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Abstract

Rateless codes, also known as digital fountain codes, are excellently suited for
erasure correction in packet-switched communication networks. First applications
are digital video broadcast or multicast over terrestrial networks or multimedia
services in cellular networks. Such networks are usually prone to packet losses
due to network congestions or unrecoverable bit errors within packets. The main
attributes of rateless codes can be summarised as follows:

• The transmitter is able to produce as many encoded packets as needed from
a given source block consisting of k source packets.

• The receiver is able to decode an exact copy of the entire source block from
any subset of k(1 + εR) received (i.e. non-erased) encoded packets, where
εR ≥ 0 is a small reception overhead.

• No feedback channel is required for packet acknowledgements.

In the literature, rateless codes are usually based on the simplifying design assump-
tions of input sequences of infinite length. The analysis and the characterisation
of the so designed codes apply only to codes with very long input sequences and a
corresponding latency. In contrast, this thesis focuses codes with finite (especially
short to medium) lengths. These practical lengths enable applications that require
a low transmission latency. In this context, various types of finite length LT codes
and Raptor codes are investigated. The main contributions of this thesis are:

• The derivation of analytical closed form expressions of the residual erasure
probability under optimal decoding.

• The derivation of tight upper and lower residual erasure bounds.

• The generalisation of binary codes to higher order Galois fields.

• The formulation of concrete design guidelines for highly efficient LT code
ensembles with equal and unequal erasure protection.

• New performance assessment tools for Raptor codes in terms of the so-called
erasure weight and kernel weight profiles.
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The key to the achieved results is to formulate the expected erasure correction
performance of an LT code ensemble as an equivalent mathematical problem. This
fundamental question is whether a consistent system of designed random linear
equations over a finite field can be solved partially or completely.
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Notation and Symbols

The following notation is used throughout this thesis to denote different quantities:
Scalars are written in italic type (e.g. x). Boldfaced lower case letters denote
column vectors (e.g. x), while boldfaced capital letters denote matrices (e.g. X).
The corresponding random variables are set in sans serif font, e.g. x for random
variables, x for random vectors and X for random matrices. Sets are written in
calligraphic letters (e.g. X ). The indices “T” and “R” are used to differentiate
between transmitter and receiver related quantities (e.g. xT and xR). Quantities
that are stated in a general manner or which are equally related to both transmitter
and receiver are written without an index “T” or “R”.

List of Principal Symbols

a(ξ) Primitive polynomial of a Galois field Fq with coefficients ai from
the prime subfield F2

α Primitive element of a Galois field Fq

A Companion matrix to the primitive element α ∈ Fq

A Ambient space

A� Minimal ambient space

b Base vector

β Complexity factor

C Stochastic parity-check ensemble

d Output node degree or row weight

dτ Row weight in that part of the LT code generator matrix which
is associated with importance class τ

d Vector of importance class row weights, i.e. d = (d1, . . . , dT )T

d Output node degree or row weight (random variable)

dτ Row weight (random variable) in that part of the LT code gen-
erator matrix which is associated with importance class τ

d Vector of importance class row weights (random vector)



x Notation and Symbols

D Row weight sample space, i.e. set of row weights with non-zero
probabilities

δH,min Minimum Hamming distance

Δ Density of a matrix, i.e. relative amount of non-zero entries

ε Relative overhead

εR Relative reception overhead

εT Relative transmission overhead

ηR Absolute symbol reception overhead, ηR = kεR = k(γR − 1)

ε Erasure probability on the BEC or the SEC

F2 Galois field of order 2

Fq Galois field of order q

gij An entry in the ith row and jth column of an LT code generator
matrix

gij An entry (random variable) in the ith row and jth column of an
LT code generator matrix

G LT code generator matrix

G LT code generator matrix (random matrix)

G Sample space of matrices G

γ Inverse code rate

γR Inverse reception code rate

γT Inverse transmission code rate

H Parity-check matrix

H Random parity-check matrix

H Hamming code

Hσ Shortened Hamming code

Hq,σ Shortened non-binary Hamming code

H+ Extended Hamming code

H+ Shortened extended Hamming code

Ii×i Identity matrix of size i × i

k Number of symbols per information word. Using Raptor codes,
k denotes the number of intermediate symbols and k′ denotes
the number of symbols per information word.

kB Number of bits per information word, i.e. kB = μk



Notation and Symbols xi

kτ Number of input symbols in importance class τ ;
In Chapter 4, k1 and k2 denote the number of systematically and
non-systematically received input symbols, respectively.

k Vector containing the numbers of input symbols from Fq that
are assigned to T importance classes, i.e. k = (k1, . . . , kT )T

L LT code ensemble

Λ(ξ) Variable node degree distribution of an LDPC code

Λi ith coefficient of the variable node degree distribution of an
LDPC code

m Number of parity bits or symbols

μ Number of bits per Fq-element, i.e. μ = ld(q)

n Codeword length

nR Number of received output symbols or nodes

nT Number of transmitted output symbols or nodes

N Cardinality of a set or number of possible combinatorial out-
comes

N The set of natural numbers

N0 The set of natural numbers including zero

o Nullity of a matrix

Ω(ξ) Row weight or output node degree distribution of an LT code

Ω(ξ) Multivariate row weight distribution of an LT code

Ωi ith coefficient of the row weight distribution Ω(ξ)

Ωd Coefficient of the multivariate row weight distribution Ω(ξ)

P
[L](

��W
)

An upper bound on the residual word erasure probability

P [L]
(
��W
)

Residual word erasure probability of an LT code ensemble

P [L]
(
��W
)

A lower bound on the residual word erasure probability

P
[L](

�S
)

An upper bound on the residual symbol erasure probability

P [L]
(
�S
)

Residual symbol erasure probability of an LT code ensemble

P [L]
(
�S
)

A lower bound on the residual symbol erasure probability

P Precode

ϕ Weighting factor

ϕ Vector of weighting factors or odds

q Order of a Galois field Fq

r Rank of a matrix



xii Notation and Symbols

rT Row vector from an LT code generator matrix

rT Row vector from an LT code generator matrix (random vector)

R(ξ) Check node degree distribution of an LDPC code

Ri ith coefficient of the check node degree distribution of an LDPC
code

ρ Code rate

ρR Reception code rate

ρT Transmission code rate

s Syndrome

σ Shortening parameter, used for shortening Hamming codes

τ Importance class index

T Number of importance classes

v A random vector that results as the element-wise product of an
input vector x and a row r from the random LT matrix G

we Erasure weight

we Erasure weight (random variable)

wk Kernel weight

wk Kernel weight (random variable)

x Message/input symbol/node

x Vector of message/input symbols or nodes, input vector

ξ Indeterminate

Ξ(ξ) Input node degree distribution of an LT code

Ξi ith coefficient of the input node degree distribution Ξ(ξ)

y Output/encoded bit/symbol/node

y Vector of output/encoded bits/symbols/nodes

? Erasure symbol

Vectors, Matrices and Ensembles

x Bold lower case letters are understood as column vectors

x Bold lower case sans serif letters denote random column vectors

X Bold capital letters represent matrices

X Bold capital sans serif letters represent random matrices

xT, XT Transposition of a vector or a matrix



Notation and Symbols xiii

X ∼ Ω(ξ) The Hamming weight of the row vectors of random matrix X is
distributed according to Ω(ξ)

Operators

i! Factorial of a non-negative integer i, i.e. i! = 1 ·2 ·3 · . . . ·(i − 1) · i(
i

j

)
Binomial coefficient,

(
i

j

)
= i!

j!(i−j)!
> 0 if i, j ∈ N0 and 0 ≤ j ≤ i.

In all other cases
(

i

j

)
= 0 applies.

[i]
q

q-analogue, q-number or q-bracket of an integer i, [i]
q

= qi−1
q−1

[i]
q
! q-factorial, i.e. [i]

q
! = [1]

q
· [2]

q
· . . . · [i − 1]

q
· [i]

q[
i

j

]
q

Gaussian or q-binomial coefficient, i.e.
[

i

j

]
q

=
[i]q !

[i−j]q ![j]q !

�x� Smallest integer larger than or equal to x

|X | Cardinality of a set X , i.e. the number of elements in X

|x| Absolute value of x

‖x‖H Hamming weight operator or zero “norm”: counts the number
of non-zero elements in vector x

‖x‖∞ Infinity norm, i.e. ‖x‖∞ = max(|x1|, |x2|, . . .)

δi Kronecker delta function, δi = 1 if i = 0 and δi = 0 if i 	= 0

δi,j = δi−j Kronecker delta function, δi,j = 1 if i = j and δi,j = 0 if i 	= j

coef
(
X(ξ), ξi

)
coefficient of ξi in a polynomial X(ξ)

dim(x1, x2, . . .) Dimension of the subspace spanned by a set of vectors x1, x2, . . .

ld(.) Logarithm with a basis of 2

i mod j The modulo function computes the remainder of the division i/j

rnd(.) Rounding operator

img(X) Image of a matrix X

ker(X) Kernel of a matrix X

rank(X) Rank of a matrix X

nullity(X) Nullity of a matrix X

E{x} Expected value of x

Pr{x = x} Probability that the random variable x is equal to x

� Definition operator

� Approximately greater than

� Approximately less than
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Glossary

3GPP 3rd Generation Partnership Project

APP Application layer

ARQ Automatic repeat request

BEC Binary erasure channel

BP Belief propagation

DVB Digital video broadcasting

EEP Equal erasure protection

EW Expanding window

FEC Forward error correction

GE Gaussian elimination

GNU GNU’s Not Unix!

GNU R Programming language under the ↗↗↗GNU General Public License

HARQ Hybrid ↗↗↗ARQ

IETF Internet Engineering Task Force

IP Internet protocol

IPDC ↗↗↗IP datacast

IPTV ↗↗↗IP television

ISO International Organization for Standardization

LDGM Low-density generator matrix

LDPC Low-density parity-check

LT Luby transform

MAP Maximum a posteriori

MBMS Multimedia broadcast/multicast services

MDS Maximum distance separable

ML Maximum likelihood

OSI Open Systems Interconnection

PHY Physical layer

Raptor Rapid tornado

RFC Request for comments

RLF Random linear fountain
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RS Reed-Solomon

SEC Symbol erasure channel

SPC Single parity-check

LDPC Low-density parity-check

LDRLF Low-density random linear fountain

TCP Transport control protocol

TTL Time to live

UDP User Datagram Protocol

UEP Unequal error protection

VoIP Voice over ↗↗↗IP



Chapter 1

Introduction

The Internet has become ubiquitous over the last two decades. The wide avail-
ability of high-speed internet connections have fostered the development of cheap
or cost-free internet-based alternatives or extensions to traditional communica-
tions and media technologies like the telephone, radio or television. At the same
time, traditional analogue technologies have been replaced by digital ones. Aside
from the obvious economical reasons, the better digital means to guarantee a well-
defined quality level, the better accessibility, a higher convenience and – not to
forget about – the possibility to employ cryptographic measures against adver-
saries, have been further driving forces for the still ongoing digitalisation.

The deployment of digital technologies and their interlacement with the Internet
have led to a predominance of packet-based information delivery. Such packet-
switched communication networks enable the distribution of heterogeneous types
of data to possibly many user devices with widely varying capabilities via the same
infrastructure and support a variety of new services and applications with different
fidelity and delay requirements for data delivery. As the data traffic generated by
both stationary as well as mobile devices is steadily increasing, the limited avail-
able resources such as spectral bandwidth, data rate or admissible transmission
power have to be utilised with increasing efficiency. Moreover, this multitude of
communication scenarios is supposed to function reliably under extremely diverse
and time-variant channel conditions.

1.1 From Algebraic to Probabilistic Channel Coding

The field of channel coding which is dedicated to answer the essential question of
how to reliably and efficiently transmit information over a noisy channel has been
sparked by Shannon with his ground-breaking paper “A Mathematical Theory of
Communication” [Sha48]. Besides the derivation of the fundamental limit on the
transmission rate over a noisy channel, i.e. the channel capacity, Shannon also
proved the existence of digital channel codes that allow communication with an
arbitrarily small error probability at any rate that does not exceed channel capacity.
In fact he showed that almost any randomly chosen code achieves capacity as the
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blocklength, i.e. codeword length, goes to infinity. But since his proof was non-
constructive in that a typical random code of large blocklength is prohibitively
complex for practical implementation, he started a still ongoing quest for practical
capacity-achieving channel codes.

In the first decades the developed codes were mostly of algebraic nature such
as Hamming codes [Ham50], convolutional codes [Eli55] or Reed-Solomon (RS)
codes [Bus52,RS60], but with the astounding invention of Turbo codes by Berrou
et al. [BGT93,BG96] the gap to capacity could be dramatically diminished. Turbo
codes, comprising a (pseudo-)random interleaver as an integral component, have
drawn massive attention to probabilistic coding schemes and hence fuelled the
development of modern coding theory.

Inasmuch as it is preposterous to common sense to put all one’s eggs in one basket,
it is unwise in coding to solely rely on individual extremely elaborated and com-
plex codes. Instead, Turbo coding taught the lesson that simple constituent codes
exchanging information in a well-thought-out randomised way achieve an error-
correcting performance that individual codes are only able to reach at the price
of a much higher complexity. Another important class of codes are low-density
parity-check (LDPC) codes [Gal63]. These take to the extremes the principle
of establishing a high global description complexity, which is required for good
codes, by a multitude of quasi-randomly and iteratively interacting elementary
constituent codes, i.e. repetition and single parity-check codes. Gallager has in-
vented LDPC codes already in 1963 in his Ph.D. thesis. Except for a few further
valuable contributions from Zyablov and Pinsker [ZP74], LDPC codes were largely
forgotten, despite being way ahead of their time, since for those days the code
complexity was far too high. In the wake of Turbo codes, however, they have
been rediscovered independently by Mackay and Neal [MN95, MN96], Wiberg et
al. [WLK95b, WLK95a] as well as Sipser and Spielman [SS96, Spi96]. Together
with the so far mostly unnoticed contributions of Tanner [Tan81] that built the
basis, the field “codes on graphs” arose as a conceptual unification of seemingly
totally different types of codes, allowing numerous valuable results from random
graph theory to find their way into coding theory.

Not noticing the importance of certain findings apparently has a long tradition
in coding theory. Alongside with Gallager’s LDPC codes and Tanner’s bipartite
graphs, the binary erasure channel (BEC) that was introduced by Elias in 1954 as
a toy model of a communication channel was long seen as what it was intended
to be, namely a toy model. Only very late it has found its matching part in the
real communications world - the Internet or computer networks in general. A bit
transmitted over a BEC is either correctly received or the bit is erased with a
certain probability ε, but the bit is never in error. Similarly, a packet transmitted
over the Internet is usually either received correctly or it is considered erased if it is
lost or delayed due to congestions in the network or if it contains uncorrectable bit
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errors. Moreover, the BEC has proved invaluable in information theory. Properties
and statements that hold on the BEC and which can be analysed, often in closed
form, hold similarly on or give insights to scenarios with other well-known channels
or channel models. The BEC and the binary symmetric channel (BSC) represent
the two extremes of information combining [LHHH05,LH06].

1.2 Application Layer Forward Error Correction

Packet-based data transmission over communication networks is organised accord-
ing to the Open Systems Interconnection (OSI) reference model [OSI94], a layered
model of network architecture, standardised by the International Organization for
Standardization (ISO). The model consists of seven logical layers, which provide
protocols that are required to establish, maintain and terminate a communica-
tion session between different parties. Information can only be passed vertically
between adjacent layers of the same instance or horizontally on the same layer
between different instances. Lower layers provide services to upper layers and they
interact only via well-defined protocols. In this thesis, only a few services are of
further concern such as:

1. forward error correction (FEC) on the physical (PHY) layer

2. the cyclic redundancy check (CRC) on the logical link control (LLC) sublayer

3. and particularly FEC on the application (APP) layer.

The PHY layer provides a plethora of functions amongst which the most important
for the current work is the establishment of a reliable bit-pipe for higher layers,
the intermediate layers are required, e.g. for routing packets through the network,
and the APP layer contains mostly source data processing components.

The PHY-FEC, however, is merely one of the first measures in the establishment
of such a reliable bit-pipe. On the PHY layer error correcting codes operating on
bit-level perform error correction mostly within a transmitted frame or packet and
thereby combat noise or interferences that occur on the physical link. Usually, an
additionally applied cyclic redundancy check (CRC) is used to test whether error
correction has been successful or not. If decoding is successful, the decoded packet
can be used in higher layers. If not, the packet is discarded and is considered erased.
Recent, more intricate approaches as for instance in [Bre14] allow a higher perme-
ability as well as iterative processing of reliability information between the layers
and thereby increase the error robustness of the overall transmission. Though this
approach may be extended up to the APP layer at the cost of a higher complexity,
the current work, by focusing on FEC on the APP layer, considers the decision
on the reliability of a packet as completed as it reaches the APP layer. Thus, the
channel as it is seen from the APP layer’s point of view is an erasure channel.
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Despite the above-mentioned protection measures, there are several other reasons
why a packet does not reach its destination, which cannot be compensated by
a stronger PHY-FEC. One major reason is a congested network. Overwhelmed
routers may discard packets because their buffer is full or it takes too long to
redirect a packet. If the introduced delay exceeds the time to live (TTL) of a
packet, it is discarded as well.

Most applications do not tolerate packet losses. In such cases, lost packets need
to be resent in order to recover the original data. A well-known retransmission
mechanism is automatic repeat request (ARQ), which uses a feedback channel to
indicate that a certain packet is missing or could not be recovered and to initiate its
retransmission. There exist also more sophisticated methods, such as the type II
hybrid ARQ (HARQ) protocol, which send extra redundancy on the undecodable
packet to a particular user, instead of retransmitting the original packet.

To protect the whole transmission against packet losses which mostly occur in
the network and are hardly controllable at end user devices, nowadays usually
the transport control protocol (TCP) is used. Essentially, TCP enables reliable
point-to-point or unicast transmissions by requiring each packet of a message to
be acknowledged by the receiver within a prescribed period of time. A missing or
delayed acknowledgement means a packet is considered lost and entails counter-
measures, i.e. the retransmission of unacknowledged packets.

With the increasing distribution of multimedia content or bulk data to a large
number of end users, the delivery via multicast [3GP13] is becoming an attractive
alternative to unicast transmission with a more efficient usage of the server and
network resources. Instead of sending the same message to each user individually,
all (subscribed) users are served at once, where routers determine the optimal
paths to the destinations and create copies of the distributed packets if needed.
However, severe problems like amplifying existing or even inducing new network
congestions would arise if the transmission was based on a TCP-like protocol. First
of all, the number of necessary packet acknowledgements scales linearly with the
number of users which may become prohibitively large. Secondly, supplying each
user individually with the respective missing packets is highly suboptimal. Since
users often experience different and independent losses, the retransmitted packets
are only useful to a specific user.

For applications with real-time character such as voice over Internet protocol
(VoIP), an alternative transmission protocol, the user datagram protocol (UDP), is
preferably used instead of TCP. In UDP resilience against packet loss has been sac-
rificed for low latency in that received packets are not acknowledged at the receiver
and no retransmission is triggered if packets are missing. Merely a CRC is applied
to prevent received packets containing bit errors to be further used. Though this
protocol is in principle suited for broadcast or multicast delivery of, e.g. audio
or video content, the lacking loss protection renders it ineligible for transmissions
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with a guaranteed quality level or for the transmission of bulk data, as the latter
usually does not tolerate packet loss, unless some additional APP-FEC scheme is
implemented. Such an APP-FEC scheme is discussed in the next section.

1.3 The Digital Fountain

For communication scenarios as described above, the “digital fountain ap-
proach” [BLMR98] constitutes a practical remedy for establishing an erasure-
resilient data link on the APP without the need for feedback or with at most
one acknowledging message per user upon the successful reception of the total
transmission.

Ideally, this protocol should enable the recovery of a message that consists of k

equally sized packets upon the reception of exactly k encoded packets of the same
size in a transmission scenario as described above, irrespective of which k encoded
packets have been received. Additionally, it should be possible to produce on the
fly a potentially limitless number n of encoded packets from the k original packets.
These properties include the notion of universality, i.e. the (near) optimal recovery
of a message given an arbitrary erasure rate on the channel.

This protocol is called a “digital fountain” due to the analogy to a water fountain
which is seen as an unlimited source of water allowing to fill the cups of many
at the same time. Similar to filling one’s cup by collecting a sufficient number
of nameless waterdrops, the original message should be decodable after collecting
sufficiently many encoded packets, i.e. each encoded packet should equally and
optimally contribute to the decodability. The corresponding erasure-resilient codes
are called (digital) fountain codes or rateless codes. The latter name results from
the property that their code rate ρ = k/n is not determined a priori. Therefore,
the terms “fountain code” and “rateless code” will be used synonymously.

A digital fountain is an idealised concept which in practice can only be approxi-
mated. Very early approaches for FEC schemes providing incremental redundancy
[Man74,Dor83] are based on so-called maximum distance separable (MDS) [MS77]
codes, i.e. codes that can recover a message that consists of k symbols (or packets)
from any set of k out of n encoded symbols. Yet, MDS codes are not rateless
and rateless codes, i.e. codes that allow to generate a potentially limitless number
n of encoded symbols from a finite number of k uncoded symbols, are not MDS.
Thus, in order to obtain practical fountain codes, the MDS condition is slightly
alleviated [AL96] which allows to construct rateless erasure-resilient codes that are
able to recover the message from any k(1 + ε) out of the n encoded symbols with
high probability, where ε ≥ 0 is a small relative overhead.

The first and still the most important class of practical rateless codes has been
named Luby transform (LT) codes [Lub01, Lub02b, Lub02a] by their inventor
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Michael Luby. LT codes are universal linear erasure-resilient irregular sparse-
graph codes that are based on a particular random construction. They are de-
signed to be iteratively decodable using the suboptimal belief propagation (BP)
algorithm which is of low complexity. Online codes [May02] as well as Raptor
codes [Sho04,Sho06,SLL06] represent further types of fountain codes that are con-
structed by combining a rateless code, e.g. an LT code, with one or more stages
of high-rate precodes. The practical relevance of these codes has been recognised
early on, so that today Raptor codes can be found in various communication stan-
dards like for instance IETF RFCs 5053 and 6330 [LSWS07,LSW+11], the 3GPP
MBMS standard [3GP13] for multimedia broadcasting and multicasting services,
the DVB-IPDC standard [ETS09b] for IP datacast over digital video broadcasting
networks or the DVB-IPTV standard [ETS09a] for TV services over IP networks.
In general, precoding allows to use a weaker LT code than if it was used stand-
alone while maintaining the erasure correction performance. Since the encoding
and decoding complexity scales with the strength of an LT code, using a weaker
code is a measure to achieve a lower complexity.

The main focus in the field of rateless codes has so far been on analysis and design
of codes for large message sizes k or even under asymptotic assumptions (k → ∞)
as well as for using the low-complex but suboptimal BP decoding algorithm. Yet, if
low delay applications are to be supported, only medium to short message sizes are
suitable, but with a decreasing message size the erasure correction performance of
the BP decoding algorithm degrades seriously. Instead, the optimal maximum like-
lihood (ML) decoding algorithm, which is usually considered too complex for large
sizes, becomes affordable complexity-wise and at the same time almost imperative
performance-wise for small to medium sizes. Thus, it will be the decoding method
of choice in this thesis, as it significantly outperforms BP decoding in terms of
the achieved erasure correction and entails an affordable computational effort in
the small to medium size regime. Also new code designs are required that utilise
the stronger capabilities of the ML decoder. Furthermore, since ML decoding is
optimal in terms of erasure correction performance, the ML performance of a code
can serve as an upper bound to any other decoding algorithm.

1.4 Designed Random Matrices over Finite Fields

If LT codes are used on an erasure channel, ML decoding corresponds to solving a
consistent system of linear equations over a finite field, where the coefficients are
given by the pruned LT code generator matrix. LT code generator matrices are
based on a random construction consisting of several random processes of which
perhaps the most important part is specified in terms of a particularly designed
distribution of the matrix’ non-zero coefficients, the so-called output node degree
distribution or row weight distribution. The number of non-zero coefficients in
each row, i.e. the row weight, is determined according to this distribution, defining
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thereby the expected erasure correction properties of the overall random matrix.
In general, to determine the expected erasure correction performance of an LT
code ensemble is equivalent to answering the fundamental mathematical question
of whether a system of designed random linear equations over finite fields can be
solved partially or completely.

1.5 Thesis Outline

The main objectives of this thesis are the analysis and the design of various types
of rateless erasure-resilient code ensembles over finite fields with finite message
sizes and under optimal erasure decoding. The thesis is structured as follows:

Chapter 2: Digital Fountain Codes

A general introduction to theoretical and practical aspects of digital fountain codes
is provided with a particular focus on Luby transform (LT) codes as the most im-
portant realisation of a rateless erasure-resilient building block. Besides explaining
the groundwork in the general non-binary domain, also systematic LT code ensem-
bles are briefly addressed as well as Raptor codes, a concatenation of one or more
high-rate precodes and a rateless component.

Chapter 3: Finite Length Analysis under Optimal Erasure Decoding

The core of this work, the finite length analysis and design of LT code ensembles
under optimal erasure decoding, is presented in this chapter. A set of four bounds,
consisting of upper and lower bounds on word and on symbol level on the residual
erasure probability after optimal decoding, is derived in detail and is used to
assess the performance of LT code ensembles or to design them efficiently without
requiring extensive Monte Carlo simulations.

Thereafter, special LT code ensembles are designed, analysed and characterised.
The class of sparse random LT code ensembles is devised and, under the given
conditions, is identified to be quasi-optimal. The numerical evaluation of the pro-
posed bounds and the comparison with Monte Carlo simulations provides further
evidence for the theoretical claims. Finally, the computational complexity of some
special LT code ensembles is assessed considering the variation of the field order,
which leads to the new and intriguing conclusion that ensembles over moderately
high field orders are superior to binary ones both in terms of erasure resilience as
well as in terms of computational complexity.

Chapter 4: Conventionally Systematic LT Code Ensembles

Conventionally systematic LT code ensembles are characterised by an identity ma-
trix prefix prepended to the common LT code generator matrix so that the input
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word is systematically contained in the output word. As briefly discussed in Sec-
tion 2.2, in the literature such conventionally systematic ensembles are considered
to be generally inferior to ensembles without the identity matrix prefix. It is shown
that this conjecture does not hold in general and that some ensembles can benefit
from this simple prefix by achieving a better erasure resilience at a lower com-
putational complexity. Like in the previous chapter, a set of four bounds on the
residual erasure probabilities is derived for conventionally systematic ensembles
under optimal erasure decoding. Then, the theoretical results are evaluated for
several examples and verified by Monte Carlo simulations.

Chapter 5: Precodes

Before dealing with another class of practically significant rateless code ensembles,
i.e. Raptor code ensembles, suitable precodes as an essential ingredient need to be
discussed first. So this chapter on precodes acts merely as a prologue to Chapter 6,
in which several types of precodes, coarsely typified as deterministic and stochastic
precodes, are analysed with respect to their erasure correction performance. Apart
from having a high code rate, good precodes need to supply a strong protection
particularly against low-weight erasure patterns. For some precodes, exact residual
erasure probabilities on word level are either already known or are derived here.
For others, like LDPC code ensembles, upper bounds are provided under optimal
erasure decoding.

Chapter 6: Raptor Code Ensembles

A so-called erasure floor appears when few residual erasures, i.e. low-weight era-
sure patterns, are chiefly responsible for not fully recovering an information word.
The limited performance of common LT code ensembles of practical complexity is
characterised by a high erasure floor. Yet, by using the Raptor code construction,
i.e. by employing a high rate precode that removes low-weight erasure patterns
the erasure floor can be lowered efficiently. The bounds on the residual erasure
probability for general LT code ensembles as provided in Chapter 3 can be easily
used to assess the performance of LT code ensembles. This similarly applies to
several precode types as discussed in Chapter 5. However, the derivation of corre-
sponding bounds or equivalent performance measures for Raptor code ensembles
is more involved.

Existing bounds from the literature turn out to be incorrect and are replaced by
new quasi-bounds, a combination of the expressions of the used LT code ensemble
and precode. Besides the derivation of the quasi-bounds, their validity range is
discussed and the erasure correction performance of several example Raptor code
ensembles is evaluated and compared with the quasi-bounds.
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Chapter 7: Unequally Loss-Resilient LT Code Ensembles

Apart from such services as for instance plain data delivery where each bit is
equally important, there exist other fields of applications like audio or video trans-
mission which require an unequal protection of the unequally important parts of
the data against erasures. Two general approaches from the literature for the con-
struction of unequally loss-resilient LT code ensembles are discussed. First, the
“weighting approach” is generalised to higher order Galois fields. In particular
this approach is enhanced by a method called “biased sampling” which corrects a
prior weakness and thus enables the achievability of any desired protection level for
each importance class. For this “weighting approach with biased sampling” also
the class specific set of four bounds on the residual erasure probability is derived.
Secondly, the “expanding window approach” is generalised to higher order Galois
fields and the class specific set of four bounds on the residual erasure probability
is completed with bounds on word level. Finally, for unequally loss-resilient sparse
random LT code ensembles constructed by the weighting method with biased sam-
pling, a simplified heuristic design method is proposed.

Parts of the present thesis have been prepublished in the following papers which
I have authored: [SSV11], [SLV11], [SL12], [SV12] and [SGV13]. These references
are underlined throughout this thesis.
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Chapter 2

Digital Fountain Codes

Digital fountain codes are a class of rateless erasure-resilient codes. They have
first been characterised in [BLMR98], where also some application scenarios have
been detailed, however, without an actual construction proposal. Initially, fountain
codes have been stipulated for the binary erasure channel (BEC) (cf. Section 2.1.3
for the general channel model), for instance as an alternative to retransmission
schemes such as automatic repeat request (ARQ). ARQ is usually required in
packet-switched communication networks that are prone to packet losses in order
to establish reliable communication.

A typical application of fountain codes is multicast, a system in which one trans-
mitter broadcasts the same data to many subscribed users at the same time and
in which the users experience different channel conditions and independent losses
that are unknown to the transmitter. A particularly useful feature of fountain
codes is that they do not require any knowledge of the erasure probability ε on the
channel.

With fountain codes, the transmitter can generate an arbitrary and potentially
infinite number nT of encoded symbols yT = (y1, y2, . . . , ynT )T from a finite num-
ber of k input symbols x = (x1, x2, . . . , xk)T. Moreover, receivers should be able
to decode the original k input symbols x from any nR = k(1 + εR) received (i.e.
unerased) encoded symbols with high probability if εR ≥ 0, where εR is the relative
reception overhead1.

For instance, to ensure a reliable multicast transmission as sketched in Figure 2.1,
a conventional transmitter is usually tailored to the worst channel and inflicts a
suboptimal use of channel resources upon receivers in better channel conditions.
However, by using fountain codes, receivers with more favourable channel condi-
tions do not need to continue to listen to the channel, but can just stop receiving
additional encoded symbols as soon as they have successfully decoded the message.

So, although the transmission code rate ρT = k
nT

can, in principle, reach zero,

the reception code rate ρR = k
nR

= 1
1+εR

should be as close to one as possible to

1Note the typographical and semantic difference between the relative overhead ε and the

erasure probability ε on the channel.



12 2 Digital Fountain Codes

information word x

transmitted codeword yT

codeword yR,1 received by user 1

codeword yR,2 received by user 2

codeword yR,I received by user I

k input symbols

/
nT encoded symbols,
nT can be made arbitrarily large

/
nR,1 = k(1 + εR,1) collected encoded symbols
(good channel)
/
nR,2 = k(1 + εR,2) collected encoded symbols
(channel with erasures)

/
nR,I = k(1 + εR,I) collected encoded symbols
(late tune-in & channel with erasures)

...

. . .

Figure 2.1: Multicast scenario with fountain codes: due to the near-MDS property, each

receiver is able to successfully decode the information word with high prob-

ability at the reception of slightly more than k encoded symbols. If the

transmission time is sufficiently long, users can even tune in at different

times.

approach capacity. In this receiver centric view, which is common in the fountain
coding setup, a wasteful use of reception code rate ρR is penalised, not the use
of the channel by the transmitter [STV07]. Nevertheless, in practice the use of
channel resources is relevant and costly. So depending on the scenario, suitable
transmission stopping criteria need to be applied, since it is not always feasible
to continue the transmission until the user with the worst channel is satisfied. In
a multicast or broadcast transmission this might lead to the situation that the
transmission is stopped although a small fraction of users which are in very un-
favourable channel conditions is not then able to decode the transmitted message.
Yet although these considerations are highly relevant and should therefore be taken
care of in practice, they are beyond the scope of this thesis.

In order to clearly differentiate between transmitter or receiver related quantities
in the following, an index “T” or “R” is used if required. On the other hand,
quantities that are stated in a general manner or which are equally related to both
transmitter and receiver are written without an index.

2.1 Luby Transform (LT) Codes

Luby transform (LT) codes [Lub01, Lub02b, Lub02a] constitute the first and still
most important type of practical and efficiently decodable linear rateless codes.
They are low-density generator matrix (LDGM) codes without a fixed code rate.
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LDGM codes are known as the dual of LDPC codes. LDGM codes usually have a
rather limited performance. The limitation appears in terms of a high error floor
or more precisely a high erasure floor, since by construction they contain some
codewords of very low weight, i.e. with only few non-zero entries. An erasure floor
is characterised by a very slow decrease of the residual erasure probability after
decoding as additional encoded symbols are received. Nevertheless, the perfor-
mance can be significantly improved if a precode is used to lower the erasure floor.
Therefore, LDGM codes and LT codes as their rateless relatives are not intended
to be used stand-alone but only in combination with a precode as will be discussed
in Section 2.3 and Chapter 6.

2.1.1 LT Codes over Higher Order Galois Fields

Though the original LT codes were designed to encode binary symbols (i.e. bits),
their recent generalisation to higher order Galois fields Fq, where q = 2μ and
μ > 1 [LPC10, QUA10, LSW+11, SLV11], has proven beneficial. The non-binary
codes not only achieve substantial gains over their binary counterparts, but it
can also be shown, that increasing the used Galois field to a moderate size can
actually reduce the required decoding complexity [SLV11] significantly. Hence,
the following description will be given for the general non-binary case. For a
comprehensive introduction to finite fields, the reader is referred to the literature,
e.g. [LNC97,Hub98].

An LT encoder is a linear map F
k
q → F

nT
q and is represented by an nT ×k generator

matrix GT over Fq, i.e. GT ∈ F
nT×k
q , where nT → ∞. The k input symbols x ∈ F

k
q

are mapped to nT output or encoded symbols yT ∈ F
nT
q by

yT = GTx. (2.1)

Although an LT encoder is a linear map to an infinite-dimensional vector space,
i.e. with nT → ∞, in practice the number nT of created encoded symbols is kept
finite according to some predefined stopping criteria.

The LT code generator matrix GT defines the edges of a bipartite graph that
connect the input nodes, which represent the input symbols, to the output nodes,
that represent the encoded symbols. Since erasure information is usually given on
packet level, the graph with the smallest input size k associates the symbols xi and
yj , where i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , nT}, directly with a whole packet of
data as depicted in Figure 2.2. A packet consists of l Fq-elements, where an Fq-
element is represented by a small circle or square in Figure 2.2. However, the graph
is independent of the symbol size l and so this number l has no influence on the
erasure correction performance of a fixed but arbitrary code [Lub02a]. Therefore,
l = 1 is assumed throughout this thesis.

Naturally, Fq-elements have an equivalent binary representation which requires
μ = ld(q) bits per element. In order to ensure a fair comparison between codes
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input size k

l

l

input symbol xi (input node) with l independent planes
i.e. xi consists of l Fq-elements and μ bits per Fq-element

output symbol yj (output node) with l independent planes
i.e. xi consists of l of Fq-elements and μ bits per Fq-element

Figure 2.2: General LT code graph with l independent planes of Fq-elements and μ bits

per Fq-element, where μ = ld(q).

over Galois fields of different orders, the number kB of input bits is kept constant
hereafter. Consequently, the number of input symbols is k = � kB

ld(q)
� = � kB

μ
�, i.e.

the input size of a code over Fq with q = 2μ is k. This is illustrated in Figure 2.3.

In contrast to traditional block codes, the matrix GT is generated online and can
differ for each data block. The decoder is assumed to be aware of the connections
between each output and input symbol, i.e. the current matrix GT is known. This
can be achieved, e.g. by synchronising identical pseudo-random processes that
produce GT.

2.1.2 LT Code Construction and the Row Weight Distribution

The erasure correction performance of an LT code is mainly determined by a
probability mass function (pmf) on the row weight, which is sometimes also called
output node degree distribution (from node perspective). This row weight distri-
bution Ω0, Ω1, . . . , Ωk is defined on the finite set of numbers {0, 1, . . . , k}, where
a row has weight d with probability Ωd, i.e. the corresponding output node has d

edges that connect it to d distinct input nodes, chosen uniformly at random with-
out replacement from the set of k input nodes. However, in practice, the coefficient
Ω0 should be set to zero, since unconnected output nodes are useless. Often the
row weight (or degree) distribution is not defined on the complete set of numbers
{0, 1, . . . , k} but on a smaller row weight (or degree) sample space D that contains
only those numbers d for which Ωd 	= 0. Typically, the row weight distribution is
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k = kB = 12 bits

μ = 1 bit/symbol

. . .

k = 12 input symbols from F2

encoded symbols

k = 6 symbols

μ = 2 bits/symbol

. . .

k = 6 input symbols from F4

encoded symbols

k = 4 symbols

μ = 3 bits/symbol

. . .

k = 4 input symbols from F8

encoded symbols

Figure 2.3: To ensure a fair comparison of rateless codes over Galois fields of different

orders, the number kB of bits in the information word is kept constant, while

the input size, i.e. the number of input symbols, is k = � kB

ld(q)
� = � kB

μ
�.

given in terms of its generator polynomial

Ω(ξ) =
k∑

d=0

Ωd ξd =
∑
d∈D

Ωd ξd. (2.2)

In the generator matrix GT the d non-zero entries in a row correspond to the
values assigned to the d edges between an output node and d input nodes. The
value of an output node is determined by the weighted sum of the connected d

input nodes, where the weights are given by the respective connecting edges. The
non-zero entries of GT are chosen uniformly from the set of q − 1 non-zero Fq-
elements. Note that in the following a different font is used when referring to
random variables in order to underline the random nature of certain quantities.
For instance, the random generator matrix is denoted GT instead of GT, the latter
is just a particular realisation.

Two important quantities are the average row weight or the average output node
degree

d̄ =
∑
d∈D

dΩd (2.3)

as well as the expected density

Δ = d̄/k (2.4)
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1 − ε

ε

transition
probabilities

yT ∈ Fq yR ∈ {Fq, ?}

...
...

0

1

α

αq−2

0

1

α

αq−2

?

yT yR
SEC(q, ε)

equivalent
block diagram

Figure 2.4: q-ary symbol erasure channel (SEC(q, ε)) with symbol erasure probability ε.

of a random matrix with 0 ≤ Δ ≤ 1, which corresponds to the expected relative
amount of non-zero elements. In the following, the expected density will only be
referred to as density. These two closely related quantities are good measures for
the encoding and the decoding complexity.

2.1.3 The Symbol Erasure Channel

The encoder produces nT output symbols that are transmitted over a symbol
erasure channel (SEC) that randomly erases some of these transmitted encoded
symbols. The SEC, as depicted in Figure 2.4, is a straightforward generalisation
of the BEC, which is required if codes on higher order Galois fields are used.
Transmitted symbols are received correctly with probability 1 − ε or are erased
with probability ε. An erased symbol is marked by “?”. The SEC is supposed to
abstract and incorporate all sources of packet (or symbol) losses which occur on
lower protocol layers.

At the receiver, nR ≤ nT encoded symbols are collected from which the decoder
tries to reproduce the original k input symbols. In Figure 2.5 two equivalent sim-
plified transmission chains, consisting of a fountain encoder, an SEC and a fountain
decoder, are depicted together with the symbol vectors and their dimensions. The
encoded symbol vector yR on the receiver side in Figure 2.5(a) may contain era-
sures, while in Figure 2.5(b) erased encoded symbols are pruned from yR such that
it is shorter than yT by the number of occurred erasures. The pruned positions
are assumed to be known to the receiver. Only the latter transmission model will
be used hereafter.

Having collected nR ≤ nT output symbols, the decoder uses the nR rows of GT that
are associated with the received, i.e. the collected, non-erased encoded symbols to
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Fountain
Encoder

Fountain
Decoder

xT ∈ F
k
q yT ∈ F

nT
q

yR ∈ {Fq, ?}nTxR ∈ {Fq, ?}k

SEC(q, ε)

(a) The vector yR of received encoded symbols contains erased and non-erased

symbols.

Fountain
Encoder

Fountain
Decoder

xT ∈ F
k
q yT ∈ F

nT
q

xR ∈ {Fq, ?}k
yR ∈ F

nR
q

erasure positions
SEC(q, ε)

(b) Erased symbols are pruned from the vector yR of received encoded symbols,

i.e. it contains only the nR non-erased encoded symbols. It is assumed that

the fountain decoder is aware of the pruning positions. This transmission

model is used throughout this thesis.

Figure 2.5: Symbol vectors and their dimensions in the transmission chain.

make up a new matrix GR on which decoding is performed. Since GR consists
of a set of nR rows sampled at random from the original matrix GT according to
the erasures that occur on the SEC, GR follows the same row weight distribution
as GT, i.e. if GT ∼ Ω(ξ), also GR ∼ Ω(ξ). Often, the number of transmitted or
received encoded symbols will be expressed in terms of the relative overhead εT or
εR, or in terms of the inverse code rate γT or γR, i.e.

nT = k(1 + εT) = kγT or nR = k(1 + εR) = kγR. (2.5)

2.1.4 Ensembles

Given a row weight distribution Ω(ξ) on D (or equivalent construction constraints),
as well as the dimension of the domain F

k
q and of the codomain F

n
q , the sample

space G ⊆ F
n×k
q of LT code generator matrices G contains

|G| =

(∑
d∈D

(
k

d

)
(q − 1)d

)n

(2.6)
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different matrices, which holds for both the transmitter and the receiver perspec-
tive. For a row of weight d there are

(
k

d

)
possibilities to distribute d non-zero

entries to k positions and each non-zero entry can be chosen from the set of q − 1
non-zero Fq-elements. Moreover, there are n independent rows in G.

Note that in general the generator matrices G ∈ G ⊆ F
n×k
q do not have equal

probabilities of occurrence and thus, an additional quantity is required, namely
a probability distribution Pr{G = G} on this set G. This pair defines an (LT
code) ensemble L = (Pr{G = G}, G). An equivalent, yet less specific, definition is
L =

(
Pr{G = G}, Fn×k

q

)
. However, since such a probability distribution on G is

usually not given explicitly but implicitly by the row weight distribution Ω(ξ) as
indicated by the notation G ∼ Ω(ξ), an LT code ensemble is preferably given by
L = (G ∼ Ω(ξ), G) or L =

(
G ∼ Ω(ξ), Fn×k

q

)
. If the dimensions k and n or the

sample space G are clear from the context, it is sufficient to refer to an ensemble
L just by its row weight distribution Ω(ξ).

Like for their fixed-rate relatives, i.e. LDPC codes, it is common in the field of
rateless codes to investigate and design good ensembles before designing good con-
crete codes. The reason for this is the so-called concentration effect, which means
that the performance of a code G, chosen from an ensemble with probability
Pr{G}, concentrates around the average ensemble performance with high prob-
ability. Since LT codes are supposed to generate any desired and possibly large
number of encoded symbols, only the first part of an encoding matrix can in prac-
tice be equipped with an intricate structure and special properties. The remaining
rows may then as well be constructed randomly according to some properly de-
signed distribution Ω(ξ). Additionally, for an increasing erasure probability ε on
the channel, the structure in the first part of the matrix becomes more and more
invisible to the receiver and its performance quickly converges to the ensemble av-
erage. And therefore, the focus of this thesis is mainly on unstructured ensembles.

2.1.5 Decoding Algorithms

For erasure channels, there exist essentially two different decoding algorithms,
namely the greedy, yet suboptimal belief propagation (BP) decoding algorithm
and the optimal, yet computationally more complex maximum likelihood (ML)
decoding algorithm. Both will be briefly reviewed in the following.

Belief Propagation Decoding

The belief propagation (BP) decoding algorithm is also known as greedy decoding
or, as is the case here, in conjunction with erasure channels it is known as peeling
decoding. It is best explained by using the decoding graph, i.e. the bipartite graph
that represents the relationship between the input symbols and the received output
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symbols. A detailed example of BP decoding of an LT code over F4 can be found
in Figure 2.6 illustrating the individual steps of the BP algorithm listed below.

1. Find an output node of degree one. If none can be found, decoding fails and
eventually more output nodes have to be collected to restart decoding.

2. Propagate the selected output node’s value to the connected input node by
dividing the output node’s value by the weight of the connected edge.

3. Remove the used output node and its edge from the decoding graph.

4. Propagate the recovered input node’s value to all connected output nodes.
This is done by adding to each output node’s value the input node’s value
multiplied by the weight of the respective connecting edge.

5. Remove all used edges from the decoding graph. If all input nodes have
been recovered, decoding ends successfully. If there still exist undecoded
input nodes, continue with step 1.

Since each edge in the decoding graph is used at most once, the complexity of
recovering an information word by BP decoding is proportional to the average row
weight d̄ and the number of input nodes k, i.e. O(d̄k). This low complexity makes
BP decoding very interesting for practical applications.

BP decoding for erasure channels corresponds to solving a consistent system of
linear equations solely by means of back substitution. Thus, it is clear that if the
corresponding matrix GR can be transformed into an upper triangular matrix just
by column and row permutations, BP decoding succeeds and delivers the optimal
ML solution. If on the other hand GR can be upper triangulated only partially
by column and row permutations, BP decoding can recover merely those input
symbols that are associated with the upper triangular part of GR and which do
not depend on only optimally, i.e. ML decodable symbols. The other input symbols
can, if at all, be solved solely by optimal decoding.

For properly designed codes and especially for large input sizes, the suboptimal
BP algorithm works remarkably well. However, for small to medium input sizes
the variance of the random process that creates degree one output nodes during
decoding is too high. So decoding very often fails due to the lack of degree one
output nodes and this leads to a too high overhead of additionally received symbols
that is required for successful decoding, and thus in this domain of input sizes,
optimal decoding is left as the only sensible choice.
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Figure 2.6: Exemplary belief propagation decoding of an LT code over F4. The illus-

tration is continued in Figures 2.6(g) – 2.6(j) on the next page. Ancillary

addition and multiplication tables for F4 are provided in Table 2.1.
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Figure 2.6: Exemplary belief propagation decoding of an LT code over F4. Continuation

from previous page.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy

eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam

voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita

kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Table 2.1: Addition and multiplication tables for F4, which is defined by the primitive

polynomial a(ξ) = 1 + ξ + ξ2 in F2. The primitive element is denoted α.

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α

α α α2 0 1

α2 α2 α 1 0

· 0 1 α α2

0 0 0 0 0

1 0 1 α α2

α 0 α α2 1

α2 0 α2 1 α
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Maximum Likelihood Decoding

The maximum likelihood (ML) decoding algorithm for erasure channels coincides
with the maximum a posteriori (MAP) decoding algorithm. It is the optimal
decoding algorithm in terms of decoding failure probability. ML decoding of LT
codes on erasure channels is equivalent to solving a system of nR consistent linear
equations in k unknowns over a finite field Fq. If the respective coefficient matrix
GR has full column rank, i.e. rank(GR) = k, an arbitrary information word can
be uniquely determined. If rank(GR) < k, the solution of GRx = yR spans a
(k − rank(GR))-dimensional vector space.

Such a system can be solved for instance by means of the well-known Gaussian
elimination (GE) algorithm. Since GE has a relatively high computational com-
plexity of O(k3) per information word, ML decoding is practically only applicable
to codes with short to medium input sizes. However, as codes for short to medium
input sizes are highly relevant for low-delay applications and have not been well
investigated so far, this thesis concentrates on the finite length analysis of LT codes
and Raptor codes under ML decoding. Moreover, LT ensembles are proposed that
have a near-optimal erasure correction performance under ML decoding, given
certain design constraints.

Efficient Maximum Likelihood Decoding Algorithms

Besides GE there exist several algorithms that achieve the ML erasure correc-
tion performance but eventually exploit certain properties (cf. e.g. [Wie86,LO91,
PS92,Cop93,RU01,Cop94,BM04,PNF04,SLK05,LMPC09,PLMC12]) such as the
sparseness of the matrix GR to reduce the number of operations and thus the com-
putational complexity. The main difference to GE is the scheduling according to
which operations are carried out. Nonetheless, the complexity of these algorithms
is still upper bounded by O(k3).

A simple, yet effective method is the consecutive use of BP decoding followed by
ML decoding by means of GE. If degree one output nodes exist, BP decoding can
reduce the number of unknowns from k to k̃ with complexity O(d̄(k − k̃)) and the
remaining k̃ unknowns can be solved by GE with complexity O(k̃3). Although
this concatenation of BP and ML decoding may not be the fastest algorithm, it
is the method of choice in this thesis. Despite its simplicity it contains already
the ingredient for the main part of the speed-up, i.e. reducing the original num-
ber of unknowns as far as possible by means of a low complexity algorithm and
solve the rest by GE. Also it facilitates comparability with results from the liter-
ature. Moreover, it is only used to quantify relative decoding speeds of given LT
code ensembles, which should vary only slightly when applying other efficient ML
decoding algorithms.
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Figure 2.7: Decoding matrix GR during inactivation decoding (cf. [SL11]).

So far, in practical systems such as the 3GPP Multimedia Broadcast/Multicast
Service (MBMS) [3GP13], where Qualcomm’s Raptor10TM [LSWS07] and
RaptorQTM [QUA10,LSW+11,SL11] codes are used, another efficient ML decoding
algorithm named inactivation decoding [SLK05] is employed.

In contrast to the previously described simple method of first applying BP decoding
and then GE, inactivation decoding consists of multiple steps, of which the first
one is to rearrange the system of linear equations. This is accomplished by means
of row and column permutations on the decoding matrix GR to transform it into
a matrix that is partitioned like in Figure 2.7(a) and to maximise the size k̃ of the
lower triangular submatrix. The original decoding matrix GR is supposed to have
a low density. In the next step, row additions are performed in order to eliminate
the entries on the left below the main diagonal of the decoding matrix. The result
of this step is sketched in Figure 2.7(b). By row additions, the submatrices B and
C usually become dense, which is indicated by a darker grey. The subsystem of
linear equations defined by submatrix C is solved using GE. It can only be solved
if C has full column rank. Then, the recovered unknowns can be used to solve the
remaining unknowns using back substitution, i.e. BP decoding, which eliminates
the entries in submatrix B. A more detailed description of inactivation decoding
can be found in [SLK05,SL11].

2.1.6 Special Row Weight Distributions

The row weight distribution Ω(ξ) is the only quantity that determines the per-
formance of an LT code ensemble after having received a certain number nR of
encoded symbols and considering the number k of input symbols, the field size q

as well as the decoding algorithm as given.

For BP decoding, there exist several row weight distributions, all aiming at opti-
mising the size of the so-called ripple. During BP decoding, the ripple is the set of
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output nodes of current degree one. Since decoding fails as soon as the ripple runs
empty, it is extremely important to ensure a positive ripple size over the whole
decoding process. Overly large ripples on the other hand are wasteful and should
be avoided as well.

The Soliton Distributions

The so-called ideal soliton distribution

Ωd =

{
1
k

if d = 1
1

d(d−1)
if 2 ≤ d ≤ k,

(2.7)

proposed by Luby [Lub02a], is merely of theoretical relevance, as it has an expected
ripple size of one. Due to the non-zero variance of the ripple size during BP decod-
ing ripple sizes greater than one do occur and consequently, with high probability,
also a ripple size of zero before decoding has finished, which immediately results
in a decoding failure. Its average degree is known to be equal to the kth harmonic
number, i.e. d̄ =

∑k

d=1
1
d

. If k −→ ∞, the average degree increases logarithmi-
cally and converges to ln k +0.57721 . . ., where 0.57721 . . . is the Euler–Mascheroni
constant.

The robust soliton distribution, also proposed by Luby [Lub02a], is a more stable
version of the ideal soliton distribution with a higher expected ripple size. This
leads to a much lower decoding failure probability.

A Row Weight Distribution Optimised for BP Decoding

In [Sho06] Shokrollahi presented a semi-heuristic method to optimise row weight
distributions for precoded LT codes, i.e. Raptor codes, for BP decoding. This
method also comprises the reasoning behind the soliton distributions. The asymp-
totic design makes use of the so-called and-or-tree analysis [LMS98] which these
days is better known by the name “density evolution”, while the finite length design
is a heuristic modification that tries to ensure that the decoding process continues
until all but a certain fraction of LT code input symbols have been recovered with
high probability. In this thesis, the degree distribution

Ω(ξ) = 0.007969ξ + 0.49357ξ2 + 0.16622ξ3 + 0.072646ξ4

+ 0.082558ξ5 + 0.056058ξ8 + 0.037229ξ9

+ 0.05559ξ19 + 0.025023ξ65 + 0.003135ξ66 (2.8)

from [Sho06], though designed for BP decoding and a quite large input size of
k = 65536, will be frequently used as a reference, especially to illustrate differences
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to row weight distributions that are better suited for ML decoding or to allow for
a better comparison of presented results with results from the literature. The
average row weight of this ensemble amounts to d̄ = 5.87.

The Standard and the Sparse Random Ensemble

Properties of random matrices whether sparse or dense, on the reals as well as on
finite fields are of particular importance for numerous disciplines such as coding
theory, statistical physics and computer science, to mention just a few. In this
thesis, only the properties of random matrices on finite fields will be investigated,
as only these are relevant to the considered LT code setup.

The random matrices that are mostly examined in the literature are created by
an element-wise independent random process, i.e. a Bernoulli process. The binary
standard random ensemble [Mac05] is generated such that each entry in the matrix
is chosen independently and uniformly at random from F2 or more generally in
case of the standard random ensemble the entries are chosen from Fq, i.e. each
element from Fq occurs with equal probability 1/q. Whereas for the sparse random
ensemble a bias is introduced regarding the zero element, which is assigned a higher
probability than each non-zero Fq-element. Especially the standard ensemble, but
partly also the sparse ensemble, plays a special role not only in the realm of LT
codes, but also for instance in random linear network coding.

The standard random ensemble is sometimes also denoted conventional random
linear fountain (RLF) ensemble. And the sparse random ensemble is also called
low-density (or sparse) random linear fountain (LDRLF) ensemble. The respective
terms will be used synonymously. However, in general, LT code generator matrices
are created according to a row-wise independent random process which is speci-
fied by a given row weight distribution Ω(ξ). Therefore, to be compliant with the
creation process of arbitrary LT codes, which additionally offers a stronger influ-
ence on the properties of a matrix, the random ensembles will also be constructed
row-wise using the row weight distributions Ω(ξ) that result from the element-wise
construction.

The row weight distribution of the standard random ensemble (or conventional
RLF ensemble) amounts naturally to the binomial distribution

Ω(ξ) =
k∑

d=0

(
k

d

)(
q − 1

q

)d(
1 −

q − 1
q

)k−d

ξd

=
1
qk

k∑
d=0

(
k

d

)
(q − 1)dξd. (2.9)

Using the row weight distribution in (2.9) or the element-wise standard random
construction is equivalent. The row weight distribution just defines the probability
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of creating a row of a certain weight d, i.e. a row with d non-zero elements. In a
second random process d of the k elements in a row are then chosen uniformly at
random without replacement to be non-zero. Finally, the non-zero elements are
sampled uniformly at random from Fq \ {0}.

The sparse random ensemble [SSV11,SLV11] is created by introducing a bias such
that the probability of occurrence of the zero element is set to be higher than the
probability of the other Fq-elements. Depending on the bias, a more or less sparse
random matrix is generated. For any entry gi,j in GT let the following probabilities
be defined as

P0 � Pr{gi,j = 0} (2.10)

P\0 � Pr{gi,j 	= 0} = 1 − P0. (2.11)

Moreover, the non-zero Fq-elements occur with equal probability

Pr
{

gi,j = αi
}

=
P\0

q − 1
for αi ∈ Fq \ {0}. (2.12)

The row weight distribution of the sparse random ensemble is thus

Ω(ξ) =
k∑

d=0

(
k

d

)
P d

\0

(
1 − P\0

)k−d
ξd. (2.13)

In contrast to the previous ensembles, the random ensembles are preferably char-
acterised by their density which amounts to Δ = 1 − 1/q for the standard random
ensemble and to Δ = P\0 for the sparse random ensemble.

The Expurgated Random Ensembles

In both random ensembles, but particularly in the sparse random ensemble, all-
zero rows occur with a non-zero probability. This is independent of whether the
element-wise or the row-wise construction is used, since the two methods yield the
same results if the respective row weight distributions (2.9) or (2.13) are used.
As all-zero rows do not encode any information into encoded symbols, they are
redundant and should be avoided.

The row-wise construction allows to adjust the row weight distributions such that
all-zero rows cannot occur, i.e. by setting Ω0 = 0 and renormalising all other
probabilities. The equivalent modification of the element-wise method is to discard
all-zero rows as soon as they are created. The row weight distributions of these
so-called expurgated random ensembles are

Ω(ξ) =
1

qk − 1

k∑
d=1

(
k

d

)
(q − 1)dξd (2.14)
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for the expurgated standard random ensemble and

Ω(ξ) =
1

1 − (1 − P\0)k

k∑
d=1

(
k

d

)
P d

\0

(
1 − P\0

)k−d
ξd. (2.15)

for the expurgated sparse random ensemble. Note that in the latter case P\0 is
the probability of sampling a non-zero element prior to removing the all-zero rows
and thus Δ > P\0 now.

In terms of erasure correction both just introduced expurgated random ensembles
perform excellently under ML decoding. The expurgated standard random ensem-
ble is generally considered to be the optimal LT code ensemble under ML decoding,
though a rigorous proof hereof is still missing. However, expurgation is usually not
mentioned explicitly and thus only the standard random ensemble is discussed,
since for not too small input sizes, the probability of all-zero rows is so small that
the difference to the expurgated version is negligible. Accordingly, the expurgated
sparse random ensemble is a near-optimal LT code ensemble under ML decoding
given a constraint on the density Δ or equivalently on the average row weight d̄.
Their excellent performance has been verified in [SSV11,SLV11,SGV13] by means
of Monte Carlo simulations and tight performance bounds. Further details will be
provided in Chapter 3.

Concentrated Distributions

Concentrated degree or row weight distributions, which play an important role
particularly in LDPC codes, can also be applied to LT codes. In the field of LDPC
codes this type of row weight distributions is also known by the name right-regular
distribution. The term concentrated hints at the sample space D that contains
usually only one value or at most two neighbouring values, i.e. the row weight
distribution has the form

Ω(ξ) = ξd or Ω(ξ)= Ωdξd + Ωd+1ξd+1. (2.16)

Ensembles arising from a row weight distribution with |D| = 1 are denoted purely

concentrated in this thesis.

Although ensembles from concentrated distributions can have a good erasure cor-
rection performance which can be almost indistinguishable from that of the sparse
random ensemble [SSV11], one has to be aware of some issues before using them
for an LT code ensemble:

1. A sample space D that contains only even values leads to binary LT en-
sembles that cannot be decoded. Therefore, a certain amount of odd values
should be included to ensure that decoding matrices do not only have even
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row weights. For concentrated ensembles with an (almost) even average row
weight d̄, where the sample space would usually consist only of d = d̄, the
odd row weights d − 1 and d + 1 should also be used.

2. Unless the average row weight is not in the range of one or two, concentrated
ensembles have no rows of weight one. This means that BP decoding can-
not even begin. So concentrated ensembles have to be entirely decoded by
means of ML decoding. Moreover, ML decoding of concentrated ensembles
is usually computationally more expensive than that of non-concentrated
ones with the same average row weight d̄. ML decoding involves pivoting by
means of row additions. In general, to keep the number of non-zero entries in
the decoding matrix as low as possible during the decoding process, it makes
sense to use rows of low weight first, since they create the lowest number of
new entries. Thereby a faster pivoting is facilitated and the weights of the
initially high-weight rows get reduced before they are added to other rows.
This effect is stronger in ensembles with a low average row weight.

The performance and the computational complexity of concentrated ensembles will
be further examined and discussed in Section 3.5.3.

2.1.7 The Column Weight Distribution

According to [Sho06] the column weight distribution, i.e. the input node degree
distribution, of an LT code generator matrix is fully determined by the usual
parameters of an LT code ensemble. The probability that a particular (fixed
but arbitrary) input node is connected to a particular output node of degree d

is d/k, i.e. the probability that it is connected to a particular output node of
arbitrary degree is

∑
d∈D

Ωdd/k = d̄/k. As there are n independent output nodes,
the probability that a particular input node is connected to i output nodes is(

n

i

)(
d̄
k

)i(
1 − d̄

k

)n−i

and the column weight distribution is thus [Sho06]

Ξ(ξ) =
n∑

i=0

(
n

i

)(
d̄

k

)i(
1 −

d̄

k

)n−i

ξi. (2.17)

The degree of an input node, or equivalently the weight of the corresponding col-
umn, is a good measure for its erasure resilience. For equally important input
nodes it is thus desirable to obtain equal input node degrees, i.e. a concentrated
distribution. In fact, the column weight distribution is usually controllable only
in a rather limited way. While at the transmitter the edges of consecutively cre-
ated output nodes can be connected to input nodes such that the input symbol
degrees are fairly balanced, erasures on the channel weaken this concentration at
the receiver.
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For higher erasure probabilities, the so created LT codes appear to a receiver just
like LT codes that have been created randomly according to a given row weight
distribution. And by the usual random construction of LT code ensembles, a
concentrated column weight distribution cannot be achieved.

2.1.8 Binary Images of Non-Binary Codes

So far, only the transmission over a symbol erasure channel (SEC) has been con-
sidered in this thesis, as it is usually assumed that symbols are erased completely.
However, since in practice each Fq-element or symbol is represented and trans-
mitted in binary form, it may happen that even a single bit erasure leads to the
erasure of a whole symbol. If bit erasures are spread over many Fq-elements, it can
have a very negative impact on the decodability of the received encoded symbols.
Therefore, in corresponding scenarios, it can be useful to perform decoding on the
binary equivalent of the non-binary code [SLV11].

The straightforward approach is to express each Fq-symbol, be it a received
symbol or an entry in the decoding matrix GR, by a binary vector a(i) =(

a
(i)
0 , a

(i)
1 , . . . , a

(i)
μ

)T

. The usual binary vector representation consists of the

μ = ld(q) binary coefficients of the polynomial that defines each non-zero Fq-
symbol, i.e. αi mod a(α) with i ∈ {0, 1, . . . , μ − 2}, where α is a primitive ele-
ment of Fq and a(ξ) = a0 + a1ξ + . . . + aμ−1ξμ−1 + ξμ is a primitive polynomial
of Fq with coefficients from the prime subfield F2, i.e. ai ∈ F2. Clearly, the zero
element is represented by the binary all-zero vector. Besides the need for carrying
out a modulus operation when multiplying Fq-symbols in the binary vector rep-
resentation, a more substantial drawback of this approach is that it is not clear
how to deal with bit erasures within such binary vectors. And thus, additionally
a different, more redundant representation of the Fq-symbols is chosen in order to
utilise also Fq-symbols with bit erasures for decoding.

The Companion Matrix Representation

Each non-zero Fq-element can be represented by a power of the so-called companion
matrix [MS77]. The companion matrix corresponds to the primitive element α of
Fq and in this context is defined as the μ × μ matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 · · · 0 a0

1 0 0 · · · 0 a1

0 1 0
. . . 0 a2

...
...

...
. . .

...
...

0 0 0 · · · 1 aμ−1

⎞⎟⎟⎟⎟⎟⎟⎠. (2.18)
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The all-zero matrix of the same size corresponds to the zero element. The binary
equivalent of the generator matrix G is obtained by exchanging each Fq-symbol
αi, where i ∈ {0, 1, . . . , q − 2}, by the corresponding power of the companion
matrix, i.e. by Ai. In principle, the input symbols and the encoded symbols can
be represented as matrices as well. However, that would be too redundant, so
the binary vector representation is sufficient for the input and output symbols.
Examples of the different representations of the elements in F8 are provided in
Table 2.2. Moreover, the decoding of received symbols that contain bit erasures is
briefly illustrated in the following.

Example 2.1. The information word x =
(
α4, α6

)
T

∈ F
2
8 (cf. Table 2.2) is en-

coded with a matrix GT ∈ F
2×3
8 and yields the encoded vector yT ∈ F

3
8:

yT = GTx

⇔

⎛⎜⎝ α5

α2

1

⎞⎟⎠ =

⎛⎜⎝ α3 α5

1 α2

α4 α4

⎞⎟⎠( α4

α6

)
.

The vector yT is then transmitted over a binary erasure channel in its binary vector
representation, i.e. as (1, 1, 1, 0, 0, 1, 1, 0, 0)T. On the channel three bit erasures
occur, so that yR is given by (1, 1, ?, ?, 0, ?, 1, 0, 0)T. With a protocol discarding
symbols with bit erasures, only one symbol would be left for decoding, which is
certainly insufficient. However, the input symbols x can be recovered by using the
equivalent binary vector and matrix representation, i.e.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

?

?

0

?

1

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 1

1 1 1 1 0 0

0 1 1 1 1 0

1 0 0 0 1 0

0 1 0 0 1 1

0 0 1 1 0 1

0 1 1 0 1 1

1 1 0 1 1 0

1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xB,1,0

xB,1,1

xB,1,2

xB,2,0

xB,2,1

xB,2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and by solving the binary equivalent system of linear equations yR = GRx which
results from the system above by removing the three erased bits from yT and
the corresponding greyed out rows from the binary equivalent of the matrix GT.
The binary vector equivalent of the input symbols x = (x1, x2)T is given by
(xB,1,0, xB,1,1, . . . , xB,2,2)T. The grey lines in the above system of linear equations
are merely drawn to allow for a better visual discrimination of the individual sym-
bols. Since the matrix GR has full column rank, the above system can be solved
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completely, resulting in x = (0, 1, 1, 1, 0, 1)T, which is the binary equivalent of
the original information word.

The Density of the Binary Matrix Equivalent

By transforming a non-binary code into its binary image, the characteristics of
the code change as well [SLV11]: most importantly, the row weight distribution
is not preserved. Also the density decreases, while the average row weight in-
creases (slightly, depending on μ). As the non-zero Fq-symbols occur with equal
probability, the expected density of their binary matrix equivalents amounts to

ΔS→B =
2μ−1

2μ − 1
μ→∞
−−−−→

1
2

.

Then, the binary image of a non-binary matrix with Fq-symbol density ΔS has the
density ΔB = ΔS→B · ΔS with ΔB < ΔS, since ΔS→B < 1 if μ > 1.

The derivation of the above stated expected density ΔS→B can best be explained
by means of the exemplary field F8, whose companion matrix representation is
provided in Table 2.2. Considering all but the zero-matrix, it can be observed that
in a fixed but arbitrary row (or column) among all matrices, each of the 2μ −1 = 7
possible binary non-zero patterns of length μ = 3 occurs exactly once, so the total
number of ones in a particular row or column amounts to

∑μ

i=1

(
μ

i

)
i = μ2μ−1.

Finally, to obtain the density, this number has to be normalised to one entry
instead of a row or column and also only to one matrix instead of to all but the
zero-matrix. Therefore, the number μ2μ−1 is divided by μ, i.e. the number of
entries per row or column and 2μ − 1 = 7, the number of non-zero matrices, which
yields the stated expression for ΔS→B.

As the average number of ones per row of the binary matrix equivalents is greater
than one, the average row weight d̄B = μ ΔS→B d̄S of the equivalent binary code is
greater than the average row weight d̄S of the q-ary code. Despite binary operations
being computationally less complex than q-ary operations, the computational cost
of solving a larger binary equivalent system of linear equations, which even has
a higher average row weight, outweighs the savings of less complex operations by
far. So, transforming a non-binary code to its binary image comes at the price of
an increased decoding complexity. Nevertheless, the binary image allows partially
received Fq-symbols that contain bit erasures to be used for decoding.

2.2 Structured LT Code Ensembles

General LT code ensembles are created via several random processes which do not
guarantee that for instance the first k rows are linearly independent. Particularly
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Table 2.2: Different representations of F8 as defined by the primitive polynomial a(ξ) =

ξ3 + ξ + 1. Note that the binary vector representation is equal to the first

column of the respective companion matrix representation.

exponential
representation

αi

polynomial
representation

αi mod
(
α3 + α + 1

)
binary vector
representation(
a

(i)
0 , a

(i)
1 , a

(i)
2

)
T

companion matrix
representation Ai

0 0

⎛⎜⎝ 0

0

0

⎞⎟⎠
⎛⎜⎝ 0 0 0

0 0 0

0 0 0

⎞⎟⎠
1 1

⎛⎜⎝ 1

0

0

⎞⎟⎠
⎛⎜⎝ 1 0 0

0 1 0

0 0 1

⎞⎟⎠
α α

⎛⎜⎝ 0

1

0

⎞⎟⎠
⎛⎜⎝ 0 0 1

1 0 1

0 1 0

⎞⎟⎠
α2 α2

⎛⎜⎝ 0

0

1

⎞⎟⎠
⎛⎜⎝ 0 1 0

0 1 1

1 0 1

⎞⎟⎠
α3 α + 1

⎛⎜⎝ 1

1

0

⎞⎟⎠
⎛⎜⎝ 1 0 1

1 1 1

0 1 1

⎞⎟⎠
α4 α2 + α

⎛⎜⎝ 0

1

1

⎞⎟⎠
⎛⎜⎝ 0 1 1

1 1 0

1 1 1

⎞⎟⎠
α5 α2 + α + 1

⎛⎜⎝ 1

1

1

⎞⎟⎠
⎛⎜⎝ 1 1 1

1 0 0

1 1 0

⎞⎟⎠
α6 α2 + 1

⎛⎜⎝ 1

0

1

⎞⎟⎠
⎛⎜⎝ 1 1 0

0 0 1

1 0 0

⎞⎟⎠
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Figure 2.8: Structured LT code ensembles.

for users with reliable channels, this is wasteful and can be resolved by allowing
only certain matrices, e.g. only matrices of rank k, to constitute the first part, i.e.
the prefix of an LT code.

A prefix matrix GP of height nP will be denoted the nP-prefix of an LT code
ensemble. In the following, different structured prefixes will be discussed that can
be attached to LT code ensembles as depicted in Figure 2.8(a). Since the choice or
construction of appropriate matrices can be more involved, the prefix matrix GP

is generally determined offline and is kept constant for all transmissions.

The term “structured” can be understood in a very general sense. It may not
only be applied to matrices that have a clearly visible structure such as a diagonal
matrix, but also to matrices with more subtle structures like the property of full
column rank, the MDS property [BL11,BGL13] or particular row or column weight
profiles. Here, the row or column weight profile is understood as the distribution
of the actual row or column weight, i.e. it counts the rows or columns of weight d

of a particular matrix instantiation.

Usually, a code or an ensemble is considered “universal” if the erasure correction
performance is good independently from the channel realisation. Unstructured or
plain LT code ensembles are therefore universal on the erasure channel. However,
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in this strict sense, structured ensembles are not universal, since even an ensemble
with a reasonably structured prefix is supposed to yield a different – though better
– erasure correction performance than without such a prefix, particularly for good
channels. In this thesis, the term “universal” will be used in a broader sense, in that
a structured ensemble is also called universal if its erasure correction performance
is at least equal to or even better than that of the unstructured ensemble for any
erasure probability on the channel.

2.2.1 Conventionally Systematic LT Code Ensembles

In many communication systems the use of systematic codes is favoured over
non-systematic codes, since in good channel conditions the message can often be
obtained from the systematic part, without requiring any decoding steps at all.
And even if a few erasures occur on the channel, a systematic code may enable
a less complex decoding, preferably also at a lower reception overhead than a
non-systematic one.

The usual approach however, i.e. simply using the identity matrix Ik×k as k-prefix,
as sketched in Figure 2.8(b), does not necessarily deliver better results than the
plain LT ensemble, i.e. without this prefix. As described in [SL05, Sho06, SL11],
the decoding failure probability depends upon the number of systematic symbols
among the received encoded symbols and thereby on the channel quality. Also
it is claimed that the decoding properties of such a system become particularly
bad if the number of received systematic symbols among all received symbols is
small, i.e. that a conventionally systematic LT ensemble is not universal. While the
dependence of the decoding failure probability on the channel quality is undoubted,
the latter claim does not hold for all LT ensembles as will be shown in Chapter 4.

2.2.2 The Systematic LT Code Construction

As the performance of conventionally systematic ensembles was considered too low
in [SL05,Sho06,SL11], the so-called systematic construction was proposed instead.
First, some prerequisites as well as the encoding and decoding are described and
then, methods for creating suitable prefix matrices are revised or introduced.

Constraints on the Prefix Matrix

The prefix matrix for the constructed systematic LT code ensemble is a full rank
k × k matrix and its row weight profile should be a typical representative of the
row weight distribution Ω(ξ). By the latter property it is ensured that the graph
is self-similar no matter which k(1 + εR)-subset of the output symbols is received,
i.e. GR ∼ Ω(ξ) almost independently of the erasure probability on the channel.
Only for very good channels, where the systematic part has a high probability to
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be received as a whole, the performance is expected to significantly exceed that
of the plain ensemble. Depending on the designated decoding algorithm, BP or
ML decoding, Ω(ξ) has to be chosen or designed accordingly. For BP decoding,
the k-prefix additionally has to be permutation-triangularisable, i.e. it has to be
transformable into an upper (or lower) triangular matrix just by the multiplication
with a k × k permutation matrix.

Systematic Encoding and Decoding

In the usual LT coding setup, the input nodes or input symbols x are equated with
the data s that has to be transmitted and the terms are consequently used synony-
mously, except in this section. In the systematic LT code construction, which was
proposed in [SL05, Sho06, SL11], the first k output symbols are now equated with
the data symbols such that they are now systematically contained in the encoded
symbols, i.e. yT = (y1, y2, . . . , ynT )T = (s1, s2, . . . , sk, yk+1, . . . , ynT )T. For the
determination of the following (non-systematic) output symbols yk+1 to ynT the
symbols x are required which have to be calculated from the systematic output
symbols by solving GPx = s. Then, the symbols x can be used to generate the
non-systematic output symbols by GTx = (yk+1, . . . , ynT )T.

On the receiver side, either all systematic output symbols are received, in that case
no decoding has to be performed, or a mixture of systematic and non-systematic
output symbols are received. In the latter case, the input symbols have to be
recovered first, and then by an additional encoding step using the k-prefix matrix
GP the missing data symbols are recovered.

Constructing the Systematic Prefix for ML Decoding

The rationale of the systematic construction besides the obvious systematic trans-
mission is that the decoding matrix is self-similar in order to achieve quasi-
independence from the channel quality, i.e. universality in the aforementioned
sense. Thus, the k rows of the prefix matrix are created just like all others ac-
cording to Ω(ξ). However, before actually using this k-prefix, it is checked for full
rank. If it does not have full rank, it is discarded and a new k-prefix is sampled.

When using a relatively high field order q and a row weight distribution with
sufficiently high average row weight d̄, the probability of directly sampling a matrix
with full rank is reasonably high, but for lower field sizes or lower average row
weight it is very likely that multiple trials are required to obtain such a matrix.
While this is the method of choice for creating ML decodable prefixes, there are
smarter construction algorithms for BP decodable prefixes.
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Constructing the Systematic Prefix for BP Decoding

A construction method for BP decodable prefixes has been proposed in [SL05,
Sho06, SL11] and is briefly revised here. Although it is originally formulated for
binary codes, it directly applies to non-binary codes as well. By this approach,
initially a slightly taller k(1 + ε)-prefix G̃P ∼ Ω(ξ) is generated. A counter j is
initialised with zero and an auxiliary matrix G̃P,aux � G̃P is defined. Then, the
following steps are performed as long as j < k:

1. Find a row of weight 1 in the auxiliary matrix G̃P,aux; if none exists, re-
turn an error and stop; otherwise, set ij to be equal to the index of the
corresponding row in G̃P.

2. Find the unique non-zero position of this row, remove the column corre-
sponding to that position from the auxiliary matrix G̃P,aux and increase j

by one.

The final k-prefix GP is obtained as the rows i1, . . . , ik from G̃P. Note that GP is
a permutation-triangularisable matrix which implicitly has full column rank. Its
row weight profile should be very similar to the expected row weight distribution
kΩ(ξ). Differences may occur due to non-zero variances of the random processes
or result from the selection of k suited rows out of k(1 + ε) rows, since usually
kΩ(ξ) has non-integer coefficients.

An Efficient Systematic Prefix Construction for BP Decoding

A necessary condition for BP decodability given a k × k matrix is that it has full
rank, while a sufficient condition is that the matrix is permutation-triangularisable.
Note that this sufficient condition already implies the necessary condition, since a
triangular matrix always has full rank.

It is assumed that the row weight distribution Ω(ξ) generates a BP decodable
ensemble with high probability. Now, instead of the previously described approach
from [SL05, Sho06, SL11] of randomly generating k(1 + ε) rows according to Ω(ξ)
and selecting only a BP decodable k-subset, the following new method enables
to create a full rank prefix matrix directly without trial and error, which is BP
decodable and is a typical representative of Ω(ξ). The latter is indeed the weakest
criterion and may be revised as far as to allow the other two essential conditions
to be met.

To this end, the coefficients kΩd of kΩ(ξ) are rounded towards the nearest integer.
Then, rnd(kΩd) rows of weight d are created. The lowermost rnd(kΩ1) rows are
assigned weight 1, the rnd(kΩ2) rows above these ones are assigned weight 2 and
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information word x′ ∈ F
k′
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intermediate codeword x ∈ F
k
q

transmitted codeword yT ∈ F
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{

LT code

{
. . .

Figure 2.9: An exemplary Raptor encoding graph. The depicted Raptor code is a con-

catenation of the (7, 4) Hamming code and an LT code.

so forth. In the next step, all main diagonal entries are sampled from Fq \ {0}.
And finally, in each row i, choose uniformly at random d − 1 entries from the i − 1
possible entries on the right-hand side of the main diagonal and assign randomly
chosen elements from Fq \ {0} to these d − 1 entries. In each row i the assigned
weight d has to fulfil the condition 1 ≤ d ≤ i. If this condition is not met, i.e. if
d > i, the weight d of row i has to be reduced to the maximum row weight that
is smaller than or equal to i and has a positive probability of occurrence, even if
the resulting row weight profile deviates from the expected row weight profile with
rounded coefficients.

2.3 Raptor Codes

The commercial name Raptor code [Sho04, Sho06], a portmanteau derived from
the name “rapid Tornado code”, denotes a concatenation of a rateless component
such as an LT code and one or more stages of high-rate precodes. Classical Tor-
nado codes [LMS+97] are a class of BP decodable erasure-resilient codes based on
irregular bipartite graphs. Their development has led to the insight that irregular
degree distributions are essential for constructing capacity achieving codes, which
influenced also the design of LDPC codes.

An example of a Raptor encoding graph is depicted in Figure 2.9. The information
word x′ is first encoded by a precode, for example a Hamming code or an LDPC
code. The obtained intermediate codeword x is then further encoded by an LT
code. This construction allows to successfully decode an information word, even if
the LT code cannot recover all intermediate nodes.

As already mentioned, LT codes like their fixed rate relatives, i.e. LDGM codes,
suffer from a high erasure floor. The quantity that mostly influences the erasure
floor is the average row weight d̄ or equivalently the density Δ of the LT code
matrix. However, increasing d̄ comes at the cost of a higher computational com-
plexity, and it should thus rather be avoided if a certain code rate loss is affordable,
which is due to the precode.
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Instead, LT codes should be kept sparse and should only be seen as the component
that introduces ratelessness in a concatenated scheme and that recovers a large
fraction of the intermediate nodes, but not necessarily all. The erasure floor of a
properly designed LT code is thus dominated by a small fraction of undecodable
LT code input nodes, i.e. intermediate nodes, per information word. The task of
lowering the erasure floor is left to one or more high-rate precodes. A suitable
precode, i.e. one that can (almost) guarantee the correction of a few erasures per
codeword, can lower the erasure floor more efficiently than a single LT code with
a higher average row weight. More details on design and analysis of finite length
Raptor codes will be provided in Chapter 6.



Chapter 3

Finite Length Analysis under Optimal
Erasure Decoding

Provided a transmission over a symbol erasure channel (SEC), ML decoding of an
LT code ensemble L corresponds to solving a consistent system of nR random linear
equations in k unknowns over a finite field Fq. The probability that the system is
solvable is equal to the probability that the decoding matrix GR at the receiver has
rank k. Hence, the word erasure probability P [L]

(
��W
)

after ML decoding equals
the probability that GR has not rank k. An information word is considered erased
if at least one information symbol remains erased after decoding. Apart from the
word erasure probability P [L]

(
��W
)

also the symbol erasure probability P [L]
(
�S
)

is
used to assess the erasure correction performance of a code and its suitability for
precoding.

A vast amount of publications exists (e.g. [Lan93,ER63,Odl81,Kol94,Cal96,Cal97,
BKW97,Coo00b,Coo00a]) that examine rank properties of random matrices. Es-
pecially in the former Soviet Union many researchers have extensively dealt with
this topic, whose results, being published in Russian, have long been unknown
to most other researchers. A survey of many results is provided, e.g. in [Kol99]
and [Lev05]. Nevertheless, all contain certain restrictions on either the randomness
or on the dimensions of the matrix. Restrictions in terms of randomness are for
instance that only uniform randomness is considered, i.e. each entry of the ran-
dom matrix is sampled uniformly from the set of Fq-elements (standard random
ensemble) or uniformly from the set of non-zero Fq-elements and with an increased
probability of occurrence of the zero element (sparse random ensemble). Restric-
tions in terms of the matrix dimensions are, e.g. considering only square matrices
or making only asymptotic statements.

However, for the analysis and the design of random linear codes, e.g. fountain codes
or network codes, with a finite, particularly a small or medium, information word
length and a given row weight distribution, i.e. an output node degree distribution,
the results from the literature are not sufficient. For the major part of this thesis,
the following two questions will be dealt with in great detail for different row weight
distributions:
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1. What is the probability that a random (n × k) matrix over a finite field Fq

does not have full column rank? In the following, n ≥ k is assumed.

2. What is the probability that a system of n linear equations with random
coefficients from Fq cannot be solved for an arbitrary but fixed unknown?

In the setup of LT code ensembles the first probability is equivalent to the residual
word erasure probability P [L]

(
��W
)

after ML decoding. The second probability is
equivalent to the residual symbol erasure probability P [L]

(
�S
)

after ML decoding.
In the literature, no exact expressions are known for these probabilities other than
for P [L]

(
��W
)

in the very specific case of uniform randomness, i.e. for the standard
random ensemble. In Section 3.2, this probability is briefly reviewed and a new
exact expression is determined for the expurgated random ensemble.

However, in the general case, we have to content ourselves with upper and lower
bounds on these probabilities. In contrast to the residual erasure probabilities, the
corresponding bounds are marked by over- or underlining the character P , e.g. a
lower bound on symbol level is denoted P [L]

(
�S
)
. But before starting with the

derivation of such bounds, some basic terms have to be defined or reviewed.

3.1 Some Basics and Definitions

Definition 3.1. The rank of a matrix G ∈ F
n×k
q is the number of linearly inde-

pendent rows or columns of G and is denoted rank(G). It is equal to the image
dimension of G, i.e. rank(G) = dim(img(G)).

A matrix G ∈ F
n×k
q is said to have full column rank if rank(G) = k.

Definition 3.2. The kernel (or null space) of a matrix G ∈ F
n×k
q is the set of all

vectors x ∈ F
k
q that map to zero

ker(G) =
{

x ∈ F
k
q : Gx = 0

}
. (3.1)

Definition 3.3. The nullity (or defect) of a matrix G ∈ F
n×k
q is equal to the

kernel dimension, i.e. nullity(G) = dim(ker(G)).

In other words, the nullity of G is equal to the maximum number of columns that
can be removed from G such that the rank does not change. The removed columns
are then linearly dependent on the remaining columns in the matrix.

Theorem 3.4 (Rank-nullity theorem). Given a matrix G ∈ F
n×k
q , then rank(G)+

nullity(G) = k.
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Krawtchouk Polynomials

Definition 3.5. The Krawtchouk polynomial [MS77] is defined as

Kς(ξ; ν) =
ς∑

i=0

(−1)i(q − 1)ς−i

(
ξ

i

)(
ν − ξ

ς − i

)
, ς = 0, 1, . . . , ν, (3.2)

for any positive integer ν and prime power q. The latter usually corresponds to
the respective field order.

Corollary 3.6. The Krawtchouk polynomial Kς(ξ; ν) for ξ = 0 is

Kς(0; ν) = (q − 1)ς

(
ν

ς

)
(3.3)

which can be obtained by using the fact that
(

ξ

i

)
> 0 if ξ, i ∈ N0 and 0 ≤ i ≤ ξ,

but that
(

ξ

i

)
= 0 in all other cases.

q-Analogues

Definition 3.7. The q-analogue of a number ν ∈ N, also denoted q-number or
q-bracket of ν, is

[ν]
q

=
qν − 1
q − 1

. (3.4)

Definition 3.8. The q-analogue of the factorial, usually denoted q-factorial is

[ν]
q
! = [1]

q
· [2]

q
· . . . · [ν − 1]

q
· [ν]

q
(3.5)

=
q − 1
q − 1

·
q2 − 1
q − 1

· . . . ·
qν−1 − 1

q − 1
·

qν − 1
q − 1

(3.6)

Definition 3.9. The q-binomial coefficients, also denoted Gaussian coefficients
are given by [

ν

ς

]
q

=
[ν]

q
!

[ν − ς]
q
![ς]

q
!

(3.7)

=
(qν − 1)(qν − q)

(
qν − q2

)
· . . . ·

(
qν − qς−1

)
(qς − 1)(qς − q)(qς − q2) · . . . · (qς − qς−1)

(3.8)

and determine the number of ς-dimensional subspaces of the ν-dimensional vector
space F

ν
q .
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Note that the number of ordered ς-tuples of linearly independent vectors in F
ν
q is

(qν − 1)(qν − q)
(
qν − q2

)
. . .
(
qν − qς−1

)
. (3.9)

The first vector can be chosen from the set of non-zero vectors, while the second
vector is chosen from the set of non-zero vectors that are no multiples of the first
one. In general, each vector is chosen from the set of non-zero vectors that does
not contain the span of the preceding vectors.

3.2 Word Erasure Probabilities of Random Ensembles

3.2.1 The Standard Random Ensemble

The standard random ensemble is by far the best examined random matrix. Some
results, e.g. on the rank profile, i.e. the rank distribution in an ensemble, date back
to the work of Landsberg [Lan93] in 1893:

Theorem 3.10. The number of (nR × k) matrices in Fq of rank r is

N(nR × k, r) =

[
nR

r

]
q

(
qk − 1

)(
qk − q

)(
qk − q2

)
· . . . ·

(
qk − qr−1

)
. (3.10)

Proof. There are
[

nR
r

]
q

r-dimensional subspaces of F
nR
q . And each sub-

space is spanned by r linearly independent vectors in F
k
q of which there are(

qk − 1
)(

qk − q
)(

qk − q2
)

· . . . ·
(
qk − qr−1

)
possibilities.

A special case of the above theorem is particularly useful as it leads directly to
the (known) exact word erasure probability P [L]

(
��W
)

of the standard random
ensemble, given that nR encoded symbols have been received.

Corollary 3.11. The number of (nR × k) matrices with full column rank (i.e.
rank k) is (cf. (3.9))

N(nR × k, r = k) =
k−1∏
i=0

(
qnR − qi

)
. (3.11)

Corollary 3.12. The residual word erasure probability of the standard random
ensemble after ML decoding is

P [L]
(
��W
)

= 1 −
N(nR × k, r = k)∑k

r=0
N(nR × k, r)

,
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where the denominator comprises the total number of (nR × k) matrices

k∑
r=0

N(nR × k, r) = qknR (3.12)

which yields (cf. e.g. [LNC97])

P [L]
(
��W
)

= 1 −

k−1∏
i=0

(
qnR − qi

)
qknR

= 1 −

nR∏
i=nR−k+1

(
1 − q−i

)
. (3.13)

3.2.2 The Expurgated Random Ensemble

The expurgated random ensemble is generated from the standard random ensemble
by removing all-zero rows as soon as they are created and replacing them with
newly sampled non-zero rows.

Theorem 3.13. The residual word erasure probability after ML decoding of the
expurgated random ensemble amounts to

P [L]
(
��W
)

= 1 −

k−1∏
i=0

(
qnR − qi

)
−

nR−k∑
i=1

(
nR

i

)
N\0((nR − i) × k, r = k)

(qk − 1)nR
, (3.14)

where N\0((nR − i) × k, r = k) is the number of ((nR − i) × k) matrices of rank k

that do not contain any all-zero rows.

Proof. The number of all (nR × k) matrices not containing any all-zero rows is

k∑
r=0

N\0(nR × k, r) =
(
qk − 1

)nR
, (3.15)

while the number of (nR ×k) matrices with rank k has to be calculated recursively

N\0(nR × k, r = k) = N(nR × k, r = k) −

nR−k∑
i=1

(
nR

i

)
N\0((nR − i) × k, r = k)

(3.16)

by subtracting the number of rank k matrices that contain i ∈ {1, . . . , nR − k}

all-zero rows from the total number N(nR × k, r = k) of rank k matrices. The
subtrahends thus constitute the numbers of rank k matrices of size ((nR − i) × k)
matrices without all-zero rows, multiplied by

(
nR

i

)
to count the number of ways
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Figure 3.1: Word erasure probabilities of standard and expurgated random ensembles

according to (3.13) and (3.14), respectively, for absolute symbol reception

overheads from 0 to 10 over F2 and F4 for very small input sizes. For k = 1

the expurgated ensemble achieves P [L]
(
��W
)

= 0, since it is essentially a

repetition code, which is the only – though trivial – rateless MDS code.

that i all-zero rows can be inserted into these matrices. The recursion ends with
(k × k) matrices, since the number of square full rank matrices is the same in both
ensembles, i.e. N\0(k × k, r = k) = N(k × k, r = k). Finally, the exact probability

P [L]
(
��W
)

= 1 −
N\0(nR × k, r = k)∑k

r=0
N\0(nR × k, r)

(3.17)

of choosing a matrix of rank less than k from the expurgated ensemble can be
determined from (3.11), (3.15) and (3.16).

The residual word erasure probabilities of corresponding standard and expurgated
random ensembles are plotted in Figure 3.1. For very small input sizes and field
orders there exists a relevant difference in the erasure correction capabilities of the
two ensembles. With increasing input sizes, however, the probability of occurrence
of all-zero rows quickly converges to zero and the difference between the two types
of ensembles vanishes. Thus, the word erasure probability of the standard random
ensemble is a sufficiently good approximation for that of the expurgated ensemble.
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3.3 Bounds on the Word and Symbol Erasure Probability

As already mentioned at the beginning of this chapter, the exact residual era-
sure probabilities under ML decoding on word and symbol level are not known in
general. Only the residual word erasure probabilities of the standard and the ex-
purgated random ensemble could be determined exactly as shown in the previous
section. Consequently, upper and lower bounds on the respective probabilities are
required in order to assess the erasure correction performance of general LT code
ensembles. Such a set of four general bounds is presented subsequently.

3.3.1 An Upper Bound on the Word Erasure Probability

Theorem 3.14 (from [SGV13]). Given an LT code ensemble
L =

(
GR ∼ Ω(ξ), FnR×k

q

)
, an upper bound on the word erasure probability

P [L]
(
��W
)

after ML decoding is1

P
[L](

��W
)

=
k∑

w=1

(
k

w

)
(q − 1)w−1

⎡⎢⎢⎣1
q

∑
d∈D

Ωd

d∑
l=0

(
w

l

)(
k−w

d−l

)[
1 − (1 − q)1−l

]
(

k

d

)
⎤⎥⎥⎦

kγR

(3.18)

=
k∑

w=1

(
k

w

)
(q − 1)w−1

[
1
q

+
q − 1

q

∑
d∈D

Ωd ·
Kd(w; k)
Kd(0; k)

]kγR

(3.19)

with the inverse reception code rate γR = 1 + εR. The second, more compact
variant comprises the well-known Krawtchouk polynomial (cf. Definition 3.5).

Proof. The probability P [L]
(
��W
)

is equal to the probability that GR does not have
full column rank

P [L]
(
��W
)

= Pr{rank(GR) < k}, (3.20)

i.e. the probability that the kernel of GR is non-trivial

P [L]
(
��W
)

= Pr{∃x ∈ ker(GR) \ {0}}. (3.21)

This is equivalent to the probability that an arbitrary information word cannot
be uniquely determined, since the solution of GRx = yR is a (k − rank(GR))-
dimensional vector space. The expression in (3.21) P [L]

(
��W
)

denotes the probabil-
ity that the non-trivial kernel ker(GR)\{0} is not empty, which can be equivalently

1For notational convenience it is implied that probabilities and their bounds are limited from

above by one. The operation min{1, · } is omitted.
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rephrased as the probability that its cardinality is greater than or equal to one:

P [L]
(
��W
)

= Pr{|ker(GR) \ {0}| ≥ 1} (3.22)

=
∑
j≥1

Pr{|ker(GR) \ {0}| = j} (3.23)

≤
∑
j≥0

j · Pr{|ker(GR) \ {0}| = j}. (3.24)

Since the last line corresponds to the expected cardinality of the non-trivial kernel
of GR, the probability P [L]

(
��W
)

can be upper bounded accordingly:

P [L]
(
��W
)

≤ E{|ker(GR) \ {0}|}. (3.25)

However, this bound can be tightened by a factor of q − 1 by exploiting the fact
that if some x ∈ ker(GR) \ {0}, then also ax ∈ ker(GR) \ {0}, ∀a ∈ Fq \ {0}. So
in order to bound (3.21) from above, it is sufficient to count just one of the q − 1
scaled versions of x

P [L]
(
��W
)

≤ P
[L](

��W
)

�
1

q − 1
· E{|ker(GR) \ {0}|} (3.26)

and w.l.o.g. this is accomplished by counting only those vectors x that have been
normalised w.r.t. their first non-zero entry, i.e. vectors x whose first non-zero entry
is xi = 1:

P
[L](

��W
)

=
∑

x∈F
k
q ,

xi=1

Pr{GRx = 0}. (3.27)

The kγR rows of GR can be viewed as the outcomes of independent trials of a
random variable r ∈ F

k
q .

P
[L](

��W
)

=
∑

x∈F
k
q ,

xi=1

[
Pr
{

rT
x = 0

}]kγR (3.28)

The Hamming weight of a vector over Fq equals the number of non-zero elements
and is denoted ‖·‖H. Now, the probability Pr

{
rTx = 0

}
is determined, conditioned

on ‖r‖H = d and ‖x‖H = w, where a row r has weight ‖r‖H = d with probability
Ωd and there are

(
k

w

)
(q − 1)w−1 choices of x of weight w > 0 and a one as the first

non-zero entry:

P
[L](

��W
)

=
k∑

w=1

(
k

w

)
(q − 1)w−1

[∑
d∈D

ΩdPr
{

rT
x = 0

∣∣∣∣∣∣‖r‖H = d, ‖x‖H = w
}]kγR

.

(3.29)
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Let v = (v1, v2, . . . , vk)T with vj = rjxj , where vj , rj and xj are the jth elements
of the vectors v, r and x, respectively, then

Pr
{

rT
x = 0

∣∣∣‖r‖H = d, ‖x‖H = w
}

=
d∑

l=0

Pr
{

‖v‖H = l

∣∣∣ ‖r‖H = d, ‖x‖H = w
}

Pr

{
k∑

j=1

vj = 0
∣∣∣‖v‖H = l

}
.

(3.30)

The probability of occurrence of exactly l non-zero elements in v is

Pr
{

‖v‖H = l

∣∣∣ ‖r‖H = d, ‖x‖H = w
}

=

(
w

l

)(
k−w

d−l

)(
k

d

) . (3.31)

The last term in (3.30) is the number N0(l, q) of possibilities that l non-zero Fq-
elements add up to zero, taking the elements’ order into account, divided by the
number N(l, q) of all possibilities to draw l times with replacement from the set of
the q − 1 non-zero Fq-elements also taking the order into account:

Pr

{
k∑

j=1

vj = 0
∣∣∣ ‖v‖H = l

}
=

N0(l, q)
N(l, q)

. (3.32)

The problem of determining N0(l, q) is equivalent to finding the number of closed
walks of length l in a complete graph of size q from some fixed but arbitrary vertex
back to itself of which a closed form expression can be found, e.g. in [Sta11]

N0(l, q) =
1
q

[
(q − 1)l + (q − 1)(−1)l

]
. (3.33)

With N(l, q) = (q − 1)l the expression in (3.32) results in

Pr

{
k∑

j=1

vj = 0
∣∣∣ ‖v‖H = l

}
=

1
q

[
1 − (1 − q)1−l

]
. (3.34)

Finally, inserting (3.31) and (3.34) into (3.30) and the resulting expression
into (3.29) concludes the assertion.

The second variant of the upper bound given by (3.19) is obtained by manipulating
the term in (3.18) in the outer square brackets:
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1
q

∑
d∈D

Ωd ·

d∑
l=0

(
w

l

)(
k−w

d−l

)[
1 − (1 − q)1−l

]
(

k

d

)
=

1
q

∑
d∈D

Ωd ·

d∑
l=0

(
w

l

)(
k−w

d−l

)
+ (q − 1)

d∑
l=0

(−1)l(q − 1)−l
(

w

l

)(
k−w

d−l

)
(

k

d

) (3.35)

=
1
q

∑
d∈D

Ωd ·

⎡⎢⎢⎣1 + (q − 1)

d∑
l=0

(−1)l(q − 1)d−l
(

w

l

)(
k−w

d−l

)
(q − 1)d

(
k

d

)
⎤⎥⎥⎦ (3.36)

=
1
q

+
q − 1

q

∑
d∈D

Ωd ·
Kd(w; k)
Kd(0; k)

(3.37)

In (3.35) the Chu-Vandermonde identity(
k

d

)
=

d∑
l=0

(
w

l

)(
k − w

d − l

)
(3.38)

is used and in (3.36) the Krawtchouk polynomials Kd(w; k) and Kd(0; k) can be
identified in the numerator and the denominator, respectively.

3.3.2 An Upper Bound on the Symbol Erasure Probability

Due to the striking similarity between the upper bound on the symbol erasure prob-
ability P

[L](
�S
)

and the upper bound on the word erasure probability P
[L](

��W
)
,

only the differing part of the proof will be given in detail. The following upper
bound [SLV11,Lup11,SGV13] on symbol level is a generalisation of an expression
for binary codes from [RVF07] to higher order Galois fields.

Theorem 3.15. Given an LT code ensemble L =
(
GR ∼ Ω(ξ), FnR×k

q

)
, an upper

bound on the symbol erasure probability P [L]
(
�S
)

after ML decoding is

P
[L](

�S
)
=

k−1∑
w=1

(
k − 1
w − 1

)
(q − 1)w−1

[
1
q

+
q − 1

q

∑
d∈D

Ωd ·
Kd(w; k)
Kd(0; k)

]kγR

(3.39)

with the inverse reception code rate γR = 1 + εR.

Proof. The probability P [L]
(
�S
)

is equal to the probability that the ith input
symbol cannot be determined by ML decoding for an arbitrary i ∈ {1, 2, . . . , k}

P [L]
(
�S
)

= Pr
{

∃x ∈ F
k
q \ {0}, xi = a : GRx = 0

}
(3.40)
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with arbitrary but fixed a ∈ Fq\{0}. The right-hand side of (3.40) is the probability
of the ith column of matrix GR being linearly dependent on a non-empty set of
columns. This can be upper bounded by the probability that any possible set of
columns of GR is linearly dependent on column i

P [L]
(
�S
)

≤ P
[L](

�S
)

=
∑

x∈F
k
q ,

xi=a

Pr{GRx = 0}. (3.41)

The remainder of this proof is along the same lines as the proof of Theorem 3.14
with the only difference that in contrast to the previous derivation, there are(

k−1
w−1

)
(q − 1)w−1 choices of x of weight w > 0 with xi = a.

3.3.3 A Lower Bound on the Symbol Erasure Probability

Lemma 3.16 (from [SGV13]). Given an LT code ensemble
L =

(
GR ∼ Ω(ξ), FnR×k

q

)
, the probability that i particular (fixed but arbi-

trary) input nodes (IN) are not connected to any of the kγR independent output
nodes (ON), i.e. the probability that i particular columns of GR are all-zero
columns, is given by

Pr{i = i particular IN not connected to any ON} =

(∑
d∈D

Ωd

(
k−i

d

)(
k

d

) )kγR

. (3.42)

Proof. The probability that i particular input nodes, with 0 ≤ i ≤ k, are not
connected to an output node of degree d is(

k−i

d

)(
k

d

) , (3.43)

while the probability that i particular input nodes are not connected to an output
node of arbitrary degree is

∑
d∈D

Ωd

(
k−i

d

)(
k

d

) . (3.44)

Finally, since there are kγR independent output nodes, the probability that i par-
ticular input nodes are not connected to any of them is given by (3.42).

The latter proof is similar to that for the special case i = 1 from [Sho06]. Since
(3.42) with i = 1 constitutes the tightest known lower bound on the symbol erasure
probability, it is briefly summarised in the following without proof.
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Theorem 3.17 (from [Sho06]). Given an LT code ensemble
L =

(
GR ∼ Ω(ξ), FnR×k

q

)
, a lower bound on the symbol erasure probability

P [L]
(
�S
)

after ML decoding is

P [L]
(
�S
)

= Pr{i = 1 particular IN not connected to any ON}

=

(
1 −

d̄

k

)kγR

, (3.45)

with the average row weight d̄.

3.3.4 A Lower Bound on the Word Erasure Probability

Theorem 3.18 (from [SGV13]). Given an LT code ensemble
L =

(
GR ∼ Ω(ξ), FnR×k

q

)
, a lower bound on the word erasure probability

P [L]
(
��W
)

after ML decoding is

P [L]
(
��W
)

=
k∑

i=1

(−1)i+1

(
k

i

)(∑
d∈D

Ωd

(
k−i

d

)(
k

d

) )kγR

. (3.46)

Proof. An information word cannot be reconstructed if at least one input node
cannot be recovered. A lower bound on the word erasure probability P [L]

(
��W
)

is therefore given by the probability that there exist input nodes that are not
connected to any of the kγR independent output nodes

P [L]
(
��W
)

= Pr{∃ IN not connected to any ON} (3.47)

=
k∑

j=1

Pr{exactly j = j IN not connected to any ON}. (3.48)

However, the individual summands in (3.48) are not given explicitly. They appear
only implicitly in a different representation of (3.42)

Pr{i = i particular IN not connected to any ON}

=

k∑
j=i

(
j

i

)
Pr{exactly j = j IN not connected to any ON}(

k

i

) , (3.49)

where the numerator denotes the probability that i arbitrary input nodes are not
connected to any output nodes. It results from the fact that given exactly j uncon-
nected input nodes, there are

(
j

i

)
possibilities to choose i particular unconnected

input nodes. The whole expression is then normalised by
(

k

i

)
, the number of

possibilities to choose i particular input nodes from the set of all k input nodes.
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Below, the following identity which arises from the symmetry of the binomial
coefficients

ν∑
ς=1

(−1)ς+1

(
ν

ς

)
= 1 (3.50)

is used twice, as well as the fact that
(

ν

ς

)
> 0 if ν, ς ∈ N0 and 0 ≤ ς ≤ ν, and that(

ν

ς

)
= 0 in all other cases.

Multiplying (3.49) by (−1)i+1
(

k

i

)
and summing over all i yields

k∑
i=1

(−1)i+1

(
k

i

)
Pr{i = i particular IN not connected to any ON}

=
k∑

i=1

(−1)i+1

k∑
j=i

(
j

i

)
Pr{exactly j = j IN not connected to any ON} (3.51)

=
k∑

i=1

k∑
j=i

(−1)i+1

(
j

i

)
Pr{exactly j = j IN not connected to any ON}

=
k∑

i=1

k∑
j=1

(−1)i+1

(
j

i

)
Pr{exactly j = j IN not connected to any ON}

=
k∑

j=1

Pr{exactly j = j IN not connected to any ON}

k∑
i=1

(−1)i+1

(
j

i

)

=
k∑

j=1

Pr{exactly j = j IN not connected to any ON}

j∑
i=1

(−1)i+1

(
j

i

)

=
k∑

j=1

Pr{exactly j = j IN not connected to any ON}

= P [L]
(
��W
)
. (3.52)

Finally, inserting (3.42) into the left-hand side of (3.51) yields (3.46) and concludes
the assertion.

3.3.5 The Probability of Exactly j Unconnected Input Nodes

In (3.49) the probability Pr{exactly j = j IN not connected to any ON}, which
stands for the probability of exactly j input nodes not being connected to any
of the kγR independent output nodes, is given only implicitly. Since it di-
rectly sums up to the lower bound on word level as in (3.48), one may call it
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a rather microscopic quantity in contrast to the macroscopic lower bound. As
such it may be seen as an additional, more detailed benchmark for LT code
ensembles. By applying some simple transformations, it is possible to obtain
Pr{exactly j = j IN not connected to any ON} in explicit form from (3.49).

Lemma 3.19. Given an LT code ensemble L =
(
GR ∼ Ω(ξ), FnR×k

q

)
, the proba-

bility that exactly j input nodes are not connected to any of the kγR independent
output nodes is

Pr{exactly j = j IN not connected to any ON}

=
k∑

i=0

(−1)i+j

(
i

j

)(
k

i

)(∑
d∈D

Ωd

(
k−i

d

)(
k

d

) )kγR

. (3.53)

Proof. Rearranging (3.49) yields

k∑
j=i

(
j

i

)
Pe(j) =

(
k

i

)
Pp(i), (3.54)

where the following short-hand notation has been used for an improved readability
of the formulas:

Pp(i) � Pr{i = i particular IN not connected to any ON}

Pe(j) � Pr{exactly j = j IN not connected to any ON}.

Multiplying (3.54) with (−1)i
(

i

l

)
, where l is an arbitrary but fixed integer and

0 ≤ l ≤ i, as well as summing over all i results in

k∑
i=0

(−1)i

(
i

l

) k∑
j=i

(
j

i

)
Pe(j) =

k∑
i=0

(−1)i

(
i

l

)(
k

i

)
Pp(i). (3.55)

With
k∑

j=i

(
j

i

)
Pe(j) =

k∑
j=0

(
j

i

)
Pe(j) and a further rearrangement, the following ex-

pression is obtained:

k∑
j=0

Pe(j)
k∑

i=0

(−1)i

(
i

l

)(
j

i

)
=

k∑
i=0

(−1)i

(
i

l

)(
k

i

)
Pp(i). (3.56)

For the inner summation on the left hand side the binomial identity

ν∑
ς=0

(−1)ς

(
ς

ξ

)(
ν

ς

)
=

{
0 if ξ < ν

(−1)ν if ξ = ν
(3.57)
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is used, which for instance can be found in [Gou72, eq. (3.119)] or [Gou10,
eq. (10.9)]:

(−1)lPe(l) =
k∑

i=0

(−1)i

(
i

l

)(
k

i

)
Pp(i). (3.58)

Multiplying both sides with (−1)l and renaming l for j yields

Pe(j) =
k∑

i=0

(−1)i+j

(
i

j

)(
k

i

)
Pp(i). (3.59)

And finally, Pp(i) is replaced with the expression in (3.42) which results in (3.53).

3.4 Upper Bounds for the Random Ensembles

From the expressions in (3.19), (3.39), (3.45) and (3.46) it is straightforward to
determine bounds for some of the special LT code ensembles by simply inserting
the respective row weight distributions. The standard and the expurgated random
ensembles are of particular interest. And although exact expressions for the word
erasure probabilities of both random ensembles are given by (3.13) and (3.14), it
is useful to derive upper bounds on their erasure probabilities, especially as the
recursion in (3.14) is computationally complex even for quite small values of k.

Note that, as already depicted in Figure 3.1, (3.13) and (3.14) quickly converge
to the same constant values as the input size k increases, with a given field size
and a given number of received symbols. Moreover, the erasure probabilities of
the expurgated ensemble are tightly upper bounded by those of the corresponding
standard random ensemble, and thus upper bounds for the standard ensemble are
also upper bounds for the expurgated ensemble. Therefore, the expurgated random
ensemble will not be further emphasised in the following, but is accordingly implied
when discussing the standard random ensemble. The following two corollaries are
obtained by inserting (2.9) into (3.39) and (3.19), respectively:

Corollary 3.20. An upper bound on the symbol erasure probability P [L]
(
�S
)

of
the standard random ensemble under ML decoding is [SLV11]

P
[L](

�S
)

= q−k(γR−1)−1 = q−ηR−1, (3.60)

where ηR = kεR = k(γR − 1) is the absolute symbol reception overhead.

Corollary 3.21. An upper bound on the word erasure probability P [L]
(
��W
)

of
the standard random ensemble under ML decoding is [LPC10]

P
[L](

��W
)

=
1

q − 1
q−k(γR−1) =

1
q − 1

q−ηR . (3.61)
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3.5 Numerical Evaluation and Monte Carlo Simulations

Having laid the theoretical basis for the finite length analysis of general LT code en-
sembles under optimal erasure decoding, first of all the just derived bounds on the
residual erasure probability will be evaluated and contrasted with corresponding
Monte Carlo simulations of residual erasure rates for different LT code ensembles.
Then, it will be discussed, how to use these bounds for code design. And finally,
the decoding complexity of some ensembles will be assessed.

3.5.1 The Standard Random Ensemble

It is an interesting feature of the two random ensembles, that their erasure cor-
rection performance is nearly independent of the input size k. It depends almost
solely on the absolute number ηR of additionally received symbols and on the field
size q. This property becomes evident when considering the respective right hand
sides of (3.61) and (3.60). These upper bounds are depicted in Figure 3.2 for
different field orders as functions of the absolute as well as the relative reception
overhead, respectively.

In Figure 3.2(a) the upper bounds (3.61) and (3.60) are shown in terms of the

absolute symbol reception overhead ηR. In this form, P
[L](

��W
)

and P
[L](

�S
)

are
independent of the input size k. Though, one has to be careful with drawing
the conclusion that by using higher order Galois fields, lower erasure probabilities
could be reached much faster [LPC10, QUA10]. In Figure 3.2(a) it is not taken
into account that the reception of ηR additional symbols is not comparable for
ensembles over different fields, since symbols consist of different numbers of bits.

To account for this discrepancy, in this thesis overhead-failure plots are preferably
depicted in terms of the relative reception overhead εR or equivalently the inverse
reception code rate γR = 1 + εR. In the case of the exemplary standard random
ensembles over F2 to F256 with input sizes2 k = 840

ld(q)
= 840

μ
∈ {840, 420, . . . , 105},

the upper bounds (3.61) and (3.60) are provided in Figure 3.2(b) as functions of εR

and γR. These ensembles have in common that the information words contain the
same number kB of bits which is a crucial constraint to enable a fair comparison
(cf. Section 2.1.1).

The Tightness of the Upper Bounds

In addition to the upper bounds on word level, the exact word erasure probabilities
of the respective ensembles are included in Figure 3.2(c) in order to visualise how

2The input size of 840 bits has merely been chosen, since it is the least common multiple of

μ ∈ {1, 2, . . . , 8}. This way ensembles over different fields have exactly the same number

kB of input bits. Using arbitrary values for kB, the input sizes in terms of Fq-elements then

become k = � kB

ld(q)
� = � kB

μ
�.
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close these bounds are to the exact values. The upper bounds on symbol level,
similarly close to the respective exact symbol erasure rates, are not displayed in
the box. Therefore, mostly these upper bounds will be used hereafter instead of
the exact probabilities. For the standard random ensemble the lower bounds are
of no real practical use, since this ensemble does not show an erasure floor. In fact,
as can be seen for instance in Figure 3.2, the erasure probability of this ensemble
is virtually log-linear in the reception overhead.

The Expected Absolute Reception Overhead

Besides the residual erasure probability, the expected absolute symbol reception
overhead E[L]{ηR} for successful decoding is an important characteristic number for
an ensemble L as well as the expected absolute bit reception overhead μE[L]{ηR}.
The expected absolute symbol reception overhead is given by

E[L]{ηR} =
∞∑

ηR=0

ηRPr{decoding success on word level exactly at ηR}. (3.62)

To be more specific, successful decoding exactly at ηR implies that decoding fails
up to overhead ηR − 1. Now, the probability of successful decoding exactly at
ηR can be expressed by means of the decoding success probability P [L]( W ) =
1 − P [L]

(
��W
)

on word level, which denotes the probability that an information
word can be recovered after the reception of k + ηR encoded symbols. Note that
this includes that the considered information word might be recoverable with less
than k + ηR received symbols. Both the decoding failure probability P [L]

(
��W
)

as
well as the decoding success probability P [L]( W ) are inherently parametrised with
the overhead ηR = nR − k. Since this dependence is required to be explicit here,
they shall be denoted P [L]

(
��W ; ηR

)
and P [L]( W ; ηR) for the current consideration.

So the expected absolute symbol reception overhead can be written as

E[L]{ηR} =
∞∑

ηR=1

ηR

[
P [L]( W ; ηR) − P [L]( W ; ηR − 1)

]
=

∞∑
ηR=1

ηR

[
P [L]

(
��W ; ηR − 1

)
− P [L]

(
��W ; ηR

)]
=

∞∑
ηR=0

P [L]
(
��W ; ηR

)
. (3.63)

For the standard random ensemble the respective word erasure probability function
P [L]

(
��W ; ηR

)
is given by (3.13) and with increasing input sizes k the expected

reception overhead quickly converges to the values given in Table 3.1.
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In the third column the upper bound on the expected symbol reception overhead
which is derived analogously to (3.63) by using (3.61) instead of (3.13) is also tab-
ularised. The respective upper bound on the overhead in terms of bits is provided
in the fifth column. The upper bounds on the residual erasure probability are
extremely close to the exact values. This property is inherited to the expected
overhead, which is visualised in Figure 3.7(a), where the exact as well as the re-
spective upper bound on the expected absolute reception overhead E[L]{ηR} are
depicted, both in terms of bits as well as Fq-symbols.

3.5.2 The Sparse Random Ensembles

For a practically relevant parametrisation of the sparse random ensemble it is im-
portant to differentiate between the standard sparse and the expurgated sparse
random ensemble. This is unlike the standard random ensemble, where the differ-
ence to the expurgated random ensemble is negligible.

The literature is usually focused on the theory of the standard sparse ensemble (cf.
e.g. [Kol94,BKW97,AS08,Kol09]), since it arises from a very simple mathematical
experiment, without constraints on the row (or column) weights. Due to the i.i.d.
element-wise construction of the matrix, one can exploit the independence of both
rows and columns, which yields some appealing closed form results. Nevertheless,
the expurgation of all-zero rows from a standard sparse LT code matrix is definitely
required, since for a coding application such rows are useless and occur with a

Table 3.1: Expected absolute symbol and bit reception overheads for the standard ran-

dom ensemble (exact values and upper bounds) for not too small input sizes k

(k � 10).

expected absolute symbol
reception overhead E[L]{ηR}

expected absolute bit
reception overhead μE[L]{ηR}

Galois
field

exact upper bound exact upper bound

F2 1.606695152 2.0 1.606695152 2.0

F4 0.421097686 0.444444444 0.842195372 0.888888889

F8 0.160966184 0.163265306 0.482898552 0.489795918

F16 0.070848712 0.071111111 0.283394848 0.284444444

F32 0.033267085 0.033298647 0.166335425 0.166493235

F64 0.016121091 0.016124969 0.096726546 0.096749814

F128 0.007935535 0.007936016 0.055548745 0.055552112

F256 0.003936887 0.003936947 0.031495096 0.031495576
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non-negligible probability. Therefore, when speaking about the sparse random
ensemble in the following, the expurgated ensemble is meant.

In Figure 3.3 the upper and lower bounds on the erasure probability are depicted
for binary sparse random ensembles of size k = 100. Like for the standard random
ensemble, the upper bounds are so close to the true erasure probabilities, which
will be shown subsequently in this section, that they will be used in lieu thereof.
Note that here the erasure probabilities are not given analytically, but have to be
determined by carrying out Monte Carlo simulations, i.e. by solving a huge number
of systems of random linear equations by means of ML decoding. Since the number
of simulated systems is chosen sufficiently high, the residual erasure rates can be
taken for the true erasure probabilities in the provided figures.

In Figure 3.3(a) the bounds on symbol level are drawn in black and the bounds
on word level are outlined in grey. In Figure 3.3(b) it is vice versa for a bet-
ter comparison. The provided bounds are for ensembles with different densities
Δ ∈ {0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5}. The last value cor-
responds to the standard random ensemble, i.e. the optimal ensemble under ML
decoding. Its log-linear bounds are marked with circles in the two figures.

The erasure probabilities of the sparse random ensembles have a very characteristic
form, i.e. the two regions waterfall and erasure floor are very distinct, i.e. the two
regions are almost log-linear. In the waterfall region the erasure probability of the
sparse random ensembles is essentially equal to that of the corresponding standard
random ensemble, i.e. it is near-optimal in the waterfall in a general sense. In
the erasure floor region the symbol (word) erasure probability is almost equal
to the respective lower bound which depends (almost) only on the density Δ,
and therefore has a near-optimal erasure correction performance in this region for
a given density. Most other ensembles of the same density converge slower to
the lower bounds, which on symbol level are equal for all ensembles of the same
density and the lower bounds on word level, though not exactly equal, are almost
indistinguishably similar.

The just mentioned approximate log-linearity in the two regions of the sparse ran-
dom ensembles makes it extremely simple to design them for specific requirements,
particularly on symbol level. Since the input size is usually given due to application
constraints, the waterfall region is fixed and can be approximated by the log-line
of the standard random ensemble. Thus, the only remaining free parameter is the
density or the average row weight and eventually the field size. So by specifying
the maximum allowed erasure probability that should be reached at the end of
the waterfall, a point on the log-line of the standard random ensemble is defined.
Now it remains to find the lower bound log-line that passes through this point.
The density that leads to that lower bound is the wanted density of the sparsest
random ensemble that (almost) fulfils the requirements. Since the transition from
waterfall to erasure floor region is continuous and leaves a small gap (which de-
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Figure 3.3: Upper and lower bounds on the erasure probability on symbol and on word

level for binary (sparse) random ensembles of size k = 100 with the following

densities: Δ ∈ {0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5}.
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pends on the density) to the two characteristic log-lines, a slightly higher density
might be necessary.

All binary LT code ensembles with a density lower than 0.5 show an erasure floor,
though the erasure floors of the denser ensembles start only below the depicted
erasure probability of 10−10. In fact, binary ensembles with a higher density than
0.5 also show an erasure floor. In general, for non-binary codes this critical density
is Δ = 1 − 1

q
, i.e. the density of the respective standard random ensemble. Beyond

this density, the probability to obtain full column rank matrices decreases again.

The Tightness of the Upper Bounds

It has already been mentioned that the upper bounds of the sparse random ensem-
ble, like the ones of the standard ensemble, are so close to the true values that they
are actually useful for code design. To support this statement, simulated residual
erasure rates as well as upper and lower bounds on word and on symbol level are
depicted in Figure 3.4 for a binary ensemble and a non-binary ensemble over F64

as a function of the inverse reception code rate γR. The input sizes are 300 bits
and 50 symbols, respectively. The average row weight is d̄ = 10 in both cases.

Due to the discrete nature of the reception process, the depicted simulated resid-
ual erasure rates are piecewise linearly connected for a better visualisation. This
becomes particularly obvious for higher order fields. The linear pieces connect
the points with overheads that correspond to an integer number of received out-
put symbols. The calculation of the bounds has been limited to such values, too,
although they can be evaluated for an arbitrary real-valued reception overhead.

The simulated values are highlighted with red plus markers, while the red lines
connecting the markers are almost completely covered by the upper bounds in
black. The only visible part is around γR ≈ 1. Already for γR slightly greater
than one, the difference to the upper bound becomes invisible and negligible. So,
besides the fast convergence of upper and lower bounds in the erasure floor region,
this strong congruence between the upper bounds and the respective true values
allows to use the upper bounds for code design and analysis instead of performing
time-consuming Monte Carlo simulations.

Code Ensemble Sets

Sparse random ensembles have some very specific properties that need to be taken
into account when designing or evaluating them for an application. From Figure 3.4
it can be observed that the waterfalls of codes over different fields have the same
slope, both on symbol and on word level, if the condition is met that the number
of input bits kB is kept constant. Below, the latter condition is always assumed
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Figure 3.4: Bounds for the sparse random ensemble over F2 and F64 with k = 300 and

k = 50 symbols, respectively, for d̄ = 10 together with the corresponding

simulated residual erasure rates on symbol and on word level. The discrete

nature of the output nodes becomes visible in the piecewise linear charac-

teristic of the upper bounds and the simulated results. Additionally, due

to the small deviation of the simulated erasure rates from their respective

upper bounds, it is justified to describe the performance of sparse random

ensembles by means of their upper bounds.

to be met. But apart from the waterfall, the code ensembles behave differently,
depending on some further constraints. In the following, code ensembles with
different constraints will be analysed and compared with each other. Ensembles
over different fields that fulfil certain constraints will be subsumed to ensemble
sets. For instance the two ensembles from Figure 3.4 are two elements from the
ensemble set with equal average row weight d̄ = 10.

In the latter ensemble sets, codes over higher fields outperform their binary coun-
terparts on symbol level, but even more on word level. Nevertheless, at least
the respective symbol erasure probabilities are approximately in the same order
of magnitude. The bounds on the symbol erasure probabilities of two exemplary
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Figure 3.5: Upper and lower bounds on the symbol erasure probabilities for sparse

random ensembles with input sizes k = 300/ld(q) = 300/μ ∈

{300, 150, 100, 75, 60, 50} over Galois fields F2, F4, F8, F16, F32 and F64

as well as with average row weights d̄ = 10 and d̄ = 15, respectively.

ensemble sets with d̄ = 10 (ensemble set A) and d̄ = 15 (ensemble set B) up to
F64 are depicted in Figure 3.5. A general lowering of the erasure floors with an
increasing average row weight can be observed, but also within an ensemble set
the erasure floor lowers as the field order increases. While the erasure floor spread
within ensemble set A is relatively small, it becomes more relevant in ensemble
set B, i.e. for higher average row weights.

Practically it is more important to be able to choose from an ensemble set with
equal erasure correction properties. However, completely equal erasure correction
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properties over different fields cannot be achieved, since the waterfalls are usually
given by the constraints on the input size. On symbol level the waterfalls are
log-parallel and log-equidistant for two successive field orders, while on word level
they are only log-parallel, but converge to log-equidistance with increasing field
size. Yet, it is possible to equalise the erasure floors either on symbol level or on
word level by specifically tuning the density or the average row weights. These
ensemble sets, whose erasure correction characteristics can be found in Figure 3.6,
are thus either defined by the constraint of equal erasure floors on symbol level or
on word level. Note that the two constraints cannot be fulfilled at the same time.

The ensembles in the ensemble set depicted in Figure 3.6(a) have the same erasure
floor on symbol level. As a reference for the erasure floor, the 64-ary code from
Figure 3.4 is used, i.e. the sparse random ensemble over F64 with 50 input symbols
and average row weight d̄ = 10. The densities of the other ensembles from this set
are obtained from equating the respective lower bound (3.45) with the one of the
reference ensemble. The quantities related to the dependent ensemble are marked
with a star:

(
1 −

d̄�

k�

)k�γR
!

=

(
1 −

d̄

k

)kγR

⇒ (1 − Δ�)k�γR = (1 − Δ)kγR

⇒ Δ� = 1 − (1 − Δ)
k

k� . (3.64)

In Figure 3.6(a) a particular relation between the respective erasure floors on
symbol and on word level becomes evident: apart from being almost log-parallel,
the distance is approximately equal to the respective input size. This fact reveals
that the erasure floor is dominated by single residual symbol erasures. Note that
single residual erasures do not occur due to linear dependencies between different
columns, but because exactly one input symbol does not participate in any of
the linear equations, i.e. there exists exactly one all-zero column in the decoding
matrix. So one can expect that already by precoding with a single parity check
(SPC) code, which is known to guarantee the correction of exactly one erasure, it
should be possible to lower the erasure floors significantly at a very small rate loss
of (k − 1)/k, when k is the input size of the LT code. In this chapter, this brief
remark on precoding shall suffice as this topic will be further detailed in Chapter 6.

Constructing ensemble sets with equal erasure floors on word level is slightly more
involved, since the lower bound on word level (3.46) does not exhibit a simple
dependence on d̄ or on Δ as does the lower bound on symbol level. To find such a
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Figure 3.6: Upper and lower bounds for two ensemble sets with equal erasure floors.

The reference code in both sets is the 64-ary sparse random ensemble with

k = 50 and d̄ = 10. The respective input sizes are k = 300/ld(q) = 300/μ ∈

{300, 150, 100, 75, 60, 50}.



3.5 Numerical Evaluation and Monte Carlo Simulations 65

dependence, it helps to expand (3.46)

P [L]
(
��W
)

=
k∑

i=1

(−1)i+1

(
k

i

)(∑
d∈D

Ωd

(
k−i

d

)(
k

d

) )kγR

= k

(∑
d∈D

Ωd

(
k−1

d

)(
k

d

) )kγR

−

(
k

2

)(∑
d∈D

Ωd

(
k−2

d

)(
k

d

) )kγR

± . . .

+ (−1)kk

(∑
d∈D

Ωd

(
1
d

)(
k

d

))kγR

+ (−1)k+1

(∑
d∈D

Ωd

(
0
d

)(
k

d

))kγR

.

Evaluating the individual terms for practically relevant parameter sets (and here
the term practically relevant can be understood in a very broad sense) it shows
that the first order term is already an extremely good approximation

P [L]
(
��W
)

≈ k

(∑
d∈D

Ωd

(
k−1

d

)(
k

d

) )kγR

. (3.65)

This approximation now contains the lower bound on symbol level, i.e.

P [L]
(
��W
)

≈ kP [L]
(
�S
)

= k

(
1 −

d̄

k

)kγR

. (3.66)

So in order to simplify the construction it has proven sufficiently accurate to use
this first order approximation of P [L]

(
��W
)
. By equating the approximation of

P [L]
(
��W
)

of the reference and the dependent ensembles, with the quantities of the
latter ones, again marked with a star, the appropriate densities can be obtained.

k�

(
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d̄�

k�

)k�γR

= k

(
1 −

d̄
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)kγR

⇒ k�(1 − Δ�)k�γR = k(1 − Δ)kγR

⇒ (1 − Δ�)k�γR =
k

k�
(1 − Δ)kγR

⇒ Δ� = 1 −
(

k

k�

) 1
k�γR (1 − Δ)

k
k� (3.67)

Note that equality can only be achieved for one particular overhead at the same
time. In Figure 3.6(b) equality of the lower bounds is given at γR = 1.04. For
higher values of γR the erasure probabilities diverge slowly.
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The Expected Absolute Symbol Reception Overhead

The exact word erasure probability is not known analytically for other LT en-
sembles than the standard random ensembles, so it has to be determined using
simulations. However, as the erasure floors can be quite shallow and as the num-
ber of relevant terms in (3.63) can then be very large, the determination of the
expected absolute symbol reception overhead E[L]{ηR} may lead to very long sim-
ulation times.

A quicker method for the sparse random ensemble would be to use again the upper
bounds on word level instead of the exact word erasure probabilities. Although this
already yields quite good results particularly for non-binary ensembles, it can be
improved significantly. As the upper bound has the largest distance (both absolute
as well as relative) to the true value at zero overhead and this distance decreases
quickly and strictly monotonic with the overhead, it is advisable to perform a few
simulations to determine P [L]

(
��W ; ηR

)
for the first couple of overhead values and

for the remaining ηR one can use the respective upper bound.

In Table 3.2 E[L]{ηR} and μE[L]{ηR} has been calculated for ensemble set A, i.e.
the sparse random ensemble set with d̄ = 10 and k = 300/μ input symbols. In the
second and the fourth column, the combination of simulation and upper bound, as
described above, has been used. Those values are almost equal to the true values
and are thus treated as quasi-exact in the following. The values in columns three

Table 3.2: Expected absolute symbol and bit reception overheads for the ensemble set A

(cf. Figure 3.5). The second and fourth column can be assumed to contain the

true values. They are calculated by using simulated values for small values

of ηR and continuing with the upper bounds as soon as P [L]
(
��W ; ηR

)
and

P
[L](

��W ; ηR

)
have converged sufficiently. For the third and fifth column only

the upper bounds are used.

expected absolute symbol
reception overhead E[L]{ηR}

expected absolute bit
reception overhead μE[L]{ηR}

Galois
field

quasi-exact upper bound quasi-exact upper bound

F2 1.932958 2.334474 1.932958 2.334474

F4 0.490783 0.516869 0.981566 1.033738

F8 0.187236 0.189988 0.561708 0.569964

F16 0.082891 0.083480 0.331564 0.333920

F32 0.039545 0.039751 0.197725 0.198755

F64 0.019674 0.019740 0.118044 0.118440
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d̄ = 10 and 300 input bits.

Figure 3.7: Expected value of the absolute reception overhead (3.62) for the standard

random ensembles and the sparse random ensembles from the ensemble set A,

i.e. with d̄ = 10 and k = 300/μ input symbols. The expected values are given

in terms of Fq-symbols and in bits.

and five are obtained from using P
[L](

��W ; ηR

)
only. It can be observed that with

an increasing field order, the upper bound on E[L]{ηR} or μE[L]{ηR}, respectively,
converges quickly to the true value, so that it is sufficiently accurate to use only
P

[L](
��W ; ηR

)
for non-binary sparse random ensembles.

In Figure 3.7 the expected absolute reception overhead of the standard random
ensemble set and that of ensemble set A is depicted as well as the respective
upper bounds as dashed lines. For the standard random ensemble, E[L]{ηR} is
only slightly smaller than for the sparse random ensemble set A. Decreasing the
average row weight further, however, leads to a notable rise of E[L]{ηR}.

3.5.3 Concentrated Ensembles

Like the sparse random ensemble, the ensemble with a concentrated row weight
distribution has a near-optimal erasure correction performance. It is interesting
to see that using an equivalent parametrisation of the two ensembles, i.e. equal
average row weight and input size, their erasure correction performance is virtually
the same. So, accordingly parametrised concentrated ensembles yield essentially
the same erasure probabilities as the ones depicted in Figures 3.3 to 3.7.

Since a general expression for the exact word erasure probability as a function of
the row weight distribution is not known, the upper bound on the residual word
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Figure 3.8: Word erasure probabilities of purely concentrated ensembles (measured) and

expurgated random ensembles (3.14), respectively, for absolute symbol recep-

tion overheads from 0 to 10 over F2 and F4 for very small input sizes. The

row weights of the purely concentrated ensembles are d = k/q. Note that for

the binary ensembles only odd values are used for d.

erasure probability (3.18) constitutes a viable objective function to find the op-
timal row weight distribution. Without a constraint on the average row weight,
numerical optimisation yields the row weight distribution of the expurgated ran-
dom ensemble. However, the difference in the objective function using the optimal
distribution to the case with an equivalently parametrised concentrated distribu-
tion is essentially zero. The existence of these two special row weight distributions,
which are by their appearance so very different, suggests that there exist many row
weight distributions that are close to optimal. While this assumption can be easily
verified by generating row weight distributions that have some (here not further
specified) likeness to the two above mentioned distributions, the more daring sup-
position that any row weight distribution might deliver close to optimal results
does not hold.

Despite the existence of many close to optimal row weight distributions, only the
two types random and concentrated shall be discussed in the following, as there
is enough reason to assume that the characteristics of all other close to optimal
ensembles are mixtures of these two cases. In order to illustrate this virtual equality
of the erasure correction performance of the two ensemble types, the word erasure
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Figure 3.9: Simulation times of concentrated ensembles relative to those of expurgated

sparse random ensembles of the same average row weight or density at an

inverse reception code rate γR ≈ 1.04. In (a) the simulation times are de-

picted as a function of the density, while in (b) they are given in terms of

the average row weight d̄. The ensembles have input sizes k = 300
ld(q)

= 300
μ

∈

{300, 150, . . . , 50}.

probability is depicted in Figure 3.8 for purely concentrated ensembles and for
expurgated random ensembles for very small input sizes, where a difference is still
visible. Considering the binary ensembles, hardly any difference can be observed
already for input sizes as small as k = 14 and it vanishes quickly as k grows,
with the expurgated random ensemble being always infinitesimally better than the
concentrated one. For non-binary ensembles this strong congruence begins at even
smaller input sizes.

Moreover, this congruence can also be observed for sparse random ensembles of the
same average row weights as the concentrated ones. Adding a constraint on the
average row weight such that it is lower than approximately k(1 − 1/q), i.e. lower
than the average row weight of the expurgated random ensemble, the optimal row
weight distribution tends more and more towards the concentrated distribution as
the average row weight approaches one. In fact, for the extreme case of an average
row weight of one the expurgated sparse ensemble and the concentrated ensemble
are identical. Nevertheless, the difference in the objective function for the two
cases is again so marginal that it is hardly worth the effort.

Judging from the erasure correction performance both types of ensembles, i.e.
expurgated random or concentrated, are equally good, and with densities close to



70 3 Finite Length Analysis under Optimal Erasure Decoding

1 − 1/q, the decoding complexities are also almost equal. However, the decoding
complexities differ significantly for lower densities or average row weights as can
be observed in Figure 3.9. The decoding complexities have been estimated by
measuring the simulation times for ensembles of input sizes k = 300

ld(q)
= 300

μ
∈

{300, 150, . . . , 50} over the respective fields.

In Figure 3.9 the simulation times tCE(Δ; q) of the purely concentrated ensembles
are depicted relatively to the times tESpRE(Δ; q) of the equivalently parametrised
expurgated sparse random ensembles. At lower average row weights, the random
ensembles profit from the increasing probability of occurrence of very low weight
rows which speed up the pivoting process. Most helpful are rows of weight one,
as these can be directly used for back substitution. The average row weight,
however, should not be decreased too far, since for d̄ � ln k the ensembles begin
to degenerate. So, besides their trivial parametrisation, concentrated ensembles
do not show a practical advantage over (sparse) random ensembles. Therefore,
concentrated ensembles will not be further considered in the following.

3.5.4 A BP-Optimised Ensemble under ML Decoding

A row weight distribution often used in the literature is given by (2.8) from [Sho06].
As it has been optimised for BP decoding (cf. Sections 2.1.5 and Section 2.1.6) and
for a larger input size it shall just serve as a contrasting example to the distributions
used so far. The erasure correction performance of two binary ensembles with this
distribution is depicted in Figure 3.10(b) and Figure 3.10(d) for the two input
sizes k = 100 and k = 1000 in terms of simulated erasure rates together with
the respective upper and lower bounds on the erasure probability again both on
word and on symbol level. For comparison, the performance of sparse random
ensembles with the same input sizes and average row weight d̄ = 5.87 is shown in
Figure 3.10(a) and Figure 3.10(c). This parametrisation ensures that the ensemble
pairs with equal input size have equal symbol erasure floors and virtually equal
word erasure floors.

The two regions waterfall and erasure floor of the short BP-optimised ensemble
are not very distinctive, neither in the upper bound nor in the simulated erasure
rates, whereas for the long BP-optimised ensemble the two regions become more
pronounced, particularly for the simulated erasure rates. In general, these ensemble
have a worse erasure correction performance than the corresponding sparse random
ensembles. However, the long BP-optimised ensemble has already a competitive
performance and it becomes even better with larger k.

Unfortunately, the bounds are less tight for the BP-optimised ensembles and the
simulated erasure rates converge slower to their bounds than it is the case for the
sparse random ensembles. For this reason, the erasure correction performance of
such ensembles cannot be predicted very accurately by the upper bounds as it is
possible for that of sparse random ensembles.
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(c) Sparse random ensemble, k = 1000.
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Figure 3.10: Upper and lower bounds on the residual erasure probabilities on word and

on symbol level as well as simulated erasure rates for two types of binary

LT code ensembles and for two different input sizes k = 100 and k = 1000.

Code details:

On the left: sparse random ensembles with d̄ = 5.87.

On the right: BP-optimised ensembles with d̄ = 5.87.
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Despite the inferior erasure correction performance, it should be kept in mind that
optimising for BP decoding yields ensembles that have a very low decoding com-
plexity. This particularly pays off for large k, where the decoding of sparse random
ensembles becomes much more complex than the decoding of BP-optimised ensem-
bles. Moreover, the erasure correction performance of BP-optimised ensembles be-
comes comparable to that of equivalently parametrised sparse random ensembles,
which can be observed in Figures 3.10(d) and 3.10(c).

The BP-optimised ensemble in Figure 3.10(b) for instance, can be ML decoded in
approximately 42.2 % of the time that is required to ML decode the sparse random
ensemble in Figure 3.10(a). But the significantly better performance of the sparse
random ensemble definitely justifies the additional complexity. On the other hand,
the BP-optimised ensemble in Figure 3.10(d) is ML-decodable3 in approximately
4.75 % of the time required for the sparse random ensemble in Figure 3.10(c). In
the latter case, the slightly superior erasure correction performance of the sparse
random ensemble does not necessarily justify the complexity overhead. Thus, for
large k, BP-optimised ensembles should be used, but for small to medium k, sparse
random ensembles are a much better choice.

Another detail of the performance curves shall also be brought into focus. As the
average row weight d̄ has been kept constant, the density of the longer codes, i.e.
with k = 1000, is much lower than that of the short codes. In particular d̄ is way
lower than ln k, which is the approximate size where the codes start to degenerate.
Here, the term degenerated is used rather informally, whenever the word erasure
probability does not exhibit a noticeable waterfall. Moreover, the word erasure
probabilities of the longer codes, unlike the short codes, are extremely close to
their lower bounds, since due to the low density, decoding failures arise mostly
from unconnected input nodes, i.e. from all-zero columns in the decoding matrix.
The larger the distance of the actual erasure probability from the lower bound
on word level, as in the case of the short BP-optimised code, the more linearly
dependent not all-zero columns exist in the decoding matrix.

The Probability of Exactly j Unconnected Input Nodes

The lower bound on word level is nothing but the sum of the probabilities Pe(j) of
having exactly j input nodes that are not connected to any output node, for which
a closed form expression has been derived in Section 3.3.5. These probabilities
together with the lower bound on word level are depicted in Figure 3.11 for the
previous four code ensembles. It can be observed that Pe(j), with j ≥ 2, for the
sparse random ensembles is smaller than for the BP-optimised ensembles. With
these probabilities it is possible to gain some more insight into the respective codes,

3Note that BP decoding of the BP-optimised ensemble yields almost the same result as ML

decoding, both in terms of residual erasure probability as well as complexity.
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as Pe(j) serves as a more general lower bound, i.e. the probability that there are j

or more residual symbol erasures in an information word is greater than or equal
to Pe(j). Although this general lower bound looses tightness with increasing j (not
shown here), it can at least be used as an indicator for the precodability of an LT
code ensemble.

3.6 Computational Complexity

In Section 3.5.1 the erasure correction performance of standard random ensem-
bles has been assessed for different field orders. To this end, a fairness constraint
has been introduced, such that the number of input bits is kept constant when
changing the field order. Although the unconstrained approach from the literature
yields enormous erasure performance gains for higher field orders, as depicted in
Figure 3.2(a), these come at the price of a significant increase in computational
complexity [LPC10]. While in the unconstrained approach the dimensions of the
underlying systems of linear equations are equal over different fields (the number of
symbols is kept constant), the operations over higher field orders are computation-
ally more expensive than those over lower ones. A yet more significant complexity
penalty is due to the density of the standard random ensembles which grows quickly
from 0.5 in the binary case and approaches one as the field order increases.

3.6.1 The Constrained Standard Random Ensemble

By introducing the constraint on the number of bits per information word, apart
from enabling a fair comparison, the erasure correction performance still increases
with the field order, though not as fast as without this constraint, as can be
seen in Figure 3.2(b). The choice of a higher field order, however, does not only
lead to a slight improvement of the erasure correction performance, but more
importantly it comes with a significantly lower computational complexity. ML
decoding over F2 has a complexity of O(k3

B) per information word. Using higher
order Galois fields while keeping the number kB of input bits constant, the input
size k = kB/ld(q) = kB/μ in terms of symbols over Fq decreases with the number
of bits per symbol, so that in total fewer though a little more complex computation
steps are necessary, i.e. O(βμk3) with βμ > 1.

There exist several optimised methods for operations over higher order Galois
fields. In [GMS08], for instance, an optimised approach for multiplications over
Fq has been proposed. Since computer architectures are generally based on byte
operations, ensembles over F256 shall be considered exemplarily, i.e. μ = 8. When
using, e.g. the ’Log/Antilog Optimized’ technique for the multiplications over
F256 and assuming three table lookups and one add operation per multiplication
(cf. [GMS08, Table 1]), the complexity factor β8 is coarsely estimated as β8 = 4.
With this assumption, the complexity of the ensemble over F256 is approximately
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(b) BP-optimised ensemble, k = 100.
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(c) Sparse random ensemble, k = 1000.
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(d) BP-optimised ensemble, k = 1000.

Figure 3.11: Probability Pe(j) (cf. (3.53)) of exactly j input nodes being not connected

to any of the kγR output nodes as well as the lower bound on word level,

i.e. P [L]
(
��W
)

=
∑k

j=1
Pe(j) (cf. (3.48)), for two types of binary LT code

ensembles and for two different input sizes k = 100 and k = 1000.

Code details:

On the left: sparse random ensembles with d̄ = 5.87.

On the right: BP-optimised ensembles with d̄ = 5.87.
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Figure 3.12: Relative simulation times of standard and sparse random ensembles as a

function of the Galois field order.

(a) Relative simulation times of the standard random ensembles from Fi-

gure 3.2(b) with input sizes k = 840
ld(q)

= 840
μ

∈ {840, 420, . . . , 105}

and μ ∈ {1, 2, . . . , 8} at an inverse reception code rate γR ≈ 1.01. The

simulation times tStdRE(q) are given relative to the simulation time

tStdRE(2) of the binary code. The dashed line (tr = μ−3) indicates the

order of complexity (the Gaussian elimination algorithm has a com-

plexity of O(k3) per information word).

(b) Relative simulation times of the sparse random ensemble sets A

(d̄ = 10) and B (d̄ = 15) from Figure 3.5 with input sizes k = 300
ld(q)

=
300
μ

∈ {300, 150, . . . , 50} and μ ∈ {1, 2, . . . , 6} at an inverse reception

code rate γR ≈ 1.04. The simulation times are given relative to the sim-

ulation time tStdRE(2) of the binary standard random ensemble, whose

density is Δ = 0.5.

O((β8k)3) = O((4 · kB
8

)3) = O( 1
8
k3

B). Consequently, with optimised Galois field
arithmetic implementations and eventually also with smart ML decoding algo-
rithms, the computational complexity per information word can be decreased even
further as the field order q increases.

In Figure 3.12(a) relative simulation times of the standard random ensembles from
Figure 3.2(b) are depicted. The simulation times have been measured at an inverse
reception code rate γR ≈ 1.01 and they are given relative to that of the binary
ensemble. The dashed line (tr = μ−3) indicates the order of complexity when as-
suming that binary and non-binary operations are equally complex. In that case,
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the Gaussian elimination algorithm would have a complexity of O(k3) = O(( kB
μ

)3)
per information word. For these simulations, the complexity factors βμ are greater
than one but less than four, i.e. the achieved simulation time speedups are sig-
nificantly better than estimated in the previous paragraph. Of course, the actual
factors βμ strongly depend on the implementation.

3.6.2 The Sparse Random Ensemble

However, the complexity of the standard random ensembles is often still too high
for practical purposes and the property that these ensembles exhibit no erasure
floor is usually not required. Instead, the erasure correction performance of their
sparse counterparts is almost as good in the waterfall region but they can be pro-
cessed with far lower computational costs. The relative simulation time of the two
example ensemble sets from Figure 3.5 over F2 to F64 with d̄ = 10 (ensemble set A)
and d̄ = 15 (ensemble set B) and with 300 input bits is shown in Figure 3.12(b).
It is again given relative to that of the binary standard random ensemble, i.e. with
Δ = 0.5. Also in the sparse random case it can be observed that the compu-
tational complexity decreases with an increasing q, while the erasure correction
performance improves at the same time.

In Figure 3.13(a) the relative simulation times of sparse random ensembles with
300 input bits over F2 to F64 are depicted for the complete range of densities
measured at an inverse reception code rate of γR ≈ 1.04. The diamond markers
indicate the standard random ensembles which have a density of Δ = 1 − 1/q.
Apart from the favourable speedup effect of higher order Galois fields that can
be observed, it is worthwhile to note that the simulation time curves have a very
characteristic shape. For very low densities a small variation of the density has
a dramatic influence on the simulation times, while at the high density end the
curve flattens and a variation of the density has only a very limited effect on the
simulation times. So in order to save complexity it makes sense to choose the
highest supported field order together with the lowest density that still fulfils the
erasure correction and granularity requirements.

Although Figure 3.13(a) gives a good overview of the complexity as a function of
the density, ensembles over different fields but with the same density should not
be directly compared, since they have different erasure correction properties. To
even out this discrepancy it is more advantageous to plot the relative simulation
times of ensemble sets, e.g. as in Figure 3.13(b) for ensemble sets with equal word
erasure floors. The density of ensembles over one field size is taken as the reference,
here the one over F64. Then, the densities Δ� of the dependent ensembles in the
respective set can be computed via (3.64) or (3.67).

With Figure 3.13(b) it is now fairly easy to compare the complexity of ensemble
sets with equal word erasure floor as they have the same abscissa. The simulation
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Figure 3.13: Relative simulation times of standard and sparse random ensembles with

input sizes k = 300
ld(q)

= 300
μ

∈ {300, 150, . . . , 50} and μ ∈ {1, 2, . . . , 6} at

an inverse reception code rate γR ≈ 1.04. The times are given relative to

the simulation time tStdRE(2) of the binary standard random ensemble, i.e.

with density Δ = 0.5.

(a) The simulation times tESpRE(Δ; q) are given as a function of Δ. The dia-

mond markers indicate the standard random ensembles over the respec-

tive field. These have the maximum considered density of Δ = 1 − 1/q

for the respective field order q.

(b) The simulation times tESpRE(Δ�; q) are given as a function of the den-

sity of the 64-ary ensembles, which is taken as the reference density to

construct ensemble sets with the same word erasure floors as the 64-ary

ensembles. The densities Δ� of the other ensembles are obtained from

Δ by means of (3.67). In this plot, the points on the 6 curves with

the same abscissa correspond to ensembles sets with equal word era-

sure floors and thus the complexity of such ensemble sets can be easily

compared.

times of the exemplary ensemble set from Figure 3.6(b) can be found at a density
Δ = 0.2 of the 64-ary ensemble as indicated in the plot. Merely by changing
the Galois field order from binary to 64-ary the complexity drops by almost two
decades, while the ensembles in this set still have the same erasure correction
performance in the word erasure floor region and the non-binary ones have even a
superior performance in the waterfall.
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3.7 Conclusions

General and some special LT code ensembles have been analysed in the present
chapter with respect to their erasure resilience under optimal decoding. The de-
rived exact erasure probabilities or the bounds thereon constitute useful tools for
the analysis and the design of these ensembles. In this chapter, the derivations
have been presented in great detail, while in the following chapters bounds for
the same purpose but under different conditions are merely stated without further
proof, as the general procedures are similar to the ones described here.

A particular emphasis has been laid on the random ensembles. The near-optimal
sparse random ensembles have turned out as an excellent alternative to the optimal
standard random ensemble due to the almost indistinguishable erasure correction
performance in the practically relevant region of low reception overheads, i.e. in the
waterfall region, at a significantly lower computational cost. The generalisation to
and the usage of Galois fields of higher order has also proven beneficial resulting
in a lower residual erasure probability in the waterfall region and at the same
time in a considerably decreased computational complexity. By the introduction
of well-defined code ensemble sets, i.e. ensembles over fields of different order with
a certain property in common, such as an equal erasure floor on word level, a fair
comparison of ensembles over different fields is facilitated.



Chapter 4

Conventionally Systematic LT Code
Ensembles

The erasure correction performance of structured ensembles depends on the erasure
probability ε of the channel as already described in Section 2.2. Particularly for
conventionally systematic ensembles it is worthwhile to examine their performance
as a function of the channel [Yua12], as it strongly depends on the used row weight
distribution whether the conventionally systematic prefix is beneficial or not.

The prefix of a conventionally systematic LT code ensemble consists of the k × k

identity matrix Ik×k, i.e. the first k encoded symbols are equal to the k data
symbols. Of the k transmitted systematic encoded symbols only k1 are received,
i.e. k2 = k − k1 systematic encoded symbols are erased. In total nR encoded
symbols are received of which the non-systematic encoded symbols are randomly
generated according to a given row weight distribution Ω(ξ). At the receiver, the
matrix

Gsys,R =

(
Ik1×k1 0k1×k2

G1 G2

)
∈ F

nR×k
q (4.1)

is used to decode the remaining input symbols. Without loss of generality, the
input symbols and thus the columns of matrix Gsys,R can be permuted to place
the received systematic symbols on the first k1 positions.

As depicted in Figure 4.1, this results in an identity matrix of size k1 × k1 in the
upper left part of Gsys,R and an all-zero matrix of size k1 × k2 in the upper right
part. The following nR −k1 rows are generated according to the distribution Ω(ξ).
These rows can be split into two submatrices G1 and G2 of size (nR − k1) × k1 and
(nR −k1)×k2, respectively. Using only backward insertion of the known systematic
symbols, the matrix Gsys,R can be transformed to

G̃sys,R =

(
Ik1×k1 0k1×k2

0(nR−k1)×k1
G2

)
(4.2)
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[k×1]
q

yT ∈ F
[nT×1]
q

. . .

Gsys,T =

(
Ik×k

GT

)
, GT ∼ Ω(ξ)

(a) Exemplary encoding graph and generic encoding matrix Gsys,T ∈ F
nT×k
q .

x ∈ F
[k×1]
q

yR ∈ F
[nR×1]
q

Gsys,R =

(
Ik1×k1 0k1×k2

G1 G2

)
, G2 ∼ Ω2(ξ)

(b) Exemplary decoding graph and generic decoding matrix Gsys,R ∈ F
nR×k
q .

x ∈ F
[k×1]
q

ỹR ∈ F
[nR×1]
q

G̃sys,R =

(
Ik1×k1 0k1×k2

0(nR−k1)×k1
G2

)
, G2 ∼ Ω2(ξ)

(c) Exemplary transformed decoding graph and generic transformed decoding

matrix G̃sys,R ∈ F
nR×k
q . The dashed grey lines represent removed edges.

Figure 4.1: A conventionally systematic LT code.

in which the submatrix G1 has been turned into an all-zero matrix while submatrix
G2 is left unchanged. Since the first k1 input symbols are already known, the
erasure properties of the LT code are fully determined by submatrix G2. Therefore,
the performance of a conventionally systematic LT code of length k under ML
decoding is first analysed under the condition that nR = kγR encoded symbols
are received and that k2 of the k systematic encoded symbols are erased on the
SEC, so initially expressions for the bounds on the conditional symbol and word
erasure probabilities P [L]

(
�S
∣∣k2

)
and P [L]

(
��W
∣∣k2

)
under ML decoding have to

be found. Note that for actually determining the remaining input symbols, the
received symbols yR need to be updated according to the matrix transformations.
For the determination of the erasure correction properties, however, it is sufficient
to consider only the decoding matrix.

Although the transformed nR − k1 rows in (4.2) obviously do not follow the row
weight distribution Ω(ξ) anymore, the distribution Ω2(ξ) for submatrix G2, which
is required for assessing the erasure correction properties of the given LT code
ensemble, can be obtained from the original distribution as will be shown subse-
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quently. Sometimes it is convenient to express the number of rows of the con-
sidered matrices in terms of the inverse reception code rate γR, the input size k

as well as k2, the number of erased systematic encoded symbols. Thus, G2 has
nR − k1 = k(γR − 1) + k2 rows.

4.1 The Row Weight Distribution of a Submatrix

Lemma 4.1. Given nR received output nodes and k2 erasures in the systematic
positions, the row weight distribution of submatrix G2 ∈ F

(k(γR−1)+k2)×k2
q is

Ω2(ξ) =
∑

d2∈D2

Ω2,d2 ξd2 (4.3)

=
∑

d2∈D2

(∑
d∈D

Ωd ·

(
k−k2
d−d2

)(
k2
d2

)(
k

d

) )
ξd2 , (4.4)

where the non-systematic output node degree d2 denotes the number of edges of an
output node that are connected to input nodes without a systematic description
at the receiver.

Proof. The coefficients of the distribution Ω2(ξ) are given by

Ω2,d2 = Pr{d2 = d2}

=
∑
d∈D

Pr{d = d} · Pr{d2 = d2 | d = d}

=
∑
d∈D

Ωd · Pr{d2 = d2 | d = d} (4.5)

with the hypergeometric distribution

Pr{d2 = d2 | d = d} =

(
k−k2
d−d2

)(
k2
d2

)(
k

d

) . (4.6)

Equation (4.6) is due to the fact that, given an output node of degree d, there
are

(
k2
d2

)
possibilities to connect d2 edges to the k2 input nodes that have only a

non-systematic description at the receiver and
(

k−k2
d−d2

)
possibilities to connect the

remaining d − d2 edges to the k − k2 received systematic nodes, whereas the total
number of possibilities to connect d edges to k nodes is

(
k

d

)
.

In Figure 4.2, the row weight distribution Ω2(ξ) is depicted for two exemplary
binary LT code ensembles of input size k = 100 for k2 ∈ {1, 2, . . . , 100}. The row
weight distribution Ω2(ξ) for k2 = k = 100 corresponds to Ω(ξ) of the unstructured
ensemble, which is expurgated in general, i.e. Ωd=0 = 0. Note that except for the
latter case Ω2,d2=0 	= 0. This fact is emphasised in Figure 4.2 by the dotted line
style.
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Figure 4.2: Row weight distributions Ω2(ξ) for different values of k2, the number of

erased systematic symbols. The dotted lines are used to highlight the non-

zero probability of rows of weight zero.

Code details:

(a) – (b) binary conventionally systematic sparse random ensemble with an

input size of k = 100 and an average row weight of d̄ = 6.

(c) – (d) binary conventionally systematic standard random ensemble with

an input size of k = 100 and an average row weight of d̄ = 50.
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4.2 Bounds on the Conditional Erasure Probabilities

The input symbols can be separated into two sets: the set of k1 systemati-
cally received input nodes and the set of k2 input symbols that depend on the
k(γR − 1) + k2 received non-systematic encoded symbols. The conditional symbol
erasure probability P [L]

(
�S
∣∣k2

)
is the average of the conditional symbol erasure

probabilities P
[L]
1

(
�S
∣∣k2

)
and P

[L]
2

(
�S
∣∣k2

)
of the two sets:

P [L]
(
�S
∣∣k2

)
=

k1

k
· P

[L]
1

(
�S
∣∣k2

)
+

k2

k
· P

[L]
2

(
�S
∣∣k2

)
. (4.7)

As the systematically received input nodes are known, i.e. P
[L]
1

(
�S
∣∣k2

)
= 0, this

results in

P [L]
(
�S
∣∣k2

)
=

k2

k
· P

[L]
2

(
�S
∣∣k2

)
, (4.8)

while the conditional word erasure probability P [L]
(
��W
∣∣k2

)
is simply given by the

word erasure probability of the residual ensemble G2.

P [L]
(
��W
∣∣k2

)
= P

[L]
2

(
��W
∣∣k2

)
, (4.9)

So the erasure correction performance of this LT code ensemble is fully determined
by the subgraph defined by matrix G2. Therefore, the bounds on the conditional
symbol or word erasure probability can be calculated by applying Theorems 3.14,
3.15, 3.17 and 3.18 to an LT code ensemble that is described by the parameters
of matrix G2, i.e. the row weight distribution Ω2(ξ) as in Lemma 4.1 and the
dimensions of G2.

With the previous discussion, the construction of the bounds should be self-evident.
Thus, the bounds on the conditional symbol and word erasure probabilities of
a conventionally systematic LT code ensemble L with generator matrix Gsys,R ∈

F
nR×k
q at the receiver as in (4.1) are briefly provided in the following four corollaries

without further proof, given that nR = kγR encoded symbols are received and that
k2 of the k systematic encoded symbols are erased on the SEC.

Corollary 4.2. A lower bound on the conditional symbol erasure probability
P [L]

(
�S
∣∣k2

)
is

P [L]
(
�S
∣∣k2

)
=

k2

k

[ ∑
d2∈D2

Ωd2

(
1 −

d2

k2

)]k(γR−1)+k2

. (4.10)

Corollary 4.3. A lower bound on the conditional word erasure probability
P [L]

(
��W
∣∣k2

)
is

P [L]
(
��W
∣∣k2

)
=

k∑
i=1

(−1)i+1

(
k2

i

)( ∑
d2∈D2

Ωd2

(
k2−i

d2

)(
k2
d2

) )k(γR−1)+k2

. (4.11)
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Corollary 4.4. An upper bound on the conditional symbol erasure probability
P [L]

(
�S
∣∣k2

)
is

P
[L](

�S
∣∣k2

)
=

k2

k

k2−1∑
w=1

(
k2 − 1
w − 1

)
(q − 1)w−1

·

[
1
q

+
q − 1

q

∑
d2∈D2

Ωd2 ·
Kd2 (w; k2)
Kd2 (0; k2)

]k(γR−1)+k2

. (4.12)

Corollary 4.5. An upper bound on the conditional word erasure probability
P [L]

(
��W
∣∣k2

)
is

P
[L](

��W
∣∣k2

)
=

k2∑
w=1

(
k2

w

)
(q − 1)w−1

·

[
1
q

+
q − 1

q

∑
d2∈D2

Ωd2 ·
Kd2 (w; k2)
Kd2 (0; k2)

]k(γR−1)+k2

. (4.13)

The above bounds are evaluated and discussed in Section 4.4 and are depicted in
Figures 4.3, 4.4 and 4.5.

4.3 Bounds on the Symbol and Word Erasure Probability

In order to formulate the residual erasure probabilities P [L]
(
�S
∣∣ε) and P [L]

(
��W
∣∣ε)

as well as their bounds for a specific channel quality ε on the SEC, the probabil-
ity distribution P (k2|ε) of the number k2 of erased systematic encoded symbols
depending on the channel erasure probability ε is required first. So, assuming
a transmission over an SEC with erasure probability ε, i.e. on the channel each
transmitted encoded symbol is erased independently with a certain probability ε,
the required probability distribution P (k2|ε) results in:

P (k2|ε) =

(
k

k2

)
εk2(1 − ε)k−k2 . (4.14)

Finally, the residual erasure probabilities P [L]
(
�S
∣∣ε) and P [L]

(
��W
∣∣ε) are

P [L]
(
�S
∣∣ε) =

k∑
k2=1

P (k2|ε) · P [L]
(
�S
∣∣k2

)
(4.15)

and

P [L]
(
��W
∣∣ε) =

k∑
k2=1

P (k2|ε) · P [L]
(
��W
∣∣k2

)
. (4.16)
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However, since closed form expressions of P [L]
(
�S
∣∣k2

)
and P [L]

(
��W
∣∣k2

)
are not

known in general, only measurements thereof can be used in (4.15) and (4.16). Nev-
ertheless, by inserting the corresponding upper and lower bounds on P [L]

(
�S
∣∣k2

)
and P [L]

(
��W
∣∣k2

)
that are given in (4.10) – (4.13) into (4.15) and (4.16), upper

and lower bounds on P [L]
(
�S
∣∣ε) and P [L]

(
��W
∣∣ε) can be easily determined.

4.4 Numerical Evaluation and Monte Carlo Simulations

In this section, the bounds on the conditional erasure probabilities P [L]
(
�S
∣∣k2

)
and P [L]

(
��W
∣∣k2

)
as given in Corollaries 4.2 – 4.5 will be numerically evaluated.

However, in order not to restrain the results to the often used SEC, where P (k2|ε)
is a binomial distribution like in (4.14), the numerical evaluation shall at first be
limited to the bounds on the conditional probabilities. Hereby, the results are not
blurred by assuming a certain channel model. A high value k2 of erased systematic
symbols infers a bad instantaneous channel and a low value for k2 indicates a good
instantaneous channel.

Nevertheless, it is afterwards exemplarily assumed that encoded symbols are in-
deed independently erased on the channel with equal probability ε. For three
different values of ε representing a good, a medium and a bad channel, i.e.
ε ∈ {0.01, 0.1, 0.5}, the residual erasure probabilities (4.15) and (4.16) are de-
termined by means of Monte Carlo simulations and the corresponding bounds are
computed.

In Figure 4.3 upper and lower bounds on P [L]
(
�S
∣∣k2

)
and P [L]

(
��W
∣∣k2

)
are depicted

as a function of the inverse reception code rate γR for a binary sparse random en-
semble of input size k = 100 and density Δ = 0.06. The left subfigures contain
the bounds on symbol level and the right subfigures the ones on word level. As
the residual erasure probability is not monotonic in k2 it has been split up into
two monotonic parts. In the upper two subfigures the residual erasure probability
rises with k2 up to k2 ≈ 15. But with a degrading instantaneous channel, i.e. for
increasing k2, the residual erasure probability monotonically decreases again until
it reaches the level of the unstructured ensemble with k2 = 100, which consti-
tutes the minimal residual erasure probability. This is depicted in the lower two
subfigures.

Taking a look at the bounds from a different perspective in Figures 4.5(a) and
4.5(b) reveals very clearly that for relevant values of γR the absolute minimum
is attained at k2 = 100, i.e. for the ensemble without systematic prefix. This
outcome corresponds to the claims in the literature [SL05,Sho06,SL11]. Although
this is only an example, the result can be transferred to other ensembles with
(not too) sparse generator matrices, not just the sparse random ensembles. So
for such ensembles, conventionally systematic encoding is not advisable, except
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Figure 4.3: Upper and lower bounds (4.10) – (4.13) on the residual erasure probability on

symbol (left) and word level (right) conditioned on the number k2 of erased

systematic symbols as a function of the inverse reception code rate γR.

Code details: binary conventionally systematic sparse random ensemble with

an input size of k = 100 and an average row weight of d̄ = 6. As the

dependence on k2 is non-monotonous, the bounds are arranged in different

subfigures for low and high values of k2, respectively.
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Figure 4.4: Upper bounds (4.12) and (4.13) on the residual erasure probability on symbol

and word level conditioned on the number k2 of erased systematic symbols

as a function of the inverse reception code rate γR.

Code details: binary conventionally systematic standard random ensemble

with input size k = 100 and consequently an average row weight of d̄ = 50.

for extremely good channels where the probability P (k2 = 0|ε) is sufficiently large,
such that the systematic part survives as a whole most of the time.

The non-monotonic behaviour will be illustrated by means of some examples. A
necessary condition for an input symbol to be recovered if it has not been received
in the conventionally systematic part, is to be covered by G2. This means that in
the subgraph given by G2 the respective input symbol is connected to an encoded
symbol. The probability that this necessary condition is not met is given by
the lower bound P [L]

(
�S
∣∣k2

)
in (4.10). To simplify the following explanation it

shall be assumed that G̃sys,R is a square matrix, i.e. γR = 1. If k2 = 1, G2

is a scalar and takes a non-zero value with probability 0.06 which corresponds
to the density of the current ensemble and P [L]

(
�S
∣∣k2 = 1

)
= k2

k
(1 − Δ)k2 =

1
100

· 0.94 = 0.0094. For low but increasing values of k2, the growing fraction k2
k

of unrecovered symbols dominates P [L]
(
�S
∣∣k2

)
until for medium values of k2 the

falling exponential term (1 − Δ)k2 starts to take over, so that P [L]
(
�S
∣∣k2 = 2

)
≈

0.0177 and P [L]
(
�S
∣∣k2 = k

)
≈ 0.002055.

Moreover, for low values of k2, most of the initial systematically unrecovered input
symbols are also recovered systematically but from the weight-one rows of the
matrix G2. Note that the probability of an all-zero row in G2 is not zero and
particularly for low k2 it is not even small as can be observed in Figures 4.2(a) and
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4.2(b) on page 82. For medium values of k2 an increasing number of rows in G2 has
two or more entries, but the resulting code is too weak to recover many unknowns.
As k2 increases further, the code gets stronger and although the probability of row
weight d2 = 1 decreases dramatically, i.e. systematic decoding from G2 gets less
likely, the coding gain for higher k2 outweighs the benefit of systematic decoding
from G2 for low k2.

Although a conventionally systematic prefix is not useful in the just given exam-
ple ensemble, it can be for others, such as the standard random ensemble. In
Figure 4.4 the upper bounds on the conditional erasure probability are given for
k2 ∈ {1, 2, . . . , 100} as a function of the inverse reception code rate γR. Also, the
upper and lower bounds are depicted in Figure 4.5(c) and 4.5(d) as a function of
k2 and parametrised with γR.

In contrast to the sparse random ensemble, the upper bounds of the standard
random ensemble are monotonically increasing as a function of k2. As the upper
bounds are again very close to the true values, the upper bounds are used instead
to assess the performance of this ensemble. The lower bounds diverge quickly
from their respective upper bounds and play only a minor role, since usually rank
deficiencies in standard random ensembles do not arise from unconnected input
nodes. Thus, the lower bounds of standard random ensembles are mostly omitted.

While the upper bound on symbol level is linear in k2, the one on word level remains
constant over a wide range of k2. The explanation for the different behaviour of the
standard random ensemble lies in the quasi-independence of the erasure correction
performance from the input size. Its performance depends almost solely on the
absolute symbol reception overhead and on the field order, as has already been
observed in Section 3.4. So, when comparing the non-systematic standard random
ensemble GR ∈ F

nR×k

2 , where nR = k + ηR, with that of the smaller ensemble
G2 ∈ F

(k2+ηR)×k2
2 , their performance on word level is almost equal as long as k2 is

greater than 4 or 5, since for too small input sizes the independence assumption
becomes invalid. The linear dependence of P [L]

(
�S
∣∣k2

)
on k2 is due to the averaging

over systematically and non-systematically received input symbols.

In Figure 4.6, the two ensembles are also numerically evaluated for different symbol
erasure probabilities of the channel, i.e. ε ∈ {0.01, 0.1, 0.5}. Together with the
upper and lower bounds, also the simulated residual erasure rates are depicted
as well as the erasure rates of the respective unstructured ensemble. The latter
ones serve as a reference and allow to easily check whether or not a conventionally
systematic prefix is beneficial.

On the left, the performance of the sparse random ensemble is depicted. It is
interesting to see that for good channels the simulated curves rather tend towards
the lower bound. However, this is still insufficient to approach the performance of
the unstructured sparse random ensemble for neither one of the channel qualities.
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Figure 4.5: Upper and lower bounds (4.10) – (4.13) on the residual erasure probability

on symbol and word level conditioned on the number k2 of erased systematic

symbols for different values of the inverse reception code rate γR.

Code details:

(a) – (b) binary conventionally systematic sparse random ensemble with an

input size of k = 100 and an average row weight of d̄ = 6.

(c) – (d) binary conventionally systematic standard random ensemble with

an input size of k = 100 and an average row weight of d̄ = 50.
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Figure 4.6: Upper (and lower) bounds on the residual erasure probability on word and

symbol level as well as the respective simulated erasure rates, all conditioned

on the erasure probability ε ∈ {0.01, 0.1, 0.5} of the channel. Code details:

two binary ensembles with k = 100 and a conventionally systematic prefix.

– Left figures: sparse random ensemble with Δ = 0.06

– Right figures: standard random ensemble with Δ = 0.5, no lower bounds.

The dotted lines with crosses mark the respective ensembles without prefix.
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On the right, the standard random ensemble has been evaluated. As the lower
bounds are of minor importance in this case, they have been omitted. For a very
good channel, i.e. with ε = 0.01, a small performance gain on word level and a
significant gain on symbol level can be observed compared to the unstructured en-
semble. Yet, for a somewhat worse channel, i.e. with ε = 0.1, the performance gain
on word level becomes essentially zero, though on symbol level it is still consider-
able. In a bad channel, e.g. with ε = 0.5, the gain on symbol level also decreases to
a rather small amount. The possible gain from a conventionally systematic prefix
is therefore much larger on symbol level than on word level. This implies that the
conventionally systematic prefix induces a shift of high-weight residual erasures
(i.e. many residual symbol erasures in an information word) to low-weight era-
sures. A received yet still unrecoverable information word contains therefore fewer
erasures on average than in case of an unstructured ensemble, which is particularly
advantageous if high-rate precoding is intended.

These results show that for the standard random ensemble it is profitable to em-
ploy a conventionally systematic prefix. This contradicts the one-sided view from
the literature, e.g. [SL11]. Not only does it yield a better erasure correction per-
formance or at least one that is as good as that of the unstructured ensemble, but
also the complexity is reduced from O(k3) to O(k3

2), which makes a tremendous
difference particularly in good channels, where usually k2 � k.
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Chapter 5

Precodes

To enhance the erasure correction performance of LT code ensembles, most of
which naturally suffer from an erasure floor, one or more precode stages can be
used to lower the erasure floor. This concatenation of a rateless code with a pre-
code is denoted Raptor code [Sho04,Sho06] and has already been briefly addressed
in Section 2.3. In this chapter, the erasure correction properties of different types
of fixed-rate codes will be determined and discussed under optimal erasure decod-
ing. Then, in the next chapter, the erasure correction properties of some suitable
precodes and of LT code ensembles are combined in order to accurately determine
the erasure correction properties of Raptor code ensembles.

One important requirement for a code to qualify as a precode is a very high code
rate. Moreover, a good precode should reliably correct low-weight erasure pat-
terns, i.e. it should have a Hamming weight distribution with a low probability
of occurrence of low-weight codewords. In the following, the erasure correction
properties of different high-rate codes are provided in terms of the decoding failure
probability P

(
��W
∣∣e = e

)
given e erasures in the received codeword. The notation

in this chapter is simplified and disregards the existence of a rateless component,
i.e. unlike the notation introduced in Section 2.3, the length of the information vec-
tor is k, the codeword length is n with m = n − k, the number of parity symbols,
and the code rate is ρ = k/n. Since only block codes are considered in the follow-
ing, the codes are specified by means of the characterising triple (n, k, δH,min) for
binary codes and the quadruple (n, k, δH,min, q) in case of non-binary codes.

5.1 Deterministic Precodes

In this section, the erasure correction properties of various codes with a deter-
ministic code construction will be provided. Starting with the ideal performance
of general maximum distance separable (MDS) codes, the decoding failure prob-
ability of shortened non-binary Hamming codes is determined as well as that of
shortened extended Hamming codes.
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5.1.1 Maximum Distance Separable Codes

Maximum distance separable (MDS) codes, e.g. Reed-Solomon codes, have a min-
imum Hamming distance of δH,min = n − k + 1 and are able to correct e erasures
in the received codeword if e ≤ m, where m = n − k. So the decoding failure
probability of this type of code is simply

P
(
��W
∣∣e = e

)
=

{
0 if 0 < e ≤ m

1 if e > m.
(5.1)

5.1.2 Hamming Codes over FqFqFq

The characterising triple of an ordinary binary Hamming code H with k input bits,
a codeword length of n and m parity bits is provided by

(n, k, δH,min) = (2m − 1, 2m − m − 1, 3). (5.2)

Hamming codes can be generalised straightforward to any field order q [Ulr57],
which results in the characteristic quadruple

(n, k, δH,min, q) =

(
qm − 1
q − 1

,
qm − 1
q − 1

− m, 3, q

)
. (5.3)

Alike, by shortening Hamming codes by σ bits or symbols, i.e. by fixing σ data
bits or symbols to be zero and omitting their transmission, in order to adapt them
to any convenient input size k, the previous quadruple becomes

(n − σ, k − σ, δH,min, q) =

(
qm − 1
q − 1

− σ,
qm − 1
q − 1

− m − σ, 3, q

)
, (5.4)

where

0 ≤ σ <

(
qm − 1
q − 1

− m

)
−

(
qm−1 − 1

q − 1
− (m − 1)

)
=⇒ 0 ≤ σ < qm−1 − 1. (5.5)

Notwithstanding the long known fact that Hamming codes can correct more era-
sures than δH,min − 1, a thorough analysis of the erasure correction probability
could not be found in the respective literature. However, with the help of Lemma 1
in [ZLJR08] and the herein after made generalisations thereof, it is possible to de-
rive the exact erasure correction probability for a certain number of erasures within
a received codeword, be it encoded by a binary or a non-binary Hamming code,
shortened or unshortened. Note that here the shortening positions are chosen uni-
formly at random and thus the exact erasure correction probability is the average
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over all shortened code realisations of a particular parametrisation. An optimised
choice of the shortening positions undoubtedly yields slightly better results.

Before approaching Lemma 1 from [ZLJR08], some prerequisites shall be discussed
beforehand, mostly to introduce the used notation. As the shortened q-ary Ham-
ming code Hq,σ is the most general one, for either σ can be set to zero to obtain
an unshortened code or q can be set to any prime power, it shall be exclusively
used in the following.

Optimal erasure decoding of a shortened q-ary Hamming code, which possesses a
q-ary parity-check matrix H of size m × (n − σ), is commonly performed by means
of syndrome erasure decoding. By design and definition Hy = 0, where y is a
codeword. Let e erasures occur on the channel, then e denotes a vector of length e

containing the positions at which the received word contains erasures. If the code
is used as a precode to a rateless code, the number of erasures e corresponds to
the erasure weight we of the intermediate codeword. Now, let ye denote those e

symbols of the codeword that have been erased and let yē be the symbols that
have been received. Accordingly, let He contain those e columns of H that are
associated with the erased symbols and let Hē contain the ē = n − σ − e ones
associated with the non-erased symbols, then

Heye︸ ︷︷ ︸
s

+ Hēyē︸ ︷︷ ︸
−s

= 0, (5.6)

where s is known as the syndrome vector. In (5.6) all quantities but ye are known
at the receiver. To allow a recovery of ye and consequently of y as a whole by
solving the corresponding system of linear equations Heye = s, the matrix He is
required to have full column rank, i.e. rank(He) = e.

Given a certain number e of erased symbols, their position is randomly determined
by the symbol erasure channel and such is the choice of the columns from H

that compose He. So the successful decoding probability equals the probability of
randomly sampling a full rank matrix He from H. The number of full rank matrices
He of size m × e is given by the already mentioned Lemma 1 from [ZLJR08]. As a
shortened q-ary Hamming code Hq,σ is considered here, the corresponding lemma
and its proof will be generalised to this case based on the original one for the
unshortened binary case.

Lemma 5.1 (Generalisation of Lemma 1 in [ZLJR08]). Let He be a q-ary matrix
of size m × e whose columns are equal to e columns of a shortened q-ary Hamming
code’s parity-check matrix H of size m × (n − σ). Then the number of matrices
He that have full column rank, i.e. rank(He) = e, equals

N [Hq,σ](e, m, σ) =

⎧⎨⎩ 1
e!

e−1∏
i=0

(
qm−qi

q−1
− σ

)
if 0 < e ≤ m

0 if e > m.

(5.7)
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Proof. The columns of the parity-check matrix H of length n − σ = qm−1
q−1

− σ

are all qm−1
q−1

non-zero q-ary m-tuples that span the m-dimensional space minus
the σ removed ones due to shortening. Consequently, the number of matrices He

that have full column rank, i.e. rank(He) = e, is equal to the number of different
bases of e-dimensional subspaces of the m-dimensional space. Let {b1, b2, . . . , be}

denote the set of basis vectors of an e-dimensional subspace. Then, the number of
such sets can be determined as follows:

• There are n − σ = qm−1
q−1

− σ possibilities to select the first vector b1 from
the non-zero m-tuples.

• The second non-zero vector b2 is chosen such that b2 	= c1b1 with c1 ∈

Fq \ {0}. Since by construction, none of the q − 1 multiples of any column
are contained in H, the condition reduces to b2 	= b1 when c1 = 1, i.e. there
are qm−1

q−1
− q−1

q−1
− σ = qm−1

q−1
− 1 − σ = n − 1 − σ choices for b2.

• In general, for i = 3, 4, . . . , e the non-zero base vectors bi are chosen such
that they differ from any linear combination of the i − 1 previously deter-
mined base vectors, i.e. bi 	=

∑i−1

j=1
cjbj with cj ∈ Fq. For picking a non-zero

vector within the span of the i − 1 previous base vectors, there are qi−1 − 1
choices of cj ∈ Fq with 1 ≤ j < i and (c1 = c2 = . . . = ci−1)T 	= 0T. The

exclusion of multiples results in qi−1−1
q−1

choices. Avoiding this span results

in n − qi−1−1
q−1

− σ = qm−qi−1

q−1
− σ choices for bi.

• The final number N [Hq,σ ](e, m, σ) of matrices He is thus obtained as the
product of the number of all just mentioned possibilities to determine the
respective base vectors without taking their order into account.

Theorem 5.2. The failure probability of optimal erasure decoding of a received
sequence of n−σ = qm−1

q−1
−σ symbols that contains e erasures at random positions,

where the sequence has been encoded using a shortened q-ary Hamming code Hq,σ,
is given by

P [Hq,σ](��W ∣∣e = e
)

=

⎧⎨⎩1 − (n−σ−e)!
(n−σ)!

e−1∏
i=0

(
qm−qi

q−1
− σ

)
if 0 < e ≤ m

1 if e > m.

(5.8)

Proof. The successful decoding probability can be expressed as the number
N [Hq,σ](e, m, σ) of full rank matrices He, provided in Lemma 5.1, divided by
the number of all possible matrices He

P [Hq,σ](��W ∣∣e = e
)

= 1 −
N [Hq,σ](e, m, σ)(

n−σ

e

) . (5.9)
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The denominator represents the number of possibilities to choose e columns with-
out repetition from the n − σ columns of the Hamming code’s Hq,σ parity-check
matrix H.

5.1.3 Extended Hamming Codes

Extended Hamming codes are derived from ordinary binary Hamming codes by
adding a further parity check equation over all bits. Particularly for erasure de-
coding, this increase of the codeword length by one bit is advantageous as it directly
increases δH,min from three to four. Unfortunately, this extension by means of an
additional parity check equation cannot be generalised in a meaningful way to a
non-binary domain. Attempting to do so, leads to a code rate that quickly ap-
proaches zero as the codeword length increases, rendering non-binary extended
Hamming codes rather useless.

An extended binary Hamming code H+ with k input bits, a codeword length of n

and m = m′ + 1 parity bits is characterised by the triple

(n, k, δH,min) =
(

2m′

, 2m′

− m′, 4
)

, (5.10)

where m′ here denotes the number of parity bits of the underlying Hamming code.
Also extended Hamming codes can be adapted to any suitable input size by short-
ening them by σ bits, such that the more general characterising triple becomes

(n − σ, k − σ, δH,min) =
(

2m′

− σ, 2m′

− m′ − σ, 4
)

, (5.11)

where

0 ≤ σ <
(

2m′

− m′
)

−
(

2m′−1 −
(
m′ − 1

))
=⇒ 0 ≤ σ < 2m′−1 − 1. (5.12)

As in the case of Hamming codes, an expression for the erasure correction capabil-
ity of extended Hamming codes beyond δH,min − 1 is not to be found in common
literature. Therefore, following the previous rationale, the required erasure correc-
tion probability will be briefly laid out subsequently. In order to derive the failure
probability of shortened extended Hamming codes under optimal erasure decod-
ing, Lemma 1 from [ZLJR08] or Lemma 5.1, respectively, needs to be adapted to
the current type of codes. The proof of the adaptation follows along similar lines
as above.

Lemma 5.3. Let He be a binary matrix of size (m′ + 1) × e whose columns are
equal to e columns of a shortened extended Hamming code’s parity-check matrix
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H of size (m′ +1)×(n−σ). Then the number of matrices He that have full column
rank, i.e. rank(He) = e, equals to

N [H+
σ ](e, m′, σ

)
=

⎧⎨⎩ 2m′
−σ

e!

e−2∏
i=0

(
2m′

− 2i − σ
)

if 0 < e ≤ m′ + 1

0 if e > m′ + 1.

(5.13)

Proof. In its systematic form the parity-check matrix H, which is of size (m′ +
1) × (n − σ), consists of all except σ odd weight (m′ + 1)-tuples, i.e. its 2m′

− σ

columns are constituted by all odd-weight (m′ + 1)-tuples minus the σ removed
ones due to shortening. And the number of matrices He that have full column
rank, i.e. rank(He) = e, is equal to the number of different bases of e-dimensional
subspaces of the (m′ + 1)-dimensional space. Let {b1, b2, . . . , be} denote the set
of base vectors of an e-dimensional subspace. Then, the number of such sets can
be determined as follows:

• There are n − σ = 2m′

− σ possibilities to select the first vector b1

from the non-zero (m′ + 1)-tuples of odd weight, since
∑

i odd

(
m′+1

i

)
=∑

i even

(
m′+1

i

)
= 2m′

.

• The second non-zero vector b2 is chosen such that b2 	= b1, for which there
are n − 1 − σ choices.

• In general, for i = 3, 4, . . . , e the non-zero base vectors bi are chosen such
that they differ from any linear combination of the i − 1 previously de-
termined base vectors, i.e. bi 	=

∑i−1

j=1
cjbj with cj ∈ {0, 1}. Since the

sum of an even number of odd-weight binary vectors yields a vector of even
weight, only linear combinations of odd numbers of binary odd-weight vec-
tors need to be considered. So, only those linear combinations need to
be avoided where w = ‖(c1, c2, . . . , ci−1)T‖H is odd, of which there are∑

w odd

(
i−1

w

)
= 2i−2 choices. Consequently, there are n − 2i−2 − σ possibil-

ities to choose bi.

• Finally, the number N [H+
σ ](e, m′, σ) of matrices He results as the product

of the number of all just mentioned possibilities to determine the respective
base vectors, again without taking their order into account.

Theorem 5.4. The failure probability of optimal erasure decoding of a received
sequence of n − σ = 2m′

− σ symbols that contains e erasures at random positions,
where the sequence has been encoded using a shortened extended Hamming code
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H+
σ , is given by

P [H+
σ ](��W ∣∣e = e

)
=

⎧⎨⎩1 − (n−σ−e)!(2m′
−σ)

(n−σ)!

e−2∏
i=0

(
2m′

− 2i − σ
)

if 0 < e ≤ m′ + 1

1 if e > m′ + 1.

(5.14)

Proof. The successful decoding probability is given as the number N [H+
σ ](e, m′, σ)

of full rank matrices He, which is equal to (5.13) from Lemma 5.3, divided by the
number of all possible matrices He

P [H+
σ ](��W ∣∣e = e

)
= 1 −

N [H+
σ ](e, m′, σ)(

n−σ

e

) . (5.15)

The denominator denotes the number of possibilities to choose e columns without
repetition from the n−σ columns of the extended Hamming code’s H+

σ parity-check
matrix H.

5.2 Stochastic Precodes

Apart from the previously discussed deterministic precodes, there exist further
linear codes of stochastic nature that appear suited as precodes. The ones that
will be dealt with in this section fall into the category of parity-check ensembles C.
These ensembles are mostly defined by means of their parity-check matrix H of size
m × n which is characterised by two distributions, i.e. the so-called variable node
degree distribution Λ(ξ) =

∑dv,max

d=2
Λdξd and the check node degree distribution

R(ξ) =
∑dc,max

d=2
Rdξd both from a node perspective. The coefficients Λd or Rd of

ξd in Λ(ξ) or R(ξ) denote the fraction of rows or columns of weight d, respectively.

Due to the concentration effect, the performance of an individual parity-check code
H from an ensemble C =

(
Pr{H = H}, Fm×n

q

)
concentrates around the ensemble

average with high probability [RU08]. Nevertheless, for an actual precode imple-
mentation, a fixed code instance should be preferably used, particularly one that
is carefully chosen from such an ensemble. It should be kept in mind though,
that for stochastic parity-check codes the probability of occurrence of low-weight
codewords is relatively high, i.e. such codes do not have a good Hamming weight
distribution. So these codes exhibit an erasure floor, too, and thus they should only
be employed as an intermediate precode if for instance a Hamming-type precode
alone is too weak and a precode of a lower code rate is required. The outermost
precode should always be a code with a good Hamming weight distribution.

In [RVF07] binary Raptor codes employing precodes taken from a particular kind
of LDPC code ensemble have been analysed under ML decoding. The used LDPC
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precode ensemble is constructed randomly, similarly to the sparse random LT code
ensemble, i.e. by setting each entry in a parity-check matrix H of size m×n to one
or zero according to the outcome of i.i.d. Bernoulli trials parametrised with the
probability of sampling a one. Due to the construction method, this ensemble is
referred to as the sparse random parity-check ensemble, which can be generalised
to higher order Galois fields in a straightforward manner.

In [DPT+02], upper bounds on the residual symbol and word erasure probability
of regular LDPC code ensembles as well as of the standard random parity-check
ensemble after ML decoding have been derived as a function of the erasure proba-
bility on the BEC. Based on this work, the bounds on the word erasure probability
have been extended to q-ary ensembles in [LPC13]. Therein the upper bound has
also been given in general form for arbitrary degree distributions.

However, this general form depends on the so-called average weight enumerating
function (WEF) of an ensemble. And unfortunately, this function is rather difficult
or complex to determine for most ensembles other than a few very specific ones like
for instance the just mentioned sparse random and standard random ensembles or
regular ensembles. For approximating the average WEF in the general case, there
exists a method called Hayman approximation or Hayman’s method [Wil94], which
has first been applied to this problem in [Di04,DRU06] and has been extended to
the non-binary case in [KPD+08,KPDS11].

5.2.1 Upper Bounds on Conditional Residual Erasure Probabilities

The upper bounds on word and/or on symbol level in the aforementioned works
[DPT+02, RVF07, LPC13] are all based on the same rationale. The upper bound

P
[C](

��W
∣∣e = e

)
on the residual word erasure probability P [C]

(
��W
∣∣e = e

)
of a

parity-check ensemble C given e symbol erasures in the encoded sequence, i.e.
on the probability Pr{rank(He) < e} of rank deficiency in the submatrix He is
assessed by a union bounding argument, where He is obtained from the original
parity-check matrix H of size (m × n) by the same means as in the previous case
of Hamming codes:

P [C]
(
��W
∣∣e = e

)
= Pr{rank(He) < e} (5.16)

= Pr{∃ye ∈ ker(He) \ {0}}

≤ P
[C](

��W
∣∣e = e

)
(5.17)

=
1

q − 1

∑
ye∈Fe

q\{0}

Pr{Heye = 0}

=
1

q − 1

e∑
w=1

(
e

w

)
Γw (5.18)
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In (5.18) the polynomial Γ(ξ) =
∑

w
Γwξw is the average weight distribution of

the considered parity-check ensemble and Γw denotes the number of codewords of
weight w averaged over an ensemble. A detailed derivation of an expression for
(5.17), which is based on the findings in [DPT+02], can be found in [LPC13] for the
special case of regular Gallager LDPC codes. The average weight distribution of a
q-ary irregular parity-check ensemble with the design code rate ρ and the average
variable node degree Λ̄ is given by [KPD+08]

Γw =
∑

κ

coef
((

A(ς, ϑ)B(ζ)1−ρ
)n

, ϑwςκζκ
)(

Λ̄n

κ

)
(q − 1)κ−w

, (5.19)

with

A(ς, ϑ) =

dv,max∏
i=2

(
1 + ϑςi

)Λi (5.20)

and

B(ζ) =

dc,max∏
j=2

(
(1 + (q − 1)ζ)j + (q − 1)(1 − ζ)j

q

)Rj

. (5.21)

The above is a generalisation of the average weight distribution for binary
parity-check ensembles from [Di04] to higher order Galois fields. The expression
coef

(
B(ζ), ζi

)
denotes the coefficient of ζi in a polynomial B(ζ).

An upper bound on symbol level, given e symbol erasures in the encoded sequence,
accordingly amounts to

P
[C](

�S
∣∣e = e

)
=

1
q − 1

e∑
w=1

(
e − 1
w − 1

)
Γw. (5.22)

For the special case of (sparse) random parity-check ensembles with density Δ an
upper bound on word level is provided in [LPC13]

P
[C](

��W
∣∣e = e

)
=

1
q − 1

e∑
w=1

(
e

w

)
(q − 1)w

(
q − 1

q

(
1 −

qΔ
q − 1

)w

+
1
q

)m

. (5.23)

5.3 Numerical Evaluation and Examples

The decoding failure probabilities for (shortened) binary Hamming codes and for
(shortened) extended Hamming codes are depicted in Figure 5.1 as a function of e,
the number of erasures in a received encoded sequence. The two dashed lines depict
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shortened (extended) Hamming codes (extended) Hamming codes
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(b) Extended binary Hamming codes.

Figure 5.1: Decoding failure probabilities P [Hσ ]
(
��W
∣∣e = e

)
according to (5.8) and

P [H+
σ ]
(
��W
∣∣e = e

)
as in (5.14) of (shortened) (extended) binary Hamming

codes with codeword lengths n − σ. The solid lines refer to unshortened

codes with m ∈ {3, . . . , 16}, i.e. n ∈ {7, . . . , 65535} and n ∈ {8, . . . , 65536},

respectively, while the dashed lines correspond to shortened codes with code-

word length n − σ = 100, i.e. with m = 7 and σ = 27 as well as m = 8 and

σ = 28, respectively.

the characteristics of the shortened codes which are tailored to match the here often
used LT code input size of 100. Besides the well-known perfect recoverability of
up to two or three erasures, respectively, it is interesting to see that even up to m

erasures the recovery fails with a sufficiently small probability, particularly for e

not too close to m. Here, MDS codes are not considered further, since their exact
word erasure probability (5.1) is known and is merely a step function.

In Figure 5.2 upper bounds P
[C](

��W
∣∣e = e

)
on the decoding failure probability of

binary sparse random parity-check ensembles as given by (5.23) are depicted for
different densities Δ and for m = 8 parity bits. This number of parity bits has
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P [H+
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for extended Hamming codes (cf. (5.14))
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for (sparse) random parity-check ensembles

with ∆ ∈ {0.2, 0.3, 0.4, 0.5} (cf. (5.23))
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(cf. (5.16) and (3.13))
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Figure 5.2: Decoding failure probabilities P
(
��W
∣∣e = e

)
for extended Hamming codes

and for standard random parity-check ensembles, as well as upper bounds

P
[C](

��W
∣∣e = e

)
for (sparse) random parity-check ensembles with different

densities. Note, the random ensembles’ curves are independent of n and k.

been chosen to allow a fair comparison to the shortened extended Hamming code
H+

σ with n = 100 and k = 92, which in the next chapter shall be employed as a
precode. For the binary standard random ensemble (∆ = 0.5) with 8 parity bits
both the exact decoding failure probability as well as the upper bound is depicted,
while for the ensembles with 9 to 11 parity bits only the exact decoding failure
probability is shown, which can be determined by means of (5.16) and (3.13). The
latter ensemble with m = 11 can be compared to the shortened extended Hamming
code H+

σ with n = 1000 and k = 989 with the same number of parity bits.

Additionally, the upper bounds of two exemplary regular LDPC code ensembles
are depicted in Figure 5.3 together with simulated erasure rates of six randomly
chosen LDPC codes from the respective regular ensembles. For regular ensembles
[Gal63, Mac97, Mac99], the number of parity bits is restricted to integer numbers
given by m = ndc/dv, where dc and dv are the sole check node degree and variable
node degree in a regular ensemble. Among the evaluated codes, the extended
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Figure 5.3: Upper bounds P
[C](

��W
∣∣e = e

)
on the decoding failure probabilities of two

regular LDPC code ensembles both with a variable node degree of 3 and

a blocklength of n = 100 bits. The number of parity-bits is m = 10 and

m = 15, respectively. For three code realisations from each of the two en-

sembles the decoding failure rates have been simulated. Also depicted is the

decoding failure probability P [C]
(
��W
∣∣e = e

)
of two standard random ensem-

bles with the same number of parity bits as the regular ensembles as well as

P [H+
σ ]
(
��W
∣∣e = e

)
for two extended Hamming codes. Note that the curves of

the two random ensembles are independent of n and k.

Hamming codes perform better than the other considered parity-check codes with
the same number of parity bits for almost all values of e. Therefore, but also due
to their simplicity as well as for their available exact decoding failure probability
they shall serve as example precodes in the next chapter.



Chapter 6

Raptor Code Ensembles

Raptor codes [Sho04, Sho06], or in simple terms precoded rateless codes, have
been briefly introduced in Section 2.3. Note that in this chapter, the notation
from Section 2.3 is used again (cf. also Figure 2.9), where dashed quantities relate
to the information word x′, i.e. the input to the precode. Quantities without a
dash usually relate to the LT code.

The considered rateless component is typically an LT code, preferably of low den-
sity to ensure a low decoding complexity. As a low density is closely linked to
a worryingly high erasure floor, at least one precode stage is usually required to
lower the erasure floor to a suitable level. Employing a precode P with code rate
ρ[P] < 1, however, induces a rate loss or conversely an additional overhead, i.e. the
overall reception overhead is then γ

[P,L]
R = γ

[L]
R /ρ[P]. In order to minimise the rate

loss, high-rate precodes are preferred.

Regarding the number of precodes, it highly depends on the application and as
such on the size k′ of the information word x′ whether one or more precodes are
required and which types. For large k′ it is beneficial to use multiple high-rate
precode stages, e.g. first an extended Hamming code and then an LDPC code
as in [Sho06]. The decoding of large codes is usually performed iteratively for
complexity reasons. However, as BP decoding of LDPC codes often suffers from
so-called stopping sets1, particularly from stopping sets of small size, an extended
Hamming code with its minimal distance of four is employed to eliminate those
stopping sets of size two and three, but also with a sufficiently high probability
slightly larger ones [Sho06]. Note that if optimal (i.e. ML) decoding is feasible, for
instance by using an efficient algorithm as described in Section 2.1.5, stopping sets
are not an issue, since they appear only with suboptimal decoding.

For small k′ and with optimal erasure decoding, as considered in this thesis, one
precode is usually enough. For various reasons it also appears judicious to resort to
simple yet efficient precodes like (extended) Hamming codes. First, to the best of
the author’s knowledge, there exist no short LDPC codes with a comparably high

1A stopping set is a subset of the variable nodes such that every check node connected to

this set is connected to it at least twice.
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code rate and equally good erasure correction properties. Second, due to their
known erasure correction performance (cf. Chapter 5), particularly their known
minimal Hamming distance δH,min, these codes can guarantee the correction of
two or three erasures, respectively, within one information word x′ and with a non-
zero probability up to m erasures. So, since this chapter’s goal is the exposition of
methodologies for design and analysis of short Raptor codes ensembles, rather than
the actual design of a record-breaking instance thereof, the simplicity and efficiency
of such well-known example precodes like (extended) Hamming codes turns them
into didactic prime examples. Nevertheless, if a higher minimal Hamming distance
is required and a lower code rate is affordable, other codes can be good precode
candidates, too, for instance some classes of (structured) LDPC codes, e.g. so-called
finite geometry LDPC codes [KLF01]. And of course appropriately dimensioned
MDS codes can also be considered as precodes.

6.1 Fundamentals

Before beginning with the essential part of this chapter, some basic terms and
their usage shall be clarified first. The term dimension is often used in different
ways [Str06]: for instance the vector x = (x1, x2, . . . , xk)T is said to be a k-
dimensional vector in a k-dimensional vector space, e.g. Fk

q . So this term is used
both for vectors as well as for vector spaces or subspaces. In this thesis, the
dimension operator dim(·) will only be used for vector spaces or subspaces, i.e.
dim(x) refers to the dimension of the subspace spanned by x, which is a line and
thus a one-dimensional subspace. Accordingly, two linearly independent vectors
x1 and x2 span a plane, i.e. a two-dimensional subspace and thus dim(x1, x2) = 2.

Sometimes it is relevant to study mathematical objects not just by themselves
but by taking into account the space that surrounds them: the ambient space.
The statement “two lines, taken uniformly at random from the set of all possible
lines, intersect almost surely” is true in a two-dimensional ambient space, but in a
higher-dimensional ambient space the two lines are skew almost surely.

Aside from the span of a set of vectors, two further vector spaces and their di-
mensions are of interest: the parent vector space, here also denoted (global) am-
bient space, and a specific subspace, here denoted as minimal ambient space. The
(global) ambient space A, is the vector space with the maximum possible dimen-
sion which is k in the current example. It obviously contains all k-dimensional
vectors and their spans. The minimal ambient space A� of the span of a set of
vectors is the smallest subspace wherein this span can be embedded without trans-
formation (e.g. rotation) w.r.t. the canonical basis of the global ambient space. An
example is provided in Figure 6.1 to illustrate the different types of considered
vector spaces.
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Figure 6.1: A three-dimensional vector x = (0, 3, 4)T in a three-dimensional (global)

ambient space A(b1, b2, b3) spanned by the basis b1, b2 and b3. The vec-

tor x spans a line that lies in the two-dimensional minimal ambient space

A�(b2, b3) (grey plane) spanned by b2 and b3.

6.2 The Erasure Weight Profile

As already mentioned in Chapter 3, numerous publications deal with the (asymp-
totic) rank profile, i.e. the probability distribution of the rank, or equivalently with
the nullity profile of random matrices over finite fields, i.e. the standard and the
sparse random ensemble (disregarding expurgation). But apart from the relevant
information whether a matrix has full column rank or not, in the context of erasure
correction performance the knowledge of the exact rank or nullity does not give
considerably more insight: while the nullity of a matrix G is equal to the number
of linearly independent equations that are still required to make the system of
random linear equations solvable, it is only a very unsharp lower bound on the
number of unsolvable unknowns. Consider for instance solving the consistent sys-
tem of linear equations GRx = yR. The k unknowns (x1, x2, . . . , xk)T = x ∈ F

k
q

can be recovered if and only if GR has full column rank. If GR does not have
full column rank, between nullity(GR) and k unknowns xi remain unrecovered.
This number, which is of particular interest when a precode is employed that can
correct up to a certain number of erasures with a non-zero probability, is defined
below together with some related quantities.

Definition 6.1. The number of unrecoverable unknowns in x after ML decoding
a received codeword yR, with yR = GRx, is denoted erasure weight we in the
following.
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Corollary 6.2. The erasure weight we of an LT code is equal to the dimension of
the minimum-dimensional subspace A� of Fk

q into which the kernel of GR can be
embedded without transforming the kernel:

we = dim(A�(ker(GR))), (6.1)

where the mentioned ambient space containing ker(GR) is written as A�(ker(GR)).

Definition 6.3. Accordingly, the erasure weight profile of an LT code ensemble
L =

(
GR ∼ Ω(ξ), FnR×k

q

)
is defined as the probability distribution of we:

P [L](we = we) � Pr{we = we} = Pr{dim(A�(ker(GR))) = we}, (6.2)

for 0 ≤ we ≤ k.

Definition 6.4. Given the decoding failure probability distribution
P [P]

(
��W ′

∣∣we = we

)
of a precode P under ML decoding, conditioned on the

number we of erasures in the intermediate codeword x and the erasure weight
profile P [L](we = we) of an LT code ensemble L, the precoded (or Raptor code)
erasure weight profile is determined by

P [L,P]
(
��W

′, we = we

)
� P [P]

(
��W

′
∣∣we = we

)
· P [L](we = we). (6.3)

Corollary 6.5. Provided the precoded erasure weight profile P [L,P]
(
��W ′, we

)
of

an LT code ensemble L and a precode P, the ML decoding failure probability of
the precoded LT code ensemble on word level equals to

P [L,P]
(
��W

′
)

=
k∑

we=1

P [L,P]
(
��W

′, we = we

)
. (6.4)

Corollary 6.6. The corresponding ML decoding failure probability of a precoded
LT code ensemble on symbol level is obtained by

P [L,P]
(
�S

′
)

=
k∑

we=1

we

k
P [L,P]

(
��W

′, we = we

)
. (6.5)

In the special case that no precode is used, i.e. if x = Ik×kx′ = x′, (6.4) obviously
results in

P [L,P]
(
��W

′
)

= P [L]
(
��W
)

=
k∑

we=1

P [L](we = we) (6.6)

and (6.5) in

P [L,P]
(
�S

′
)

= P [L]
(
�S
)

=
k∑

we=1

we

k
P [L](we = we). (6.7)



6.2 The Erasure Weight Profile 109

Subsequently, two examples are given to illustrate the meaning of the erasure
weight and some related quantities.

Example 6.7. Let GR ∈ F
nR×7
2 be a realisation of the random matrix GR and let

the binary vector x1 = (1, 1, 1, 0, 0, 0, 0)T be the only element in ker(GR) \ {0}.
Though the kernel has dimension one, i.e. nullity(GR) = 1, it occupies a three-
dimensional subspace, i.e. we = dim(A�(ker(GR))) = 3, or in other words, the
support set of x1 has a cardinality of three. The three non-zero positions in x1 are
those positions that cannot be recovered when solving GRx = yR.

Example 6.8. Let GR ∈ F
nR×7
2 be a realisation of GR and let the three bi-

nary vectors x1 = (1, 1, 1, 0, 0, 0, 0)T, x2 = (1, 1, 0, 1, 0, 0, 0)T and x3 =
x1 + x2 = (0, 0, 1, 1, 0, 0, 0)T be the only vectors in ker(GR) \ {0} such that
nullity(GR) = 2. Now, the number of unrecoverable unknowns is four, i.e.
we = dim(A�(ker(GR))) = 4, since there are four positions in x1 and x2 (not
considering x3, as it is a linear combination of x1 and x2) that are non-zero in at
least one of the two vectors. In other terms, we corresponds to the cardinality of
the union of the kernel elements’ support sets.

6.2.1 Binomial and Measured Erasure Weight Profiles

While the erasure weight we of a realisation GR of a random matrix GR can be
calculated just by solving the corresponding system of linear equations, the exact
erasure weight profile of the ensemble GR would have to be determined by solving
all systems in the ensemble, which is by far too complex for reasonably sized
ensembles. Since no method is known to determine P [L](we = we) analytically, it
needs to be measured by solving a large number of realisations GR of GR, despite
the rather high computational cost.

An attempt to model the erasure correction properties of a tandem ensemble con-
sisting of an LT ensemble L and some precode P has already been undertaken
in the literature. It has so far been assumed, e.g. in [RVF07, Lemmas 9 and 10]
and [YLV+13], that the symbol erasures after optimally decoding the LT code
stage are independent, i.e. that the number we of residual symbol erasures after
decoding the LT code stage follows a binomial distribution parametrised merely
with the residual symbol erasure probability P [L]

(
�S
)
:

P [L](we = we) =

(
k

we

)
P [L]

(
�S
)we

(
1 − P [L]

(
�S
))k−we

. (6.8)

However, the assumption of independent residual symbol erasures after the LT
code stage does not hold in general. It holds only if a sufficiently long interleaver
is inserted between the precode and the LT code. Yet, a long interleaver induces an
additional long delay and therefore it is not beneficial to use one in delay sensitive
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erasure weight profile binomial erasure weight profile (6.8)
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(a) Sparse random ensemble with k = 100 and d̄ = 5.87.
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(b) BP-optimised ensemble with k = 100, d̄ = 5.87 and Ω(ξ) from (2.8).

Figure 6.2: Erasure weight profiles (measured and binomial assumption) for two binary

LT code ensembles for γ
[L]
R ∈ {1.0, 1.04, 1.08, . . . , 1.28}.
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simulated word erasure rate
word erasure rate with binomial erasure weight profile (6.8)
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(b) BP-optimised ensemble, Ω(ξ) from (2.8).

Figure 6.3: Erasure correction performance of two genie-precoded binary LT code en-

sembles of intermediate codeword length k = 100 and with d̄ = 5.87. The

genie precode corrects up to we symbol erasures within an ML decoded in-

formation word without rate loss, where we ∈ {0, 1, . . . , 4}. The dashed

lines represent the respective erasure correction performance under the as-

sumption of independent residual symbol erasures after decoding the LT

stage [RVF07, YLV+13], i.e. under the assumption of a binomial erasure

weight profile as in (6.8).

applications. In terms of erasure correction performance it is more advantageous
to increase the input size of the code than to employ an interleaver if a longer
delay is affordable.

In Figure 6.2 the erasure weight profiles according to (6.8) are depicted as dashed
lines for two LT code ensembles and for varying inverse reception code rates γ

[L]
R .

The corresponding measured erasure weight profiles are drawn as solid lines. Ap-
parently, the true erasure weight profile depends strongly on the used row weight
distribution, whereas the binomial erasure weight model only indirectly includes
a weak dependency via the very high-level parameter P [L]

(
�S
)
. It is very obvious

that for neither code and for none of the values of γ
[L]
R does the binomial erasure

weight model bear a very close resemblance with the measured erasure weight
profile.

In Figure 6.3 the binomial erasure weight model has been used on two Raptor
code ensembles consisting of the previous two LT code ensembles in combination
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with a genie precode. The idealised concept of a genie precode without rate loss
is considered here, where the genie precode is assumed to recover up to we ∈

{0, 1, . . . , 4} symbol erasures in the intermediate codeword at no cost. Also in
this case it shows that the word erasure rates of the genie Raptor codes obtained
from Monte Carlo simulations of the erasure weight profile have no likeness with the
word erasure rates computed via (6.8). One can further observe that the stronger
the genie precode the larger becomes the deviation of the modelled erasure rate
from the simulated one. Evidently, the assumption of independent symbol erasures
after LT decoding does not hold and as such (6.8) should not be used to predict
the performance of Raptor code ensembles.

For the design of a Raptor code, it is not only important to obtain an LT code
matrix with a high probability of achieving full rank, but given the possibility of
employing a precode, it is crucial to find LT code ensembles with a suitable erasure
weight profile. The erasure weight we corresponds to the number of unsolvable
unknowns in the intermediate codeword x at the receiving end, i.e. the number of
residual erasures in x after ML decoding of the LT code has been carried out. A
precode can correct at best only n′−k′ = k−k′ residual erasures in the intermediate
codeword, which in case of a high-rate precode is a rather small number.

A good precodable LT code ensemble is thus characterised by low probabilities of
high erasure weights, which are uncorrectable by a precode, whereas the probability
of low erasure weights can be left to attain arbitrarily high values if such a degree of
freedom allows to reduce the decoding complexity, for low erasure weights should
be decodable with a sufficiently high probability by the chosen precode. In the
two toy examples 6.7 and 6.8, a precode would have to be able to correct we = 3
or we = 4 erasures, respectively, within an intermediate codeword of length seven
for an overall successful decoding.

Since measuring P [L](we = we) by means of Monte Carlo simulations can be com-
putationally expensive, another method will be proposed subsequently that allows
first to approximate the erasure weight profile P [L](we = we) of an LT code en-
semble L. Then, given this approximation, it is possible to combine it with the
erasure correction characteristic P [P]

(
��W ′

∣∣we

)
of an arbitrary high-rate precode

P and predict the erasure correction performance of the resulting Raptor code
ensemble under ML decoding. The mentioned approximation is based on the up-
per bound on the word erasure probability in Section 3.3, and analogous to the
upper bounds which can be used to model the erasure correction performance of
an unprecoded LT code ensemble, the new approximation has the same quality for
a precoded ensemble. If the upper bound is an accurate description of the plain
LT code ensemble performance, then so is the new approximation for the precoded
ensemble. This approximation can be remarkably accurate and can be computed
with an extremely low complexity as will be demonstrated below.
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6.3 The Kernel Weight Profile

In Examples 6.7 and 6.8 another quantity has been used besides the erasure weight
we, namely the number of non-zero positions of the vectors in the respective kernel,
i.e. their Hamming weights. This and some additional quantities, which shall serve
to derive the previously mentioned approximation to the erasure weight profile, will
be defined in the following:

Definition 6.9. The Hamming weight ‖x‖H of a kernel element x shall be denoted
kernel element weight wk = ‖x‖H.

Definition 6.10. The kernel of weight wk of a matrix GR denotes the set of
vectors x of Hamming weight wk which are mapped to the null space

ker(GR | wk) = {x : GRx = 0, ‖x‖H = wk}. (6.9)

Definition 6.11. The Hamming weights of all non-trivial kernel elements xi, i ∈

{1, . . . , |ker(GR)\{0}|} shall be denoted kernel weight wk = (‖x1‖H, ‖x2‖H, . . .)T.

It is noteworthy that in Example 6.7 the erasure weight is equal to the kernel
weight. The reason for this is that the kernel contains only one non-trivial element,
i.e. nullity(GR) = 1. Note that for higher order Galois fields, the q − 1 non-trivial
multiples of x are also in the kernel, but they have the same weight. So, in
general, it is important that there exists only one linearly independent element in
ker(GR) \ {0}, which is the case iff nullity(GR) = 1.

In Example 6.8, however, while the erasure weight is four, the kernel weight is
the triple wk = (‖x1‖H, ‖x2‖H, ‖x3‖H)T = (3, 3, 2)T, with ker(GR | wk = 2) =
{x3} and ker(GR | wk = 3) = {x1, x2}, since the kernel dimension is two (or more
importantly greater than one), i.e. nullity(GR) = 2 > 1, and it contains thus more
than one linearly independent non-trivial element. Generally, the cardinality of the
non-trivial kernel and the nullity are linked by |ker(GR) \ {0}| = qnullity(GR) − 1.
So, in the second example, the scalar valued erasure weight obviously does not
coincide with the kernel weight triple.

As it will be shown in Section 6.4, cases with nullity(GR) > 1 occur far less
frequently than cases like Example 6.7 with nullity(GR) = 1. So in most cases,
there is only one linearly independent element in the kernel, and its weight wk is
then equal to the erasure weight we. This fact allows to approximate the erasure
weight profile of an ensemble with another quantity which shall be denoted kernel
weight profile. The latter, which has a close relation to the upper bound on the
word erasure probability as given by (3.18), will be defined and derived in the
following.
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From the derivation of the upper bound on word level as given by (3.18) in Sec-
tion 3.3, the expected cardinality of the non-trivial kernel of GR is known as

E{|ker(GR) \ {0}|}

=
k∑

w=1

(
k

w

)
(q − 1)w

⎡⎢⎢⎣1
q

∑
d∈D

Ωd

d∑
l=0

(
w

l

)(
k−w

d−l

)[
1 − (1 − q)1−l

]
(

k

d

)
⎤⎥⎥⎦

kγ
[L]

R

. (6.10)

Using Definition 6.10, (6.10) can be reformulated to

E{|ker(GR) \ {0}|} =
k∑

wk=1

E{|ker(GR | wk = wk)|}, (6.11)

where the summands constitute a scaled version of the kernel weight profile which
is defined subsequently.

Definition 6.12. The kernel weight profile of an LT code ensemble
L =

(
GR ∼ Ω(ξ), FnR×k

q

)
is the expected number of kernel elements x of Ham-

ming weight wk, i.e. the expected size of the kernel of weight wk, excluding the
kernel elements’ q − 1 non-trivial multiples

E{|ker(GR | wk = wk)|}
q − 1

�

(
k

wk

)
(q − 1)wk−1
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(
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)(
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]
(
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kγ
[L]

R

, (6.12)

where 1 ≤ wk ≤ k.

From Section 3.3 the upper bound on the residual word erasure probability after
ML decoding is known and with the expressions from the previous section, the
following relation holds between the sums over kernel and erasure weight profile:

P
[L](

��W
)

=
k∑

wk=1

E{|ker(GR | wk = wk)|}
q − 1

≥

k∑
we=1

P [L](we = we) = P [L]
(
��W
)
.

(6.13)

Unfortunately, this relation does not hold summand-wise, i.e. it does not hold
for the kernel and the erasure weight profiles themselves. Nevertheless, like the
upper bounds in Chapter 3 could be used as an approximation to the true erasure
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probabilities, the kernel weight profile can be used to approximate the erasure
weight profile for wk = we:

P̃ [L](wk = wk) � P̃r{wk = wk} =
E{|ker(GR | wk = wk)|}

q − 1
≈ P [L](we = we)

(6.14)

Note that P̃ [L](wk = wk) is not a true probability distribution, which is indicated
by the tilde, and its sum may exceed one. In case that occurs, the sum, which
corresponds to P

[L](
��W
)
, is clipped to one. Moreover, the kernel weight pro-

file overestimates the probability of small erasure weights and underestimates the
probability of large ones, i.e. for wk = we

P̃ [L](wk = wk) � P [L](we = we) for small to medium wk and we

P̃ [L](wk = wk) � P [L](we = we) for large wk and we.

Now, consider for instance a binary matrix GR with we = 2. The kernel weight can
either be wk = (2)T, too, or it can be wk = (1, 1, 2)T. The first possibility occurs
if there exist exactly two linearly dependent columns in GR, while the second
possibility arises from exactly two all-zero columns in GR if there are no further
linearly dependent columns. In the previous case, nullity(GR) = 1, while in the
latter nullity(GR) = 2. In general, we ≥ ‖wk‖∞, i.e. we is greater than or equal
to the maximum entry in wk.

So when approximating the erasure weight profile with the kernel weight profile,
it should be kept in mind, that the kernel weight profile overestimates the prob-
ability of small erasure weights and underestimates the probability of large ones.
The two one-entries in wk = (1, 1, 2)T for instance, have a small contribution
to P̃ [L](wk = 1), although the respective erasure weight is actually two. Nev-
ertheless, this approximation is astonishingly good, since Pr{nullity(GR) = 1} is
usually much larger than Pr{nullity(GR) > 1}. And merely large nullities, which
occur fairly seldom, contribute essentially to the misestimation.

Definition 6.13. Similarly to the precoded erasure weight profile, the precoded
kernel weight profile is given by

P̃ [L,P]
(
��W

′, wk = wk

)
≈ P [P]

(
��W

′
∣∣we = we

)
· P̃ [L](wk = wk), (6.15)

for we = wk and given the decoding failure probability distribution P [P]
(
��W ′

∣∣we

)
of a precode P under ML decoding, conditioned on the number we of erasures in
an intermediate codeword x.

It is assumed, that the precode can eliminate an intermediate codeword of weight
wk from the kernel if it is able to correct we erasures in the intermediate codeword.



116 6 Raptor Code Ensembles

Again it shall be emphasised that this assumption holds exactly only in the case
of nullity(GR) = 1. And also in the case of the precoded profiles, the precoded
kernel weight profile will be used as an approximation for the precoded erasure
weight profile for we = wk

P [L,P]
(
��W

′, we = we

)
≈ P̃ [L,P]

(
��W

′, wk = wk

)
. (6.16)

6.4 The Nullity Profile

The nullity profile or equivalently the rank profile is only known for the standard
random ensemble. It is obtained as the quotient of (3.10) and (3.12)

Pr{rank(GR) = r} = Pr{nullity(GR) = o} with o = k − r

=
N(nR × k, r)∑k

r=0
N(nR × k, r)

=

[
nR
r

]
q

(
qk − 1

)(
qk − q

)(
qk − q2

)
. . .
(
qk − qr−1

)
qknR

. (6.17)

Remark 6.14. To the best of the author’s knowledge the complete rank profile
of random matrices is given analytically only for the standard random ensemble.
For all other ensembles the determination of the complete rank profile is still an
open problem. Even the exact probability of full rank could only be derived for
the expurgated random ensemble, as shown in Section 3.2.2.

The rank and nullity profiles of the standard random ensemble are essentially inde-
pendent of the input size k when evaluated for not too tiny values of k. The nullity
profile of the standard random ensemble is depicted in Figure 6.4(a) as a function
of the absolute reception overhead ηR. For two other binary LT ensembles of input
size k = 100, namely the sparse random ensemble and the BP-optimised ensemble
both with an average row weight d̄ = 5.87, which have yet repeatedly served as
examples, the nullity profile has been measured and depicted in Figures 6.4(b)
and 6.4(c). These two ensembles have been assigned a fixed input size, since their
performance is not independent of k. Therefore, the relative reception overhead εR

is provided, too. In contrast to the exponential decrease of Pr{nullity(GR)} of the
standard ensemble as a function of the overhead, the terms of the nullity profile of
the sparse random ensemble seem to exhibit a waterfall and a floor region. Such a
structure cannot be clearly identified in case of the BP-optimised ensemble.

Moreover, while Pr{nullity(GR) = o1} � Pr{nullity(GR) = o2} if o1 < o2 for
all overheads for the random ensembles, this is not the case for the BP-
optimised ensemble, where for small overhead values Pr{nullity(GR) = 1} <

Pr{nullity(GR) = 2}. And also Pr{nullity(GR) = o} does not decrease as fast with
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(a) Nullity profile of the standard random ensemble according to (6.17).
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(b) Nullity profile of the sparse random ensemble with k = 100 and d̄ = 5.87.
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(c) Nullity profile of the BP-optimised ensemble (2.8) with k = 100 and d̄ = 5.87.

Figure 6.4: Nullity profiles of three binary ensembles. Subplots (b) and (c) are obtained

by means of Monte Carlo simulations. The numbers in the figures denote the

respective nullities.
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o as in the cases of the random ensembles. But note that when the density of the
sparse ensemble is decreased further such that it degenerates, it can also occur that
Pr{nullity(GR) = o1} < Pr{nullity(GR) = o2} for small overhead values if o1 < o2.

Nevertheless, it has been exemplarily demonstrated that for codes of interest
Pr{nullity(GR) = o1} � Pr{nullity(GR) = o2} if o1 < o2, which is required as
a justification for approximating the (precoded) erasure weight profile with the
(precoded) kernel weight profile with sufficient accuracy.

6.5 Numerical Evaluation and Monte Carlo Simulations

For the two example LT code ensembles used throughout this chapter, cf. Fig-
ures 6.2 and 6.3, the measured erasure weight profiles have already been depicted
in Figure 6.2 where it has been shown that the erasure weight profile does not
follow a binomial distribution as repeatedly assumed in the literature. In Fig-
ures 6.5(a) and 6.6(a) the measured profiles have been redrawn together with the
corresponding kernel weight profiles, which acts as an upper bound on the erasure
weight profile for not too high weights. The deviation of the kernel weight profile
from the erasure weight profile or more precisely the reason for their congruence
has already been explained in Section 6.3. In Figure 6.5(a), i.e. for the sparse ran-
dom LT code ensemble, the two profiles are almost congruent for a very large range
of weights, particularly for low weights, while the profiles of the BP-optimised LT
code ensemble in Figure 6.6(a) differ significantly for small inverse reception code
rates γ

[L]
R , but they quickly approach each other as γ

[L]
R increases.

This behaviour is in line with that of the upper bounds on word or symbol level as
a function of γ

[L]
R . The upper bounds for the sparse random ensemble for instance

are extremely good approximations of the residual erasure rates for all γ
[L]
R , while

in the case of the BP-optimised ensemble the upper bound is less suited to approx-
imate the residual erasure rates at low γ

[L]
R close to one, but the approximation

accuracy improves with increasing γ
[L]
R . As a rule of thumb it can be said that the

upper bounds are very good approximations of the residual erasure probabilities.
Consequently, the approximation of the erasure weight profile by the kernel weight
profile is feasible if the upper bounds exhibit a certain shape, i.e. the waterfall
region should resemble that of the standard random ensemble and when reaching
the proximity of the lower bound, the respective upper and lower bounds should
quickly converge.

While the behaviour of the upper bound serves merely as an indicator of whether
to expect a good or a bad approximation quality by the kernel weight profile, the
actual reasoning behind the approximation attempt is the fact that erasure and
kernel weight are the same if nullity(GR) = 1. In Section 6.4 the nullity profile
of LT code ensembles has been introduced and its characteristics have been il-
lustrated by means of three realistic examples. The exhibited predominance of
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Pr{nullity(GR) = 1}, where it applies, results in a high accuracy of the introduced
approximation of the erasure weight profile by means of the kernel weight profile, as
for instance for the sparse random LT code ensemble. Where Pr{nullity(GR) = 1}

is less predominant, as it is the case with the BP-optimised ensemble, the approx-
imation accuracy certainly suffers.

In Figures 6.5(b) and 6.6(b) the respective complementary cumulated erasure and
kernel weight profiles are shown. A steep descent at low weights indicates a good
suitability for high-rate precoding, by which a few residual erasures are correctable
with high probability. As the complementary cumulated profile flattens out, a
precode that is able to correct erasures in that range of weights has no advantage
over a precode that can correct only up to the beginning of the flat region. The
contrary is even the case if the stronger precode has a smaller rate, since then the
rate loss is larger.

Assuming a genie precode that can correct all residual erasures up to a weight of we,
the complementary cumulated erasure weight profile at we + 1 yields the residual
word erasure probability after precoding. Alike, the complementary cumulated
kernel weight profile results in a pseudo upper bound thereof if the number of
correctable erasures we ≥ 1 is not too large. If no precode is applied, i.e. if the
number of correctable erasures we is zero, the complementary cumulated kernel
weight at we = 1 is a true upper bound.

For the two example codes the resulting erasure rates as well as the (pseudo)
upper bounds are depicted in Figure 6.7 using a genie precode that can correct
up to we ∈ {0, 1, . . . , 4} erasures. As expected from the strong congruence of the
kernel and erasure weight profiles, the erasure correction performance of the sparse
random ensemble is very accurately predicted by the (pseudo) upper bounds. The
performance of the BP-optimised ensemble in contrast thereto is only accurately
modelled by the (pseudo) upper bounds for larger values of γ

[L]
R . From both genie-

precoded ensembles it becomes clear that the pseudo upper bounds are only as
good a description of the real erasure rate as the upper bounds of the unprecoded
ensembles.

In Figures 6.8(a) and 6.8(b) the residual erasure probabilities of the two example
LT code ensembles with an intermediate codeword length of k = 100 are depicted
together with those of the precoded ensembles using an appropriately shortened
extended Hamming code. For the unprecoded ensembles upper and lower bounds
are also given, while for the precoded ensembles only the pseudo upper bounds are
drawn, since proper (pseudo) lower bounds have not yet been found.

Note that for a real precode, whose code rate is lower than one, the curves are
shifted to the right. The waterfall region is dominated by high-weight erasures
which a high-rate precode cannot remove. With increasing γ

[L]
R the amount of

high-weight erasures decreases much faster than the amount of low-weight era-
sures, which can be observed in the respective weight profiles. At the same time
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Figure 6.5: Erasure and kernel weight profiles and the respective complementary cumu-

lants (i.e. from right to left) for γ
[L]
R ∈ {1.0, 1.04, 1.08, . . . , 1.28} for the

binary sparse random LT code ensemble with k = 100 and d̄ = 5.87.
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Figure 6.6: Erasure and kernel weight profiles and the respective complementary cumu-

lants (i.e. from right to left) for γ
[L]
R ∈ {1.0, 1.04, 1.08, . . . , 1.28} for the

BP-optimised LT code ensemble with k = 100, d̄ = 5.87 and Ω(ξ) from (2.8).
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the precode gets more and more useful, since it obtains an increasing fraction of
correctable low-weight erasures from the LT decoder. It only fails at the fewer
remaining high-weight erasures and thus prolongs the waterfall region such that
the erasure floor reaches a much lower level, where the latter is also much steeper
than the unprecoded one.

As above with the genie-precoded ensembles, the pseudo upper bounds match the
measured erasure rates very well. The effect of this precode on the erasure and
kernel weight profiles can be observed in Figure 6.9. The profiles are cut off at
a weight of δH,min = 3 and lowered up to a weight of m = 8. Accordingly, the
complementary cumulated profiles saturate at δH,min + 1.

As a final example, the erasure correction performance of two larger (precoded)
LT code ensembles is provided in Figures 6.8(c) and 6.8(d). The row weight has
been kept constant, while the intermediate codeword length has been increased
to k = 1000 and an appropriately sized shortened extended Hamming code is
used as an exemplary precode. The unprecoded ensembles, again a sparse random
ensemble and the BP-optimised ensemble, are slightly degenerated, i.e. d̄ < ln k,
and thus the waterfall regions of the upper bounds stop significantly above the
lower bounds and approach them at a slower pace. This effect can be particularly
well observed for the sparse random ensemble. Yet, the pseudo upper bounds are
again of the same quality as the upper bounds of the unprecoded ensembles and
allow a sufficiently accurate performance assessment of the precoded ensembles,
especially at higher γ

[L]
R or γ

[P,L]
R . Since the used precode has a much higher code

rate than the one in the short ensemble, the rate loss is significantly lower.

6.6 Conclusions

Three quantities, i.e. the erasure weight profile, the kernel weight profile and the
nullity profile have been introduced in this chapter to characterise the erasure
correction performance of LT code ensembles on a finer scale than merely the
residual erasure probability on word or on symbol level or the respective bounds
thereon. As the erasure weight profile, the most valuable quantity of the three,
cannot be determined analytically, although incorrect attempts hereto exist in the
literature, it has to be obtained via extensive Monte Carlo simulations.

Given that the nullity profile of the LT code ensemble fulfils the condition that
the probability of large nullities is small, which should be the case for good LT
code ensembles, this allows to use the kernel weight profile, which can be obtained
from the expression of the previously determined upper bound on word level, as
an approximation to the erasure weight profile and thus (almost) redundantise its
simulative determination. Together with the conditional decoding failure probabil-
ity of the respective precode this finally allows to quickly and accurately assess the
compound erasure correction performance of Raptor code ensembles under optimal
decoding.
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(a) Sparse random ensemble with d̄ = 5.87.
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(b) BP-optimised ensemble with Ω(ξ) from (2.8) and d̄ = 5.87.

Figure 6.7: Erasure correction performance of two genie-precoded binary LT code en-

sembles of input size k = 100 and with d̄ = 5.87. The genie precode corrects

up to we symbol erasures within an ML decoded information word without

rate loss, where we ∈ {0, 1, . . . , 4}. The upper bounds for we ∈ {1, . . . , 4}

are in fact pseudo upper bounds derived from the respective kernel weight

profiles depicted in Figures 6.5(a) and 6.6(a).



124 6 Raptor Code Ensembles

simulated erasure rates
upper and lower bounds
pseudo upper bounds for
precoded LT codes

LT code only

LT code &
extended Hamming precode

1 1.2 1.4 1.6 1.8
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

inv. reception code rate γ
[L]
R , γ

[P,L]
R

P
[L

,P
]( �S

′) ,
P

[L
,P

]( �� W
′) word

level

symbol
level

(a) (Precoded) sparse random ensemble

with k′ = 92 and k = 100.

1 1.2 1.4 1.6 1.8
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

inv. reception code rate γ
[L]
R , γ

[P,L]
R

P
[L

,P
]( �S

′) ,
P

[L
,P

]( ��W
′)

word
level

symbol
level

(b) (Precoded) BP-optimised ensemble

with k′ = 92 and k = 100.
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with k′ = 989 and k = 1000.
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Figure 6.8: Bounds and simulated erasure rates of (precoded) binary LT codes with (in-

termediate) input sizes k = 100 and k = 1000, all with d̄ = 5.87. The

precodes are appropriately shortened extended Hamming codes with k′ = 92

and k′ = 989, respectively. The rate loss of the precoded ensembles appears

as a right-shift of the respective curves.
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(a) Precoded sparse random ensemble.
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Figure 6.9: (Complementary cumulated) precoded erasure and kernel weight profiles for

γ
[L]
R ∈ {1.0, 1.04, 1.08, . . . , 1.28} for a sparse random LT ensemble (left) and

a BP-optimised ensemble (right) with k = 100 and d̄ = 5.87. The precode is

a shortened extended Hamming code with k′ = 92.
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Chapter 7

Unequally Loss-Resilient LT Code
Ensembles

The first designs and studies of rateless codes targeted at applications like the
loss-resilient distribution of bulk data [BLMR98]. Since in bulk data each bit is
considered equally important, equal erasure protection (EEP) is the established
mode for such transmissions. For other types of data, however, where some parts
are more important than others and therefore need a stronger protection, unequal
erasure protection (UEP) is often better suited.

UEP rateless codes are particularly interesting for audio and video transmissions
which enable so-called graceful degradation, i.e. the data stream consists of differ-
ent parts which constitute different layers, some of which are essential (e.g. base
layer) while some are only refinement layers that enhance the resolution (spatial or
temporal) or the quality provided by the base layer. If necessary, such refinement
layers may be discarded without affecting the layers below. A well-known exam-
ple of a video codec allowing graceful degradation is the Scalable Video Coding
(SVC) [SMW07] extension of the H.264/AVC video coding standard [IT13]. In
the domain of speech and audio coding, the standard G.729.1 [IT06,GRT08] offers
hierarchical bit stream layers that enable to scale the acoustic bandwidth and the
audio quality.

There exist essentially two different types of UEP LT code ensembles in the litera-
ture. In [RVF07] a UEP LT code construction method is presented which shall be
referred to as the weighting (W-UEP) method while in [VSS+07,VSS+09,SVD+09,
Sej09,VS12] the expanding window (EW-UEP) method is proposed. Both by their
own means modify the column weights of the LT code matrix. In the graph repre-
sentation this implies a modification of the input nodes’ connectivity. The connec-
tivity of an input node directly reflects its protection level, i.e. a high connectivity
and thus a high column weight yields a higher protection level of the corresponding
input node than a low connectivity or column weight.

In the following, the two methods will be briefly explained. At the same time the
originally binary methods and their finite-length analysis under optimal erasure
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decoding will be directly generalised to higher order Galois fields. Due to a sub-
stantial weakness of the W-UEP method as described in [RVF07], a modification is
proposed after introducing the original approach. The aforementioned deficiency
arises from a non-linear operation in the construction process which was presum-
ably introduced for its significant simplification of the finite length analysis of the
such created codes but it yields only discrete and irregularly spaced protection
levels. The W-UEP method, however, can be re-engineered such as to prevent the
occurrence of this weakness. To this end biased sampling of the input symbols will
be used in Section 7.2 which allows for continuous effective weights and thus for
continuous protection levels.

7.1 Weighted UEP LT Code Ensembles

The first UEP construction method for LT code ensembles has been proposed
in [RVF07]. This original weighted UEP (W-UEP) approach shall first be briefly
reviewed in the following, before an enhanced version is discussed in the next
section. The k input symbols are initially assigned to T importance classes. An
importance class τ with τ ∈ {1, . . . , T } contains kτ symbols, i.e. the size of class
τ is given by kτ = ατ k, 0 ≤ ατ ≤ 1 and

∑T

i=1
αi = 1, where ατ is the relative size

of importance class τ .

In contrast to the EEP construction, where the input nodes are chosen uniformly
at random from the set of k input nodes to be connected to a given output node, i.e.
with initial probability p = p(1) = 1

k
, the W-UEP construction requires weighting

factors ϕτ that are in accordance with the importance of the respective classes. The
keyword initial implies connecting a new output node, which is yet unconnected,
to the current graph by creating the first of d edges to a random input node.
Accordingly, the probability of connecting a particular input node with the jth

edge, where 1 ≤ j ≤ d, i.e. given that j − 1 input nodes are already connected,
is denoted p(j). Consequently, the new initial probability of connecting a class τ

input node to a given output node is pτ = p
(1)
τ = ϕτ p = ϕτ

k
. The weighting factors

and the (relative) sizes have to fulfil the condition
∑T

i=1
ϕiαi =

∑T

i=1
piki = 1.

Presumably in order to facilitate the finite length analysis of these ensembles, the
construction in [RVF07] has been confined such as to fix the number dτ of input
nodes from an arbitrary class τ that are to be connected to a particular output node
of given degree d, i.e. dτ is set to min(rnd(ατ ϕτ d), kτ ). Therefore, this version of
the weighted approach will hereafter be referred to as weighted UEP with rounded
degrees. However, these means of fixing dτ given d entail an inaccuracy in adjusting
the protection levels or more directly the effective weights ϕ

[eff]
τ , as the latter are

discontinuous functions of the target weights ϕτ :

ϕ[eff]
τ =

d̄τ

ατ d̄
=

∑
d∈D

Ωd min(rnd(ατ ϕτ d), kτ )

ατ d̄
. (7.1)
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The numerator in (7.1) is the effective average row weight d̄τ of class τ , while the
denominator equals the average row weight that falls into that part of the LT code
generator matrix which is associated with class τ in the case of EEP.

In Figure 7.1 the blue graphs show the effective weight ϕ
[eff]
1 as a function of the

target weight ϕ1 for the respective first of two importance classes with relative
input sizes α1 and α2 for three exemplary weighted UEP LT code ensembles. The
dashed black line indicates the optimal case ϕ

[eff]
1 = ϕ1. The main drawback of the

rounded degrees approach should now become apparent, since the effective weights
not only bend off the optimal course, but they do so in a discontinuous manner,
due to which not all effective weights can be attained with a given parameter set,
i.e. with given k, ατ and Ω(ξ).

The first two ensembles have an input size of k = 100, but different row weight
distributions, whereas the third ensemble has a larger input size of k = 10000
but the same row weight distribution as the second ensemble. As the effective
weight ϕ

[eff]
τ is also a function of the overall row weight distribution Ω(ξ), the

latter naturally affects the arising discontinuities. The effect of different row weight
distributions becomes visible in the strongly differing step size irregularity when
comparing Figures 7.1(a) and 7.1(b).

Contrasting the blue graphs in Figures 7.1(b) and 7.1(c) for different input sizes
shows that one is roughly just a bent version of the other, i.e. for short codes
and target weights greater than one the effective weight deviates towards lower
values. This deviation is due to the operation min(·) that limits the number of
edges connected to the current importance class to the number of available input
nodes. Clipping, however, only occurs for row weights d which are higher than the
input sizes of the involved classes. Consequently, the operation min(·) does not
affect the long code in the depicted range of target weights.

7.2 Biased Sampling of Input Nodes

In order to allow for a continuous relation between ϕτ and ϕ
[eff]
τ , a different method

shall be used to select the input nodes of different classes to connect them to the
current output node of degree d. The proposed method [SL12] uses biased sampling
of the input nodes. Biased sampling is best explained by means of an urn model,
where the differently important input nodes are represented by k =

∑T

i=1
ki balls

of T different colours in an urn and the kτ balls of a particular colour τ have an
associated weight ϕτ . The urn experiment is carried out by drawing d balls one
by one without replacement from such an urn, where the probability of picking
a particular ball of a given colour τ at a particular draw j is proportional to the
ball’s relative weight with respect to the total weight of the current urn content:

p(j)
τ =

ϕτ∑T

i=1
ϕik

(j−1)
i

, (7.2)
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where k
(j−1)
i denotes the number of balls of colour i in the urn at the end of draw

j − 1 and k
(0)
i = ki serves as initial number of balls of colour i in the urn. A

detailed example is provided in Figure 7.2.

In [Wal63] Wallenius analysed biased sampling for the univariate case (T = 2).
Chesson generalised the analysis to the multivariate case in [Che76]. Hence, the
partitioning of the overall degree d of a specific output node into class degrees
di, with

∑T

i=1
di = d, follows the so-called multivariate Wallenius’ non-central

hypergeometric distribution which denotes the conditional pmf

Pr
{

d1 =d1, . . . , dT−1 =dT−1

∣∣∣d=d; k, ϕ

}
=

(
T∏

i=1

(
ki

di

)) 1∫
0

T∏
i=1

(
1 − t

ϕi
ϕ(k−d)

)di

dt,

(7.3)

where k = {k1, k2, . . . , kT } comprises the class sizes and ϕ = {ϕ1, ϕ2, . . . , ϕT }

comprises the class specific target weights. The pmf in (7.3) can be determined
by means of numerical integration as described in [Fog08b, Fog08a] using the
BiasedUrn package [Fog11] for GNU R. To simplify the notation, the explicit
parametrisation of the left hand side of (7.3) with k and ϕ will be omitted here-
after. Moreover, for a better legibility, an additional notation simplification will
be used: given an arbitrary function f(d), the collated sum

dmax∑
d=d1+...+dT =1

f(d) denotes
∑

d1

. . .
∑
dT

f(d),

where the sums are calculated for all combinations of the values of d =
(d1, d2, . . . , dT )T for which 1 ≤ d ≤ dmax and

∑T

τ=1
dτ = d. Additionally,

0 ≤ dτ ≤ min(d, kτ ) with 1 ≤ τ ≤ T .

Now, the multivariate row weight distribution

Ω(ξ) =
∑

d1

. . .
∑
dT

Ωd1,..., dT
ξd1

1 · . . . · ξdT
T (7.4)

=
dmax∑

d=d1+...+dT =1

Ωdξ
d, (7.5)

is required for determining upper and lower bounds on the residual erasure prob-
abilities, where

Ωd = Pr{d = d} = Pr{d1 = d1, . . . , dT = dT }

= Pr{d1 = d1, . . . , dT −1 = dT −1, d = d}

= Pr{d = d} · Pr
{

d1 = d1, . . . , dT −1 = dT −1

∣∣∣d = d
}

= Ωd · Pr
{

d1 = d1, . . . , dT −1 = dT −1

∣∣∣d = d
}

. (7.6)
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Figure 7.2: One possible realisation of connecting input nodes to the current output

node (black square) of degree d = 5 via biased sampling given an input size

of k = 8, T = 2 importance classes of relative sizes α1 = 0.25 and α2 = 0.75

and class weights ϕ1 = 2 and ϕ2 = 2
3

. After each of the d draws, enumerated

by j, 1 ≤ j ≤ d, the probabilities p
(j)
1 and p

(j)
2 of connecting the jth edge to

a specific input node of class 1 or 2 have to be updated, taking into account

the remaining k
(j−1)
1 and k

(j−1)
2 unconnected input nodes in either class, i.e.

p
(j)
1 = ϕ1

ϕ1k
(j−1)

1
+ϕ2k

(j−1)

2

and p
(j)
2 = ϕ2

ϕ1k
(j−1)

1
+ϕ2k

(j−1)

2

.

The second term in (7.6) is the multivariate Wallenius’ non-central hypergeometric
distribution (7.3). Accordingly, the average row weight associated with class τ is

d̄τ =
dmax∑

d=d1+...+dT =1

Ωd

dτ

kτ

(7.7)

and thus, the effective weight can be determined as

ϕ[eff]
τ =

d̄τ

ατ d̄
=

dmax∑
d=d1+...+dT =1

Ωd
dτ

kτ

ατ d̄
. (7.8)
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Like for the original weighted UEP approach above, the effective weight for biased
sampling is depicted in red in Figure 7.1 for the same exemplary LT code ensembles.
The effect of the modification becomes apparent in that the effective weight ϕ

[eff]
τ

is now a continuous function of the target weight ϕτ . So despite the deviation
from the ideal case ϕ

[eff]
τ = ϕτ for the short ensembles, any desired effective weight

can be attained by the biased sampling approach.

7.2.1 Finite Length Analysis

As in the EEP case, the erasure correction performance of UEP LT code ensembles
can be assessed by upper and lower bounds on word and symbol level for any
importance class τ . The proofs of the following corollaries are similar to the ones
of Theorems 3.14, 3.15, 3.17 and 3.18 and they are provided in Appendix A.

Corollary 7.1. Given a weighted UEP LT code ensemble L over Fq using biased
sampling, an upper bound on the word erasure probability P

[L]
τ

(
��W
)

of importance
class τ after ML decoding is

P
[L]
τ

(
��W
)

=
k∑

w=w1+...+wT =1
wτ ≥1

(q − 1)w−1

(
T∏

i=1

(
ki

wi

))

·

[
dmax∑

d=d1+...+dT =1

Ωd

d∑
l=l1+...+lT =0

1
q

(
1 − (1 − q)1−l

) T∏
i=1

(
wi

li

)(
ki−wi

di−li

)(
ki

di

) ]kγR

. (7.9)

Corollary 7.2 (from [SL12]). Accordingly, an upper bound on the symbol erasure
probability P

[L]
τ

(
�S
)

of importance class τ after ML decoding is

P
[L]
τ

(
�S
)

=
k−1∑

w=w1+...+wT =1
wτ ≥1

(q − 1)w−1

(
T∏

i=1

(
ki − δi,τ

wi − δi,τ

))

·

[
dmax∑

d=d1+...+dT =1

Ωd

d∑
l=l1+...+lT =0

1
q

(
1 − (1 − q)1−l

) T∏
i=1

(
wi

li

)(
ki−wi

di−li

)(
ki

di

) ]kγR

, (7.10)

where δi,j is the Kronecker delta function, which equals one if i = j and zero
otherwise.

Corollary 7.3. A lower bound on the word erasure probability P
[L]
τ

(
��W
)

of im-
portance class τ after ML decoding is

P [L]
τ

(
��W
)

=
kτ∑

i=1

(−1)i+1

(
kτ

i

)( dmax∑
d=d1+...+dT =1

Ωd

(
kτ −i

dτ

)(
kτ

dτ

) )kγR

. (7.11)
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Corollary 7.4 (from [SL12]). And finally, a lower bound on the symbol erasure
probability P

[L]
τ

(
�S
)

of importance class τ after ML decoding is given by

P [L]
τ

(
�S
)

=

(
1 −

dmax∑
d=d1+...+dT =1

Ωd

dτ

kτ

)kγR

. (7.12)

7.2.2 Numerical Evaluation and Monte Carlo Simulations

In order to further illustrate the difference between the original weighted UEP ap-
proach and the one with biased sampling of input nodes, three exemplary weighted
UEP LT code ensembles, each with two importance classes, are to be constructed to
achieve the effective weight ϕ

[eff]
1 = 1.35, i.e. importance class 1 obtains a stronger

protection than class 2. The input size is k = 100, the relative class sizes are
α1 = 0.1 and α2 = 0.9, and the used row weight distribution is the BP-optimised
one given by (2.8), i.e. the three ensembles are the same as the ones used in Fi-
gure 7.1(b) with the weights as indicated by the round markers. In Figure 7.3,
bounds on the residual symbol erasure probability P

[L]
τ

(
�S
)

are depicted for the
three ensembles and the two respective importance classes.

With the original weighted UEP method the effective weight ϕ
[eff]
1 = 1.35 cannot be

attained with the given code parameters. The closest approach is achieved by using
the target weights left or right of the weight discontinuity, i.e. either ϕ1 = 1.66
(ϕ[eff]

1 = 1.187, green circle) or ϕ1 = 1.67 (ϕ[eff]
1 = 1.534, blue circle), which lead

to the bounds depicted in green or blue, respectively. In one case (blue), class 1
is protected too well at the cost of class 2, while in the other case (green), class 1
is not protected sufficiently. In general, the protection of a smaller class is usually
more influenced than that of a larger class and the effective protection levels cannot
be accurately adjusted using the original method. By employing biased sampling,
however, any effective weight and thus any protection level can be obtained. For
the present example this is achieved by setting ϕ1 = 1.44 (red curves).

7.2.3 Practical Design of Sparse Random UEP Ensembles

Sparse random ensembles not only show a remarkable performance in EEP scenar-
ios but also with UEP constraints. Like in the case of EEP, the performance of UEP
sparse random ensembles can be easily assessed by means of the derived bounds
on the residual erasure probabilities. The computation of the bounds in (7.9) to
(7.12) (particularly the upper bounds), however, can be quite time-consuming if
the input size is large (k � 100), if the number of importance classes is greater
than 3 or 4 or if the row weight distribution is not sparse, i.e. if the cardinality of
the row weight sample space |D| is large. So for UEP ensembles that are based
on sparse random ensembles, |D| is equal to the input size and is thus not small.
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Figure 7.3: Upper and lower bounds for three UEP LT code ensembles with k = 100,

two importance classes and relative class sizes of 0.1 and 0.9. An effective

weight ϕ
[eff]
1 = 1.35 shall be obtained. The weights ϕ1 that yield the closest

values to ϕ
[eff]
1 for the different code construction methods are highlighted

in Figure 7.1(b) by round markers with corresponding colours. Using the

rounded degrees method, the envisaged ϕ
[eff]
1 = 1.35 cannot be reached. The

closest one can get is by using either ϕ1 = 1.66 (ϕ
[eff]
1 = 1.187, green curves)

or ϕ1 = 1.67 (ϕ
[eff]
1 = 1.534, blue curves). By biased sampling on the other

hand, any effective weight ϕ
[eff]
1 and thus any protection level can be attained.

This means that particularly for such ensembles the computation of the bounds,
one of the first steps in the design process, can become lengthy.

One possibility to speed up the process is to set the multitude of extremely small
values Ωd to zero and thereby to decrease |D| without affecting the accuracy. An-
other possibility is to use the bounds of equivalent EEP sparse random ensembles,
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G
[EEP]
3 G[UEP]

n
T

n
T

k

k k1 k2 k3

Δ3 = Δ[EEP]
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= Δ[UEP]
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= d̄3
k3

Δ[UEP]
1 Δ[UEP]

2 Δ[UEP]
3

Figure 7.4: Illustration of an equivalent EEP sparse random LT code ensemble that can

be used to approximate the bounds of the third importance class of a UEP

sparse random LT code ensemble which is constructed by means of biased

sampling.

which can be computed very fast [SV12]. What exactly is understood by the term
“equivalent” will be explained subsequently. Note, however, that the approxima-
tion of the UEP bounds with the equivalent EEP bounds is only feasible for sparse
random ensembles, not for UEP LT code ensembles in general.

Sparse random LT code ensembles, in contrast to other LT code ensembles, are
parametrised with the average row weight d̄ (alternatively the density Δ) and the
input size k. By biased sampling, the entries in the LT code matrix are distributed
such that in the different parts of the matrix which correspond to the respective
importance classes, the sparse random property is conserved when compared with
an EEP sparse random matrix of the same overall density. The individual densities,
however, which correspond to the respective protection levels normally differ from
the previous EEP density by implication.

Now, evaluating the performance for class τ reveals that it is almost identical to
the performance of another EEP sparse random ensemble whose density Δτ =
Δ[EEP]

τ is equal to the density Δ[UEP]
τ in the respective part of the UEP matrix,

i.e. Δ[EEP]
τ = Δ[UEP]

τ = d̄τ

kτ
. Moreover, the EEP matrix and the UEP matrix are

supposed to have the same width k. Such an EEP ensemble is considered to be
equivalent to a particular importance class τ and therefore allows to approximate
the bounds of this importance class. An illustration is provided in Figure 7.4.

In Figure 7.5 upper and lower bounds on the residual symbol erasure probability
P

[L]
τ

(
�S
)

are drawn in red for two exemplary sparse random UEP ensembles with
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upper bounds

lower bounds p

UEP bounds (7.12) and (7.10)
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(a) (b)

k1 = 10 ϕ
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(a) Δ = 5.87%, Δ1 = 8.81%, Δ2 = 5.54%.
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(b) Δ = 7.00%, Δ1 = 10.5%, Δ2 = 6.61%.

Figure 7.5: Upper and lower bounds on the symbol erasure probability P
[L]
τ

(
�S
)

for two

binary UEP LT code ensembles as well as the bounds of the sparse random

EEP LT code ensembles that correspond to the UEP importance classes.
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two importance classes and an overall input size of k = 100. The ensemble used
for Figure 7.5(a) has an overall density of Δ = 5.87%, while the overall density of
the ensemble used in Figure 7.5(b) is Δ = 7.00%. The set of used parameters is
summarised in the table provided in Figure 7.5 as well as below the subfigures. Ad-
ditionally, the bounds of the equivalent EEP sparse random ensembles are depicted
in black.

The upper bounds represent approximations to the respective UEP upper bounds,
whereas the corresponding EEP and UEP lower bounds are equal. Due to the
strong congruence of the EEP and the UEP upper bounds, the transitional parts
between waterfall and erasure floor are magnified, particularly since the diver-
gence of the approximations to the true bounds is maximal though small in this
area. In general it can be stated that the accuracy improves with a higher overall
density. Moreover, the deviation of the bounds for larger importance classes is
lower than for smaller importance classes. Keeping these effects in mind when
using the approximations, the initial design steps based on bound computation for
sparse random UEP LT ensembles can be performed with an accuracy and speed
comparable to that of EEP ensembles.

7.3 Expanding Window LT Code Ensembles

The expanding window (EW) method [SVD+09, Sej09] is another way to impose
different protection levels on different parts of an information word. To this end,
w.l.o.g. the symbols in the information word x are considered to be ordered with
respect to their importance as sketched in Figure 7.6, where the EW construction
process is depicted. Let T denote the number of different importance classes or
protection levels, then xτ contains the kτ information symbols in importance class
τ ∈ {1, . . . , T }, where τ = 1 labels the most important class. The complete

information word is thus x =
(
xT

1 , . . . , xT

T

)
T

.

Now, the usual LT code construction method is supplemented with some additional
steps. The importance classes are assigned to T windows, such that the first win-
dow comprises only the information symbols x1 of the most important class 1, the
second window contains

(
xT

1 , xT

2

)T

and the τ th window consists of
(
xT

1 , . . . , xT

τ

)T

.
In this manner, the more important classes are included in many windows, while
less important classes are contained only in few windows.

When generating an encoded symbol, i.e. a row in the LT code matrix, it is
first assigned randomly to a window according to a window selection distribu-
tion W(ξ) =

∑T

τ=1
Wτ ξτ . Furthermore, each window τ has an individual row

weight distribution Ωτ (ξ) =
∑κτ

d=1
Ωτ,dξd from which the current row weight d is

sampled, where κτ =
∑τ

i=1
ki is the number of input symbols in the τ th window.

Finally, d input symbols from the current window are chosen uniformly at random
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κ1
κ2

κ3

κT..
.

. . . . . . . . .. . .

. . .

k1 k2 k3 kT

Figure 7.6: Illustration of the EW code construction: the input nodes are assigned to

T importance classes of size kτ , τ ∈ {1, . . . , T } in descending order of im-

portance. Windowing is performed such that the τ th window contains im-

portance classes 1 to τ . An output node is created by first assigning it to

a window τ according to the window selection distribution W(ξ), second by

sampling a degree d from the row weight distribution Ωτ (ξ) and finally by

connecting it to d input nodes chosen uniformly at random from the τ th

window.

to create the respective encoded symbol, i.e. the current row in the LT code ma-
trix has d non-zero entries within the leftmost κτ columns. As usual, each of the
d non-zero entries is chosen uniformly at random from Fq \ {0}.

The EW construction allows two degrees of freedom to achieve UEP. By increasing
(decreasing) the average row weight in the more (less) important part of the LT
code matrix, the erasure floor is lowered (heightened). Moreover, by increasing
the probability of choosing smaller windows (which contain the more important
symbols) the waterfall can be reached earlier for these symbols at the cost of a
later waterfall for the less important ones.

7.3.1 Finite Length Analysis

The following four corollaries provide upper and lower bounds on the residual
erasure probability on word and on symbol level after optimal erasure decoding for
a fixed but arbitrary importance class τ . The proofs of the following corollaries
are similar to the ones of Theorems 3.14, 3.15, 3.17 and 3.18 as well as similar to
the proofs of the respective bounds in the case of biased sampling and they are
provided in Appendix A.

Corollary 7.5. Given an EW-UEP LT code ensemble L over Fq with T different
protection levels, an upper bound on the word erasure probability P

[L]
τ

(
��W
)

of
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importance class τ ∈ {1, . . . , T } after ML decoding is

P
[L]
τ

(
��W
)

=
κT∑

wT =1

· · ·

κτ∑
wτ =1

κτ−1∑
wτ−1=0

· · ·

κ1∑
w1=0

(q − 1)wT −1

(
T∏

i=1

(
ki

wi − wi−1

))

·

⎡⎢⎢⎣1
q

T∑
j=1

Wj

κj∑
d=1

Ωj,d

d∑
l=0

(
wj

l

)(
κj −wj

d−l

)[
1 − (1 − q)1−l

]
(

κj

d

)
⎤⎥⎥⎦

kγR

, (7.13)

with the inverse reception code rate γR = 1 + εR, the window specific row weight
distributions Ωi(ξ), i ∈ {1, . . . , T }, the window selection distribution W(ξ) and
w0 = 0.

Corollary 7.6. A corresponding upper bound on the symbol erasure probability
P

[L]
τ

(
�S
)

of importance class τ after ML decoding is then

P
[L]
τ

(
�S
)

=
κT∑

wT =1

· · ·

κτ∑
wτ =1

κτ−1∑
wτ−1=0

· · ·

κ1∑
w1=0

(q − 1)wT −1

(
T∏

i=1

(
ki − δi,τ

wi − wi−1 − δi,τ

))

·

⎡⎢⎢⎣1
q

T∑
j=1

Wj

κj∑
d=1

Ωj,d

d∑
l=0

(
wj

l

)(
κj −wj

d−l

)[
1 − (1 − q)1−l

]
(

κj

d

)
⎤⎥⎥⎦

kγR

. (7.14)

Corollary 7.6 is a generalisation of the upper bound on symbol level for the binary
case from [SVD+09,Sej09].

Corollary 7.7. A lower bound on the word erasure probability P
[L]
τ

(
��W
)

of im-
portance class τ after ML decoding is

P [L]
τ

(
��W
)

=
kτ∑

i=1

(−1)i+1

(
kτ

i

)( T∑
j=τ

Wj

κτ∑
d=1

Ωj,d

kτ∑
dτ =0

(
kτ −i

dτ

)(
κj −kτ

d−dτ

)(
κj

d

) )kγR

. (7.15)

Corollary 7.8 (from [Sej09]). And finally, a lower bound on the symbol erasure
probability P

[L]
τ

(
�S
)

of importance class τ after ML decoding is

P [L]
τ

(
�S
)

=

(
1 −

T∑
i=τ

Wi
d̄i

ki

)kγR

. (7.16)
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7.4 Conclusions

Two UEP LT code construction methods, i.e. the weighting and the expanding
window method, have been discussed in this chapter. The existing bounds on
symbol level under optimal erasure decoding have been generalised to higher order
Galois fields and new bounds on word level have been derived. Moreover, the
accuracy of the weighting method has been improved by employing biased sampling
of the input nodes for which the respective bounds have been provided as well.
This modification facilitates continuous effective weights and consequently allows
to attain any desired protection level. For the class of sparse random UEP LT
code ensembles a simplified and less complex heuristic design method has been
described. This method is based on the equivalent appearance and properties of
the parts of the UEP LT code matrix that correspond to the respective importance
classes and EEP LT code matrices with appropriate densities.

What has been left out is a generalised approach, i.e. a combination of the two
methods, which allows windowing and weighting (based on biased sampling) at the
same time. The finite length analysis of this combination, though straightforward,
is rather lengthy and tedious without offering much further insight into the topic
and is thus omitted here.

As a final subject, UEP Raptor codes remain to be addressed: here, the task
of providing unequal protection is best deferred from the LT code to the pre-
code. Particularly irregular LDPC codes seem to be highly eligible UEP pre-
codes [RF04, RPNF07], which share many properties with the discussed UEP LT
code ensembles. In fact, irregular LDPC codes, being a well-studied class of codes
and being considered superior to regular ones [LMS+97], naturally provide UEP.
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Chapter 8

Summary

Since the first, merely theoretical, postulation of the digital fountain principle
in [BLMR98], the progress in the development of practical fountain codes has been
remarkable. So they have quickly found their way into numerous communication
standards like for instance IETF RFCs 5053 and 6330 [LSWS07, LSW+11], the
3GPP MBMS standard [3GP13] for multimedia broadcasting and multicasting
services, the DVB-IPDC standard [ETS09b] for IP datacast over digital video
broadcasting networks or the DVB-IPTV standard [ETS09a] for TV services over
IP networks.

Digital fountain codes have two key properties which render them invaluable for
erasure-resilient data transmissions. The first is their ratelessness which allows to
create a potentially infinite number n of encoded packets from a finite number k of
data packets. The second one is their near-MDS property which allows to recover
the original k data packets from any (1 + ε)k out of the n encoded packets with a
small overhead ε ≥ 0.

These two properties facilitate a (near) optimal erasure-resilience that is indepen-
dent from the channel conditions, which is denoted as universality. As the average
contribution of each packet to the decodability of the original information is equal
and (near) optimal, it does not make sense to request a retransmission of a partic-
ular lost packet, since any of the following packets is as useful as the lost one. This
redundantises the need for acknowledging the reception of individual packets and
thus the need for further communication between transmitter and receiver, besides
an optional final feedback message upon successful completion of the overall recov-
ery. Thus, provided that the IP network offers a multicast service, a single server
that hosts popular content can serve a huge number of users simultaneously, even
if they do not tune in at the same time. Moreover, the network traffic is reduced
tremendously, since the same packet is sent to all subscribed users at a fixed but
arbitrary time instant and no further signalling or retransmissions are required.

In a nutshell, the major contribution of this thesis is the thorough examination
under various constraints of the erasure correction properties of two practically
relevant types of rateless code ensembles over finite fields under optimal erasure
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decoding, i.e. Luby Transform (LT) codes and Raptor codes. Due to several practi-
cal advantages of non-binary codes over binary ones, the results in this thesis have
been almost entirely presented in general form for arbitrary Galois field orders.

Though optimal erasure decoding is widely considered too complex for practical
purposes, for the targeted short input sizes, which are relevant, e.g. for low-delay
applications, it becomes affordable complexity-wise and yet almost mandatory,
since suboptimal but less complex greedy algorithms do not achieve sufficiently
low residual erasure rates. As optimal decoding of an LT code is equivalent to
solving a consistent system of linear equations, where the coefficients are given by a
pruned instance of an LT code generator matrix, which is created according to some
specifically designed random processes, the achieved results may be transferable to
other research fields where specifically designed systems of random linear equations
also need to be evaluated for their solvability.

Finite Length Analysis under Optimal Erasure Decoding

Starting with the most random LT code ensemble, which is perhaps the best un-
derstood ensemble, i.e. the standard random ensemble, and the closely linked ex-
purgated random ensemble, residual erasure probabilities after optimal decoding
have been provided on word level. For the standard random ensemble, the respec-
tive probability is well known in the literature, while for the expurgated random
ensemble, the optimal ensemble under optimal decoding, a new recursive expres-
sion has been derived. It is furthermore shown, that except for extremely small
input sizes, the two ensembles perform indistinguishably well, so that for practical
input sizes no distinction is necessary between the ensembles.

Since exact residual erasure probabilities are not known for general LT code ensem-
bles but for the above-mentioned special cases, bounds thereon have been derived
or existing ones for binary ensembles have been generalised for non-binary ones.
The obtained set of four bounds, i.e. upper and lower bounds on symbol and on
word level, has then been used to identify quasi-optimal ensembles with a density
constraint such as the expurgated sparse random ensembles.

For low reception overheads, in the so-called waterfall area, sparse random ensem-
bles have been shown to achieve almost the same erasure correction performance
as their dense counterparts at a much lower computational cost. By adjusting the
density of sparse random ensembles, it is extremely simple to trade off erasure
resilience against computational complexity.

The upper bounds have turned out to be very good approximations of the true
erasure rates, particularly for ensembles that show a good erasure correction per-
formance under optimal decoding. They enable a quick assessment of the erasure
correction properties of an ensemble without the need for time-consuming Monte
Carlo simulations.
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By moderately increasing the Galois field size and adjusting the ensemble param-
eters in a fair manner, it has been demonstrated that the erasure resilience is
improved, while the computational complexity is lowered considerably at the same
time.

Conventionally Systematic LT Code Ensembles

It is a widely held belief that conventionally systematic LT code ensembles, i.e.
ensembles where an identity matrix is prepended to an ordinary LT code generator
matrix, are inferior to ensembles created by the systematic construction. The set
of four bounds on the residual erasure probability for ordinary LT code ensembles
has been extended to conventionally systematic ensembles, permitting an accurate
analysis of such ensembles. So it has been shown that, though the aforementioned
inferiority remains undoubted in many cases, for some ensembles a conventionally
systematic prefix is indeed beneficial, both with respect to their erasure resilience
as well as the required computational complexity.

Raptor Code Ensembles

The finite length analysis of Raptor code ensembles under optimal erasure decod-
ing, comprising the derivation of proper bounds on the residual erasure probability
or not to mention the exact erasure probabilities, still remains a challenging open
problem. Nevertheless, a practical method has been proposed to reliably esti-
mate the erasure correction performance of these compound code ensembles. The
so-called kernel weight profile thereby acts as an approximation of the erasure
weight profile. Using the latter quantity, which is an important characteristic of
an LT code ensemble and unfortunately can only be determined by extensive mea-
surements, it is possible to judge whether an LT code ensemble is suitable for
precoding. Additionally, by combining the erasure weight profile with the erasure
correction performance of a precode, the compound erasure resilience can be cal-
culated. With the kernel weight profile at least a very good approximation hereto
could be obtained, which for practical values acts like an upper bound on the
compound residual erasure probability.

Unequally Loss-Resilient LT Code Ensembles

For the transmission of data with unequally important parts, like hierarchically
encoded multimedia content, ensembles are required which allow for an unequal
erasure protection (UEP). Two methods from the literature have been reviewed
and generalised to the non-binary domain.
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The first considered approach for constructing UEP LT code ensembles is the
weighting method. As the original weighting method possesses only discrete and
irregularly spaced effective weights, not all protection levels are attainable. By in-
troducing a variation in the form of biased sampling of input nodes, the accuracy
of the weighting method has been improved and the achievability of any desired
protection level has been rendered possible. A set of four bounds has been de-
rived for a fixed but arbitrary importance class. Moreover, a heuristic has been
presented to facilitate the design of UEP sparse random LT code ensembles, which
are constructed by the weighting method with biased sampling, by means of the
bounds of equivalent EEP sparse random LT code ensembles.

The second method to construct UEP LT code ensembles is the expanding win-
dow approach, for which the originally binary bounds on symbol level have been
generalised to higher order Galois fields. Additionally, corresponding bounds on
word level have been derived.



Appendix A

Further Proofs

For the sake of completeness the detailed proofs of the bounds on the residual
erasure probability after optimal decoding for LT code ensembles with unequal
erasure protection (UEP) in Chapter 7 shall be provided in this appendix. First,
the bounds for the weighted UEP construction method with biased sampling are
proved, which are stated in Corollaries 7.1 to 7.4. The proofs of the bounds for
the expanding window UEP approach, as given by Corollaries 7.5 to 7.8, follow
thereafter.

Weighted Unequal Erasure Protection with Biased Sampling of Input Nodes

Proof of Corollary 7.1. The probability P
[L]
τ

(
��W
)

is equal to the probability that
the kernel of GR is non-trivial w.r.t. importance class τ (referred to as τ -non-trivial
in the following), i.e.

P [L]
τ

(
��W
)

= Pr{∃x ∈ ker(GR) \ {0}, wτ = ‖xτ ‖H ≥ 1}. (A.1)

Similar to the proof of Theorem 3.14, the above expression is upper bounded by
the expected cardinality of the τ -non-trivial kernel. And as before, just one of the
q − 1 non-trivial multiples is counted which results in a division by q − 1:

P [L]
τ

(
��W
)

≤ P
[L]
τ

(
��W
)

(A.2)

=
1

q − 1
· E{|ker(GR) \ {0}|, wτ ≥ 1} (A.3)

=
1

q − 1
·
∑

x∈F
k
q ,

wτ ≥1

Pr{GRx = 0}. (A.4)

The kγR rows of GR can be viewed as the outcomes of independent trials of a
random variable r ∈ F

k
q .

P
[L]
τ

(
��W
)

=
1

q − 1
·
∑

x∈F
k
q ,

wτ ≥1

Pr{rx = 0}kγR (A.5)
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Now, the probability Pr
{

rTx = 0
}

is determined, conditioned on

(‖r1‖H, . . . , ‖rT ‖H)T = (d1, . . . , dT )T = d
T (A.6)

and

(‖x1‖H, . . . , ‖xT ‖H)T = (w1, . . . , wT )T = w
T. (A.7)

There are

(q − 1)w−1

(
T∏

i=1

(
ki

wi

))
(A.8)

choices of x of overall weight w > 0, with class specific weights (w1, . . . , wT )T

and excluding the q − 1 non-trivial multiples of x. The class specific row weights
(‖r1‖H, . . . , ‖rT ‖H)T = (d1, . . . , dT )T occur with probability Ωd1,..., dT

as given by
the multivariate row weight distribution (7.6) which is based on the multivariate
Wallenius’ non-central hypergeometric distribution (7.3). So the expression for
P
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τ
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)

can be reformulated to

P
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(A.9)

Let v = (v1, v2, . . . , vk)T with vj = rjxj , where vj , rj and xj are the jth elements
of the vectors v, r and x, respectively. Further, let v be also split up into class
specific vectors v = (vT

1 , . . . , vT

T )T with vT

τ = (vτ,1, . . . , vτ,kτ )T, then
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The probability of occurrence of exactly li non-zero elements in vi is
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while the last term in (A.10) is given by (cf. (3.34))

Pr

{
ki∑
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∣∣∣∣∣‖vi‖H = li

}
=

1
q

[
1 − (1 − q)1−li

]
. (A.12)

Finally, inserting (A.11) and (A.12) into (A.10) and the resulting expression
into (A.9) yields (7.9) which concludes the assertion.

Proof of Corollary 7.2. The probability P
[L]
τ

(
�S
)

is equal to the probability that
the jth input symbol in xτ cannot be determined by ML decoding for an arbitrary
j ∈ {1, 2, . . . , kτ }

P [L]
τ

(
�S
)

= Pr
{

∃x ∈ F
k
q \ {0}, xτ,j = a : GRx = 0

}
(A.13)

= Pr{∃x ∈ ker(GR) \ {0}, xτ,j = a}. (A.14)

with arbitrary but fixed a ∈ Fq \ {0}. The right-hand side of (A.13) is the prob-
ability of the jth column of matrix GR being linearly dependent on a non-empty
set of columns. The expressions (A.14) and (A.1) differ merely in the number of
choices of x, which in the current case is

(q − 1)w−1

(
T∏

i=1

(
ki − δi,τ

wi − δi,τ

))
, (A.15)

where δi,τ is the Kronecker delta function, which equals one if i = τ and zero
otherwise. The remainder of this proof follows the same line of thought as the
proof of Corollary 7.1.

Proof of Corollary 7.3. The partial information word in importance class τ cannot
be reconstructed if at least one input node from importance class (IC) τ cannot
be recovered. A lower bound on the residual word erasure probability P

[L]
τ

(
��W
)

is therefore given by the probability that there exist input nodes in importance



150 A Further Proofs

class τ that are not connected to any of the kγR independent output nodes

P [L]
τ

(
��W
)

= Pr{∃ IN in IC τ not connected to any ON} (A.16)

=
kτ∑

j=1

Pr{exactly j = j IN in IC τ not connected to any ON} (A.17)

=
kτ∑

i=1

(−1)i+1

(
kτ

i

)
Pr{i = i particular IN in IC τ not connected to any ON},

(A.18)

where the last line results from the arguments in the proof of Theorem 3.18.
Rephrasing Lemma 3.16 for the multivariate case and for importance class τ yields

Pr{i = i particular IN in IC τ not connected to any ON}

=

(
dmax∑

d=d1+...+dT =1

Ωd

(
kτ −i

dτ

)(
kτ

dτ

) )kγR

. (A.19)

Finally, inserting (A.19) into (A.18) results in (7.11).

Proof of Corollary 7.4. Analogously to the binary EEP case [Sho06], a lower
bound on P

[L]
τ

(
�S
)

is given by the probability that an input node in class τ is
not connected to any of the kγR output nodes.

Expanding Window Unequal Erasure Protection

Proof of Corollary 7.5. The probability P
[L]
τ

(
��W
)

is equal to the probability that
the kernel of GR is τ -non-trivial, i.e. it is non-trivial w.r.t. importance class τ :

P [L]
τ

(
��W
)

= Pr{∃x ∈ ker(GR) \ {0}, wτ = ‖xτ ‖H ≥ 1}. (A.20)

Similar to the proofs of Theorem 3.14 and Corollary 7.1, the above expression is
upper bounded by the expected cardinality of the τ -non-trivial kernel. And as
before, just one of the q − 1 non-trivial multiples is counted which results in a
division by q − 1:

P [L]
τ

(
��W
)

≤ P
[L]
τ

(
��W
)

(A.21)

=
1

q − 1
· E{|ker(GR) \ {0}|, wτ ≥ 1} (A.22)

=
1

q − 1
·
∑

x∈F
k
q ,

wτ ≥1

Pr{GRx = 0}. (A.23)
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The kγR rows of GR can be viewed as the outcomes of independent trials of a
random variable r ∈ F

k
q .

P
[L]
τ

(
��W
)

=
1

q − 1
·
∑

x∈F
k
q ,

wτ ≥1

Pr{rx = 0}kγR (A.24)

Now, the probability Pr
{

rTx = 0
}

is determined, conditioned on

‖r‖H = d (A.25)

and

(‖x1‖H, ‖x2‖H, . . . , ‖xT ‖H)T = (w1 − w0, w2 − w1, . . . , wT − wT −1)T. (A.26)

There are

(q − 1)wT −1

(
T∏

i=1

(
ki

wi − wi−1

))
(A.27)

choices of x with the window specific weight wτ ≥ 1 and excluding the q − 1
non-trivial multiples of x. Note that in the expanding window approach the class
specific weights are given by wτ − wτ−1. The row weights ‖r‖H = d are sampled
according to the window specific row weight distribution Ωi(ξ) and a window is
selected according to the window selection distribution W(ξ). So the expression
for P

[L]
τ

(
��W
)

can be reformulated to

P
[L]
τ

(
��W
)

=
κT∑

wT =1

· · ·

κτ∑
wτ =1

κτ−1∑
wτ−1=0

· · ·

κ1∑
w1=0

(q − 1)wT −1

(
T∏

i=1

(
ki

wi − wi−1

))

·

⎡⎢⎢⎣ T∑
j=1

Wj

κj∑
d=1

Ωj,dPr

⎧⎪⎪⎨⎪⎪⎩rT
x = 0

∣∣∣∣∣∣∣∣‖r‖H = d,

⎛⎜⎜⎝
‖x1‖H

...

‖xT ‖H

⎞⎟⎟⎠=

⎛⎜⎜⎝
w1 − w0

...

wT − wT −1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦

kγR

.

(A.28)

Let v = (v1, v2, . . . , vk)T with vj = rjxj , where vj , rj and xj are the jth elements
of the vectors v, r and x, respectively. Further, let vj = (v1, v2, . . . , vκj

)T be the
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part of v assigned to window j of size κj , then

Pr

⎧⎪⎪⎨⎪⎪⎩rT
x = 0

∣∣∣∣∣∣∣∣‖r‖H = d,

⎛⎜⎜⎝
‖x1‖H

...

‖xT ‖H

⎞⎟⎟⎠ =

⎛⎜⎜⎝
w1 − w0

...

wT − wT −1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

=
d∑

l=0

Pr

⎧⎪⎪⎨⎪⎪⎩‖vj‖H = l

∣∣∣∣∣∣∣∣‖r‖H = d,

⎛⎜⎜⎝
‖x1‖H

...

‖xT ‖H

⎞⎟⎟⎠ =

⎛⎜⎜⎝
w1 − w0

...

wT − wT −1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

· Pr

{
κj∑

i=1

vi = 0

∣∣∣∣∣‖vj‖H = l

}
. (A.29)

The probability of occurrence of exactly lj non-zero elements in vj is

Pr

⎧⎪⎪⎨⎪⎪⎩‖vj‖H = l

∣∣∣∣∣∣∣∣‖r‖H = d,

⎛⎜⎜⎝
‖x1‖H

...

‖xT ‖H

⎞⎟⎟⎠ =

⎛⎜⎜⎝
w1 − w0

...

wT − wT −1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ =

(
wj

l

)(
κj −wj

d−l

)(
κj

d

) ,

(A.30)

while the last term in (A.29) is given by (cf. (3.34))

Pr

{
κj∑

i=1

vi = 0

∣∣∣∣∣‖vj‖H = l

}
=

1
q

[
1 − (1 − q)1−l

]
. (A.31)

Finally, inserting (A.30) and (A.31) into (A.29) and the resulting expression
into (A.28) yields (7.13) which concludes the assertion.

Proof of Corollary 7.6. The probability P
[L]
τ

(
�S
)

is equal to the probability that
the jth input symbol in xτ cannot be determined by ML decoding for an arbitrary
j ∈ {1, 2, . . . , kτ }

P [L]
τ

(
�S
)

= Pr
{

∃x ∈ F
k
q \ {0}, xτ,j = a : GRx = 0

}
(A.32)

= Pr{∃x ∈ ker(GR) \ {0}, xτ,j = a}. (A.33)

with arbitrary but fixed a ∈ Fq \ {0}. The right-hand side of (A.32) is the prob-
ability of the jth column of matrix GR being linearly dependent on a non-empty
set of columns. The expressions (A.33) and (A.20) differ only in the number of
choices of x, which in this case is

(q − 1)wT −1

(
T∏

i=1

(
ki − δi,τ

wi − wi−1 − δi,τ

))
, (A.34)
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The remainder of this proof follows the same line of thought as the proof of Corol-
lary 7.5.

Proof of Corollary 7.7. The partial information word in importance class (IC) τ

cannot be reconstructed if at least one input node from IC τ cannot be recovered.
A lower bound on the residual word erasure probability P

[L]
τ

(
��W
)

is therefore given
by the probability that there exist input nodes in IC τ that are not connected to
any of the kγR independent output nodes

P [L]
τ

(
��W
)

= Pr{∃ IN in IC τ not connected to any ON} (A.35)

=
kτ∑

j=1

Pr{exactly j = j IN in IC τ not connected to any ON} (A.36)

=
kτ∑

i=1

(−1)i+1

(
kτ

i

)
Pr{i = i particular IN in IC τ not connected to any ON},

(A.37)

where the last line results from the arguments in the proof of Theorem 3.18.
Rephrasing Lemma 3.16 for the expanding window approach and for IC τ yields

Pr{i = i particular IN in IC τ not connected to any ON}

=

(
T∑

j=τ

Wj

κτ∑
d=1

Ωj,d

kτ∑
dτ =0

(
kτ −i

dτ

)(
κj −kτ

d−dτ

)(
κj

d

) )kγR

, (A.38)

where the first sum counts only those windows j which contain IC τ , the second sum
denotes the probability of sampling a row weight d, given that IC τ is comprised in
window j, and the third sum equals the probability that i particular input nodes
in IC τ are not connected to any output node, given that window j comprises
IC τ and given a row weight of d. Finally, inserting (A.38) into (A.37) results in
(7.15).

Proof of Corollary 7.8. Analogously to the binary EEP case [Sho06], a lower
bound on P

[L]
τ

(
�S
)

is given by the probability that an input node in class τ is
not connected to any of the kγR output nodes.
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