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Abstract: 

We assess different control loop tuning methods to tackle suboptimal building performance due to 
suboptimal PID control within building automation systems. Advanced control research for building energy 
systems is usually conducted either simulation-based or with the help of experiments via test benches. 
Therefore, it is limited in terms of applicability to real systems. Consequently, we conduct real tuning 
experiments with different PID tuning methods under real operation conditions within a state-of-the-art 
building energy distribution system. 
We use experimental step response tests to identify transfer functions for different three-port valves. We 
theoretically specify controlled systems’ transmission behaviour by functional diagrams, as well as 
mathematically describe them via characteristic variables according to Ziegler and Nichols and via fitted 
transfer functions. In order to ameliorate the actual control quality, we apply different tuning rules and 
adjustment standards: namely lambda-tuning, absolute value optimum method, symmetrical optimum 
method, Ziegler and Nichols, optimization on different control quality indicators and cognitive 
parameterization. For each method-system-combination, we experimentally conduct step experiments to 
evaluate with reference to control quality. 
Our results show an improvement of control quality up to 88%. Controller parameterization based on 
cognitive parameterization and lambda-tuning are the most effective methods. 
By conduction of field experiments under operating conditions, we show how to monitor, evaluate and 
ameliorate control quality of three-port valves. Therewith, we derive the most effective tuning methods. 
Further, we conclude that control quality amelioration crucially depends on the applied control tuning method 
and on knowledge about the behaviour and characteristics of controlled systems. 
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1. Introduction 
Control quality of PID control loops in nowadays-building energy systems is often far from 

optimal. A reason is that system integrators tune controllers by heuristics, empirics or even not at 

all. More innovative building automation systems have adaptive tuning methods, which, as we 

observed in our case, do not provide satisfying control quality neither. Classical mathematical 

tuning methods, applied to monitored data, can improve control quality following the methodology, 

which we present in this paper. 

Good control quality is important in e.g. building energy systems, HVAC systems and ventilation 

units [1-3]. Good control quality can lead to little maintenance effort, good energy efficiency and 

good system demand satisfaction, e.g. appropriate thermal energy flows, thermal comfort, indoor air 

quality. Bad control quality can mean either oscillatory behaviour of control loops; overshooting 

behaviour; or permanent control deviation; or a combination of two or three of these characteristics 

[4]. Oscillatory behaviour leads to higher maintenance efforts due to higher wear and tear in valves, 
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dampers, drives, etc. Overshooting behaviour decreases energy efficiency and the systems demand 

satisfaction ratio. Permanent control deviation leads either to suboptimal demand satisfaction or 

even to suboptimal demand satisfaction and bad energy efficiency in parallel.  

Control theory literature provides extensive work towards system identification [5], control 

parameter setting, control parameter setting rules and heuristics, online and offline parameter tuning 

and adaption methods [6, 7]. Evidently, these concepts also apply for control loops in building 

energy systems. Researchers conducted several studies, applying different control optimization 

approaches to different control problems in buildings [1, 3, 8-15]. As research methodology, the 

vast majority of building control researchers uses simulation studies [1, 3, 8-15]. Simulations 

provide a flexible experiment set up, meaning e.g. freedom in system size and capacity; they 

provide flexible boundary conditions, such as ambient temperatures, air/water volume flows etc. 

However, in general, simulations do not account for uncertainties coming from e.g. users or 

weather, even though a few attempts are undertaken to incorporate uncertainties. Further, they do 

not reveille application constraints from real systems, e.g. data exchange speed limitations, 

computing power of programmable logic controllers, data storage limitations, limitation of data 

frequency etc. A few building control researchers conduct experiments on test benches, facing a 

flexible experiment set up planning, flexible boundary conditions and but no uncertainty and no full 

application constraints [11, 12]. Others use monitoring data from real buildings for validation but do 

not interact with the building [3, 14]. By contrast, real experiments, so-called field-tests or field 

experiments, do provide real uncertainty and real constraints towards system application. Field tests 

have a given experiment set up and given boundary conditions. We believe that there is a lack of 

building control research demonstration in real buildings equipped with real monitoring systems 

under constraints of real operation conditions.  

In this paper, we assess different control loop tuning methods to tackle suboptimal building 

performance due to suboptimal PID valve control. We use experimental step response tests to 

identify transfer functions for different three-port valves. We theoretically specify controlled 

systems’ transmission behaviour by functional diagrams, as well as mathematically describe them 

via characteristic variables according to Ziegler and Nichols and via fitted transfer functions. In 

order to ameliorate the actual control quality, we apply different tuning rules and adjustment 

standards: namely lambda-tuning, absolute value optimum method, symmetrical optimum method, 

Ziegler and Nichols, optimization on different control quality indicators and cognitive 

parameterization. For each method-system-combination, we experimentally conduct step 

experiments to evaluate with reference to control quality. 

First, we shortly introduce the applied tuning methods. We present our experiment set up with a 

focus on theoretical and applied system identification. Going on, we present results for each tuning 

method. We then integrate and discuss them. Finally, the paper ends with our conclusion and 

research prospects. 

2. Methods 

2.1 – Applied tuning-rules and adjustment standards 

The determination of controller parameters has taken place according to the adjustment standards of 

Ziegler and Nichols [16], the method of lambda-tuning by Dahlin [17], the both regulatory 

optimization criteria absolute value optimum and symmetrical optimum as well as tuning on basis 

of experimental results and cognitive tuning. All tuning methods have been applied to PI-

Controllers. 

The well-known controller setting rules have been developed empirical for proportional plants with 

first order time increase and dead time (FOPDT). Consequently, and as in all other following tuning 

rules it is assumed that knowledge about the controlled system exists already. The adjustment 

standards are, inter alia, presented in the original work of Ziegler and Nichols [16]. 



Lambda-Tuning is a particular form of placement of pole points in closed-loop systems. In this 

tuning rule, the controller parameterization relies on the design parameter . In addition, this setting 

rule is utilized for FOPDT processes [7]. 

Both the absolute value optimum method and the symmetrical optimum method are based on 

optimization of the frequency response at open control loop settings. For controlled systems with 

time delay of n
th

 order the settings for different controllers can be found at [7]. 

Furthermore, tuning rules adapted to the examined processes have been designed and tested. They 

are described in equations (1) and (2) and base on the knowledge that, proportional gain Xp is the 

reciprocal of the transfer factor standardized on the whole setting range [18] and reset time Tn is the 

duration required to achieve the same alteration as Xp forms immediately. 

              (1) 

      
     
    

 (2) 

Based on all conducted research, controller settings and control quality have been analysed. 

Thereupon, a cognitive controller parameterization has been implemented and evaluated.  

2.2 – Applied indicators for control loop performance 

Due to the execution of step response experiments, indicators like rise time and settling time etc. 

have been examined. Since there is no superior optimization objective, the focus was placed on 

integral criteria, by which it became an overall aim to minimize these performance indices. 

The integral of absolute error (IAE), the integral of squared error (ISE) and the integral of time-

multiplied absolute error served as evaluation criteria for control loop performance. The three 

integral criteria describe control loop quality to different degrees by weighting. While IAE-criterion 

is neither time-multiplied nor weighted, within the ISE-criterion large control deviations are 

weighted stronger than small system deviation. By use of the ITAE-criterion control deviations that 

occur in late time are penalized strongly while early time errors are nearly ignored [19]. 

3. Experiments 
The objects of this study are four three-port mixing valves with heterogeneous size. Valve 1 and 2 

have a nominal diameter of 65, their kvs value is 40 m
3
/h. The feature sizes of valve 3 are DN 65 and 

kvs 25 m
3
/h of valve 4 DN 50 and kvs 16 m

3
/h. The investigated controllers regulate the flow 

temperatures to different parts of the concrete core activation systems. Controlled variables as well 

as working set points and regulating variables are monitored and recorded every minute by the 

monitoring system. The reference and the regulating variables are not only readable but also 

writeable, which allows both open and closed-loop inspection.  

In order to identify the controlled system and evaluate the existing and increased control quality, 

experiments at the plant and at the control circuit have been conducted. 

All experiments took place in a 7000m² multifunctional building for offices, laboratories, and 

conferences [20]. In previous work, the authors extended the building to a multifunctional 

demonstration bench for advanced control research in buildings. They integrated a monitoring, 

control and interface system to deal with the prerequisites for control tuning application in real 

buildings. Reference [21] provides more details on the demonstration bench. 

3.1 – System identification 

To specify the system’s transmission behaviour theoretically, a functional diagram [22] has been 

developed. The cause-effect relationships of the subsystems valve-actuator, valve-flow and heat-

transfer are analysed separated and brought together in Figure 1.  



 

Figure 1: Functional diagram of the controlled system 

The subsystem valve-actuator is described by equation (3). Input variable is the signal for valve 

opening h, output variable is the real valve opening hreal. 
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By means of formulae for the flow coefficient, kv, and the kvs value [23] the subsystem valve-flow is 

described: 

 ̈   
  
  
 
  ̇        (4) 

Subsystem heat-transfer is determined by an energy balance, equation (5) describes energy 

conservation at the valve. Output variable is among others the control variable flow temperature 

TAB. 

 ̇            ̇          ̇        (5) 
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From the equations it is deduced, that the subsystems valve-actuator and valve-flow can be 

summarized as PT1-elements, the subsystem heat-transfer as P-element. Combined to series 

connection, PT2 transmission behaviour for the whole controlled process is concluded. 

To verify theory and identify the controlled system mathematically various experiments were 

conducted. The adjustment range was defined by hysteresis and volume flow experiments. The 

dynamics of different-three-port valves were examined by experiments on valve velocity. To 

specify transmission behaviour step experiments on the controlled system were realized. 

The optimal setting range y100% has been determined experimentally. Therefore, upper and lower 

boundary values wherein the regulating variables operate have been set. By default, the boundaries 

for the valve opening were 0% and 100%, which was the expected adjustment range. The validation 

of these values took place via experiments on the dependency of the volume flow on the valve 

opening and hysteresis measurements. If response characteristics had been different from 

anticipated, the setting range has been adjusted. By this adjustment, setting points are reached faster 

because the controller doesn’t work at setting range parts, wherein changes in the regulating 

variable have no effect on the controlled variable. 

The open loop behavior was analyzed by step response tests. To ensure static conditions, as it is 

required that step response experiments take place from a point of rest, the valve opening, the 

volume flow and thus, also the flow temperature were held constant before the step occurs. From 

this resting position the valve opened and the reaction on the flow temperature was observed. The 

results served to describe the transmission behavior by a three-parameter model. If the observed 

process can be approximated by an FOPDT model, the three describing parameters are the static 

gain K, the time constant T and the dead time L [6].  

 ( )   
 

    
      (6) 

Furthermore, the results have been used to fit a transfer function for a second order model. 

 ( )   
 

(     )(     )
 (7) 

Having these models fitted for each valve and with graphical analysis of the step responses’ graphs, 

all prerequisites for the used control tuning methods are available. 

3.2 – Control quality 

The existing controller parameters as well as the parameters arising from the application of different 

tuning rules were tested in closed-loop operation. Hence the actual control quality could be 

evaluated by the introduced integral time criteria. 

In order to ameliorate the existing controller performance, the parameters arising from the 

application of different tuning rules were tested on closed-loop system. All used parameters resulted 

from implementation of the tuning-methods and adjustment standards introduced in chapter 2.1 on 

the established transfer functions (chapter 3.1). By use of IAE-, ISE- and ITAE-criterion control 

quality could have been valued and compared with actual control quality. This experiment has been 

conducted for most method-system-combinations. 

However, not all method-system-combinations could have been tested. Trying to apply, beside the 

proportional gain Xp and the reset time Tn, also a derivative time Tv, technical constraints have been 

found. Within the controller software the setting of a derivate time, which is more than three times 

smaller than the integral time, was not allowed. This constraint conflicts with the calculated 

parameters for a PID controller by Ziegler and Nichols and by lambda-tuning (see Appendix A).  

  



4. Results 

4.1 – Actual controller parameterization 

Considering the control results of the step experiments with standard control parameters, we make 

the following observations.  

At valves 1 and 2 the control variable approaches to the set point very slow without overshoot 

(aperiodic sequence). After reaching the reference variable the control process is influenced by the 

disturbance variable. The controller cannot reduce the periodical control deviation. 

Valve 3 shows a quick response time followed by some over and undershoot. Also after settling the 

periodical influence of disturbance variable cannot be eliminated. 

An aperiodic approaching of the set point can be observed at valve 4. The following control process 

is determined by oscillations of high amplitude. 

 

 

 

 

 

 

 

 

Figure 2: Step response with actual controller parameterization 

In Figure 3 the typical trend of the main disturbance variable is shown. Considering wavelength and 

amplitude, its periodical behaviour is similar for the following experiment. Therefore, further 

presentation of the disturbance variable within the following figures has been omitted. 

4.2 – Ziegler and Nichols 

The following step responses are the result of application of the control parameters by Ziegler and 

Nichols. 

 

 

 

 

Figure 3: Step response with controller parameterization by Ziegler and Nichols 



The control process around valve 1 is characterised by a quick response time and a remaining 

oscillation around working set point. Compared to the standard parameters both the proportional 

gain and the integral time have been reduced. Therefore, control is more dynamic and stability 

margin is smaller. IAE- and ISE-criterion can be ameliorated due to quick response and small 

amplitudes. 

Valve 2 shows a slow approach to reference variable and a significant impact from disturbance 

variables. While IAE- and ISE-values are comparable with their values at standard parameters, 

ITAE-criterion deteriorates on account of persistently high system deviations.  

At the valves 3 and 4, after the step signal, the system is still predominated by oscillation, due to 

external oscillation, see disturbance variable in Figure 2. This position at the margin of stability 

affects all integral criteria negatively. 

4.3 – Lambda-tuning 

We consider the control results of the step experiments parameters by lambda-tuning: 

 

 

 

 

 

 

 

 

Figure 4: Step response with controller parameterization by means of lambda-tuning 

The control variable at valves 1 and 2 needs a long rise time. The disturbance variable causes 

system deviations. These are small for valve 1 and bigger for valve 2, as a result integral criterion at 

valve 1 can meliorated, at valve 2 they are comparable with standard control quality.  

We observe very dynamic control and high control accuracy for valve 3. Considering the control 

parameter control performance is much better than the expected controller operation near stability 

margin. All quality criterions change for the better. 

Also at valve 4 we monitor only minimal control deviations after a short rise time. Control quality 

improves many times over standard quality. 



4.4 – Absolute value optimum 

 

 

 

 

Figure 5: Step response with controller parameterization by absolute value optimum method 

Since the proportional gain for every controller was largely decreased by absolute value optimum 

method, we expect oscillation behaviour for all valves. Observing the experimental results, very 

dynamic control and permanent oscillations show that our expectations have been met.  

Due to a quick response time, compared with standard rise time, ISE- and IAE-criteria for valve 1 

improve. The strong and lasting vibration causes a worse ITAE value. 

As control deviation is small for valve 2 control quality increases within this system. 

Moreover, we monitor high system deviations for the valves 3 and 4, which lead to a decreased 

control quality within these systems for the IAE- und ITAE-criteria.  

4.5 – Symmetrical optimum 

With the symmetrical optimum method we generate the same values for the proportional gain Xp 

and likewise values for the integral time Tn. Therefore, we observe very similar results to the 

absolute value optimum method. 

 

 

 

 

Figure 6: Step response with controller parameterization by symmetrical optimum method 

At valve 1 we observe an oscillation of high frequency and constant amplitudes. Because of a quick 

rise the ISE-criterion can be meliorated, the other criteria worsen. 

Since Xp and Tn are higher than for the other valves, the control deviation for valve 2 can be 

reduced. Compared with the slow and disturbance-influenced standard control quality, all 

performance indicators amend. 

Due to predominant oscillation of the controlled variable in zone 3 and 4, IAE and ITAE values 

increase, videlicet changes for the worse. The observed amplitudes are 34% of step size at zone 3 

and 43% at zone 4. Only ISE-criterion improves, because of the accelerated control.  

4.6 – Experimental tuning 

The following step responses are the result of application of the control on basis of experimental 

results. 



 

 

 

 

Figure 7: Step response with controller parameterization on basis of experimental results 

As expected with low controller parameters, we observe a quick response with one over- and one 

undershoot for valve 1. A permanent oscillation with small amplitude trails. Although there is no 

closed-loop stability, caused by dynamic control and small deviations we register a significantly 

meliorated control quality. 

Also for valve 2 and 3 quick adjustments minimize the three integral criteria. In system 3 we 

monitor an intermittent occurrence of no or very less control error. 

Larger oscillation amplitudes are found at valve 4. A possible explanation could be, that due to the 

higher Tn in system 4, control deviation can’t be controlled quick enough. Nevertheless IAE, ISE 

and ITAE values decrease compared with the standards. 

4.7 – Cognitive tuning 

 

 

 

 

 

 

 

 

Figure 8: Step response with cognitive controller parameterization 

The control results of parameters by cognitive tuning show a coexistence of robustness and dynamic 

behaviour. For each of the four considered valves, we achieve a small rise time and small control 

deviations. At valves 1, 2 and 4 there is very little influence of the main disturbance variable, at 

valve 3 there is nearly no. Control quality is optimised by minimizing of its integral criteria IAE, 

ISE and ITAE. 

5. Discussion 
We assess the applied tuning rules and adjustment standards on basis of a direct comparison of the 

control quality. For this purpose we contrast the specific values for the integral criteria IAE, ISE 



and ITAE. The actual control quality serves as the reference for evaluation and is set to the value 1 

in Figure 9. The other control quality results are pictured normalized to this reference. 

We succeed in improving control quality for valve 1. We achieve minimized results in all integral 

criteria for controller parameterization by lambda-tuning, tuning on base of experimental results and 

cognitive tuning. For lambda tuning the controller dynamics is slow and influences of the 

disturbance variable is impeded. Within experimental tuning the controller responds fast, however 

the system oscillates. The cognitive parameterized control circuit shows the desired compromise 

between dynamics and impeding of disturbances. We get a maximum improvement by 71% for IAE 

value, 88% for ISE value and 59% for ITAE value. 

We show that control quality for valve 2 is increased by several alternative settings. Good control 

results can be achieved with the absolute value optimum method, the symmetrical optimum method 

and tuning on base of experimental results. However, the control loops with these parameters have a 

disposition to oscillate with low amplitudes. Further away from stability margin, but influenced 

more by disturbances are the control results within application of cognitive tuning. We minimize 

IAE criterion by 67%, ISE criterion by 85% and ITAE criterion by 61%. 

We achieve improved controller settings for valve 3 with lambda-tuning, tuning on base of 

experimental results and cognitive tuning. For the first- and last-mentioned we monitor a fast rise 

time and little influences of the disturbance variable, whereas experimental tuning induces fast 

control dynamics with little oscillating amplitudes. In terms of the criteria values the best control 

quality results from cognitive tuning. We improve control quality, measured by integral criteria, by 

67%, 84% and 75 %.  

 

 

 

Figure 9: Comparison of control quality within application of different tuning rules 

For valve 4 we increase control quality in all criteria with lambda-tuning and cognitive tuning. The 

monitored control results show quick rise times and a good performance in reducing disturbances 

and deviation errors. We achieve the best control results by means of lambda-tuning. The IAE 

criterion is ameliorated by 82%, the ISE criterion by 92% and the ITAE criterion by 88%. 

Considering the cumulated control quality separated by the three integral criteria, we provide a 

ranking of the applied tuning methods. By means of the overall IAE and ISE values lambda-tuning, 

optimization on different control quality indicators and cognitive optimization are the best tuning 



methods, in increasing order. For the entire ITAE criterion lambda-tuning shows better results than 

optimization on different control quality indicators, but as well cognitive optimization turns out as 

the best tuning method. 

6. Conclusion 
We have tuned three-port mixing valves in a state-of-the-art building energy system having a state-

of-the-art building automation system with adaptive PID control loop tuning. Initially, we found 

that control quality was in a not acceptable status. We conducted open loop system identification 

experiments and tuned the controllers according to different classical methods. Finally, we 

compared and discussed the results. 

We find that classical tuning can ameliorate the control quality for three-port mixing valve 

controllers. Further, we show that cognitive tuning, meaning tuning based on our experience, still 

reaches the best control qualities. Lambda tuning and experimental tuning follow. We assume even 

better results, if the data logging resolution, which is not capable of logging more than one value 

per second, would not have limited the system identification accuracy. 

Going on, we want to compare classical and innovative, e.g. adaptive tuning, methods applied to 

different typical control loops in building energy systems. Therefore, we will implement automated 

offline and online system identification. Finally, we want to develop a methodology how to monitor 

a building energy system and tune its control loops. The development of this methodology will take 

place under real operation conditions with special focus of applicability and nowadays building 

automation systems. 

Nomenclature 
 ̇ capacity flow, W/K 

cp specific heat, J/(kg K) 

h signal for valve opening, % 

hreal real valve opening, % 

K static gain 

 absolute term 

kv flow coefficient, m
3
/h 

kvs designed kv value at the rated travel, m
3
/h 

L dead time, s 

 ̇ mass flow, kg/s 

p pressure, bar 

 ̇ heat flow, W 

s Laplace’s complex variable 

T temperature, °C 

 time constant, s 

Tg equalization time, s 

Tn reset time, s 

Uan driving voltage, V 

V volume flow, m
3
/h 

Xp proportional gain 

y100% effective setting range 

yexp setting range within an experiment 

 



Greek symbols 

  difference 

λ tuning parameter lambda 

 density, kg/m
3
 

 

Subscripts 

A valve port A 

B valve port B 

AB valve port AB 

min minimum 

max maximum 
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Appendix A 
 

Table A.1.  Controller parameters by different tuning methods 

Valve 
Para-

meter 

Standard 

settings 

Ziegler 

& Nichols 

(PI) 

Ziegler 

& Nichols 

(PID) 

Lambda- 

Tuning 

(PI) 

Lambda- 

Tuning 

(PID) 

Absolute 

value 

optimum 

Symmetri-

cal 

optimum 

Experimen

tal 

Tuning 

Cognitive 

Tuning 

 

Valve 1 
(DN 65 kvs 40) 

 

 

Valve 2 
(DN 65 kvs 40) 

 

 

Valve 3 
(DN 65 kvs 25) 

 

 

Valve 4 
(DN 50 kvs 16) 

 

 

 

Xp 

Tn [s] 

Tv [s] 

 

Xp 

Tn [s] 

Tv [s] 

 

Xp 

Tn [s] 

Tv [s] 

 

Xp 

Tn [s] 

Tv [s] 

 

 

16,00 

729,00 

 

 

16,00 

729,00 

 

 

16,00 

729,00 

 

 

16,00 

729,00 

 

 

 

8,46 

215,78 

 

 

15,84 

351,65 

 

 

2,57 

141,86 

 

 

2,18 

151,85 

 

 

 

6,35 

129,60 

32,40 

 

11,88 

211,20 

52,80 

 

1,93 

85,20 

21,30 

 

1,94 

91,20 

22,80 

 

 

28,07 

194,40 

 

 

34,03 

316,80 

 

 

12,14 

127,80 

 

 

11,74 

136,80 

 

 

 

25,13 

151,80 

23,61 

 

21,37 

178,80 

30,67 

 

12,87 

133,20 

17,25 

 

13,03 

159,00 

18,98 

 

 

3,29 

652,88 

 

 

4,81 

553,51 

 

 

4,62 

90,60 

 

 

3,93 

113,40 

 

 

 

3,29 

416,23 

 

 

4,81 

569,26 

 

 

4,62 

170,40 

 

 

3,93 

182,40 

 

 

 

6,00 

123,25 

 

 

7,00 

91,50 

 

 

7,00 

117,78 

 

 

9,00 

181,44 

 

 

 

16,00 

124,00 

 

 

16,00 

92,00 

 

 

12,00 

120,00 

 

 

20,00 

120,00 

 

 
 

 

 

 

 

 

 



Table A.1.  Controller parameters by different tuning methods 

Valve Criterion 
Standard 

Parameters 

Ziegler  

and Nichols  

Lambda- 

Tuning 

Absolute 

value 

optimum 

Symmetrical 

optimum 

Experimental 

Tuning 

Cognitive 

Tuning 

 

Valve1 

(DN 65 kvs 40) 

 

 

Valve 2 

(DN 65 kvs 40) 

 

 

Valve 3 

(DN 65 kvs 25) 

 

 

Valve 4 

(DN 50 kvs 16) 

 

 

IAE 

ISE  

ITAE 

 

IAE 

ISE  

ITAE 

 

IAE 

ISE  

ITAE 

 

IAE 

ISE  

ITAE 

 

 

107,30 

194,79 

3676,50 

 

105,81 

197,78 

4337,94 

 

68,76 

119,24 

3193,21 

 

157,40 

430,39 

6492,86 

 

 

63,62 

78,49 

3696,34 

 

115,32 

182,93 

6055,94 

 

230,36 

471,43 

19083,43 

 

350,05 

1086,53 

26512,27 

 

 

71,23 

85,54 

3045,12 

 

106,04 

172,05 

4278,60 

 

36,25 

25,76 

1996,33 

 

27,95 

35,76 

780,79 

 

 

102,53 

90,63 

7981,90 

 

49,77 

40,85 

2448,29 

 

116,10 

109,94 

9081,60 

 

186,43 

265,83 

14990,90 

 

 

126,75 

134,19 

9368,10 

 

50,08 

39,98 

2851,80 

 

115,40 

115,76 

9898,40 

 

176,56 

247,32 

15484,99 

 

 

53,73 

39,83 

3083,09 

 

45,70 

35,97 

2562,86 

 

37,82 

25,15 

2388,58 

 

124,09 

123,67 

8944,24 

 

 

30,75 

22,50 

1503,59 

 

34,54 

30,57 

1675,63 

 

22,61 

19,10 

801,51 

 

50,31 

64,92 

2713,08 

 

 


