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Kurzfassung

Metabolic Engineering ist eine gerichtete und wissensbasierte Methode, um die Produktions-
eigenschaften von Mikroorganismen zu verbessern. Sie zielt darauf ab, die Produktbildung
der Mikroorganismen zu erhéhen, um Okonomische Produktionsprozesse zu schaffen. Das
Fluxom, die Gesamtheit metabolischer Reaktionsraten, des Mikroorganismus wird durch ma-
thematische Modellierung abgebildet. Das leistungsfihigste Werkzeuge der Fluxomanalyse,
die C metabolische Stoffflussanalyse (*C-MFA), verwendet isotopisch markierte Substrate
zur Kultivierung von Mikroorganismen. Die nach der Aufnahme und metabolischen Umset-
zung entstehende Markierungsmuster in den Metaboliten werden durch hoch préazise Messap-
parate (zum Beispiel Massenspektrometer) quantifiziert. Aus diesen Messungen kénnen die
intrazellularen Reaktionsraten abgeschétzt werden.

Die vorgelegte Arbeit befasst sich mit der *C-MFA in komplexen Systemen. Dazu wur-
de P. chrysogenum BCBI1 verwendet und unter industriellen Bedingungen die Bildung des
Antibiotikums von Penicillin V untersucht. “Komplex” bezeichnet hier nicht nur das Wachs-
tumsverhalten von P. chrysogenum, sondern auch die komplexe Nebenproduktbildung und
Kompartimentierung des Metabolismus. Zudem zielt “komplex” auf die Ubertragung der
BBC-MFA von einer wissenschaftlichen Anwendung unter idealen Bedingungen zu einem in-
dustriellen Standard ab. Aus diesem Grund werden Voraussetzung und Annahmen fir die
Durchfithrung der Technik diskutiert und die notwendigen Anpassungen fiir den Einsatz im
industriellen Umfeld beschrieben.

Um gesicherte Erkenntnis tiber den Organismus zu erlangen, wird der Arbeitsablauf zur
Durchfithrung der ¥C-MFA vorgestellt. Durch die Untersuchungen werden die Defizite und
Limitierungen der Technik aufgedeckt. Zuerst wurde die Technik in Chemostat Experimenten
etabliert und auf Fed-batch Kultivierungen nahe am industriellen Prozess iibertragen. Als
Resultat liegen erstmals Stoffflusskarten unter diesen Prozessbedingungen vor.

Die beiden Prozesse wurden mittels kinetischer Modellierung abgebildet um extrazellulare
Raten fiir die "*C-MFA abzuschitzen. Um die *C-MFA anwenden zu kénnen, mussten die
zeitaufgelosten Markierungsanreicherungen extrapoliert und um die natiirliche Markierung
korrigiert werden. In der Arbeit wurden Toolboxen zur nichtlinearen Regression und globalen
Sensitivitatsanalyse entwickelt.

Grofiskalige metabolische Modelle wurden fiir P. chrysogenum aufgebaut, wobei experimen-
telle Daten und Datenbanken, sowie Literatur-Quellen, zum Einsatz kamen. Stammspezi-
fische Messungen der Biomassezusammensetzung wurden in das Modell integriert. Um die
Modelle auf ihre Anwendbarkeit zur Flussschiatzung zu priifen, wurde erstmals eine globale
Sensitivitiatsanalyse fiir die ¥ C-MFA durchgefiihrt. Zudem wurde diese Technik auf die zuvor
beschriebenen Bioprozesse angewendet um die intrazellularen Reaktionsraten zu berechnen.
Die erhaltenen, statistisch hochaufgelosten, Stoffflusskarten wurden weiter verbessert durch
den Einsatz gezielter Versuchsplanung.

Dazu wurden die konventionellen Versuchsplanungstechniken um die optimale Planung von
sequentiellen Experimenten und Mehrzieloptimierung erweitert. Durch letzteres konnten op-
timale, und dennoch 6konomische, Versuche geplant und gleichzeitig die Nachteile konven-
tioneller Techniken vermieden werden.

Die Interpretation der generierten Stoffflusskarten zeigte, dass neben der Penicillinproduk-
tion das Wachstum einen grofieren Einfluss auf den oxidativen Pentosephosphatweg besitzt
als bisher in der Literatur diskutiert. Dies fithrt zu einer sorgfaltigen Ausbalancierung von
Wachstum im Produktionsprozess und der gleichzeitigen Stammoptimierung.
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Summary

Metabolic engineering is a targeted and knowledge-based approach to improve production ca-
pabilities of microorganisms. It aims at increasing metabolic reaction rates towards product
formation to obtain economic production processes. The fluxome, i.e. the computation of
all metabolic reaction rates, is one cornerstone of metabolic engineering. For fluxomics, the
study of intracellular reaction rates, several methods have been established. The most pow-
erful one, ¥C-metabolic flux analysis (**C-MFA), uses isotopically labeled substrates which
are fed to cells. Emerging labeling patterns in the synthesized metabolites are measured
by high-precision measurement devices like mass spectrometry. From the measured labeling
pattern, the intracellular reaction rates can be estimated by mathematical modeling.

The present work faces *C-MFA of complex systems. The non-model organism P. chryso-
genum strain BCB1 is investigated in industrial environment with special focus on peni-
cillin V production. The term “complex” is not only referring to the growth behavior
of P.chrysogenum, but also includes side-product formation and compartmentalization of
metabolism. This thesis aims at the transfer of *C-MFA from a scientific application in a
nearly ideal environment to an industrial standard. For this reason, the prerequisites needed
and compromises made for *C-MFA work-flow are thoroughly discussed and adaption of the
industrial process is highlighted.

To systematically gain knowledge about the organism, the state-of-the-art work-flow for
I3C-MFA is presented, pitfalls and limitations of the technique are revealed for a close-to-
industrial context. The technology is established using chemostat experiments. In a second
step, close-to-industrial fed-batch cultivations are investigated and the first quantitative flux
map of P. chrysogenum for industrial process conditions is presented.

Therefore, a kinetic model was implemented for the processes aiming at an accurate extra-
cellular rate estimation. To apply *C-MFA, stationary labeling patterns are derived from
time resolved labeling data by extrapolation and correction for natural abundance.

Large scale metabolic models for P. chrysogenum were built based on experimental, liter-
ature and database knowledge. Strain specific measurements of biomass compounds were
introduced into the models. Using the constructed model, the first global sensitivity analysis
was performed for ¥ C-MFA to evaluate its suitability for flux elucidation. Finally, 3C-MFA
was conducted to gain knowledge about intracellular fluxes within P. chrysogenum BCB1
and experimental design was used to increase the information content of isotope labeling
experiments.

The conventional experimental design tools were extended by diversification-driven and multi-
objective experimental design. The design space was explored and compared to single-
objective applications. Thereby optimal, yet economic, experimental designs can be planed,
fighting shortcomings of conventional techniques.

From the results of the deduced flux maps, hints for strain and process development are de-
rived. One major finding was that the flux in oxidative pentose phosphate pathway is strongly
influenced by the biomass formation, leading to carefully balanced growth in cultivations and
strain optimization.
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Chapter 1
Penicillin

To date, more than 80 years after its discovery, penicillin is still one of the predominantly
used antibacterial agents. Penicillin is produced in biotechnological processes by use of the
fungus Penicillium chrysogenum. In the 1940ies penicillin was the first efficient pharmaceu-
tical compound used for infection control and health care. Moreover, the first defined and
successful chemotherapeutic product was isolated from a microbial source, founding the era
of therapeutic biotechnology [118].

1.1 History of Penicillin Production

In 1929, Alexander Fleming detected the antibacterial effects of Penicillium towards the
Gram-positive pathogenic bacterium Staphylococcus aureus [81]. This newly found mold was
later identified as Penicillium notatum [118]. The agent obtained via filtration of the lysed
mold was non-toxic for animals and was named penicillin. However, penicillin is in-stable and
in 1932, Fleming stopped work on it, because its purification and stabilization was difficult
[118]. In the 1930ies sulphonamides, another class of chemically synthesized antibacterial
agents, possessed a small spectrum of activity, had severe side effects and bacterial resis-
tances developed rapidly [118, 57].

Howard Florey, Ernst Chain, Norman Heatly, and Edward Abraham were the first recognizing
Flemings work. They continued purifying penicillin using solvent/water mixtures, stabilized
the extract, and used it as pharmaceutical for the first clinical trials[118, 83]. Later, in
1945, Alexander Fleming, Ernst Boris Chain, and Howard Walter Florey received the Noble
price "for the discovery of penicillin and its curative effect in various infectious diseases"
[274]. In 1940-1941 the enormous potential of penicillin as antibacterial agent became clear
as it was tested on humans for the first time [83]. In the subsequent years, the Northern
Regional Research Laboratory (NRRL), the US Department of Agriculture (USDA), and
several companies (including Pfizer, Merck, and Squipp) were involved in the development
of a production process for penicillin [118, 34, 83, 12].

Starting in 1943, pilot plants for penicillin production were developed by Pfizer, Merck,
Squipp, and the Commercial Solvents Corporation and penicillin was used for the first time
for those wounded in World War II [118, 31]. Later, penicillin helped curing gonorrhea and
syphilis which was widespread at the end of World War IT and lead to a fast post-war recovery
[121, 118]. The US government subsidized entry into the penicillin production at that time,

3
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broadening the spectrum of manufacturers. Hand in hand with the steep production increase
by strain and process optimization, prices of penicillin decreased (see figure 1.2) [12, 196].
Between 1943 and 1945 the US production increased from about 0.64 kg to 1,180 kg penicillin
per month.
Simultaneous to the development of production processes, the first "strain development" in
history took place (cf. figure1.1). The first isolate P. chrysogenum NRRL 1951 was taken
from a moldy cantaloupe. The strain was capable of producing 60-150 mg L.~! penicillin (see
figure 1.2) which was 11-15 fold more than Flemings Penicillium notatum strain (production
titer: 1mgL~1) [118, 110]. X-ray treatment of P. chrysogenum resulted in a mutant strain X-
1612 which was capable of producing 161-300 mg L ™! [118, 54, 196]. Finally, the strain Q-176
was obtained by ultraviolet induced mutation at the University of Wisconsin. It was capable
of producing up to 550 mgL~! [54, 196, 66]. Based on this mutant, the WISCONSIN family
of strains was generated. Titers up to 1.8 gL~! for WISCONSIN 54-1225 are reported [25,
66, 110]. In 1973, 2.8-7.3gL~" penicillin were produced by the P2 strain emerged from
WISCONSIN 54-1225 (cf. figure1.1) [110, 174, 18].
Penicillin is produced by P. chrysogenum af-
NRRL ter addition of a side-chain precursor. It was
1951 in the 1950s when it became evident that
P. chrysogenum could use other acyl-group
precursors than phenylacetic acid (PAA) un-
locking production of further penicillins [219,
Q176 118]. Ome of them was penicillin V (phe-
noxymethylpenicillin, V refers to the Ger-
man word “vertraulich” which translates to

confidential) [118, 31].
777777777 X1612 ] In parallel to the strain optimization pro-

grams, the production process for penicillin
was continuously developed. Early on, the

AS 13 73 Wish4- production of penicillin was shown to be
- 1255 catabolite repressed by glucose [200]. Thus,

the first media was optimized for growth

figure 1.1: Strain deveIOpmgnt ' for of P. chrysogenum and penicillin production.
(I;' chrysogenum. ; Solid hne;( = It was found that continuous addition of
icate one type of treatment ( T glucose results in high penicillin produc-
uv, ..) used for mutagenesis,

tion [223].

The first established processes for penicillin
production used lactose as carbon source and
were performed in uncontrolled batch mode.
Today, glucose/sucrose or other crude sugars are used in a fed-batch process with additional
feeds for precursor supply and pH control. Cultivations are performed in 100-400 m?® biore-
actors and process duration is 120 to 200 h, the growth form is pelleted [66]. A production of
at least 66 gL ! penicillin V is needed for a modern fed-batch process to be amortized. The
final biomass concentration is around 45gL~! (data estimated by Monte-Carlo simulations
by Biwer et al.[26]). The strong increase in production of penicillin since 1929, resulting in
titers 10,000-fold higher than the ones produced by the initial isolate of Alexander Fleming
(see figure 1.2), is a result of a simultaneous strain and process improvement. Current data
from industrial processes were not available, estimates for them are present in literature and

dashed lines indicate multiple
treatments [18].
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figure 1.2: Product titer and market prices for penicillin G. Measured and estimated product titers
(—e—) and were taken from: [120, 144, 25, 66, 118, 142, 174, 54, 26, 11]. Market price
for penicillin G taken from: Nielsen [174] (—e—), King [120] (— ) and data taken from
Scott and Oldenhof [215] (—=—).

shown in figure 1.2.

To date, penicillins and cephalosporins are the most widely used antibiotics in therapeutic
medicine. In 2009, the market for antibiotics possessed a volume of US$ 42 billion which
makes up 5% of the world wide pharmaceutical market. Penicillins and cephalosporins
possess similar sales data and penicillin alone accounted for 16 % of the sales in 2009 for
antibiotics [92]. The annual production of penicillin G and penicillin V in 2006 was 16,900
and 7,500 tons, respectively.

In the last 30 years a high amount of pharmaceutical ingredients were produced in India and
China, which led to a strong decrease of the price for penicillin (figure1.2). The price of
penicillin G crushed to its minimum of 9.28 US$ from 16.8 US$ in April 2003 [24]. In the
following years, the price rose again until a strong increase in 2007 was observed, due to a
high market share of China mainly influencing prices. China was in the last years the major
producer of penicillin G accounting for up to 75 % of the world production [24, 215].

1.2 Growth Behavior

P. chrysogenum is a filamentous growing fungus (cf. figure1.3). Growth occurs at the tip
of the hypha in the apical part. Below, the sub-apical and hyphal part of the cell are
located. The growth is, thus, polarized and strong activity is found only in specialized parts
of the cells. In contrast to the apical part, the sub-apical region contains septa that are
not yet fully developed. It is only the hyphal part of the cell where the septa lead to a
full compartmentalization of nutrients. Concomitantly with further differentiation, highly
vacuolized cell parts are formed in the hyphal region [121, 249, 281, 184, 89].

Due to these aging effects, penicillin producing cultures of P. chrysogenum undergo active
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changes during cultivations and the cellular states are diverse [249]. Roughly 5% of the
overall cells are active in their apical parts, 45 % consist of sub-apical parts and 20 % are in
an hyphal differentiation state and up to 40 % of the cells can be lysed [249]. The sub-apical
parts of the cell and to some extent also parts of the hyphal segments are assumed to produce
most of the penicillin [281, 249].
Usually three forms of growth are distin-
guished: (I) dispersed growth, with the for-
mation of branched and unbranched hyphae
(free dispersed), (II) dispersed growth with
the formation of clumps (aggregates), and
(IIT) pellet growth. Due to the polarized
growth of P.chrysogenum, the separate re-
gions of the cell are in different aging and
physiological states, leading to continuous
changes in growth. One influencing factor
on cell morphology and also on production
P. chrysogenum strain BCB1 used 2I€ mechanical shear forces during bioreactor
in this thesis.  Kindly provided cultivations which cause breakage or aggre-
by Alexander Griinberger (IBG-1, gation of cells [114, 185]. Furthermore, the
Forschungszentrum Jiilich) . pH, growth rate, inoculation/germination,
and nutrition may cause differences in the
morphology of P. chrysogenum [174, 159, 114, 176, 177].

figure 1.3: Microscopic picture taken from

1.3 Penicillin Biosynthesis in P. chrysogenum

Penicillins are composed of a nucleus, formed from amino acids, and a side-chain precursor,
which is specific for the type of penicillin. The side-chain determines its activity spectrum and
is added to the cultivation medium. For penicillin G and penicillin V the side-chain precursors
are phenylacetate and phenoxyacetate, respectively. Penicillin V outperforms penicillin G in
terms of stability towards acids, making it more effective for the oral administration [103].
In figure 1.4 the chemical structure of penicillin G and V (PenG and PenV) are shown.

YT QWO TTX

O/ N : T

(0]

\\

}\\“‘ o

o Penicillin V
Penicillin G

figure 1.4: Penicillin G and V chemical structures.

The main building blocks of penicillin were elucidated in the 1950s by inhibition of biosyn-
thesis using structural analogs and tracer studies, it was deduced that L-cysteine (CYS) and
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L-valine (VAL) form the nucleus of penicillin [53, 11, 227]. Penicillin V is formed in three
subsequent steps. Figure 1.5 provides an overview of the penicillin pathway starting from
the main precursors. Initially, the amino acids L-valine, L-cysteine and the diamino acid
L-2-aminoadipate (AAA) form the tripeptide L-a-aminoadipyl-L-cysteinyl-D-valine (ACV)
by a non-ribosomal peptide ACV synthase (ACVS). Following, the isopenicillin N synthetase
(IPNS) catalyzes the fS-lactam ring formation by closing the S-lactam and thiazolidin ring.
This reaction requires an equi-molar amount of oxygen [14, 164]. Finally, L-2-aminoadipate
is substituted with the acyl-side-chain precursor added to the medium by the acyltransferase
(AT). Previously, the acyl-chain precursor is activated by phenoxyacetic acid-CoA ligase
(PCL). The side-product L-2-aminoadipate is recycled or used for lysine synthesis.

The genes encoding for the enzymes ACVS, IPNS and AT are arranged in a gene cluster
consisting of pcAB, pcbC and penD. The clustering of genes is a feature often found in
secondary metabolite pathways, because they are subjected to a tight control. Several other
open reading frames were detected in this region, but had no significant effect on the penicillin
production [240]. The gene encoding for phenoxyacetic acid-CoA ligase (PCL) is not located
in this cluster [179].

In P. chrysogenum, the formation of penicillin is taking place within two compartments. The
reactions catalyzed by the ACVS and IPNS are assumed to occur in the cytoplasm [164, 239].
The final steps of penicillin synthesis, the activation of the side-chain precursor and side-chain
substitution catalyzed by the acyltransferase, take place in the peroxisomes [165, 164, 241].
The peroxisomes are thus crucial for penicillin production in P. chrysogenum [154, 119].

Energy Consumption

The energy demand for penicillin production is high, for CYS biosynthesis 5-8 mol mol&l(s
and for VAL 1molmoly,;, cytosolic NADPH is used [282]. The energy demand of penicillin
synthesis will be later thoroughly discussed.

Side Products

In penicillin biosynthesis several side-products have been observed emerging from the pre-
cursors and penicillin itself (cf. figure 1.5). One of the penicillin precursors, L-2-aminoadipic
acid, is found in significant amounts in the medium supernatant. By cyclization of L-2-
aminoadipate the lactam 6-oxo-piperidine-2-carboxylic acid (OPC) is formed as a side prod-
uct [188, 55]. ACV is formed from the three precursor metabolites L-valine, L-cysteine and
L-2-aminoadipate. From ACV the formation of bis-ACV is favorable, it is formed by utiliza-
tion of oxygen. The reverse reaction is catalyzed by the thioredoxin-thioredoxin reductase
system (TR). Besides this, glutaredoxin system might also be involved in the reverse reac-
tion [188, 55, 121]. Next, acyltransferase catalyzes the formation of 6-aminopenicillanic acid
(6APA) from isopenicillin N, by release of L-2-aminoadipic acid. 6APA can re-enter the peni-
cillin formation pathway by conversion to penicillin V by action of acyltransferase [188, 55].
Besides this, a side-product 8-hydroxy-penillic acid (8HPA) is formed by decarboxylation of
6APA [188, 55].

The final product penicillin V is subject to degradation by penicillin amidase (PA) to 6APA
or it can be converted into several side-products which cannot re-enter the penicillin V
pool. Penicillin V can either be converted to penicilloic acid (PIO), which can be further
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decarboxylated to penilloic acid (PIA) or POA and penicillin V can be converted to p-
hydroxypenicillin V (HOPenV) and p-hydroxyphenoxyacetate (HOPOA) [188, 55].

00
<§" H.0

H:0 120, \*3 AMP

POA-CoA POA
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H

figure 1.5: Penicillin pathway and side-product formation in P. chrysogenum. Main penicillin
pathway is colored in red.

1.4 Penicillin - A Global View

In summary, the production processes for penicillin V in industry have to face low market
prices and, still, need to be profitable. This demands for economic production processes that
are competitive with the global market. One of the central aims for process improvement is an
increase in the production capabilities of the penicillin V producing organism P. chrysogenum.
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To enhance the production of the organism, the complex formation of penicillin V has to be

elucidated.
In the next chapter, tools will be introduced that elucidate the complex interaction of peni-

cillin formation and reaction rates in the metabolism.
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Chapter 2

Fluxomics Tools

Modern industrial biotechnology aims at producing valuable compounds by microorganisms.
The ultimate goal is to develop economic processes by increasing production rate and yield
of the desired product. To achieve this, targeted improvements of the strains are needed via
means of metabolic engineering. Several (omics) disciplines are applied to identify bottlenecks
in metabolism to increase production [113]. Besides, most omics techniques like genomics,
transcriptomics, and proteomics provide only indirect and limited information about the
intracellular reaction rates [104, 84, 106]. However, providing information about metabolic
reaction rates of a cell, or synonymously the fluxome, is crucial to understand the function of
the cell’'s metabolism and, ultimately, to provide hints for strain improvement. To quantify
and describe the fluxome or parts of it, several fluxomics tools were developed for more than
a decade and were established for prokaryotic and eukaryotic model organisms [268, 261,
183, 74, 75, 140, 277]. Fluxes describe the material transport through metabolic pathways.
They are, usually, normed to cell dry weight (CDW) as reference system and are expressed
in [mmol gopw h™!]. Important Fluxomics tools used in this work will be introduced in this
chapter.

Stoichiometric Reactions

One of the prerequisites for applying fluxomics tools is the knowledge about the set of reac-
tions in a cell, which is also called the metabolic reaction network. Nowadays, the complete
sequence of an organism‘s genome can be generated in a high throughput manner [218].
This enables the reconstruction of metabolic reaction networks from known enzymatic func-
tions by sequence analysis. However, these “genome scale metabolic network reconstruc-
tions” approaches can provide a metabolic blueprint, the network topology, rather than
quantitative information [234]. Several fluxomics tools were established to quantify in vivo
fluxes for a given metabolic network (flux balance analysis, '*C-MFA, kinetic flux profil-
ing,...) [74, 210, 269, 277]. Metabolic flux analysis is the core technique to understand
metabolism and to implement metabolic engineering for targeted strain improvement for

production of such valuable compounds as penicillin V.

In all of these techniques, the metabolic network is described by a set of mass balance
equations [251]. In a reaction sequence of A U—1> B U—2> with fluxes v; and v,, the mass
balance equation for metabolite B can be written for a time point ¢, with Cx denoting the
concentration of a metabolite X:

11
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d(Cp)
dt

Assembling mass balance equations for all intracellular metabolites can be re-formulated as
an equation system with X being a vector of metabolite concentrations in the cell, G is a sto-
ichiometric matrix (including in- and effluxes) that comprises the stoichiometric coefficients
of the reactions, v is the flux vector, and b is a vector referring to fluxes over the system‘s
boundaries:

= V1 — VU2 (2].)

dX
=G .- 2.2
o G-v+b (2.2)

By suitable process realization a dynamical equilibrium, called steady-state, is accomplished
for the bio-process under investigation. This is done by maintaining constant state variables
in the process. If this macroscopic steady-state is accomplished, it is assumed that also a
microscopic steady-state is found within the cell. Thus, the metabolite concentrations X and
reaction rates v are constant. This state is also called metabolic steady-state of the system.
At metabolic (pseudo-)steady-state no changes in the concentrations of metabolites are found
(d(;—tx = 0). The underlying mathematical system is simplified as it holds that G-v+b=10.
Thus, the influx into a pool equals its effluxes (for the example above: v; = v,). Importantly,
for real metabolic networks, the system of mass balance equations is under-determined. One

possibility solve the system is flux balance analysis.

2.1 Flux Balance Analysis

Flux balance analysis (FBA) is commonly applied in systems biotechnology to understand
metabolism and to obtain hints for strain optimization. The technique is appealing as it
can provide fast results and predictive information about potential states of the metabolism.
The metabolic network model is typically under-determined, thus, the solution is not unique.
To circumvent this a so called objective function (usually a reaction rate) is minimized or
maximized to obtain a single solution. Commonly, maximizing product, biomass yield, or
energy generation are used as objectives [183]. Thus, it is assumed that the biological system
under investigation is behaving goal-oriented towards highest evolutionary pressure. Similar
techniques can also be applied to estimate lower and upper boundaries for fluxes in a reaction
network (called flux variability analysis, short: FVA) [90].

Metabolic networks used for FBA rely heavily on cofactor balancing. Thus, additional as-
sumptions for energy consumptions are introduced into the network, although it is known
that complete cofactor balancing is difficult to achieve [245].

In order to perform flux balance analysis, a stoichiometric reaction network is built, describing
the metabolism of the organism under investigation. By the underlying steady-state assump-
tion, mass balance equations can be formulated for the stoichiometric reaction network. It
is expressed in the form of the stoichiometric matrix S with size m x ng (m metabolites and
ng reactions). This matrix determines the stoichiometric relation between substrates and
products of a reaction. It does not contain in- and effluxes of the system.

S-v=0 with vower <V < Vipper (1=1,2,3,...7n4) (2.3)
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Here, lower v; jower and upper v; ypper bounds are defined for each flux in vector v based on ther-
modynamical, process, or physiological data (e.g. capacity of enzymatic activity). Thereby,
the flux values are restricted to biologically feasible solutions. Importantly, measurements
with standard deviations are not used, but lower and upper bounds for fluxes [183].

Finally, if degrees of freedom are left within the given system (ng > m), the system is under-
determined. Usually a unique solution cannot be obtained from equation 2.3 by measuring
extracellular rates. Thus, FBA searches either the minimum or maximum of the user-defined
objective function consisting of a linear combination of fluxes weighted by user chosen factors
in vector ¢ (with length ng). The objective value is Z = cTv.

From the infinite number of solutions in such a network only one is obtained in the end.
However, the chosen flux distribution is not representing the actual state of the cellular
metabolism but only a possible state.

To estimate in vivo fluxes (intracellular fluxes), further information is needed. Therefore,
adding measurements containing information about intracellular fluxes is necessary. For
this, labeled material is introduced into the cells by the fed substrate. How this can increase
the information content of fluxes, will be described in the next section.

2.2 13C Metabolic Flux Analysis

In contrast to FBA, ¥C-metabolic flux analysis ('*C-MFA) explores the fluxome by rely-
ing on extracellular fluxes and intracellular labeling measurements. In this state-of-the-art
technology metabolic fluxes are inferred from isotope labeling experiments using *C labeled
substrates. The resulting labeling patterns in metabolites are quantified. Finally, fluxes are
inferred based on a model describing the distribution of (**C and '*C) carbon atoms in the
metabolism.

Next, the practices to obtain experimental data for 3C-MFA are described.

2.2.1 Carbon Labeling Experiment

To conduct a "C-MFA, a carbon labeling experiment is performed (see figure?2.2) [280].
Importantly, this work deals with stationary '*C-MFA and, thus, also the isotopic labeling
in the metabolites needs to be stationary (isotopic steady-state).

In a metabolic steady-state all extracellular and, thus, intracellular reaction rates are con-
stant. To establish an isotopic steady-state needed for *C-MFA, first a metabolic steady-state
needs to be established. This is usually accomplished in a process called chemostat, it aims
at preserving the steady-state conditions by a constant feed and withdrawal of bioreactor
content throughout the cultivation. The organism under investigation is, thus, cultivated
under controlled conditions to reach the metabolic steady-state. At this stage, natural la-
beled substrates are exchanged by isotopically labeled ones. In turn, driven by the metabolic
activity of the cells, characteristic labeling patterns emerge in the metabolite pools; first in
the vicinity of the carbon source, later in pools further downstream. This can take up to
hours or even days in eukaryotic organisms [96, 284]. The speed of labeling distribution
depends on the pools size (intracellular concentration) and the flux through the pool under
observation, it is referred to as turnover (see figure2.1). Metabolites in glycolysis possess
small pool sizes and high fluxes (high turnover) and show fast equilibration of labeling. In
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figure 2.1: Turnover of metabolite pools and the time resolved spread of labeling in metabolism.
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figure 2.2: Experimental work-flow for 3C-MFA

this case, the so called isotopic steady-state is reached fast. Pools of amino acids are usually
larger with low fluxes and exhibit, thus, slow labeling enrichment (low turnover) and reach
the isotopic steady-state later in an experiment [96, 284].

In stationary '3C-MFA, a sample is taken at isotopic steady-state. Cells are quenched to
stop metabolism and preserve metabolites containing labeling information, the metabolites
are extracted by specialized protocols [236]. Their respective labeling pattern is measured
by state-of-the-art techniques, e.g. nuclear magnetic resonance spectroscopy (NMR) or mass
spectrometry (MS). MS is one of the techniques which is frequently applied for *C-MFA. By
MS, the measured ions can be separated by their masses, emerging from the labeling state in
the metabolite [271]. Finally, the measured labeling pattern can be used for flux estimation

in BC-MFA.

Summarizing for stationary *C-MFA, a metabolic steady-state has to be maintained for
a sufficient time to also obtain isotopic stationary conditions (isotopic steady-state). Thus,
prerequisites for the application of (stationary) fluxomics tools are optimally met in chemostat
cultivations.
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figure 2.3: Metabolite B contains two carbon atoms. The metabolite pool of B consists of a
mixture of four isotopomers (B#00, B#10, B#01, B#11), the fraction of the separate
isotopomers can be measured and sum up to one.

2.2.2 Modeling of Labeling Experiment

In this section the ingredients for modeling of carbon labeling experiments are presented:
o the labeling patterns of metabolites and substrates
« simulation of labeling patterns for given fluxes
o modeling of labeling measurements

The main steps of the *C-MFA work-flow are visited by usage of a toy example. At the end
of the chapter a summary is given and the state-of-the-art work-flow is recapitulated.

Isotopomers

The stable carbon isotope '2C is present in about 1.07 % of natural carbon. This labeling
is referred to as natural labeling [22]. Labeled substances possesses '*C atoms enriched at
specified carbon atom positions. Labeling patterns are often described in binary notation:
12C is denoted by a “0” and '3C is denoted by a “1”.

For a metabolite with no carbon atoms 2"¢ labeling patterns are possible. Metabolite B
contains two carbon atoms and thus four different isotopomers are possible B#00, B#10,
B#01, B#11 (cf. figure2.3).

If isomer forms of a molecule share the same isotopic composition, but differ in their posi-
tions, they are called isotopomers. By measurements, the fractions of the isotopomers for a
metabolite can be elucidated (see figure 2.3). The fractions of all isotopomers of a compound
sum up to one. Thus, labeling patterns for *C metabolic flux analysis are using relative
amounts of isotopomers.

Substrates

Labeled substrates are used in an carbon labeling experiment. Frequently used substrate for
carbon labeling experiment are:

o glucose labeled at the first position, called 1-*C glucose or Gle#100000,
« uniformly labeled glucose, called U-13C glucose or Gle#111111,

« naturally labeled glucose Glc#000000.
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figure 2.4: Atom transition for glucose-6-phosphate isomerase. Numbering of carbon atoms by
INCHI™ strings to identify uniquely the carbon atoms, see Mu et al. for details [163].
Figure generated using OMIX [60].

Further, more or less costly, substrates and labeling patterns are commercially available [1].
The labeled substrates are not only differing in their prices, but also in purity. Usually 99%
atom purity is used. It refers to the purity of *C at the enriched positions in the substrates.
In the experiments a mixture of them is used, called input substrate mixture. The labeling
state of an input substrate is denoted @y,

Isotopomer Balancing

To balance isotopomers in a metabolic network, the mass balance equations for a metabolite
pool can be extended. For the reaction sequence A — B - it is assumed that each
1 2

metabolite contains two carbon atoms. In equation 2.1 isotopomer pools can be integrated
by resolving the metabolite pool concentration into separate isotopomer pools for which the
steady-state assumption can be applied as well.

The fate of the carbon atoms need to be specified for each reaction containing carbon atoms
and are called atom transitions, an example can be seen in figure 2.4. For the reaction of
glucose-6-phosphate isomerase the fate of carbon atoms in glucose-6-phosphate is assigned
to fructose-6-phosphate.

Similar to metabolite pool balances, isotopomer pools are balanced, whereas the isotopomer
fraction of metabolite A and B are denoted by a and b and their labeling pattern is given in
subscripts:

d(Cpbgo)
dt

d(Cgbyo)
dt

d(Cpbor)
dt

d(CBbu)
dt

= v1a90 — V2bgo
= v1a19 — v2big
= v1a01 — V2bo1

= v1a11 — V2bny
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The input substrate, here A, is labeled. The labeling is distributed by the reactions (here
v; and wvy) through the metabolic network, resulting in labeling patterns in the emerging
metabolites (here: B).

A general formulation of the above described reactions can be given in compact notation.
The function f describes the labeling change over time and depends on the fluxes v, the
input substrate labeling state z;,, and the labeling state of the system = [181]:

d
diag(X) - == = f(0, Tinp, ) (2.4)
At metabolic and isotopic steady-state, the labeling fractions x are constant and the left
hand side of equation 2.4 vanishes:

dx
diag(X) - — =0 2.5
iag(X) - = (25)
In contrast to purely stoichiometry-based analysis like FBA, in modeling carbon labeling
experiments the exchange of labeled material in reversible reaction steps has to be accounted

for.

Flux Coordinate System

To model the labeling patterns in the metabolites, transport of labeled material needs to
be fully described by isotopomer balance equations. This is important for reactions close to
thermodynamic equilibrium. They are called reversible reactions [262]. In these reactions,
transport of material occurs in both directions denoted by two arrows in the reaction equation.
For example:

q:B=E

In reaction ¢, a fraction of the labeled material is transported in the direction of reaction
equation (left to right) B —  E by a so called forward flux and another fraction is

Vq, forward

reacting in the opposite direction B L, E, called backward flux. Both fluxes possess
gq,backward

by definition positive values and are acting at a time, resulting in equilibration of the pools
B and E. Forward and backward fluxes are hard to interpret in the context of a biological
network, thus they are converted to net and exchange fluxes.

Unet = Vforward — Ubackward (26>

Vgeh = min(vforwarda vbackwa'rd) (2

Having defined the metabolic network stoichiometry, the rank of the stoichiometric matrix
S determines the number p of free fluxes vy, [263]. They can be converted to all net and
exchange fluxes v,,; and v, by using the kernel matrix A and a transformation ®~* [263]:

Ugch

e G LSt 23)

Setting up all equations as described above, results in a large system of differential algebraic
equations (cf. equation2.4). By specifying input substrate and a feasible set of free fluxes,
the system can be solved; the labeling state of the system x can now be calculated [267]:
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f(@inp, v~ ) =0 (2.9)

In general, nonlinear terms arise in reactions using multiple labeled substrates. For small scale
systems, isotopomer balance equations can be efficiently applied to describe the labeling state.
For larger systems, the number of isotopomers increases significantly, because metabolites
with up to 11 (or even more) carbon atoms are contained. In a genome scale network
metabolites with an even larger carbon skeleton may exist. Such large system can no longer
be handled efficiently by simulating all 2"¢ isotopomers. Thus, mathematical transformations
like EMUs, cumomers and topological network reduction by forward /backward tracing were
developed to make these systems computationally feasible [259]. A multitude of techniques
have been published so far, nevertheless they are not subject of discussion in this work
[226, 225, 7, 267]. Throughout this work 13CFLUX2 is used, which uses both cumomer or
EMU transformation. For illustrative purposes only isotopomers are discussed.

Measurements

Finally, from the labeling state x the labeling measurements need to be calculated. The
labeling state can be converted to a simulated labeling measurement ,, by the help of a
measurement matrix M [266].

yv = M - 2(Vfree, Ting, ---) (2.10)

Likewise a measurement matrix can be built for the simulated flux measurements y,. From
the given n, + n, labeling and flux measurements, p free fluxes are estimated.

Assumptions on 13C-MFA

Summarizing, the assumptions on which stationary *C metabolic flux analysis and (in parts)
flux balance analysis rely on are discussed (taken and adapted from Wiechert [261], Wiechert
and de Graaf [263]):

1. The biological system can be represented by a finite set of homogeneously distributed
pools. Compartmentalization may lead to separate pools for a metabolite per compart-
ment. Besides, it is assumed that the cultivated organism‘s population is homogeneous.

2. The observed system must be kept in a well-defined physiological stationary state.
Thus, state variables like temperature, pressure, concentrations in liquid and gas phase
need to be kept constant. The metabolic and isotopic steady-state has to be reached.

3. The set of relevant reactions and atom transitions are known and incorporated in the
network model.

4. No isotopic mass effects can be observed in the system under study.

Several counter-arguments exist for the conduction of the analysis. In P. chrysogenum the
hyphae structure, the spatially resolved metabolism, aging and changing product formation
is known [249]. In this study, these effects are neglected for conduction of *C-MFA, because
the technique is not capable of resolving them. Besides, fungi exhibit significant changes of
the metabolism during the cell cycle. Thus, performing analysis of labeling patterns will give
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averaged results over the cell cycle in these cells. To give an example, in Saccharomyces cere-
visiae even synchronization of cell cycle was frequently observed in chemostat culture [190].

To introduce the application and the work-flow for '*C-MFA, an illustrative example is subject
of the next section.

2.2.3 Illustrative Toy Example: The Spiral Model

BC-MFA is usually dealing with high dimensional metabolic models with 20-40 degrees of
freedom. Most of the characteristics can be seen also in lower dimensions. In this section cer-
tain aspects of 13C-MFA, becoming later important for large scale system, will be introduced
with an artificial toy example.

This model, called Spiral model, was first introduced by Wiechert et al. [267]. The metabolic
network model consists of nine reactions with an input pool A, see figure 2.5a. The influx
U;p, 18 fixed to 1.0. Two free fluxes exist ¢, and ¢,,. The exchange fluxes will be rescaled to
match the interval [0,100%)] by applying the transformation ¢.cno1 = 100 - Guen/ (1 + quen) %,
whereas 0 means no exchange flux and 100 % means an infinite exchange flux [263]. As e
depends on the influx u;, which is constrained to a value of 1.0, it can only be varied within
the interval [0, 1].

The atom transition network is shown in figure 2.5b. It specifies the fate of the carbon atoms
for each reaction. The atom transition network and the metabolic network can be formulated
in the short notation including atom transitions:

Uiy :A#ab — B#ab

q :B#ab — E#ab
v :B#ab + E#cd — C#abed
w :CH#Habed — F#a + D#dcb
p :D#abc — E#cb + G#a
r :E#ab — H#ab

Fou ' F#Ha —

Gout :GH#Ha —

H,, ‘H#a —

For this network the isotopomer balance equations can be written in short notations, with
subscripts 4, j,k,l € {0,1} denoting labeling of single atoms. The lower case letters are
referring to the respective isotopomer fractions of an metabolite:
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(a) Metabolic network (b) Atom transition network

figure 2.5: Spiral network model posses one influx u;, and several efluxes Fiyus, Gour and Hyyz.
(a) Metabolic network and (b) carbon atom transition network for the Spiral model.

Pool Change =Arriving —Leaving
B 3d([§1bij) =Uin  Aij —(v+4q) - by
C :d([c;]i?jkl):v byt - €45 —W - Cijl
D Icwzl]tdijk)w “(Cijro + Cjrn) —p - dijk
g A Ee;) - (doi; + duig) + - biy—(r + v) - €3

dt

In these isotopomer balancing equations, a special feature of the *C-MFA models can be
seen: In the balance equation of metabolite C a nonlinear term by, - e;; is introduced as
two metabolites (B and E) react to a new metabolite C. Thus, it is a system of nonlinear
differential algebraic equations.

Following, it is assumed that all isotopomers for metabolite H are measurable and the system
is in metabolic and isotopic steady-state (% = 0). Now, the labeling pattern in H can be
calculated by specifying the free fluxes ¢, and q,., and an input substrate. In this example,
the input substrate A;, is labeled at the second position A#01. Equation 2.9 is solved and
the isotopomers fractions for H are obtained. This procedure is called henceforth (forward)
simulation.

Calculating the labeling pattern for all flux values of ¢, and g, results in the surface
plots seen in figure 2.6. The resulting isotopomer fractions are smooth, but several of them
(H#00 and H#10) show only small changes in value. Additionally, some isotopomer fractions
show strong changes in function values with respect to the net flux (cf. H#01). For higher
exchange fluxes ¢,cno1 within 75-100 %, small changes are observed in the labeling patterns,

because pools H and B are equilibrated. At a high net flux ¢, = 1.0 all flux is redirected
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figure 2.6: Simulation results for isotopomers of metabolite H in Spiral model with varying free
fluxes gpet and quepn. Influx w;, was constrained to 1.0. Input substrate was chosen to

be Am#Ol.

from metabolite A via B to E, bypassing the route via C and D. Thus, the exchange flux
between pool B and E becomes non-influential as both metabolites share already the same
labeling pattern.

However, if two sets of flux distributions are chosen, we can see that they possess different
isotopomers fractions in metabolite H. Thus, to determine the fluxes for this model, the
measurements of the isotopomers of H need to be known. This is true, as long as the g,
flux is not equal to 1.0. In this case, no information content about this exchange flux is
found in the labeling pattern, because two flux values for q,., possess the same isotopomer
measurements. This is called structural non-identifiability [199]. Thus, ¢, is only locally
structural non-identifiable at high fluxes of g,¢;.

2.2.4 From Labeling Patterns to Fluxes

It was shown that measuring the labeling distribution of the metabolite H will determine
the fluxes of the Spiral model. Nevertheless, there are some drawbacks emerging from this:
(I) measuring the whole isotopomers of a metabolite is cumbersome, if not impossible for
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large molecules, and (IT) measurements are never exact.

Here we will see how mass spectrometic measurements of a metabolite are built from the
simulated isotopomer distribution. Metabolite H is measured by mass spectrometry and
possesses the isotopomers H#00, H#10, H#01 and H#11. The mass spectrometric devices
can separate metabolite H by mass m and quantify the masses. The fraction of completely
unlabeled H (m+0; H#00), labeled at one position (m+1; H#10 + H#01 ) and labeled at
two positions (m+2; H#11) can be measured. The detected part of H contains ne carbon
atoms and thus m + 0,1...(n¢ + 1) so called mass traces are measured (here: three were
measured). Thus, a single MS measurement can only measure a subset of the isotopomers
information content. By solving equation 2.9, the full labeling state of H is obtained, de-
scribing the fractions of all simulated isotopomers x. The measurements can be calculated
from the labeling state using the measurement matrix M. For this case, equation 2.10 can
be reformulated for metabolite H:

Ym,H = My -xy

Vim0 100 o]
Yamsr | =0 1 10 hlo
YH 2 0001 o

' hiy

The results for the Spiral models metabolite H can be seen in figure2.7. Clearly, at high
flux values of the net flux ¢,.; low changes are found compared to the full set of isotopomers.
Here, the loss of information is reflected in the MS measurements‘ surface plots.
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figure 2.7: Simulation results for MS measurement of metabolite H in Spiral model with varying
free fluxes gnet and guep. Influx u;, was constrained to 1.0. Input substrate was chosen

to be A#01.

2.2.5 Sensitivities and Jacobian

Sensitivities describe the local effect of the input parameters on the output of the model.
Usually, the partial derivative for one flux with respect to its output y is calculated at a
specific flux distribution o:

Jdy
(9 V;

)

The output of the model y can be a labeling y,; and/or flux measurement ,.

This local sensitivity analysis indicates, at the point in flux space, the strength of the depen-
dency between a measurement and a free flux. Calculating all local sensitivities for fluxes
and measurement, one obtains the Jacobian with dimension p X (n, + n,):
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figure 2.8: Sensitivities (absolute values) calculated for Spiral model with influx u;,=1.0 and input
substrate 100 % A#01. The Jacobian was evaluated and the maximal gradient was
extracted for (a) flux gner and (b) flux guep. Only maximal absolute values are of all
MS measurements of metabolite H.
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The Jacobian describes the local approximation of the change of all model outputs to a
change in the free fluxes. The sensitivities were calculated for the Spiral model for the MS
measurements of H for both fluxes ¢, and ¢... Only the maximal absolute values for
the sensitivities for each parameter with respect to the labeling measurements are shown in
figure 2.8. Both fluxes exhibit high gradients at low ¢,,; and ¢,.,. Finally, both fluxes possess
(close to) zero gradient in J when the g, flux is high.

Until now, it was assumed that the measurements y,; possess no measurement error. How-
ever, measurements are subject to uncertainty and are in general assumed to possess normal
distributed error. To quantify the uncertainty by error propagation from the measurements
to the fluxes, statistics need to be evaluated. This can be achieved for the nonlinear model
by linearization at the flux distribution 0. Therefore, the Jacobian J(x,, Ofree) is calculated
and the measurement's covariance matrix X = diag(s},cos 15 Smeas.2s - - - » Smeasmyytn,) €A1 De
build from the measurement's standard deviation s,,..s neglecting covariances/correlation
between the measurements [197]. Using these matrices, the Fisher Information matrix is

calculated:

Fish = Jx71J (2.11)
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figure 2.9: Work-flow for flux estimation based on measurements. Adapted from Wiechert [261].

Inverting the Fisher Information will yield the covariance matrix of the free fluxes (Cov =
Fish™'). Tt describes the shape and size of the free fluxes' covariance ellipsoids and is a
measure for the statistical identifiability of the fluxes [85].

Summing up, from a metabolic network and carbon atom transitions a unified description
of the isotopomer balance equation was deduced. Labeling measurements were calculated
by isotopomers and sensitivities were evaluated for the measurements with respect to the
fluxes to perform a globalized sensitivity analysis in flux space. Finally, by assuming some
error on the measurement it was shown that calculation of error propagation from fluxes to
measurements is straightforward and closely related to sensitivity analysis.

Estimation of the free fluxes for a given set of measurements is the focus of the next chapter.

2.2.6 Flux Estimation

Up to now, a toy example was used and it was shown that there is a correspondence be-
tween isotopomers and fluxes. However, direct calculation of the fluxes from the labeling
measurements is not possible. Besides *C-MFA deals usually with high dimensional systems
(p = 20 — 40) and thus plotting of isotopomers (as in the case of the Spiral model) is not
possible. The work-flow for estimating the fluxes from the experimental measurements is
shown in figure 2.9.

First, an experiment is performed in the wet-lab with a chosen substrate mixture and the
resulting stationary labeling patterns in the cell is measured. In the dry-lab the estimation of
the unknown in vivo metabolic fluxes from the labeling patterns is started by choosing a set
of free fluxes. With the same input substrate used in the model, the labeling measurements
are simulated and compared to the real measurements. By minimizing the difference between
simulated data and measurements, the simulated flux distribution is getting similar to the in
vivo fluxes. If the difference is minimal, one assumes that the found flux distribution is the
same as in vivo.

Each