
ments, correction of MS measurement was
described by Wahl et al. and several tools
are available [255, 160, 279]. In this chapter,
first, a work-flow is given for the correction
of MS/MS data. The complete work-flow is
performed, examples are given, and an algo-
rithm is developed to correct MS/MS data.

The work-flow is, finally, applied to the extrapolated MS/MS measurements of chemostat
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and fed-batch.

4.3.2 Principle of MS/MS Measurement
In the mass spectrometric device, the analyte molecule is first ionized. The emerging posi-
tively/negatively charged ions are then separated by their mass to charge ratio (m/z). The
first quadrupole (Q1) selects for a specific ion by selecting for a m/z ratio, like shown in
figure 4.10a. This ion, called mother ion, does contain a fraction or all atoms of the original
molecule. In a collision cell (Q2) fragment ions of the mother ion are produced, which are
separated by a second quadrupole (Q3) to yield one specific daughter ion, which is detected.
Upon detection the masses of mother and daughter ion can be different, depending on which
m/z ratio was selected for in the two quadrupoles [153].

CH2

NH2 CH

OH

O

analyte
in sample

ionization,Q1

CH2

NH3
⊕ C

OH

O

mother ion, Q2

Q3

O−

HC

O

daughter ion

(a) Fragmentation in MS/MS

B′

B

A′

A

H

C

H

NH3
⊕ C

OH

O

(b) Notation of atoms

figure 4.10: (a) Hypothetical mother and daughter ion of L-glycine derived by MS/MS technique.
Atoms contained in the final fragment are marked in red. (b) Notation of A, A′, B,
B′ for glycine mother ion, adapted from Miebach et al. [158] .

An example for the measurements in an MS/MS (tandem MS) device is given in figure 4.11.
A metabolite X with three carbon atoms is analyzed. The first quadrupole Q1 selects for the
mass of the mother ion. Depending on the selected mass for the mother ion (m+0, m+1, . . . ),
different isotopomers are chosen. For example: if it is selected for the m+1 of the mother
ion, three possible labeling states of the metabolite are chosen (X#100+X#010+X#001).
After fragmentation in Q2 it is selected for the mass of the daughter ion (which contains here
one carbon atom). Depending on the selected mass in Q3, a subset of the isotopomers of the
metabolite are measured. For example m+1 of the mother ion is further separated into the
fractions m+1.0 and m+1.1, where the second number indicates the labeling in the daughter
ion. The fractions m+1.0 and m+1.1 correspond to the labeling pattern X#100+X#010
and X#001, respectively.

4.3.3 Work-flow of Correction
Before starting with the correction it needs to be clarified for which atoms a correction has to
be done. The analyte, shown in figure 4.10b, is composed of the detected part of the mother
ion (red) and the non-detected part (blue). Each contains skeletal atoms (light blue and
red) and non-skeletal atoms (dark blue and red). The term skeletal atoms is referring to the
atoms of interest, in case of this work: the carbon backbone of the metabolite. Henceforth,
these atoms are only called skeletal atoms. Note, that eventually introduced side groups
(sylilation) for separation in GC or LC are counted as non-skeletal atoms.
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m+1.0

m+1.1
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m+2.1
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Q1 Q3Q2 Detection

Not 
Detected

figure 4.11: Tandem MS measurement principle for a metabolite X containing three carbon atoms.
The mother ion is selected in the first quadrupole (Q1). In the collision cell (Q2) the
third carbon atom is split off and in the second quadrupole (Q3) it selected for it.

The work-flow described is needed for MS/MS measurement in which, upon fragmentation,
a different subset of skeletal atoms is found in mother and daughter ion.
The work-flow described below is not needed, if (I) no skeletal atoms are found within the
daughter ion (this is usually the case for measurements of sugar-phosphates in this thesis).
As the labeling of the daughter is only influenced by natural labeling, the underlying mea-
surement simplifies to an MS measurement correction. The measurement values need to be
corrected exclusively for all non skeletal atoms in the mother ion. Thus, the mother ions
chemical formula needs to be known. (II) If the daughter ion contains all skeletal atoms,
the correction is done exclusively for the daughter ion. Thus, only the chemical formula of
the daughter ion is needed for correction. In both cases a standard MS correction can be
performed.
The steps of the work-flow are shown in figure 4.12. To remove the natural labeling of an
MS/MS measurement with different subset of skeletal atoms in mother and daughter ion, the
elemental composition of mother and daughter ions needs to be known. So-called mass shift
matrices are built to describe the natural labeling pattern in the daughter ion and the non-
detected part of the mother ion. The correction is calculated in a constrained optimization
problem, to prevent negative mass traces after correction (caused by stochastic errors in the
measurements): initially, a labeling pattern of the metabolites skeletal atoms is guessed. The
natural labeling of all non skeletal atoms is added to the estimated skeletal labeling pattern to
obtain the labeling state of the metabolite. The obtained labeling pattern is compared to the
measured labeling pattern and the difference is minimized using an optimization procedure.
Finally, a statistical reconciliation is performed to obtain error transduction from the mass
traces to the obtained skeletal atoms labeling measurements, which are the labeling state of
carbon atoms. This labeling state of the carbon atoms is of interest for the study.
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4.3.4 How to correct natural abundance ?

Define mother/daughter
ions‘ atoms

Calculate mass shift
vectors for nonde-

tected atoms of mother
CB′/daughter ion CA′

Calculate mass
shift matrix Ccorr

Calculate labeling pattern
incl. natural labeling

Minimize difference be-
tween measured and

calculated labeling pattern

Statistical reconcilation

figure 4.12: Work-flow for natural la-
beling correction.

The correction of the natural labeling can be accom-
plished by building the mass shift matrix, called Ccorr.
This matrix contains probabilities for the detected
and non-detected part of the mother ion at each sin-
gle entry. To be more precise, the entries corresponds
to probability for a specific labeling pattern of the
mother and daughter ion non skeletal atoms to ap-
pear. This matrix is used to correct the labeling state
of the skeletal carbon atoms yC to obtain the full mea-
surable labeling state yM of the metabolite.

yM = Ccorr · yC (4.32)

It is obvious that this is a linear problem. In the fol-
lowing section, the first formal notation is established
to caclulate these mass shift matrices. For this, sev-
eral literature sources are used and adapted to calcu-
late correction for tandem MS-measurements. As no
publicly available tool is known to the author, a pseu-
docode is presented for the generation of the mass
shift matrix.

4.3.5 Formal Notation
To indicate the difference in the masses of the ions, a formal notation is established. The
labeling of the mother and daughter ion is indicated by two numbers, separated by a colon
ab : a, the first variable ab indicates the number of labeled skeletal atoms in the mother ion,
the second variable a the number of labeled atoms in the daughter ion ab = 0, 1, 2...s and
the number of daughter ion skeletal atoms s′ with s ≤ s′, with s, s′εN� as the daughter ion is
smaller or equal in size compared to the mother ion. We can define now a labeling yab:a

C . All
labeling states are not allowed for a as the daughter ion can contain a subset of the mother
ions‘ skeletal atoms. Thus

a = max(0, ab − (s − s′)), max(0, ab − (s − s′)) + 1, . . . min(ab, s′). (4.33)

y2:1
C indicates that the mother ion is labeled twice at any skeletal atom and the one indicates

that the daughter ion is labeled only at one position (because not all skeletal carbon atom
of the mother ion are contained in the daughter ion).
A measurement vector

yC = [y0:0
C , y1:0

C , y1:1
C , y2:0

C , . . . , ys:s′
C ]ᵀ (4.34)

of the skeleton atoms (in our case skeletal carbon atoms) with length Cy is defined. It is
composed of the labeling pattern for a given pair of mother and daughter ion and describes
only the skeletal atoms of interest. Introduced carbon atoms by modifications (e.g. sylilation
in GC-MS/MS) are not accounted for here.
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Example 1 For the above given example of L-glycine (see figure 4.10), the vector of Cy can
be build using equation 4.33:

yC = [y0:0
C , y1:0

C , y1:1
C , y2:1

C ]ᵀ

Thus, only four different labeling patterns are possible for the MS/MS measurement of skeletal
carbon atoms of glycine, because only two labeling states (12C or 13C) exist for carbon.

Nevertheless, in the measured metabolites, more labeling patterns than the pure skeletal
carbon atoms of interest are possible; there are also the non skeletal atoms contributing to
the labeling state (like H, O, N, P, . . . ). Thus, there is a second “true” mass vector for the
measurement incorporating all possible labeling states

yM = [y0:0
M , y1:0

M , y1:1
M , y2:0

M , . . . yt:t′
M ]ᵀ (4.35)

and yaa′bb′:aa′
M with aa′bb′ = 0, 1, 2...t and aa′ = 0, 1, 2, ...t′ and as more than one labeling

state can be found t ≥ s , t′ ≥ s′ with t, t′εN�. The vector has the length My. The
maximal possible labeling states of skeletal carbon atoms of interest (s, s′) and of the full
set of all atoms in the fragments (t, t′) can be calculated by setting up an vector d of the
maximal number of isotopes NI,isotope known for element I ε {C, N, H, O, P, . . . } present in
the metabolite

d = [NC,isotope − 1, NN,isotope − 1, NH,isotope − 1, NO,isotope − 1, ...]ᵀ. (4.36)

The values for NI,isotope can be deduced from table 4.3 or taken from Berglund and Wieser
[22], e.g. for oxygen NO,isotope = 3 and for carbon NC,isotope = 2. Multiplication of d with the
a vector containing the number of atoms Natoms of each element in the observed fragment
gives the maximal labeling state of the ion. Thus the detected fragment (atoms shown in red
in figure 4.10) is composed of

A = [NC,atoms, NN,atoms, NH,atoms, NO,atoms, ...] (4.37)

skeletal atoms and

A′ = [N′
C,atoms, N′

N,atoms, N′
H,atoms, N′

O,atoms, ...] (4.38)

non skeletal atoms. The same holds true for the non-detected fragment (atoms shown in
blue), which is composed of B skeleton atoms and B′ non skeleton atoms. Finally, the
absolute size of the measurement vectors can be calculated:

t = A · d + B · d + A′ · d + B′ · d, t′ = A · d + A′ · d, s = A · d + B · d, s′ = A · d.

yC and yM are molar fractions of sums of isotopomers, it holds ‖yM‖1 = 1 and ‖yC‖1 = 1.

Example 2 Carrying on with the example of L-glycine (see figure 4.10), the full labeling
state can be calculated.

yM =
[

y0:0
M y1:0

M y1:1
M y2:0

M y2:1
M y2:2

M y3:0
M y3:1

M y3:2
M y3:3

M y4:0
M y4:1

M y4:2
M . . . y13:6

M

]ᵀ
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For the chosen vector of d, we can calculate for I ε {C, N, H, O}.

A =
[

1 0 0 0
]

A′ =
[

0 0 1 2
]

B =
[

1 0 0 0
]

B′ =
[

0 1 5 0
]

The vector d can be easily generated:

d =
[

1 1 1 2
]ᵀ

So for the above example, t = 13 and t′ = 6 for the overall fragment. For the carbon backbone,
we obtain s = 2 and s′ = 1.

Usually, just a fraction of the overall vector is measured, these measurements are denoted
z with length Cy. A selection matrix Sy (with dimension My × Cy) is defined choosing the
measured entries z from yM . Now, the simulated measurement

ỹsim = Sy · yM (4.39)
can be calculated. After correction, the obtained measurement vector is rescaled, so that
‖ỹsim(yC)‖1 = 1 holds.
Most importantly, at this point the main fraction of the potentially possible measurements
are removed, reducing from My potentially possible measurements corresponding to the full
labeling state of the metabolite to Cy measurements. Thereby, only the mass traces corre-
sponding to the skeletal atoms labeling state are measured.

Example 3 For the example of glycine, the full labeling state yM of this MS/MS measure-
ment with My = 57 is obtained. However, only the fragments corresponding to labeled carbon
atoms are measured, in this case: m+0.0, m+1.0, m+1.1, and m+2.1. Thus z has the length
Cy = 4. The other 57-4 unmeasured mass traces can be calculated, if the natural labeling is
known (which is assumed throughout this chapter).

For the detected and non detected non skeletal atoms emerging from the mother ion, we
need to generate the mass shift matrices CA′ and CB′ . They possess only one column, each
entry is referencing to a specific weight. The specific meant weight is henceforth indicated
by a superscript (e.g. weight 0 “C0

A′” corresponds to the first entry, weight 1 “C1
A′” to the

second entry and so on). Using these vectors, the beforehand mentioned general matrix for
the correction is built, called Ccorr. Each entry in this matrix corresponds to a product of
CA′ and CB′ .
First it is assumed that the labeling vector yC of the skeletal atoms is known with length Cy.
The complete unknown vector yM of all possible labeling states is then calculated as:

yM = Ccorr · yC (4.40)
As already mentioned, only a subset of the vector yM is measured, which is denoted z. In
the next section the formation of the correction matrix Ccorr is described.
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4.3.6 Generation of Mass Shift Matrices

In the analyte Nelement elements I (i.e. N, H, O, P, . . . ) are found to correct for. For each
element ξ = 1, 2, . . . , Nelement a correction matrix CIξ is needed. After multiplication they
yield the correction vector CA′ and CB′ for the detected and non detected non skeletal atoms.
Below the calculation of CA′ is shown:

CA′ =
Nelement∏

ξ=1
CIξ (4.41)

This calculation can be performed likewise for vector CB′ . Each of these correction matrices
CIξ is built separately. The procedure is shown in Example 4.

Example 4 For glycine in figure 4.10 the mass shift matrix is to be generated, as described
by van Winden et al. [246]. For this purpose both vectors CA′ and CB′ are to be build,
starting with CA′ for the measured fragment. The fragment is composed of two oxygen and
one hydrogen.
The matrices CIξ are built in a consecutive manner, the order of building them needs to be
fixed before starting. First, the correction matrix CH is built, where each entry corresponds
to the natural abundance of an isotopologue indicated by its chemical formula. CH possesses
one column as it is the first matrix build and consist of two rows as one hydrogen in the non
skeletal atoms (NH,atoms,A′ = 1) results in two possible labeling states of hydrogen: nH,rows,A′ =
(NH,isotope − 1) · NH,atoms,A′ + 1.

CH =
[

1H1
2H1

]
The number of rows needed for matrix CH is determining the column number of the correction
matrix for CO. The number of potential possible labeling states of the respective atom species,
here oxygen, and the number of rows of the last matrix build (here: CH) determine the number
of rows nO,rows,A′ = (NO,isotope − 1) · NO,atoms,A′ + nH,rows,A′. Two oxygen atoms can result in
NO,isotope = 3 different labeling patterns as 16O, 17O and 18O are naturally occurring. This
results in 5 different labeling states:

CO =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

16O2 0
16O1 · 17O1

16O2
18O1 · 16O1 + 17O2

16O1 · 17O1
18O1 · 17O1

18O1 · 16O1 + 17O2
18O2

18O1 · 17O1
0 18O2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The first column of the matrix is describing a labeling state, where other atoms of the measured
fragment (here: hydrogen) are unlabeled. The first row is describing the unlabeled state of
the measured fragment (m+0): all oxygen is unlabeled 16O2. The second row is describing
the m+1 labeling of the measured fragment by the labeling state of oxygen. The occurrence of
16O1

17O1 results in m+1 labeling here. In the second column, the other atom labeling state
in the measured fragment is increased to m+1 (here: hydrogen is 2H1) and so forth.
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The vector CA′ = CN · CH can be built.

CA′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1H1 · 16O2
1H1 · 16O1 · 17O1 + 2H1 · 16O2

1H1 · (18O1 · 16O1 + 17O2) + 2H1 · 16O1 · 17O1
1H1 · 18O1 · 17O1 + 2H1 · (18O1 · 16O1 + 17O2)

1H1 · 18O2 + 2H1 · 18O1 · 17O1
2H1 · 18O2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note, the first correction matrix CH and each following correction matrices‘ columns deter-
mine the rows of the subsequent ones. A similar matrix needs to be built also for the non de-
tected non skeletal atoms of the mother ion, whereas here five hydrogen atoms (NH,isotope = 2),
one carbon and one nitrogen (NN,isotope = 2) are present. First, again, the hydrogen correc-
tion is built nH,rows,B′ = (NH,isotope − 1) · NH,atoms,B′ + 1:

CH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1H5
1H4 · 2H1
1H3 · 2H2
1H2 · 2H3
1H1 · 2H4

2H5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Next the correction matrix for nitrogen is built nN,rows,B′ = (NN,isotope − 1) · NN,atoms,B′ +
nH,rows,B′:

CN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14N1 0 0 0 0 0
15N1

14N1 0 0 0 0
0 15N1

14N1 0 0 0
0 0 15N1

14N1 0 0
0 0 0 15N1

14N1 0
0 0 0 0 15N1

14N1
0 0 0 0 0 15N1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The correction matrix can be calculated:

CB′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14N1 · 1H5
15N1 · 1H5 + 14N1 · 1H4 · 2H1

15N1 · 1H4 · 2H1 + 14N1 · 1H3 · 2H2
15N1 · 1H3 · 2H2 + 14N1 · 1H2 · 2H3
15N1 · 1H2 · 2H3 + 14N1 · 1H1 · 2H4

15N1 · 1H1 · 2H4 + 14N1 · 2H5
15N1 · 2H5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The entries given in the correction matrices (in example 4) are abundances of the sepa-
rate atom species‘ isotopes. Each element Iξ has NIξ,isotope naturally occurring isotopes
Iξ

1 , ..., Iξ
Nisotope

with the natural abundance p(I) given in table 4.3. For hydrogen IH
1 = 1H

and IH
2 =2H are found (NH,isotope = 2). The frequency f(Iξ

1), ..., f(Iξ
Nisotope

) is the number of
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occurrences of the respective isotope in the isotopologue observed. Thus, the abundance in
the correction matrices CIξ can be calculated (taken from [246]):

Abund(Iξ) =
⎛⎝⎛⎝NI,isotope∑

i=1
f(Iξ

i )
⎞⎠!
⎞⎠ ·

NI,isotope∏
i=1

p(Iξ
i )f(Iξ

i )

f(Iξ
i )!

(4.42)

Using the correction matrices for the detected and non-detected non skeletal atoms, the final
correction matrix Ccorr is calculable. For example, the abundance of 17O1 · 18O1 in the mass
shift vector can be calculated. The frequency is given by f(IO

1 ) = 0, f(IO
2 ) = 1, f(IO

3 ) = 1
and natural abundance p(IO

1 ) =0.99757, p(IO
2 ) =0.00038, p(IO

3 ) =0.00205 thus the abundance
of IO is calculated to be 7.97·10-7. It has to be noted, that for sums of isotopomer abundances
each single term needs to be calculated separately with equation 4.42 and afterwards summed.
The matrix Ccorr contains in the columns the labeling states of the skeleton whose masses are
shifted to higher masses by the natural labeling. Mass shifts leading to a specific aa′bb′ : aa′

value are found in the rows (see example 5). To build this matrix each possible labeling
state of the mother and daughter ion‘s non skeletal atoms Ca′

A′ and Cb′
B′ are calculated, the

superscripts indicate the labeling state of the respective non skeletal atoms and referring to
an entry in the vector. The first element in the vector is referring to unlabeled non skeletal
atoms (m+0), the second m+1 labeled and so on. Their product is equal to the overall
labeling state of daughter and mother ion‘s non skeletal atoms.
These entries are subject to the following constraints:

• The labeling state (aa′bb′) of the mother ion has to be larger or equal to the number
of labeling states in the detected fragment (aa′).

• The sum of all skeletal atoms labeling state (ab) has to be larger than the labeling state
of detected skeletal atoms.

• And finally, the non skeletal atoms labeling states (aa′ − a) in the daughter ion needs
to be smaller than maximal labeling state in the detected fragment (A′d) and the same
holds for the not-detected ion fragment.

Going through each potential labeling state of the skeletal atoms (iterating through a and
ab) and all atoms in mother ion (iterating through aa′bb′ and aa′), the separate constraints
can be checked (adapted and extended by constraints from [158]):

Caa′bb′:aa′
corr =

⎧⎪⎪⎨⎪⎪⎩
Ca′

A′ · Cb′
B′ , aa′bb′ ≥ aa′ ∧ ab ≥ a ∧ A′d ≥ (aa′ − a)∧

B′d ≥ (aa′bb′ − aa′ − (ab − a))
0, otherwise

(4.43)

If these constrains are fulfilled, the product of the two matrices Ca′
A′ and Cb′

B′ entries are
written to the specified position in matrix Ccorr.

Example 5 The correction procedure from the assumed to be known skeletal labeling vector
to the overall vector is conducted.
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The maximal labeling for glycine is m+13 for the mother ion and m+6 for the daughter
ion. The maximal labeling state of the detected fragment non-skeletal atoms is 5 and the not
detected non skeletal atoms‘ is 6. The matrix can be built for glycine:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0:0
M

y1:0
M

y1:1
M

y2:0
M

y2:1
M

y2:2
M

y3:0
M

y3:1
M

y3:2
M

y3:3
M

y4:0
M

y4:1
M

y4:2
M

y4:3
M

y4:4
M

y5:0
M
...

y13:6
M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C0
A′ · C0

B′

C0
A′ · C1

B′ C0
A′ · C0

B′

C1
A′ · C0

B′ C0
A′ · C0

B′

C0
A′ · C2

B′ C0
A′ · C1

B′

C1
A′ · C1

B′ C1
A′ · C0

B′ C0
A′ · C1

B′ C0
A′ · C0

B′

C2
A′ · C0

B′ C1
A′ · C0

B′

C0
A′ · C3

B′ C0
A′ · C2

B′

C1
A′ · C2

B′ C1
A′ · C1

B′ C0
A′ · C2

B′ C0
A′ · C1

B′

C2
A′ · C1

B′ C2
A′ · C0

B′ C1
A′ · C1

B′ C1
A′ · C0

B′

C3
A′ · C0

B′ C2
A′ · C0

B′

C0
A′ · C4

B′ C0
A′ · C3

B′

C1
A′ · C3

B′ C1
A′ · C2

B′ C0
A′ · C3

B′ C0
A′ · C2

B′

C2
A′ · C2

B′ C2
A′ · C1

B′ C1
A′ · C2

B′ C1
A′ · C1

B′

C3
A′ · C1

B′ C3
A′ · C0

B′ C2
A′ · C1

B′ C2
A′ · C0

B′

C4
A′ · C0

B′ C3
A′ · C0

B′

C0
A′ · C5

B′ C0
A′ · C4

B′
...

...
...

...
C5

A′ · C6
B′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡⎢⎢⎣
y0:0

C

y1:0
C

y1:1
C

y2:1
C

⎤⎥⎥⎦

The final measurement vector is just containing the equivalents to the possible skeletal
labeling z = [y0:0

M y1:0
M y1:1

M y2:1
M ]ᵀ. However, the entries in this matrix are readily explainable.

The first row is addressed to the full labeling pattern yM of the mother and daughter ion
and is depending on the unlabeled skeletal atoms fraction y0:0

C . The probability for obtaining
unlabeled compound y0:0

M is given by the probabilities for the detected and non-detected
non skeletal atoms to be unlabeled C0

A′C0
B′. For the mass trace y1:0

M , the labeling is only
present in the non-detected fragment, thus the labeling is influenced by skeletal atoms of the
non-detected skeletal atoms y1:0

C if all non skeletal atoms are unlabeled C0
A′C0

B′. Additionally,
the probability for natural labeling of the non-detected non skeletal atoms C0

A′C1
B′ will also

influence the labeling state y1:0
M as it is multiplied with the labeling state for all skeletal atoms

y0:0
C .

Entering the abundances from equation 4.42, the final correction matrix can be calculated:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0:0
M

y1:0
M

y1:1
M

y2:0
M

y2:1
M

y2:2
M

y3:0
M

y3:1
M

y3:2
M

y3:3
M

y4:0
M

y4:1
M

y4:2
M
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.991
4.20 · 10−3 0.991
8.68 · 10−4 0.991
2.24 · 10−6 4.20 · 10−3

3.71 · 10−6 8.68 · 10−4 4.20 · 10−3 0.991
4.07 · 10−3 8.68 · 10−4

4.99 · 10−10 2.24 · 10−6

1.96 · 10−9 3.71 · 10−6 2.24 · 10−6 4.20 · 10−3

1.73 · 10−5 4.07 · 10−3 3.71 · 10−6 8.68 · 10−4

2.02 · 10−6 4.07 · 10−3

5.65 · 10−14 4.99 · 10−10

4.38 · 10−13 1.96 · 10−9 4.99 · 10−10 2.24 · 10−6

9.19 · 10−9 1.73 · 10−5 1.96 · 10−9 3.71 · 10−6

...
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡⎢⎢⎣
y0:0

C

y1:0
C

y1:1
C

y2:1
C

⎤⎥⎥⎦

From the nominal entries in the correction matrix, it is obvious that the correction will not
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significantly alter the measured labeling pattern. From each measured carbon labeling state,
roughly 1 % of the carbon labeling state is addressed to natural labeling.

To summarize, the calculation of the matrix Ccorr is formulated as pseudo-code in algorithm
4.1. The required input for the program are the number atoms per element of mother and
daughter ion (AtomsMoth, AtomsDau), as well as the number of skeletal atoms in mother
and daughter ion (CMoth, CDau). Besides, also a list with the maximal number of labeled
states per atom specy (Nisotope) and their natural abundances (pisotope) as shown in table 4.3
need to be provided.

4.3.7 Optimization Procedure
Finally, coming from the real carbon measurement vector, the overall labeling state can be
calculated. In a real setup, the carbon vector is of interest and needs to be estimated. By the
mass spectrometric device we get measurements z̃ with standard deviations corresponding
to the simulated vector z(yC). The problem can be reformulated as a least square problem
[255]. Nevertheless, this might cause problems as several mass traces can become negative
during this procedure (by stochastic measurement errors) and need to be corrected manu-
ally afterwards. To prevent this, the problem is formulated as an constrained least square
optimization problem, using the covariance matrix of the measurement error Σ:

ỹC = arg min
yC

‖ z(yC) − z̃ ‖2
Σ subject to

⎧⎨⎩0 ≤ yC ≤ 1 ,

‖yC‖1 = 1
(4.44)

Finally, ỹC is estimated.

Statistical Analysis and Consistency Check

The statistics of the system can be calculated by using the Jacobian J and the covariance
matrix of the measurement error Σ. It is assumed that the measurements show no dependency
and thus the matrix contains only the measurements standard deviations as diagonal elements
Σi,j = σ2, i = j, Σi,j = 0, i 
= j.

Cov = J(ỹC) · Σ−1 · J(ỹC)ᵀ (4.45)

The Jacobian is calculated by NoReTO toolbox using complex differentiation, see Martins
et al. for details about this method [148].

4.3.8 Results of Correction
Application to Test Cases

In figure 4.13 examples are given for the correction. The first example is an alanine LC-
MS/MS measurement. Here the correction does not lead to a high change in the labeling
pattern. For methionine, the effect of the correction is in the order of 0.01 of the measurement.
For GC-MS measurements the effect is more pronounced as alanine is derivatized by sylilation
reagents. Introducing silicon results in a significant amount of natural labeling and correction
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Algorithmus 4.1 Calculation of Ccorr

Algorithm 4.3.1: Calc_Ccorr(AtomsMoth, AtomsDau, CMoth, CDau, Nisotope, pisotope)

A′ ← AtomsDau
B′ ← AtomsMoth − AtomsDau
A ← CDau
B ← CMoth − CDau
C_A′ ← Calc_MassShiftMatrix(A′, Nisotope, pisotope)
C_B′ ← Calc_MassShiftMatrix(B′, Nisotope, pisotope)
d ← Calc_MaxLabel(Nisotope)
s ← A ∗ d + B ∗ d
s′ ← A ∗ d
t ← A ∗ d + B ∗ d + A′ ∗ d + B′ ∗ d
t′ ← A ∗ d + A′ ∗ d
Column ← 1
for ab ← 0 to CMoth⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for a ← max(0, ab − (s − s′)) to min(ab, s′)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Row ← 1
for aa′bb′ ← 0 to t⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for aa′ ← max(0, aa′bb′ − (t − t′)) to min(aa′bb′, t′)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a′ ← aa′ − a
b′ ← aa′bb′ − aa′ − ab + a
BB′t ← Mother − Daughter
if aa′bb′ ≥ aa′

ab ≥ a,
A′ ∗ d ≥ (aa′ − a),
B′ ∗ d ≥ (aa′bb′ − aa′ − (ab − a))

do Ccorr[Row, Column] ← C_A′(A′) ∗ C_B′(B′)
else
do Ccorr[Row, Column] ← 0

Row ← Row + 1
Column ← Column + 1

return (Ccorr)
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is mandatory. This is especially important if GC-MS is used as here large side groups are
attached. By introduction of sylilation reagents, the labeling pattern can be altered by
~5-10 %.
Generally, in LC-MS(/MS) the introduced error by natural labeling is in the order of 0.1-
1.0 %, but is significant.
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figure 4.13: Correction results of measurements using LC-MS/MS and GC-MS for the metabolites
alanine and methionine. Alanine measurement for GC-MS is derivatized with two
tert-butyldimethylsilyl groups at carboxy and amine group, the [M − 0]+ ion was
used. Uncorrected measurements ( ) and corrected measurement ( ) are shown.
The correction was performed for non skeletal carbon atoms. Artificial measurement
values shown.

Application to Chemostat and Fed-Batch Data

The correction for natural abundance was performed for all extrapolated measurements. Ad-
ditionally to the change in the absolute value, the uncertainties of the labeling measurements
are also effected. The extrapolation was performed for each mass trace separately. During
error propagation calculations, the peaks are evaluated as dependent of each other (their sum
equals “one”). Thus, their respective standard deviation is changing during correction. This
statistical reconciliation can be important if some peaks show large standard deviation. In
figure 4.14 the standard deviations for a fed-batch and a chemostat are shown, before (left
plot) and after (right plot) correction for natural abundance and statistical reconciliation.
To visualize the difference in the standard deviations before and after correction and statisti-
cal reconcilation, a linear regression model (y = b + m · x) was fit to the data set. The linear
regression model for the fed-batch data was y = 0.003 + 0.042 · x for the extrapolated mass
traces and after statistical reconciliation 0.004 + 0.036 · x. Thus, lower measurement values
(i.e. values close to zero) became less statistically identified, whereas large measurement
values‘ (i.e. values close to one) standard deviation were decreasing. For the chemostat the
estimated standard deviations for the extrapolated mass traces were lower, the regression
model yields y = 0.003 + 0.028 · x. After correction y = 0.003 + 0.018 · x. The statistical
reconciliation resulted in better statistics.
It is important to note that several labeling measurements, especially in chemostat experi-
ments, showed low measurement standard deviations after extrapolation (see figure 4.14, left
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plots). Low standard deviations result if the measurement of the mass traces were at steady
state or showed no change in their labeling state. Besides, mass traces with low signal can be
subject of peak integration error (peak is too low to be integrated). Thus, also a systematic
error can be introduced at this stage of the analysis.
In case a lower standard deviation was found than the threshold of 0.005, the measurements‘
standard deviation were set to 0.005 (before and after statistical reconciliation). This is done
to prevent false prediction in statistics later in 13C-MFA based on falsely under-estimated
standard deviations.
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(a) Fed-batch process
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figure 4.14: Effects of statistical reconciliation for (a) fed-batch 1 and (b) chemostat 1 cultivation.
Measurement with standard deviation larger than 0.05 were excluded.
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4.4 Results
In this chapter, three important steps are addressed that concern measurement data to be
incorporated in 13C-MFA models and, thus, directly impact model results:

• A bio-process model for rate estimation:
In total the kinetic model contains 24 parameters (mainly first order and Michaelis
Menten kinetics). Model parameters were estimated for three chemostat and two fed-
batch cultivations. The calculated concentration data possessed, for most substances,
good reproducibility, although fluctuations in concentration profile were not described
by the model. It was shown that P. chrysogenum BCB1 produces high amounts of
penicillin V, especially in the fed-batch process. However, side-product formation was
also increased in this process compared to chemostats at a growth rate of 0.03 and
0.05 h−1.

• Extrapolation of labeling time series:
Time dependent labeling enrichments from MS are, by use of a nonlinear regression
approach, extrapolated to the corresponding steady-state values. Here, the underlying
model is based on exponential growth (m + 1, 2, . . . ) and decay (m+0) functions. Esti-
mates for the turnover of metabolite pools were obtained and discussed in the context
of published literature. Besides, a nonlinear regression toolbox was implemented.

• Correction for natural abundance for tandem MS:
While plenty of tools are available for the correction of MS data, none of these is able to
correct for tandem MS. An algorithm was developed to build the mass shift matrices.
The correction for natural abundance was applied to the obtained extrapolated mass
traces and statistical reconciliation was performed.

In the next chapter, the 13C-MFA model is explained in detail.



Chapter 5

13C-MFA Model for P. chrysogenum
BCB1

The conduction of experiments and data pre-processing described in the last chapter are only
two major steps needed for 13C metabolic flux analysis. The model generation process is of
equal importance. Here, this process is described for the strain BCB1 of P. chrysogenum.
The metabolic pathways included in the 13C-MFA model are described and critical design
decisions and their importance for the outcome of the study are discussed. Initially, a model
composed of 500 reactions containing cofactors and oxidative phosphorylation was built
for P. chrysogenum. Then, for 13C-MFA purposes, a focused 13C metabolic network with
140 reactions was constructed, by simplifying the large network. It covers all pathways in
P. chrysogenum that lead to the formation of measurable metabolites.
For both networks a strain specific biomass equation is derived for the strain BCB1 of
P. chrysogenum. Finally, with the large scale metabolic network flux balance analysis is
performed and the strain‘s performance is characterized by comparison to literature values.

5.1 Metabolic Network
Metabolic networks used for 13C-MFA are generated by genome scale metabolic network
reconstruction (GEM) or by best knowledge on the organism if a GEM is not available.
Usually, these GEMs are assigning functions to potential genes (open reading frames) if their
amino acid sequence possesses a high homology to proteins with known function. At the
starting point of this work, no GEM was available for P. chrysogenum. In 2013 the first
GEM for P. chrysogenum was published and it was used to proof read the built networks.
Beforehand, a draft of this GEM was provided by Sandoz [2].

5.1.1 Large Scale 13C-MFA Network
A metabolic network was created following the work-flow shown in figure 5.1. Initially, the
reaction network was built with the help of the Kyoto Encyclopedia of Genes and Genomes
(KEGG). For this process, the reactions needed to form the known biomass components
and products were identified and their formation pathways included in the model (see chap-
ter 5.1.4). KEGG is a pathway database that maps genomic information to chemical and
systemic function, e.g. it maps a gene to its specific chemical reaction or regulatory function
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[117]. The assignment of gene functions in KEGG is performed by the so called “KEGG
orthology” which contains information of ortholog groups and links them to a function in the
metabolic network. In addition, KEGG uses information about so called ”ortholog clusters”
containing similar genes based on their sequence. KEGG updates its contents every 3 month
and contains by now (in 2013) 2112 complete genomes, including 153 genomes of eukaryotes
[167]. However, KEGG can also be used to model the fate of atoms in the reactions [116, 115].
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figure 5.1: Work-flow of 13C-MFA model construction.

During generation of the metabolic
reaction network, several en-
zymes could not be identified in
KEGG but were known to be
necessary for de novo synthesis
of cellular components. This
leads to the gap filling pro-
cess described by Ogata et al.
[182]. In the large network miss-
ing reactions were filled manu-
ally by literature knowledge or
by similarity to other organ-
isms. Based on the known
components of the cell, which
are crucial or typically found in
this organism, a large scale net-
work was constructed applying
the data derived from the KEGG
database. The compartmental-
ization of P. chrysogenum and fi-
nally the atom transitions were
specified and the resulting net-
work was compared to literature
data. Finally, directionality as-
sumptions were made.

Compartmentalization

Penicillin production in P. chrysogenum occurs throughout several compartments, especially
involved are mitochondria and peroxisomes [72, 239]. The localization of several enzymes
involved in the penicillin biosynthesis pathway can be found in literature. An overview is
given in table 5.1. As the experimental knowledge about localization in P. chrysogenum is
limited, tools for the prediction of the sub-cellular localization of proteins were applied.
MultiLoc2 was used for sequence based prediction of the sub-cellular localization of proteins
and the results obtained by this program are visualized in figure 5.2 [27]. MultiLoc2 provides
in most cases consistent estimates of the protein localization compared to literature references
(e.g. particularly localization of amino acid biosynthesis for penicillin production) [72, 239].
In reaction sequences for the formation of biomass components, often predictions for other
deviating compartments were received. However, the pathway was placed in the compartment
where most reactions were predicted for. Finally compartmentalization is consistent in the
model with the compartmentalization for amino acid formation proposed by Kleijn based on



5.1. METABOLIC NETWORK 77

table 5.1: Localization of single enzymes of the penicillin formation pathway. cyt.: cytosolic, vac.:
vacuolar.

Protein Localization Exp. Method Literature
α-Isopropylmalate

synthase
cyt. Product labeling

pattern
[40]

Homocitrate synthase cyt. Fusion to GFP;
labeling pattern

[40, 13]

ACVS cyt./vac.
membrane bound

immunogold [164]

IPNS cyt. immunogold [164]

AT microbodies immunogold [164, 165]

PCL microbodies sequence analysis [129]

comparison of labeling patterns, except for formation pathways for aspartate and glutamate
which might be cytosolic or mitochondrial based on the prediction of the localization [121].
Correction of compartmentalization by literature and prediction software was performed
manually. Proteins localized within the endoplasmatic reticulum, nucleus and cytosol were
all assigned to the cytosolic compartment.

Proofreading and Comparison

Proofreading of the final model was performed by comparing the reaction stoichiometry to
the recent yeast model version 6.05 and the recently published genome scale network of
P. chrysogenum [2, 95]. The P. chrysogenum model was used to verify the compartmental-
ization and the enzyme‘s assigned gene identifier.

5.1.2 Pathways in the Large Scale Model
In this section, the importance of selected pathways for the 13C-MFA in P. chrysogenum is
discussed and uncertainties regarding their compartmentalization and regulation are exposed.

The network contains pathways for the uptake and metabolism of glucose, gluconate, ethanol,
acetate, ammonia, phosphate, sulfate, and oxygen. Although in the performed chemostat and
fed-batch experiments only glucose as sole carbon source is used. Additionally, it contains
pathways for the formation of the most frequently found products like carbon dioxide, pyru-
vate, succinate, oxalate, penicillin, and its side products. Moreover, pathways for de novo
synthesis of nucleotides, amino acids, polyols, sugars, polysaccharides, acylglycerols, phos-
pholipids, phosphatidates, and ergosterolester were integrated.
The glycolysis, PPP and citrate cycle were modeled according to textbook knowledge [253].
Amino acid formation pathways were taken from KEGG and proofread using the recent GEM
for P. chrysogenum [2]. The formation of glycine by the action of enzymes threonine aldolase
and serine hydroxymethyltransferase were also incorporated in the model [40].
Fatty acids containing metabolites can possess more than 50 carbon atoms, they were mod-
eled stoichiometrically (i.e. no atom transition were used), and connected by constraints
to the rest of the network. Also cofactors like NADH, NADPH and ATP were modeled
stoichiometrically.
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(a) Cytosolic localization predicted

(b) Mitochondrial localization predicted

figure 5.2: Compartmentalization of metabolic pathways predicted by MultiLoc2. HighRes setting
was used. (a) Protein‘s summed prediction value for cytosol, endoplasmatic reticulum
and nucleus. (b) Prediction for mitochondrial compartmentalization. For each protein
linked to the respective enzymatic function shown, a circle is drawn. The fill color
indicates the prediction. All prediction values for the separate compartments (nuclear,
cytoplasmic, mitochondrial, chloroplast, extracellular, plasma membrane, peroxisomal,
endoplasmic reticulum, Golgi apparatus, lysosomal and vacuolar) sum up to 1, whereas
in the shown network ( ) equals a prediction of 0 and ( ) equals 1. Colors in
between were linearly interpolated.
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table 5.2: Localization of anaplerotic enzymes predicted by YLoc [29, 30]. cyt.: cytosolic, mit.:
mitochondrial, nu.:nucleus,

Network YLoc
Gene cyt. mit. cyt. mit. nu. Propability

PEP Carboxykinase Pc12g09360 99.4 0.0 0.6 0.86
PYR Carboxylase Pc13g07230 85.9 0.0 14.0 0.56
Malic enzyme (NAD) Pc21g20250 0.0 100 0.0 0.99
Malic enzyme (NADP) Pc13g04510 0.0 99.9 0.0 0.99

Anaplerosis and Gluconeogenesis

Anaplerotic reactions replenish citrate cycle intermediates which were removed for the forma-
tion of biomass components. In P. chrysogenum pyruvate carboxylase, phosphoenolpyruvate
carboxykinase and malic enzyme are found, whereas the fructose-1,6-bisphosphatase, respon-
sible for the gluconeogenetic flux in upper glycolysis, is expected to be in-active, because it is
known to be repressed in yeasts by glucose [217]. The reactions catalyzed by these enzymes
form additional cycles in the metabolic network and are subject to compartmentalization.
As they are crucial for the conduction and interpretation of the final results, the localization
was determined using YLoc and are listed in table 5.2 [30, 29]. YLoc predicts a mitochon-
drial location of the NAD- and NADP- dependent malic enzyme, which is consistent with
the network for 13C-MFA used by Kleijn for P. chrysogenum. Activity of the enzyme in
P. chrysogenum was shown by Harris et al. [94]. In yeasts, the malic enzyme is also located
in the mitochondria (and potentially in the peroxisomes) [28], which supports the results
obtained via YLoc for the localization of it in P. chrysogenum. In contrast, Zheng removed
the malic enzyme from the P. chrysogenum network, because malic enzyme activity was not
detected [284, 121].
For the pyruvate carboxykinase and pyruvate carboxylase a cytosolic localization was pre-
dicted by YLoc and, thus, both enzymes were incorporated in the model. The same local-
ization can be found in networks of Kleijn and Zheng for P. chrysogenum [121, 284].

Glyoxylate Shunt

The glyoxylate shunt is mainly used in anaplerotic reactions. Elevated expression levels of the
genes encoding for isocitrate lyase and malate synthase are found in several fungi growing on
ethanol [151]. Usually, the glyoxylate shunt is not integrated in metabolic networks, because
it is assumed to be of minor importance during growth on glucose as sole carbon source.
[121, 111, 157]. However, glyoxylate was detected in P. chrysogenum for growth on glucose
and ethanol as sole carbon sources [170]. Zheng incorporated this pathway for in-stationary
13C-MFA during growth on ethanol/glucose mixtures, but the respective reactions (isocitrate
lyase and malate synthetase) showed zero flux [284]. In this work, the glyoxylate shunt is
introduced into the large scale model to test if it exhibits low activity in the presence of
glucose as sole carbon source.

Polyol Synthesis

Polyols were frequently found in fungi. They are part of their biomass and can be secreted
into the media [56, 141]. Polyols like erythritol, arabitol, and mannitol were measured in the
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biomass of the used P. chrysogenum BCB1 strain (cf. chapter 5.1.4) and were also detected
for other P. chrysogenum strains; e.g. mannitol was found to account for 3.2 % of the cell dry
weight [141, 15, 284]. Thus, the formation of these compounds has to be considered in the
model.
Mannitol can be synthesized as well as degraded by cells of P. chrysogenum, which leads to a
cycle [284]. However, in Aspergillus niger, an organism closely related to P. chrysogenum, the
mannitol synthesizing enzymes were exclusively found in vegetative cells, while degrading
enzymes are active in conidiospores. Thus, co-expression of all enzymes needed for the
complete mannitol cycle was not detected [3, 222]. Based on this, it is assumed that this
cycle is also not present in P. chrysogenum. This is important, as mannitol is a symmetric
molecule. The presence of the mannitol cycle could, thus, alter labeling patterns significantly
and contribute to NADPH regeneration.
Although little is known about the arabitol and erythritol formation in P. chrysogenum, it was
assumed to be consistent with A. niger. In this fungi, the erythritol formation is catalyzed
by a NAD(P)- dependent erythrose reductase. Arabitol is synthesized either via conversion
of ribose 5-phosphate via a ribulose phosphatase and a NADP-dependent ribulose reductase
[56]. Another route is via conversion of xylulose 5-phosphate via NAD- or NADP-dependent
xylulose reductase [56]. However, both routes use equal amounts of cofactors [56, 2]. In the
genome scale reconstruction of P. chrysogenum, the route via xylulose-5-phosphate is used
and was also integrated into the large scale 13C-MFA network [2].

Oxidative Phosphorylation

Oxidative phosphorylation reactions were incorporated into the model as they are capable
of specifying constraints on metabolic fluxes by limiting the amount of available energy in
form of ATP. Usually, cofactor balancing is not accounted for in 13C-MFA. Importantly,
complete balancing of cofactors is in general not possible; thus, sinks for NADPH and ATP
were incorporated into the large model to account for yet unknown processes [108].
Oxidative phosphorylation is driven by the gradient of protons at the inner mitochondrial
membrane maintained by activity of the succinate dehydrogenase and NAD(P)H dehydroge-
nases. In addition, other reactions and proton driven transport processes result in formation
or consumption of protons in the cell.
In higher eukaryotes, transport processes are important for the modeling of proton gradients
across membrane, e.g. for each generated ATP in the mitochondria (which costs usually 2.67-
3.3 protons) one additional proton is needed to transport ADP and Pi into the mitochondrial
matrix [76].
Oxidative phosphorylation complexes were modeled according to data for yeast by Fitton
et al. (see figure 4 within their work) [80]. However, the mechanistic ratio of ATP production
per proton for the ATPase is not exactly known for P. chrysogenum. It is expected to range
between 2.7 H+/ATP for bovine heart mitochondria and 3.3 H+/ATP for yeast [80, 76,
258]. Nevertheless, other proton dependent transport processes of (for example) Pi, pyruvate
and oxaloacetate into the mitochondria will add up to these costs. In the recent GEM for
P. chrysogenum a value of 3.87 H+/ATP was assumed [2]. However, the model of Agren et al.
does not, unlike our model, account for complete proton balancing and the ATP ratio therein
used has to account also for further transport processes. In the network built here, it is
assumed that 3-4 H+/ATP are spent. Proton dependent transport processes are incorporated
based on the recent yeast GEM [95].
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Often, the P/O ratio (phosphate/oxygen ratio) is defined to measure the effectiveness of
energy generation. It refers to the number of ATP molecules synthesized (by oxidative
phosphorylation) for each pair of electrons. The electrons are passed from NAD(P)H or
succinate to oxygen (O2). The P/O ratio can also be described by the ratio of protons
generated per NAD(P)H in relation to the protons used for the generation of one ATP
including transport processes [76]:

P/O ratio = H+/NAD(P )H
H+/ATP + Transport

Clearly, the P/O ratio can be altered if further uncoupling systems, shortcuts through the
electron transport chains or external NAD(P)H dehydrogenases are present (for a in-depth
discussion see Guerrero-Castillo et al. [91]). Recently, the presence of external NADPH
dehydrogenase in P. chrysogenum was indicated and incorporated in the model [94].
In the built network a P/O ratio for NADH of 2-2.5 is computed, ranging in the experimen-
tally determined values of 2.3 for yeast (in yeast it is assumed that H+/ATP=3.3; for this it
is assumed that 10 protons per NADH were generated and one proton was used for transport
of ADP and Pi into the mitochondria).

NADPH Production and Consumption in the Penicillin Pathway

The cytosolic NADH pool is assumed to be unconnected to the mitochondrial pool as the inner
mitochondrial membrane is impermeable for reduced pyrimidine nucleotides [254]. The same
is assumed for NADPH. NADPH is used mainly for amino acid synthesis in the cytosol, thus
also for penicillin synthesis. In the cytosol, NADPH is mainly formed by pentose phosphate
pathway (glucose-6-phosphat dehydrogenase and 5-phosphogluconate dehydrogenase) and
during the reaction catalyzed by the cytosolic isocitrate dehydrogenase. NADP dependent
isocitrate dehydrogenase was detected in cytosol and mitochondria in P. chrysogenum [109].
NADPH is not only produced in the cytosol, but is also consumed by a multitude of reactions.
The main factor is the generation of glutamate (1 molNADPH mol−1

GLU), which is used in
transamination of most amino acids. In several other amino acid and fatty acid biosynthesis
pathways, NADPH consuming reactions occur (formation of chorismate, valine, cysteine
and lysine). In fatty acid biosynthesis 2 molNADPH per mol of attached malonyl-CoA is
consumed. Furthermore, the formation of ergosterol is costly; 19-23 NADPH are used for
production of an ergosterol molecule. And synthesis of desoxy-nucleotides and polyols are
consuming NADPH as well.
Of major interest for penicillin production are the formation of cysteine and valine as they
are the main building blocks of penicillin. Cysteine can be formed via two pathway in
P. chrysogenum that use serine as precursor. The sulfhydrylation pathway incorporates re-
duced sulfur directly into serine. Including the formation of serine and reduced sulfur it
requires 5 NADPH. The second pathway (transsulfuration pathway) incorporates reduced
sulfur into O-acetylhomoserine and uses 7-8 NADPH. Homo-cysteine, the product of this re-
action, is used together with serine to form cystathione which is converted to cysteine. In the
course of this study, both reaction pathways cannot be elucidated by stationary metabolic
flux analysis as they possess the same carbon atom transitions.
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5.1.3 Focused 13C-MFA Network
Focused 13C-MFA networks are built for specific applications and do not rely on assumptions
for cofactor balancing. Here, it was constructed based on the large metabolic network.
The networks are typically focused on central metabolite pathways and product pathways
resulting in a moderate size (50-150 reactions) of the final network compared to genome scale
reconstructions. Linear reaction sequences and pools with rapid equilibrium are lumped.
The focused 13C-MFA model accounts for 140 reactions and 76 metabolites in comparison to
the large metabolic network with its 500 reactions and 352 metabolites. However, the same
set of formed biomass components is modeled by both networks.
In the focused network most formation pathways of biomass effluxes were lumped. The num-
ber of reactions was significantly reduced, leaving only measured amino acids or precursors
thereof and central carbon metabolism (glycolysis, citrate cycle, pentose phosphate pathway)
metabolites in the network.
Nucleotides, ergosterol, and fatty acids were modeled as stoichiometric effluxes from their
respective precursors. The penicillin formation from its precursors valine and cysteine is
introduced as partially stoichiometric reaction system and is connected to the system by
constraints.
Clearly, besides pool lumping in the biomass components, further simplification were made
as stated below:

1. By-product formations were neglected in case of

• Tryptophane synthesis: Conversion of serine to glyceraldehyde-3-phosphate and
conversion of phosphoenolpyruvate to pyruvate per produced tryptophane molecule
is neglected.

• Cysteine synthesis via transsulfhydrylation pathway: the formation of by-product
α-ketobutyrate and its degradation is neglected.

• Purines and arginine synthesis: Conversion of aspartate to fumarate is neglected.

2. Simplification of pathways in case of:

• Penicillin synthesis: Synthesis of penicillin is basically a linear pathway and the
action of penicillin amidase and acyltransferase are leading to an exchange flux
between 6APA and penicillin V, but are not resolvable by stationary 13C-MFA
as the reactions share the same atom transitions. Thus, it was modeled as a
linear reaction sequence with measured effluxes to the side products of penicillin.
Effluxes from valine and cysteine were constrained to this pathway.

3. Pathways were neglected in case of:

• Glyoxylate shunt.
• Degradation pathways, except for glycine and threonine.

4. Simplification of compartmentalization in case of:

• Formation of glutamate: the glutamate formation is only possible from mitochon-
drial α-ketoglutarate, which is consistent with the result obtained by Kleijn [121].
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• TCA intermediates: TCA intermediates are found in glyoxisomes, in mitochondria
and in the cytosol, but were modeled to be present only in mitochondria (except
oxaloacetate and pyruvate).

5. Simplification of reactions in case of:

• Lumping the pools of bis-phosphoglycerate, 2-glycerate and 3-glycerate to the
23PG pool.

• Cysteine pathways: both pathways were modeled as one pathway, because they
share the same atom transitions.

• Cofactor and energy balances: no cofactor and energy balances were incorporated.

The resulting network including names of reactions, atom transitions and directionality as-
sumptions are given in the appendix C.2. During the optimization procedure, several addi-
tional assumption on directionality had to be made to prevent unfeasible flux distributions:

• Acetyl-CoA can be formed in the mitochondria and also within the cytosol. These
reactions may lead to cycles. Thus, the flux of acetyl-coA from the cytosol to the
mitochondria was prevented by constraining the transporter reaction to positive values
(0 ≤ Transporter_AcCoA).

• Malic enzyme is assumed to catalyze exclusively the reaction from malate to pyruvate,
as the malic enzymes possesses higher affinity towards malic acid compared to pyruvate.
However, high CO2 concentrations can reverse the reaction [228].

• Glycine can be formed by degradation of threonine catalyzed by the threonine aldolase
and by the glycine hydroxymethyltransferase; both fluxes were assumed to possess an
exchange flux (0 ≤ Gly1, Thr2 ≤ 0).

• Fluxes forming symmetric molecules lead to introduction of alternative atom transi-
tions. The reaction of succinyl-CoA to fumarate catalyzed by succinyl-CoA synthetase
is forming the symmetric fumarate molecule. This leads to the atom transition for the
two scrambling reactions:

succinyl−CoA#abcd −→ fumarate#abcd

succinyl−CoA#abcd −→ fumarate#dcba

Scrambling reactions are assumed to possess the same net and exchange reaction as
both reaction occur with the same probability. They are found in the citrate cycle
(Tca5a − Tca5b = 0, T ca6a − Tca6b = 0, T ca7a − Tca7b = 0).

• Anaplerotic reactions were assumed to run in the direction of ATP consumption (Ana1 ≤
gly6, Ana3 ≤ 0), which is consistent with textbook knowledge [173]. Nasution mea-
sured adenylate energy charge (ATP+ADP/2)/(ATP+ADP+AMP) in P. chrysogenum
cultures, which showed high values (0.85-0.91) supporting the directionality assumption
for the anaplerotic reactions [170, 168, 36].
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figure 5.4: Visualization of main reactions in the focused 13C metabolic network. Effluxes to
biomass and production of (side-)products are indicated by arrows without a product
pool shown. Influxes are Glcext and POAext.
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figure 5.5: Composition of biomass is shown schematically. Cellular compounds are produced from
their respective precursors.

• Flux maps were found with considerably higher fluxes for phosphoenolpyruvate car-
boxykinase than the substrate uptake rate. A cycle was formed together with the
fluxes of pyruvate kinase and pyruvate carboxylase. Reactions catalyzed by these en-
zymes consume ATP and, thus, these high fluxes were biologically infeasible. Parameter
estimation of these fluxes for gly7 ≤ 2 · gly6 resulted in broad distribution of fluxes
without clear optimum for phosphoenolpyruvate carboxykinase. These high fluxes were
prevented by assuming flux for pyruvate kinase to be lower than enolase gly7 ≤ gly6.
Nevertheless, this is clearly an assumption, it reduces flux over phosphoenolpyruvate
carboxykinase significantly.
Thus, the phosphoenolpyruvate carboxykinase flux was not identifiable in the metabo-
lism of P. chrysogenum under the conditions tested in this study. Besides, in yeasts it
was already shown that the activity of PEP was reduced by 50-100 % when glucose was
used solely as carbon source compared to growth on ethanol [87]. A similar regulation
was also found in Aspergillus nidulans [105].

By now only the metabolic network including directionality assumptions was described. In
the next section, the measurement data of the biomass components were used to specify
intracellular effluxes for the formation of biomass.

5.1.4 Modeling of Biomass Effluxes
Each cell consists of highly diverse substances, ranging from small molecules (e.g. ions,
precursors for amino acids, nucleotides, . . . ) to macromolecular constituents (e.g. proteins,
cell wall components, carbohydrates). The sum of these compounds is referred to as biomass
(see figure 5.5). All substances containing carbon have to be taken into account for 13C-MFA
to ascertain a closed carbon balance and to enable the modeling of the fate of the carbon
atoms from substrate to product without bias. In P. chrysogenum, up to ~66 % of the glucose
carbon can be found in the biomass (Y max

SX = 0.66 molC mol−1
C taken from van Gulik et al.)

[243].
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To achieve correct modeling of the flux distribution, the strain-specific biomass composition of
P. chrysogenum BCB1 was measured for a growth rate of 0.03 h−1. Its biomass was hydrolyzed
and the fractions of the separate hydrolysis products were analyzed, which resulted in a
set of measurements describing the main building blocks of the biomass. To calculate the
effluxes towards the biomass, the building blocks measured after hydrolysation (glucose,
galactosamine, . . . ) need to be assigned to their macromolecular compounds (glucan, chitin,
galactofuranan, . . . ) from which they were formed by hydrolysis. A number of compounds
were not measured/measurable and were corrected by literature values (see below).
The elemental composition of the strain BCB1 (μ = 0.03 h−1) was measured to be

CH1.734O0.590N0.162S0.005 with an ash content of 2.72 %.

Thus, 45.6 (w/w) % of the measured biomass is composed of carbon, whereas about 6.5 % of
the biomass consists of pure water. Summing up the biomass constituents measured from the
hydrolysis experiment and added data from literature results in 92.8 (w/w) % closed mass
balance. The main biomass constituents are listed in table 5.3.
In literature, further biomass constituents are described for P. chrysogenum. To be compara-
ble, these compounds are added, as they are important constituents of the cell wall. Choline
(0.0224 mmol g−1

CDW), and inositol (0.0157 mmol g−1
CDW) were added according to values by

Nielsen [174]. The ergosterol content is based on van den Berg et al. [240] 0.0038 gCDW g−1

for strain Wisconsin54-1255. These compounds account for 0.9 (w/w) % of the biomass.
The measured glutarate and malonate (assigned to 3.4 % “Rest” in table 5.3) could not be
assigned to any biological constituent or biosynthetic pathway (they comprise 0.3 % of the
biomass and were removed for the final biomass equation). Chitin was not directly deter-
mined, but instead the overall content of glucosamine, which was assumed to be derived from
chitin. Acetyl residues of chitin were removed by hydrolysis of the biomass and were also not
measured. However, values for acetyl-CoA and glucosamine were added to the biomass.
In table 5.3 the biomass composition of P. chrysogenum obtained including correction by
literature values in this study is compared to Nielsen‘s and Jørgensen‘s data [174, 111]. Nielsen
conducted experiments in chemostats, whereas Jørgensen in fed-batch. DNA and chitin
content were strongly reduced and the carbohydrate content elevated in P. chrysogenum
BCB1 compared to literature data. Thus, strong deviates in macromolecular constituents of
the biomass composition are detected compared to literature data.
Comparison of the relative molar fractions of fatty acids found in P. chrysogenum BCB1
during this study to the results of Mumma et al. showed that the data-sets are consistent,
except for linolenic acid and linoleic acid [166]. These fatty acids show a lower and accordingly
higher amount in the data measured by Mumma. The fractions of the fatty acids for BCB1
strain (values by Mumma et al. given in brackets): 0.2 % myristic acid (0 %), 15.5 % (12.2 %)
palmitic acid, 0.4 % (0 %) palmitoleic acid, 2.3 % (5.5 %) stearic acid, 6.4 % (10.9 %) oleic
acid, 73.8 % (65.4 %) linoleic acid and 1.4 % (6.0 %) linolenic acid.
Amino acid composition of the P. chrysogenum strain BCB1 used in this study was also
measured. Tryptophane and alanine could not be measured and were assigned based on
Nielsen‘s data [174]. The separate fractions of amino acids contributing to the biomass are
shown in table 5.4.
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table 5.3: Biomass composition obtained for P. chrysogenum during this study in comparison to
the biomass composition for P. chrysogenum determined by Nielsen and Jørgensen. The
biomass was corrected for its water content of 6.5 %. Protein content was assumed to
be 44.5 %, based on previous accomplished protein measurements with the strain and
taking into account literature data [174]. Glucosamine measurement was evaluated as
chitin. Nielsen obtained the data from P. chrysogenum cultivations showing growth
rates of 0.022-0.066 h−1. Jørgensen data are generated from three phases of a fed batch
process.

This study Nielsen [174] Jørgensen [111]
[(w/w)%] [(w/w)%] [(w/w)%]

RNA 5.0 4.3-6.1 3.0-7.5
DNA 0.2 0.9-1.1 0.5
Proteins 44.5 39-45.31 48-50.01

Carbohydrates 34.6 18.2-27 23-30
Chitin 1.9 4.7-7.5 2-4.0
Lipids 2.7 3.2-5.5 4-5
Rest 3.4 14.9-20.41 9.5-121∑

93.2 100 100
1 In case of Nielsen and Jørgensen only proteinogenic amino acids are determined, whereas the free non-
proteinogenic amino acids are described as “Rest” in their data. In contrast, all amino acids are considered
in this study. For BCB1 Rest accounts for organic acids, inositol, ergosterol, anions/ash.

Focused 13C-MFA Network

Finally, the biomass composition was used to specify effluxes towards the biomass components
listed in table 5.4. The portion of aspartate and asparagine as well as of glutamate and
glutamine in the biomass were measured as summed peaks. To obtain the amount of every
single amino acid it was split, e.g. 50 % accounted for glutamine and 50 % for glutamate.
(Desoxy-)Nucleosides of RNA and DNA were incorporated in the focused 13C-MFA model
as effluxes from their precursors. (Desoxy-)Nucleosides are formed from ribose-5-phosphate,
C1 compounds are delivered by folate, aspartate, glycine, and carbon dioxide according to
reaction in the large scale metabolic network. Glycerol was formed from glyceraldehyde-3-
phosphate.
The largest efflux towards biomass components (see table 5.4) is withdrawn from the glucose
pool, followed by flux into acetyl-CoA. Acetyl-CoA efflux accounts for fatty acid, ergosterol
and chitin synthesis. The overall sum of carbon per gram cell dry weight was calculated to be
35.36 mmolC g−1

CDW, resulting in a fraction of 42.47 (w/w) % carbon per gram cell dry weight.
Elemental measurements resulted in 45.6 (w/w) %, thus a 93.1 % closed carbon balance is
obtained. For flux estimation in the 13C-MFA metabolic network, the effluxes were scaled to
obtain 100 % closed carbon balance. The biomass composition was used as an equation to
determine effluxes to biomass, the fractions in table 5.4 are used as stoichiometric coefficients
to yield 1 g of biomass. The measured growth rate was introduced into the 13C-MFA model
as measurement.

Large Scale 13C-MFA Network

For the large scale metabolic network, the biomass composition is listed in table C.1 in the
appendix. The fractions of glycogen, trehalose or glucan formed from glucose were not
determined. Calculating back to the specific compounds was, thus, not possible. In this case
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table 5.4: Biomass equation for the focused 13C-MFA model of P. chrysogenum

Compound Flux Compound Flux
[ mmol g−1

CDW] [ mmolC g−1
CDW] [ mmol g−1

CDW] [ mmolC g−1
CDW]

Aspartate 0.269 1.08 Proline 0.118 0.59
Asparagine 0.182 0.73 Tryptophane 0.111 1.22
Glutamine 0.262 1.31 Alanine 0.279 0.84
Glutamate 0.262 1.31 Acetyl-CoA 1.047 2.09
α-Aminoadipate 0.028 0.17 Erythritol 0.016 0.06
Serine 0.286 0.86 Arabitol 0.010 0.05
Histidine 0.074 0.44 Mannitol 0.358 2.15
Glycine 0.330 0.79 Glucosamine 0.095 0.57
Threonine 0.218 1.09 Galactose 0.297 1.78
Arginine 0.198 1.19 Glucose 1.087 6.52
Tyrosine 0.116 1.04 Mannose 0.196 1.17
Cysteine 0.004 0.02 Fumarate 0.001 0.00
Valine 0.288 1.44 Isocitrate 0.001 0.00
Methionine 0.062 0.31 EC1 0.202 0.20
Phenylalanine 0.150 1.35 R5P 0.155 0.78
Isoleucine 0.195 1.17 CO2 0.155 0.16
Ornithine 0.004 0.02 GAP 0.143 0.3
Leucine 0.292 1.75

∑
- 35.36

Lysine 0.177 1.06

the glucose units needed to build the separate compounds were summed to yield the biomass
efflux to glycogen, trehalose and glucan. So each compound can be formed and the correct
amount of glucose is used for them, nevertheless, the separate fractions (of glycogen, trehalose
and glucan) are set free to be chosen within flux estimation procedure. The same was done for
the composition of cell membrane constituents (only fatty acids, inositol, choline, ergosterol
and glycerol production is fixed by the biomass). By adding these compounds, the carbon
balance for this biomass equation is closed with 91.9 % closed carbon balance.
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table 5.5: Maximal theoretical yield per gram substrate calculated by FBA model

Substrate YXS,max[g g−1] YP S,max[molC mol−1] YP S,max[mol mol−1]

Glucose 0.48 0.071 0.45
Ethanol 0.72 0.077 0.16
Acetate 0.32 0.066 0.10
Gluconate 0.38 0.046 0.39

5.2 Flux Balance Analysis

Before conducting 13C-MFA, in silico results for the metabolic capabilities of the organism are
generated based on the large metabolic network. Additionally, measurements are available
for the biomass composition and metabolic rates. Using these experimental data, estimates
for productivity of the high-producing P. chrysogenum strain BCB1 can be computed.
Still, estimates for growth associated and non-growth associated ATP requirements are
needed to obtain a reasonable model describing the metabolism of P. chrysogenum. Because
limited data are available about strain BCB1, growth associated ATP requirements are taken
from literature data. A growth associated ATP demand of of 108 mmolATP g−1

CDW was pub-
lished in the genome scale model of P. chrysogenum [2]. This is twice as high as in the recent
yeast genome scale reconstruction (version 6.05; 59.3 mmolATP g−1

CDW) [95]. The non-growth
associated maintenance coefficient was taken from literature to be 1.2-3.4 mmolATP g−1

CDW h−1

as lower and upper boundaries [243].
To compare the model to literature data, uptake and metabolism of the mainly used sub-
strates (acetate, ethanol, glucose and gluconate) were incorporated. First, the maximal
theoretical biomass yields on these substrates are calculated by flux balance analysis(see ta-
ble 5.5). The maximal yield on glucose was calculated to be 0.48 gCDW g−1

glc. In literature,
diverging values were found ranging from 0.35-0.61 gCDW g−1

glc but the maximal theoretical
yield was calculated by van Gulik et al. to 0.61 gCDW g−1

glc (see table 5.6). For ethanol a the-
oretical maximum biomass yield of 0.72 gCDW g−1

eth was computed compared to 0.66 gCDW g−1
eth

found by van Gulik et al. [243]. Acetate yield was 0.32 gCDW g−1
ac , whereas an experimentally

reported value from literature was 0.39 gCDW g−1
ac . Gluconate showed yields below glucose but

comparably higher than acetate of 0.38 gCDW g−1
glt . However, as the model possesses a strain

specific biomass composition, the data are in good agreement with literature values.
The mentioned substrates will also influence penicillin production. Ethanol is again per-
forming best with 3.4 mmolpen g−1

eth. Besides, it provides also highest C-atom efficiency, as
most of the molecules carbon atoms are incorporated in the product. Glucose resulted in
0.45 mmolpen g−1

glc and gluconate is forming only 0.39 mol product per mol substrate. The
experimentally obtained maximal theoretical production of penicillin by van Gulik et al. is
reduced to ~40 % compared to in silico value. Gluconate results in a loss of productivity of
roughly 20 % compared to glucose.
Based on the metabolic network a yield analysis was performed according to Song and Ramkr-
ishna [224]. Here, the possible yield of the main products biomass and penicillin are evaluated
based on the large FBA model, the result is shown in figure 5.6. In the figure a yield analysis
for each substrate (glucose, ethanol, acetate and gluconate) is plotted, as well as the results
for an optimal mixture of all substrates. In literature, several data-sets have been published
for production of penicillin under controlled conditions and rate estimates are given. In



5.2. FLUX BALANCE ANALYSIS 91

table 5.6: Experimentally determined literature values taken from literature for cultivations of
P. chrysogenum.

Conditions μ YXS YP S ms Comment Citation
[h−1] [gCDW g−1] [mol mol−1] [g g−1

CDW h−1]
Chemostat 0.06 0.56 - - glucose [41]
Chemostat 0.06 0.38 - - glucose [41]
Chemostat 0.07 0.43 - - glucose [41]
Chemostat 0.08 ~ 0.35 - - glucose [40]
Chemostat ~ 0.01-0.125 ~ 0.612 0.1742 ~ 0.0961 glucose [242, 243]
Chemostat ~ 0.03-0.09 ~ 0.662 0.0682 ~ 0.0061 ethanol [242, 243]
Chemostat ~ 0.03-0.09 ~ 0.392 0.0402 ~ 0.01251 acetate [242, 243]
Chemostat 0.025-0.18 0.51 - 0.028 glucose [44]
Chemostat ≤ 0.025 0.45 - 0.024 lactose,

pharmamedium
[204]

Chemostat ≤ 0.075 0.45 - 0.022 glucose [201]
Chemostat - ~ 0.59 1 - ~ 0.002-

0.007 1
glucose [100]

Fed-Batch ≤ 0.1 - 0.052-0.085 0.025 corn steep
liquor,
sucrose

[111]

10.435 gC per gCDW assumed
2Here maximal yield coefficients are given: Y max

XS and Y max
P S

these datasets several different species of penicillins and side-products were formed, because
penicillin is also degraded constantly to some of these side-products the amount of formed
penicillin nucleus (i.e. 6APA) is used to compare the data-sets. First of all, the product yield
of nearly all production processes is weak and a high biomass production regime is favored.
For most of the data-sets, the major amount of carbon is not used for product or biomass,
being far away from the diagonal lines, which would be optimal. The reason for this is not
clear, yet. For the production process in this work based on glucose as substrate, the experi-
mental yield is roughly 25 % of the maximum predicted yield and the biomass production is
considerably lower compared to other literature data.

Finally, the penicillin yield obtained with strain BCB1 is high compared to literature data,
providing evidence for a high producing strain with comparably high carbon efficiency to-
wards the product with a low biomass yield. Another observation can be made: Most culti-
vations in literature are using glucose with addition of other substrates indicated by markers
in figure 5.6.

Influence of Pentose-Phosphate Pathway on Penicillin Yield

For penicillin production, NADPH is needed in the cytosol for synthesis of cysteine and
valine. The oxidative pentose phosphate pathway (oxPPP) and isocitrate dehydrogenase
are main NADPH producing reactions. Based on the large scale metabolic network, the
theoretical penicillin production can be calculated from the provided extracellular rates for
glucose uptake and taking also into account biomass production. The substrate uptake rates
and biomass formation of the fed-batch process are used. For this, the penicillin production
is maximized by changing flux through oxPPP. The split ratio of oxPPP and glycolysis is
computed by the flux through oxPPP divided by the uptake rate of glucose. The results
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figure 5.6: Results of yield analysis for the large metabolic network for P. chrysogenum and pub-
lished data in literature. Frequently applied substrates in literature: glucose ( ),
ethanol ( ), gluconate ( ), and acetate ( ). Numbers in the figure indicate data-sets
takenn from literature. 1: Kleijn [121], 2: van Gulik et al. [242], 3-10,21: Zheng
[284], 11-12: van Winden et al. [247], 13-16: Nasution et al. [170], 17-20: Christensen
et al. [44]. Side-products containing formed 6APA were added to penicillin nucleus
production.

can be found in figure 5.7. A maximal production of 1.5 mmolpen g−1 (0.27molpen mol−1
glc)

was found for the fed-batch process. The action of cytosolic NADPH producing isocitrate
dehydrogenase is beneficial if low fluxes (< 90 % ) through oxPPP are observed. The isocitrate
dehydrogenase is usually assumed to produce the precursor α-ketoglutarate for glutamate,
arginine, lysine, glutamine and proline. Additionally, it produces NADPH needed for these
mainly formed amino acids [283].
Higher fluxes/split ratios through oxPPP than 100 % are possible, as glucose-6-phosphate
isomerase flux can be reversed. This results in split ratios up to 450 %. The production of
penicillin is optimal in the regime of 60-120 % split ratio. If cytosolic isocitrate oxidoreductase
is assumed to play no important role, roughly 90-110 % split ratio are optimal.
To summarize, high flux through oxPPP is optimal for penicillin production. The action of
oxPPP can be positively accompanied by cytosolic NADPH producing cytosolic isocitrate
dehydrogenase. The role of isocitrate dehydrogenase cannot be elucidated by later conducted
stationary 13C metabolic flux analysis as it shares the same atom transitions with the reac-
tion in citrate cycle. Further experimental data need to be gathered to elucidate the role of
cytosolic isocitrate dehydrogenase for the formation of penicillin. A direct link between the
formation of penicillin and the activity of the isocitrate dehydrogenase has not been given in
literature, yet.

As the conclusion, FBA predicts significantly higher production of penicillin V compared
to experimentally found values, although biomass yields were adequately predicted. The for-
mation of penicillin V is positively effected by flux through the oxPPP. Besides, the fed-batch
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figure 5.7: Flux balance analysis conducted to estimate the production of penicillin in the
fed-batch 1 in dependence of the flux through oxPPP. Growth on glucose with
0.251 mmol g−1

CDW h−1 and growth rate of 0.008 h−1. Because of biomass effluxes, glucose-
6-phosphate isomerase reaction is reversed at a split ratio of ~95 %. Including isocitrate
dehydrogenase ( ) and without isocitrate dehydrogenase ( ), flux was set to zero.

process for penicillin production shows significantly reduced biomass growth, but high peni-
cillin and side-product formation compared to published literature data. Why FBA cannot
adequately predict penicillin production, will be discussed in chapter 8.

5.3 Measurement and Input Substrate Specification for
13C-MFA

For the first carbon labeling experiment later conducted, a 60 % 1-, 20 % uniformly, and
20 % naturally labeled glucose mixture was chosen, according to Kleijn‘s work [121]. For the
generated networks 429 MS measurements are possible by LC-MS/MS. These measurements
can be divided into 50 measurement groups, each an LC-MS/MS measurement of a specific
metabolite.

Modeling of Labeling Measurements

Most labeling measurement can be directly incorporated into the 13C-MFA model, because
it contains the respective measured metabolites. Several metabolites‘ labeling measurements
could not be separated upon detection because they show the same retention time and the
emerging mother and daughter ions share equal masses. This was found for ribulose-5-
phosphate and xylulose-5-phosphate, they were measured as summed peaks. To introduce
them into the model, it was assumed that both metabolites can contribute to different ex-
tends to the measurements. An additional pool in the model and mixing of both metabolites
using unidirectional fluxes in this pool, see figure 5.8a. An efflux out of the pool was set to
a low value in order to prevent perturbations of the model (10−5 mmol g−1

CDW h−1). Thus, the
measurements were accurately modeled.
The P. chrysogenum model does also contain compartments. A number of metabolites can be
found in several compartments (e.g. pyruvate, asparagine, glutamate, citrate, cis-aconitate,



94 CHAPTER 5. 13C-MFA MODEL FOR P. CHRYSOGENUM BCB1

(a) Summed Peak Measurements (b) Compartalization and Measurement

figure 5.8: Modeling of labeling measurements for (a) summed peak measurement and (b) pools
subject to compartmentalization. The effluxes of Pyr_Mix_ex and Ru5P_X5P_ex
were constrained to very low flux values. The labeling measurement is assigned to the
Pyr_Mix and Ru5P/X5P pool.

oxaloacetate,...). Thus, their measurements are also sums of pools which (potentially) deviate
in labeling enrichment. If measurements are specified for those metabolites, the above de-
scribed method was likewise applied (see figure 5.8b). By applying this method, compartment
specific contribution to labeling measurements by different pool sizes is possible.

5.4 Results
In this chapter the model construction process assisted by usage of literature, data bases
(KEGG), genome scale metabolic network reconstructions, and localization prediction tools
was described. The work-flow was carried out manually in OMIX [60]. From the large scale
metabolic network comprising 500 reactions, a focused network was constructed. Assump-
tions for this were discussed. Additionally, a biomass equation describing effluxes to biomass
was calculated from experimentally determined values. Finally, input substrate and pos-
sible measurement specifications were introduced, according to known analytical standard-
operation-procedures.
Up to this point, a complete 13C metabolic model was constructed. For a chosen set of
free fluxes, forward simulation can be performed to obtain the labeling measurements. This
unlocks theoretical investigation based on the model without introduced wet-lab data for
labeling measurements. In the next chapter, the model is used to perform global sensitivity
analysis.



Chapter 6

Global Sensitivity Analysis

Sensitivity analysis reveals insights into the interplay of measurable quantities (flux and
labeling measurement) and the variables of the system (free fluxes and input substrates).
This chapter aims at identifying and quantifying important fluxes influencing the model
output, thereby preventing over-interpretation of the results of parameter estimation.
For this, the suitable method (high dimensional model representation) was selected and es-
tablished. Here, for the first time, global sensitivity analysis is performed for 13C-MFA and
developed visualization of sensitivity measures assists its interpretability. Finally, by the
chosen method, direct assessment and visualization of the interaction between fluxes and
measurements is possible and can be used for model-based interpretation of labeling data.

Note that there is a change in nomenclature, x is no longer denoting the labeling pattern in
this chapter, but the model input parameters.

6.1 Introduction
Traditional sensitivity analysis is a frequently applied method for evaluating the input/output
behavior of models. In this method, changes in function values y(x∗) are observed by cal-
culating the derivative of the model output with respect to the input variables x (in the
following called “input”) at a specified point x∗ :∣∣∣∣∣ ∂y

∂xi

∣∣∣∣∣
x∗

Because the derivative is calculated at a single point in input space, the analysis is called local.
This technique is applied in most studies, because only a small number of model evaluations
is needed to obtain dependencies of the input and output of a model. This results in a
sensitivity matrix for one point in input space. The method is applicable to (almost) linear
systems; however, the subject of this study are nonlinear models and the resulting local
sensitivity matrices may change if the same analysis is performed for multiple points in input
space [221].
Global sensitivity analysis too aims at quantification of inputs‘ effect on the output of the
model [207]. It is examining the global response by varying all inputs in a large range, not
one at a time (as in local sensitivities). The general idea of most methods is that a number
of data points in space contain more information than a local derivative.

95
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This method is important in order to prevent errors in the model building process. Based on
insensitive parameters, later, wrong conclusions can be drawn, because they are not supported
by the used data. Additionally, sensitivity analysis is conducted together with uncertainty
analysis. Uncertainty analysis is also taking into account the uncertainty of the measure-
ments used for parameter estimation [207]. Uncertainty analysis is not subject of this chapter.

13C-MFA - Requirements for Sensitivity Analysis

In 13C-MFA high dimensional metabolic networks are built, whose fluxes are inferred by
measuring direct information (extracellular fluxes) and indirect information (labeling mea-
surements). The model outputs (the labeling information) show non-linear behavior with
respect to the model inputs (free fluxes). Thus, sensitivities between the measurement and
the flux values cannot be calculated globally ad hoc.
Assumptions for 13C-MFA models are (cf. Spiral model chapter 2.2.3): (I) we are dealing
with smooth functions for labeling measurements and (II) no rapid changes in the function
values are observed within a 13C-MFA model.
The characteristics of the input-output relation in the context of 13C-MFA are summarized:

1. The models are high dimensional with 20-40 inputs (free fluxes) and possess several
model outputs (measurements). Thus, it is a Multi-Input-Multi-Output (MIMO) sys-
tem comprising 100-600 outputs yi(x), i = 1, 2, ..., n.

2. The flux values are constrained by lower/upper bounds and the stoichiometric matrix
S. Due to the concept of free fluxes, the basis of the null space is not orthogonal.

For these models the computational cost of a simulation is low by employing the high per-
formance simulator 13CLFUX2 [260]. Next, a short overview will be given about methods
used for global sensitivity analysis in literature. Afterwards, an suitable method is chosen
for application to 13C-MFA.

6.1.1 Methods for Global Sensitivity Analysis
A multitude of methods has been published for sensitivity analysis. A selection of frequently
applied methods is shown in table 6.1.

Visual Methods First, scatter plots are a graphical sensitivity analysis method. Here,
pairs of model outputs and inputs are plotted. By examining the shape of the point clouds,
dependencies of input and output can be detected. Naturally, this method is not applicable
to a high number of inputs as it becomes tedious to examine all plots and their interpretation
is only qualitative. Thus, quantifying the sensitivity of a single parameter is not possible [86].

Screening Methods are low cost methods for models with a large number of input pa-
rameters. They rank the parameters according to their importance. However, usually they
do not give absolute quantities for the influence of an input.
For example, fractional factorial designs are known from experimental design studies by
response surface techniques. Here, sample points are taken from the corners of a hypercube
in input space [207]. A second screening technique called elementary effect is based on a
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similar sampling method. The inputs are changed at specified trajectories by a fixed level,
where the level step size is in the order of the uncertainty of the system [127]. The sensitivity
of the input is measured as the change per step from one to the other level. However, as these
techniques change one factor at a time, they cannot distinguish between low and high order
interactions of inputs [127]. Additionally, the elementary effects method becomes inefficient
in higher dimensions (curse of dimensionality). Grid-based methods are also not reliable if
the function under investigation is only changing in-between the grid points [205, 33]. Similar
techniques rely on sampling radially from a central point or using star shaped designs, but
rely only on estimating the changes produced by one factor at a time [33, 191].

Variance-Based Methods measure the variance of the model output. This offers advan-
tages compared to the afore mentioned techniques. First, the variance is a model independent
measure and it can quantify the variation of each input factor. Additionally, interaction ef-
fects can be described by their exhibited variance. In these methods it is possible to assign the
variance of the output to the influence of the separate input parameters. These methods are
usually applied to models with a medium number of inputs, because with rising dimension-
ality the number of necessary samples increases. Using 10-20 input factors results in several
thousand samples needed, thus variance-based methods are more costly than elementary
effects [207].
A growing number of techniques relying on variance-based methods have been proposed,
e.g. eFAST (extended Fourier Amplitude Sensitivity Test) and Sobol‘s method [233, 220].
They are usually more efficient (need less samples) than purely variance-based techniques
mentioned before.

Meta-Modeling Techniques are employed for high number of inputs (20-100) [207].
These techniques (usually) employ smoothing operations to obtain measures of sensitivity
[194, 207, 198]. They have moderate requirements of sample size compared to variance-based
techniques. However, higher order interactions of inputs are often not computable because
they are computationally demanding. Two methods were found to be suitable for conduction
of sensitivity analysis for models with non-orthogonal inputs: (I) state dependent parame-
ter (SDP) meta-modeling and (II) random-sampling high dimensional model representation
(RS-HDMR) [198]. However, these meta-modeling techniques can also rely on assigning the
variance of the output to the input parameters and provide, thus, adequate measures for
sensitivity.

6.1.2 Method-Selection

For 13C-MFA models the method has to cope with a high number of inputs, and a non-
orthogonal input space. Additionally, computation has to be fast and efficient. Thus, only
meta-modeling techniques RS-HDMR and SDP modeling were left. The SDP implemen-
tation of Ratto was tested (SS-ANOVA-R toolbox), but was slow and memory consuming
for increased sample size and input numbers (beyond 10-20 inputs and 5000 samples) [198].
Finally, RS-HDMR was chosen and implemented. The basic principle of RS-HDMR will be
introduced next.
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6.1.3 Random-Sampling High Dimensional Model Representation
(RS-HDMR)

The RS-HDMR provides measures for sensitivity based on variance decomposition. It builds
a surrogate model (i.e. it is a meta-modeling technique), which can substitute the original
model (a so called meta-model). RS-HDMR decomposes model outputs into separate low
dimensional functions. These functions are called component functions. They reflect the
effect of a subset of inputs contributing to the output. Single and cooperative influence of
two or more inputs on the output of the model can be reflected by these component func-
tions. The single functions can be determined by parametric or non-parametric regression
techniques. Random samples in input space are used for this procedure. By utilizing the
separate component functions a meta-model is built. Finally, information about the sensi-
tivity can be extracted from the meta-model. These measures are called sensitivity indices.
This is done by extracting the component functions‘ variance and scaling it with the overall
model outputs‘ variance.
In figure 6.1 the construction process of an RS-HDMR meta-model is shown. First, using
random samples, the output of the function is evaluated. Second, the zeroth order compo-
nent function f0 (a scalar) is calculated (basically the mean of the sample points). Next,
the separate component functions are built from the distribution of sample points, here only
component functions of first order for each parameter are shown; for parameter 1 it is given
by f1(x1) and for parameter 2 it is given by f2(x2). They describe the effect of one input
parameter acting on the output of the model. Finally, the meta-model f(x) is built from the
separate component functions f(x) = f0 + f1(x1) + f2(x2). From these component functions
the contribution of each parameter to the output can be extracted by estimating their vari-
ance.
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figure 6.1: Basic idea of RS-HDMR, picture provided by Samuel Leweke.

The RS-HDMR method provides several advantages compared to other methods:

• A moderate sample size is required (5,000-10,000 samples are used) [257].

• Independent and/or correlated inputs are usable [137].

• Estimation of second-order and higher order correlation terms is possible.
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• Low computational cost (only vector dot products need to be evaluated for most tech-
niques) and parallelizable.

The method is not capable of computing global sensitivities for all model outputs at once.
For each output a separate meta-model has to be constructed. Out of all meta-models im-
portant information needs to be extracted and visualized to give the modeler a good overview.

Next, the basics of HDMR are introduced and later applied to 13C-MFA.

6.2 Theory
The principle of HDMR is explained next. The RS-HDMR method is derived from it. Af-
terward, the measures for sensitivity are introduced.

6.2.1 HDMR in General
High dimensional model representation (HDMR) is based on Sobol‘s ANOVA (Analysis Of
Variances) decomposition [220, 221]. It decomposes the output of a model y(x) for a given
number of p inputs x = [x1, x2, . . . , xp] into a hierarchical function expansion:

y(x) = f0 +
p∑

i=1
fi(xi) +

∑
1≤i<j≤p

fi,j(xi, xj) + . . . + f1,2,...,p(x1, x2, . . . , xp) (6.1)

Where f0 is a constant term. fi(xi) are the first order component functions. They de-
scribe the effect of one input i to the output of the model. The second order compo-
nent functions fij(xi, xj) reflect cooperative effects of two inputs at a time. The last term
f(1,2,. . . ,p)(x1, x2, . . . , xp) is the highest order cooperative contribution to the model output.
The input and component functions are defined in the interval 0 ≤ xi ≤ 1, thus Kn =
{x1, x2, ...xn}|0 ≤ xi ≤ 1. Each component function possesses the property that its integral
with respect to its own variables x is zero:

ˆ 1

0
fi1i2. . . ik

(xi1 , xi2 , . . . , xik
)dxs = 0 for each s ε {i1, i2, . . . , ik} (6.2)

Furthermore, the orthogonality of two functions is assumed to be preserved:

ˆ
Kn

fi1i2. . . il
(xi1 , xi2 , . . . , xil

)fj1j2. . . jk
(xj1 , xj2 , . . . , xjk

)dx = 0 ({i1, i2, . . . , il} 
= {j1, j2, . . . , jk})
(6.3)

In HDMR, the above mentioned equation 6.1 is simplified. Several empirical studies have
showed that some high dimensional models can be described by low order cooperative func-
tions [135, 137]. Thus, HDMR uses only functions up to second or third order to describe
y(x). The HDMR contains only a truncated expansion:

y(x) ≈ f(x) = f0 +
p∑

i=1
fi(xi) +

∑
1≤i<j≤p

fij(xi, xj) +
∑

1≤i<j≤k≤p

fijk(xi, xj, xk)
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Third order and higher order correlation are scarcely used, as they will introduce a high com-
putational demand. The component functions in RS-HDMR are usually built by usage of
Monte Carlo integration. For this, several techniques are applicable for regression/smoothing,
e.g. wavelets, splines, polynomials, orthonormal polynomials, and fixed interval smooth-
ing [134, 207]. For RS-HDMR, Li et al. compared orthonormal polynomials to cubic B
splines, polynomials, and Monte Carlo integration. They showed that orthonormal poly-
nomials decrease the needed sample size substantially while maintaining low approximation
error [134], thus they will be used in this study.
The component functions consist of orthonormal polynomials φ and the model coefficients
αi

r, βij
rp and γijk

rpq. For each parameter xi a number orthonormal polynomials up to degree k,
l, l’, m, m′, m′′ are build.
The coefficients are determined by Monte Carlo integration (for more information see ap-
pendix).

fi(xi) ≈
k∑

r=1
αi

rφ
i
r(xi) (6.4)

fij(xi, xj) ≈
l∑

r=1

l‘∑
p′=1

βij
rp′φi

r(xi)φj
p′(xj) (6.5)

fijk(xi, xj, xk) ≈
m∑

r=1

m‘∑
p′=1

m′′∑
q=1

γij
rpqφ

i
r(xi)φj

p′(xj)φk
q(xk) (6.6)

The degree of the polynomials (k,l,l’, m, m′, m′′) can be chosen individually for each com-
ponent function. To build the first order component functions fi of one input, r = 1, 2, ...k
expansion coefficients αi

r are used for the separate orthonormal polynomials φi
r. For a second

order function l · l′ and for a third order function m ·m′ ·m′′ coefficients are used. Usually, the
polynomial‘s degree (k,l,l’, m, m′, m′′) is not increased beyond three or four. Higher order
polynomials tend to oscillate. The number of needed coefficients pHDMR will be increased
also. For a model with 30 inputs with zeroth to second order correlations 4006 expansion co-
efficients need to be determined for a RS-HDMR meta-model (using third order polynomials).

The ingredients of a RS-HDMR meta-model was explained in this section. After construction
of the meta-model, the sensitivity indices need to be extracted from the build model. This
is described in the next section.

6.2.2 Sensitivity Indices
At the end of the sensitivity analysis, the importance of the input parameters has to be
quantified. This is done by computing global sensitivity indices. In RS-HDMR this can be
achieved by partitioning the variance of the model output with respect to the contribution
of model inputs. Finally, the separate fractions of inputs‘ variance contribution are divided
by the overall variance of the model output y(x) and are called global sensitivity indices.
By knowing the sensitivity indices, the modeler can judge the importance of an input (com-
bination) by its contribution to the output‘s overall variance. Non-influential model inputs
can be identified and the parameters‘ importance is quantifiable.
These sensitivity indices are calculated from the conditional variance V (y|xi) for one input
parameter xi, which is always smaller than the overall variance of the given function V (y(x)).
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From these variances, one can calculate the first order global sensitivity index of xi:

Si = Vx(E(y(x)|xi))
V (y(x)) (6.7)

This principle can also be applied to second and third order interactions. From the ANOVA-
HDMR decomposition, the overall variance of the model can be partitioned for separate
contributions of component functions [220]:

V (y(x)) =
∑

Vi +
∑

i

∑
j>i

Vij +
∑

i

∑
j>i

∑
k>j

Vijk + . . . + V123...p (6.8)

Dividing by V (y(x)), the global sensitivity indices are obtained for all combinatorial possible
interactions of inputs [221]:

∑
Si +

∑
i

∑
j>i

Sij +
∑

i

∑
j>i

∑
k>j

Sijk + . . . + S123...p = 1 (6.9)

For RS-HDMR meta-models, the variance of the model V (y(x)) can only be approximated
by the calculated model outputs. If uniform distributed (i.e., uncorrelated) inputs sampled
in a hypercube are used, sensitivity indices can be calculated by given N samples with input
parameters x(s) (where s gives the index a sample) [73]:

Si = V (fi)
V (y(x)) = Vi

V (y(x)) =
∑k

r=1[αi
r]2

1
N

∑N
s=1(f0 − y(x(s)))2

Sij = V (fi,j)
V (y(x)) = Vij

V (y(x)) =
∑l

r=1
∑l′

p=1[βij
r,p]2

1
N

∑N
s=1(f0 − y(x(s)))2 (6.10)

Sijk = V (fi,j,k)
V (y(x)) = Vijk

V (y(x)) =
∑m

r=1
∑m′

p=1
∑m′′

q=1[γijk
r,p,q]2

1
N

∑N
s=1(f0 − y(x(s)))2

If the inputs are non-orthogonal (independent and/or correlated, as in our case), these for-
mulas can no longer be applied, because the uniqueness of the decomposition of the variance
is lost. The calculated sensitivity indices will also depend on correlations between parameters
[276, 137]. The calculation of sensitivity indices can then be performed according to Li et al.
[276, 137]: An RS-HDMR function expansion can be seen as an additive model, where fpj

are
the separate component functions describing the contribution of single or subsets of inputs
xpj

:

f(x) ≈ f0 +
np∑

j=1
fpj

(x(s)
pj

), (6.11)

where np is the number of component functions fpj
. The sensitivity indices can be decom-

posed into total (Stot
pj

), structural (Sstruc
pj

) and correlative (Scor
pj

) contributions (where y(x) is
the average value of y for all samples):

Stot
pj

= Cov(fpj
, y(x))/V (y(x)) ≈

∑N
s=1 fpj

(x(s)
pj

)(y(x(s)) − y(x))∑N
s=1(y(x(s)) − y(x))2

(6.12)
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Sstruc
pj

= V ar(fpj
)/V (y(x)) ≈

∑N
s=1(fpj

(x(s)
pj

))2∑N
s=1(y(x(s)) − y(x))2

(6.13)

Scor
pj

= Stot
pj

− Sstruc
pj

(6.14)

The coefficient Stot
pj

is called total sensitivity index, it can be positive or negative, depending
on the effect on the overall variance. It is based on the covariance of the component function
Cov(fpj

, y(x)). When ∑np

j=1 Stot
pj

≈ 1, the results of RS-HDMR can be assumed a reliable
estimate for the model behavior. The structural sensitivity index Sstruc

pj
is always positive

and is based on the variance of the component function V ar(fpj
). Scor

pj
is the correlative

sensitivity index. It can be positive or negative depending on the influence of the component
function fpj

and its correlation with other inputs. The correlative sensitivity index indicates
correlation of the inputs (Scor

pj

= 0 ), in this case the structural contribution is to be taken

into account. Otherwise, if there is no correlation, the respective fpj
are (approximately)

orthogonal and the structural and total sensitivity indices are equal Stot
pj = Sstruc

pj
.

6.2.3 Measures for Goodness of Fit in RS-HDMR Techniques
Later, RS-HDMR techniques will be evaluated. To compare their results, three measures for
goodness-of-fit are defined here to describe the approximation quality of a RS-HDMR model.
In order to obtain comparability, the measures are independent of the sample size. First, the
sum of all total sensitivity indices for an RS-HDMR meta-model is calculated.

Stot
T =

∑
Stot

i +
∑

i

∑
j>i

Stot
ij +

∑
i

∑
j>i

∑
k>j

Stot
ijk + . . . (6.15)

For separate outputs, the average values for them are given by S
tot

T . To measure the devi-
ation of sampling points and approximated function values, a scaled l2-norm is used. It is
normalized by the sample number N :

‖f(x) − y‖2,n =

√√√√ 1
N

N∑
s=1

(f(x(s)) − y(x(s)))2 (6.16)

Additionally, also the maximum norm is used to measure fit quality:

‖f(x) − y‖∞ = max
s

∥∥∥f(x(s)) − y(x(s))
∥∥∥ (6.17)

An RS-HDMR model fits the data optimal if ‖f(x) − y‖∞ and ‖f(x) − y‖2,n approach “zero”,
while it shows a similar overall variance as the sampling points (Stot

T ≈ 1).

6.2.4 Published RS-HDMR Techniques
In recent years, several new techniques for RS-HDMR were published. Without going into
detail, only basic concepts of the techniques are described, which will be used later. The
basic RS-HDMR was first published by Rabitz et al. [195]. This technique is applicable to
orthogonal model inputs.
The calculation of model coefficients in RS-HDMR (by Monte Carlo integration, see appendix
for formula) is an approximation, thus their application will result in weak fitting quality of
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the model. The deviation between function value y(x) and approximation f(x) can be
used to refine the RS-HDMR coefficient. One technique for this is the correlation technique
for orthogonal inputs. For non-orthogonal inputs the backfitting algorithm can be applied
[32, 137].
In some models important higher order component functions are found. Whereas the compu-
tational effort for calculation of the model coefficients increases. Li et al. showed that higher
order component functions (order ≥2) can be efficiently approximated by the lower order
product technique. Here, lower order component functions (usually first or second order) are
used to approximate higher order component functions [135].
Usually, 5,000-10,000 samples are used for RS-HDMR model building. For low number of
samples (less data points than expansion coefficients) D-MORPH (Diffeomorphic Modulation
under Observable Response Preserving Homotopy) regression was shown to obtain a unique
solution by applying a cost function. The cost function can be, for example, reduction of
model variance or preservation of orthogonality between the hierarchical component functions
[138, 133]. In this study, only the technique for preserving orthogonality with D-MORPH
regression according to Li et al. is applied [133]. In this technique, the orthogonality of
component functions in one hierarchical level like fi(xi), fj(xj), fk(xk) is preserved to be
orthogonal to the respective component functions on higher hierarchical levels like fij(xi, xj),
fjk(xj, xk), fik(xi, xk). The same can be obtained by using extended bases for more samples
than expansion coefficients [135].

6.3 Work-flow for Global Sensitivity Analysis
The work-flow for conducting RS-HDMR can be seen in figure 6.2. Before using the work-
flow, the model input (samples) and the model output need to be computed. Samples can
be generated by using a (quasi-)random number generator or, for example, a Gibbs or Hit-
and-Run sampler [37]. Depending on the properties of the provided samples, the technique
for global sensitivity analysis is chosen:

1. In case of detected uniformly distributed (assumed to be orthogonal) inputs, Legendre
polynomials can be used for the RS-HDMR function expansion. Depending on the
number of samples and expansion coefficients in RS-HDMR (pHDMR) provided, the
technique is chosen: For more samples than expansion coefficients, extended bases and
non-extended bases can be applied. If less samples than expansion coefficients in the
model are available, DMORPH regression has to be used (underdetermined system).
This technique can also be beneficial if the parameters are not uniform distributed.

2. If non-uniformly distributed samples are used, two procedures are available for building
orthonormal polynomials. The orthonormal polynomials are constructed by (I) Gram
Schmidt procedure or (II) by forcing the discrete weighted orthonormality property of
the polynomials to be preserved (see Li et al. for details) [135]. The first approximates
the input parameter‘s density function by polynomials with automatically chosen degree
and the latter by using the provided samples.
The same techniques can be applied as in the uniform case, except that the backfitting
procedure is used solely for non-extended bases [133].

For both methods it is possible to approximate higher order component functions by lower
order product technique. Finally, it has to be decided if the inputs are correlated or uncorre-
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lated. Depending on this choice, variance decomposition can be applied. If the model shall
be used for calculations, non-informative component functions can be removed from it by
reducing the coefficient number in the model based on the F-statistic [137].
A toolbox for global sensitivity analysis (GloSA toolbox) incorporating this work-flow using
random sampling RS-HDMR was implemented in MATLAB 2012a.

6.4 Comparison of RS-HDMR Techniques
To establish RS-HDMR techniques for global sensitivity analysis in 13C-MFA, preliminary
tests of HDMR techniques were performed. The techniques were compared based on an
analytically known test function (Sobol‘s g-function) and a 13C-MFA model output (data
in appendix). The performance of a technique was evaluated by comparing the measures
of maximum norm ‖f(x) − y‖∞, l2-norm ‖f(x) − y‖2,n and total sensitivity S

tot. This was
performed for extended bases and non-extended bases, lower order product techniques, and
DMORPH regression. Additionally, the prediction quality of the sensitivity indices was
examined. It was shown that by increasing sample size substantially above 5,000-10,000
samples, the approximation of sensitivity indices becomes better.
Among all tested algorithms non-extended bases with backfitting, DMORPH, and extended
bases technique performed best. DMORPH regression showed, as expected, better perfor-
mance at low sample number. DMORPH regression and extended bases are computationally
demanding, but lead to (slightly) better measures for fit quality. In the end the backfitting
procedure was used to build the RS-HDMR for 13C-MFA models, because it is fast and pro-
duces reliable results.

In the next section RS-HDMR models are built for a complete network with 429 labeling
measurements. From this a suitable visualization is chosen to condense the more than 200.000
sensitivity indices into a single matrix. From this matrix sensitive parameters can be iden-
tified. Finally, RS-HDMR is used as a meta-modeling technique to gain direct access to the
complex interaction of fluxes and measurements.
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GloSAToolbox

ModelingTool

Generate Samples

Forward Simulation
Obtain f(x(s))

User-defined settings:
• Order of polynomials
• Method
• Correlation level

Check distribution x(s)

Build orthogonal polynomials
including propability density
functions of parameter

• Gram Schmidt
• Force orthonormality

best satisfied

Choose from the existing
methods:

• N ≥ pHDMR

– extended bases
– non-extended

bases with
backfitting

• N < pHDMR

– DMORPH
regression

Optional: lower-
order product HDMR

Use Lengdre orthonor-
mal polynomials

Choose from the existing
methods:

• N ≥ pHDMR

– extended bases
– non-extended

bases with correla-
tion/backfitting
method

• N < pHDMR

– DMORPH
regression

Optional: lower-
order product HDMR

Check for correlatetd inputs

Sensitivity Indices:
Decomposition of Variance

Sensitivity Indices:
Direct estimation from
expansion coefficients

Correlated Not Correlated

Uniform
Non-Unifrom

figure 6.2: GloSA toolbox and work-flow for optimal application of RS-HDMR techniques
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6.5 Global Sensitivity Analysis for 13C Metabolic Flux
Analysis

figure 6.3: P. chrysogenum model.

In this section, global sensitivity analysis
for a model of P. chrysogenum is performed.
Here, the ultimate aim is the quantification
of influence for the inputs, to identify the
insenstive parameters. Visualization of the
results is provided. Finally it is shown, that
the generated RS-HDMR can be used to vi-
sualize and quantify the impact of fluxes on
the labeling pattern.
The model contains 50 LC-MS/MS measure-
ment groups with overall 429 single measure-
ment values (each measurement group refers
to a specific metabolite measurement, con-
sisting of single measurement values). The
constructed model consists of 127 reactions
with 76 pools for P. chrysogenum with a sub-
strate mixture of 60 % Glc#100000, 20 %
Glc#111111, and 20 % Glc#000000. Adap-
tions in constraints and flux directionality as
well as penicillin pathway were made com-
pared to the previous chapter. The uptake
of glucose was set to gly1.n=1.00 and the
biomass efflux to BIOM_ex.n=0.0032 (according to experimental data). The measure-
ments are situated in central carbon metabolism (glycolysis, pentose phosphate pathway,
and citrate cycle) as well as (precursors of) amino acids. The fluxes were sampled in inter-
vals given in table A.4 in the appendix. The exchange fluxes were sampled in the interval
[0, 6]. Non-extended bases with backfitting procedure was used in RS-HDMR with 200 it-
erations and orthonormal polynomials of third order. The function was adaptively damped
(see appendix for description).
In the next section, the generation of a visualization for such a MIMO system is explained
and applied for a model from literature for E. coli and later on for the previously build
P. chrysogenum model. The E. coli model was chosen as a bad example.

6.5.1 Building Global Sensitivity Matrices for MIMO Systems

Sensitivity analysis is usually accompanied by a suitable visualization of its results to support
strategic decisions for the model building process. Here, the work-flow for generating a
sensitivity matrix for a MIMO system is described. It condenses the results of the sensitivity
analysis into a readily accessible visualization.
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v1

v 2
1. Samples are generated in input space. The flux space
is a convex polytope constrained by the the stoichiomet-
ric matrix and given lower and upper bounds for the
inputs. Sampling can be performed by Gibbs or Hit-
and-Run sampler. In this study, the Gibbs sampler was
used, only each p3-th sample was used to guarantee in-
dependence of the sample points. For calculating the
RS-HDMR 50,000 samples were generated.
From one given set of free fluxes, the model outputs are
generated. Overall, for 429 model outputs yi(x) RS-
HDMR meta-models were built.

v1

v 2

2. Construct the component functions (equation 6.6) us-
ing RS-HDMR techniques. The construction of the or-
thonormal polynomials φ(xi) is performed only once for
a set of samples, but for each model output a separate
RS-HDMR has to be calculated. The chosen technique
and settings depend on the system under investigation
and desired accuracy. Naturally, the technique of choice
has to be fast, and can be parallelized but provides suffi-
cient accuracy. Here, the non-extended basis with back-
fitting procedure was chosen.

Var( )

3. Calculate sensitivity measures. For each model out-
put yi(x) the variance and covariance of the separate
component functions V ar(fpj

), Cov(fpj
, f(x)) and Scor

pj

need to be calculated (equation 6.12-6.14). The first
two quantities are not normalized to the model‘s output
variance to weigh them with respect to the other model
outputs. This is important as the variance of the model
outputs of the 13C-MFA model varies across five orders
of magnitude (10-7-10-2). Thus, an input contributing
weakly to a model output with high variance can (in
absolute numbers) be overall more important than an
input with high influence on a model output exhibiting
low variance. By this the most influential inputs can be
identified and lead to highest variance in model output.

. . . . . .

4. Build matrices sensitivity measures. The extracted
structural variance of each component function is writ-
ten to a sensitivity matrix for each measurement yi(x)
separately. Thus, 429 sensitivity matrices are built for
one 13C-MFA model.
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max

5. Build MIMO sensitivity matrices. Finally, the max-
imal absolute values for a specific component function
fi or fij in all constructed matrices yi(x) of V ar(fpj

)
is searched for. The value is extracted and written to
a new matrix. This matrix is the so-called structural
sensitivity MIMO matrix.
Caution has to be taken, as the separate entries in the
matrix might be intermixed if inputs are correlated.
Also the entries corresponding to the extracted values
of the structural sensitvity measures (Sstruc

pj
) need to be

visualized. The respective correlative sensitivity index
(Scor

pj ) and the total sensitivity indices (represented by
Cov(fpj

, f(x))) of the component function are visual-
ized also in a matrix.

Next, the described workflow is applied to an example for a 13C metabolic model from
literature.

6.5.2 Example from Literature: E. coli model

In literature, several examples for stationary 13C-MFA are found. A model of E. coli including
measurements was published by Zamboni et al. [280]. In figure 6.5a this E. coli model is
shown. The model contains 68 reaction and 37 pools. It is composed of 26 inputs and 194
output functions (35 MS measurement groups, only amino acids were measured).
For the generation of an RS-HDMR, random samples are needed as previously described.
The flux values are constrained by lower/upper bounds and the stoichiometric matrix S.
Due to the concept of free fluxes, the flux parameter space is correlated. Additionally, linear
inequality constraints cut the space resulting in a convex polytope. Samples for the E. coli
model can be seen in figure 6.4. The sample densities for the net fluxes are non-uniform and
the sample points projected into two dimensions show areas without any samples.
The result of a sensitivity analysis described in section 6.5.1 is shown in figure 6.5b. One of
the three measures (Sstruc) for sensitivity of the separate fluxes is visualized in the structural
sensitivity MIMO matrix. High values ( ) correspond to sensitive model inputs or com-
binations of them in respect to the measurements. Without further discussion, it is obvious
that the sensitivity indices for all effluxes to biomass (prefix “BM”) show only weak contri-
butions ( ) to the output. Thus, several model inputs are not sensitive towards the MS
measurements in the model. Later, interpretation of simulation outcome of this model may
be severely hampered by these insensitive parameters because they are taken for granted.
Besides, the model is over-parametrized. Potentially, even wrong conclusion may be drawn
from the fluxes, if no statistics (confidence intervals of the fluxes) is calculated. In order to
prevent this, the respective inputs can be set constant or removed from the model. In an
optimal case, measurements can be added by experimental design to the model to increase
the sensitivity of these fluxes. A possible way out in the case of the E. coli model is to
measure the effluxes to the biomass and, thus, also these fluxes will become sensitive.

After this example from literature, the P. chrysogenum model is evaluated using the global
sensitivity analysis.
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6.5.3 Results for P. chrysogenum model
RS-HDMR models were built for the separate measurements in the 13C-MFA model and the
above work-flow was applied for visualization. Next, the results will be discussed.

Sensitive Fluxes

The resulting total sensitivity MIMO matrix for 429 labeling measurements can be seen in
figure 6.6. The terms V ar(fpj) and Scor

pj corresponding to entries in the total covariance
MIMO matrix are visualized in figure 6.7. In the model first order component functions
were most influential, shown by the strong contribution of high values in the diagonal el-
ements in figure 6.6. Four fluxes show only weak first order variances: Net flux through
phosphoenolpyruvate carboxykinase and exchange flux of threonine aldolase and acetyl-CoA
transporter (Ana1.n, Thr2.x, Trans_AcCoA.x) exhibit low effect on output variance of the
model indicating that they can be removed from the model. Furthermore, there are two
distinct clusters visible were high sensitivities were found in the fluxes of the TCA, glycol-
ysis and transporter to mitochondria (Tca1.n, Tca8.n, Trans_CO2.n, Trans_Pyr.n, gly2.n,
gly7.n). Another distinct cluster consists of the pentose phosphate pathway and fluxes in
glycine formation for exchange fluxes (PPP3.x, PPP3.x, PPP3.x, PPP3.x, PPP3.x, Gly1.x,
Gly2.x). They also showed strong effects on output variances by second order cooperative
effects for fluxes of glycolysis (gly2.n and gly7.n).
The first order effects contribute 80 % of the variance and the second order effects 16 %. On
average 96 % of the overall variance of model output was accounted for by the RS-HDMR
meta-model. Total variance was usually well reproduced, a few model outputs were fitted
only with low quality (lowest values Stot

T = 0.73). Potentially, higher order interactions or
polynomials need to be chosen to obtain better estimates for these measurements.

Correlations in the Network

Strong correlative effects can be seen in the plot of the correlative MIMO sensitivity matrix
(cf. figure 6.7a). Especially the main net fluxes (gly2.n, gly7.n and Tca1.n) show strong
correlative contributions to the total variance, and, thus, the structural MIMO sensitivity
matrix has to be taken into account. In this matrix, main tendencies are not changed by
the correlation. Caution is advised when interpreting the total sensitivity MIMO matrix, as
correlative effects may hamper interpretability of the results as first and second order effect
can contribute to each other by the effect of correlated inputs. Besides, orthogonality of the
component function can be impaired in non-orthogonal inputs, resulting in the same effect
and can also be indicated by the correlative MIMO sensitivity matrix.

Measurements

Besides identification of most influential inputs, the most influential measurement can be ex-
tracted from figure 6.6. As expected, the aspartate formation in the cytosol or mitochondrium
shows strong correlation with the measurement of aspartate. Interestingly, most net fluxes
in glycolysis are sensitive on the xylulose/ribulose-5-phosphate measurement. Anaplerotic
fluxes (Ana1.x and Ana2.x) show also high sensitivity indices for phosphoenolpyruvate mea-
surement. Exchange flux in upper glycolysis of glucose-6-phosphate isomerase show high
sensitivity indices for the 6-phosphogluconate measurements.
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Finally, the fit quality and run-time of the program was evaluated for the shown 429 meta-
models.

Fit quality and Run-time of RS-HDMR

RS-HDMR was efficiently applied to gain knowledge about global sensitivities of fluxes. Here,
only polynomials up to third order were used. Increasing the order further will increase fitting
quality and results in better estimation of the overall variance of model output S

tot

T , which
was 4 % below of the variance of the MIMO model.
The overall procedure took 20-24 hours for the generation of 50,000 samples (including for
each generated sample p3 discarded samples, wherep equals the number of free fluxes; one
core was used) and forward simulation of all flux samples by 13CFLUX2. Additionally,
construction of all RS-HDMR meta-models lasted between 1-10 days (1 MATLAB process)
depending on the desired accuracy (10 days were needed for this study).

Until now, the built meta-models were used to extract single-value measures (sensitivity
indices). At the same time, more information is contained in the 429 built meta-models.
In the next section we focus on the built first and second order component functions for
specific measurements. The component functions are visual representations of changes in
measurements caused by flux values and will be discussed in the context of the metabolic
network. The mass spectrometric measurement of fructose-6-phosphate is used, which is
highly sensitive for fluxes in upper glycolysis.
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(b) Structural MIMO sensitivity matrix

figure 6.7: Structural and correlative MIMO matrix for P. chrysogenum network. (a) Maximal
absolute correlative variance of the respective component functions. (b) Maximal ab-
solute structural variance of the respective component functions were extracted. Red
and blue patches indicate positive and negative value, respectively. Both matrices are
carrying the same entries as the total MIMO sensitivity matrix.



116 CHAPTER 6. GLOBAL SENSITIVITY ANALYSIS

6.6 Assessing Key Influential Fluxes from Changes in
Labeling Patterns

In literature the dependency of labeling patterns on fluxes has been extensively discussed
[156]. Quantification of the effects of a flux on the labeling states requires interpretation in
the context of the constrained flux space. Besides, forward simulation can be used to shed
light onto the dependency of a labeling pattern of a metabolite on a given set of fluxes. In
contrast to this, the changes in the MS labeling patterns are visualized in this section aiming
at the reverse assessment of fluxes by the measured mass spectra.
The tracking of labeling through a reaction network is often used in literature to interpret
labeling patterns. However, by the presented method, this can be simplified. Here, we aim
at elucidating the question: Can we use component functions to shed light on the interplay
of MS measurements and fluxes in a 13C-MFA model?

P. chrysogenum Model

For this, the previously used P. chrysogenum network is employed. Deviating from the previ-
ous procedure, exchange fluxes were sampled in the interval [0, 0.5]. Net fluxes were sampled
in intervals as for generation of MIMO matrices. In the following two examples, we will focus
on the m+1 and m+2 mass trace of fructose-6-phosphate.

Fructose-6-Phosphate m+1 Mass Trace

An RS-HDMR meta-model was built for a MS measurement of the fructose-6-phosphate
m+1 mass trace. The most influencing fluxes on the m+1 labeling pattern are the fluxes
of glycolysis by glucose-6-phosphate isomerase (gly2.n and gly2.x). Here, a high net flux
through glycolysis (by gly2.n) is resulting in a low flux through oxidative pentose phosphate
pathway. For this model 60 % 1-, 20 % uniform, and 20 % unlabeled glucose was used. Thus,
the higher the flux through glycolysis, the higher the m+1 trace as the first carbon atom
of glucose-6-phosphate is removed in the pentose phosphate pathway by 6-phosphogluconate
dehydrogenase (see figure 6.8a).
The resulting first order component for the m+1 mass trace can be seen in figure 6.8b. It
decreases by 0.15 from lowest to highest value for gly2.n. Also gly2.x shows a similar effect,
but less pronounced. As expected for this mass trace, gly2.n has a Stot

gly2.n of 0.61 and is the
most influential flux acting on the m+1 labeling. Besides the exchange flux was rather low
[0, 0.5] and exhibits only a small change in the labeling pattern Stot

gly2.x = 0.03. The other
inputs of the model were less influential on the output.
Additionally, a high second order interaction is observed for gly2.n and gly2.x. The second
order component function fgly2.n,gly2.xch of m+1 is visualized in figure 6.9 and results in a total
sensitivity of Stot

gly2.n,gly2.xch = 0.02. Here an additional effect of both fluxes acting together
on the model output is shown. Another change of ~0.1 in labeling pattern is accounted for
in the second order interaction term.
In the second order component function, it can be seen that all 1-labeling is removed by
pentose phosphate pathway if flux through glycolysis is zero (gly2.n = 0 and gly2.x = 0).
If the exchange flux and/or net flux to glycolysis is increasing, fructose-6-phosphate pool‘s
m+1 labeling fraction elevates.
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(a) Pentose phosphate pathway

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

xi [-]

f i
(x

i)
[-
]

Ana1.n Asp1b.n
Pen3.n Tca1.n
Tca8.n TransCO2.n

TransPyr.n gly2.n
gly7.n Ana1.x
Ana2.x Ana3.x
Gly1.x Gly2.x
PPP3.x PPP4.x
PPP5.x PPP6.x
PPP7.x Tca5b.x
Tca6a.x Tca7a.x
Tca8.x Thr2.x
TransAcCoA.x TransOAA.x

gly2.x gly4.x
gly4b.x gly5.x
gly6.x

(b) F6P m+1

figure 6.8: RS-HDMR results for fluxes effecting 1-labeling in fructose-6-phosphate mass spectro-
metric measurement. (a) Effect of flux over pentose phosphate pathway on 1-labeled
glucose as substrate. (b) First order component function for m+1 mass traces for
fructose-6-phosphate. ‖f(x) − y‖2,n = 0.0017, ‖f(x) − y‖∞ = 0.0158, Stot

T = 0.999.
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This proof-of-principle example was rather obvious. However, can we also gain new insight
in reactions which are not so obvious? Next, the m+2 mass trace in fructose-6-phosphate is
taken into account.
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figure 6.9: Second order component function built for fructose-6-phosphate m+1 MS measure-
ment. Elements in surface plots were removed, if the they were not inside of the
convex hull spanned by the sampling points. ‖f(x) − y‖2,n = 0.0017, ‖f(x) − y‖∞ =
0.0158, Stot

T = 0.999.

Fructose-6-Phosphate m+2 Mass Trace

The labeling mixture used for simulation of the experiment contains fully, 1-labeled, and
unlabeled glucose. Thus, m+2 labeled fructose-6-phosphate has to be generated by reactions
in the network. We will now infer its origin by using the participating reactions.
In figure 6.10 m+2 trace‘s first order component functions are shown. As it was not contained
in the substrate mixture, the appearance of 2-labeled species has to be explained by the
reactions in the network. Transketolase (PPP7.x) and transaldolase (PPP6.x) show high
influences by their first order component functions (besides flux through glucose-6-phosphate
isomerase, gly2.n). Thus, the respective reactions are involved in the formation of these
species. Two possible routes for its formation will be outlined here.
Fully labeled glucose in the substrate mixture can be transported into pentose phosphate
pathway to yield fully labeled xylulose-5-phosphate. The transketolase is forming fructose-6-
phosphate. When xylulose-5-phosphate was fully labeled and erythrose unlabeled, we obtain
m+2 labeled fructose-6-phosphate (see also figure 6.11, left):

X5P#11111 + E4P#0000
transketolase/P P P 7−−−−−−−−−−−−⇀↽−−−−−−−−−−−− GAP#111 + F6P#110000

This is indicated also by the RS-HDMR first order component function for flux transketo-
lase/PPP7.x, see figure 6.10.
Additionally sedoheptulose-7-phosphate can be formed from fully labeled xylulose-5-phosphate
and unlabeled ribose-5-phosphate (X denotes arbitrary labeling).

R5P#00 XXXX + Xu5P#11111
transketolase/P P P 5−−−−−−−−−−−−⇀↽−−−−−−−−−−−− S7P#110 XXXX + GAP#111
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figure 6.10: RS-HDMR built for fructose-6-phosphate m+2 MS measurement. RS-HDMR for
m+2: ‖f(x) − y‖2,n = 4.3 · 10−4, ‖f(x) − y‖∞ = 0.0089, ST = 0.998.

(a) Transketolase (b) Transaldolase

figure 6.11: Two possible metabolic routes for the formation of m+2 labeled fructose-6-phosphate
by (a) transketolase and (b) transaldolase/transketolase.

Sedoheptulose-7-phosphate labeled at the first two carbon atoms is then used to form m+2
labeled fructose-6-phosphate by action of transaldolase (see figure 6.11b).

S7P#110 XXXX + GAP#000
transaldolase/P P P 6−−−−−−−−−−−−⇀↽−−−−−−−−−−−− E4P#XXXX + F6P#110000

Nevertheless, further routes for the formation of m+2 labeled fructose-6-phosphate can be
found. The described reactions seem to explain the strong dependency of m+2 labeled
fructose-6-phosphate on these two exchange fluxes.
The component function of the flux through glycolysis (gly2.n) is counter-acting the effects of
the first order component functions of fluxes through transaldolase and transketolase (PPP6.x
and PPP7.x). This dependency can be easily resolved. In the network net fluxes through the
respective reactions of transaldolase and transketolase (PPP6.n and PPP7.n) mainly depend
on the net flux through glucose-6-phosphate isomerase (gly2.n). Decreasing the flux through
glycolysis results in increased flux over PPP6.n and PPP7.n and, thus, in an increased for-
mation of m+2 trace (PPP6.n = 0.3194−0.3333·gly2.n, PPP7.n = 0.3084−0.3333·gly2.n).
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Summing up, it was shown that an application of RS-HDMR is not limited to global sensitiv-
ity indices. It can be applied to visualize interplay of measurements and flux distributions. It
increases the value of a pure global sensitivity analysis by providing readily interpretable vi-
sual representations of processes in the network context. Additionally, it enables the ranking
of effects by fluxes acting on labeling patterns even in large networks. This is a complex and
extensively discussed topic in literature (see for example figure 3 in Metallo et al. [156]). How-
ever, this method simplifies the shaping of hypthesis for the explanation of labeling patterns
significantly.

6.7 Discussion
RS-HDMR was proven to be a reliable tool for estimation of sensitivity indices based on
analytical test functions. The technique was established to perform the first global sensitivity
analysis for 13C-MFA models. The analysis was conducted for MIMO models with correlated
input samples enabling the identification of key influential factors. For this, visualization
of scaled sensitivity indices in a MIMO sensitivity matrix was used. Thereby, it was shown
that fluxes (in pentose phosphate pathway, citrate cycle and glycolysis), important for the
outcome of the study, were highly sensitive. Fluxes, for example in anaplerosis, were found
to be in-sensitive towards the measurements. The approach proved to identify the set of
measurements that are most influential for the response of the model input to the model
output.
Interpretation of the resulting component functions was possible and they contained detailed
information about the interplay of fluxes and labeling measurement. Thus, tedious tracking
of labeling through networks for shaping of hypotheses about their origin is simplified and
the changes in labeling can be quantified with respect to the fluxes.
The RS-HDMR method using non-extended bases and backfitting procedure could reproduce
96 % of the overall variance and acceptable fit was obtained over a wide range of input
parameter values. Besides, it was shown that more than 5,000 samples are needed to build a
RS-HDMR with non-orthogonal inputs. A good compromise between run-time and accuracy
were 50,000 samples. Importantly, evaluation of the build meta-model on reference sample set
was found to be highly recommended, preventing under-estimated errors of the meta-model
(see appendix A).

Further Improvements

By further tests it was confirmed that regions with higher deviates (‖f(x) − y‖) of RS-
HDMR and model output were situated in input parameter regions with low sample densities.
Improved sampling strategies are needed to increase sample size in these regions.
Besides, interpretability of the sensitivities is hampered by influence of correlated samples.
Clearly, the decomposition into structural, correlative and total sensitivity described is an
approximation. Reduction of input correlation can be accomplished by transformation into
orthogonal input space, for more information see Mara et al. [147]. However, depending on
the type of transformation used, the interpretability of the results might be severely ham-
pered and component function may become more complex to approximate.
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Removal of Fluxes

Insensitive parameters identified by global sensitivity analysis need to be removed from the
given model in order to prevent false interpretation of the later estimated parameter values.
Care has to be taken, as setting of fluxes constant or removing reactions might ultimately
result in removal of important network parts under investigation. Removing such branches,
however, will/can make the model “meaningless” to the question posed in the study. In this
case, no inference about the fluxes of interest in the used network model can be made by the
current experimental setup. However, global sensitivity analysis can prevent in this case the
conduction of useless experiments. Adding further information by additional measurements
or conduction of experimental design can help elucidating these pathways. Here, global
sensitivity analysis can be applied again to gurantee global sensitivitiy of the parameters in
respect to the measurements.
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Chapter 7

13C Metabolic Flux Analysis for
P. chrysogenum BCB1

Although extensive research has been performed on P. chrysogenum, highly resolved flux
maps for industrially relevant conditions are still rare. In this chapter 13C-MFA is applied to
a chemostat process to establish the technique. Afterwards, the obtained method is trans-
lated to a close-to-industrial fed-batch process using the sensor bioreactor concept. Details
on the experimental setup are given in chapter 4.
This chapter describes the 13C-MFA which was performed based on the focused 13C metabolic
network with 140 reactions. The obtained results are qualitatively compared to flux distri-
bution obtained with the large scale 13C metabolic model (chapter 5.1) to verify that the
resulting flux maps obtained by the focused network are physiologically feasible and that the
assumptions made to construct it were reasonable. Finally, an experimental design study for
a chemostat (chemostat 1) experiment was conducted and the results are used to perform
the following 13C-MFA experiments (chemostat 2 and 3).

table 7.1: Cultivations performed for carbon labeling experiments

μ[h−1] Labeled substrate [%]
1-13C/U-13C/12C

Chemostat 1 0.03 60/20/20
Chemostat 2 0.03 70/30/0
Chemostat 3 0.05 70/30/0
Fed-Batch 1 0.008 60/20/20
Fed-Batch 2 0.007 60/20/20

7.1 13C-MFA for Chemostat Cultivations
Chemostat experiments were conducted to establish 13C-MFA in P. chrysogenum, because
they, at least theoretically, provide ideal steady-state conditions compared to fed-batch pro-
cesses. First, experiments were performed using a specific growth rate of 0.03 h−1 and a sub-
strate mixture of 60 % C1-, 20 % uniformly, and 20 % naturally labeled glucose. Following, an
experimental design study was performed to increase the system‘s statistical identifiability.
Two chemostat experiments were conducted with the optimized substrate mixture of 70 %
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C1- and 30 % uniformly labeled glucose. Therefore two different specific growth rates of 0.03
h−1 and 0.05 h−1 were chosen.
After extrapolation, correction for natural abundance and statistical reconciliation (as de-
scribed in chapter 4), of the LC-MS/MS measurements, more than 200 MS measurements
were used for the 13C-MFA. Measurements with low fit quality in extrapolation were re-
moved beforehand from the data-set. These were more than 50% of the data.
The labeling data and up to 12 rate measurements were introduced into the model ob-
tained by the kinetic process model in chapter 4. The used constraints and networks were
previously described in chapter 5.1. The models including data were fitted and worst fitting
MS-measurements were removed consecutively. Here, the results of the analysis are collected.

7.1.1 Chemostat 1 with Growth Rate of 0.03 h−1

Flux Estimation

The focused model introduced in chapter 5 was supplemented with all rate and labeling
measurements. If for a side-product in the penicillin pathway no rate measurement was
available (because its concentration was too low), the measurement value of 0.0 ± 10−5 was
used. Parameter estimations are performed based on the globalized multi-start strategy. The
high performance simulator 13CFLUX2 (version 2.1) was used throughout this study for flux
sampling, simulation, parameter estimation, statistics calculation, and experimental design
[260]. Based on 500 starting points generated with a Gibbs sampler (using program ssampler,
net fluxes were sampled in interval [−1, 1] and exchange fluxes in [0, 1]), parameter estimation
was performed with the program fitfluxes (optimizer: NAG-NLP from the commercially
available NAGC library, maximal iterations: 350).

Detecting Local Minima

To detect local minima and alternative solutions, the estimated fluxes were compared in
density plots (figure 7.1). For most net fluxes the obtained solution was a clearly defined
optimum, e.g. for the flux through the pentose phosphate pathway (PPP) via glucose-6-
phosphate dehydrogenase (PPP1 ) (figure 7.1a). For this flux, found solutions were ranging
from 0.27 to 0.29 mmol g−1

CDW h−1. The flux into the oxidative part of the pentose-phosphate
pathway is important for further analysis, because it delivers NADPH for penicillin V for-
mation.
For some fluxes a rather broad distribution of solutions was found, e.g. for the flux to
acetyl-CoA via a transporter system. Two predominant clusters at 0.00 mmol g−1

CDW h−1 and
0.02 mmol g−1

CDW h−1 were found, corresponding to either complete formation of acetyl-CoA
in the cytosol or in the mitochondria. Kleijn reported formation of acetyl-CoA in the mito-
chondria, but was not able to provide statistics for the estimated flux distribution [121].
For the model with lowest WRSS of 303, the estimated extracellular flux measurements were
within the standard deviation of the experimental data and, thus, correspond to the measured
data. However, for some LC-MS/MS measurements, the obtained fitted values were deviating
from experimental determined standard deviations. The fit of the LC-MS/MS measurements
are discussed below. For this purpose, a visualization was developed to detect measurements
with poor fitting quality.
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(a) Glucose-6-phosphate dehydrogenase (PPP1 )
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(b) Transporter to acetyl-CoA (Transporter_AcCoA)

figure 7.1: Found flux estimates of 500 parameter estimations using the program fitfluxes and
ssampler applied for a globalized multi-start strategy for chemostat 1 with a growth
rate of 0.03 h−1: Two examples are given for net fluxes: (a) glucose-6-phosphate de-
hydrogenase (PPP1 ) and (b) transporter of acetyl-CoA (Transporter_AcCoA). The
frequency ( ) of the found solutions is shown with respect to the flux values. WRSS
( ) values found by parameter estimation procedures are shown as scatter plots, the
model with lowest residual ( ) is marked.
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figure 7.2: (a) Parity plot of chemostat 1 with a growth rate of 0.03 h−1. (b) Plot of min-
imal/maximal value for the simulated measurement ( ) for 50,000 flux samples,
measurement ( ) and simulated data ( ).

Visualization of Goodness of Fit

Parity plots are used to show the goodness-of-fit of experimental and simulated data (see
Kleijn [121], page 92). However, data-sets with differing standard deviations can exhibit
strong deviates in the parity plot, although the simulated data lie within the standard de-
viation of the measurements. An example is given in figure 7.2a indicated by a red marker,
which is the PSer m+1 measurement in figure 7.2b. From the second plot it is obvious, that
the measurement of PSer possesses a large standard deviation compared to the data of PRO,
which is not obvious in the parity plot. Thus, in the parity plot the measurement is an
outlier, although by its standard deviation it is not.
Additionally, parity plots imply a possible change of the measurements within the inter-
val [0, 1], which is usually not the case for mass spectrometic labeling measurement in an
13C-MFA experiment. Thus, sampling was performed (50,000 samples) using ssampler for
all free fluxes (net and exchange), while measured extracellular fluxes were kept within the
interval of 2.5 times their standard deviations. The exchange fluxes were sampled in the
interval [0, 10] and net fluxes within [−100, 100]. After simulating the MS measurements for
each flux distribution, the minimal and maximal value of each labeling measurement was
plotted (figure 7.2b, gray rectangles). The new visualization shows, that most measurements
cover only a small fraction of the interval [0, 1] in the found samples. Besides the range of the
simulated measurements, the measured data, including standard deviation and the simulated
LC-MS/MS measurements for the best fit model, are shown. These plots were made for all
13C-MFAs conducted and can be found in the appendix C.
It is important to mention that single measurements have been removed from the measure-
ment groups, because they showed high deviates to the simulated data. In figure 7.2b the
m+0.0 mass trace of PRO was removed. This is indicated by adding “scaled” to the mass
trace description, given in the plot (here the scaling factor ω was used to fit the data, see
equation 2.14).
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Discussion of the Flux Map - Glycolysis and Pentose Phosphate Pathway

The flux map for the chemostat 1 at a growth rate of 0.03 h−1 (figure 7.3) reveals a high
flux through the oxPPP. The flux into the upper part of glycolysis via glucose-6-phosphate
isomerase is ~20 % of the absolute substrate uptake flux. High exchange fluxes were found
for this enzymatic reaction (12.03 mmol g−1

CDW h−1). In the PPP as well as in glycolysis low to
high exchange fluxes were found ranging within 0-30 mmol g−1

CDW h−1 and 0-86 mmol g−1
CDW h−1,

respectively. As the net flux through the oxPPP is high, most 1-labeling in the network is
expected to be removed by activity of the 6-phosphogluconate dehydrogenase. Interestingly,
this is not the case. Most metabolites in glycolysis show a high content of m+1 traces,
e.g. 20-25 % m+1 can be found in 2- and 3-phosphoglycerate. Even in ribose-5-phosphate
25 % of single labeled species are present. That can be explained with the spread of the
labeled glucose-6-phosphate pool via glucose-6-phosphate isomerase into the reaction network
through glycolysis and PPP by exchange fluxes. Next to the labeled glucose-6-phosphate
pool, 40 % m+1 is found in the fructose-6-phosphate pool. Thus, the glucose-6-phosphate
pool is highly equilibrated with the fructose-6-phosphate pool. High equilibrating reactions
for glucose-6-phosphate isomerase were also found by Kleijn for P. chrysogenum [121]. (The
same effect was already shown by using RS-HDMR meta-models for fructose-6-phosphate
m+1 trace in chapter 6.)

Anaplerosis, Gluconeogenesis and Citrate Cycle

The gluconeogenetic reaction from oxaloacetate to phosphoenolpyruvate by phosphoenolpyru-
vate carboxykinase was constrained to low values to prevent futile cycles. This reaction has
a low statistical significance throughout this study. Kleijn found high values (ca. 50 % flux
through lower glycolysis) for this reaction but could not calculate confidence intervals and a
statistical analysis is lacking [121]. Flux in anaplerosis by pyruvate carboxylase was found
to be high (0.176 mmol g−1

CDW h−1). This can be explained by the activity of mitochondrial
malic enzyme, converting 0.054 mmol g−1

CDW h−1 of oxaloacetate to pyruvate and, thus, a high
amount of TCA replenishing oxaloacetate is needed. The TCA cycle shows high activity and
the withdrawn biomass effluxes are comparatively low. As in glycolysis, high exchange fluxes
were also detected in the TCA cycle; fluxes through fumarase and malate dehydrogenase
were highly equilibrated (exchange fluxes of 18 and 52 mmol g−1

CDW h−1).

Alternative Pathways for the Formation of Biomass Components

In the metabolic network, alternative metabolic pathways can be used to form biomass com-
ponents. The fluxes towards these compounds is now discussed, to identify which pathways
are predominantly used for their formation. To give an example, aspartate can be formed
within the cytosol via the action of an aspartate transaminase and within the mitochondria
via an aminotransferase. Plotting best fits as shown in figure 7.1 results in no clear trend and
the flux possessed a high standard deviation.
Acetyl-CoA can also be formed in the cytosol and in the mitochondria. The main formation
pathways for acetyl-CoA have been extensively discussed [275]. Possible routes are (I) the
direct formation in the cytosol (II) the formation in the mitochondria and transport by a
carnitine transporter to the cytosol, and (III) a (citrate) shuttle system using citrate lyase
[98]. Kleijn found only mitochondrial formation of acetyl-CoA and transport into the cytosol
by 13C-MFA, but did not provide statistical measures for these results [121]. This cannot



128 CHAPTER 7. 13C METABOLIC FLUX ANALYSIS FOR P. CHRYSOGENUM BCB1

figure 7.3: Flux map for P. chrysogenum in chemostat 1 with a growth rate of 0.03 h−1 using a
mixture of 60 % C1- and 20 % uniformly labeled glucose and 20 % naturally labeled
glucose. Fluxes are given in [mmol g−1

CDW h−1]. Biomass formation is given in [h−1].
WRSS= 303.
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be verified within this study by the respective fluxes, because the fluxes from cytosol and
mitochondria to acetyl-CoA possessed higher standard deviations compared to the estimated
flux value.
Furthermore, the formation of glycine was possible via two pathways. Glycine can be formed
by serine hdyroxymethyltransferase and threonine aldolase: both possessed higher standard
deviations compared to the flux value. In the end it was not possible to proof formation by
the one or the other pathway. In fact, Christensen proposed presence of both pathways by
13C-MFA [40].

7.1.2 Optimal Experimental Design of Labeling Mixture
An experimental design study was conducted to increase the statistical identifiability of sub-
sequent chemostat experiments with respect to all fluxes. This was done for the chemostat 1
via using mixtures of C1-, uniformly and naturally labeled glucose. The results of the ex-
perimental design study using the D-criterion are plotted in figure 7.4a. A distinct optimal
substrate mixture for the flux distribution is 70 % C1- and 30 % uniformly labeled glucose.
However, the range for the optimal substrate mixture is broad and the increase in statistical
identifiability is rather low compared to the first used mixture. Thus, an already close to
optimal substrate mixture was used to conduct the first experiment.
Besides the D-criterion, optimal experimental design studies can be conducted, for example,
based on modified A-, E-, and, C- criteria. In figure 7.4b, the best design points are shown for
experimental design studies. Besides the previously calculated optimum, a second optimum
for (modified) A- and C- optimal design was found at 30 % uniformly and 70 % unlabeled
glucose. Interestingly, the E-criterion is showing a separate optimum demonstrating that the
outcome of experimental design study is depending on the applied criterion. For in-depth
discussion, see chapter 10. The 70 % C1- and 30 % uniformly labeled glucose mixture was
used, as it provides the opportunity of elucidating high resolved flux map for PPP-pathways
by incorporation of C1-labeled glucose.
For the optimized substrate mixture, a second set of experiments was performed using the
same growth rate of 0.03 h−1 (chemostat 2) and a growth rate of of 0.05 h−1 (chemostat 3).
The flux map for the chemostat 2 with growth rate of 0.03 h−1 using the optimal substrate
mixture can be found in appendix C.4. The statistics in chemostat 2 with the optimized
mixture were similar or slightly decreased compared to chemostat 1, although an increase
was expected. Reasons may be variations in the labeling measurements causing this effect.
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figure 7.4: Results of the experimental design study on Fisher information matrix, based on (a) D-
criterion, for the chemostat with a growth rate of 0.03 h−1. (b) Optimal experimental
designs for A- ( ), E- ( ), D- ( ), and C-criterion ( ). Only best 1 % of design points is
shown for each criterion. The 13CFLUX2 program edscanner was used for calculation
of 990 sampling points in the mixture triangle. The calculations are based on the
criterion values obtained for the Fisher information matrix. The substrate mixture of
the original experiment ( ) is shown.

7.1.3 Chemostat with Growth Rate of 0.05 h−1

The chemostat experiment (chemostat 3) was conducted using the optimal substrate mixture
of 70 % C1- and 30 % uniformly labeled glucose and a growth rate of 0.05 h−1. Under these
conditions a lower specific production of penicillin V compared to the chemostats 1 and 2
was measured (0.05 h−1: 3.0·10−3 mmol g−1

CDW h−1 and 0.03 h−1: 5.4-8.2·10−3 mmol g−1
CDW h−1).

Thus, a 180-270 % higher penicillin production was obtained at a lower growth rate. Contrary
to the lower penicillin production, the specific glucose uptake rate was raised by ~150 %
(0.05 h−1) compared to chemostats 1/2. Similar results were shown by van Gulik et al.,
who found a maximal specific product formation rate at μ = 0.03 h−1, which was decreasing
towards higher growth rates up to 0.125 h−1 [242]. In contrast to their results, the maximal
specific growth rate for the BCB1 strain under investigation is only ~0.07 h−1 (found in batch
cultivations by Katja Schmitz at IBG-1:Biotechnologie Forschungszentrum Jülich)[242].

The final flux distribution of chemostat 3 is shown in figure 7.5. The overall flux in the network
is strongly increased for a growth rate of 0.05 h−1 compared to lower growth rates. However,
major changes in the relative fluxes could not be observed compared to the chemostat 1/2.
Most interestingly, the flux distribution did change to elevated fluxes through the oxPPP,
although the penicillin V production was reduced. This apparently counteracts with the
current opinion in literature, claiming that NADPH is predominantly used for penicillin
production. Besides, the other fluxes showed a qualitatively similar behavior as the flux map
obtained at low growth rate of 0.03 h−1.
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figure 7.5: Flux map for P. chrysogenum in chemostat with a growth rate of 0.05 h−1 using
a mixture of 70 % C1- and 30 % uniformly labeled glucose. Fluxes are given in
[mmol g−1

CDW h−1]. Biomass formation is given in [h−1]. WRSS = 556.
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7.1.4 Statistical Protocol for Assessment of the Flux Estimation
For each obtained flux map the WRSS was obtained from 500 model fits. In table 7.2 the
minimal WRSS values corresponding to flux maps in this chapter are shown. The WRSS is
in the same order of magnitude for all chemostat experiments; WRSS of 300-350 were found
for a growth rate of 0.03 h−1. Higher values were obtained for the chemostat at 0.05 h−1 with
WRSS = 556 . This is due to the fact that more measurement values at steady-state were
used for this chemostat and thus, the standard deviations are reduced. The χ2 value is used to
test for the null hypothesis that the simulated data originate from the same distribution as the
measured data. With n number of independent measurements and p number of parameters
the null hypothesis (evaluated by a χ2-test) is clearly rejected with a significance level of 0.05
(see table 7.2). Potentially, this indicates either that

1. the standard deviations for the measurements is under-estimated,

2. the metabolic network model is invalid,

3. there were not enough data-points to determine χ2 accurately as it is also subject to
uncertainty,

4. the measurements are effected by systematic errors like non-Gaussian distribution.
The standard deviations for the measurements might be under-estimated as only a limited
number of measurements (and only one measurement platform) are available to estimate the
measurements standard deviation. To prevent this, a lower boundary (0.005) for the standard
deviation was assumed based on the error model obtained for the data. Thus, the data were
again statistically reconciled with a lower boundary for the standard deviation of s = 0.005.
After reconciliation, lower standard deviations were again set to this threshold and thereafter
used for parameter estimation.
Additionally, measurement groups with high deviates to simulated data were removed from
the model during parameter estimation procedures. The resulting number of measurements
are listed in table 7.2. Of 429 MS measurements, only 221-224 single measurements remained
in the network. Furthermore, some single measurements (especially m+0 mass traces) showed
fluctuations in value throughout the data-sets and high deviates from simulated values. As a
consequence, the respective mass traces were removed. Probably, the measurement signal was
weak (raw data not shown), which led to a wrong prediction of too low standard deviations.
An invalid metabolic model is rather unlikely, because a multitude of model variants were
tested. Furthermore, only a low amount of data points were used; significantly more than
1,000 data points are required to obtain good estimates for this test.
Detecting potential systematic errors like non Gaussian distributed measurements is usually
addressed to the wet-lab and is not the focus of this work. Development of strategies to
reveal systematic errors is subject of future work. Finally, at the point in flux space, the
degrees of freedom can be decreaseds. For in-depth discussion see Andrae et al. [6].
Rejection of χ2-test in 13C-MFA was often observed, for example by Kleijn, Leighty and
Wiechert [121, 132, 266].

7.1.5 Comparison of Large and Focused 13C-MFA Model
The large scale metabolic network (including 485 reactions, see chapter 5) was built with a
complete set of atom transitions in 13CFLUX2 to provide a larger model to test if the found
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table 7.2: Fit quality and statistical tests for chemostat cultivations. WRSS for the separate
metabolic flux analysis. It is assumed that the WRSS is distributed according to a
χ2

n−p(α)-distribution with n independent data-points and p parameters and a signifi-
cance level α. DOF : degrees of freedom; #Meas.: Number of measurements; #MS
groups: number of MS measurement groups; #Flux M.: number of flux measurements;
P : probability.

WRSS #Meas. #MS groups #Flux M. DOF P (χ2(DOF ) > WRSS)

Chemostat 1 303 221 26 13 179 2.0 · 10−8

Chemostat 2 355 224 27 13 180 1.5 · 10−13

Chemostat 3 556 217 25 13 172 5.2 · 10−42

flux distribution can be reproduced. The parameter estimation was conducted as described
for the focused network using the data of chemostat 1. A comparison of the found solutions
with the focused network is used to validate the presented flux maps. A comparison of
statistical identifiability of both models was not performed, because they differ in the number
of free fluxes significantly are not directly interpretable (88 free fluxes are needed for the large
scale network compared to 36 in the focused). Besides, only 30 starting points for parameter
optimization were used as the large scale network is computational more demanding for
parameter estimation. The results can be seen in appendix C.5. Net fluxes in PPP showed
a perfect match. Flux through glycolysis was elevated by ~10% in the large scale network.
This is potentially caused by reactions consuming and producing intermediates of glycolysis.
Fluxes in TCA showed higher variability; especially fluxes via malate dehydrogenase were
increased in the large scale network. Additionally, the large scale network shows a low flux
in glyoxylate shunt (~10% of substrate uptake rate), which was not incorporated into the
focused network. Besides, fluxes through anaplerosis were reduced in the large scale network.
A direct comparison of the fluxes is cumbersome and difficult as multiple pathways are present
and compartment specific transport and reactions cannot be mapped easily to the focused
network. The residual for the large network was increased by ~200 % (residual= 755).
Thus, 13C-MFA of the focused network can reproduce net fluxes in the large scale metabolic
network but is still an approximation of the complex reaction network.
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table 7.3: Fit quality and statistical tests for fed-batch cultivations. WRSS for the separate
metabolic flux analysis. It is assumed that the WRSS is distributed according to a
χ2

n−p(α)-distribution with n independent data-points and p parameters and a signifi-
cance level α. DOF : degrees of freedom; #Meas.: Number of measurements; #Meas.
Groups: number of measurement groups; #Flux Meas.: number of flux measurements;
P : probability.

WRSS #Meas. #Meas. Groups #Flux Meas. DOF P (χ2(DOF ) > WRSS)

Fed-batch 1 655 259 29 13 210 3.1 · 10−47

Fed-batch 2 573 227 26 13 184 1.6 · 10−41

7.2 13C-MFA for Fed-Batch Cultivations
Fed-Batch cultivations were carried out in the sensor bioreactor with the labeling mixture of
60 % 1-, 20 % uniformly and 20 % unlabeled glucose. The growth rate was reduced (0.007-
0.008 h−1) compared to the chemostats. The uptake rate of glucose was also reduced (by
35-45 %) to ~0.25 mmol g−1

CDW h−1 The flux distribution shows a high flux in oxPPP. The
fluxes were significantly decreased in fed-batch compared to chemostats because of the lower
substrate uptake rate. Effluxes to biomass were reduced, because of the low growth rate.
The specific product formation rate was higher compared to the chemostat process (at least
~20 %). Here, in the close-to-industrial conditions, the flux through the oxPPP is even
elevated with a split ratio of 80 % compared to the chemostats. The reaction of malic enzyme
shows a high flux in mitochondria and alternative pathways for acetyl-CoA, aspartate, and
glycine formation possessed higher standard deviations in the order of their flux value. The
estimates for goodness-of-fit for the fed-batch cultivations are in table 7.3. The null hypothesis
of the χ2-test is rejected as in the chemostats.
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figure 7.6: Flux map for fed-batch 2 with growth rate of 0.007 h−1. Fluxes (except biomass for-
mation rate BIOM ) are given in [mmol g−1

CDW h−1]. WRSS=573.
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Chapter 8

Discussion of 13C-MFA Results

13C-MFA was used to obtain insights into the intracellular flux distribution of the P. chrysogenum
strain BCB1. A work-flow for data pre-processing was developed. Rates were estimated by
kinetic modeling of the growth, substrate uptake and complex side-product formation. The
LC-MS/MS measurements were extrapolated to steady-state and the data were corrected
for natural labeling. A large scale network including 500 reactions and atom transitions was
built and described. The focused 13C-MFA network was derived from the large one and main
assumptions were stated.
Highly resolved flux maps covering not only central carbon metabolism, but also the peni-
cillin production pathway were derived along with statistical analysis of the results. For
this, the state-of-the-art fluxomics tool 13CFLUX2 was used. For the first time, a series of
experiments was conducted using the same strain. This was not limited to chemostat culti-
vations frequently applied in scientific studies, but was also extended to a close-to-industrial
fed-batch process. This process was specifically designed to establish 13C-MFA in industrial
environment. Since the same metabolic network, strain and media were used throughout this
study, the results are comparable.

Similar works have been published in the field 13C-MFA for P. chrysogenum by Kleijn and
Zhao [121, 284]. Kleijn used stationary 13C-MFA for chemostat processes for penicillin G
producing and non-producing conditions [121]. Zhao performed non-stationary and station-
ary 13C-MFA for mixtures of glucose and ethanol [284]. Both were applying gluconate tracer
methods to estimate the flux through oxidative pentose phosphate pathway (oxPPP) accu-
rately, but did not provide statistical results for the overall network context [121, 284].

In this chapter, the outcome of the work is concisely summarized and discussed providing
strategies for improving penicillin production.

8.1 Split Ratio
13C-MFA was applied to batch, fed-batch and chemostat cultivations. A high flux through
oxPPP is beneficial for P. chrysogenum producer strains. The oxPPP is known to be the
main supplier of the reduction equivalent NADPH. It is used for the biosynthesis of valine
and cysteine, where cysteine formation consumes the bulk of NADPH [282]. Both amino acids
are needed in high amounts for penicillin production. Thus, observing the flux via oxPPP in
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conjunction with penicillin production can provide insights into the usage of NADPH.

Chemostat

A high flux through the oxPPP was found in all chemostat experiments. The oxPPP split
ratio is calculated as the flux through oxidative oxPPP divided by the substrate uptake
rate. At a growth rate of 0.03 h−1 oxPPP split ratios of 69 % were observed. The penicillin
V production was varying in terms of carbon efficiency1 between 2.2-3.4(molC mol−1

C ) % for
chemostats 1 and 2, which was probably due to process variability. The split ratio was
also high (75 %) at a specific growth rate of 0.05 h−1 while the penicillin V production was
decreased to less than ~50 % compared to experiments with 0.03 h−1. Importantly, at higher
growth rates a decrease of split ratio would be expected because penicillin production was
found to be decreased. For example, Kleijn found a decrease from 45% split ratio to 23%
for producing and non-producing conditions, respectively [121]. Producing conditions are
characterized by addition of the side-chain precursor to the cultivation medium. Additionally,
the flux of carbon towards biomass was increased by 12-17 % at a higher growth rate. This
behavior points to another effect present during cultivation of P. chrysogenum which is not
directly linked to production of penicillin. It demonstrates a strong coupling of NADPH
metabolism to growth, which was not yet shown in literature for P. chrysogenum.
In literature, several 13C-MFA and purely stoichiometric-driven MFA studies have been per-
formed in chemostat or in fed-batch cultivations and split ratios obtained with this technique
are ranging from 44 to 75 % for producing conditions (see table 8.1). All in all, literature
data were lower or comparable to the found values in this work. To give some examples:
Christensen et al. measured similar high split ratios in P. chrysogenum. They computed sta-
ble split ratios for producing (70%) and non-producing conditions (71%) [41]. In this and
another study by Christensen et al. the production of penicillin was also comparable to the
results for the BCB1 strain with a split ratio of 75 %[40]. They speculated that the capability
of a strain for realizing a high split ratios may be associated with its potential for penicillin
production [41].
A high flux (61%) by stoichiometric metabolic flux analysis through the oxPPP at elevated
dilution rates was found by Henriksen et al. [98]. The high value in their study is mainly
accounting for an assumed presence of cytosolic malic enzyme and valine synthesis in cytosol.
In this study, both were assumed to be mitochondrial. Notably, Kleijn and Zheng calculated
the split ratio based on a stationary gluconate tracer method and revealed split ratios of
about 51 % and 41 % with high statistical significance [284, 122].
However, Kleijn et al. and Christensen et al. did not provide statistics for a full flux distribu-
tions, only for the oxPPP split ratio [122, 40, 41]. Zheng et al. provided flux maps including
statistics for growth on different glucose ethanol mixture for glycolysis and pentose-phosphate
pathway, but not for the whole central carbon metabolism [284].

To summarize, for chemostat cultivations highly resolved flux maps of the central metabolism
including statistics were generated for P. chrysogenum strain BCB1. Additionally, a strain
specific high flux through oxPPP was observed for the BCB1 strain. It was shown for the
first time that an elevated flux through oxPPP is, besides penicillin production, significantly
effected by growth in P. chrysogenum. This was shown with high statistical confidence.

1Carbon efficiency gives the ratio of carbon found in substrate (glucose) and product (penicillin nucleus).
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table 8.1: Comparison of oxPPP split ratio with literature data for P. chrysogenum. INST-13C-
MFA=non-stationary 13C-MFA.

Method applied Process, Strain μ[h−1] oxPPP-split ratio Citation
S-MFA Chemostat; glucose;

DS12975
0.01 18-44 % van Gulik et al. [242]

13C-MFA;
INST-13C-MFA

Chemostat; glucose and
gluconate; DS17960

0.06 40.6-41.2 % Zheng [284]

INST-13C-MFA Chemostat; glucose and
ethanol; DS17960

0.05 52 % Zheng [284]

13C-MFA Chemostat; glucose,
POA; Wis54-1255, NN P8

0.06-0.07 66-71 % Christensen et al.
[41]

13C-MFA Chemostat; glucose; Novo
Nordisk strain

0.08 75 % Christensen and
Nielsen [40]

S-MFA Fed-Batch; glucose;
Novo Nordisk strain

≤0.1 18-44 % Jorgensen et al. [111]

13C-MFA Chemostat; glucose;
DS17690

0.02 23-45 % Kleijn [121]

13C-MFA Chemostat; glucose and
gluconate; DS17690

0.02 51 % Kleijn et al. [122]

S-MFA Chemostat; sucrose;
Novo Nordisk strain

0.1 61 % Henriksen et al. [98]

S-MFA Chemostat; glucose;
DS17690 and AFF230

0.05 29-37 % Nasution et al. [170]

Fed-Batch

The high-producing BCB1 strain was cultivated in a close-to-industrial fed-batch process
using the sensor-bioreactor concept. Compared to the chemostat process, even higher fluxes
through oxPPP were observed by 13C-MFA, ranging within 74-80 % split ratio. Notably
6.8-6.9 % of the carbon was used in the penicillin formation pathway. However, growth was
significantly reduced to 0.007-0.008 h−1. In the fed-batch process the expected high flux
through oxPPP demanded by penicillin production is observed.

For the close-to-industrial fed-batch process highly resolved flux maps including statistics
could be generated. An increased split ratio for the high-producing conditions was found
with high statistical significance. These are the first flux maps using 13C-MFA for a high-
producing strain in industrial environment.

8.2 NADPH Balance in the Cytosol
Balancing of NADPH in the cytosol is possible based on cofactor utilization in the sepa-
rate pathways. For amino acid synthesis 1 molNADPH mol−1

Aa is used for transamination. For
fatty acid synthesis 2 molNADPH mol−1

AcCoA are consumed. Additionally, for the biosynthesis
of cysteine 5-8 molNADPH mol−1

CYS and valine 1 molNADPH mol−1
VAL are consumed. Furthermore,

proline (1-2 molNADPH mol−1), lysine (2 molNADPH mol−1), chorismate (1 molNADPH mol−1),
and ergosterol formation (19-23 molNADPH mol−1

ES) consume NADPH. The ranges for NADPH
production are founded on the existence of alternative pathways or enzymes utilizing either
NADH or NADPH. Those were the main reactions participating in NADPH consumption.
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table 8.2: oxPPP split ratio and NADPH balance. Penicillin carbon efficiency is computed by the
ratio of carbon flux through penicillin pathway in respect to the carbon uptake.

Growth Rate oxPPP-split ratio NADPH balance closed Penicillin Carbon
Efficiency

[molC mol−1
C ]

Chemostat 1 0.03 h−1 69 % 47-52 % 2.2 %
Chemostat 2 0.03 h−1 69 % 45-52 % 3.4 %
Chemostat 3 0.05 h−1 75 % 42-46 % 1.3 %
Fed-Batch 1 0.008 h−1 80 % 31-41 % 6.9 %
Fed-Batch 2 0.007 h−1 74 % 35-45 % 6.8 %

Formation of NADPH occurs via the oxPPP reactions and (cytosolic) isocitrate dehydroge-
nase, whereas the latter was not quantifiable and is neglected for NADPH balancing. What
makes the NADPH resolution difficultis that many other pathways are involved in the con-
sumption of NADPH. This oberservation is not limited to NADPH. Zhao also revealed a
gap in ATP balance and estimated the influence of substrate cycles in P. chrysogenum [284].
Substrate cycles occur, for example, in the formation of polyols and polysaccharide degrada-
tion. These substrate cycles accounted for 52.1 % of the ATP gap in metabolic flux analysis
[284].
The production of penicillin was high in the fed-batch and chemostat cultivations compared
to literature. Surprisingly, most of the carbon is used for growth associated processes. A
maximum of 6.9 % of the carbon of glucose was found in penicillin V and side products.
Calculating the NADPH balance based on the 13C-MFA results, reveals that it is closed to
45-52 % for chemostats with a growth rate of 0.03 h−1 (see table 8.2). Notably, at a higher
growth rate of 0.05 h−1 the NADPH balance was closed to only 42-46 %. A short overview
about possible NADPH sinks is given in the next section. First, the consumption of NADPH
in the metabolism during formation of biomass and penicillin V is discussed.
In figure 8.1 the consumption of NADPH is quantified in more detail for the different cul-
tivations. The ratio of NADPH consumption to NADPH production is shown. Ranges are
given for NADPH consumption for some biomass building blocks. For these biomass con-
stituents alternative pathways exists, e.g. cysteine consumes 5-8 molNADPH mol−1

CYS depending
on the pathway used. In the fed-batch process, NADPH is predominantly used in biosynthe-
sis of penicillin V, especially in the cytosolic formation of cysteine. The formation of valine
consumes cytosolic NADPH by transamination of cytosolic formed glutamate. Additionally,
NADPH is used for amino acid transamination, fatty acid synthesis and de-novo synthesis
of other compounds. In the chemostats with a growth rate of 0.03 h−1 a higher fraction of
the produced NADPH is used to produce biomass components, whereas a significant amount
is consumed by penicillin production. The amount of NADPH used for penicillin forma-
tion is reduced for the chemostat cultivation with a growth rate of 0.05 h−1: high amounts
of NADPH are required for growth instead. Also other authors have described a gap in
NADPH-balance for chemostat cultivations [40, 41].
Besides, NADPH is also consumed by reactions in the mitochondria, especially for the forma-
tion of the amino acids valine (1 molNADPH mol−1) and isoleucine (2 molNADPH mol−1). In mi-
tochondria NADPH is produced by isocitrate dehydrogenase and malic enzyme [2]. Addition-
ally, NAD(P) transhydrogenases may deliver NADPH as well (see published P. chrysogenum
GEM [2]). Thus, in mitochondria NADPH balancing is not possible as alternative routes for
the production are present.
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figure 8.1: NADPH balancing based on 13C-MFA results for fed-batch and chemostats (data for
chemostat 2 shown). The ratio of NADPH producing to NADPH consuming reactions
was visualized. The minimal ( ) and maximal ( ) NADPH consumption is shown.
AA: Transamination of amino acids (without CYS and Valine); FA: fatty acids; CYS:
cysteine, VAL: valine; PRO: proline; LYS: lysine; CHOR: chorismate; ES: ergosterol.

8.2.1 Sinks for NADPH

Flux balance analysis, which was described in chapter 5.2, revealed that theoretically a higher
penicillin formation is possible compared to experimentally derived data. By NADPH bal-
ancing in the cytosol it was shown that about 40-50 % of the NADPH is used for unknown
cellular processes. This motivates to have a closer look on the NADPH consumption in
P. chrysogenum. Several hypotheses are formulated for the utilization of NADPH, which
could not be assigned to biomass formation or penicillin production.

Phenoxyacetate (POA) Degradation After addition of POA to cultivations of P. chry-
sogenum, increased activity of enzymes for glutathione (GSH) producing reactions were de-
tected [70]. Thus, addition of POA causes an increase of enzymatic activity in pathways
using NADPH to break down reactive oxygen species (ROS). POA addition induces oxida-
tive stress response, even without formation of penicillin and a growth reduction [70]. POA
is subject to degradation to HOPOA, a side-product found in several studies cultivating
P. chrysogenum [42, 69]. Emri et al. suggested that upon this reaction toxic intermediates
like epoxides are formed. In their study, the author could also show that the addition of
HOPOA to the cultivation did not result in increased level of intracellular reactive oxygen
species. An up-regulation of oxidative stress as in case of POA addition was not observed
[70].
Thus, after addition of POA a toxic intermediate may be formed, which causes an increased
activity of glutathione dependent pathways. This product is finally converted to HOPOA,
which is not further degraded. To break down the formed reactive oxygen species NADPH
is used.
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Uncoupling Effect of POA POA is known to exhibit protonophoric uncoupling effect
of membrane potentials by passive diffusive uptake. This effects was known to be present
at pH 5.0. The cultivations were performed at pH 6.5, resulting in negligible protonophoric
uncoupling described by Henriksen et al. [100]. Also the oxidative phosphorylation path-
way might be subject to physiological uncoupling effects like mitochondrial unspecific chan-
nels, uncoupling proteins, or electron slipping (variations of H+/e– stoichiometry) known in
yeast (see Guerrero-Castillo et al. for discussion [91]). However, little data is available for
P. chrysogenum in this field of research.

Penicillin Production Thykaer et al. claimed that unknown processes in the consumption
of NADPH in the penicillin pathway can be present [235]. Importantly, the flux maps and
NADPH balances show no clear correlation of penicillin production and the NADPH gap,
besides the major gap is also present if low amount of penicillin is formed (at growth of 0.05
h−1).

NADPH-Dependent Dehydrogenase The presence of a cytosolic NADPH-dependent
dehydrogenase was recently indicated by Harris et al. [94]. The dehydrogenase reduces the
efficiency of the electron transport chain and consumes NADPH for the production of ATP.
This may explain why NADPH balances cannot be closed.

Summing up, the hypotheses and known pathways are summarized in figure 8.2. Further
experimental evidence is needed to verify which of the effects contribute most to the NADPH
gap.

8.3 Hints for Strain Improvement
In general, NADPH availability seems to be the bottleneck for penicillin production. Based
on the results of flux balance analysis (chapter 5.2), it can be assumed that a high flux through
oxPPP will support higher penicillin formation by increasing NADPH supply. Additionally,
it was shown by FBA that increasing flux through cytosolic NADPH producing isocitrate
dehydrogenase will further increase the penicillin production.
The results of 13C-MFA have shown that, besides penicillin production, growth has a major
impact on the NADPH consumption in the cell. Thus, growth needs to be carefully con-
trolled to avoid high usage of NADPH for growth associated processes. In the end, strain
manipulation is highly coupled to the process conditions. Thus, complex protocols are re-
quired to balance growth in cultivation process and further strain improvement by metabolic
engineering.
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figure 8.2: Hypothetical NADPH utilization in P. chrysogenum cultivations
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Part III

Design of Experiments for 13C-MFA
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Chapter 9

Diversification-Driven Experimental
Design

Rarely, single experiments deliver enough information to identify all parameters of interest
in a model. Multiple experiments can be conducted to improve accuracy of parameters.
Besides, already conducted experiments contain information which can be integrated into the
evaluation process. This was already shown by Crown et al. for mixtures of fully labeled and
unlabeled glucose in parallel experiments [47]. For the integration of multiple experimental
data-sets into one analysis, main influencing factors to improve flux accuracy are

• a complementary labeling mixture for the separate experiments and

• a multiplied number of measurements.

The experiments to obtain these data can be conducted sequentially and in parallel, the basic
principle was already described by Franceschini and Macchietto [85]. The basic assumption
is, that the fluxes are the same in each the experiment. In this chapter we are aiming at
a sequential, learning-based, experimental design. The basic idea of Crown et al. to use
multiple experiments for flux estimation will be extended later by experimental design to
obtain assisted integration of multiple data-sets into one analysis [47]. This new strategy
is called diversity-driven experimental design. In comparison to conventional experimental
designs, it aims at step-by-step increasing statistical identifiability by sequential conduction
of experiments. Additionally, the method can be easily extended for planning of parallel
experiments.
In this chapter, the basic idea to combine multiple measurements of carbon labeling exper-
iments in one analysis is described. Next, the method is used to increase the statistical
significance of an experiment and, finally, optimal diversification-driven experimental design
is introduced.

9.1 Combining Experimental Data in 13C-MFA
After the first cycles of experimental design, several fluxes may still be non-identifiable. To
increase the statistical identifiability of the fluxes further, integration of measurements from
different experiments is needed. The increase in statistical identifiability is measured by
design criteria ρ (introduced in chapter 2.2.7). To incorporate multiple labeling data-sets
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combined model

Model A
Network, v, Measurements A

Model B
Network, v , Measurements B

. . .

Input Substrate xA,inp

Input Substrate xB,inp

Output yA

Output yB

figure 9.1: Construction of a combined model to combine multiple measurement sets of experi-
ments into one analysis. The input substrate mixture was changed for each experiment.

into one model, a suitable algorithm is needed to extend the model structure, which will be
given below. First, the new model structure is described.
Two independent replicates of a carbon labeling experiment are used here, each possesses
another substrate mixture. Incorporation of both data-sets into one analysis will result in
an information gain. Only the known parameters (the substrate mixture xinp) of the model
under investigation are varied, resulting in a different model output behavior of the system
(labeling measurements). By varying the known parameters, the information about the
unkown parameters (fluxes) is maximized. For the given data, a so-called combined model is
generated. Each of the sub-models A and B contain the respective input substrate mixture
of the experiment and simulate an own set of measurements yA and yB. The sub-models
contain thus separate measurement specifications for the experiments and simulate them at
a time (see figure 9.1). It is important to note that both models share the same flux values
v and network topology. Next, the generation of such a combined model is described for
13C-MFA.

9.2 Preparing Models for Combined Experiments
To incorporate labeling measurements emerging from separate experiments with varied label-
ing of the substrates, the combined model needs to be constructed from a normal 13C-MFA
model. A normal model contains the metabolic reaction network including atom transitions,
input substrate specification, constraints and measurements (henceforth called root model).
The combined model has to account for separate input labeled substrates and measurements
of labeling patterns in the independently conducted experiments. Therefore, the model struc-
ture is cloned. Basically, two possibilities exist to multiply the model structure. First, all
reactions can be inserted twice and the cloned reaction is renamed. This results also in a
multiplied constraints section. The free fluxes of the original models are set equal to the
second model. Another possibility is to duplicate the metabolites in each reaction, this is
described in the appendix D.

9.2.1 Results for Duplicated Models
In chapter 7.1 two chemostat experiments were conducted with a specific growth rate of
0.03 h−1. The statistical identifiability of the fluxes was tried to be increased by conventional
experimental design (cf. chapter 7.1.2). However, choosing an optimal substrate mixture
resulted not in a significantly higher statistical identifiability of the fluxes. The labeling
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figure 9.2: Comparison of criterion values of chemostat 1 (ρroot) and combined data of chemostat 1
and 2 (ρcombined). For comparison of statistics, the same free fluxes were set constant
in both models. 17 free fluxes remained. A criterion: trace(Cov)/p; C criterion:
max(trace(Cov)); D criterion: det(Cov)1/p; E criterion: λmax(Cov)

mixture in the experiments was 60 % Glc#100000, 20 % Glc#111111 and 20 % Glc#000000
in chemostat 1 and 70 % Glc#100000, 30 % Glc#111111 in chemostat 2. Here, both data-sets
can be integrated in one analysis using a combined model as previously described.

The combined model comprised of 147 pools and 185 reactions was built by applying above
mentioned algorithm. It contains 445 labeling measurements and 26 flux measurements (with
382 degrees of freedom). After parameter estimation using fitfluxes of 13CFLUX2 (using 500
samples for globalized multi-start strategy), a WRSS of 893 was obtained, thus increased
compared to chemostat 1 and 2 with a WRSS of 303 and 355, respectively.

Now, it is possible to compare the results of single and combined experimental data. Chemo-
stat 2 showed less optimal statistics and and is thus not chosen as comparison. The in-
formation criteria were evaluated for chemostat 1 and for the combined model based on the
covariance matrix. Clearly a substantial decrease in A,C,E-criteria to ~40% of the root model
(chemostat 1 alone) was found, the D-criterion decreased to 60%. The increase in statistical
identifiability was also reflected in the standard deviations of the fluxes. The corresponding
flux map including standard deviations is given in the appendix C.

In the newly generated flux map of the combined model fluxes towards aspartate became
better statistical identified. Two possible pathways, one via mitochondrial and one via cy-
tosolic oxaloacetate were incorporated. Using solely the data of chemostat 1, the main flux
was directed via cytosolic oxaloacetate towards aspartate with 0.062 ± 0.037 mmol g−1

CDW h−1

and from the mitochondria with 0.000 ± 0.024 mmol g−1
CDW h−1. With the combined model we

receive better statistical estimates for cytosolic and mitochondrial production with
0.047 ± 0.013 mmol g−1

CDW h−1 and 0.000 ± 0.008 mmol g−1
CDW h−1. The flux is even decreased,

because aspartate is used less for threonine production. Thus, this is a strong indication that
the compartment specific formation of aspartate proposed by Kleijn was correct, which was
not possible using the single data-sets [121].

From these finding a new experimental design method was developed, called optimal diver-
sification-driven experimental design.
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figure 9.3: Results of diversification-driven experimental design for the focused P. chrysogenum
network used in chapter 7.1 for a chemostat 1 with 0.03 h−1 based on D-criterion using
Fisher Information matrix.

9.3 Optimal Diversification-Driven Experimental De-
sign

Optimal diversification-driven experimental of design (ODED) aims at increasing the statisti-
cal significance of a chosen objective by a second experiment. Thus, it is basically a sequential
design, where a sequence of experimental design steps and experiments are conducted. The
results of each experimental run are used in the combined model. Basic underlying assump-
tion is that the process has to be performed reproducible, so that the fluxome is not changing.
After conduction of the first experiment with a mixture xA,inp , the estimated flux distribution
v̂ is obtained. A design criterion ρ is used to find a new mixture xB,inp with high statistical
identifiability. Additionally, a distance operator δ is maximized to increase the difference
labeling pattern of the substrate (for example Euclidean distance can be used). This is done
to increase the diversity in the used substrate mixtures.

max
xB,inp

Z = [ρ, δ(xA,inp, xB,inp)] (9.1)

This was formulated as a multi-objective optimization, because more than one design point
can be suitable. Introducing of further criteria is possible, as outlined later in this study
(chapter 10). By maximizing the distance operator and the information criterion, ODED can
be planned.

9.3.1 Application Example
To plan an optimal ODED for the chemostat 1, experimental design principles are used on
the built combined model. The measurement values of chemostat 1 are incorporated for both
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the root model A and model B. An experimental design study is performed using edscanner
of 13CFLUX2. For each point in a ternary mixture triangle the statistics and design criteria
are calculated. Only for model B the substrate mixture is changed.
In figure 9.3 the result for an ODED for chemostat 1 is shown in a ternary mixture diagram.
The used mixture for the first experiment was 60 % 1-labeled glucose, 20 % uniform and 20 %
unlabeled glucose. All calculated criterion values for the D-criterion ρD were normalized
to the criterion value ρD,ref of the first conducted experiment (green circle). To search for
an ODED, high statistical identifiability of the fluxes and, at the same time, high distance
from the old mixture are aimed at. Thus, a design points possessing a high statistical
identifiability and high distance to the first conducted experiment was found for 50 % fully
labeled and 50 % unlabeled glucose for the D-criterion. Besides, there are further design
points available as we are dealing with a multi-objective optimization problem. However, we
assume that an optimal diversification-driven design point was chosen at 50 % fully labeled
and 50 % unlabeled glucose. Using this point, the statistical identifiability can be further
increased compared to 70 % 1-labeled glucose and 30 % uniform glucose used beforehand for
chemostat 2.
Notably, ODED found deviating points compared to conventional experimental design in
chapter 7.1.2. Conventional experimental design proposed 70 % 1-labeled glucose, 30 % uni-
form glucose used in chemostat 2. Thus application of the ODED can result in counter-
intuitive solutions, deviating from conventional experimental design design points.

9.4 Findings and Conclusions
Combining several data-sets in a combined model leads to the finding that statistical identifi-
ability is significantly increased. This gives rise to a new strategy called ODED. It extends the
applicability of optimal experimental design by introducing independently generated mea-
surements of separate experiments into one combined model. The algorithms to built these
combined models were introduced. By choosing the experimental conditions based on the
reformulated optimality criterion for ODED, new information content is maximized.
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Chapter 10

Economic Multi-Objective
Experimental Design: Exploration of
Design Space

In the last decade optimal experimental design (ED) has emerged as a powerful toolbox with
application in science and industry [85, 93, 186]. The field of application of the methodology
is broad and comprises maximizing quality, productivity, or reduction of variance of charac-
teristics of interest. Several techniques have been applied (screening, response surface, and
model validation techniques) in many fields of biotechnological and pharmaceutical research
[93, 17]. One field of application is 13C-MFA; which provides insights into the metabolism of
organisms. The methods aims at identifying reaction rates (fluxes) in living cells by introduc-
ing and measuring labeling patterns in them, providing indirect measures for flux values. The
result is a high dimensional system. Finally one can pose questions regarding the labeling
experiments:

• What is possible (in terms of identifiability) within a measurements platform?

• How much does it cost?

• Is it worth the effort?

The heavy use of expensive analytics and process control techniques, strengthens the need
for robust and economic ED.
Several researchers have conducted optimal ED for stationary and in-stationary carbon la-
beling experiments to elucidate metabolic fluxes. Möllney et al. were introducing the basic
principles to 13C-MFA [161]. But the major problems in statistical and structural identifi-
ability have never been addressed in depth so far [213, 46, 256, 181, 272, 10]. Besides, a
method to decide which of the available measurement techniques provides better statistics
has never been proposed.
This chapter focuses on identifiability of metabolic fluxes in the context of ED. A large number
of so called alphabetical optimality criteria have been proposed to measure and compare the
statistical identifiability of estimated parameters. They all provide a single-number-measure
for describing the statistical identifiability of the system, expressed by the covariance matrix.
Calculating these criteria is possible when prior knowledge of the parameters, by experimental
or theoretical investigations, is available. From the first ED a next guess for optimization
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figure 10.1: Economic multi-objective experimental design for 13C-MFA.

of measurement procedure is given, leading to adaption cycles. These criteria are a drastic
reduction of the information contained in the covariance matrix condensed into a single value.
This may also lead to unintentional effects, as the modeler is not capable of directly assessing
the design space. Thus, as frequently indicated in literature, false-predictions based on these
criteria are possible [88, 16]. Especially the D-criterion seems to be prone to errors as it
might lead to needle-shaped confidence ellipsoids, which are unfavourable because still large
confidence intervalls are possible for a parameter. However, this criterion is most frequently
applied [88, 16].

Additionally, the number of usable ED criteria is steadily growing. Besides the alphabetical
optimality criteria, there exists also a growing number of non-alphabetical criteria dealing
with covariance matrix independent measures for an optimal model. Some have been men-
tioned in literature like local measures of Bates and Watts for non-linearity [21]. Additionally,
the cost of an experiment is crucial in biotechnological fields as experimental setups can be
expensive. Thus, usage of non-economic demands will lead to unfeasibly high cost, because
it is possible that other experimental setups can provide the same statistical significance at
lower costs.

In this chapter an approach is presented to circumvent the drawbacks of single criteria in ED
and a work-flow is given to analyze the resulting high dimensional data of design criteria,
providing insights into the interplay of substrate mixture, measurement setup, identifiability,
and costs (see figure 10.1). It enables the researcher to integrate criteria of interest and plan
economic, yet informative, experiments thereby exploring optimal ED space and circumvent
drawbacks of single or fixed ratio-objective designs. The presented work-flow is directly
transferable to other fields of studies and gives general recommendations for reliable EDs
and extends it by non-alphabetical criteria which are crucial for their evaluation.

First it is described how to integrate multi-objective optimization into ED studies. This is
used to explore the designe space for D-criterion and costs. Next, the same is repeated for
several design criteria (costs, D-, E-, and A-criterion) and the results are compared to the
D-criterion and costs results. The robustness of the calculations is tested and the studies are
repeated for several measurement devices. By these results, general recommendations for ED
are derived.
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10.1 Theory

10.1.1 13C Metabolic Flux Analysis

In 13C-MFA isotopic labeled substrates are used with distinct labeling patterns. The stable
isotope 13C of carbon atoms are incorporated in the substrates fed to a living cell. After
the cell and its environment reaches a steady-state, the external rate measurements of sub-
strates, products and biomass are direct estimates for extracellular fluxes. Importantly for
the method, indirect measurements of intracellular fluxes are given by measuring the label-
ing state of intracellular metabolites. To obtain the intracellular fluxes the cell‘s biochemical
system has to be modeled. First, a stoichiometric system of equations is given by building a
model of biochemical reactions representing a cell‘s state as close as possible. In stationary
13C-MFA, which will be the main focus of this chapter, stationarity assumptions for metabolic
and isotopic conditions are applied.
Several of the given stoichiometric reactions contain reactants with carbon atoms. Atom
transitions, the carbon fate from educt to product, can be specified [263, 163]. By choosing
a set of free parameters (free fluxes) vfree and using the same input substrate labeling state
xinp as in the conducted experiment, the system can be solved to calculate the isotopomers
x for each metabolite. In the following variable w corresponds to direct influencing factors
like the experiment specific state variables (temperature T , dilution rate D in a chemostat,
concentration of media components like glucose CGlc , . . . ) and unknown effects:

f(x, vfree, w) (10.1)

The measurable response variable y (for example a mass spectrometer measurement) depends
on the state variables x in the network and is computed. In an experiment, y is measured (by
MS or NMR techniques) and is subject to uncertainty. These uncertainties are propagated to
the free fluxes, resulting in estimated parameters vfree ± std with a standard deviation. The
standard deviation of a parameter is influenced by the used model, available measurements
and their respective measurement error (which is, in turn, influenced by w).
In an ED study for 13C-MFA, one aims at improving the statistics of the parameters (vfree),
usually by changing the input substrates while knowing the flux distribution. The state vari-
ables and a measurement matrix M of the measured quantities can be calculated, which are
labeling measurements and extracellular fluxes. Basically, the measurements can be repre-
sented by scaled sums of isotopomer fractions for all measurement types and are, thus, linear
equations. The measurement matrix sums isotopomers x to form MS or NMR measure-
ment vector y. The structure of the measurement matrix is influenced by the measurement
setup and metabolites measured. Some examples for measurement matrices are given in the
appendix E.1.

yM = M · x(xinp, vfree) = g(x, M) (10.2)

Additionally, in real life data some measurement error ε(yM) is given for each measurement
data point. Changing the appearance of Matrix M is done by adding or removing labeling
measurements. In the appendix examples are given for the measurement matrix of separate
techniques.
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10.1.2 Statistics and Design Criteria

Next, the statistics of the free fluxes is to be calculated. For this an estimate of the confidence
interval is needed.
It is assumed that the measurements are independent normally distributed and uncorrelated.
To calculate the entries in the measurement covariance matrix y and to finally also perform
an ED study reliable values for the standard deviations of the measurements are needed, com-
pare Tillack et al. [236]. The measurement error shows a heteroscedastic behavior throughout
literature (the error on the measurement ε depends on the measurement value yM). Thus,
an error model is needed. The shape of the function can be arbitrary and depends on the
measurement technique and samples/experiment.
To integrate the influence of the number of measurements ϕmeas on the estimation of the
measurements‘ standard deviation, we will modify the above mentioned matrix y by ex-
changing the measured variance s2 to their respective confidence intervals c2 of the variance.
Thus we calculate the confidence interval of the variance as [131]

c2 = (ϕmeas − 1) · s2

χ2(1 − /2, ϕmeas − 1) (10.3)

for a given confidence level α. Hence, there is a direct influence of the number of mea-
surements ϕmeas (replicates) on the confidence interval. This is done for each measurement
group separately, i.e. each single MS measurement group that contains m+0,1,2...nC mass
lanes. Finally, the statistics of the model are calculated by linearization at the design point
(Calculation of Jacobian J). The Fisher Information FIM is calculated from the Jacobian
and the matrix y. Inverting this matrix leads to the covariance matrix.

FIM = J · y · JT = Cov−1 (10.4)

ED studies are based either on the Fisher Information FIM or the covariance matrix Cov.
For each of these matrices separate ED criteria are available (see below: Design Criteria).

10.1.3 Identifiability

Identifiability is describing the determination of parameters in a model and it is distin-
guished between structural and practical identifiability. If a redundant parametrization
(over-parametrization) can be found, the model is structurally non-identifiable. This is
the case if we can find two flux maps/parameter sets which will lead to the same model
output/measurements y [199].
A parameter is practically non-identifiable if its standard deviation becomes very high (or
even infinite). Thus changing this parameter values of the model will result in a negligible
effect on the output of the model and the measurement values will still be in their standard
deviations/confidence intervals. Nevertheless, we possess a clearly defined optimum for the
parameter value [199].
Besides these two definitions we define the term statistically non-identifiability. We define
that a parameter is statistically non-identifiable if its standard deviation exceeds a certain
threshold. Note that there is a slight difference to the definition of practical identifiability
and statistical identifiability.
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table 10.1: Alphabetical criteria Ialph taken from [192, 250] and non-alphabetical criteria Inon

Ialph Criterion Criterion, normalized Inon Criterion
Mod. A-criterion ρA,mod = max trace(FIM) ρA,mod,n = ρA,mod/p Costs Icosts

D-criterion ρD = max det(FIM) ρD,mod,n = ρ
1/p
D,mod Dimension p

Mod. E-criterion ρE,mod = max λmin(F IM)
λmax(F IM) ρE,mod,n = ρE,mod

E-criterion ρE = max λmin(FIM) ρE,mod,n = ρE

10.1.4 Design Criteria

Several classical design criteria are described in literature, they are usually denoted by capital
letters and are thus summarized as “alphabetical” optimal design criteria
Ialphε {ρA,mod, ρD, ρE, . . . }, the most frequently used are given in table 10.1 [192].
These criteria aim at certain geometrical aspects of the covariance matrix/Fisher information
matrix of parameters by reducing the matrix to a single number. To give some examples:
The modified A-criterion is reducing the bounding box for the ellipsoid and the D-criterion
is reducing the volume of the ellipsoid. To normalize these criteria, we correct them for
the dimension of the model p given by the set of free parameters. Besides, the alphabetical
criteria we define also non-alphabetical optimality criteria (see table 10.1) like measures for
dimensionality of the model, non-linearity, robustness, bias, and costs which are not linked
to the covariance matrix. They can also be introduced into the objective vector I. We will
focus on the costs and dimensionality here, but other afore mentioned criteria can be applied
for ED studies to make their results more reliable.

Several parameters can become non-identifiable during ED studies. This has a direct effect
on the information criteria. For calculation of the criteria values, the minimal Eigenvalue

min needs to be greater than machine precision E:

min(FIM) > Threshold1 ≥ E (10.5)

For a numerically stable inversion of covariance matrices a threshold for the condition number
is applied:

λmax(FIM)
λmin(FIM) < Threshold2 (10.6)

If these constraints on the Fisher information matrix are not fulfilled, fluxes become numer-
ically or statistically non-identifiable and are thereby excluded from the analysis, resulting
in a statistical model with differing dimensionality. The worst determined flux is removed
first by convention until both constraints hold for the given model. Care has to be taken,
as a non-identifiable parameter can become identifiable in a different ED. Thus, changing
adaptively the model‘s size is needed. This results in information criteria which can no longer
be directly compared. As some parameters become non-identifiable, the size (dimensionality)
of the covariance matrix is changing and also the statistics of the parameters. Thus, we are
using the normalized criteria mentioned in table 10.1 for the multi-objective optimization.
Besides, we need to account also for the non-alphabetical design criteria like dimensional-
ity of the system N. This will result in statistical models differing in the non-alphabetical
criterion dimensionality, thus, they are not directly comparable to each other.
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10.1.5 Multi-Objective Optimization
In a multi-objective optimization problem several objectives Z = [z1, z2, z3, . . . zn]ᵀ are to be
minimized subject to constraints. Each obtained feasible solution ϕ1 in the decision space
B is dominated by another feasible solution ϕ2, if zj(ϕ1) < zj(ϕ2) for at least one objective
function j in solution space (and zj(ϕ1) ≤ zj(ϕ2) for all j). A point is called Pareto optimal
if there is no other point in solution space found which is better in (at least) one of the
objective values. An (usually) infinite set of Pareto optimal points ϕ represents the solution
space. One can obtain a solution close to this Pareto optimal front, so that their solutions
are Pareto optimal in respect to all other found solutions (best-known Pareto set) [124]. For
the objectives z all alphabetical criteria and non-alphabetical criteria I can be used.
In literature, also combinations of alphabetical criteria for ED were taken into account
[67, 171, 16], but they were usually used as fixed ratios for criteria values by some weight
coefficients. The downside of this fixed-ratio approach is that an exploration of design space
is difficult as it is a priori unknown. Thus, the ratios of the objectives need to be guessed
without knowing their ranges [252, 23]. Suboptimal experiments with respect to the one or
the other criteria are the result. Instead, we reformulated the problem as an multi-objective
optimization problem subject to constraints of upper and lower bound [21]:

min
ϕεB

[z1, z2, . . . zn] such that lbi < zi < ubi i = 1, 2, . . . n (10.7)

The upper and lower bound for the objectives are given by the user, for example an upper
bound for the costs‘ objective. The alphabetical and non-alphabetical criteria are used in
this study together to circumvent the drawbacks of single objectives or weighted sums of
them. Without loss of generality, several objectives can be explored at a time. In order to
do this, we tested frequently applied criteria: the A-/E-/D-criterion. Additionally costs and
dimensionality of the system were used to make the solutions comparable and rank them.

10.1.6 Measurements
There are basically five different classes of measurement principles recently applied in lit-
erature. For each of them several devices and protocols are available, differing in their
accuracy/sensitivity (error model), potential measurements and throughput. In this section
a brief overview will be given about their application in 13C-MFA.
In figure 10.2 the mainly used measurement devices are shown. Mass spectrometer (MS) and
tandem mass spectrometer (MS/MS) are measuring sums of isotopomers sharing equal masses
(“cumulative enrichment”), whereas tandem mass spectrometry enhances fragmentation and
can potentially extract more information about the isotopomers. H-NMR is measuring the
fractional enrichment of a certain carbon (“local enrichment information”), in the figure 10.2
only the local enrichment of C2 carbon is measured. GC-C-IRMS is measuring the overall
fraction of labeled to unlabeled specie in all carbon atoms of a metabolite. 13C-NMR measures
local labeling patterns around certain labeled carbon atoms. In figure 10.2 only the C2 carbon
is measurable by 13C-NMR, thus, four different distinct labeling pattern can be measured
and are discriminable.
These measurement techniques provide different measurement principles and also information
about the labeling pattern of the metabolite. Nevertheless, the applied methods differ in their
applicability to certain classes of metabolites by the used separation techniques (LC/GC) and
analyte concentration [128].
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figure 10.2: Measurement principles for three carbon metabolite (C1-C2-C3): HNMR and C-NMR
measurement for C2 shown. MS/MS measurement for C2-C3 fragment and C1-C2-C3
mother ion shown (multiple reaction monitoring). Connected grey panes represent
a single measurement. They are comprised of sums of isotopomers measured by the
respective measurement principle.

To give an overview on the used analytical devices in literature their analyte spectra are shown
in table 10.2. The altered information content and analyte spectrum in the measurement does
also effect the statistical identifiability of the fluxes. This was already previously published by
Rühl and coworkers. They compared LC-MS with LC-MS/MS and showed that measurement
of metabolites with fragmentation results in better statistics [203].

10.1.7 Multi-Platform Application
As there are several drawbacks of the separate techniques, like sensitivity and restriction to
a certain class of analytes, their combination will result in higher coverage and informative
value. GC-MS and NMR were used in combination by McKinlay et al. [152]. Kleijn used GC-
MS, LC-MS and NMR for 13C-MFA in Saccharomyces cerevisiae and NMR and LC-MS in
Penicillium chrysogenum[123]. Toya et al. used CE-TOFMS for measurement of metabolite
in TCA, glycolysis and PPP and GC-MS for amino acids and used both in metabolic flux
analysis [238].
Besides the analyte spectrum, the mentioned techniques differ severely in their sensitivity
for flux elucidation. Until now, it is an ongoing debate which analytical platform provides
the maximum information and how one can gain from combination of multiple devices. We
have seen that the coverage is different and that the measurement techniques differ in their
delivered information about the isotopomers.

10.1.8 Current Status in Literature
As we have seen, there is a broad range of applied techniques in literature, nevertheless GC-
MS, LC-MS(MS) and CNMR are widespread for 13C-MFA. To describe the measurement
error of the separate techniques an error model for calculation of the confidence intervals
is needed. From several published papers the measurement errors on labeling enrichment
measurements were extracted. We assumed linear behavior and the results are shown in
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table 10.2: Devices used in literature

Amino acids Organic acids Sugars Comments
H-NMR [149] Too low

concentration,
except secreted

products

Too low
concentration

2D/C-NMR [231, 230, 68,
50, 214, 82]

Too low
concentration,
except secreted

products

Too low
concentration

Nucleosides
measurable [82]

GC-MS [39, 49, 270, 20,
229, 7, 79, 77,

68]

[78] [20] Derivatization
and correction
needed [255],

mainly used for
amino acids

LC-MS same as
LC-MS/MS

[181, 248, 123] [248, 123]

LC-MS/MS [248, 107, 203] [203] [203]

GC-C-IRMS [278, 97]

Maldi-TOF-MS [273] [273]

figure 10.3. It is obvious that most devices show similar standard deviations. For GC-MS the
standard deviation were considerably higher in literature. For HNMR only a few data-points
in low range of labeling were available.

10.1.9 Substrate
First a short overview about the used substrates in literature is given. Walther et al. found
mixtures of 1,2- labeled glucose and mixtures of 3- and 3,4- labeled glucose to increase
statistical identifiability, always mixed with fully labeled glutamate for lung cell carcinoma
[256]. Crown et al. were using a small scale network with two degrees of freedom. They
found 3,4- and 2,3,4,5,6-labeled glucose to be favorable to elucidate reaction rates in the
oxidative phosphate pathway and pyruvate carboxylase flux, respectively [48]. Metallo et al.
also searched for optimal tracers for lung carcinoma cell line. They identified best tracers for
each reaction: 1,2-labeled glucose was optimal for most fluxes in pentose phosphate pathway
and glycolysis. For TCA-cycle uniform labeled glutamine gave optimal results. However, they
also presented that there is a high diversity in the found standard deviations of the fluxes
depending on the used substrate [260]. Schellenberger et al. used a Escherichia coli network
to perform experimental design and found 1- or 6- labeled superior to a mixture 20 % uniform
80 % unlabeled glucose mixtures [213]. They also stated that multiple labeling positions are
superior to others. Besides they found a high redundancy of information in the measurement
data and claimed that frequently used single/fully labeled species (1-Glc, U-Glc, . . . ) show
potentially a medium number of identifiable fluxes. Besides, exotic labeling resulted in a
higher identifiability. This was the case for 5,6-, 1,2,5-, 1,2-, 1,2,3- and 2,3-labeled glucose.
In this study ten commercially available substrates are incorporated (Glc#000000,
Glc#100000, Glc#010000, Glc#001000, Glc#000010, Glc#000001, Glc#111111, Glc#110000,
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figure 10.3: Error model derived from literature data [121, 107, 247, 211, 4, 232, 149]. Error
models were derived by least square fit of s = m · yM + b to the data published.

and Glc#100001). The purity of the substrate has to be taken into account as it will alter
the labeling pattern in the used substrate considerably.

10.2 Materials and Methods
13C-MFA

The high-performance simulator 13CFLUX2 was extended for multi-objective optimization
using jMetal as multi-objective library [260, 63].

Multi-Objective Optimization

In simulation studies the multi-objective optimization toolbox jMetal version 1.0 was used
[63]. The parameters for the optimization were the the fractions of each substrate used in the
substrate mixture and the number of measurements per measurement group (i.e. number of
measurements for a complete MS or NMR measurement vector). The output of the program
is the found Pareto optimal solutions as a list of the parameter-sets and the corresponding
values for each objective. The convergence of the solution (Pareto front) was measured by
its hyper volume of best-known Pareto optimal set in the objective space [64]. Maximum
iteration number was 106 model evaluations, the swarm and archive size was chosen to be
1,000 using a polynomial mutation. The parameters were adjusted as stated in Nebro et al.
[64]. Each optimization per model was executed in duplicate to circumvent false predictions
of results.
The optimizer SMPSO, SPEA2, and NSGAII available in jMetal were compared with respect
to run time on a data set. SMPSO was providing, measured on the Pareto volume, fastest
convergence, whereas SPEA2 failed by a major misconception of the algorithm. SPEA2
showed strong decrease in hyper-volume after reaching an optimum, thus it decreased the
hyper-volume of the solution space after an optimal solution was found; for more information
see literature [172, 286, 285]. After testing these algorithms, SMPSO was chosen as it pro-
vided speed up of about 300 % compared to SPEA2. Function evaluation was measured to
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reach 98 % of the maximal Pareto frontier hyper volume (NSGA2: 1.7 ± 0.9·105 and SMPSO:
4.4 ± 2.8·104 iterations needed). After 106 iterations the volume was constant.
All optimality criteria were evaluated based on Fisher information matrix, inversion (if nec-
essary) was done using SVD decomposition. The minimal number of free parameters (free
fluxes) in a model was constrained to 21, models with constraint violation were not used to
build a Pareto set. The standard deviation of the measurements, given by the error model,
is converted into confidence intervals of standard deviations as a function of the number of
replicates measured. Jacobian was calculated and the above mentioned constraints equa-
tion 10.5-10.6 were applied.

Visualization

Visualization was conducted using CIRCOS tool [126] and OMIX [60].

Model

The network was built for an eukaryotic organism (P. chrysogenum). Biologically feasible
fluxes were chosen based on previous obtained flux maps in this work. The model describes
glycolysis, pentose-phosphate pathway, TCA cycle and formation of all measurable amino
acids. The model comprises 34 free fluxes: 12 net and 22 exchange fluxes. It is assumed
that the free flux values and the external flux measurements are known (possess no standard
deviation). In order to guarantee comparability within the given study, we set non-identifiable
fluxes constant. Each used model was previously checked for non-identifiable fluxes. All
constrained fluxes can be found in the appendix E.3. This leads to models with differing
dimensionality. LC-MS/MS had the highest dimensions with 26 free fluxes. CNMR the
lowest with 22 free fluxes. We identified the common set of non-identifiable fluxes for all
devices and set them constant in all models ending up with 21 free fluxes. The free net fluxes
which needed to be fixed were anaplerosis and product formation rate in the model. All
other net fluxes were identifiable. Besides, high exchange fluxes also became statistical non-
identifiable and needed to be fixed, e.g. gly2 exchange flux. The full list of all constrained
fluxes can be found in the appendix.
GC-C-IRMS and HNMR were excluded from the study as they could not meet the require-
ments. For both at least ten additional fluxes compared to GC-, LC-MS (/MS) and CNMR
had to be fixed, which made the results incomparable. Besides, the low amount of data
available from literature makes the construction of error models difficult for these devices.
In the appendix E.3 the constrained fluxes are given. These devices (GC-C-IRMS and H-
NMR) showed the worst elucidation of the fluxes as they provide the least information about
the given flux distribution. As many fluxes needed to be fixed, the dimensionality of the
model was also strongly reduced; 23 and 29 out of 34 free fluxes had to be constrained to
evaluate resulting statistics for HNMR and GC-C-IRMS measurements, respectively. We
searched literature for used measurement devices in metabolic flux analysis and collected
used measurements (see table in appendix).
Non-redundant measurements were filtered out from literature and displayed in the appendix
in the context of the metabolic network. In the appendix, non-redundant measurement speci-
fications are shown and their respective number of single measurements. From the mentioned
literature 38 measurement for metabolites were incorporated in the metabolic network for
LC-MS/MS (314) and LC-MS (226, in brackets the number of single measurement values
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are given). CNMR provides measurements for 17 (156) and HNMR for 10 (64) metabolites.
GC-C-IRMS was using 17 (32) metabolites and GC-MS 19 (213).

10.3 Results

10.3.1 Cost Function
The cost function is of central importance in this study. We describe in a cost function the
major steps of 13C-MFA: Conducting the labeling experiments, sampling, analytics, and mod-
eling. The costs need to be calculated for each in silico planned experiment. By introducing
them, expensive experiments can be identified and are replaced by designs which are more
economic but provide the same (or better) alphabetical criteria. We determined working
times to perform most steps of 13C-MFA and found that variable costs factors are, besides
purchasing the analytical device, usually measurement time on the device, peak integra-
tion/post processing like manual correction of peak areas, additional sample measurements,
and model building. We quantified these steps in terms of cost and time by a in-house user
study and wrote protocols for each measurement device used as input for calculation of the
cost function in figure 10.4. However, as more metabolite measurements and replicates will
result in potential use of multiple protocols for measurements the working time and analytical
effort will increase for sampling, analysis, peak integration, and model setup. As the number
of measurements is a free variable for the algorithm to choose, we set most of the results free
for optimization, thereby assessing the question: Which measurements are important?
We will now describe the costs function. The used substrates for the 13C-MFA will determine
the statistical identifiability of the system. These substrates range from neglectable cost per
gram substrate (unlabeled glucose) to several thousand euros per gram. Some mixture may be
beneficial over others but it can be higher in costs Csub. The costs for an experiment consists
of labor time twork,exp and costs for the experimental setup Cexp (i.e. labeled substrate, media,
number of samples taken. . . ).

Cexp = Csub + Cexp + twork · Cwage (10.8)

The resulting labeling patterns of the metabolites are then analyzed in the respective analyt-
ical device, evaluated and transcribed into the model. These analytical devices can cost up
to 1000 k€, the respective costs are allocated to 5 years in this study. By using run-time per
sample we can calculate the costs of the device per sample Cmeas. For the analytics Cana,
we obtain:

Cana = nsample(max(ϕmeas)) · Cmeas + twork,ana(ϕmeas) · Cwage (10.9)

Finally we can calculate the costs objective for one experiment:

Icosts = Cexp(ϕsubst) + Cana(ϕmeas) (10.10)

Notice: the number ϕmeas of measured samples can be different for every measurement, as
not every measurements’ respective peaks need to be integrated. The number of measured
samples nsample is determined by the maximum number of samples measured for any of the
metabolites. Thus, we can measure all samples, but just evaluate a fraction of their labeling
patterns to safe costs.
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figure 10.4: Program flow diagram for multi-objective experimental design study using jMetal
toolbox for optimization. The algorithm is executed until the maximal model evalu-
ation is exceeded.

10.3.2 Implementation
After initializing 13CFLUX2 the optimizer SMPSO is started within jMetal (see figure 10.4),
generating a population of variables in design space. Each individual in the population is
accounting for measurement replicate number vector and sample mixture. The lower bound-
ary for which a measurement is counted is at least 2 replicates ϕmeas, as this is the minimal
number of measurements for which a finite confidence interval/standard deviation can be
calculated. Measurements with lower number of replicates are excluded from the analysis.
In 13CFLUX2 the model is simulated using the sample mixture and the Jacobian J is built.
The Fisher information matrix FIM is calculated by equation 10.4. The information criteria
are evaluated based on the Fisher information matrix, if the constraints (equation 10.5-10.6)
are met. In case of non-identifiable parameters these need to be fixed to a constant value
specifically for the set of given variables. From the given protocol for the measurement device
and the mixture and number of measurements, the costs for the experiments are calculated.
Finally, the desired information criteria are given to jMetal as objective values.
From this population of solutions Pareto optimal solutions are selected by the specific algo-
rithm to build the archive (best known Pareto set) and for the next iteration a new set of
points in design space is generated. The archive is automatically updated by jMetal based on
crowding distance to achieve optimal coverage of the solution space [52]. The archive/best
known Pareto set is returned as output at the end.

10.3.3 Visualization
The visualization of the high dimensional substrate mixtures was of central importance in
this study. The scientific user needs to be aware of the interplay of costs, measurements,
mixture composition and criterion value in order to choose his/her optimal point in decision
space. We used clustering algorithms based on shortest Euclidean distance of mixtures to
generate dendrograms and projections of the high dimensional data to visualize them (data
can also be seen in the appendix). Thereby problems arise. The overall complexity of the
data is lost by using clustering and projections are abstract. Thus we established a new tool
to visualize the high dimensional mixture plots. In figure 10.5a an example of these mixture
plots created by CIRCOS tool is given [126]. On the left hand side the used substrates are
shown and on the right hand side the objective values (costs and alphabetical information
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(a) Visualization (b) Effect of dimension on experimental design

figure 10.5: (a) Visualization for high dimensional mixture plots with regard to objective value.
(b) Effect on the design and objective space by setting fluxes constant and thereby
changing the dimensionality of the covariance matrix. For comparison, the D-criterion
and costs were scaled to the interval [0, 1] with respect to highest found values. Nor-
malized D-criterion is plotted.

criterion), scaled between 0 and 100 %, are shown. One design point in objective space can
possess a complex substrate mixture, thus arrows from the separate substrate indicate the
amount they contribute to the overall mixture in this design point. To allow quantitative
remarks on the usage of a substrate, a histogram plot shows for each substrate the frequency
of the fraction used in separate used mixtures.
As we need to constrain fluxes to their value if they become non-identifiable, we are dealing
with systems of differing dimensionality. An example is shown in figure 10.5b. Here, fluxes
in a model are consecutively set constant in order to evaluate the statistics of the model. We
can see that the mixtures and number of used substrates is changing in the circular plots.
While setting fluxes constant, the model becomes more and more statistical identifiable as
the normalized D-criterion is increasing in its value. For simplicity we are discussing in
this work only the highest dimensional case (p=22), as the designs for other dimensionality
are becoming either harder to interpret or only a low number of data-points was found for
them. The dimensionality of the model is incorporated into the objectives: First the used
criteria incorporate a correction for the dimensionality. Second, the dimension is a separate
objective in the multi-objective optimization. Thus, solutions with a all variables free possess
a obective value for the dimension of Ip = 0 (p=22), if one flux is set constant one obtains
Ip = 1 (p=21) and so on. By this, models with higher dimensionality (more free variables)
dominate models with lower dimensionality (less free variables).

10.3.4 Results for Economic D-Criterion
Three objectives were taken into account for multi-objective ED: the costs, D-criteria and the
dimensions of the system (costs-D-criterion-dimensionality “cDd” design). The D-criterion
is most frequently applied in literature for planning of experiments. Only five out of poten-
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figure 10.6: Results of a multi-objective ED run using CNMR, GC-MS, LC-MS and LC-MS/MS
measurement devices. Substrates below 1 % in mixture were removed for visualization
purpose. Costs resolved for experiment and analytics. Overall costs ( ), experi-
mental costs ( , including costs for substrate) and analytical costs ( ).

tially 10 used substrates are predominantly found (Glc#000000, Glc#100000, Glc#111111,
Glc#100001, and Glc#110000 ). Unlabeled glucose is primarily present in mixtures with
low information criteria (see figure 10.6). Interestingly, expensive substrates (Glc#100001,
Glc#110000 ) were only present in highly informative mixtures. These substrates can in-
crease the statistical measure by about 50 %. One can see that LC-MS/MS uses, besides
Glc#110000, only cheap substrates compared to the other devices. In the other measure-
ment devices Glc#100001 is found in the most expensive/most informative substrate mixture
and increases their costs for ED strongly as it is one of the most expensive substrates (>1000
€/g).
The minimum and maximum criterion values are shown in figure 10.7, where LC-MS/MS
shows least costs. The D-criterion is higher compared to the other devices leading to highest
statistical identifiability in the present study. CNMR provides higher minimal costs than the
other devices, as the analytic device is more expensive and measurement time is considerably
longer. The other devices are similar in costs, as they require also similar costs for the
analytics. The main part of the costs is composed of the substrate costs. CNMR shows
higher costs for analytics because it has long measurement times and expensive analytical
devices (both up to ten times higher compared to the other devices). Besides, LC-MS/MS
shows highest effort and costs for manual peak evaluation.
The previously shown results indicate the power of the method. Nevertheless, it might happen
that the found designs are spread over almost all possible mixtures. Thus, we clustered the
results by their substrate mixture, cost and D-criteria. For LC-MS/MS three large distinct
clusters were found, the first contains the standard mixtures of 1- and fully labeled glucose and
correspond to the cheapest EDs (<5000 € overall costs; data can be seen in the appendix E.3).
The second cluster contains [1,2] labeled glucose and fully labeled glucose. In the third cluster
[1,2] and fully labeled glucose can be found. Both clusters are more expensive and yet more
informative. The other devices show similar results (data in appendix E.3 shown).
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figure 10.7: Comparison of costs and D-criterion value for the fisher information matrix of the cDd
design. Whiskers are showing min/max value for D-criteria found for 104 sampled
flux distributions. Boxes show 25th and 75th percentiles. Median is indicated by a
dot.

Robustness Study

We have performed the presented multi-objective ED study for a given flux distribution
which we estimated based on published flux distributions. This flux distribution is one point
in flux/parameter space and thus a local solution. As our fluxes may vary within their
found standard deviation, severe deviations from the experimental design values obtained
are possible in this region of parameters. Thus, we sampled our parameters in the bounding
box given by the confidence ellipsoids from the parameters covariance matrix. This was
performed for the best found experimental design for the D-criterion for each measurement
device separately. Finally, we evaluated the D-criterion based on the best known optimal
design point to get an impression of the variation for the optimal D-designs if the fluxes are
changed. The optimal design point for the D-criterion was using an input substrate mixture
of 100 % Glc#110000 for LC-MS/MS. The results for 104 samples are shown in figure 10.7
for optimal cDd design points.
We can see that the median value of the found D-criterion for the newly sampled fluxes
is below the solution for the original flux distribution. Thus, for our flux distribution the
design obtained in cDd study is optimal, but not mandatory for the other flux distributions.
LC-MS/MS shows narrower distributed D-criterion values compared to other devices. This is
consistent with the fact that LC-MS/MS results provide the lowest standard deviations on the
fluxes and, thus, similar flux values are sampled compared to the original flux distribution.

Influence of Specific Measurements and Replicate Number

If we analyze the cluster of substrate mixtures for LC-MS/MS with regard to the used
measurements, we can see that from low to high costs ED there is a growing number of
measurements included in the simulated experiments (data shown in appendix E.3, figure E.6-
E.5).
Using more measurements is usually not expensive because the substrate mixture contributes
more significantly to the overall costs.
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In the cluster with the cheapest design points for LC-MS/MS (data shown in appendix E.3,
figure E.6) the measurements incorporated in the model vary with respect to replicate number.
All measurements are varied and show a broad distribution in their replicate number. A few
measurements are less often used like 2,3-phosphoglycerate.
The more expensive clusters differ not only in the cost and usage of substrates but also in their
number of measurements. Almost all measurements are used for statistical evaluation of the
model. Only measurements for malate, glyceraldehyde-3-phosphate, 2,3-phosphoglycerate,
tryptophane, tyrosine, phosphoenolpyruvate, and dihydroxyacetonephosphate show varia-
tions. Most likely, because these measurements provide minimal extra information for sta-
tistical identifiability.

10.3.5 Results for Economic A-/E-/D-Criteria
We can perform the same study as before (cDd design) also with several alphabetical criteria:
A-, E-, D- criteria, dimension and cost called from now on called (costs-A/E/D-criterion-
dimensionality) “cAEDd” criteria. The results of the cDd and cAEDd ED can be seen in
figure 10.8.
We are dealing now with a multi-objective optimization in five dimensions. Thus, projec-
tions of the results are shown. The previously generated results of the cDd designs are also
presented within the plot (black marks), the other criteria values (A- and E-citeria) were
calculated for these design points as well.
The found cDd ED solutions are just a distinguished trail through the overall objective space
which is represented by the cAEDd objective design space. The solutions in five dimensions
for cAEDd showed same or lower D-criterion compared to the cDd results, they even tend
to less optimal criteria values, as they are better in terms of the other objectives. The costs
per experiments in case of cAEDd ED are higher compared to the cDd ED and the used
substrates show a higher variation (see appendix).
In figure 10.8 we can also see that there is a large objective space for A, E and D-criteria
based on the point cloud of cAEDd designs. The objectives of the other devices (CNMR,
LC-MS, GC-MS) show strong variations in E and A-criteria of the cDd design (see appendix,
results for other devices). Thus, there are usually more informative experiments possible
then predicted solely by the D-criteria as the other criteria can change substantially in their
value.
Several design points for LC-MS/MS show a remarkably higher A-criteria for increased costs
compared to the cDd results. This holds true for, at least, CNMR and GC-MS. The respective
designs are even more expensive than the found three objective results, whereas the D-criteria
value was not becoming better. Again, we can see that experiments with higher statistical
identifiability are possible.

10.3.6 Results for Multi-Platform Applications
From the first study, we see that LC-MS/MS outperforms the other devices. Next, we want
to test if combining devices in one study will result in additional value for the statistics. We
combined GC-MS with LC-MS as they are most frequently used (see figure 10.9). Addition-
ally, HNMR and CNMR can be both performed on one device but with slightly different
experimental setups. It was already discussed that HNMR is providing absolute values for
the labeling at certain positions, whereas CNMR gives information about labeling patterns
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figure 10.8: Multi-objective optimization results for LC-MS/MS. Color codes for costs of design
point. The results of three objectives (D-criterion, dimensions and costs) are shown
(plus signs). The points in the separate plots are projections from five dimensions
into two dimensional space.
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figure 10.9: Comparison of costs and D-criterion value for the fisher information matrix of the
cDd design for combinations of measurement devices.

around a labeled carbon atom. Finally, we added CNMR to LC-MS/MS together in one
model. For each of those combinations we repeated above study. We will now compare
the results of the single devices to multiple devices, number given in brackets are D-criteria
values for the devices in a cDd design. GC-MS (417) and LC-MS (665) increase significantly
to a D-criterion of 1282. CNMR (1867) and HNMR(-) increased to about 2119. LC-MS/MS
(6333) and CNMR (1867) increased together to 7858. All in all, GC-MS and LC-MS showed
the highest increase of statistical identifiability.

10.4 Conclusions
We have performed multi-objective optimizations for 13C-MFA ED to increase the methods‘
statistical significance. To this end we introduced the new concept of non-alphabetical criteria
into multi-objective ED. As there are several potential measurement setups possible (MS,
NMR-based techniques), we extracted linear error models from literature data for them and
build specific cost functions. For each of the published devices the work-flow was performed,
aiming at answering the following questions:

Which Fluxes are Identifiable?

We could show that the measurement techniques differ in the number of identifiable fluxes.
For HNMR and GC-C-IRMS we found a low number of identifiable fluxes and excluded them
for further analysis.
LC-MS/MS showed the highest amount of statistical identifiable fluxes. High exchange fluxes
were usually statistically weak identified. Nevertheless, at least 21 free fluxes (9 net and 12
exchange fluxes) out of 34 free fluxes were identifiable with CNMR, LC-MS/MS, GC-MS and
LC-MS. As the same flux distribution and the same dimensionality for all models was used,
a direct comparison of the results was possible.
Basically, all measurement techniques were capable of statistically resolving these fluxes.
However, optimal statistical elucidation can be achieved with LC-MS/MS, which could iden-
tify these fluxes with highest statistical identifiability. Optimal ED points differ in number
of used measurements and costs, which will be discussed in the next section.

How much does it Cost?

We extended the concept of alphabetical design criteria for ED by non-alphabetical design
criteria (like costs and dimensionality of the model), aiming at other properties of the system
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than the covariance matrix to increase comparability and reliability of ED studies. As we
relied heavily on multi-objective optimization, it was possible to search for economic EDs
by introducing costs for devices, substrates and measurements as non-alphabetical design
criteria.
As expected, one can deduce from the results that costs for experiments are mainly influ-
enced by substrates of choice. They possess a severe impact on the statistical identifiability
of the system. For normal substrate mixtures like 1-, uniform- and naturally labeled glucose,
only moderate statistical identifiability is found with a moderate number of needed measure-
ments. For higher statistical identifiability, also more expensive substrate mixtures can be
used. From the result one can see that there are the basic substrate mixtures used on the
one hand (1-/uniform/naturally labeled glucose) where the number of replicates show strong
variation. Thus, not all measurements are important for those mixtures as the measurement
do not utilize the maximum of potential information by the poor substrate mixture. On the
other hand there are highly informative mixtures utilizing almost all measurement/ infor-
mation content. Thus, saving measurements for best results was only possible to a small
extent, as a high demand for measurements strengthens the fact that most measurements
are indispensable for high statistical identifiability (using costly substrates).
Nevertheless, the choice of substrate seems to be the most crucial point for elucidation of
fluxes. Choosing the right device, like LC-MS/MS and measurement may lead to EDs with
50 % less costs than other devices (CNMR, LC-MS, GC-MS). A more economic design of
experiments using LC-MS/MS results also in 300 % higher criteria values compared to the
other techniques in this study. We have also seen that measurements are tremendously
cheaper than substrates. A potential option to enhance the statistical significance of the
measurements is introducing new measurements or using differing measurement principles in
one ED.
Thus, increasing the number of measurements can result in higher statistical identifiability
as shown for the case of LC-MS/MS. For cheap substrate the measurements were strongly
varied. In the end, only a better (and usually more costly) substrate will increase statistical
identifiability and will positively effect the outcome of the study.

Is it Worth the Effort?

We could show by comparing different measurement devices that CNMR and LC-MS/MS
show best performance in terms of statistical identifiability. Indeed, we can see that omitting
measurements is not crucial for frequently used substrates (1- and fully labeled glucose), they
possess some sort of robustness or redundancy for the given flux distribution. In this case we
can easily save measurements without a dramatic effect on statistical identifiability. Using
high priced substrates makes sense if a suitable measurement spectrum is available. the found
designs show a relative broad distribution in substrate mixture space. Thus, changing the
mixture slightly, the statistical identifiability was found to be stable/robust in this study.
Previous studies have addressed potential problems by using the D-criterion. One example
are needle-shaped confidence ellipsoids with large confidence intervals for the parameters who
are usually undesired. This can be prevented by observing simultaneously the A-criterion.
By introducing the multi-objective optimization with A, E and D-criteria we were able to
efficiently explore the design space and compare them to the results for using only the D-
criterion. Thus, false predictions like described in literature are prevented [16, 88].
In the end it was evident that D-optimal designs (cDd designs) tend to show strong fluc-
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tuations in other criteria. These results strengthen the need to explore the design space in
depth. This was also accomplished by multi-objective optimization for ED by comparing the
results to the economic A, E and D-optimal designs (cAEDd designs). Besides, for exper-
imentalists, the A-criteria is most important as the covariances described by the D-criteria
are not of direct interest. By applying this technique we found A-optimal designs which were
more costly than the pure D-criteria but served better in statistical identifiability. They were
characterized by equal D-criterion value and higher A-criterion. All in all, the A-criterion is
more robust than the D-criterion, resulting in more reliable experimental designs.

10.4.1 Comparison of Techniques
We can, finally, also compare the separate techniques directly. By measuring of the D-criteria
we can say that LC-MS/MS performs best for the given flux distribution, measurements and
substrates. One could argue that the standard deviations of the measurement devices strongly
depend on the experimental procedure, used protocols and strain. Nevertheless, the error
models built from literature show similar behavior for all measurement devices. Only GC-
MS shows higher errors, which was consistent throughout literature [4, 232]. Although lower
standard deviations were reported to be reliable for a limited number of measurements by
Antoniewicz et al. we did not use them in this study, because they do not reflect current
status in literature [8].
For these reasons, the presented approach for optimal ED prevents false predictions and gives
researchers an efficient tool to plan experiments based on a priori knowledge. The principles
applied are universal and can be used throughout many fields of study. Here, for the first
time non-alphabetical criteria were introduced in multi-objective ED. The method enables
the user to explore design space and thereby evaluate already found design points to choose a
labeled substrate. Additionally, economic demands can be faced if the experimental procedure
is expensive. We could also compare measurement techniques in silico by their statistical
identifiability and could show that more economic and most informative experiments were
possible using LC-MS/MS.
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Chapter 11

Summary and Outlook

The aim of this thesis was to establish state-of-the-art fluxomics technologies for P. chry-
sogenum in the industrial environment. To derive quantitative flux maps, the established
work-flow of 13C-MFA was extended and new tools developed. In the end it was the aim
to elucidate the fluxome of the P. chrysogenum strain BCB1 in an industrial environment.
Initially, assumptions for 13C-MFA were stated and the changes in process conditions to
transfer 13C-MFA to the industrial environment were discussed. Close-to-industrial process
conditions for fed-batch cultivations were established using the sensor-bioreactor concept
[61, 62]. The main results are briefly summarized and an outlook is given.

11.1 Summary
In this thesis, several new tools were developed to cope with the experimental constraints
and limitations of stationary 13C-MFA.

1. NoReTo: A Nonlinear Regression Toolbox and work-flow was implemented to calculate
nonlinear, linearized and Monte Carlo bootstrap statistics in MATLAB and applied to
estimate steady state labeling data and confidence intervals for 13C-MFA models.

2. GloSA toolbox: Global Sensitivity Analysis can be performed by using random-sampling
high dimensional model representation (RS-HDMR). A work-flow was developed and
a toolbox comprised of most available techniques was implemented in MATLAB and
applied to 13C-MFA models.

3. For the correction of natural abundance in tandem MS measurements an algorithm and
concise notation was introduced.

4. Finally, a procedure for multi-objective experimental design was developed and intro-
duced in 13CFLUX2.

These tools were used in the work-flow of 13C-MFA.

13C-MFA for P. chrysogenum BCB1

For analysis, three chemostat experiments (with growth rates 0.03 h−1,0.05 h−1) and, addi-
tionally, two fed-batch cultivations for close-to-industrial process conditions were provided
by Sandoz GmbH. For these datasets, stationary 13C-MFA was established in this work.

175
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The 13C-MFA technology was introduced and the state-of-the-art work-flow was established,
finally, it was applied to the experimental datasets for P. chrysogenum BCB1.

Pre-processing A pipeline for pre-processing of the provided measurements was built.
First, time resolved extracellular concentration and process data were used to derive extra-
cellular reaction rates. Additionally, time resolved mass spectrometric labeling measurements
were available.

• Rates were estimated based on a unified complex kinetic model (24 parameters, imple-
mented in the software Dymola) taking into account growth and the complete measured
side-product formation of P. chrysogenum BCB1.

• Isotopic steady-state labeling measurements were estimated by extrapolation of tran-
sient data. Additionally, uncertainties of the labeling enrichment were propagated to
extrapolated values by nonlinear statistical methods applying NoReTo.

• The extrapolated mass spectrometric measurements were finally corrected for natural
isotopic labeling and statistical reconciliation was performed by the introduced algo-
rithm.

Network Modeling For conduction of 13C-MFA, a large scale metabolic network model
was built (485 reactions). From this a focused metabolic network (140 reactions) was derived
and assumptions were thoroughly stated. Strain specific effluxes for the models were calcu-
lated from hydrolyzed biomass components. Measurement specification and input substrates
were integrated into the 13C-MFA models.

Global Sensitivity Analysis Proceeding in the work-flow for 13C-MFA, a global sensi-
tivity method was chosen (RS-HDMR). Multiple techniques for RS-HDMR were compared
and a suitable procedure was selected (non-extended bases with backfitting). Global sensi-
tivity analysis was introduced into the 13C-MFA work-flow and applied to the focused model.
Thereby, it was ensured that important fluxes (in pentose phosphate pathway, citrate cycle
and glycolysis) were sensitive for the provided labeling measurements. Moreover, deep in-
sights into the complex interplay of changes in labeling measurements and fluxes were given
and visualized. Important labeling measurements were identified and insensitive fluxes were
removed from the model for further analysis.

Parameter Estimation and Statistical Analysis To conduct 13C-MFA, globalized multi-
start strategies were applied to guarantee optimal parameter estimates. Statistics of the
resulting flux map were calculated and experimental design was conducted to improve sta-
tistical identifiability.

Experimental Design In the last part of the work, the conventional (a posteriori) exper-
imental design strategies for 13C-MFA were extended by diversification-driven experimental
design to plan sequential experiments and increase statistical identifiability of the fluxes. It
was shown that, by applying multiple data-sets in one combined model, statistical identifiabil-
ity was significantly increased. To balance the shortcomings of single-criterion experimental
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designs, multi-objective experimental design was established to plan carbon labeling exper-
iments. By this technique, exploration of design space became possible and comparison of
measurement devices was performed, whereas LC-MS/MS was revealed to provide an eco-
nomic measurement setup for the conduction of experimental design.

Fluxome of P. chrysogenum BCB1 Finally, 13C-MFA was conducted for chemostats
and fed-batch datasets. This is the first time that a 13C-MFA was conducted in both cul-
tivation processes with the same strain, comparable media and analytics. The steps from
data pre-processing, network modeling, global sensitivity analysis, parameter estimation and
statistical analysis described above were performed in this thesis for flux estimation.

First, chemostat experiments were used to establish the 13C-MFA for the non-model organism
P. chrysogenum and revealed a high flux through oxidative pentose phosphate pathway (split
ratio of 69-75%). The resulting flux maps possessed high statistical identifiability in most
reactions, although biomass production by alternative pathways were not resolved. The data
indicate that the flux through oxidative pentose phosphate pathway is not only strongly
controlled by penicillin production, but also by biomass formation. By comparing the results
to a large scale 13C-MFA network, it was revealed that major tendencies (glycolysis and
pentose-phosphate pathway) are correctly predicted by the focused network. Nevertheless,
the focused network remains an approximation.
By application of the combined model to the data-sets of two chemostats, it was revealed
that aspartate is mainly formed in the cytosol with high statistical significance.

Data for fed-batch cultivations using the sensor-bioreactor concept were provided. First,
FBA was conducted with the large scale network and it revealed that penicillin production
in experiments is strongly decreased compared to in-silico data.
In fed-batch cultivations the strain BCB1 showed a reduced growth rate (0.007-0.008 h−1) and
even elevated fluxes through oxidative pentose phosphate pathway (74-80 %) compared to the
chemostats. These are the highest fluxes for oxidative pentose phosphate pathway observed
in P. chrysygenum in respect to literature. Finally overall 6.8-6.9 % of the substrate‘s carbon
were used in penicillin pathway.
Upon NADPH balancing it became obvious, that a major fraction of NADPH cannot be as-
signed to biomass formation or penicillin production. This provided a plausible explanation
for the false-prediction by FBA for the penicillin yield.

Summarizing, the main parts of the established state-of-the-art work-flow for 13C-MFA was
tested and automatized and in turn applied for the generation of flux maps. By adapting
the industrial production-process for penicillin V, flux maps could be provided with high
statistical significance for close-to-industrial cultivation conditions.

11.2 Outlook

P. chrysogenum has been subject of extensive research since the 1920ies with a strong focus on
biochemical level [81]. Despite, fundamental questions regarding the penicillin V formation
are still not answered. With the focus on the phenotypic level, 13C-MFA is a powerful
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technology established in the last decades, see Wiechert et al. [262]. Here, future directions
for new projects will be given, facing both: 13C-MFA and P. chrysogenum.

Process Inhomogeneities and Cell Heterogeneity

In large scale cultivations of P. chrysogenum, the inhomogeneities of the bio-processes (due
to mixing, local feed addition, . . . ) are known from large scale cultivations in an industrial
environment [130]. Besides that, on a different scale, the heterogeneities in P. chrysogenum
cultures like the hyphae structure, the spatially resolved metabolism, aging and changing
product formations were characterized in literature [281, 249, 59]. By both, inhomogeneities
in bioprocess and heterogeneities in P. chrysogenum cultures, a multitude of cellular states
are present within a cultivation. Resolving the separate cellular states by metabolic flux
analysis remains an unsolved problem because of the underlying assumptions (i.e. homoge-
neous population and metabolic steady-state). In the course of an experiment, the measured
labeling pattern depends nonlinearly on the fluxes. Averaging the labeling pattern for a pop-
ulation of cells and using them in a 13C-MFA study to resolve fluxes will not necessarily yield
the “average” flux distribution. In the end, deviates in the labeling pattern might be caused
by population heterogeneities.
Summarizing, the industrial processes are subject to macroscopic inhomogeneities. Besides,
the compartmentalization, population heterogeneities and dynamic effects caused by cellular
state (e.g. cell cycle, degeneration,. . . ) can result in a multitude of metabolic states. These
complex interactions will significantly effect the product formation and strain development
processes and, thus, need to be explored in depth.

NADPH balance

The main problem in the interpretation of FBA results in this work was the high gap in the
NADPH balance. Further experimental data need to be generated in the wet-lab to test the
hypotheses that may explain the gap (see chapter 8). The main fraction of NADPH is uti-
lized for cysteine biosynthesis, which is formed either by sulfhydrylation and transsulfuration
pathway. Both pathways were not resolvable by applying stationary 13C-MFA, because they
share the same atom transitions. They differ in the NADPH consumption (transsulfuration
pathway: 7-8 NADPH and sufhydrylation pathway: 5 NADPH). Applying non-stationary
13C-MFA may be an option to quantify the carbon flow through these pathways.
The investigation of NADPH metabolism has the potential to significantly improve industrial
strains further by increasing their efficiency in NADPH utilization.

13C-MFA Work-Flow

The state-of-the-art work-flow for 13C-MFA was proposed in chapter 3.1. Not investigated
are global uncertainty analysis and (a priori) experimental design. By a priori experimental
design, a significant increase in information content of the measurement can be achieved. This
is especially important for non-model organisms, where an initial knowledge about fluxes can
hardly be obtained from literature.
A few works in literature are concerned with the topic of global experimental design. Chu et al.
proposed a method for global uncertainty analysis and experimental design based on FAST
(Fourier amplitude sensitivity test) [45]. Furthermore, Kontoravdi et al. and Rodriguez-
Fernandez et al. used global sensitivity analysis for experimental designs [125, 202], whereas
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Rodriguez-Fernandez et al. aimed at increasing first order effects [202]. In contrast to prac-
tical considerations contributing to experimental design, global structural identifiability was
not addressed in the context of 13C-MFA [45].
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Appendix A

Global Sensitivity Analysis

A.1 Global Sensitivity Analysis

A.1.1 RS-HDMR with Orthonormal Polynomials

RS-HDMR for non-uniformly distributed, independent and/or correlated (non-orthogonal)
inputs will be described in this section according to Wang et al. [257]. The sampled inputs
xi are transformed to the interval [0, 1], resulting in a n-dimensional unit hypercube Kn =
{(x1, x2, x3, . . . xn) |0≤ xi ≤1, i = 1, 2, 3, . . . , n}. Each input possesses the probability density
function wi(xi), which satisfies

⎧⎨⎩wi(xi) ≥ 0 , 0 ≤ xi ≤ 1´ 1
0 wi(xi)dxi = 1 , i = 1, 2, . . . , n

(A.1)

Here, wi(xi) may be not separable if there exist some dependencies between inputs xi and xj.
First, we can define that xi and xij are all sampled input x except input parameter xi and
(xi, xj) within range Kn−1 and Kn−2, respectively. Additionally, we introduce conditional
variances, for example, for a fixed value of xi, the probability density function for x is
wxi|xi

(xi).

wi(xi) =
ˆ

Kn−1

w(xi, xi)dxi (A.2)

wij(xi, xj) =
ˆ

Kn−2

w(xi, xj, xij)dxij (A.3)

wxi|xi
(xi) = w(xi, xi)/wi(xi) (A.4)

wxij |xij
(xij) = w(xi, xj, xij)/wij(xi, xj) (A.5)

Thus, we can write the terms of the hierarchical correlated function expansion of our RS-
HDMR model for the function f(x):

211
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f0 =
ˆ

Kn

w(x)f(x)dx (A.6)

fi(xi) =
ˆ

Kn−1

wxi|xi
(xi)f(x)dxi − f0 (A.7)

fij(xi, xj) =
ˆ

Kn−2

wxij |xixj
(xij)f(x)dxij − fi(xi) − fj(xj) − f0 (A.8)

By extending the method for correlated inputs, the mutual orthogonality from equation 6.2.1
cannot be preserved.
For estimation of the separate component functions, orthonormal polynomials φi

r(xi) are
chosen with respect to the density wi(xi).

1ˆ

0

wi(xi)φi
r(xi)dxi = 0 for all r, i (A.9)

1ˆ

0

wi(xi)
[
φi

r(xi)
]2

dxi = 1 for all r, i (A.10)

1ˆ

0

wi(xi)φi
p(xi)φi

q(xi)dxi = 0 p 
= q (A.11)

The component functions consists of polynomials φ and the model coefficients αi
r, βij

rp and
γijk

rpq.

fi(xi) ≈
k∑

r=1
αi

rφ
i
r(xi) (A.12)

fij(xi, xj) ≈
l∑

r=1

l‘∑
p′=1

βij
rp′φi

r(xi)φj
p′(xj) (A.13)

fijk(xi, xj, xk) ≈
m∑

r=1

m‘∑
p′=1

m′′∑
q=1

γij
rpqφ

i
r(xi)φj

p′(xj)φk
q(xk) (A.14)

The degree of the polynomials (k, l, l’, m, m′, m′′) can be chosen specific for each component
function. To build the first order component functions fi of one input, r = 1, 2, ...k expansion
coefficients αi

r are used for the separate orthonormal polynomials φi
r . For a second order

function l·l′ and for a third order function m·m′·m′′ coefficients are used. Usually, polynomials
of an order up to three or four are used. Higher order polynomials tend to oscillations and
the number of needed coefficients rises [136]. For a model with 30 inputs with zeroth to
second order correlations and polynomial‘s order of 3 results in a RS-HDMR meta-model of
1395 expansion coefficients to be determined. We will now focus on the estimations of the
separate terms in a RS-HDMR function expansion.
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First, the constant term f0 can be estimated:

f0 ≈ 1
N

N∑
s=1

y(x(s)) (A.15)

The coefficients for the single parameters can be efficiently determined by Monte Carlo inte-
gration:

αi
r =
ˆ 1

0
wi(xi)fi(xi)φi

r(xi)dxi (A.16)

=
ˆ

Kp

p∏
k=1

wk(xk)y(x)φi
r(xi)dx (A.17)

≈ 1
N

N∑
s=1

y(x(s))φi
r(x

(s)
i ) (A.18)

βij
pq =

ˆ 1

0

ˆ 1

0
wi(xi)wj(xj)fi(xi, xj)φi

r(xi)φj
q(xj)dxidxj (A.19)

=
ˆ

Kp

p∏
k=1

wk(xk)y(x)φi
r(xi)φj

q(xj)dxβij
pq (A.20)

≈ 1
N

N∑
s=1

y(x(s))φi
r(x

(s)
i )φj

q(x
(s)
j ) (A.21)

γijk
pqr =

ˆ 1

0

ˆ 1

0

ˆ 1

0
wi(xi)wj(xj)wk(xk)fi(xi, xj, xk)φi

r(xi)φj
q(xj)φk

q(xk)dxidxjdxk (A.22)

=
ˆ

Kp

p∏
k=1

wk(xk)y(x)φi
r(xi)φj

q(xj)φk
p′(xk)dxγijk

pqr (A.23)

≈ 1
N

N∑
s=1

y(x(s))φi
r(x

(s)
i )φj

q(x
(s)
j )φj

p′(x(s)
k ) (A.24)

From these separate terms, the hierarchical correlated function expansion can be constructed:

f(x) ≈ f0 +
p∑

i=1

k∑
r=1

αi
rφ

i
r(xi) +

∑
1≤i<j≤p

l∑
r=1

l‘∑
p′=1

βij
rpφi

r(xi)φj
p′(xj)+

∑
1≤i<j<k≤p

m∑
r=1

m‘∑
p′=1

m‘′∑
q=1

γij
rp′qφ

i
r(xi)φj

p′(xj)φk
q(xk) + . . . (A.25)

A.1.2 Adaptive Damping for Backfitting Method
The backfitting method is applied throughout this thesis for RS-HDMR [32, 137]. It was
found in this work that it can diverge if sample densities are low or strong correlations
are present. The method was extended by a damping factor η chosen in the interval of
[0.1, 1]. In each iteration of backfitting, only a fraction to be approximated model output was
used to estimate expansion coefficients. Thus, for the first approximation of the expansion
coefficients η · y(x) was used to determine the coefficients in equation A.16-A.24. If the



214 APPENDIX A. GLOBAL SENSITIVITY ANALYSIS

solution was still diverging, the damping factor η was reduced until the method converged.
In backfitting the approximation error of the meta-model can be calculated by h(x) = y(x)−
f(x). In all subsequent iterations the damping factor is used to estimate correction for the
expansion coefficients (η · h(x)). The adaptive damping was only needed for backfitting
method. DMORPH and extended bases methods could be directly applied.

A.2 Sobol‘s g-Function

Sobol‘s g-function ySobol is continuous but not differentiable at xi = 0.5 [220]. The samples
were generated according to a uniform distribution U(0, 1) using MATLAB‘s rand function.
After generation of the samples and computation of the model output, all samples and the
output values were scaled to the interval [0, 1]. The g-function is the product of separate
terms gi:

ySobol(x1, . . . , xd) =
n∏

i=1
gi(xi) (A.26)

The separate functions gi are given by

gi(xi) = |4 · xi − 2| + ai

1 + ai

with ai ≥ 0 i = 1, 2, . . . p (A.27)

The coefficient ai gives the input parameter a desired sensitivity index. A small value of ai

(ai = 0 − 1) corresponds to a high influencing factor.

The first order component function estimated based on Sobol‘s g-function are shown in fig-
ure A.1. The functions can be approximated by polynomials. The first order effects contribute
93.4 % and the second order cooperative effect contributes 6.4 % to the overall variance, thus
third order component functions are assumed to be of no importance as expected. First
and second order polynomials of the order 3-8 were used to generate the RS-HDMR model.
Functions with high first order sensitivities (Si) received also higher polynomial order (k is
giving polynomial order for first order component functions). The values for the polynomials
order are shown in in figure A.1. Second order component functions were built with the same
polynomial order as the first order component function (k = l, l′).
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−0.6

−0.4

−0.2

0

0.2

0.4

0.6

xi

f i
(x

i)
xi ai Si k

1 1 0.418 8
2 2 0.186 7
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10 10 0.014 3∑ 0.934

figure A.1: Sobol‘s g-function, the analytical ( ) values for the first order functions are plotted
including their respective first order component function ( ) approximation with
polynomial order k = 7. On the right hand side, the settings for the performed
experiments are shown. Second order component functions were built with the same
polynomial order as the first order functions.

First the influence of sample size on the estimated component function and sensitivity indices
was tested. For this the defined measures ‖f(x) − y‖∞ and ‖f(x) − y‖2,n were used. The
separate techniques in the work-flow are tested for uniform distributed inputs.
In figure A.2 Sample size is varied for building of the meta-model within 5 · 103-105 samples
(solid lines, “original samples”). The independently generated reference sample set of 5 · 105

samples (dashed lines) is used to re-calculate the measures ‖f(x) − y‖∞ and ‖f(x) − y‖2,n.
It is obvious, that the measures calculated based on the reference samples show less optimal
measures for goodness-of-fit compared to the originally used samples for building of the RS-
HDMR model. This effect vanishes with increasing sample size as the approximation quality
by RS-HDMR is increasing.
The upper plot shows the measure ‖f(x) − y‖2,n , which is similar for all techniques above 104

samples (for reference and original samples). With lower sample size, the results obtained
for the separate techniques show differences. Lower order product method showed best
performance on low sample size. It approximates second order component functions and
their coefficients by using first order functions and is more efficient in of the used expansion
coefficients. All other built meta-models possess 856 expansion coefficients for first and
second order component functions, whereas lower order product method uses 465 expansion
coefficients . The second order coefficients are estimated with an accuracy of roughly 20 %,
nevertheless the lower order product method does not reach the accuracy for second order
component functions of the other methods (see table A.1 in appendix).
D-MORPH regression, backfitting, correlation and extended basis method had best estima-
tion quality of second order function. Using 5,000 samples large second order (Sij = 0.1-0.01)
correlation terms were adequately determined by these methods, with a relative error below
5 %. A relative error of less than 10 % for 85 % of the second order sensitivity indices for low
influential sensitivity indices in the order of Sij = 0.01-0.001 were found if 105 samples were
used.
Using only 5,000 samples results in 23 % of the second order sensitivity indices in the respec-
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tive range. Thus, increasing sample size beyond 5,000 samples can increase approximation
quality of RS-HDMR expansions for sensitivity indices estimation significantly, especially for
second order indices. The computational effort was low for lower-order product method (in
the order of seconds). Correlation and backfitting method were more expensive (order of 1-2
minutes), but a RS-HDMR could be built for 50,000 samples within minutes. DMORPH
regression and extended bases method performed similar but lead to high computation time
(order of 5-10 minutes).
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figure A.2: Comparison of RS-HDMR techniques by using Sobol‘s g-function. Backfitting for
first order component function and lower order product for 2nd order component
function: original ( ) and reference samples ( ); backfitting: original ( ) and
reference samples ( ); correlation method: original ( ) and reference samples
( ); extended basis method: original ( ) and reference samples ( ); DMORPH
regression: original ( ) and reference samples ( )
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A.3 Preliminary Test of RS-HDMR Techniques for an
LC-MS/MS Measurement

One output of the 13C-MFA model of P. chrysogenum built in chapter 7 was chosen as a
test case to compare the methods for global sensitivity analysis. For the output, the sepa-
rate HDMR methods were applied. The built RS-HDMR model use zeroth to second order
component functions and contains 4279 coefficients for the 31 inputs using orthogonal poly-
nomials of third order. Here, only one specific measurement of alanine, the m+0 trace is
approximated by RS-HDMR. The results can be seen in figure A.3. For this model no ana-
lytical solution for the sensitivity indices exists, nevertheless the values of the largest sample
size (500,000 samples) used as reference point to estimate the goodness of the estimated
sensitivity indices.
In figure A.2 sample size used for building of the RS-HDMR meta-model was varied. Sample
size from 103 to 5 · 105 samples was used (solid lines, “original samples”). The independently
generated reference sample set of 5 · 105 samples (dashed lines) is used to re-calculate the
measures ‖f(x) − y‖∞ and ‖f(x) − y‖2,n with the built RS-HDMR model. It is obvious, that
the measures calculated based on the reference samples are less optimal for goodness-of-fit
compared to the originally used samples for building of the RS-HDMR model. This effect
vanishes with increasing sample size as the approximation quality by RS-HDMR is increas-
ing.
The top graph in figure A.3 shows the measure ‖f(x) − y‖2,n. DMORPH regression, back-
fitting and extended bases showed best and comparable results. Around 5 · 104 samples
reference and original data show corresponding goodness-of-fit. Lower order product method
showed low fit quality on this example, although it was efficiently applied to the simpler case
of Sobol‘s g-function. The maximal approximation error of ~2 · 10-1 was higher compared to
g-function.

Next, the stability of global sensitivity indices prediction was compared (data not shown),
as a reference point the approximation at 5 · 105 samples was used of the respective method.
The first order component functions are stable predicted by DMORPH regression, extended
bases and backfitting. Stable results were obtained for high sensitivity indices with 5,000
samples. For backfitting method, the same was found for increased samples sizes of 50,000
samples.
However, the backfitting method showed stable predictions for the second order functions.
Although DMORPH regression and extended bases will provide similar or (slightly) better
estimates on lower sample size, backfitting procedure was chosen as the computational effort
is lower (5-10 min for backfitting vs. 1-2 hour for DMORPH regression).
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figure A.3: Comparison of RS-HDMR techniques for alanine m+0 measurement in P. chrysogenum
network. Backfitting for first order component function and lower order product for
2nd order component function: original ( ) and reference samples ( ); backfitting:
original ( ) and reference samples ( ); extended basis method: original ( ) and
reference samples ( ); DMORPH regression: original ( ) and reference samples
( ). Test case of alanine m+0 mass spectrometric measurement was taken from the
P. chrysogenum model later used. The model output was scaled to the interval [0, 1]
to compare them to the results with the g-function (data in appendix).



222 APPENDIX A. GLOBAL SENSITIVITY ANALYSIS

A.4 Focused C-MFA Model for Global Sensitivity Anal-
ysis

Reaction name Reaction

BM_GLUC: G6P(ABCDEF) →
BM_MAN: F6P(ABCDEF) →
BM_SER: SER(ABC) →
BM_GLY: GLY(AB) →
gly1: Glc [ex] (ABCDEF) → G6P(ABCDEF)
gly2: G6P(ABCDEF) � F6P(AFBCDE)
gly3: F6P(ABCDEF) → FBP(ABCDEF)
gly4: FBP(ABCDEF) � DHAP(EBF) + GAP(DAC)
gly5: GAP(ABC) � 23PG(BCA)
gly7: PEP(ABC) → PYR(ABC)
PPP2: 6PG(ABCDEF) → Ru5P(DBAEC) + CO2(F)
PPP5: X5P(ABCDE) + R5P(FGHIJ) � GAP(EBD) + S7P(AFCGJHI)
Ser1: 23PG(ABC) → PHP(ABC)
Gly1: SER(ABC) � EC1(A) + GLY(BC)
Gly2: EC1(A) + CO2(B) � GLY(AB)
Thr2: AcCoA(AB) + GLY(CD) � THR(ABCD)
Trans_Pyr: PYR(ABC) → PYR [mit] (ABC)
Trans_OAA: OAA(ABCD) � OAA [mit] (ABCD)
Ana1: OAA(ABCD) � PEP(ABD) + CO2(C)
Ana2: PYR(ABC) + CO2(D) � OAA(ABDC)
Thr1: ASP(ABCD) → HSer(ACBD)
Ac3: PYR(ABC) → CO2(C) + AcCoA(AB)
BM_AcCoA: AcCoA(AB) →
Trans_AcCoA: AcCoA [mit] (AB) � AcCoA(AB)
CO2 ex: CO2(A) →
Glc 0: Glc0(ABCDEF) → Glc [ex] (ABCDEF)
Glc U: GlcU(ABCDEF) → Glc [ex] (ABCDEF)
Glc 1: Glc1(ABCDEF) → Glc [ex] (ABCDEF)
PPP1: G6P(ABCDEF) → 6PG(DACEBF)
Asp1: OAA(ABCD) → ASP(ABCD)
BM_ASP: ASP(ABCD) →
His2: R5P(ABCDE) + EC1(F) → HIS(CEFDBA)
BM_HIS: HIS(ABCDEF) →
CHOR: E4P(ABCD) + PEP(EFG) + PEP(HIJ) → Chor(EBDHFICAGJ)
Phe1: Chor(ABCDEFGHIJ) → PHE(GCHBDAFEI) + CO2(J)
Tyr1: Chor(ABCDEFGHIJ) → TYR(DBHCAFGEI) + CO2(J)
BM_PHE: PHE(ABCDEFGHI) →
BM_TYR: TYR(ABCDEFGHI) →
BM_EC1: EC1(A) →
PPP4: Ru5P(ABCDE) � R5P(BDECA)
gly4b: DHAP(ABC) � GAP(ABC)
Ser2: PHP(ABC) → PSer(ABC)
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Met1: EC1(A) + ASP(BCDE) → MET(ABDCE)
gly6: 23PG(ABC) � PEP(ABC)
BM_MET: MET(ABCDE) →
BIOM IN: BIOM() → BIOMass()
BIOM ex: BIOMass() →
Trp1: Chor(ABCDEFGHIJ) → PYR(AEI) + Ant(CGBHFDJ)
Trp2: Ant(ABCDEFG) + R5P(HIJKL) → Ant2(ABCDLHEFKIJG)
Trp3: Ant2(ABCDEFGHIJKL) → CO2(L) + Ant3(ABCDEFGIHJK)
Trp4: Ant3(ABCDEFGHIJK) → TRP(ABCDKEHGJIF)
Tca2: OAA [mit] (ABCD) + AcCoA [mit] (EF) → Cit [mit] (AECFDB)
Ala: PYR [mit] (ABC) → ALA [mit] (ABC)
Val1: PYR [mit] (ABC) + PYR [mit] (DEF) → CO2 [mit] (C) + DHIV [mit] (ADEFB)
Leu: PYR [mit] (ABC) + PYR [mit] (DEF) + AcCoA(GH) → LEU(DABEGH) +

CO2(F) + CO2(C)
Ileu1: PYR [mit] (ABC) + ASP(DEFG) → CO2(C) + KILE(FADBEG)
BM_VAL: VAL(ABCDE) →
BM_ALA: ALA [mit] (ABC) →
BM_ILE: ILE(ABCDEF) →
BM_LEU: LEU(ABCDEF) →
BM_LYS: LYS(ABCDEF) →
BM_THR: THR(ABCD) →
BM_TRP: TRP(ABCDEFGHIJK) →
Tca1: PYR [mit] (ABC) → AcCoA [mit] (AB) + CO2 [mit] (C)
Trans_CO2: CO2 [mit] (A) → CO2(A)
BM_ERY: E4P(ABCD) →
BM_GLU: GLU [mit] (ABCDE) →
BM_PRO: PRO [mit] (ABCDE) →
BM_ARG: ARG(ABCDEF) →
Lys1: AKG [mit] (ABCDE) + AcCoA(FG) → CO2(E) + AAA(BDAFCG)
BM_AAA: AAA(ABCDEF) →
BM_ORN: ORN [mit] (ABCDE) →
BM_GALAC: G6P(ABCDEF) →
BM_MANNOSE: F6P(ABCDEF) →
BM_GLUCOS: F6P(ABCDEF) →
BM_ARAB: Ru5P(ABCDE) →
BM_ICIT: AKG [mit] (ABCDE) →
BM_FUM: FUM [mit] (ABCD) →
Pen1: POA() + IPN(ABCDEF) → PENV() + AAA(ABCDEF)
PEN ex: PENV() →
Tca4: ACO [mit] (ABCDEF) → AKG [mit] (CBAED) + CO2 [mit] (F)
Tca7a: FUM [mit] (ABCD) � MAL [mit] (BADC)
Glu1: AKG [mit] (ABCDE) → GLU [mit] (ABCDE)
Glu3: GLU [mit] (ABCDE) → GLN [mit] (ABCDE)
Glu2: GLU [mit] (ABCDE) → PRO [mit] (BADCE)
Glu4: GLU [mit] (ABCDE) → ORN [mit] (BADCE)
Lys2: AAA(ABCDEF) → LYS(ACBEDF)
Arg1: AKG [mit] (ABCDE) + EC1(F) → ARG(BADCEF)
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Thr3: HSer(ABCD) → THR(BACD)
Val2: DHIV [mit] (ABCDE) → KIV(ABECD)
Val3: KIV(ABCDE) → VAL(ABCDE)
Ileu2: KILE(ABCDEF) → ILE(ABCDEF)
Ser3: PSer(ABC) → SER(ABC)
Cys1: OAcSer(ABCDE) → CYS(BDE) + AcCoA(AC)
Cys2: CYS(ABC) + CYS(DEF) → Cyst(DAEBFC)
BM_CYS: CYS(ABC) →
Pen2: CV() + AAA(ABCDEF) → IPN(ABCDEF)
BM_Cyst: Cyst(ABCDEF) →
BM_GLN: GLN [mit] (ABCDE) →
Asp2: ASP(ABCD) → ASN(ABCD)
BM_ASN: ASN(ABCD) →
Tca5b: AKG [mit] (ABCDE) � SUC [mit] (ABCD) + CO2 [mit] (E)
Tca5a: AKG [mit] (ABCDE) � SUC [mit] (BADC) + CO2 [mit] (E)
Poa IN: POA_IN() → POA()
BM_CO2: CO2(A) →
BM_R5P: R5P(ABCDE) →
Pen_Syn_VAL: VAL(ABCDE) →
Pen_Syn_CYS: CYS(ABC) →
PPP6: GAP(ABC) + S7P(DEFGHIJ) � F6P(BDCAHF) + E4P(JEIG)
PPP7: E4P(ABCD) + X5P(EFGHI) � F6P(BEDCAG) + GAP(IFH)
PPP3: Ru5P(ABCDE) � X5P(ABCDE)
BM_GAP: GAP(ABC) →
Tca3: Cit [mit] (ABCDEF) → ACO [mit] (ABFCDE)
Tca6a: SUC [mit] (ABCD) � FUM [mit] (ABCD)
Tca6b: SUC [mit] (ABCD) � FUM [mit] (BADC)
Ser4: SER(ABC) + AcCoA(DE) → OAcSer(DAEBC)
Ana3: PYR [mit] (ABC) + CO2 [mit] (D) � MAL [mit] (ABDC)
Tca8: MAL [mit] (ABCD) � OAA [mit] (ABCD)
Tca7b: FUM [mit] (ABCD) � MAL [mit] (ABCD)
Asp1b: OAA [mit] (ABCD) → ASP(ABCD)
IPN_ex: IPN(ABCDEF) →
Pen3: PENV() → Byprod()
Byprod_ex: Byprod() →
Help_Ru5P: Ru5P(ABCDE) → Ru5P_X5P(ABCDE)
Help_X5P: X5P(ABCDE) → Ru5P_X5P(ABCDE)
Help_Ru5P_X5P: Ru5P_X5P(ABCDE) →
Pen0: CV_IN() � CV()

table A.4: Free net flux values of P. chrysogenum model used for sampling

Flux Interval Flux Interval Flux Interval

Ana1 [0, 0.57] Asp3 [0, 0.06] Pen3 [0.32]
Tca1 [0.16, 1.39] Tca8 [0, 1.00] Transporter_CO2 [0.67, 4.60]

Transporter_Pyr [0.44, 1.41] gly2 [0, 0.92] gly7 [1.18, 1.67]



Appendix B

Process Data

B.1 Material and Methods
P. chrysogenum strain BCB1 was used throughout all experiments. This strain (also called
P14-B1 strain) was derived from the P2 line of strains generated at Panlabs [193]. All ex-
perimental data were kindly provided by Georg Kornfeld. All experiments in wet-lab were
performed by Sabine Meinert in 2012 [155]. Simulation studies of the kinetic model for chemo-
stat and fed-batch were performed by Timm Severin at IBG-1. All network visualization in
this thesis were made using OMIX® Version 1.5.90 [60].

Chemostat
Vegetative cells were prepared in a two stage cultivation in stirred bioreactors. For details
see Meinert [155]. The first pre-culture was performed in a 15 L bioreactor with 12 L working
volume. The medium was based on Li et al. and contains complex components like corn steep
liquor [139]. After 48 hours the culture was transferred to the second pre-culture.
The medium in the first pre-culture contains a mixture of sucrose and glucose and corn steep
liquor: 18 g L−1 sucrose, 3 g L−1 glucose · H2O, 3.8 g L−1 CaCO3, 26 g L−1 corn steep liquor,
0.5 mL L−1 silicone oil and 0.5 mL L−1 polypropylene glycol. 2.4 ·109 spores L-1 were used for
inoculation. The first pre-culture was stirred at 150 rpm (rotations per minute) for 24 hours,
afterward 250 rpm were used.
After 48 hours 13.7 % of the first seed culture were used as inoculum for the second stage seed
culture in a 50 L bioreactor with 35 L working volume. The medium for the second stage con-
tains a mixture of sucrose and lactose: 30 g L−1 sucrose, 2 g L−1 lactose · H2O, 2.5 g L−1 urea,
5 g L−1 NH4(SO4)2, 0.5 g L−1 KH2PO4, 4 g L−1 CaCl2, 10 g L−1 MOPS (3-morpholinopropane-
1-sulfonic acid), 6mL L−1 trace element solution, 1mL L−1 PPG, 1 mL L−1 silicone oil. The
trace element solution contains 0.4 g L−1 FeSO4· 7 H2O, 0.2 g L−1 CuSO4 · 5 H2O, 0.8 g L−1

ZnSO4 · 7 H2O, 0.4 g L−1 MnSO4 · H2O, adjusted to pH 2 with H2SO4. KOH was used to
adjust the medium to pH 5.3. The second seed culture was controlled at 25 °C, 1 vvm aera-
tion rate (1 bar back pressure) and 275 rpm stirrer speed. Dissolved oxygen and pH were not
controlled.
The main culture was conducted in a 1.7 L bioreactor with 1.0 L working volume. The vol-
ume of cultivation medium was controlled by weight. Reactor, feed medium and removed
cultivation broth‘s weight was measured. For inoculation 15 % of the second seed culture was
used. The cultivation was controlled to 25 °C, pH 6.4 ± 0.1, with 5 % NaOH and 5 % H2SO4.
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Aeration rate of 1 vvm and stirrer speed of 600 rpm (6-bladed Rushton turbines) were used.
The medium used in the main culture is, with adaption in trace element solution, taken from
Nasution et al. [169]. 8.25 g L−1 glucose · H2O, 5.0 g L−1 NH4(SO4)2, 0.5 g L−1 MgSO4 ·
7 H2O, 1.0 g L−1 KH2PO4, 1.8 g L−1 sodium phenoxyacetate, 10 mL L−1 trace element solu-
tion. Start of medium feed was applied upon depletion of carbon source in batch phase by
an decrease of carbon dioxide in the off-gas. Carbon dioxide and oxygen were measured in
the off-gas. Biomass, substrate, penicillin and side products concentrations were measured
in samples.
Labeled glucose was added to the medium (instead of unlabeled glucose), U-13C-D-glucose
99% and 1-13C-D-glucose 98-99% were used (Cambridge Isotope Laboratories, Inc., Andover,
USA). Samples were taken from the bioreactor throughout cultivations with a fast sampling
device and quenched in 60 % cold methanol. The samples were analyzed by LC-ESI-MS/MS
and HPLC.

Fed-Batch
Vegetative cells were prepared in a two stage cultivation in stirred bioreactors. For details see
Meinert, 2012[155]. The first pre-culture was conducted according to chemostat experiments,
see above.

The fed batch process is based on Jüsten et al. [114]. The feed medium contains two trace ele-
ment solutions: 3.5 g L−1 (NH4)2SO4, 0.8 g L−1 KH2PO4, 0.01 g L−1 FeCl3 · 6H2O, 0.05 g L−1

MgSO4 · 7 H2O, 0.25 g L−1 KCl, 2.5 mL L−1 trace element solution I, 2.5 mL L−1 trace element
solution II, 0.025 mL L−1 polypropylenglycol. After sterilization, the pH of the medium was
4.2-5.8. The trace element solution I contains 0.4 g L−1 FeSO4 · 7 H2O, 0.2 g L−1 CuSO4 ·
5 H2O, 0.8 g L−1 ZnSO4 · 7 H2O, 0.4 g L−1 MnSO4 · H2O. Trace element solution II contains
13 g L−1 CaCl2 · H2O. The main culture was conducted in a 150 L bioreactor with a start-
ing volume of 100 L. The working weight was controlled at 120 kg, adjusted by automatic
withdrawal of culture media. The medium was inoculated with 8 % seed culture and grown
at 25 °C, pH 6.5 ± 0.1 (15 % NaOH, 20 % H2SO4), 0.5 vvm aeration rate, 190-1000 rpm (6-
bladed Rushton turbines) to maintain DO between 40 % and 60 %. Overall cultivation lasted
156 hours. Separate feeding solutions for glucose, ammonium sulfate, sodium phenoxyacetate,
sodium hydroxide, and polypropylenglycol were used. The separate feeds were composed of
800 g L−1 glucose · H2O (feed rate 0 h: 0.75 L h−1, 16 h: 0.70 L h−1, 48 h: 0.66 L h−1) water
(feed rate 0 h: 0.181 L h−1, 56 h: 0.36L h−1), 100 g L−1 NH4(SO4)2 (feed rate 12 h: 0.161 L h−1,
50 h: 0.131L h−1, 70 h: 0.101 L h−1, 120 h: 0.081 L h−1), 40 g L−1 sodium phenoxyacetate (Feed
rate 0 h: 0.121 L h−1, 56 h: 0.161 L h−1), 15 % NaOH, 20 % H2SO4. Foam was suppressed by
addition of polypropylenglycol. The fed-batch was started after 58 h of cultivation using 8 %
inoculum of the first pre-culture.

The sensor bioreactor (1.7 L steel reactor) was placed on a weight, as well as the respective
feed medium. It is constructed to be geometrical similar to the large (master) bioreactor.
The same feeds were added to the small bioreactor. A fast sampling device was included
to withdraw samples at well mixed positions. Both reactors were connected by a pipe to
transfer broth for a labeling experiment from the large to the small (slave/sensor) bioreactor.
After 56-58 hours a transfer of culture broth from master to sensor bioreactor was established.
The first 5-10 L were discarded, and afterwards 930 g were than filled into the small reactor.
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The small reactor was controlled prior to broth transfer and during cultivation to 25 °C,
pH 6.5 ± 0.1 (15 % NaOH, 20 % H2SO4), 0.5 vvm aeration rate, 850 rpm to maintain DO
between 30 % and 40 %. Feeding solutions in the small bioreactor were: 165 g L−1 glucose ·
H2O, 75 g L−1 NH4(SO4)2, 40 g L−1 sodium phenoxyacetate, NaOH, polypropylenglycol. The
feed rates were adjusted to result in the same rate of substrate addition per broth weight as
in the large bioreactor. Water feeding was not required in the slave bioreactor as the glucose
feed was less concentrated. H2SO4 was only used in the batch phase and, thus, was not
required for the sensor bioreactor.
The weight of the sensor bioreactor was changing, due to sampling. Between 30-60 g cultiva-
tion broth was withdrawn per sample. The sampling time points for labeling measurements
are given in table B.1.

table B.1: Sampling time points for labeling measurements. Time point t = 0 is given by starting
the labeled feed.

Sampling time points [h]

Fed-batch 1 0.58; 5.50; 22.67; 29.50; 46.58; 57.91; 70.67; 77.67; 94.67
Fed-batch 2 0.50; 5.50; 17.00; 22.50; 41.00; 46.50; 65.00; 70.50; 89.00; 94.50
Chemostat 1 0.00; 8.00; 30.00; 50.00; 80.00; 95.00; 104.00
Chemostat 2 0.00; 8.00; 30.00; 50.00; 80.00; 95.00; 104.00
Chemostat 3 0.00; 6.00; 23.00; 32.00; 47.00; 56.00; 71.00; 90.00; 95.00; 100.00

Analytics

Quantification of penicillin V and sodium phenoxyacetate were performed by reversed phase
chromatography and detected by UV detector. Glucose was analyzed by Hitachi 912 analyzer,
enzymatic kits by Roche or Boehringer. LC-ESI-MS/MS was used for determination of rela-
tive labeling pattern in free amino acids, respective pathway and central carbon metabolites.
It was conducted at IBG-1 at FZ Jülich by Katja Schmitz. The quantification of the metabo-
lites of central carbon metabolism was conducted according to Luo et al. [143] via coupling
of an UPLC (Jasco-X-LC) to a mass spectrometer (Applied Biosystems/API 4 000). The
used column was Synergy Hydro (Phenomex, 1502 mm, 5 m); an ion par reagent (10 mmol
tributylamine and 15 mmol acetic acid, eluent A) and methanol were used (eluent B). 10 L
injection volume with a flow rate of 0.25 mL min−1 were used. Measurement specifications
were described by van Ooyen et al. [244].

Biomass Composition

The culture broth was filtered through a filter and washed with 0.9 % NaCl and de-ionized
water. The biomass was shock frozen with liquid nitrogen and lyophilized for 5 days. The
cell dry weight, residual water, elementary composition, carbohydrate, protein content, sugar
alcohols, organic acids, inorganic acids, RNA, and fatty acids were analyzed, see Meinert,
2012 [155].
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Model and Parameter Estimation
Solving the set of differential equations 4.1-4.27 was performed in Dymola version 2013 FD01.
Therein the object oriented modeling language Modelica ® version 3.2 was used. This pro-
vided the opportunity to build a general library to model all kinds of bio-processes (batch,
fed-batch, chemostat). Several modules (representative for feed, reactor, cellular processes
and respiration) were built which can be connected to describe a bio-process.
The generated Dymola models were converted into binary files, which allowed to call the
model from external software, like MATLAB. From an automatically generated wrapper
by Dymola, direct usage of the model in MATLAB is accomplished. For all simulations
MATLAB 2013a and for parameter estimation the SSmGO toolbox was used [65]. This
toolbox implements global optimization strategies in the Scatter Search for matlab (SSm) and
local optimization routines. The global optimizer enhanced Scatter Search (eSS) and the local
optimizer Direct Search Method (dhc) were used [51]. This toolbox applies global optimization
strategies to search overall parameter space and uses local optimizer to accelerate convergence
to optimal solutions. The number of function evaluations was limited to 1,000 and evaluations
before first local solver call was set to zero (opts.local.ni=0). Solving the model DAE solver
Dassl was chosen with a tolerance of 10-8 with 1,000 output intervals for simulation. Linear
interpolation of the simulated values to measurement time points was used to calculate
residual values for the measurement data.
The objective function was a weighted residual sum of squares (WRSS). Weights were es-
timated based on assumed 5 % standard deviation on the measurements wi,std and a lower
boundary of 10-5 g kg−1 for each measurement i separately. Additionally, the measurement
values were re-weighted by manually specified weights wi,man.

wi = wi,man · wi,std = wi,man
1

max(s2
meas,i, 10−5)

The weights were used in WRSS, they are used as diagonal elements in matrix Σ−1.

Batch phases of fed-batch and chemostat processes were not included into the model for
parameter estimation. After the feed start in the experiment, the model was used to fit the
measured concentration profiles. Feed profiles and weight of culture broth were calculated
based on weight measurements of feeds, samples and bioreactor.

For the chemostat process, measured side product concentrations of penicillamine, penicilloic
acid and penilloic acid were added to the penicillin V pool.
Mean and standard deviations for the net production rates were calculated from the estimated
rates of the model. Simulation results of chemostats were used from 50 hours till end of
cultivation and of fed-batch from 5-95 hours to calculate the mean and standard deviation.
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B.2 Model Parameters and Boundaries

Parameter Fed-Batch Chemostat Units

μmax 0.02 − 0.15 0.02 − 0.15 gCDW g−1
CDW h−1

KS 1 · 10−8 − 1 · 10−6 1 · 10−8 − 1 · 10−6 kg kg−1

KBM 1 · 10−7 − 1 · 10−4 1 · 10−6 − 1 · 10−4 kg kg−1

YXS 0.3 − 0.6 0.3 − 0.6 kg kg−1

kP enV,max 0.0005 − 0.026 0.0005 − 0.026 kg kg−1
CDW h−1

kOP C 1 · 10−8 − 1 1 · 10−8 − 1 kg kg−1
CDW h−1

kIP N→6AP A 1 · 10−8 − 1 1 · 10−8 − 2 kg kg−1
CDW h−1

kP enV →6AP A,max 1 · 10−8 − 1 1 · 10−8 − 1 kg kg−1
CDW h−1

KM,6AP A 1 · 10−8 − 1 1 · 10−8 − 1 kg kg−1

k‘8HP A 1 · 10−8 − 1 1 · 10−8 − 2 kg kg−1

kHOP OA,max 1 · 10−8 − 1 1 · 10−8 − 1 kg kg−1
CDW h−1

k‘P IO 1 · 10−8 − 1 1 · 10−8 − 1 · 10−3 kg kg−1 h−1

kP IA 1 · 10−8 − 1 · 10−2 - kg kg−1 h−1

kHOP enV,1,max 1 · 10−8 − 5 - kg kg−1
CDW h−1

kIP N 1 · 10−8 − 1 1 · 10−8 − 1 kg kg−1
CDW h−1

kHOP enV,2 1 · 10−8 − 1 - kg kg−1
CDW h−1

kHOP enV,sink 0 − 1 - h−1

ksink,max 0 − 1 - h−1

KOH 1 · 10−8 − 5 1 · 10−8 − 5 kg kg−1

kP enNH2 0 − 0.1 - kg kg−1 h−1

KP OA 0.0019 0.0019 kg kg−1

KHOP OA 0.000415 0.000415 kg kg−1

YP S 0.841 0.841 kg kg−1

ms 0.015 0.015 kg kg−1 h−1
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B.3 Molar Mass of Compounds

Compound M[g mol−1] vi

glucose 180.1562 0.400
POA 152.15 0.632
PenV 350.3892 0.548
BM - 0.4281
OPC 143.141 0.503
6APA 216.261 0.444
8HPA 2601 0.416
IPN 359.41 0.468

HOPOA 168.151 0.571
HOPenV 366.388 0.525

PIO 386.4271 0.497
PIA 342.418 0.526
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B.4 Chemostat
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figure B.1: Best fit of the built kinetic model and process data of chemostat 1. Marker indicate
concentration measurements. Lines indicate simulation results.
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figure B.2: Best fit of the built kinetic model and process data of chemostat 2. Marker indicate
concentration measurements. Lines indicate simulation results.
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figure B.3: Best fit of the built kinetic model and process data of chemostat 3. Marker indicate
concentration measurements. Lines indicate simulation results.
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table B.4: Estimated reaction rates for chemostat cultivations. Rates are given in mmol g−1
CDW h−1

if not stated otherwise. Not detected (n.d.) metabolites are marked.

Chemostat 1 Chemostat 2 Chemostat 3
μ h−1 0.030±0.002 0.031±0.002 0.045 ± 0.003

qGlc mmol g−1
CDW h−1 0.390±0.015 0.420±0.018 0.517 ± 0.028

qP enV mmol g−1
CDW h−1 5.362 ±0.871 10-3 17.547 ± 0.099 10-3 4.177 ±0.205 10-3

qP IA mmol g−1
broth h−1 0.000 ±0.000 10-3 0.004 ±0.000 10-3 0.000 ±0.000 10-3

qP IO mmol g−1
broth h−1 0.000 ±0.000 10-3(n.d.) 0.004 ±0.000 10-3(n.d.) 0.000 ±0.000 10-3

qHOP OA mmol g−1
CDW h−1 0.000 ±0.000 10-3(n.d.) 0.000 ±0.000 10-3(n.d.) 0.140 ±0.000 10-3

qHOP enV,1 mmol g−1
CDW h−1 0.000 ±0.000 10-3(n.d.) 7.202 ±0.055 10-3(n.d.) 0.000 ±0.000 10-3

qHOP enV,2 mmol g−1
CDW h−1 0.000 ±0.000 10-3(n.d.) 0.000 ±0.000 10-3(n.d.) 0.000 ±0.000 10-3

qIP N→6AP A mmol g−1
CDW h−1 0.858 ±0.106 10-3 0.000 ± 0.000 10-3 0.032 ±0.002 10-3

qP enV →6AP A mmol g−1
CDW h−1 0.000 ±0.000 10-3 0.936 ± 0.007 10-3 1.211 ±0.033 10-3

q8HP A mmol g−1
broth h−1 0.003 ±0.001 10-3 0.003 ±0.000 10-3 0.004 ± 0.000 10-3

qOP C mmol g−1
CDW h−1 1.189 ±0.001 10-3 1.148 ±0.000 10-3 1.186 ±0.061 10-3

qIP N mmol g−1
CDW h−1 5.108 ±0.003 10-3(n.d.) 1.177 ±0.003 10-3(n.d.) 1.534 ±0.079 10-3

qP IO,sink mmol g−1
broth h−1 0.000 ±0.000 10-3(n.d.) 0.000 ±0.000 10-3(n.d.) 0.000 ±0.000 10-3(n.d.)

qP IA,sink mmol g−1
broth h−1 0.000 ±0.000 10-3(n.d.) 0.000 ±0.000 10-3(n.d.) 0.000 ±0.000 10-3(n.d.)

qHOP enV,sink mmol g−1
broth h−1 0.000 ±0.000 10-3(n.d.) 0.000 ±0.000 10-3(n.d.) 0.000 ±0.000 10-3(n.d.)
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B.5 Fed-Batch
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figure B.4: Best fit of the built kinetic model and process data of fed-batch 1. Marker indicate
concentration measurements. Lines indicate simulation results.
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figure B.5: Best fit of the built kinetic model and process data of fed-batch 2. Marker indicate
concentration measurements. Lines indicate simulation results.
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table B.5: Estimated rates for fed-batch cultivations. Rates are given in mmol g−1
CDW h−1f not

stated differently.

Fed-batch 1 Fed-batch 2
μ h−1 0.008 ± 0.007 0.007±0.008

qGlc mmol g−1
CDW h−1 0.251 ± 0.014 0.262±0.021

qP enV mmol g−1
CDW h−1 16.569 ± 1.263 10-3 12.575 ± 1.257 10-3

qP IA mmol g−1
broth h−1 0.001± 0.000 10-3 0.000 ± 0.000 10-3

qP IO mmol g−1
broth h−1 0.007 ± 0.00010-3 0.008 ± 0.003 10-3

qHOP OA mmol g−1
CDW h−1 1.537 ± 0.170 10-3 8.949 ± 0.776 10-3

qHOP enV,1 mmol g−1
CDW h−1 5.011 ± 1.600 10-3 2.142 ± 0.749 10-3

qHOP enV,2 mmol g−1
CDW h−1 1.005 ± 0.193 10-3 7.915 ± 1.114 10-3

qIP N→6AP A mmol g−1
CDW h−1 0.608 ± 0.206 10-3 0.709 ± 0.255 10-3

qP enV →6AP A mmol g−1
CDW h−1 0.126 ± 0.000 10-3 0.000 ± 0.000 10-3

q8HP A mmol g−1
broth h−1 0.003 ± 0.002 10-3 0.007 ± 0.004 10-3

qOP C mmol g−1
CDW h−1 1.526 ± 0.067 10-3 1.415 ± 0.100 10-3

qIP N mmol g−1
CDW h−1 1.171 ± 0.051 10-3 1.420 ± 0.100 10-3

qP IO,sink mmol g−1
broth h−1 0.001 ± 0.000 10-3 0.000 ± 0.000 10-3

qP IA,sink mmol g−1
broth h−1 0.000 ± 0.000 10-3 0.000 ± 0.000 10-3

qHOP enV,sink mmol g−1
broth h−1 0.070 ± 0.027 10-3 0.117 ± 0.028 10-3
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13C Metabolic Flux Maps and
Networks

C.1 Biomass Composition for Large Scale Network

table C.1: Biomass equation for the large scale 13C-MFA model of P. chrysogenum.

Compound Flux [mmol g−1
CDW] Compound Flux [mmol g−1

CDW]
Aspartate 0.182 Proline 0.118
Asparagine 0.182 Tryptophane 0.111
Glutamine 0.262 Alanine 0.279
Glutamate 0.262 Erythritol 0.016
α-Aminoadipate 0.028 Arabitol 0.010
Serine 0.264 Mannitol 0.358
Histidine 0.074 Galactose 0.297
Glycine 0.330 Glucose-Units2 1.071
Threonine 0.218 Mannose 0.196
Arginine 0.198 Fumarate 0.001
Tyrosine 0.116 Isocitrate 0.001
Cystein 0.008 ATP 0.037
Valine 0.288 GTP 0.027
Methionine 0.062 CTP 0.045
Phenylalanine 0.150 UTP 0.041
Isoleucine 0.195 dATP 0.002
Ornithine 0.004 dGTP 0.001
Leucine 0.292 dCTP 0.002
Lysine 0.177 dTTP 0.001
Glycerol 0.011 Ergosterol3 0.001
Cholin3 0.022 Fatty acid1 0.088
Inositol3 0.003
Chitin 0.095
1: Fatty acid were measured hydrolyzed, as no concentration of the separate acyl esters
formed is known, their formation ratio was set free
2: Glucose was used as summed pool as biomass was hydrolysed, it be can used for formation
of glycogen, trehalose or glucan. The fraction of these biomass compounds were set free for
optimization
3: Values taken from Nielsen [174] and van den Berg et al. [240].

237
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table C.2: Fatty acid composition of per mol of fatty acids for the focused and large scale 13C-MFA
model of P. chrysogenum BCB1.

Compound Flux [mol mol−1
fattyacid] Compound Flux [mol mol−1

fattyacid]
Myristic acid 0.003 Oleic acid 0.023
Palmitic acid 0.155 Linoleic acid 0.738
Palmitoleic acid 0.004 Linolenic acid 0.014
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C.2 Focused 13C Network

Reaction name: Reaction and atom transitions

BM_GLUC: G6P(ABCDEF) →
BM_MAN: F6P(ABCDEF) →
BM_SER: SER(ABC) →
BM_GLY: GLY(AB) →
gly1: Glc [ex] (ABCDEF) → G6P(ABCDEF)
gly2: G6P(ABCDEF) � F6P(AFBCDE)
gly3: F6P(ABCDEF) → FBP(ABCDEF)
gly4: FBP(ABCDEF) � DHAP(EBF) + GAP(DAC)
gly5: GAP(ABC) � 23PG(BCA)
gly7: PEP(ABC) → PYR(ABC)
PPP2: 6PG(ABCDEF) → Ru5P(DBAEC) + CO2(F)
PPP5: X5P(ABCDE) + R5P(FGHIJ) � GAP(EBD) + S7P(AFCGJHI)
Ser1: 23PG(ABC) → PHP(ABC)
Gly1: SER(ABC) � EC1(A) + GLY(BC)
Gly2: EC1(A) + CO2(B) � GLY(AB)
Thr2: AcCoA(AB) + GLY(CD) � THR(ABCD)
Transporter_Pyr: PYR(ABC) → PYR [mit] (ABC)
Transporter_OAA: OAA(ABCD) � OAA [mit] (ABCD)
Ana1: OAA(ABCD) → PEP(ABD) + CO2(C)
Ana2: PYR(ABC) + CO2(D) → OAA(ABDC)
Thr1: ASP(ABCD) → HSer(ACBD)
Ac3: PYR(ABC) → CO2(C) + AcCoA(AB)
BM_AcCoA: AcCoA(AB) →
Transporter_AcCoA: AcCoA [mit] (AB) → AcCoA(AB)
CO2_ex: CO2(A) →
Glc_0: Glc0(ABCDEF) → Glc [ex] (ABCDEF)
Glc_U: GlcU(ABCDEF) → Glc [ex] (ABCDEF)
Glc_1: Glc1(ABCDEF) → Glc [ex] (ABCDEF)
PPP1: G6P(ABCDEF) → 6PG(DACEBF)
Asp1: OAA(ABCD) → ASP(ABCD)
BM_ASP: ASP(ABCD) →
His2: R5P(ABCDE) + EC1(F) → HIS(CEFDBA)
BM_HIS: HIS(ABCDEF) →
CHOR: E4P(ABCD) + PEP(EFG) + PEP(HIJ) → Chor(EBDHFICAGJ)
Phe1: Chor(ABCDEFGHIJ) → PHE(GCHBDAFEI) + CO2(J)
Tyr1: Chor(ABCDEFGHIJ) → TYR(DBHCAFGEI) + CO2(J)
BM_PHE: PHE(ABCDEFGHI) →
BM_TYR: TYR(ABCDEFGHI) →
BM_EC1: EC1(A) →
PPP4: Ru5P(ABCDE) � R5P(BDECA)
gly4b: DHAP(ABC) � GAP(ABC)
Ser2: PHP(ABC) → PSer(ABC)
Met1: EC1(A) + ASP(BCDE) → MET(ABDCE)
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gly6: 23PG(ABC) � PEP(ABC)
BM_MET: MET(ABCDE) →
BIOM_IN: BIOM() → BIOMass()
BIOM_ex: BIOMass() →
Trp1: Chor(ABCDEFGHIJ) → PYR(AEI) + Ant(CGBHFDJ)
Trp2: Ant(ABCDEFG) + R5P(HIJKL) → Ant2(ABCDLHEFKIJG)
Trp3: Ant2(ABCDEFGHIJKL) → CO2(L) + Ant3(ABCDEFGIHJK)
Trp4: Ant3(ABCDEFGHIJK) → TRP(ABCDKEHGJIF)
Tca2: OAA [mit] (ABCD) + AcCoA [mit] (EF) → Cit [mit] (AECFDB)
Ala: PYR [mit] (ABC) → ALA [mit] (ABC)
Val1: PYR [mit] (ABC) + PYR [mit] (DEF) → CO2 [mit] (C) + DHIV [mit] (ADEFB)
Leu: PYR [mit] (ABC) + PYR [mit] (DEF) + AcCoA(GH) → LEU(DABEGH) +

CO2(F) + CO2(C)
Ileu1: PYR [mit] (ABC) + ASP(DEFG) → CO2(C) + KILE(FADBEG)
BM_VAL: VAL(ABCDE) →
BM_ALA: ALA [mit] (ABC) →
BM_ILE: ILE(ABCDEF) →
BM_LEU: LEU(ABCDEF) →
BM_LYS: LYS(ABCDEF) →
BM_THR: THR(ABCD) →
BM_TRP: TRP(ABCDEFGHIJK) →
Tca1: PYR [mit] (ABC) → AcCoA [mit] (AB) + CO2 [mit] (C)
Transporter_CO2: CO2 [mit] (A) → CO2(A)
BM_ERY: E4P(ABCD) →
BM_GLU: GLU [mit] (ABCDE) →
BM_PRO: PRO [mit] (ABCDE) →
BM_ARG: ARG(ABCDEF) →
Lys1: AKG [mit] (ABCDE) + AcCoA(FG) → CO2(E) + AAA(BDAFCG)
BM_AAA: AAA(ABCDEF) →
BM_ORN: ORN [mit] (ABCDE) →
BM_GALAC: G6P(ABCDEF) →
BM_MANNOSE: F6P(ABCDEF) →
BM_GLUCOS: F6P(ABCDEF) →
BM_ARAB: X5P(ABCDE) →
BM_ICIT: AKG [mit] (ABCDE) →
BM_FUM: FUM [mit] (ABCD) →
Tca4: ACO [mit] (ABCDEF) → AKG [mit] (CBAED) + CO2 [mit] (F)
Tca7a: FUM [mit] (ABCD) � MAL [mit] (BADC)
Glu1: AKG [mit] (ABCDE) → GLU [mit] (ABCDE)
Glu3: GLU [mit] (ABCDE) → GLN [mit] (ABCDE)
Glu2: GLU [mit] (ABCDE) → PRO [mit] (BADCE)
Glu4: GLU [mit] (ABCDE) → ORN [mit] (BADCE)
Lys2: AAA(ABCDEF) → LYS(ACBEDF)
Arg1: AKG [mit] (ABCDE) + EC1(F) → ARG(BADCEF)
Thr3: HSer(ABCD) → THR(BACD)
Val2: DHIV [mit] (ABCDE) → KIV(ABECD)
Val3: KIV(ABCDE) → VAL(ABCDE)
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Ileu2: KILE(ABCDEF) → ILE(ABCDEF)
Ser3: PSer(ABC) → SER(ABC)
Cys1: OAcSer(ABCDE) → CYS(BDE) + AcCoA(AC)
Cys2: CYS(ABC) + CYS(DEF) → Cyst(DAEBFC)
BM_CYS: CYS(ABC) →
BM_Cyst: Cyst(ABCDEF) →
BM_GLN: GLN [mit] (ABCDE) →
Asp2: ASP(ABCD) → ASN(ABCD)
BM_ASN: ASN(ABCD) →
Tca5b: AKG [mit] (ABCDE) � SUC [mit] (ABCD) + CO2 [mit] (E)
Tca5a: AKG [mit] (ABCDE) � SUC [mit] (BADC) + CO2 [mit] (E)
Poa_IN: POA IN() → POA()
BM_CO2: CO2(A) →
BM_R5P: R5P(ABCDE) →
Pen_Syn_VAL: VAL(ABCDE) →
Pen_Syn_CYS: CYS(ABC) →
PPP6: GAP(ABC) + S7P(DEFGHIJ) � F6P(BDCAHF) + E4P(JEIG)
PPP7: E4P(ABCD) + X5P(EFGHI) � F6P(BEDCAG) + GAP(IFH)
PPP3: Ru5P(ABCDE) � X5P(ABCDE)
BM_GAP: GAP(ABC) →
Tca3: Cit [mit] (ABCDEF) → ACO [mit] (ABFCDE)
Tca6a: SUC [mit] (ABCD) � FUM [mit] (ABCD)
Tca6b: SUC [mit] (ABCD) � FUM [mit] (BADC)
Ser4: SER(ABC) + AcCoA(DE) → OAcSer(DAEBC)
Ana3: PYR [mit] (ABC) + CO2 [mit] (D) � MAL [mit] (ABDC)
Tca8: MAL [mit] (ABCD) � OAA [mit] (ABCD)
Tca7b: FUM [mit] (ABCD) � MAL [mit] (ABCD)
Asp1b: OAA [mit] (ABCD) → ASP(ABCD)
Mix_Ru5P: Ru5P(ABCDE) → Ru5P_X5P(ABCDE)
Mix_X5P: X5P(ABCDE) → Ru5P_X5P(ABCDE)
Ru5P_X5P_ex: Ru5P_X5P(ABCDE) →
Pen4: POA() + IPN(ABCDEF) → PENV() + AAA(ABCDEF)
PEN_ex: PENV() →
bisACV_ex: ACV(ABCDEF) →
Pen5: PIO() → PIA()
PIA_ex: PIA() →
Pen1: CV IN() → CV()
OPC_ex: OPC(ABCDEF) →
OPC_Reak: AAA(ABCDEF) → OPC(FDBACE)
Pen3: ACV(ABCDEF) → IPN(ABCDEF)
6APA_ex: 6APA() →
8HPA_ex: 8HPA(A) →
Pen6: IPN(ABCDEF) → AAA(ABCDEF) + 6APA()
Pen7: 6APA() + CO2(A) → 8HPA(A)
pHOPLINV_ex: pHOPLINV() →
PIO_ex: PIO() →
Pen8: PENV() → PIO()
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Pen9: PENV() → HOPenV()
HOPOA_ex: POA() →
Pen2: CV() + AAA(ABCDEF) → ACV(ABCDEF)
IPN_ex: IPN(ABCDEF) →



C.2. FOCUSED 13C NETWORK 243



244 APPENDIX C. 13C METABOLIC FLUX MAPS AND NETWORKS

C.3 Fed Batch
Fed-Batch 1

figure C.1: Flux map for fed-batch 1. Specific rates given in [mmol g−1
CDW h−1].
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figure C.2: Fed Batch 1. Plot of minimal/maximal value for the simulated measurements ( )
for 50,000 flux sample, measurement ( ) and simulated ( ) data.



246 APPENDIX C. 13C METABOLIC FLUX MAPS AND NETWORKS

F
U
M

G
6
P

G
A
P

G
L
N

G
L
U

L
E
U

M
A
L
2

P
H
E

P
R
O

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+0
m+1
m+2
m+3
m+4
m+5
m+6
m+0
m+1
m+2
m+3
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+4,4
m+5,4
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+4,4
m+5,4
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+4,4
m+5,4
m+5,5
m+6,5
m+0,0
m+1,1
m+2,2
m+3,3
m+4,4
scaledm+1,0
scaledm+1,1
scaledm+2,1
scaledm+2,2
scaledm+3,2
scaledm+3,3
scaledm+4,3
scaledm+4,4
scaledm+5,4
scaledm+5,5
scaledm+6,5
scaledm+6,6
scaledm+7,6
scaledm+7,7
scaledm+8,7
scaledm+8,8
scaledm+9,8
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+4,4
m+5,4

Labelingenrichment[-]

figure C.3: Fed Batch 1. Plot of minimal/maximal value ( ) for the simulated measurements
for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.4: Fed Batch 1. Plot of minimal/maximal value ( ) for the simulated measurements
for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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Fed-Batch 2

figure C.5: Flux map for fed-batch 2. Specific rates given in [mmol g−1
CDW h−1].
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figure C.6: Fed Batch 2. Plot of minimal/maximal value ( ) for the simulated measurements
for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.7: Fed Batch 2 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.8: Fed Batch 2. Plot of minimal/maximal value ( ) for the simulated measurements
for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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C.4 Chemostat
Chemostat 1: 0.03 h−1

figure C.9: Flux map for chemostat 1 with a growth rate of 0.03 h−1. Specific rates given in
[mmol g−1

CDW h−1].
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figure C.10: Chemostat 1. Plot of minimal/maximal value ( ) for the simulated measurements
for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.11: Chemostat 1 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.12: Chemostat 1 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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Chemostat 2: 0.03 h−1

figure C.13: Flux map for chemostat 2 with a growth rate of 0.03 h−1. Specific rates given in
[mmol g−1

CDW h−1].
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figure C.14: Chemostat 2. Plot of minimal/maximal value ( ) for the simulated measurements
for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.15: Chemostat 2 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.16: Chemostat 2 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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Chemostat 3: 0.05 h−1

figure C.17: Flux map for chemostat 3 with a growth rate of 0.05 h−1. Specific rates given in
[mmol g−1

CDW h−1].



262 APPENDIX C. 13C METABOLIC FLUX MAPS AND NETWORKS

2
3
P
G

A
A
A

A
K
G

A
L
A

A
R
G

A
S
N

A
S
P

D
H
IV

F
6
P

G
6
P

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

m+0
m+1
m+2
m+3
m+0,0
m+1,1
m+2,2
m+3,3
m+4,4
m+5,5
m+6,6
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+4,4
m+5,4
scaledm+1,0
scaledm+1,1
scaledm+2,1
scaledm+2,2
scaledm+3,2
m+0,0
m+1,0
m+1,1
m+2,0
m+2,1
m+2,2
m+3,1
m+3,2
m+3,3
m+4,2
m+4,3
m+4,4
m+5,3
m+5,4
m+6,4
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+0,0
m+1,0
m+1,1
m+2,0
m+2,1
m+2,2
m+3,1
m+3,2
m+4,2
m+0,0
m+1,0
m+1,1
m+2,0
m+2,1
m+2,2
m+3,0
m+3,1
m+3,2
m+4,1
m+4,2
m+5,2
m+0
m+1
m+2
m+3
m+4
m+5
m+6
m+0
m+1
m+2
m+3
m+4
m+5
m+6

Labelingenrichment[-]

figure C.18: Chemostat 3. Plot of minimal/maximal value ( ) for the simulated measurements
for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.19: Chemostat 3 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.20: Chemostat 3 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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Chemostat 1 and 2: 0.03 h−1

figure C.21: Flux map for chemostat 1 and 2 with a growth rate of 0.03 h−1. Specific rates given
in [mmol g−1

CDW h−1].
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figure C.22: Chemostat 1 and 2. Plot of minimal/maximal value ( ) for the simulated mea-
surements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.23: Chemostat 3 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.



268 APPENDIX C. 13C METABOLIC FLUX MAPS AND NETWORKS

G
A
P
b

G
L
N

G
L
N
b

G
L
U

G
L
U
b

H
IS

H
IS
b

H
S
er

L
E
U
b

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

m+0
m+1
m+2
m+3
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+4,4
m+5,4
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+4,4
m+5,4
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+4,4
m+5,4
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+4,4
m+5,4
scaledm+1,0
scaledm+1,1
scaledm+2,1
scaledm+2,2
scaledm+3,2
scaledm+3,3
scaledm+4,3
scaledm+4,4
scaledm+5,4
scaledm+5,5
scaledm+6,5
scaledm+1,0
scaledm+1,1
scaledm+2,1
scaledm+2,2
scaledm+3,2
scaledm+3,3
scaledm+4,3
scaledm+4,4
scaledm+5,4
scaledm+5,5
scaledm+6,5
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+0,0
m+1,0
m+1,1
m+2,1
m+2,2
m+3,2
m+3,3
m+4,3
m+4,4
m+5,4
m+5,5
m+6,5

Labelingenrichment[-]

figure C.24: Chemostat 3 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.25: Chemostat 3 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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figure C.26: Chemostat 3 (continued). Plot of minimal/maximal value ( ) for the simulated
measurements for 50,000 flux sample, ( ) measurement and ( ) simulated data.
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C.5 Comparison of Large and Focused Model

(a) Focused Network (b) Large sclae network

figure C.27: Best found solution for large scale (485 reactions) and focused 13C metabolic network
using the same set of measurements of chemostat 1 with a growth rate of 0.03 h−1.
Influxes were scaled to 1.0. Enzymatic reactions occurring in several compartments
were mapped to one reaction for visualization. Fluxes are given in [mmol g−1

CDW h−1].
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Appendix D

Diversification Driven Experimental
Design

Next, an algorithm for duplicating metabolic networks is introduced.

Algorithm 1 Duplication of network structure for 13C-MFA to evaluate two labeling
data-sets in parallel at the same metabolic steady-state:

Given is a root model A with reactions rA = {rA,1, rA,2, ...rA,nr} and metabolites mA =
{mA,1, mA,2, ...mA,nm}. The same definitions can be likewise applied for the duplicated model
B :

1. Keep all constraints, input substrates and measurements for model A

2. Duplicate all metabolites of all reactions and rename them to mB, except...

(a) a reaction is an influx rA,j,in j = 1, 2, ...nA,r

(b) a reaction is an efflux rA.j,out j = 1, 2, ...nA,m

3. Duplicate all atom transitions of mA for the added metabolites mB

4. Duplicate all effluxes rA,out to rB,out and rename the metabolites in rB,out to mB. If a
metabolite mi contains ni,r,out > 1 effluxes, set ni,r,out − 1 effluxes of the two system
equal (rA,i,out = rB,i,out)

5. Duplicate all influxes rA,in to rB,in and rename the metabolite in rB,in to mB. If a
metabolite mi contains ni,r,in > 1 influxes, set ni,r,in −1 influxes of the two system equal
(rA,i,in = rB,i,in)

6. Specify input substrate mixture for system mB

7. Introduce new measurements for system mB

Next, the proposed algorithm is applied to the Spiral model (chapter 2.2.3). Duplicating the
Spiral model, results in the combined model shown in figure D.1. The number of metabolites

273
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(a) Spiral network (b) Spiral network for combined experiments

figure D.1: (a) Spiral network. (b) Duplicated Spiral network. The networks metabolites and
atom transitions are duplicated.

were increasing from 8 to 16. In- and effluxes were increasing from 4 to 8. In the end, the
model possesses only 2 degrees of freedom as the original Spiral model.
The atom transitions in the reaction are duplicated. Thus, another set of measurement
values can be used, to (consistently) estimate the flux distribution by using experimental
data derived from two different substrate mixtures.



Appendix E

Multi-Objective Experimental Design

E.1 Measurement Matrices

Measurement matrices are built from isotopomer fractions. A metabolite with nC carbon
atoms possesses 2n isotopomers. The sum of all isotopomer fractions equals 1. Measurable
atoms are specified by their atom numbers written in brackets, i.e. Pyr[2] is measuring the
second carbon atom. In MS/MS the first atoms #M specified are measured mother ion
carbon atoms and the daughter ion is specified by #d: [#M:#d].

(
HNMRlabeled

HNNMRunlabeled

)
= MHNMR,P yr[1] · m =

(
0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m000
m001
m010
m011
m100
m101
m110
m111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
CNMRsingulet

CNMRdoublet,1
CNMRdoublet,2

CNMRdouble doublet

⎞⎟⎟⎠ = MCNMR,P yr[2] · m =

⎛⎜⎜⎝
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m000
m001
m010
m011
m100
m101
m110
m111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎝
MSm+0
MSm+1
MSm+2
MSm+3

⎞⎟⎟⎠ = MCNMR,P yr[2] · m =

⎛⎜⎜⎝
1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m000
m001
m010
m011
m100
m101
m110
m111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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table E.1: Substrate costs, each substrate was assumed to possess a purity of 99 %, unlabeled
glucose posses a putiry of 0.9807. Data were taken from www.isotope.com [1].

Substrate Price
[€ g-1]

GLC#000000 0.3
GLC#100000 147.0
GLC#010000 472.0
GLC#001000 912.0
GLC#000100 1218.0
GLC#000010 1293.0
GLC#000001 532.0
GLC#111111 134.0
GLC#110000 494.0
GLC#100001 1141.0

⎛⎜⎜⎜⎜⎜⎜⎝
MSMSm+0,m+0
MSMSm+1,m+0
MSMSm+1,m+1
MSMSm+2,m+1
MSMSm+2,m+2
MSMSm+3,m+2

⎞⎟⎟⎟⎟⎟⎟⎠ = MCNMR,P yr[2] · m =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m000
m001
m010
m011
m100
m101
m110
m111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
GCCIRMSlabeled

GCCIRMSunlabeld

)
= MGCCIRMS,P yr[1−3]·m =

(
1 2/3 2/3 1/3 2/3 1/3 1/3 0
0 1/3 1/3 2/3 1/3 2/3 2/3 1

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m000
m001
m010
m011
m100
m101
m110
m111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E.2 Cost Calculations

For the cultivation media with 20 g/L substrate is used. It is conducted in a 250 mL bioreactor
operating as a chemostat. 6 volumes of the bioreactor are needed to conduct the experiment
(resulting in 1.5 L medium). 39 h of observation and preparation for the experiment are
assumed. The wage is 20 €/h. A measurement is checked, transferred to the model in
0.0055 h (20 seconds) based on our experiences in LC-MS/MS. The measurement time varies
depending on the machine used. 10 samples are assumed as maximum per experiment.
It was assumed that each device is in usage for five years, the resulting costs for acquisition
are passed to the device usage time.
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table E.2: Costs for devices and measurement time per replicate

Substrate Price Measurement time
[€] [h]

GC-MS 100 000 0.66
LC-MS 180 000 0.66

LC-MS/MS 350 000 0.66
NMR 1 000 000 6

E.3 Simulation Results
Constrained Fluxes

In the following table all fluxes needed to be kept constant for evaluation of statistics is
marked with “X” (to receive a Fisher Information with a condition number below the given
threshold, see corresponding chapter). “(X)” marks fluxes which needed to be constant in
order to obtain comparable results for the separate simulations (comparability between mod-
els is guaranteed).

FLUX LC-MS/MS LC-MS GC-MS HNMR CNMR GC-C-IRMS

Byprod_ex.n X X X X X X
Ana1.n X X X X X X
Ana1.x X X X X X X
Tca8.x X X X X X X
Thr2.x X X X X X X
gly2.x X X X X X
Ana2.x X X X X X X
gly4.x (X) (X) X X X X
gly4b.x (X) (X) X X X X
gly5.x (X) (X) (X) X X X
gly6.x (X) (X) (X) X X X
Ppp3.x (X) (X) (X) X X X

Transporter_OAA.x X X X X (X) X
Asp1b.n X X

CO2_ex.n
PPP2.n X
Tca1.n X
Tca8.n

Transporter_CO2.n X X
Transporter_Pyr.n X X

Gly1.n
Gly7.n
PPP4.x X X
PPP5.x X
PPP6.x X X
PPP7.x X
Tca5b.x X X
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Tca6a.x X X
Tca7a.x X X

Transporter_AcCoA.x X
Help_Ru5P.n X X

Gly1.x X
Gly2.x X X
Ana3.x X
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Reaction name: Reaction and atom transitions

BM GLUC: G6P(ABCDEF) →
BM MAN: F6P(ABCDEF) →
BM SER: SER(ABC) →
BM GLY: GLY(AB) →
gly1: Glc ex(ABCDEF) → G6P(ABCDEF)
gly2: G6P(ABCDEF) � F6P(AFBCDE)
gly3: F6P(ABCDEF) → FBP(ABCDEF)
gly4: FBP(ABCDEF) � DHAP(EBF) + GAP(DAC)
gly5: GAP(ABC) � 23PG(BCA)
gly7: PEP(ABC) → PYR(ABC)
PPP2: 6PG(ABCDEF) → Ru5P(DBAEC) + CO2(F)
PPP5: X5P(ABCDE) + R5P(FGHIJ) � GAP(EBD) + S7P(AFCGJHI)
Ser1: 23PG(ABC) → PHP(ABC)
Gly1: SER(ABC) � EC1(A) + GLY(BC)
Gly2: EC1(A) + CO2(B) � GLY(AB)
Thr2: AcCoA(AB) + GLY(CD) � THR(ABCD)
Transporter Pyr: PYR(ABC) → PYR [mit] (ABC)
Transporter OAA: OAA(ABCD) � OAA [mit] (ABCD)
Ana1: OAA(ABCD) � PEP(ABD) + CO2(C)
Ana2: PYR(ABC) + CO2(D) � OAA(ABDC)
Thr1: ASP(ABCD) → HSer(ACBD)
Ac3: PYR(ABC) → CO2(C) + AcCoA(AB)
BM AcCoA: AcCoA(AB) →
Transporter AcCoA: AcCoA [mit] (AB) � AcCoA(AB)
CO2 ex: CO2(A) →
PPP1: G6P(ABCDEF) → 6PG(DACEBF)
Asp1: OAA(ABCD) → ASP(ABCD)
BM ASP: ASP(ABCD) →
His2: R5P(ABCDE) + EC1(F) → HIS(CEFDBA)
BM HIS: HIS(ABCDEF) →
CHOR: E4P(ABCD) + PEP(EFG) + PEP(HIJ) → Chor(EBDHFICAGJ)
Phe1: Chor(ABCDEFGHIJ) → PHE(GCHBDAFEI) + CO2(J)
Tyr1: Chor(ABCDEFGHIJ) → TYR(DBHCAFGEI) + CO2(J)
BM PHE: PHE(ABCDEFGHI) →
BM TYR: TYR(ABCDEFGHI) →
BM EC1: EC1(A) →
PPP4: Ru5P(ABCDE) � R5P(BDECA)
gly4b: DHAP(ABC) � GAP(ABC)
Ser2: PHP(ABC) → PSer(ABC)
Met1: EC1(A) + ASP(BCDE) → MET(ABDCE)
gly6: 23PG(ABC) � PEP(ABC)
BM MET: MET(ABCDE) →
BIOM IN: BIOM() → BIOMass()
BIOM ex: BIOMass() →
Trp1: Chor(ABCDEFGHIJ) → PYR(AEI) + Ant(CGBHFDJ)
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Trp2: Ant(ABCDEFG) + R5P(HIJKL) → Ant2(ABCDLHEFKIJG)
Trp3: Ant2(ABCDEFGHIJKL) → CO2(L) + Ant3(ABCDEFGIHJK)
Trp4: Ant3(ABCDEFGHIJK) → TRP(ABCDKEHGJIF)
Tca2: OAA [mit] (ABCD) + AcCoA [mit] (EF) → Cit [mit] (AECFDB)
Ala: PYR [mit] (ABC) → ALA [mit] (ABC)
Val1: PYR [mit] (ABC) + PYR [mit] (DEF) → CO2 [mit] (C) + DHIV [mit] (ADEFB)
Leu: PYR [mit] (ABC) + PYR [mit] (DEF) + AcCoA(GH) → LEU(DABEGH) +

CO2(F) + CO2(C)
Ileu1: PYR [mit] (ABC) + ASP(DEFG) → CO2(C) + KILE(FADBEG)
BM VAL: VAL(ABCDE) →
BM ALA: ALA [mit] (ABC) →
BM ILE: ILE(ABCDEF) →
BM LEU: LEU(ABCDEF) →
BM LYS: LYS(ABCDEF) →
BM THR: THR(ABCD) →
BM TRP: TRP(ABCDEFGHIJK) →
Tca1: PYR [mit] (ABC) → AcCoA [mit] (AB) + CO2 [mit] (C)
Transporter CO2: CO2 [mit] (A) → CO2(A)
BM ERY: E4P(ABCD) →
BM GLU: GLU [mit] (ABCDE) →
BM PRO: PRO [mit] (ABCDE) →
BM ARG: ARG(ABCDEF) →
Lys1: AKG [mit] (ABCDE) + AcCoA(FG) → CO2(E) + AAA(BDAFCG)
BM AAA: AAA(ABCDEF) →
BM ORN: ORN [mit] (ABCDE) →
BM GALAC: G6P(ABCDEF) →
BM MANNOSE: F6P(ABCDEF) →
BM GLUCOS: F6P(ABCDEF) →
BM ARAB: Ru5P(ABCDE) →
BM ICIT: AKG [mit] (ABCDE) →
BM FUM: FUM [mit] (ABCD) →
Pen1: POA() + IPN(ABCDEF) → PENV() + AAA(ABCDEF)
PEN ex: PENV() →
Tca4: ACO [mit] (ABCDEF) → AKG [mit] (CBAED) + CO2 [mit] (F)
Tca7a: FUM [mit] (ABCD) � MAL [mit] (BADC)
Glu1: AKG [mit] (ABCDE) → GLU [mit] (ABCDE)
Glu3: GLU [mit] (ABCDE) → GLN [mit] (ABCDE)
Glu2: GLU [mit] (ABCDE) → PRO [mit] (BADCE)
Glu4: GLU [mit] (ABCDE) → ORN [mit] (BADCE)
Lys2: AAA(ABCDEF) → LYS(ACBEDF)
Arg1: AKG [mit] (ABCDE) + EC1(F) → ARG(BADCEF)
Thr3: HSer(ABCD) → THR(BACD)
Val2: DHIV [mit] (ABCDE) → KIV(ABECD)
Val3: KIV(ABCDE) → VAL(ABCDE)
Ileu2: KILE(ABCDEF) → ILE(ABCDEF)
Ser3: PSer(ABC) → SER(ABC)
Cys1: OAcSer(ABCDE) → CYS(BDE) + AcCoA(AC)
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Cys2: CYS(ABC) + CYS(DEF) → Cyst(DAEBFC)
BM CYS: CYS(ABC) →
Pen2: CV() + AAA(ABCDEF) → IPN(ABCDEF)
BM Cyst: Cyst(ABCDEF) →
BM GLN: GLN [mit] (ABCDE) →
Asp2: ASP(ABCD) → ASN(ABCD)
BM ASN: ASN(ABCD) →
Tca5b: AKG [mit] (ABCDE) � SUC [mit] (ABCD) + CO2 [mit] (E)
Tca5a: AKG [mit] (ABCDE) � SUC [mit] (BADC) + CO2 [mit] (E)
Poa IN: POA IN() → POA()
BM CO2: CO2(A) →
BM R5P: R5P(ABCDE) →
Pen Syn VAL: VAL(ABCDE) →
Pen Syn CYS: CYS(ABC) →
PPP6: GAP(ABC) + S7P(DEFGHIJ) � F6P(BDCAHF) + E4P(JEIG)
PPP7: E4P(ABCD) + X5P(EFGHI) � F6P(BEDCAG) + GAP(IFH)
PPP3: Ru5P(ABCDE) � X5P(ABCDE)
BM GAP: GAP(ABC) →
Tca3: Cit [mit] (ABCDEF) → ACO [mit] (ABFCDE)
Tca6a: SUC [mit] (ABCD) � FUM [mit] (ABCD)
Tca6b: SUC [mit] (ABCD) � FUM [mit] (BADC)
Ser4: SER(ABC) + AcCoA(DE) → OAcSer(DAEBC)
Ana3: PYR [mit] (ABC) + CO2 [mit] (D) � MAL [mit] (ABDC)
Tca8: MAL [mit] (ABCD) � OAA [mit] (ABCD)
Tca7b: FUM [mit] (ABCD) � MAL [mit] (ABCD)
Asp1b: OAA [mit] (ABCD) → ASP(ABCD)
bisACV IPN ex: IPN(ABCDEF) →
Pen3: PENV() → Byprod()
Byprod ex: Byprod() →
Help Ru5P: Ru5P(ABCDE) → Ru5P X5P(ABCDE)
Help X5P: X5P(ABCDE) → Ru5P X5P(ABCDE)
Help Ru5P X5P: Ru5P X5P(ABCDE) →
Pen0: CV IN() � CV()
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figure E.1: Multi-objective optimization results for GC-MS. Color codes for costs of design point.
The results of three objectives (D-criterium, dimensions and costs) are shown (plus
signs). Normalized criteria were used and scaled to the interval [0, 1]. The five objective
optimization is shown in color coded (D-, A-, E-criterium, dimensions and costs).
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figure E.2: Dendrogram of the found clustered substrate mixtures for GC-MS. The best known
Pareto set was clustered by the minimal distance of the composition fractions of label-
ing. The length of the tree shows dissimilarities in the mixtures found. The average
values of the cluster are shown in vertical directions. The frequency is shown in the
bar plot on the right side. Basically four different mixtures were found frequently for
GCMS.
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figure E.3: Multi-objective optimization results for LC-MS/MS. Color codes for costs of design
point. The results of three objectives (D-criterion, dimensions and costs) are shown
(plus signs). Normalized criteria were used and scaled to the interval [0, 1]. The five
objective optimization is shown in color coded (D-, A-, E-criterium, dimensions and
costs).
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figure E.4: Dendrogram of the found clustered substrate mixtures for LC-MS/MS. The best known
Pareto set was clustered by the minimal distance of the composition fractions of label-
ing. The length of the tree shows dissimilarities in the mixtures found. The average
values of the cluster are shown in vertical directions. The frequency is shown in the bar
plot on the right side. Basically four different mixtures were found for LC-MS/MS. For
these four mixtures, the number of measurements used for the separate metabolites is
plotted in the following figures. It starts with the first cluster in the figure.
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figure E.5: Clustered results of measurement number in multi-objective optimization for LCMSMS
(D-criteria, dimension and costs). First cluster is shown. Figure a) Histogram plots
are shown for each measurement. The replicate number for the single measurement of
the separate measurements is shown. Number of measurements for mixture cluster of
shown dendrogram. Red line indicates 2 replicates. Below this threshold measurements
were removed from the statistics calculation.
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figure E.6: Clustered results of measurement number in multi-objective optimization for LCMSMS
(D-criteria, dimension and costs). Second cluster is shown. Figure a) Histogram plots
are shown for each measurement. The replicate number for the single measurement of
the separate measurements is shown. Number of measurements for mixture cluster of
shown dendrogram. Red line indicates 2 replicates. Below this threshold measurements
were removed from the statistics calculation.
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figure E.7: Clustered results of measurement number in multi-objective optimization for LCMSMS
(D-criteria, dimension and costs). Third cluster is shown. Figure a) Histogram plots
are shown for each measurement. The replicate number for the single measurement of
the separate measurements is shown. Number of measurements for mixture cluster of
shown dendrogram. Red line indicates 2 replicates. Below this threshold measurements
were removed from the statistics calculation.
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figure E.8: Clustered results of measurement number in multi-objective optimization for LCMSMS
(D-criteria, dimension and costs). Fourth cluster is shown. Figure a) Histogram plots
are shown for each measurement. The replicate number for the single measurement of
the separate measurements is shown. Number of measurements for mixture cluster of
shown dendrogram. Red line indicates 2 replicates. Below this threshold measurements
were removed from the statistics calculation.
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C-NMR
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figure E.9: Multi-objective optimization results for C-NMR. Color codes for costs of design point.
The results of three objectives (D-criterium, dimensions and costs) are shown (plus
signs). Normalized criteria were used and scaled to the interval [0, 1]. The five objective
optimization is shown in color coded (D-, A-, E-criterium, dimensions and costs).
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figure E.10: Dendrogram of the found clustered substrate mixtures for C-NMR. The best known
Pareto set was clustered by the minimal distance of the composition fractions of label-
ings. The length of the tree shows dissimilarities in the mixtures found. The average
values of the cluster are shown in vertical directions. The frequency is shown in the
bar plot on the right side. Basically five different mixtures were found frequently for
C-NMR.



E.3. SIMULATION RESULTS 289

LC-MS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Costs [-]

A
-c
ri
te
ri
o
n
[-
]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Costs [-]

D
-c
ri
te
ri
o
n
[-
]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Costs [-]

E
-c
ri
te
ri
o
n
[-
]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D-criterion [-]

E
-c
ri
te
ri
o
n
[-
]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D-criterion [-]

A
-c
ri
te
ri
o
n
[-
]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A-criterion [-]

E
-c
ri
te
ri
o
n
[-
]

0

0.25

0.5

0.75

1.0

C
o
st
s
[-
]

figure E.11: Multi-objective optimization results for LC-MS. Color codes for costs of design point.
The results of three objectives (D-criterion, dimensions and costs) are shown (plus
signs). Normalized criteria were used and scaled to the interval [0, 1]. The five
objective optimization is shown in color coded (D-, A-, E-criterium, dimensions and
costs).
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figure E.12: Dendrogram of the found clustered substrate mixtures for LC-MS/MS. The best
known Pareto set was clustered by the minimal distance of the composition frac-
tions of labeling. The length of the tree shows dissimilarities in the mixtures found.
The average values of the cluster are shown in vertical directions. The frequency is
shown in the bar plot on the right side. Basically four different mixtures were found
frequently for LC-MS.
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E.4 Measurement Specifications
• #Full refers to the number of measured mother ions containing all carbon atoms of the

metabolite in the respective publication

• #Fragment refers to the number of fragments measured in the respective publications

• Fragment C is describing the carbon atom numbers found in the fragment

GC-MS

Metabolite Network comp. #Fragment #Full Fragment C Reference
Alanine Ala 1 1 [2-3] [20]
Alanin Ala 1 1 [2-3] [4]
Alanin Ala 1 1 [2-3] [229]
Alanin Ala 2 1 [2-3]|[2-3] [49]
Alanin Ala 1 1 [2-3] [9]
Alanin Ala 1 1 [2-3] [152]
Alanin Ala 1 1 [2-3] [121]
Arginin Arg 1 0 [1-5] [20]

Aspartate Asp 1 1 [2-4] [20]
Aspartate Asp 2 1 [2-4]|[2-4] [229]
Aspartate Asp 2 1 [1-2]|[2-4] [4]
Aspartate Asp 3 1 [1-2]|[1-2]|[2-4] [9]
Aspartate Asp 2 1 [2-4]|[1-2] [121]

Asx - 3 1 [2-4]|[2-4]|[1-2] [49]
Asx - 3 1 [2-4]|[2-4]|[1-2] [152]

Fumarate Fum 0 1 [152]
Glutamate Glu 1 1 [2-5] [20]
Glutamate Glu 1 1 [2-5] [4]
Glutamate Glu 2 1 [2-4]|[2-4] [229]
Glutamate Glu 2 1 [2-5]|[2-5] [9]
Glutamate Glu 1 1 [2-5] [121]

Glycine Gly 1 1 [2] [20]
Glycine Gly 1 1 [2] [4]
Glycine Gly 1 1 [2] [229]
Glycine Gly 1 1 [2] [49]
Glycine Gly 1 1 [2] [9]
Glycine Gly 1 1 [2] [152]
Glycine Gly 1 1 [2] [121]

Glyoxylate - 1 1 [2-5]|[2-5] [152]
Glutamate/
Glutamine

- 3 1 [2-5]|[2-5]|[1-2] [49]

Histidine His 1 0 [2-6] [4]
Isoleucine Ile 2 0 [2-6]|[2-6] [229]
Isoleucine Ile 2 0 [2-6]|[2-6] [49]
Isoleucine Ile 2 0 [2-6]|[2-6] [9]
Isoleucine Ile 1 1 [2-6] [4]
Isoleucine Ile 2 0 [2-6]|[2-6] [152]
Isoleucine Ile 1 1 [2-6] [121]
Leucine Leu 2 0 [2-6]|[2-6] [229]
Leucine Leu 2 0 [2-6]|[2-6] [49]
Leucine Leu 1 0 [2-6] [9]
Leucine Leu 1 1 [2-6] [4]
Leucine Leu 2 0 [2-6]|[2-6] [152]
Leucine Leu 1 1 [2-6] [121]
Leucine Leu 2 0 [2-6]|[2-6] [229]
Lysine Lys 2 1 [2-6]|[1-2] [49]
Lysine Lys 1 1 [2-6] [121]
Lysine Lys

Methionine Met 2 1 [2-5]|[2-5] [229]
Methionine Met 2 1 [2-5]|[2-5] [49]
Methionine Met 2 1 [2-5]|[2-5] [9]
Methionine Met 1 1 [2-5] [152]
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Phenylalanine Phe 2 1 [2-9]|[1-2] [20]
Phenylalanine Phe 2 1 [2-9]|[2-9] [229]
Phenylalanine Phe 4 0 [2-9]|[2-9]|[1-2]|[3-9] [49]
Phenylalanine Phe 3 1 [2-9]|[1-2]|[2-9] [9]
Phenylalanine Phe 2 1 [2-9]|[1-2] [4]
Phenylalanine Phe 2 1 [2-9]|[1-2] [152]
Phenylalanine Phe 2 1 [2-9]|[1-2] [121]

Proline Pro 1 0 [2-5] [229]
Proline Pro 2 1 [2-5]|[2-5] [49]
Proline Pro 1 1 [2-5] [4]
Proline Pro 1 0 [2-5] [152]
Proline Pro 1 0 [2-5] [121]
Serine Ser 2 1 [2-3]|[2-3] [20]
Serine Ser 2 1 [2-3]|[2-3] [229]
Serine Ser 2 1 [2-3]|[1-2] [49]
Serine Ser 2 1 [2-3]|[1-2] [4]
Serine Ser 2 1 [2-3]|[2-3] [9]
Serine Ser 3 1 [2-3]|[2-3]|[1-2] [152]
Serine Ser 2 1 [2-3]|[1-2] [121]

Succinate Suc 0 2 [152]
Threonine Thr 1 1 [2-4] [20]
Threonine Thr 2 1 [2-4]|[3-4] [4]
Threonine Thr 2 1 [2-4] [229]
Threonine Thr 1 1 [2-4] [9]
Threonine Thr 1 1 [2-4] [152]
Threonine Thr 1 1 [2-4] [121]
Trehalose - 1 0 [1-6]=[7-12] [20]
Tyrosine Tyr 1 1 [1-2] [20]
Tyrosine Tyr 1 0 [1-2] [4]
Tyrosine Tyr 3 0 [2-9]|[2-9]|[1-2] [49]
Tyrosine Tyr 1 0 [1-2] [9]
Tyrosine Tyr 2 1 [2-9]|[1-2] [121]
Valine Val 2 1 [2-5]|[2-5] [20]
Valine Val 1 1 [2-5]|[2-5] [229]
Valine Val 1 1 [2-5] [49]
Valine Val 1 1 [2-5] [9]
Valine Val 2 1 [2-5]|[1-2] [4]
Valine Val 1 1 [2-5] [152]
Valine Val 1 1 [2-5]|[1-2] [121]
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figure E.13: Network with metabolite measurements for GC-MS. Each circle corresponds to a
measurement group. For each measurement group the number of single measurement
values is given.

LC-MS/MS

Metabolite Network comp. Fragment C Reference
2PG/3PG 2PG3PG [244]

6-
Phosphogluconate

6PG [244]

Alanine Ala [2-3] [244]
Alanine Ala [107]
Arginine Arg [1-5] [244]

Asparagine Asn [2-4] [244]
Asparagine Asn [107]
Aspartate Asp [1-2] [244]
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Citrate/
Isocitrate

CitIcit [2-6] [244]

Cysteine Cys [2-3] [244]
DHAP DHAP [244]

Erythrose-4-
phosphate

E4P [244]

Fructose 1,6-
bisphosphate

FBP [244]

Fructose
6-phosphate

F6P [244]

Fumarate Fum [1-3]=[2-4] [244]
Glucose

6-phosphate
G6P [244]

GAP GAP [244]
Glutamine Gln [107]
Glutamine Gln [2-5] [244]
Glutamate Glu [2-5] [244]
Glutamate Glu [107]

Glycine Gly [1] [244]
Glycine Gly [107]

Glyoxylate - [1]=[2] [244]
Histidine His [2-6] [244]

Homo-serine/
Threonine

Thr [2-4] [244]

Isoleucine/
Leucine

Leu [2-5] [244]

Lysine Lys [244]
Malate MAL [244]

Methionine Met [2-5] [244]
Phosphoenol-

pyruvate
PEP [244]

Phenylalanine Phe [2-9] [244]
Phenylalanine Phe [107]

Proline Pro [2-5] [244]
Pyruvate PYR [2-3] [244]
Ribose-5-
phosphat

R5P [244]

Sedoheptulose-
7-phosphate

S7P [244]

Serine Ser [2-3] [244]
Serine Ser [107]

Succinate SUC [1-3]=[2-4] [244]
Threonine Thr [107]

Tryptophan Trp [244]
Tyrosine Tyr [2-9] [244]
Tyrosine Tyr [107]
Valine Val [2-5] [244]
Valine Val [107]

Xylulose-5-
phosphat/
Ribulose-5-
phosphat

X5P_Ribu5P [244]

Oxoglutarate AKG [1-4] [244]
Oxaloacetate OAA [1-3] [244]
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figure E.14: Network with metabolite measurements for LC-MS/MS. Each circle corresponds to a
measurement group. For each measurement group the number of single measurement
values is given.

2D-NMR

Metabolite Abbr. Device Carbon detected Measurements Reference
Alanine Ala HSQC NMR [2]|[3] [s,da,db,dd]|[s,da] [82]
Alanine Ala 13C–13C COSY NMR [2]|[3] [s,da,db,dd]|[s,da] [214]
Alanine Ala [13C,1H] COSY NMR [2]|[3] [s,da,db,dd]|[s,da] [121]
Alanine Ala [13C, 1H] HSQC NMR [2]|[3] [s,da,db,dd]|[s,da] [38]
Arginine Arg 13C–13C COSY NMR [3]|[4]|[5] [s,da,dd]|[s,da,dd]|[s,da] [214]
Arginine Arg [13C,1H] COSY NMR [3]|[4] [s,da,t]|[s,da] [121]
Arginine Arg [13C, 1H] HSQC NMR [3]|[5] [s,da,t]|[s,da] [38]

Aspartate Asp [13C, 1H] HSQC NMR [2]|[3] [s,da,db,dd]|[s,da,db,dd] [82]
Aspartate Asp [13C,1H] COSY NMR [2]|[3] [s,da,db,dd]|[s,da,db,dd] [121]
Aspartate Asp [13C, 1H] HSQC NMR [2]|[3] [s,da,db,dd]|[s,da,db,dd] [38]

Asx - 13C–13C COSY NMR [2]|[3] [s,da,db,dd]|[s,da,db,dd] [214]
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Glutamate Glu [13C, 1H] HSQC NMR [2]|[3]|[4] [s,da,db,dd]|[s,da,dd]|[s,da,db,dd] [82]
Glutamate Glu [13C,1H] COSY NMR [2]|[3]|[4] [s,da,db,dd]|[s,da,t]|[s,da,db,dd] [121]

Glycine Gly [13C, 1H] HSQC NMR [2] [s,da] [82]
Glycine Gly 13C–13C COSY NMR [2] [s,da] [214]
Glycine Gly [13C,1H] COSY NMR [2] [s,da] [121]
Glycine Gly [13C,1H] HSQC NMR [2] [s,da] [38]

Glx - 13C–13C COSY NMR [2]|[3]|[4] [s,da,db,dd]|[s,da,dd]|[s,da,db,dd] [214]
Histidine His [13C, 1H] HSQC NMR [2]|[3]|[5] [s,da,db,dd]|[s,da,db,dd]|[s,da] [82]
Histidine His 13C–13C COSY NMR [2]|[3] [s,da,db,dd]|[s,da,db,dd] [214]
Histidine His [13C,1H] COSY NMR [2]|[3] [s,da,db,dd]|[s,da,db,dd] [121]
Histidine His [13C, 1H] HSQC NMR [3]|[5] [s,da,db,dd]|[s,da] [38]
Isoleucine Ile 13C–13C COSY NMR [2]|[4]|[5]|[6] [s,da,db,dd]|[s,da,dd]|[s,da]|[s,da] [214]
Isoleucine Ile [13C, 1H] HSQC NMR [2] [s,da,db,dd] [82]
Isoleucine Ile [13C,1H] COSY NMR [3]|[5] [s,da,t]|[s,da] [121]
Isoleucine Ile [13C, 1H] HSQC NMR [2]|[4]|[5]|[6] [s,da,db,dd]|[s,da,t]|[s,da]|[s,da] [38]
Leucine Leu [13C, 1H] HSQC NMR [2]|[3] [s,da,db,dd]|[s,da,dd] [82]
Leucine Leu 13C–13C COSY NMR [2]|[3]|[5]|[6] [s,da,db,dd]|[s,da,dd]|[s,da]|[s,da] [214]
Leucine Leu [13C,1H] COSY NMR [2]|[3]|[5]|[6] [s,da,db,dd]|[s,da,t]|[s,da]|[s,da] [121]
Leucine Leu [13C, 1H] HSQC NMR [2]|[3]|[5]|[6] [s,da,db,dd]|[s,da,t]|[s,da]|[s,da] [38]
Lysine Lys 13C–13C COSY NMR [3]|[4]|[5]|[6] [s,da,dd]|[s,da,dd]|[s,da,dd]|[s,da] [214]
Lysine Lys [13C,1H] COSY NMR [3]|[4] [s,da,t]|[s,da,t] [121]
Lysine Lys [13C, 1H] HSQC NMR [3]|[4]|[5] [s,da,t]|[s,da,t]|[s,da,t] [38]

Methionine Met [13C,1H] COSY NMR [2] [s,da,db,dd] [121]
Methionine Met 13C–13C COSY NMR [2] [s,da,db,dd] [214]

Phenylalanine Phe [13C, 1H] HSQC NMR [2]|[3] [s,da,db,dd]|[s,da,dd] [82]
Phenylalanine Phe 13C–13C COSY NMR [2]|[3] [s,da,db,dd]|[s,da,db,dd] [214]
Phenylalanine Phe [13C,1H] COSY NMR [2]|[3] [s,da,db,dd]|[s,da,db,dd] [121]
Phenylalanine Phe [13C, 1H] HSQC NMR [2] [s,da,db,dd] [38]

Proline Pro [13C, 1H] HSQC NMR [2]|[5] [s,da,db,dd]|[s,da] [82]
Proline Pro 13C–13C COSY NMR [2]|[3]|[4][5] [s,da,db,dd]|[s,da,dd]|[s,da,dd]|[s,da] [214]
Proline Pro [13C,1H] COSY NMR [2]|[4] [s,da,db,dd]|[s,da] [121]
Proline Pro [13C, 1H] HSQC NMR [2]|[3] [s,da,db,dd]|[s,da,t] [38]
Serine Ser [13C, 1H] HSQC NMR [2]|[3] [s,da,db,dd]|[s,da] [82]
Serine Ser 13C–13C COSY NMR [2]|[3] [s,da,db,dd]|[s,da] [214]
Serine Ser [13C,1H] COSY NMR [2]|[3] [s,da,db,dd]|[s,da] [121]
Serine Ser [13C, 1H] HSQC NMR [2]|[3] [s,da,db,dd]|[s,da] [38]

Threonine Thr 13C–13C COSY NMR [2]|[3]|[4] [s,da,db,dd]|[s,da,dd]|[s,da] [214]
Threonine Thr [13C,1H] COSY NMR [2]|[3]|[4] [s,da,db,dd]|[s,da,t]|[s,da] [121]
Threonine Thr [13C, 1H] HSQC NMR [4] [s,da] [82]
Threonine Thr [13C, 1H] HSQC NMR [4] [s,da] [38]
Tyrosine Tyr [13C, 1H] HSQC NMR [5]|[6] [s,da,dd]|[s,da,dd] [82]
Tyrosine Tyr 13C–13C COSY NMR [2]|[3] [s,da,db,dd]|[s,da,db,dd] [214]
Tyrosine Tyr [13C,1H] COSY NMR [2]|[3] [s,da,db,dd]|[s, da,db,dd] [121]
Tyrosine Tyr [13C, 1H] HSQC NMR [3]|[5 from pep] [s,da,t]|[s,da,t]| [38]
Uridine - [13C, 1H] HSQC NMR [4]|[5] [s,da]|[s,da] [82]
Valine Val [13C,1H] COSY NMR [2]|[4]|[5] [s,da,db,dd]|[s,da]|[s,da] [121]
Valine Val [13C, 1H] HSQC NMR [2]|[3] [s,da,db,dd]|[s,da,dd,ddd] [82]
Valine Val 13C–13C COSY NMR [2]|[4]|[5] [s,da,db,dd]|[s,da]|[s,da] [214]
Valine Val [13C, 1H] HSQC NMR [2]|[4]|[5] [s,da,db,dd]|[s,da]|[s,da] [38]
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figure E.15: Network with metabolite measurements for CNMR. Each circle corresponds to a
measurement group. For each measurement group the number of single measurement
values is given.

LC-MS

Metabolite Network comp. Device Reference
2PG/3PG 2PG3PG LC-MS [212]
2PG/3PG 2PG3PG LC-MS [121]
2PG/3PG 2PG3PG LC-MS [248]

6-
Phosphogluconate

6PG LC-MS [212]

6-
Phosphogluconate

6PG LC-MS [121]

6-
Phosphogluconate

6PG LC-MS [248]

DHAP/GAP DHAPGAP LC-MS [212]
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Erythrose-4-
phosphate

E4P LC-MS [248]

Fructose
6-phosphate

F6P LC-MS [248]

Fructose
6-phosphate

F6P LC-MS [121]

Fructose 1,6-
bisphosphate

FBP LC-MS [212]

Fructose 1,6-
bisphosphate

FBP LC-MS [121]

Fructose 1,6-
bisphosphate

FBP LC-MS [248]

Glucose
1-phosphate

- LC-MS [248]

Glucose
6-phosphate

G6P LC-MS [121]

Glucose
6-phosphate

G6P LC-MS [248]

M6P - LC-MS [121]
P5P - LC-MS [212]
P5P - LC-MS [121]
P5P - LC-MS [248]

Phosphoenolpyruvate PEP LC-MS [212]
Phosphoenolpyruvate PEP LC-MS [121]
Phosphoenolpyruvate PEP LC-MS [248]
Sedoheptulose-

7-Phosphat
S7P LC-MS [248]

Sedoheptulose-
7-Phosphat

S7P LC-MS [121]
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figure E.16: Network with metabolite measurements for LC-MS. Each circle corresponds to a
measurement group. For each measurement group the number of single measurement
values is given.

HNMR

Metabolite Network comp. Carbon detected Reference
Acetate - [1]|[2] [152]
Alanine Ala [2]|[3] [152]
Glycine Gly [1]|[2] [149]
Serine Ser [2]|[3] [149]

Alanine Ala [2]|[3] [149]
Valine Val [4]|[5] [149]

Isoleucine Ile [2]|[5]|[6] [149]
Leucine Leu [2]|[3]|[4]|[5]|[6] [149]
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Glutamate Glu [2]|[3]|[4] [149]
Aspartate Asp [2]|[3] [149]
Succinate Suc [1]=[4]|[2]=[3] [152]
Threonine Thr [2]|[3]|[4] [149]

Phenylalanine Phe [2]|[3]|[5]|[6]|[7]|[8]|[9] [149]
Lysine Lys [2]|[3]|[4]|[5]|[6] [149]

figure E.17: Network with metabolite measurements for HNMR. Each circle corresponds to a
measurement group. For each measurement group the number of single measurement
values is given.



300 APPENDIX E. MULTI-OBJECTIVE EXPERIMENTAL DESIGN

GC-C-IRMS

Metabolite Network comp. Fragment C Reference
Aspartate Asp [278]
Glutamate Glu [278]

Glycine Gly [278]
Histidine His [278]
Isoleucine Ile [2-5] [278]
Leucine Leu [2-6] [278]

Phenylalanine Phe [278]
Proline Pro [278]

Threonine Thr [278]
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figure E.18: Network with metabolite measurements for GC-C-IRMS. Each circle corresponds to a
measurement group. For each measurement group the number of single measurement
values is given.




