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I. INTRODUCTION 

I.1. THE IMMUNE SYSTEM 

During evolution the human body evolved an ingenious system to defend against 

intruders. This so called immune system is a highly adaptable and variable system 

composed of a million of cells, molecules, mechanisms and organs within an organism, 

which protect it against pathogens like e.g. viruses, microorganisms, parasites or foreign 

molecules. Already simple multi-cellular organisms have a system that is activated 

through molecular patterns of pathogens or dying cells. Higher organisms still depend on 

this “innate immune system” as the first line of defense. These protective mechanisms 

range from the barrier functions of the epithelia over soluble factors, such as cytokines, 

which act as intercellular mediators in the generation of immune response to diverse 

cellular components including polymorphonuclear leukocytes (PMN or granulocytes) 

(basophils, eosinophils and neutrophils), mast cells, macrophages, dendritic cells and 

natural killer cells. A second more specific branch of the immune system has evolved 

later and was termed the adaptive immune response. It is activated mainly by the cells of 

the innate immune system days after the infection. This immune response is more specific 

and leads to the generation of various memory cells, to mount a stronger immune reaction 

each time the pathogen is encountered. Adaptive immunity comprises antibodies, B cells, 

and T lymphocytes. Immunological defense against invading pathogens starts with an 

important immune reaction called inflammation (Latin, inflammatio, to set on fire). 

Within the first hours, the defense is mediated by different cell, including macrophages or 

endothelial cells, which release inflammatory mediators that lead to an accumulation of 

cellular and humoral components at the site of infection, causing the characteristic 

symptoms redness, swelling, heat, and pain. Molecules involved in the inflammatory 

reactions are soluble cytokines, like several interleukins (IL), interferons (IFN) that 

increase the permeability of blood vessels, allowing fluid and proteins to pass into the 

tissues. Cytokines such as interleukin-1 (IL-1) and tumor necrosis factor (TNF) also alter 

the activation state of endothelial cell layer lining the blood vessels, allowing the 

leukocytes to adhere and transmigrate into the surrounding tissue. The recruitment of 

leukocytes from the blood flow to the site of infection by chemotactic cytokines is a vital 

step during inflammation [1, 2]. 
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I.2. CHEMOKINES 

The coordinated leukocyte movement is fundamental for the immune function during 

embryonic development as well as during organogenesis. A basic requirement allowing a 

coordinated cell movement are chemoattractants that signal through seven-

transmembrane receptors (7TM-receptors). It is well established, that the most important 

cellular guidance system in mammals is a class of chemoattractant cytokines – named 

chemokines. Apart from their eponymous attribute and their prominent role in innate and 

adaptive immune response, chemokines are involved in a number of physiological 

processes, like angiogenesis/angiostasis, organization and maintenance of lymphoid organ 

structure, organogenesis and tissue repair [3]. Of great importance is further their 

involvement in pathophysiological processes, like cancer, autoimmune diseases and other 

inflammatory diseases [4-7]. Nearly 50 chemokines have been identified in humans to 

date. They were classified into four subfamilies according to a characteristic cysteine 

motif in their amino acid sequence followed by a number that corresponds to the gene 

number, as depict in Fig.I.1. [8-10]. 

 

 

 

Fig.I.1.: Schematic representation of the four chemokine subfamilies. 
Chemokines are classified into four groups depending on the location of the first or the first two N-terminal 
cysteine residues, namely the XC-, CC-, CXC- or the CX3C-chemokines. The CC- chemokines are the 
largest family followed by the CXC chemokines, the C chemokine sub-family consist of only two members. 
Fractalkine (CX3C) chemokine is the only member of this sub-family and is a transmembrane expressed 
chemokines, characterized by a transmembrane region and an intracellular cytoplasmic domain. 
 
The CC-, or the beta-family, consists of 28 chemokines and is identified by two directly 

neighboring cysteine residues near to the N-terminus. Members of this family are e.g. the 

monocyte chemoattractant protein-1 (MCP-1, CCL2) or RANTES (regulated on 

activation normal T cell expressed, CCL5) [11, 12]. If the two cysteins are interrupted by 

a single random amino acid, they are subsumed as CXC- or alpha-chemokines. 

Approximately 17 members have been described, e.g. CXCL4 (platelet factor 4, PF4), 
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which was the first chemokine described at all [13]. The CXC family can be further 

subdivided according to their ability to mediate the chemotaxis of endothelial cells and 

thereby to promote the formation of new vessels [14]. The absence or presence of a 

specific structural domain, named “ELR motif” (in detail glutamate-leucine-arginine) 

determines their angiogenic potential. CXC chemokines containing the ELR motif were 

found to be potent angiogenic factors, inducing the formation of new vessels, e.g. CXCL8 

(IL-8). In contrast, CXC chemokines lacking the ELR motif, like CXCL4 fail to induce 

neo-vascularization but were found to be potent angiostatic factors. [15-17]. The third C 

or gamma sub-family, only has two members XCL1 (lymphotactin-α) and XCL2 

(lymphotactin-β), they lack two of the four cysteines, but shares homology at its carboxyl 

terminus with the C-C chemokines [18]. The fourth group, CX3C or delta group, consists 

of only one chemokine, CX3CL1 (fractalkine) and is characterized through three random 

amino acids flanked by one cysteine residue on both sides. Furthermore, it has been the 

only known chemokine that was found to be membrane bound [19] till recently another 

membrane bound chemokine, the CXC chemokine 16 or SR-PSOX, was identified in 

platelets [20]. Chemokines can be broadly divided into homeostatic and inflammatory 

categories based on their expression pattern and function in the immune system [4, 21]. 

The pro-inflammatory chemokines are expressed by circulating leukocytes and other cells 

only upon activation by pro-inflammatory stimuli, whereas homeostatic chemokines are 

constitutively expressed and are involved in homeostatic lymphocyte and dendritic cell 

(DC) trafficking and lymphoid tissue organogenesis [3]. However, some chemokines are 

classified into both categories depending on the biological context or pathological state. 

Inducible chemokines normally act on monocytes, granulocytes and T-cells in order to 

recruit cells to areas of inflammation or infection. In contrast, constitutive chemokines 

normally act on leukocytes in hematopoiesis in order to regulate the trafficking of these 

leukocytes to primary (bone marrow and thymus) and secondary (lymph nodes and 

peyer’s patches) lymphatic organs [22, 23]. Most of the chemokine genes that code for 

the CC chemokines are located in two clusters on chromosome 17, the monocyte 

chemotactic protein (MCP) and the macrophage inflammatory protein (MIP) clusters 

[24]. Chemokine proteins that are encoded in one cluster have a higher amino acid 

sequence identity compared with chemokines that originate from different gene clusters. 

The same is true for the CXC chemokines, most of the ELR positive CXC chemokine are 

clustered on chromosome 4, a second cluster contains the ELR negative members. 

Nevertheless, chemokines even if they are categorized into different subfamilies and 
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despite their low level of sequence homology share the same three dimensional structure 

[21, 25, 26]. Each monomer has a flexible N-terminal domain, followed by an N-terminal 

loop, a three-stranded antiparallel β-sheet region overlaid by a prominent C-terminal α-

helix [27]. In vitro and in vivo data indicate that monomeric chemokines are sufficient to 

bind and activate the cognate receptor [28-30] but nevertheless at sites of inflammation, 

where high amounts of chemokines are released, they were shown to form homo- and 

heteromers or even higher order oligomers, which can modulate the cellular response [18, 

31, 32]. A number of higher order oligomeric structures have been observed in crystal 

structures. Given the tendency of most CC chemokines to form similar “CC-like dimers” 

and CXC chemokines to form “CXC-like dimers”, there is a surprising number of 

different higher order oligomerization topologies, where small sequence variations seem 

to have consequences on the form of higher order oligomers. Oligomeric structures 

varying from more globular tetrameric forms [33, 34] to more extended decameric forms 

have been observed [35-37]. The functional aspect of heterophilic chemokine interaction 

will be discussed more detailed in section I.5 “Mechanisms that regulate the chemokine 

activity – a ‘ménage à plusieurs’”. 

Furthermore oligomerisation of chemokines seems to be an important feature for proper 

receptor binding and activation. Glycosaminoglycans (GAG) that are present on the cell 

surface may facilitate oligomerization of chemokines to enhance the luminal presentation, 

since particular mutated variants unable to bind to GAGs fail to induce transmigration in 

vivo, whereas they do induce chemotaxis in vitro [38-41]. The immobilization of 

chemokines on GAG is believed to be a mechanism for localization and concentration of 

secreted chemokines in a specific tissue compartment, thereby forming a 2D haptotatic 

gradient and preventing their rapid diffusion into the blood stream. A tissue defined 

repertoire of GAGs with specific binding affinities to chemokines [42, 43] together with a 

striking preference of chemokines for specific GAG types (shown by studies employing 

synthetic GAG) contribute to the locally defined presentation [43]. A common heparin-

binding motif for several chemokines has been identified; the basic BBXB motif (the B 

represents a basic amino acid residue) is located for example in the 40s loop of CCL5, 

CCL3 and CCL4 [22] or the 50s loop of CXCL11 [44] and the 20s loop of CXCL12 [41]. 

Other processes may also involve GAG, such as the transport of chemokines through the 

cell, protection from proteolytic degradation, co-receptor or even signaling functions [13, 

42, 43, 45]. 
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I.3. CHEMOKINE RECEPTORS 

Chemokines signal through specific cell surface-expressed G-protein coupled receptors 

(GPCR). They are part of the largest family of membrane proteins which mediates most 

cellular responses to hormones and neurotransmitters, as well as being responsible for 

vision, olfaction and taste. At the most basic level, the structure of all GPCR is 

characterized by seven membrane spanning α-helical segments separated by alternating 

intracellular and extracellular loop regions [46]. This wide range of chemical signals is 

transduced into intracellular responses through the coupling of the receptor protein to 

heterotrimeric guanosine triphosphate (GTP) binding proteins (G proteins). The 

interaction of a ligand with a G protein coupled membrane receptor results in the 

exchange of guanosine diphosphate (GDP) bound to the G protein α subunit for GTP, 

which causes the subsequent dissociation of the heterotrimer into the α and βγ subunits, 

resulting in the activation of several downstream effectors. The nomenclature of the 

chemokine receptors is based on the ligands they bind to, extended by an ‘R’ for receptor. 

Accordingly, they are also divided into four groups, CXCR, CCR, XCR and CX3CR. 

Currently, 20 chemokine receptors and about 50 chemokines are known and the unequal 

ligand receptor ratio already indicates that one chemokine ligand can bind to more than 

one receptor, this complexity is increased even further by the ability of chemokines to 

bind several receptors [21, 47]. Thus the chemokine network was formerly suggested as 

redundant, but in present days it is accepted that a chemokine can mediate distinct 

functions through different receptors and that the engagement of the same receptor by 

different chemokines ligands not necessarily leads to the same cellular responses. This is 

known as the concept of ‘functional selectivity' [5]. Sequence and length of the 

chemokine receptors are very similar, the length varies from 320 to 370 amino acids and 

sequence identity ranges from 25 to 80%. So far, 18 genes encoding the ‘classical’ 

chemokine receptors have been identified in the human genome: 6 CXCR genes, 10 CCR 

genes, 1 XCR gene and 1 CX3CR gene. Furthermore, 5 genes encoding atypical (non-

signaling) chemokine receptors have been described [48]. The ‘classic’ chemotactic 

receptors are characterized by a typical motif in the second intracellular loop, the 

DRYLAIVHA motif, which is supposed to be essential for the G protein coupling. The 

atypical chemokine receptors have a sequence which deviates from the DRYLAIVHA 

motif, suspected to be causal for the inability to lead to a normal cellular response. These 

atypical receptors are also named ‘silent’ or ‘decoy’ receptors since they bind 
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chemokines, but do not elicit standard chemotactic responses instead they are rather 

considered to act as scavengers that remove excrescent chemokines. Currently four 

interceptors (internalizing receptors) have been described, namely DARC (Duffy Antigen 

Receptor for Chemokines), CCX-CKR1, D6 and CXCR7 [49]. Quite recently their ability 

to internalize and degrade chemokines has been extended by the capability of transporting 

chemokines from the basal to the apical side of endothelial cells, thus modifying gradients 

and creating functional chemokine patterns in tissues [50].  

For decades, the structural biology of the GPCR family remains a relatively blind spot, to 

obtain the crystal structure of GPCRs is extremely challenging because they are unstable 

outside of an intact membrane system and known to adopt many conformational states. In 

2000, the first structure was solved, the bovine rhodopsin receptor and it took another ten 

years to be able to reveal the crystal structure of a chemokine receptor. CXCR4 was the 

first chemokine receptor to be crystallized. The main fold of CXCR4 consists of the same 

bundle of seven trans-membrane helices. Compared with previous GPCR structures, the 

shape of the ligand binding pocket is larger and more open which may be consistent with 

the ability to bind more than one ligand [51, 52] (Fig.I.2.). Last year then Park et. al. were 

able to clarify the structure of the native fully active chemokine receptor CXCR1 

reconstructed in a phospholipid bilayer [53]. The receptor protein was recombinant 

expressed in E.coli, purified and refolded in an artificial lipid bilayer. The structure was 

investigated by a method based on nuclear magnetic resonance spectroscopy, which 

offers the first time the opportunity to obtain the native structure of a chemokine receptor 

without modification in the amino acid sequence. Structure comparison of CXCR4 with 

CXCR1 confirmed the finding that the ligand binding cavity is larger, more open and 

closer to the cell surface which may be a common feature of the “multiple-ligand binding 

nature” of the chemokine receptors [53]. Less is known about the mode of ligand binding 

and receptor activation by the natural ligand, since crystal structures of the receptors were 

determined when the receptor molecule was bound to small peptide antagonist with 

dimensions significantly below the size of chemokines. The ligand binding regions have 

been defined by employing mutated chemokine ligands and receptors. The putative 

ligand-receptor interaction model was proposed as a general two-site mechanism. In this 

model, the receptor N-terminus is involved in the initial recognition of the chemokine 

through binding to the chemokine N-loop (site I). This initial binding facilitates the 

correct chemokine orientation, promoting the binding of the chemokine N-loop to the 

extracellular loops and transmembrane regions of the receptor (site II) leading to receptor 
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activation [54, 55]. An emerging body of data proposes a more complex scenario in 

which site I binding and site II binding are far from independent, that site I binding results 

in conformational changes in the receptor, triggering downstream interactions and/or 

changes that are essential for site II binding of N-terminal chemokine residues to the 

receptors’ extracellular domain [56-58] or site I binding triggers structural/dynamic 

changes throughout the chemokine ligand for optimal binding to the receptor residues 

[59]. 

 

Fig.I.2. Diversity of the ligand-binding pocket shape and properties in GPCR crystal structures. 
Structural diversity, including large backbone deviations of ECLs and TM helices, results in dramatic 
variations in size, shape and binding properties of GPCR pockets. CXCR4 has compared to the others (b-g) 
a large and open pocked able to bind larger proteins. Adapted from Katritch et. al. 2012 [52]. 
 

I.4. ´CROSSING BORDERS`: FROM CHEMOKINE TO CHEMOTAXIS 

The binding of a chemokine to its cognate receptor leads to ligand-adapted 

modification of the tertiary structure of the receptor protein and in turn to the 

activation of heterotrimeric G-proteins. The activated G-proteins exchange guanosine 

diphosphate (GDP) for guanosine triphosphate (GTP) and dissociate into α and βγ 

subunits, which in turn activate several downstream signaling pathways. The G 

proteins are classified by their α-subunit, into at least four classes αi, αs, αq and α12/13 

[60]. The typical chemokine receptors are supposed to be coupled to Gαi, because most 

of the mediated responses could be inhibited by pertussis toxin (PTx), a bacterial toxin 

that catalyzes the ADP-ribosylation of the Gαi subunit [61]. Since PTx was unable to 

block all chemokine induced responses completely, it was assumed that chemokine 

receptors can be coupled to more than one G-protein class and actually it was reported 
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that chemokine receptors can be associated with other PTx insensitive G-proteins like 

Gq/11 [62].  

Leukocyte recruitment to sites of injury or infection has been described as a multi-step 

process, as depicted in Fig.I.3. The process starts with the capture of leukocytes by 

binding to selectin-molecules on the inner blood vessel wall with marginal affinity. 

Thereby, these leukocytes slow down and start rolling. At once, chemokines released 

by activated cells, e.g. endothelial cells or macrophages, and presented on the 

endothelium cause changes in the integrin structure from low to a high affinity 

conformation. In the activated state, integrins bind tightly to complementary 

glycosylated ligands expressed on endothelial cells, with high affinity, leading to tight 

adhesion. Followed by the crawling (chemotaxis along a haptotactic gradient) of 

leukocytes on the luminal endothelial surface. Finally, the leukocytes transmigrate 

across the endothelial cell layer, a step which is regulated by several molecules of the 

tight junctions. This series of events can be observed for neutrophils, lymphocytes and 

monocytes, although the molecules involved are different among the leukocyte 

subpopulations [63-65]. 

 

Fig.I.3.: Leukocyte extravasation from the blood flow into inflamed tissue.  
A multistep cascade leads to the activation of integrins and their ligands by chemokines. The steps 
involved in this process are capture, rolling, slow rolling, integrin activation, firm adhesion and 
crawling, finally transmigration across the endothelial layer. Figure modified from [63]. 
 
Two steps depend mainly on chemokine mediated signaling (which are highlighted in 

bold in Fig.I.3.); first the integrin activation, secondly the migration along the endothelial 

surface. The intracellular signaling pathways involved in rapid integrin activation and 

chemotaxis seem to engage different downstream signaling molecules. The βγ subunit 

released from the Gαi protein activates the phospholipase C (PLC), which then mobilizes 

inositol-1,4,5 triphosphate (IP3) and diacylglycerol (DAG) which in turn triggers the 

release of calcium from the endoplasmatic reticulum (ER) stores. Subsequently, leading 

to the activation of the RAP1 guanine nucleotide exchange factor (GEF) CalDAG-GEFI, 
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RAP1-GFP in turn mediates rapid integrin activation [66, 67]. During crawling, cell 

polarization is a prerequisite for efficient migration, meaning that the molecular processes 

at the leading edge and the trailing edge (uropod) of a moving cell are different. Referred 

to leukocyte recruitment, this means that signaling molecules, including PI3K, 

phospholipase C (PLC) and members of the Rho GTPase family, such as Rac, accumulate 

with the highest concentration at the region of the cell membrane associated with the 

highest amount of G-protein activity. This provides amplification of the polarizing signal, 

which promotes remodeling of the actin cytoskeleton, e.g. polymerization of F-actin at 

the leading edge of leukocytes and furthermore activation of adhesion molecules and 

inactivation at the opposite region. The asymmetric distribution of the PI3K product 

phosphatidylinositol (3,4,5)-triphosphate at the front of the cell is a hallmark of cell 

polarization in neutrophils [68, 69]. The detailed molecular mechanisms underlying 

leukocyte adhesion and migration still need to be clarified. In fact, it is still not known 

why and if at all arrest-mediating chemokines exclusively use Gαi. Indeed, some 

chemokine receptors lack to trigger chemotaxis or to mobilize calcium in response to 

their ligand depending on the cell in which they are expressed [70, 71]. Furthermore 

research indicates Gαi independent signaling in immune cell function, e.g. during T cell 

stimulation by antigen-presenting cells, T cell chemokine receptors coupled to the Gq 

and/or G11 protein were recruited to the immunological synapse by a Gi-independent 

mechanism [72] or Gq deficient neutrophils and dendritic cells (DCs) showed defective 

chemotactic response upon stimulation in contrast to Gq-deficient T-cells, which respond 

normally. This suggests that this alternative chemokine receptor pathway controls the 

migration of only distinct subsets of cells [73]. Additionally some cases of chemokine 

receptor-independent signal transduction, via GAGs such as heparan sulfate and 

chondroitin sulfate, have been reported. For instance, in HeLa-CD4 cells completely 

devoid of GPCRs high concentrations of CCL5 induce rapid tyrosine phosphorylation of 

multiple proteins, but fail to induce the phosphotyrosine kinase in GAG-deficient cells 

[74]. This GPCR-independent signal was mediated by glycosaminoglycan chains of 

CD44 [32]. 

I.5. MECHANISMS THAT REGULATE CHEMOKINE ACTIVITY - ´A MÉNAGE À 

PLUSIEURS` 

Fast and coordinated recruitment of leukocytes as a response to tissue damage or 

infection is of vital importance, therefore a direct and confined up-regulation of 
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inflammatory chemokines and chemokine receptors is necessary for a rapid influx. On the 

other hand it is indispensable that the inflammatory response is terminated after the 

infection is resolved to prevent a prolonged inflammatory response that can lead to 

chronic inflammation or tissue damage. Therefore, an exact regulation of chemokine 

activity is required. The cellular response to chemokines can be modulated by 

mechanisms affecting the chemokine or the receptor. These regulative mechanisms act on 

multiple levels, ranging from the differential expression pattern of chemokines and their 

receptors, over posttranslational modifications to the availability of active receptors on 

cell surface and cooperative interactions between chemokines, receptors and signaling 

pathways. The availability of chemokines and chemokine receptors is dependent on the 

temporal and spatial expression, mRNA stability and protein degradation. This is 

particularly evident for the inflammatory chemokines and their cognate receptors, which 

are only expressed upon activation by e.g. highly conserved microbial pathogen 

associated molecular patterns (PAMPs), like the bacterial cell-surface lipopolysaccharides 

(LPS), or by endogenous cell molecules that are released upon tissue injury or stress, like 

double stranded ribonucleic acid (RNA). These ‘danger’ signals are recognized by pattern 

recognition receptors (PRRs), e.g. the toll-like receptors. The activation of the PRRs 

induces the transcription of genes encoding for inflammatory chemokines [75].  

I.5.1. POSTTRANSLATIONAL MODIFICATIONS 

These processes are too slow to be solely responsible for the fast and local restricted 

modulation of chemokine function during inflammation. The next level of fine-tuning is 

more direct, inter alia through post-translational modifications like glycosylation or 

proteolytic processing, which can alter the affinity and the mode of interaction between 

receptor and chemokine. Indeed, the isolation of chemokines from natural sources did 

reveal posttranslational modifications, i.e. glycosylation and proteolytic processing [76, 

77]. Most inflammatory chemokines are substrates of proteases expressed on the cell 

surface (e.g. dipeptidyl peptidase IV (CD26) or aminopeptidase N (CD13)), in 

intracellular granules (matrix metalloproteases, MMPs) or are even abundant in body 

fluids (e.g. plasmin or thrombin) [78, 79]. For the granulocyte chemotactic protein 

CXCL8 (IL8) a heterogeneous mixture of six natural occurring N-terminal truncated 

variants has been described, ranging from 79 to 70 amino acid length. Comparative 

studies revealed that the shorter variants (7,8 and 9-77) are more potent in inducing 

neutrophil chemotaxis than the 6-77 and 1-77 variants [79]. For example, CXCL7 
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requires N-terminal truncation in order to become chemotactically active [80]. The 

proteolytic modification can also alter the receptor specificity, like it was shown for CC 

chemokine ligand 5 (CCL5), where N-terminal truncation (3-68) weakens the binding and 

activation capacity to the CC chemokine receptors 1 (CCR1) and 3 (CCR3) but in return 

strengthens the affinity towards CCR5. Furthermore, CCL5 (3-68) inhibited infection of 

mononuclear cells by an M-tropic HIV-1 strain more efficiently than unmodified CCL5. 

Thus, proteolytic processing of CCL5 may also constitute an important regulatory 

mechanism during antiviral responses [81, 82]. During later stages of inflammation, 

proteolytically processed variants arise that retain their binding capacity but fail to 

activate the cognate receptor, providing natural antagonists. Finally, further cleavage 

results in totally inactive variants that may contribute to terminate the inflammation.  

Besides proteolytic cleavage, other posttranslational modifications like glycosylation 

were found, e.g. for CCL2, 5, 11 and 14 as well as for XCL1 and CX3CL1. Until today, 

the functional role in vivo remain unknown [76]. In contrast to the lack of knowledge 

concerning the in vivo role of the addition of sugar moieties to chemokines, a little more 

is known about the in vivo role of these modifications on chemokine receptor function. 

Like for other transmembrane receptors, chemokine receptors may be modified by the 

addition of sugar moieties to the amid group of asparagin residues (N-glycosylation) or to 

hydroxyl groups of serin or threonine residues (O-glycosylation). These modifications 

occur mainly in the Golgi and are catalyzed by glycotransferases and glycosidases. 

Experimental data on chemokine receptor glycosylation are still rare. A few receptors 

were shown to carry N-linked or O-linked carbohydrate moieties, e.g. CCR2B, CXCR2, 

CXCR4, DARC and CCR5 [83-88]. The exact role of glycosylation of chemokine 

receptors remains unclear, but similar to other GPCRs it may increase the flexibility or 

directly participate in the ligand binding. Depending on their nature, glycosylation may 

provide additional negatively charged moieties for the electrostatic interactions with the 

positively charged chemokines. One group of glycotransferases are the sialyltransferases 

(Sts), which transfer sialic acid, a family of negatively charged monosaccharides, to the 

terminal portions of the N- or O-linked sugar chains of glycoproteins or glycolipids [89]. 

STs are preferentially localized to the Golgi apparatus within the cell; however some data 

indicate that STs may also be expressed on the cell surface. These cell surface STs have 

been found on platelets, lymphoblastoid cells, B lymphocytes, early-activated CD8 T 

cells and polymorphonuclear leukocyte (PMN) [90]. Twenty human sialyltransferases 

have been identified and are classified into four groups according to the type of linkage 
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formed and the nature of the sugar acceptor. These include six beta-galactoside α2–3 

sialyltransferases (ST3Gal I-VI) [89]. Recently, sialylation by the α2-3 sialyltransferase 

ST3Gal-IV was shown to influence the chemokine induced firm adhesion of leukocytes. 

The function of CXCR2, a chemokine receptor involved in leukocyte adhesion and 

transmigration, was shown to strongly depend on posttranslational sialylation mediated 

by ST3Gal-IV. In mice deficient for ST3Gal-IV, an impaired adhesion of leukocytes to 

inflamed microvessels, upon injection of the CXCR2 ligands, CXCL8 and CXCL1 was 

observed. Additionally the binding of CXCL8 and CXCL1 to neutrophils isolated from 

these ST3Gal-IV-/- mice was impaired, indicating an important role of ST3Gal-IV on 

CXCR2 mediated leukocyte adhesion [91]. Furthermore, an in vitro study employing 

CCR5 mutants, in which the putative sialylation sites were exchanged, revealed that 

CCL3 and CCL4 receptor binding and activation depend on the addition of sialic acid 

moieties to the receptor [88]. 

I.5.2. COOPERATIVE INTERACTIONS BETWEEN CHEMOKINES AND 

CHEMOKINE RECEPTORS 

Chemokine-chemokine interaction 

At chemokine rich sites during the initial stages of an inflammatory response, the 

concentration of specific chemokine can be suboptimal to induce sufficient cellular 

response, therefore leukocytes may require further stimuli to be fully activated. An 

interesting mode of cooperative action to reach maximal migration is synergy between 

chemokines. This synergistic effect can be based on ´dual receptor-mediated synergy` 

(compare Fig.I.4.), where the chemokine binds its cognate receptor and the cooperation of 

the signal occurs downstream of the receptor. In addition, heterophilic interaction 

between chemokines, involving a single chemokine receptor that is activated by its ligand 

heteromerized to a second chemokine (Fig.I.4.), can influence the cellular response.  
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Fig.I.4.: Overview of the possible cooperative interactions between chemokines and chemokine 
receptors. Cooperativity between chemokines can be based on (a) ´dual receptor mediated synergy` or the 
(b) formation of chemokine heterocomplexes which in turn can enhance or dampen the primordial function 
of the single chemokine (chemokine-chemokine interaction is shown in shades of green). Like chemokine 
ligands, the receptors form (c) homo and (d) hetero-oligomers that modulate the cellular response 
(chemokine receptor interaction is shown in shades of blue). 

So far, data concerning dual receptor mediated synergy demonstrate that the presence and 

activity of the corresponding GPCR for each chemokine is required to accelerate 

leukocyte recruitment. Chemotactic response of neutrophils to low doses of CXCL6 or 

CXCL8 was significantly enhanced due to the presence of constitutive plasma 

chemokines like CCL2, CCL7 as well as the CXC chemokine 12 [92, 93]. The 

observation of synergy between the CC chemokines 2, 5 and 7 and CXCL8 or CXCL12 

inducing monocytes chemotaxis was found to depend on the expression of their 

corresponding receptors, because the synergy was inhibited in the presence of a blocking 

antibody or an antagonist against one of the participating receptors [71, 94]. The 

molecular mechanisms are still unknown, but so far the results indicate that the dual 

receptor mediated synergy is probably based on a interplay of signaling pathways. In 

contrast to the exclusive synergistic influence on chemokine responses described above, 

the formation of chemokine heterodimers can enhance (indicated in table I.1 as positive) 

or dampen (indicated in table I.1 as negative) the primordial function. However, many 

studies describing chemokine heterodimerization lack to define a possible impact on the 

cellular response or immune cell function, because they are solely based on methods 
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revealing the physical interaction like co-immunoprecipitation, surface plasmon 

resonance- or mass spectrometry and nuclear magnetic resonance spectroscopy [31, 95]. 

 

Table I.1. Overview of the chemokine heterodimers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Until now, a negative cooperative interaction was described only for CXCL4 on CXCL8 

mediated hematopoiesis, were CXCL4 blocks the CXCL8 mediated activation of 

hematopoietic progenitor cells [102]. The CXCL4/CXCL8 heterodimer formation on the 

other hand accelerates the original response, it enhances the chemotactic capacity on cells 

transfected with CXCR1 and CXCR2. Furthermore the CXCL4 heteromer formation with 

CCL5 leads to an increased adhesion of monocytes on the activated endothelium [18]. 

The synergism of CXC13 with CCL19 or CCL21, at suboptimal concentrations of the 

individual chemokines on the activation of the CC chemokine receptor 7, was also shown 

to be based on their heteromerization [31]. Such a synergistic effect was further observed 

for CCL22-induced lymphocyte migration together with CXCL10, which was 

independent of the presence of the corresponding receptor for CXCL10 (CXCR3) [99]. 

Heteromer Functional consequences References 
CXCL4–CXCL8 positive or negative [18, 96, 97] 

CCL5–CXCL4 positive [18, 98] 

CCL19–CCL22 positive [31, 99] 

CCL19–CXCL13 positive [31] 

CCL21-CXCL13 positive [31] 

CXCL10-CCL22 positive [99] 

CCL22-CCL19 positive [99] 

CXCL9-CXCL12 positive [100] 

CCL7-CCL19 positive [101] 

CCL7-CCL21 positive [101] 

CCL3–CCL4 ND [31] 

CCL2–CCL8 ND [95] 

CCL2–CCL13 ND [95] 

CCL2–CCL11 ND [95] 

CCL8–CCL13 ND [95] 

CCL8–CCL11 ND [95] 
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Another study demonstrated that the homeostatic chemokines CCL19 and CCL21 

enhance CCL7-induced migration of monocytes [101]. The CXC chemokines 9 and 12 

were also shown to form heterocomplexes that might be responsible for the increased 

recruitment of CXCR4 expressing T cells and malignant B-cells to the tumor vasculature 

[100]. Positively charged and/or polar residues in the first β-strand of the synergistic 

chemokines have been reported to be crucial for the heteromer formation and for the 

potential to induce synergistic leukocyte migration [99, 101]. Even if some data indicate 

that heteromerization influences the receptor binding properties, there is still a great lack 

of knowledge. 

 

Chemokine receptor interaction 

Similar to the chemokine ligands, chemokine receptors were shown to form homo and 

hetero-oligomers. The first milestone in the acceptance of this hypothesis was the finding 

that gamma-amino-butyric acid (GABA) B receptors R1 and R2 exist as obligatory 

heterodimers [103]. A first conclusive result that receptor oligomers exist in native 

membranes was adduced by atomic force microscopy images of rhodopsin in mouse rod 

outer-segment disc membranes [104, 105]. However, although GPCRs may activate G 

proteins as monomers [13, 106, 107], nowadays it is widely established that chemokine 

receptors homo- and heterodimerize or even form higher order oligomers. Interestingly, 

chemokine receptors even interact with GPCR from other classes such as CXCR2 with 

the -opioid receptor (DOP) [108] and CCR5 with the opioid receptor of the -, -, and 

- types (DOP, MOP, KOP) [109, 110]. There are many challenges in studying the 

occurrence and functional effects of chemokine receptor oligomerization, thus there is 

still a limited understanding of these variations on the classic imagination that one GPCR 

activates one G protein per ligand binding event. The first observations revealing a 

functional relevance were made following the discovery of a natural genetic mutation of 

the CCR5 receptor named CCR5-Δ32, which confers resistance to human 

immunodeficiency virus (HIV)-1 infection when individuals are homozygous for this 

allele [111]. Interestingly, heterozygous individuals show a retarded progression of HIV-

1 infection. This has been hypothesized to result from dimerization of CCR5-Δ32 with 

wild type CCR5 molecules, thereby causing retention of the complex in the 

endoplasmatic reticulum (ER) and preventing transport of normal CCR5 to the cell 

surface. This finding gave rise to the notion that CCR5 naturally occurs as a functional 
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homodimer [112]. During recent years, the results of several groups support the 

hypothesis of a functional diversity between heteromers and homomers. One can 

conclude, based on the previous findings that chemokine receptor heteromerization can 

modulate the cellular response. And in fact, several studies reveal different consequences 

following receptor hetero-oligomerization. Cooperativity in ligand binding, either 

positive or negative, is one generally observed mechanism following receptor 

heteromerization. For example, a negative cooperativity in ligand binding and subsequent 

receptor activation between heteromers of CCR2, CCR5 and CXCR4 has been 

demonstrated in vitro and in vivo [113-115]. In another finding CXCR7, which is 

normally supposed to act as silent chemokine receptor [116], was able to modulate 

specialized signaling functions of CXCR4 through heteromerization with CXCR4 and 

enhanced CXCL12-mediated signaling [117]. The functional consequences of chemokine 

receptor heteromerization are summarized in table I.2. Nevertheless here, the underlying 

mechanisms responsible for the modulation of the cellular response still need to be 

understood. 

Table I.2. Chemokine receptors known to form heteromers and the functional consequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 Functional consequences References 
CCR2 CCR5 Negative cooperativity in ligand binding [114, 118] 

CCR2 CCR5 Positive cooperativity in ligand binding [62] 

CCR5 CXCR4 Positive cooperativity in T cell activation [104] 

CCR2/5 CXCR4 Negative cooperativity in leukocyte 

migration in vivo 

[118] 

CCR7 CXCR4 Positive cooperativity in CXCR4 signaling [117] 

CCR5 MOP Cross-desensitization [119, 120] 

CXCR4 MOP 

DOP 

Cross-desensitization [121] 

CXCR2 DOP CXCR2 antagonism enhanced DOP 

function 

[108] 
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I.6. THE CHEMOKINES CCL5 AND CXCL4 IN IMMUNE CELL FUNCTION 

One of the first chemokines described was platelet factor 4 (PF4) or CXCL4 [122]. The 

CXCL4 expression and storage was solely believed to occur in megakaryocytes and in 

platelets α-granules, today expression has been detected in different cell types including 

monocytes, T cells, neutrophils and smooth muscle cells [123]. The human CXCL4 gene 

encodes a protein of 70 amino acids that is located in the CRO cluster on chromosome 

4q13.3 [11]. Although CXCL4 was the first chemokine isolated, yet little is known about 

its role in inflammation, since it seems to lack most 

significant chemotactic properties on immune cells. In 

contrast to other CXC-chemokines, the N-terminal Glu-

Leu-Arg (ELR) motif is missing in CXCL4, which was 

shown to be critical for receptor activation [15]. Due to 

the weak chemotactic potency, CXCL4 concentrations 

are several orders of magnitude higher than those 

required for other CXC chemokines, like CXCL8, to 

induce a normal cellular response [124]. Thus, its role in 

monocyte recruitment might be rather supportive or 

modulating than autonomous. Indeed, this suggestion is 

supported by the findings that CXCL4 accelerates the CCL5 mediated leukocyte arrest 

[18] and that heteromerization of CXCL4 with CXCL8 enhances the anti-proliferative 

effect of CXCL4 on endothelial cells in culture, as well as the CXCL8-induced migration 

of CXCR2-transfected cells [97]. Furthermore, CXCL4 blocks the CXCL8-mediated 

activation of hematopoietic progenitor cells [102]. Yet, there is still doubt about the 

corresponding receptor, some studies showed binding and activation of a CXCR3 splice 

variant named CXCR3B [125-127]. CXCR3B is 52 amino acid residues longer at its N-

terminus compared with the previously described CXCR3, now termed CXCR3A. The 

CXC chemokines 9, 10, and 11 bind to CXCR3A and CXCR3B whereas CXCL4 binds 

exclusively to CXCR3B, with an affinity (Kd 4 nM) comparable to the other ligands. 

Additionally it was shown that the engagement of CXCR3B by CXCL4 leads to the 

activation of the Gαs subunit in contrast to the other ligands that employed the pertussis 

toxin-sensitive Gαi. More recent reports even doubt the existence of the CXCR3B splice 

variant, since blast searches failed to identify a matching cDNA clone [128]. Moreover, 

the authors critically discussed, if the spliced human CXCR3-B mRNA would be 

Fig.I.4. Structure representation 
of a CXCL4 tetramer. 
In solution CXCL4 mainly exists 
as a tetramer. 
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translated and, if so, whether the efficiency would be high enough to have an actual 

influence. Besides the interaction with other chemokines CXCL4 is known to interact 

strongly with the anionic heparin (Kd 4.4 nM) [129], which is based on highly specific 

interactions of positively charged amino acid residues in the C-terminus of CXCL4 with 

the negatively charged sulfate group of the heparin polymer. It has been shown that 

CXCL4 mediates signaling via binding to the GAG chondroitin sulfate [130]. CXCL4 

was found mainly as a tetramer [131], the homodimerization was described to be 

thermodynamically unfavorable in solution, whereas in a tetramer formation these amino 

acids do not repel each other.  

 

The CC-chemokine ligand 5 (CCL5) was named RANTES after it was initially identified 

to be expressed by T-lymphocytes. Further, 

CCL5 recruits T cells, eosinophils and 

macrophages to sites of inflammation [132, 

133]. At once, a protein with chemotactic 

activity present in the supernatant of 

thrombin-stimulated platelets was discovered, 

which was subsequently characterized as 

CCL5 [134]. Additionally, it could be 

identified in the α-granules of human platelets 

by immunocytochemistry [135]. Since then it 

was detected in many other cell types, such as 

fibroblasts, epithelial cells, and mesangial 

cells, upon stimulation with proinflammatory cytokines e.g. IFN-γ and TNF-α. CCL5 is 

assigned to the proinflammatory chemokines as it is a potent chemoattractant for 

monocytes, T cells and eosinophilic granulocytes [132]. Likewise most others, CCL5 is a 

circa 8 kDa molecular weight β-family member chemokine, sharing the quaternary 

structure typical for the CC-chemokines, where the dimer formation occurs mainly at the 

mobile N-terminal regions [97]. The CCL5 coding gene is located in the MIP cluster on 

chromosome 17q12 [11]. An important feature for CCL5 function is the ability to form 

higher-order oligomers and the binding to GAGs, which has been shown to be 

particularly important for triggering flow-resistant cell arrest [38, 136, 137]. The 

structural requirements for the oligomerization of CCL5 and also for its binding to 

heparin-like glycosaminoglycans (GAGs) have been extensively characterized [26, 39, 

Fig.I.5. Ribbon representations of a CCL5 
dimer. Amino-acid residues Arg44, Lys45 
and Arg47, which are primarily res-ponsible 
for interaction with glycosamino-glycans, are 
shown in red and the aa Glu26 and Glu66, 
which are involved in the oligomer formation, 
are shown in green. 
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136]. Mutation of acidic residues E26 and E66 into neutral amino acids lead to variants 

reduced to the level of tetramers and dimers [26], which failed to induce in vivo cell 

recruitment. A biophysical study provided a model of the oligomeric CCL5, where E66 

and E26 contribute to the dimer interface through the formation of salt bridges and an 

additional mechanism where GAG binding may promote oligomer formation was 

suggested [37]. Alanine scanning of two positively charged basic clusters located in the 

40s and 50s region, in detail 44RKNR47 and 55KKWVR59, revealed their involvement in 

binding to the negatively charged sulfate groups of heparin [39, 136]. Indeed, mutation of 

the 40s motif in CCL5 resulted in a variant with strongly reduced GAG-binding and an 

80-fold reduction in affinity selectively for CCR1 but a normal binding to CCR5 [39]. 

Chemokines and chemokine receptors appear to play a role in the pathogenesis of 

multiple sclerosis. In an experimental autoimmune encephalomyelitis (EAE) model, the 

CCL5-40s variant inhibited the development in mice and rodents [138-140]. As already 

described above (I.5.1.), the N-terminus of chemokines is important for proper chemokine 

receptor activation and N-terminal modifications, like truncation, provide a strong 

mechanism to control chemokine function in vivo. When the mature sequence of CCL5 

was primarily recombinant expressed in a prokaryotic system, the initiating methionine 

was found to be retained, resulting in a CCL5 variant, named Met-CCL5 [141]. Since 

then it was found that Met-CCL5 is a strong CCR1 and CCR5 receptor antagonist [141], 

which has been applied in several studies. Blocking CCL5 via administration of Met-

CCL5 in rodent and monkey arthritis models resulted in a markedly reduced 

inflammatory response [142-145]. Furthermore Met-CCL5 reduces the progression of 

atherosclerosis in Ldlr−/− mice [146] and in vivo administration of Met-CCL5 greatly 

ameliorated liver fibrosis in mice and was able to accelerate fibrosis regression [147].  

I.7. THE CHEMOKINE RECEPTORS CCR1 AND CCR5 

The CC-chemokine receptors CCR1 and CCR5, together with other chemokine receptor 

genes, including CCR2, CCRL2, CCR3, and CXCR1, are found to form a gene cluster on 

chromosome 3p1. The first CC chemokine receptor cloned was named CCR1 [148] and is 

expressed on neutrophils, eosinophils, basophils, monocytes and macrophages as well as 

on immature DCs, memory T cells, B cells, NK cells and mast cells. CCR5 was shown on 

monocytes and macrophages, DCs, T helper 1 cells, regulatory T cells, B cells, NK cells, 

                                                 
1 http://www.ncbi.nlm.nih.gov/gene?term=gene 
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neutrophils and thymocytes [5, 149, 150]. CCL5 binds with high affinity to both 

receptors. In addition to CCL5, CCR5 binds seven other chemokines [151] that not 

essentially bind to CCR1 such as CCL4. 

 

 

Fig.I.6: Schematic presentation of an alignment of the CCR1 amino acid sequence with CCR5. 
Topographic blot based on the CCR1 amino acid sequence; blue circles denote identical residues in CCR5 
through CCR1 with annotated disulfide bonds (dotted lines). 
 
For CCR5, constitutive dimerization could also be evidenced through bioluminescence 

when transiting through the endoplasmic reticulum (ER) [152] and by the aforementioned 

observation that the presence of the CCR5-Δ32 variant prevents transport of normal 

CCR5 from the ER to the cell surface [112]. In addition, synthetic peptides that were 

designed to disrupt CCR5 dimerization reduced the function of CCR5 in vitro and in vivo 

[153]. Concerning a possible dimerization of CCR1, no data exist up to now. In addition 

to the identical secondary structure that all rhodopsin class G protein coupled receptors 

share, CCR1 and CCR5 have a very high sequence homology. The overall identity is 

about 66% [154], which is mainly located in the transmembrane and cytoplasmatic parts 

of the receptors (cf. Fig.I.6.). Besides this high homology previous studies have suggested 

specialized roles for CCR1 and CCR5 in leukocyte recruitment [137, 155]. CCR1 was 

found to be predominantly required for the initial adhesion of human monocytes and T 

cells to endothelial cells, whereas CCR5 appeared to mediate in the first line the 

spreading on endothelial cells preceding transendothelial migration [155]. Another feature 
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supporting the functional specification of CCR1 and CCR5 are differences in the 

phenotype of mice deficient for one of the receptors. CCR5 deficiency in Ldlr−/− mice 

showed a decrease in inflammation and improved plaque stability. Contradictory, in the 

same mouse model CCR1 deficiency enhanced inflammation and atherosclerotic lesion 

development [156-158]. Additionally selective blocking of CCR5 and not CCR1, using 

the antagonist TAK-779 attenuates atherosclerotic lesion formation by blocking T cell 

migration into lesions as shown in Ldlr−/− mice [142, 159]. Furthermore, CCL5 

engagement of CCR1 and CCR5 induced a similar pattern of receptor down-modulation 

but the patterns of receptor recycling that are induced are very different. Specifically, 

CCR5 recycles to the cell surface [160] and CCR1 was found to not recycle at all [161].
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I.8. AIMS OF THE STUDY 

The regulation of chemokine function is multidimensional, affecting the chemokine or the 

chemokine receptor. This includes the heterophilic interaction between chemokines that 

can modulate the primordial function. CXCL4 was shown to accelerate the CCL5 

mediated cell arrest [18]. First to reveal this interaction, metabolically 15N-labeled CCL5 

was expressed in E. coli and subsequently purified employing FPLC and HPLC methods. 

Within the scope of this study, small antagonists, preventing the CCL5–CXCL4 

heterodimer formation, were constructed. The in vivo functionality was investigated in 

comparison to the CCL5 antagonist Met-CCL5. Thus Met-CCL5, for administration into 

a mouse model, was cloned, expressed in normal LB and purified. Previous studies have 

suggested specialized roles for CCR1 and CCR5 in leukocyte recruitment [155, 162]. 

CCR1 was found to be predominantly required for the initial adhesion of human 

monocytes and T cells to endothelial cells, whereas CCR5 appeared to mediate in the first 

line the spreading on endothelial cells preceding transendothelial migration [155]. Since 

chemokines are believed to predominantly interact with the extracellular loops [51, 163]. 

The extracellular regions of CCR1 and CCR5 are the most heterogeneous domains. To 

identify the possible role of the extracellular loops for receptor specification, chimeric 

receptor constructs were generated by exchanging the respective extracellular loops of 

CCR1 and CCR5. To be able to map the interaction surface between CCL5 and CCR1 

and CCR5 different CCL5 and CCL5 mutants were used in cell adhesion assay and 

chemotaxis. Therefore CCL5-40s and CCL5-E66A are also expressed and purified. 

Furthermore, a recent study suggest that posttranslational modifications of chemokines 

receptors, precisely the addition of sialic acid to the terminal portions of the N- or O-

linked sugar chains of glycoproteins or glycolipids, influence the interaction with the 

ligand [91]. In vitro data also suggest a role of sialic acid moieties for CCR5 function, 

thus the binding of CCL5 to leukocytes isolated from mice deficient for the 

sialyltransferase was determined. Finally the ability of isolated cells to induce calcium 

flux upon stimulation with CCL5 and to adhere to activated mouse endothelial cells 

(SVEC).
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II. Material and Methods 

All solutions were prepared with Millipore water (Milli-Q Plus ultrapure purification, 

Millipore, Billerica, USA). Protocols were adapted from standard protocols [96] if not 

stated otherwise. All reagents were of analytical grade and purchased from major 

chemical suppliers such as Sigma-Aldrich (Steinheim, Germany), Carl Roth (Karlsruhe, 

Germany), Merck (Darmstadt, Germany) and Fluka (Buchs, Switzerland) unless 

otherwise stated in the text. 

II.1. GENERAL EQUIPMENT 

autoclave Systec 2540EL (Systec, Wettenberg, Germany) 

balance Analytical Plus, (Ohaus, Pine Brook, USA) 

centrifuges Eppendorf 5417C (Eppendorf, Hamburg, Germany), 

Heraeus Labofuge 400 and Heraeus Multifuge 3 S-R 

(Heraeus, Osterode, Germany), Beckman Avanti J 30 I 

(Beckman Coulter, Krefeld, Germany) 

electroporator Amaxa II Nucleofector™ System 

fermenter Minifor Bioreactor (LAMBDA Laboratory Instruments, 

Brno, Czech Repuplic) 

fluorescence LS 55 Fluorescence Spectrometer (PerkinElmer, USA) 

FPLC system Äkta FPLC ( Amersham/GE Healthcare, Uppsala, Sweden) 

Flow cytometers  FACSCantoII, FACSCalibur, FACSAria (BD Biosciences, 

San Jose, CA, USA) 

gel electrophoresis Mini-sub cell GT (Bio-Rad, Hercules, USA) 

HPLC system Spectra System SCM (Thermo Electron Corp., Thermo 

Scientific, Waltham, USA), Varion Prostar HPLC System 

(Varian Inc., Palo Alto,USA), Waters Delta Prep 3000 
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HPLC System (Warers Corp., Milford, USA) 

image reader LAS 3000 (Fujifilm, Düsseldorf, Germany) 

incubator Innova 4230 (New Brunswick Scientific, USA) 

laminar flow hood Herasafe (Heraeus, Osterode, Germany) 

lyophilisator Alpha 2-4 LD plus (Christ, Osterode , Germany) 

microscopes Olympus IX71, IX50, IX51 (Olympus Optical, 

Hamburg,Germany) 

Two photon microscope Leica SP5II MP, Mannheim, Germany 

PCR thermocyclers MyCycler (Bio-Rad, Hercules,USA) 

pH-meter InoLab level 1 (WTW, Weilheim, Germany) 

sonicator Branson S-250 D Digital Sonifier (Branson, Danbury, USA) 

spectrophotometer GeneQuant (Amersham/GE Healthcare, Uppsala, Sweden), 

NanoDrop 1000 (PeqLab, Erlangen, Germany) 

Western blot transfer iBlot® 7-Minute Blotting System (Life Technologies, 

(Darmstadt, Germany) 

 

II.2. ANTIBODIES 

II.2.1. PRIMARY ANTIBODIES 

CCL5 mouse Anti-Human Rantes VL1, RANT100 

(Caltag, Burlingame, USA) 

biotinylated α-human CCL5 (BAF278) R&D Systems (Wiesbaden, Germany). 

α-HA, Alexa Fluor® 594 conjugate Invitrogen (Karlsruhe, Germany) 
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α-myc-FITC  Invitrogen (Karlsruhe, Germany) 

α-hCCR1-phycoerythrin  R&D Systems (Wiesbaden, Germany). 

α-hCCR5-allophycocyanin R&D Systems (Wiesbaden, Germany). 

HA -Tag (C29F4) (monoclonal, rabbit) Cell signaling (Danvers, MA, USA) 

Myc-Tag (71D10) (monoclonal, rabbit) Cell signaling (Danvers, MA, USA) 

Myc-Tag (9B11) HRP (monoclonal, mouse) Cell signaling (Danvers, MA, USA) 

HA-Tag (6E2)HRP (monoclonal, mouse) Cell signaling (Danvers, MA, USA) 

CD45-APC-Cy7(clone 30-F11) BD Biosciences (New Jersey, USA) 

CD115-PE (clone AFS98) eBioscience/BD (San Diego, CA, USA) 

Gr1-PerCp (clone RB6-8C5) eBioscience/BD (San Diego, CA, USA) 

CD11b-efluor 450 (clone M1/70) eBioscience/BD (San Diego, CA, USA) 

Ly6G-FITC (clone 1A8) BioLegend (San Diego, CA, USA) 

anti-RANTES-biotin (ab83135) Abcam (Cambridge, UK) 

II.2.2. ISOTYPE CONTROLS 

IgG1-allophycocyanin R&D Systems (Wiesbaden, Germany). 

IgG2b-phycoerythrin R&D Systems (Wiesbaden, Germany). 

II.2.3.  SECONDARY ANTIBODIES 

goat-anti-mouse-IgG-HRP horseradish peroxidase (HRP)-conjugated, sc-2031 (Santa Cruz 

Biotech, Santa Cruz, USA) 

  

Streptavidine-HRP horseradish peroxidase (HRP)-conjugated, 016-030-084 (Jackson 

ImmunoResearch, West Grove, USA) 
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Streptavidin-PE-Cy7 BD Pharmingen 

II.3. MICE 

Wild-type (wt) C57BL/6 and Apolipoprotein E deficient (Apoe-/-) mice were obtained 

from the local animal breeding facility (University Hospital, Aachen). Apoe-/- and mice 

are established mouse models to study the development and disease progression of 

atherosclerosis. The α2–3 sialyltransferase IV knock out mice (ST3Gal-IV-/-) were 

obtained from the local animal breeding facility (Ludwig Maximilian University, 

Munich). All studies with mice were approved by local authorities and complied with 

German animal protection law. 

II.4. MOLECULAR BIOLOGY 

II.4.1.  GENERAL WORK WITH E. COLI 

E. coli strains were cultured in LB medium at 37°C with vigorous shaking. For growth on 

solid media, a bacteria suspension was spread on an LB agar plate or a single bacteria 

colony was inoculated to achieve single colony growth. The LB plates were incubated 

inverted overnight at 37°C. For culturing of bacteria transformed with a plasmid 

conferring antibiotic resistance, growth medium was supplemented with the appropriate 

antibiotic. For long-term storage of bacteria at -80°C, LB medium containing the 

corresponding antibiotics was supplemented with glycerol to a final concentration of 25% 

(v/v). All solutions used for bacteria work were autoclaved or filter-sterilized. 

Bacteria growth media 

Bacteria growth medium was autoclaved for 20 min at 121°C. LB agar medium was 

allowed to cool to 50°C before addition of antibiotics. 

LB medium: 0.5% (w/v) yeast extract 

 1% (w/v) peptone 

 1% (w/v) NaCl 

LB agar medium: LB medium with 1.5% (w/v) agar 

LB-agar plates for blue 

white screening 

LB-agar medium  

50 μl of 40 mg/ml X-gal dimethylformamide-solution  
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Preparation of heat-shock competent E. coli 

E. coli cells were inoculated in 5 mL LB medium and incubated overnight at 37°C with 

vigorous shaking. Then 100 mL LB medium were inoculated with 1 ml of the overnight 

culture and incubated at 37°C until the optical density at 600 nm (OD600) of 

approximately 0.4 was reached, indicating the early exponential growth phase. OD600 was 

measured in a spectrophotometer with pure medium as reference. The culture was 

centrifuged (10 min/ 3000 g/ 4°C), and the pellet was resuspended in 10 mL ice-cold TSS 

buffer. 500 µL aliquots were frozen immediately in liquid nitrogen and stored at -80°C. 

TSS buffer: 10% (w/v) polyethyleneglycol (PEG) 8000 (Promega) 

 5% (v/v) DMSO 

 20 mM MgCl2 

 in 1x LB medium (II.2.1)  

 

Heat-shock transformation of competent E. coli 

100 µl thawed competent E. coli were gently mixed with 1-10 ng of plasmid DNA (see 

II.4.3.), and incubated for 30 min on ice. The bacteria were heat-shock treated for 45 sec 

in a 42°C water bath, and then incubated for 2 min on ice. After addition of 500 µL LB 

medium, the bacteria were incubated for 1 h at 37°C with gently shaking. The bacteria 

were spread on selective LB agar plates and incubated overnight at 37°C. 

II.4.2.  BACTERIAL STRAINS 

DH5α Invitrogen (Karlsruhe, Germany) 

E. coli TOP10 Life Technologies, (Darmstadt, Germany) 

Rosetta (DE3) pLysS Novagen/Merck Bioscience (Darmstadt, Germany) 

 

 

 

 



                                                                                                                                       Material and Methods 

 

28 
 

II.4.3.  PLASMIDS 

pET-26b(+) expression vector containing pelB signal 

sequence for secretion of the recombinant 

protein into periplasma (Novagen/Merck 

Bioscience, Darmstadt, Germany) 

pET-26b(+) Met-CCL5 Met-CCL5 expression vector 

pET-26b(+) CCL5 CCL5 expression vector  

pET-32b(+) CCL5 CCL5 expression vector containing a 

thioredoxin tag fused with the recombinant 

protein (Novagen/Merck, Darmstadt, 

Germany) 

pET-24a CCL5_40s CCL5-40s expression vector, designed in 

house and supplied by (GenScript USA Inc., 

Piscataway, USA), 

pET-24a CCL5_E66A CCL5-E66A expression vector, designed in 

house and supplied by GenScript  

pCR-2.1-Topo Bacterial expression vector conjugated with 

a Topoisomerase, Life Technologies, 

(Darmstadt, Germany) 

pCR-2.1-Topo-Met-CCL5 Subcloning of the Met-CCL5 PCR product 

for further cloning into the pET-26d+ 

vector. 

pcDNA3.1 Mammalien expression vector, Life 

Technologies, (Darmstadt, Germany) 

pcDNA4.A Mammalien expression vector, Life 

Technologies, (Darmstadt, Germany) 
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pcDNA3.1_CCR1 Missouri S&T cDNA Resource Center 

(Rolla, MO) 

pcDNA3.1_CCR5 Missouri S&T cDNA Resource Center 

(Rolla, MO) 

pcDNA3.1_CCR5_1N1, _1E1, 

_1E2,_1E3,  

were designed in house and supplied by 

GenScript in pUC57 and subcloned into 

pcDNA3.1 

pcDNA3.1_CCR1_5N1,_5E3 were designed in house and supplied by 

GenScript in pUC57 and subcloned into 

pcDNA3.1 

pcDNA3.1_CCR5-HA and 

CCR5_1E3 -HA 

were designed in house and supplied by 

GenScript in pUC57 and subcloned into 

pcDNA3.1 

pcDNA4.A _CCR1-Myc and 

CCR1_5E3 -Myc 

were designed in house and supplied by 

GenScript in pUC57 and subcloned into 

pcDNA4A 

II.4.4.  POLYMERASE CHAIN REACTION 

Polymerase chain reaction (PCR) was used to amplify specific DNA sequences [164]. 

Additionally, this method allows the deletion, insertion or exchange of sequences in order 

to generate new DNA constructs. The specific Oligonucleotides were obtained from 

MWG (Eurofins MWG, Ebersberg, Germany). PCR fragments were amplified using the 

PfuUltra High Fidelity DNA polymerase (Agilent technologies) or Go Taq® Flexi 

(Promega, Madison, USA). The Annealing temperature was calculated based on the 

primer melting temperature. 

PCR reaction: 50-200 ng template DNA 

 1x PCR reaction buffer 

 0.5 μM forward primer 

 0.5 μM reverse primer 
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 200 μM each of dNTPs (dATP, dCTP, dGTP, dTTP) 

 1.3 U PfuUltra High Fidelity DNA polymerase 
(Agilent technologies) or Go Taq® Flexi (Promega, 
Madison, USA) 

 H2O to final volume of 50 μl 

 

 

 

 

 

II.4.5.  SMALL-SCALE PURIFICATION OF PLASMID DNA 

Small-scale purification of plasmid DNA from bacteria on culture was performed using 

the Qiagen Plasmid Mini Kit™ (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions. 

II.4.6. LARGE-SCALE PURIFICATION OF PLASMID DNA 

Large-scale purification of plasmid DNA from bacteria on culture was performed using 

the Qiagen Plasmid Midi or Maxi Kit™ (Qiagen, Hilden, Germany) according to the 

manufacturer’s instructions. 

II.4.7.  DIGESTION, LIGATION AND PRECIPITATION OF DNA 

Digestion of DNA was performed using restriction endonucleases (NEB, Massachusetts, 

USA) according to the manufactures instructions. In brief 50-200 ng DNA for analytical 

purpose or 1-2 μg DNA for preparative use were digested in the appropriate enzyme 

buffer with 5-10 U or 20-50 U of enzyme in a 10 or 50 μl reactions. The digested DNA 

was seperated by agarose gel electrophoresis (II.4.8) and visualized or extracted and 

purified for further cloning steps (II.4.8.). The ligation reaction was carried out either at 

room temperature for 3 h or overnight at 4°C in 1x ligation buffer. Exactly 200 U T4 

DNA ligase was added to a final volume of 10 μl. The vector/insert ratio was 

approximately 1 to 3. 

 

PCR program Initial denaturation 95°C, 1 min 

 Denaturation 95°C, 30 sec 

 Annealing 55-65°C, 30 sec 

 Extension  72°C 1-6 min 

 Final extension 72°C 5 min 

25-30 cycles for normal PCR 

18 cycles for mutagenesis PCR 
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II.4.8.  AGAROSE GEL ELECTROPHORESIS AND DNA PURIFICATION 

Digested DNA fragments were separated by agarose gel electrophoresis. The negatively 

charged DNA fragments migrate towards the anode in an electric field with a rate 

correlated to the size. DNA samples were mixed with DNA loading buffer and loaded on 

a agarose gel (1-2% (w/v) agarose dissolved in TAE electrophoresis buffer containing 0.1 

μg/mL ethidium bromide). After electrophoresis at 120 V, the DNA was visualized on a 

UV light transilluminator and photographed for documentation. 

DNA loading buffer (6x): 30% (v/v) glycerol 

 6 mM EDTA 

 0.25% (w/v) bromophenol blue 

 0.25% (w/v) xylenecyanol 

 

TAE electrophoresis buffer (1x): 40 mM Tris-acetate 

 1 mM EDTA 

If necessary, the DNA of interest was excised from the gel using a scalpel blade and was 

then purified using the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) 

according to manufacturer’s instructions. Briefly, the gel slice was incubated at 50°C for 

10 min in three volumes of solubilisation buffer (QG), after addition of one gel slice 

volume of isopropanol the mixture was applied to a column and centrifuged for 1 min at 

10,000 g. The column was washed twice and finally, the DNA was eluted in appropriate 

volume (25-50 μl) of ultra pure H2O.  

II.4.9.  QUANTIFICATION OF DNA 

DNA concentration was determined by measuring the absorbance at 260 nm (A260) using 

a NanoDrop ND-1000. For double-stranded DNA an A260 = 1 corresponds to 50 μg 

DNA/mL. The absorbance at 280 nm was also measured to estimate DNA purity. Pure 

DNA has an A260/A280 ratio of 1.8-2.0 at pH 7.0. 
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II.4.10. SEQUENCING OF DNA 

The sequencing reactions were performed by MWG Biotech AG using primers binding 

the T7 promotor and BGH reserve priming sites within the pcDNA3.1(+) vector or 

primers binding the M13 forward or reverse priming sites within the pCR®2.1-TOPO® 

vector. 

II.4.11. CLONING OF MET-CCL5 

The coding region of CCL5 in pET-26b(+), fused to the hexapeptide leader sequence 

MKKKWPR. The CCL5 sequence was amplified by PCR using the following specific 

primers: forward primer 5’ ATCATATGTCCCCATATTCCTCGGACACCAC 3’, 

together with the reverse primer 5’ ACGGATCCRAGCTCATCTCCAAAGAGTTG 3’. 

Thereby the amino acids KKKWPR from the MKKKWPR leader were deleted (II.4.4.). 

The PCR fragment was controlled by agarose gel electrophoresis (II.4.8.) and 

subsequently cloned into the pCR-2.1®-TOPO according to the TOPO TA Cloning® 

protocol (Invitrogen). Positive clones were verified by analytical digestion and 

sequencing. The pCR-2.1-Met-CCL5 vector and the pET-26b(+) (Merck Biosciences, 

Darmstadt, Germany) expression vector were both digested (II.4.7.), thereby the pelB 

leader sequence of the pET-26b(+) was deleted. The DNA fragments were then separated 

by agarose gel electrophoresis and subsequently isolated (II.4.8.). Following ligation 

(II.4.7.) and transfection, positive clones were verified. Finally pET-26b(+)ΔpelB-Met-

CCL5 was transfected into E. coli Rosetta (DE3) pLysS. 

II.4.12. CLONING OF THE CCR1 AND CCR5 CHIMERAS 

The CCR1 sequence was aligned against the CCR5 sequence [165] using the 

BLOSUM62 matrix. Sequences were aligned using CLUSTAL-W [166]. The length of 

the extracellular loops (ECL) was determined according to the UniProtKB/Swiss-Prot 

database, considering a minimum length of 18 residues in the core of the lipid double 

membrane and criteria from sequence analysis. All chimeric constructs of CCR5 and 

CCR1 were designed in house and purchased from Genescript (GenScript USA Inc., 

Piscataway, USA), in pUC57 and subsequently cloned, employing restriction 

endonucleases (II.4.7.), agarose gel electrophoresis (II.4.8) and the T4 ligase (II.4.7) into 

the mammalian expression vectors pcDNA3.1 and pcDNA4.A (II.4.3). In the same 

manner CCR1, CCR5 and CCR1-5N1 or CCR1-5E3 containing a synthetic C-terminally 
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Myc-tag or a hemagglutinin (HA) tag were constructed. The nomenclature and detailed 

information of the mutant constructs is summarized in the Table.III.4.12. or in the 

alignment of the wt receptor sequences with the chimeric constructs in the supplement. 

All constructs were stably transfected into HEK-293 and  L1.2 mouse pre B cells.  

construct name description exchanged amino acids  
CCR5_1N1 hCCR5 containing the  

N-terminus of hCCR1 
CCR5 M1R30 to CCR1 M1Q35 

CCR5_1E1 hCCR5 containing the  
first ECL of hCCR1 

CCR5 H92Q107 to CCR1 D92K107 

CCR5_1E2 hCCR5 containing the 
second ECL of hCCR1 

CCR5 T172I203 to CCR1 S172L203 

CCR5_1E3 hCCR5 containing the  
third ECL of hCCR1 

CCR5 Q266Q282 to CCR1 Q266L282 

CCR1_5N1 hCCR1 containing the  
N-terminus of hCCR5 

CCR1 M1A34 to CCR5 M1A30 

CCR1_5E3 hCCR5 containing the  
third ECL of hCCR1  

CCR1 Q266Q282 to CCR5 Q266Q282 

Table.II.4.12. Summary of the CCR1/CCR5 chimeric receptor constructs. 

II.5. PROTEIN ANALYSIS 

II.5.1.  PROTEIN CONCENTRATION ASSAY 

The concentration of protein solutions was determined via the DC Protein Assay 

(BioRad, Hercules, USA). This method is similar to the Lowry Assay [167] and is based 

on the reaction of proteins with an alkaline copper tartrate solution and folin reagent. The 

measurement was done according to manufacturer’s instruction. Briefly, 5 µL of the 

fractions and BSA as standard were mixed with 25 µL copper tartrate solution and 200 

µL folin reagent. The complexation of the protein with copper tartrate and the following 

reduction of the folin reagent by the complex were measured at 750nm.  

II.5.2.  SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS (PAGE) 

During protein purification or for analyzing co-precipitated receptor molecules, the 

proteins were at first separated by SDS-PAGE (Sodiumdocecylsulfate-polyacrylamide-

gelelectrophoresis) [168]. SDS binds to polypeptides resulting in a negative charge 

directly proportional to protein size. Protein samples accumulate in a stacking gel before 

migrating simultaneously into the resolving gel. Electrophoresis was carried out in a 

Mini-PROTEAN® 3 cell system (Bio-Rad, Hercules, USA) at 120 V until the 
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bromphenol blue dye front reached the bottom of the gel. The separated protein in the 

resolving gel were then analysed either by coomassie blue, silver staining or western 

blotting (II.5.3-5) 

 

Resolving gel 10-15% (w/v) acrylamide/Bis 

 375 mM Tris-HCl, pH 8.8 

 0.1% (w/v) SDS 

 0.1% (w/v) ammonium persulfate 

 0.1% (v/v) TEMED 

Stacking gel: 5% (w/v) acrylamide/Bis 

 125 mM Tris-HCl, pH 6.8 

 0.1% (w/v) SDS (sodium-dodecylsulfate) 

 0.1% (w/v) ammonium persulfate 

 0.1% (v/v) TEMED 

Electrophoresis buffer: 250 mM Tris base 

 1.92 M glycine 

 1% (w/v) SDS 

II.5.3.  COOMASSIE BLUE STAINING 

The coomassie blue staining of the gels was carried out with PageBlue Protein Staining 

Solution (MBI Fermentas, Ontario, Canada). They were subsequently destained with a 

12.5% (v/v) isopropanol, 30% (v/v) EtOH. 
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II.5.4.  SILVER STAINING 

Silver gel staining was adapted from Blum [169], First the proteins are fixed in the gel 

with solution A at least for 1 h. Second, washed 3 x 20 sec with solution B the gel was 

sensitized for 1 min (solution C). Followed by staining with solution D containing AgNO3 

for 20 min. To visualize the protein the gel was incubated with the developing solution E. 

Finally the reduction reaction was stopped using solution F. 

Solution A 50% methanol 

12% acetic acid 

0.05% formalin 

Solution B  50% methanol 

Solution C 0.02% (w/v) Na2S2O3 x 5 H2O 

Solution D 0.02% AgNO3 

0.076% formalin 

Solution E 6% Na2CO3 

0.0004% Na2S2O3 x 5 H2O 

0.05% formalin 

Solution F 50% methanol 

12% acetic acid 

II.5.5.  WESTERN BLOT ANALYSIS 

Separated proteins from a SDS-PAGE (II.5.2) were transferred to a nitrocellulose 

membrane and detected using specific primary antibodies either directly conjugated with 

HRP or further incubated HRP-conjugated secondary antibodies. The proteins were 

transferred from the gel to either the nitrocellulose Hybond membrane (Amersham/GE 

Healthcare, Uppsala, Sweden) using the wet/tank method at 90 V for 1 hour in ice-cold 

blotting buffer or employing the iBlot semidry transfer system (Life Technologies, 

Darmstadt, Germany). Nonspecific binding sites on the membrane were blocked with 5% 

(w/v) nonfat milk in TBS for 30-60 min at rt. Thereafter, the membrane was incubated 

with a primary antibodies diluted in blocking buffer for 1 hour at rt or overnight at 4°C. 

After 3 times washing with TBS/0.05% (v/v) Tween, if the primary antibody was not 

directly conjugated to HRP, the membrane was incubated with a HRP-conjugated 

secondary antibody diluted in TBS for 1 hour at rt or overnight at 4°C. In the presence of 

hydrogen peroxide (H2O2) the protein-bound HRP converts luminol to an excited 
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intermediate dianion, which emits light on return to its ground state. This light can be 

captured by a detector (LAS 3000 Image Reader, Fujifilm, Düsseldorf, Germany). 

 

 

 

 

 

 

 

 

II.5.6.  DOT BLOT 

This technique was used to identify the presence of the proteins in the fractions purified 

by FPLC in a more rapid approach compared to western blot. Fractions were spotted on a 

nitrocellulose membrane and after drying it was further proceed like for a western blot 

after the transfer of the protein to the nitrocellulose membrane (II.5.5). 

II.5.7.  FLOW CYTOMETRY 

Flow cytometry can be used to just analyze cells by their size, granularity and protein 

expression (by e.g. fluorescence-conjugated detection Abs) or to sort cell populations 

(FACS Fluorescent activated cell sorting). In a buffer stream, one cell at a time passes by 

an argon laser, which excites fluorescently labeled cells. Measurements of the size 

(forward scatter) and granularity (sideward scatter) are independent from the fluorescence 

signal. Measurement of fluorescence intensity using fluorescence labeled Abs was done 

to examine the expression of chemokine receptors on the cell surface. The results were 

displayed as histograms showing the logarithmic distribution of the fluorescence intensity 

or as diagrams demonstrating the change in mean fluorescence intensity (MFI). For 

receptor expression determination, 1 ×105 cells were resuspended in PBS with specific 

Ab or IgG isotype control (10 µl/test) and incubated for 30 min on ice. If necessary, the 

cells were further incubated, after washing, with a fluorescence conjugated detection 

Blotting buffer (1x) 25 mM Tris base 

 192 mM glycine 

 10% (v/v) methanol 

 0.005% (w/v) SDS 

TBS (1x) 25 mM Tris-HCl, pH 7.4 

 2.7 mM KCl 

 137 mM NaCl 
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antibodies and analyzed immediately in a FACS CantoII (BD Biosciences) and evaluated 

with FlowJo Software (Treestar, Inc, Ashland, OR, USA). 

II.6. PROTEIN EXPRESSION AND PURIFICATION 

II.6.1. PURIFICATION OF RECOMBINANT CCL5 AND CCL5 VARIANTS  

Two different protocols have been used to purify CCL5 and the mutant variants Met-

CCL5, CCL5_40s and CCL5_E66A. All variants were expressed using the pET vector 

system where the CCL5 gene was cloned under the control of a strong bacteriophage T7 

promotor. When transformed into an E. coli expression strain containing a chromosomal 

copy of the T7 RNA polymerase gene under lacUV5 control the expression can be 

induced by the addition of IPTG (isopropyl-β-D-thiogalactopyranoside) to the bacterial 

culture. Here the E. coli host strain Rosetta (DE3)-pLysS was employed using either the 

pET-32a(+) or the pET-26b(+) vector (Novagen/ Merck Bioscience, Darmstadt, 

Germany) or the pET-24a vector (GenScript). Rosetta strains additional supply tRNAs on 

a compatible chloramphenicol resistant plasmid, providing enhanced expression of target 

genes otherwise limited by the codon usage of E. coli. The use of the pET-32a(+) enables 

the expression of the protein of interest fused to thioredoxin which is supposed to increase 

the amount of soluble protein in the cytoplasm [170], but at least 50% of the protein still 

form inclusion bodies. This expression vector is further called pET-32a(+)-CCL5. The 

other CCL5 expression vectors are based on either pET-26b(+) for CCL5 and Met-CCL5 

or pET-24a for CCL5_40s and CCL5_E66A. These constructs, except Met-CCL5, are 

additionally N-terminal fused to the hexapeptide leader sequence MKKKWPR, 

hereinafter referred to as pET-26b(+)-CCL5, pET-26b(+)-Met-CCL5, pET-24a-

CCL5_40s and pET-24a-CCL5_E66A. The CCL5_40s variant is based on the finding that 

CCL5 contains a basic amino acid clusters, in detail 44RKNR 47, located in the 40s loop 

region, that is involved in the binding to GAGs [39]. And CCL5_E66A is a CCL5 variant 

that is deficient to form higher order oligomers, it is reduced to a tetramer [26]. Of note, 

pET-24a-CCL5_40s and pET-24a-CCL5_E66A were codon optimized (supplied from 

Genescript). CCL5 and Met-CCL5 that were expressed using pET-26d(+), a vector 

normally carrying an N-terminal pelB sequence for periplasmatic localization of the 

protein. These constructs were also expressed as inclusion bodies because the pelB leader 

was deleted (as described in section II.4.11.). A short summary of the different expression 

constructs, which highlights the differences already described in the text is given below. 
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pET-32a(+)-CCL5 
M..DDDDK SPYSSDTTP CCFAYIARPL PRAHIKEYFY TSGKCSNPAV VFVTRKNRQV 
CANPEKKWVR EYINSLEMS Stop 
 
pET-26d(+)-CCL5  
MKKKWPR SPYSSDTTP CCFAYIARPL PRAHIKEYFY TSGKCSNPAV VFVTRKNRQV CANPEKKWVR 
EYINSLEMS Stop 
 
pET-24a(+)_-CCL5_40s 
MKKKWPR SPYSSDTTP CCFAYIARPL PRAHIKEYFY TSGKCSNPAV VFVTAANAQV CANPEKKWVR 
EYINSLEMS Stop 
 
pET-24a(+)-CCL5_E66A 
MKKKWPR SPYSSDTTP CCFAYIARPL PRAHIKEYFY TSGKCSNPAV VFVTRKNRQV CANPEKKWVR 
EYINSLAMS Stop 
 
pET-26d(+)-Met-CCL5 
M SPYSSDTTP CCFAYIARPL PRAHIKEYFY TSGKCSNPAV VFVTRKNRQV CANPEKKWVR 
EYINSLEMS Stop 
 

II.6.2.  PROTOCOL USING GEL FILTRATION TO PURIFY CCL5 (A) 

Cultivation, Cell breakage and inclusion body extraction 

The purification described below is depicted in the flow chart (A) in Figure III.1., 

employing the gelfiltration chromatography as an initial step. The bacteria transfected 

with pET-32a(+)-CCL5 were grown either in LB or in Spectra-9N medium (Cambridge 

Isotope Labs, New Jersey, USA) containing 15N-enriched isotope for metabolic labeling. 

In detail, the bacteria were transferred from an overnight plate to 2x 1L prewarmed 

medium (LB or Spectra-9N) containing 100 µg/mL carbenicillin and 40µg/mL 

chloramphenicol. The bacteria were cultivated on an orbital shaker at 37°C. As soon as an 

OD600 about 0.6 was reached the CCL5 expression was induced by addition of 1mM 

IPTG and further incubated overnight. The cells were harvested by centrifugation at 5000 

rpm for 10 min. The pellet was subsequently frozen in liquid nitrogen to facilitate the cell 

lysis. Immediately after thawing, the pellet was resuspended in 5 ml per g wet cell weight 

BugBuster® Protein Extraction Reagent (Novagen/Merck Biosciences, Darmstadt, 

Germany) supplemented with Benzonase® nuclease. To obtain a homogenous lysate the 

mixture was additionally sonicated and filtered over a 40 µm cell strainer to remove DNA 

clumps. The aggregated proteins were pelleted by centrifugation (30 min, 25,000 g) 

afterwards washed 2x with PBS (PAA, Pasching, Austria) to remove detergents. The pre-

cleaned inclusion bodies were solubilized in 6 M guanidine hydrochloride (Gnd-HCl) 

containing 1 mM DTT for about 1 h at 60°C or overnight at room temperature. Then the 

solution was centrifuged to remove remaining aggregates and was transferred to gel 
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filtration chromatography using the ÄKTA FPLC System (fast protein liquid 

chromatography).  

Gel filtration using the Sephacryl S-100HR column 

The denatured fusion proteins were loaded onto the Sephacryl S-100HR column 

(Amersham/GE Healtcare, Uppsala, Sweden). and separated according to their masses in 

6 M Gnd-HCl, 50 mM Tris pH 8, 1 mM DTT, 2,5 ml fractions were collected. The 

fractions containing the CCL5/thioredoxin fusion protein were identified by dot blotting 

and thereafter combined and subsequently processed to renaturation.  

Protein renaturation 

The fusion protein was folded by drop-wise 6-fold dilution in 50 mM Tris pH 8 

supplemented with a redox system of 1 mM cysteine (final concentration) and 8 mM 

cystine gently stirred overnight at 4°C. To remove remaining protein contaminants, the 

refolded fusion-protein was additionally purified by affinity chromatography.  

Affinity chromatography using HiTrap chelating HP column 

The HiTrap chelating HP (Amersham/GE Healtcare, Uppsala, Sweden) column was first 

loaded with Ni2+, according to the manufacturer’s instruction. Prior to chromatography 

precipitations and other non-soluble particles were removed by centrifugation (20.000g 

30 min) and filtration (0.22 µm, Millipore, Billerica, USA). The protein was loaded onto 

the column with binding buffer composed of 20 mM Tris pH 8 and 2 M Urea with a flow 

rate of 2 mL/min. The CCL5/thioredoxin fusion protein was eluted with a linear 0-100 % 

gradient imidazole. 2-3 mL fractions were collected, the protein containing samples were 

then pooled for the enterokinase digestion.  

Cleavage of the tioredoxin tag 

Before digestion Urea and Imididazol were removed by dialysis against 20 mM Tris pH 

8. The thioredoxin tag was removed from CCL5 by digestion with 1 U enterokinase per 

50 µg fusion protein (Novagen/ Merck Bioscience, Darmstadt, Germany) overnight at rt. 

During digestion CCL5 forms insoluble aggregates with remaining CCL5/thioredoxin 

fusion protein, which were pelleted by centrifugation. 

Ion exchange chromatography using the MonoS™ 5/50 GL column 

The CCL5 CCL5/thioredoxin aggregates were dissolved in 20 mM Tris pH 8 and 8 M 

urea, the pH of the solution was adjusted to less than 5.5. CCL5 was separated from the 
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thioredoxin tag by the strong cationic exchange chromatography. The sample was loaded 

onto the MonoS™ 5/50 GL column (Amersham/ GE Healthcare, Uppsala, Sweden) with 

50 mM NaAc pH 5.5 and 6 M Urea. The CCL5 was eluted at 1 mL/min using a linear 

gradient from 0-50% 2 M NaCl and 0.5 mL fractions were collected. The correct size was 

verified by SDS-PAGE and western blots. 

Polishing by reverse phase HPLC using the Grace Vydac C-8 column 

CCL5 was finally polished by reverse phase chromatography using the high performance 

liquid chromatography (HPLC) using a preparative Grace Vydac C-8 column (250 x 10 

mm, 5 μm, Grace Davison Discovery Sciences, Deerfield, USA). The protein is separated 

based on the strength of the hydrophobic interaction with the C8 octyl group immobilized 

to the stationary phase of the column. The protein adsorbs to the hydrophobic surface of 

the column and desorb as soon as the binary polar eluent, acetonitril (ACN), reaches a 

critical concentration. The purified protein was recovered from the column employing a 

linear gradient elution from 0-67% acetonitril in 35 min.  

 

Binding buffer 0.1% TFA (trifluoroacetic acid) 

Elution buffer 
0.1% TFA (trifluoroacetic acid) 

90% acetonitrile 

The collected fractions were pooled, dialysed first against 1% acetic acid then against 

0.1% TFA then frozen in liquid nitrogen and subsequently lyophilized. The protein was 

again controlled by SDS-PAGE and western blot or mass spectrometry.  

II.6.3.  PROTOCOL USING ION EXCHANGE CHROMATOGRAPHY TO PURIFY 

CCL5, MET-CCL5, CCL5_40S AND CCL5_E66A (B) 

Cultivation, Cell breakage and inclusion body extraction 

The flow chart of the protocol employed to purify CCL5, CCL5_40s, CCL5-E66A and 

Met_CCL5 is depicted in Figure III.1.B and proceeded with the purified and de- and re- 

naturated inclusion bodies directly to the ion exchange chromatography. The bacteria 

transfected with either pET-26b(+)CCL5 or pET-26b(+)-Met-CCL5 or pET-24a(+)-

CCL5_E66A or pET-24a(+)-CCL5_40s were transferred from overnight plates to 2x1L or 

a 4 L fermenter prewarmed LB medium containing 50µg/ml kanamycin and 40 µg/mL 

chloramphenicol. At OD600 > 0.6 the expression of the proteins were induced by addition 
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of 1mM IPTG and cultivated over night at 37°C on an orbital shaker or in the Minifor 

Bioreactor (LAMBDA Laboratory Instruments, Brno, Czech Republic) continuously 

stirred, vented and pH adjusted. The next day cells were harvested by centrifugation for 

30 min at 5000 rpm. The cell pellet was subsequently resuspended completely in 13 ml 

suspension buffer per liter culture volume. To facilitate the resuspension the solution is 

additionally sonicated. Cell lysis was then initiated by the addition of 0.4 mg lysozyme 

and 2 µmol MgCl2. To digest the DNA 20 µg DNAseI per ml cell suspension or 

alternatively 5 µl Benzonase® nuclease (Novagen/Merck Biosciences, Darmstadt, 

Germany) per g wet cell pellet weight were added. The solution was diluted with 13 ml 

lysing buffer per liter culture volume and then incubated for 1 h at rt, slightly rotating. To 

further support the cell lysis the solution was frozen in liquid nitrogen and left to defrost 

at rt. After thawing 3.5 µmol/ml solution MgCl2 were added and the solution was further 

incubated at rt until the viscosity significantly decreased. The protein containing inclusion 

bodies were then pelleted by centrifugation at 11,000g, 4°C for 20 min. The pellet was 

resuspended in the washing buffer containing TritonX100, sonicated and again pelleted, 

minimum two times. Afterwards the detergent was removed by washing the pellet with 

the buffer without TritonX100 at least two times. The pre-cleaned inclusion bodies were 

then dissolved in 2 ml/g wet cell weight in 6 M Gnd-HCl, 50 mM Tris pH 8, 1 mM DTT 

at 60°C for 30 min or overnight at rt under continuous stirring. Precipitations and other 

non-soluble particles were removed by centrifugation (11,000g 20 min, 4°C) before 

dialysis against 1% acetic acid overnight at 4°C. The precipitated contaminants, like 

proteins (e.g. proteases) that adsorbed onto the hydrophobic inclusion bodies, were 

separated by centrifugation. 

Solution buffer 50 mM Tris pH 8 

 1 mM NaEDTA 

 10 mM DTT 

 25% Sucrose 

Lysis buffer 50 mM Tris pH 8 

 1% TritonX100 

 1% desoxycholate 
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 100 mM NaCl 

 10 mM DTT 

Wash buffer with TritonX100 50 mM Tris pH 8 

 1% TritonX100 

 1mM NaEDTA 

 100 mM NaCl 

 1mM DTT 

Wash buffer without TritonX100 50 mM Tris pH 8 

 1mM NaEDTA 

 100 mM NaCl 

 1mM DTT 

 

Protein renaturation 

The CCL5 and CCl5 variants were recovered in the supernatant that was following to 

lyophilization again dissolved in 6 M Gnd-HCl and then renaturated. Hence the CCL5 

containig solution was drop wise 10x diluted in 50 mM Tris pH8 supplemented with the 

redox additives 0.01 mM oxidized glutathion and 0.1 mM reduced glutathion following 

gently stirring overnight at 4°C. 

 

Ion exchange chromatography using the HiTrap SP FF™ column 

After centrifugation the conductibility was adjusted to less than 20 mS and the pH to less 

than 5, remaining aggregates and impurities were removed by centrifugation and filtration 

prior to Ion exchange chromatogrphy. The sample was loaded onto the HiTrap SP 

Sepharose FF column (Amersham/ GE Healthcare, Uppsala, Sweden) with 50 mM NaAc 

pH 5.5. The CCL5 proteins were eluted at 1 mL/min using a linear gradient from 0-100% 

2 M NaCl and 1 mL fractions were collected. Met-CCL5 was directly processed to the 

polishing step, before the correct size was verified by SDS-PAGE and western blots or 

dot blot. The protein containing fractions were pooled, dialysed against 1% acetic acid 

and 0.1% TFA and lyophilized. For CCL5-40s, E66A and the wild type CCL5 followed 

by the cleavage of the MKKKWPR fusion construct.  
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Cleavage of the MKKKWPR leader 

First the Protein concentration was estimated then the protein solution was adjusted to a 

concentration of 1 mg/ml in 100 mM Tris-HCL (pH 8). Trypsin was added to the solution 

in a ratio of 1:250 enzyme to substrate, in detail 40 µg trypsin were added to 10 ml of the 

1mg/ml protein solution. The digestion mixture was incubated for 3 h at 37°C. The 

reaction was then stopped by inhibition of the trypsin with 1 mM PMSF for further 30 

min at 37°C. The cleaved product was separated by ion exchange chromatography. 

 

Ion exchange chromatography using the HiTrap SP FF™ column 

First the conductibility was adjusted to less than 20 mS and the pH to less than 5, 

remaining aggregates and impurities were removed by centrifugation and filtration. The 

sample was loaded onto the HiTrap SP Sepharose FF column with 50 mM NaAc pH 5.5 

and 6 M Urea. The CCL5 proteins were eluted at a flow rate of 1 mL/min using a linear 

gradient from 0-100% 2 M NaCl and 1 mL fractions were collected. The correct size was 

verified by SDS-PAGE and western blots or dot blot. The protein containing fractions 

were pooled, dialysed against 1% acetic acid and 0.1% TFA and lyophilized. 

 

Polishing by reverse phase HPLC using the Grace Vydac C-8 column 

The reverse phase HPLC was performed in the same way as already described in section 

II.6.1. Additionally the correct mass was verified by electrospray ionization mass 

spectrometry (ESI-MS). The activity was finally determined by chemotaxis assay with 

freshly isolated PBMCs as described in II.10.1. 

Activity control by transmigration assay 

If necessary, for the in vitro and in vivo assays like flow adhesion assay or chemotaxis or 

application into a mouse model, the activity was estimated by chemotaxis assay (II.10.1.) 

with freshly isolated PBMC from human peripheral blood (II.8.7). 
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II.7. BIOCHEMICAL ANALYSIS OF THE CCL5-CXCL4 HETERODIMER 

The biochemical analysis described in section II.7 were performed in the lab of Dr. Kevin 

Mayo (Department of Biochemistry, University of Minnesota) and Prof Dr. Andreas 

Kungl (Department of Pharmaceutical Chemistry, University of Graz).  

15N-1H HETERONUCLEAR SINGLE QUANTUM COHERENCE (HSQC) NUCLEAR 

MAGNETIC RESONANCE SPECTROSCOPY. 

In brief, the heterodimerization was characterized by the 15N-1H heteronuclear single 

quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy. 15N 

labeled CCL5 was dissolved at a concentration of 0.3 mM in 50 mM sodium phosphate 

buffer (95% H2O and 5% D2O pH 3.4.). Then CXC chemokine ligand 4 was added to the 

CCL5 solution the following NMR experiments were carried out at 40 °C on a Varian 

Unity Inova 600-MHz spectrometer equipped with an H/C/N triple-resonance probe and 

x/y/z triple-axis pulse field gradient unit. A gradient sensitivity-enhanced version of two-

dimensional 1H-15N HSQC was applied with 256 (t1) × 2048 (t2) complex data points in 

nitrogen and proton dimensions, respectively. Raw data were converted, processed and 

analyzed by using NMRPipe and NMRview. The chemical-shift differences were 

averaged according to equation 1 and assignments were made based on those reported for 

CCL5 [171, 172]: δNH = ((Δδ (1H))2 + 0.25(Δδ(15N))2)1/2. 

MOLECULAR DYNAMICS SIMULATIONS 

The NMR or x-ray structures of CCL5 and CXCL4 were taken from the Protein Data 

Bank, (1RTO for CCL5 and 1RHP for CXCL4). Heterodimers were built manually by 

replacing one monomer subunit in a homodimer with a monomer subunit from another 

homodimer using Insight-II software (Biosym Technologies Inc., San Diego, CA). 

Molecular dynamics simulations were performed for homodimers of CCL5, CXCL4 and 

CC-type and CXC type heterodimers of CCL5/CXCL4 using the c29b2 version of 

CHARMM33. A one nanosecond trajectory was simulated for each hetero- and 

homodimer. All dimers were simulated in a 74 x 68 x 63 Å3 explicitly solvated periodic 

box. To make the box neutral, Cl- ions were added. Simulations were carried out using the 

version 22 all-hydrogen force field with a dielectric constant of 1.0. Each simulation was 

initialized with 2000 steps of steepest descent minimization, followed by gradual heating 

to 300 K and 5000 steps of system equilibration. The temperature during simulations was 

maintained at 300 K. 
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DIFFERENTIAL SCANNING CALORIMETRY 

A high-sensitivity differential scanning calorimeter MicroCal VP-DSC (MicroCal, Inc., 

Northampton, USA) was used at a heating rate of 60 °C h–1. Cells were pressurized to 

about 28 psi to prevent loss of solvent by evaporation and the appearance of bubbles upon 

heating. Solvent buffer (PBS) was used to fill the reference cell and to obtain the 

instrumental baseline. Excess heat-capacity functions were obtained after baseline 

adjustment and normalization to protein concentration (CCL5-CXCL4 0.5 mg each). The 

heat capacity profiles were fitted applying a non-two-state model using MicroCal`s 

Origin software resulting in calorimetric (ΔHcal) and van`t Hoff (ΔHv) enthalpy values. 

Temperature of protein unfolding (Tunfold) is taken as temperature of maximum heat 

capacity. Subsequent cooling and heating scans at 60°C h–1 were performed to gain 

information on the reversibility of protein unfolding. 

II.8. FUNCTIONAL ANALYSIS OF MKEY IN COMPARISON TO MET-CCL5 

The following experiment was performed by Dr. Alma Zernecke.  

Apolipoprotein E deficient (Apoe–/–) mice were fed a high fat diet for 12 weeks. 

Additionally sMKEY, MKEY or Met-RANTES (50 mg each) was injected 

intraperitoneally 48 and 3 h before the assay. The adhesion of circulating monocytes 

labeled with rhodamine-6G in carotid arteries was then visualized and quantified in 

multiple high-power fields (at least six fields, 200x magnification) using epifluorescence 

microscopy (Zeiss Axiotech). 

II.9. CELL CULTURE 

II.9.1. GENERAL 

Cells were maintained in exponential growth in TS-25, TS-75 or TS-175(Greiner Bio-

one, Frickenhausen, Germany) in a humidified 5% CO2 atmosphere incubator at 37°C. 

All media and solutions used for cell culture were from Gibco (Gibco/Invitrogen, 

Karlsruhe, Germany) or PAA (Pasching, Austria) if not stated otherwise and purchased 

sterile or sterilized through a 0.22 μm filter. The PCR mycoplasma detection Kit 

(TAKARA, Otsu, Japan) was regulatory used for detection of contamination of the cell 

lines with mycoplasma. 
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II.9.2. CELL LINES 

Primary cells  Origin  Source  Medium 

HAoEC Human aortic 

endothelial cells 

PromoCell  

(Heidelberg, Germany) 

Endothelial Growth 

medium MV 

THP-1 cells Human leukemia 

monocytic cells 

American Type Culture 

Collection (ATCC® 

TIB202) 

RPMI1640 

Medium + 10%, 2mM 

glutamine 

50 μM β-

mercaptoethanol 

L1.2 cells Murine pre-B 

lymphoma cells 

a kind gift from Dr. M. 

Locati (University of 

Milano Italy) 

RPMI 1640 + 10% 

FCS,1 mM pyruvate, 50 

μM β-mercaptoethanol, 

10 mM HEPES 

HEK293  human embryonic 

kidney cells   

ATCC CRL 1573, 

(Manassas, USA) 

DMEM + 10% FCS 

SVEC Simian virus 
transduced mouse 
endothelial cells 

ATCC CRL-2181 

(Manassas, USA) 

DMEM + 10% FCS or 
DMEM + 5% FCS  

 

II.9.3. CULTURING OF ADHERENT CELL MONOLAYERS 

Adherent cell lines were grown until confluence and then passaged by using the cell 

detachment solution Accutase™. The monolayer was first washed with phosphate 

buffered saline (PBS) (PAA, Pasching, Austria) and then incubated 5-10 min with 0.25% 

(v/v) Accutase™ at 37°C. After detachment of the monolayer, Accutase™ was 

inactivated by the addition of medium. For subculturing, cells were harvested by 

centrifugation (5 min, 200 g, at room temperature) and then split with a ratio of 1:3. 

II.9.4. CULTURING OF CELLS IN SUSPENSION 

Cells growing in suspension were cultured at a density of 105 - 106 cells/mL. Cells were 

harvested by centrifugation (5 min, 200 g, rt) and passaged with a ratio of 1:3-1:5. 
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II.9.5. FREEZING AND THAWING OF CELLS 

Freeze stocks of cell lines were stored in 1.8 mL cryovials in liquid nitrogen. Cells were 

first harvested and then resuspended at a concentration of 106 - 107 cells/mL in complete 

medium containing 10% (v/v) dimethylsulfoxide (DMSO). The cryovials were placed 

overnight (o.n.) at -80°C in a cryocontainer to assure slow cooling and then transferred to 

liquid nitrogen for long-term storage. For thawing of cells, cryovials were rapidly thawed 

in a 37°C water bath. 5 mL warm corresponding growth were slowly added to the cells 

medium, centrifuged and resuspended again in growth medium. 

II.9.6. TRANSFECTION OF EUKARYOTIC CELLS 

TRANSIENT TRANSFECTION OF HEK-293 CELLS 

HEK-293 cells were transient transfected with hCCR1-Myc, hCCR5-HA or hCCR1_5E3-

Myc or hCCR5_1E3-HA. Cells were grown until the cells reached 50-80% confluence, 

depending on the subsequent application. Serum free medium (OptiMEM, Life 

technologies) was mixed with the DNA, then the investigated amount of FugeneHD was 

carefully added, after 5 min incubation at rt the mixture was added to the cells in a drop 

wise manner. The optimal ratio of transfection reagent to DNA calculated was 3:1. After 

24h the medium was carefully exchanged.  

STABLE TRANSFECTION OF L1.2 AND HEK-293 CELLS 

HEK-293 cells were stably transfected with liposomes (FugeneHD, Promega) to express 

hCCR1, hCCR5 and the CCR1/CCR5 chimeras described in Table.III.4.12. and more 

precisely in the supplement (V.III.). The same procedure as the transient transfection was 

applied with the difference that the cells were grown until they reached 80% confluence. 

After 48h the normal medium was exchanged against normal medium supplemented with 

800 µg/ml G418 sulfate for the selection of transfected cells. The selection medium was 

changed every two days for 2-3 weeks. After this period the cells were rinsed off with 

accutase, transferred to a 96 well plate in a dilution of approximately one cell per well 

and grown until the cells reached a visible density.  

 

Murine pre-B lymphoma L1.2 cells were transfected by nucleofection using the Amaxa 

NucleofectorTM kit V and an Amaxa II Nucleofector™ System (Lonza AG, Visp, 

Switzerland). Briefly, 2 × 106 cells were resuspended in 100 μl of nucleofection solution, 
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and after addition of 2 μg of the indicated expression vector, the cells were immediately 

pulsed using the U-15 program. 48h after transfection the cells were transferred into the 

selection medium, normal medium supplemented with 600 µg/ml neomycin (G481) and 

cultivated like described above for the HEK293 cells. Afterwards the transfected cells 

were diluted to a 96well round bottom plate with about one cell per well (compare HEK-

293 cells above). Furthermore, the expression was enhanced by the addition of sodium 

butyrate (sigma-aldrich) for 12h directly after transfection or to re-induce the expression 

weeks after the transfection. Finally cell selection according to the highest surface 

expression, for L1.2 and HEK-293 cells, was determined by flow cytometry II.5.7.  

II.9.7. ISOLATION OF PBMC 

Human peripheral blood was supplied by healthy donors from the lab. PBMC were 

isolated from venous blood of healthy donors by Ficoll-hypaque density gradient 

centrifugation. After dextran sedimentation, the plasma supernatant was carefully 

overlayed on Biocoll separating solution, density 1.077 g/ml (Biochrom, Berlin, 

Germany) and centrifuged (20 min, 450 g, RT, without brake). The PBMC interface layer 

was harvested, diluted in PBS and centrifuged (5 min, 400 g, RT). The mononuclear cells 

were washed twice with PBS, and the number of viable cells was determined by trypan 

blue exclusion. 

II.9.8. ISOLATION OF NEUTROPHILS AND MONOCYTES FROM MOUSE BONE 

MARROW 

Primary monocytes and neutrophils of ST3G4+/+ and ST3G4-/- mice were isolated with 

cell separation kits from Miltenyi Biotec according to the manufacture’s protocol. For 

monocytes we used the ‘CD115 MicroBead Kit’, for neutrophils the ‘Neutrophil Isolation 

Kit, mouse’. Both cells types were isolated from mouse bone marrow and further 

processed for flow chamber adhesion assays. 

 

 

 

 



Material and Methods 

49 
 

II.10.   FUNCTIONAL ASSAYS 

II.10.1. TRANSMIGRATION ASSAY 

Chemotaxis of HEK-293 cells stably expressing CCR1, CCR5 or CCR1/CCR5 

chimeras 

The Costar TranswellTM system (5.0-µm pore size) (Corning Glass, Corning, NY) was 

used to quantify the migration of HEK-293 cells stably expressing CCR1, CCR5 or 

CCR1/CCR5 chimeras towards CCL5 and the CCL5_40s and CCL5_50s mutants (100 

ng/ml). After 4 h, the inserts were removed and the number of migrated cells in the lower 

well was counted for 1 min using the high throughput loader on a Becton Dickinson 

FACSCantoII (BD Biosciences, San Jose, CA, USA) with the gates set to acquire the 

cells of interest. 

Chemotaxis using PMBC, to control the activity of the purified CCL5 

To control the activity of the purified CCL5 and the variants used in functional assays, the 

number of freshly isolated PMBCs (II.9.7) migrated towards the purified proteins, in the 

case of CCL5 towards different concentrations (50, 100 and 150 ng/ml) and for Met-

CCL5 a comparison to CCL5 and application together with CCL5, was estimated also 

employing a Costar TranswellTM system (5.0-µm pore size).  

II.10.2. PARALLEL PLATE FLOW CHAMBER ADHESION ASSAY 

Adhesion of CCR1-, CCR5- and chimera-transfected L1.2 cells 

Adhesion of stably transfected L1.2 cells, labeled with calcein (Life technologies) to a 

mouse tumor necrosis factor (TNF) α-activated (10 ng/mL, 4 hours) monolayer of SV40-

immortalized mouse endothelial cells (SVEC, ATCC CRL-2181) was analyzed in a 

parallel wall chamber under laminar flow conditions (0.1 ml/min, 1.5 dynes/cm2).  

The L1.2 transfectants were activated with H2O (control), CCL5 and mutants (500 

ng/ml) or/and CXCL4 (500 ng/ml) at 37 °C 10 min prior to perfusion. During 

perfusion, stably adherent cells were counted in at least ten random microscopic fields 

using microscopic video imaging [173].  

Adhesion of THP-1 cells to TNFα activated HAoEC 

Adhesion of human acute monocytic leukemia cell line (THP-1, ATCC TIB-202) to 

Human Aortic Endothelial Cells (HAoEC) activated with human TNFα (10 ng/mL, 4 
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hours) directly stimulated with CCL5 (500 ng/ml) or/and CXCL4 (500 ng/ml) was 

determined under the same conditions as used above. THP cells were pretreated with 

pertussis toxin (PTX, 100 ng/ml, 30min, 37°C, Sigma-Aldrich) or left untreated. Stable 

cell arrest was assessed in the presence or absence of either the CCR5 antagonist 

DAPTA (10 nM) or J113863 antagonizing CCR1/CCR3 (10 nM) or SB297006 a 

selective CCR3 (80 nM) antagonist (Tocris Bioscience Bristol, UK). 

Adhesion of neutrophils and monocytes isolated from ST3Gal-IV-/- and 

ST3Gal-IV+/+ 

Monocytes and neutrophils isolated from ST3Gal-IV+/+ and ST3Gal-IV-/- mice (II.9.8) 

(stained with calcein, vide supra) were perfused over TNF activated (20 ng, 4 h) SVEC 

monolayers. The number of stably adherent cells was determined in at least ten random 

microscopic fields. Ccl5 (5 μg) was either deposited on the endothelial cell monolayer 10 

min prior to perfusion or the leukocytes were pre-treated with the murine Ccl5 (5ug, 10 

min) in suspension.  

II.10.3. IMMUNOFLUORESCENCE 

The wild type HEK293 cells were seeded on round glass cover slides coated with 

polylysine the day before transfection with pcDNA3.1-CCR1-Myc, pcDNA3.1-CCR5-

HA or pcDNA4–CCR1_5E3-Myc or pcDNA3.1-CCR5_1E3-HA. Liposomal transfection 

was carried out after cells reached 60-70% confluence, subsequently the cells were 

incubated for 48h at 37° and 5% CO2 (II.9.6). All following steps were carried out at 

room temperature. Cells were fixed in 2% (w/v) paraformaldehyde-PBS for 15 min and 

then permeabilized in 0.2% (v/v) saponin diluted in PBS for 25 min. After blockage with 

1% BSA (v/v) in PBS the cells were sequentially stained with 20 µg/ml anti-Myc-

fluorescein isothiocyanate (II.2.1.) and anti-HA Alexa Fluor® 594-conjugated mAb 

(II.2.1.) at a concentration of 50 µg/ml. Finally the cells were counterstained with 4',6-

Diamidino-2-phenylindol (DAPI) (Life Technologies). The cover slides were then 

mounted on a microscope slide. The cell proteins were visualized using a two-photon 

microscope (Leica SP5II MP, Mannheim, Germany) set to confocal mode as previously 

described [174].  
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II.10.4. CO-IMMUNOPRECIPITATION 

HEK293 cells were transiently transfected with pcDNA4.1-CCR1-Myc, pcDNA3.1-

CCR5-HA or pcDNA4–CCR1_5E3-Myc or pcDNA3.1-CCR5_1E3-HA 48h before 

the experiment (II.9.6). For pull down of the CCR1/CCR5 receptor complexes the 

transfected as well as untransfected HEK cells were lysed in non-denaturing lysis 

buffer to a final concentration of 5×106 cells/ml o.n. at 4°C. At the same time, the 

10µg of the appropriate antibodies, αHA -Tag (C29F4) or respectively αMyc-Tag 

(71D10) (II.2.1.) were bound to Dynabeads® protein G beads (life technologies, 

Darmstadt, Germany), incubated for 10 min at rt gently shaking. Supernatants were 

then incubated with the antibody coated protein G beads for 60 min at rt. Proteins were 

analyzed by western blot using antibodies to the Myc-Tag and the HA-Tag directly 

conjugated to HRP (II.2.1.). 

Non-denaturing lysis buffer: 1% (w/v) Triton X-100 

 1% (w/v) (CHAPSO) (Calbiochem) 

 50 mM Tris-HCl (pH 7.4) 

 100 mM NaCl 

 15 mM EGTA 

 supplemented with a proteinase inhibitor 
cocktail (Complete Mini, Roche, Mannheim, 
Germany) 

II.10.5. CALCIUM MOBILIZATION ASSAY 

The activation of cells due chemokine/GPCR interaction causes a rapid influx of Ca2+ and 

the release of Ca2+ from the endoplasmic reticulum. This calcium mobilization can be 

visualized by the fluorophore Fura-2. Fura-2 AM (Molecular Probes, Eugene, OR, USA) 

is a calcium indicator, which can be loaded into cells. Upon binding to cytosolic Ca2+ the 

extinction maximum shifts from 380 nm for the calcium free Fura-2 to 340 nm. The 

calcium signal is given as the ΔF340 nm/F380 nm. Briefly, neutrophils isolated from the 

ST3Gal-IV-/- mice were suspended at a concentration of 5x105 cells per ml in RPMI 

without indicator (PAA) supplemented with 0.5 % BSA. Then cells were loaded with 2 

µg/ml Fura-2 AM for 15 min at 37°C, washed carefully with prewarmed RPMI + BSA 

and stored until the measurement at 37°C. Calcium measurement was performed using a 

LS 55 Fluorescence Spectrometer (PerkinElmer, USA).  
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II.10.6. BINDING ASSAY 

Whole blood obtained from the retro-orbital plexus of either ST3Gal-IV-/- or ST3Gal-

IV+/+ mice was EDTA-buffered and subjected to red-blood-cell lysis (Pharmlyse BD 

Biosciences) were incubated with an antibody cocktail containing CD45-APC-Cy7, 

CD115-PE, Gr1-PerCp, CD11b-efluor 450 and Ly6G-FITC. After washing, 0.5 µg 

murine Ccl5 (Peprotech) was added to each sample (5x105 cells) and incubated for 10 

min on ice, cells were washed again and stained on ice with an anti-Rantes Biotin-Strep-

PE-Cy7 antibody, which had been Streptavidin-PE-Cy7 labeled and washed a priori. 

Cells incubated with the anti-Rantes Biotin-Strep-PE-Cy7 antibody alone served as a 

control. The binding of CCL5 was determined by measuring the fluocrescence intensity 

by FACS (II.5.7) with the gate set on the cells of interest and results were analyzed by 

FlowJo software. 

II.11. DATA ILLUSTRATION AND STATISTICAL ANALYSIS 

Data in section III.4 “Establishing the role of the extracellular domains of CCR1 and 

CCR5 in CCL5 mediated cell recruitment.” are expressed as mean + standard error of the 

mean. The number of independent experiments was 5 or, if deviating, indicated in each 

figure legend. The differences in the means of the four groups of the functional 

experiments were calculated by 1- or 2-way ANOVA using GraphPad Prism version 5.04 

for Windows (GraphPad Software, La Jolla, CA, www.graphpad.com). The comparison 

of all pairs was done by the Newman-Keuls or Bonferroni tests, where applicable. A P-

value below 0.05 was considered statistically significant. The data in section III.5. are 

expressed as mean ± SD error of the mean. The number of independent experiments was 

5, deviating are indicated in the figure legend. 1-way ANOVA with Tukey's Multiple 

Comparison test.  
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III.  RESULTS 

In the following section the results obtained throughout this thesis will be displayed and 

explained. For a better overview of the result section the following flow chart outlines the 

experimental setup for each project. 

Fig.I.7. Flow scheme, briefly summarizing the contents of this work 

How do CCL5 and CXCL4 
form heterodimers?  

 Which extracellular 
domains of CCR1 and 
CCR5 are involved in the 
functional specification? 
 

 Does the sialyltransferase 
ST3Gal-IV influence the 
CCL5 mediated cell 
recruitment? 

Recombinant expression and 
purification of 15N enriched 
CCL5. 
 

 Expression and purification 
of CCL5 and CCL5 mutants. 
 
Construction of 
CCR1/CCR5 chimeric 
receptors and stably 
transfection.  
 
Laminar flow adhesion and 
transmigration assay 
employing CCL5 or 
CCL5/CXCL4 or different 
CCL5 mutants. 
 

  
Binding of CCL5 to 
leukocytes isolated from 
ST3Gal-IV deficient mice. 
 
 
Laminar flow adhesion of 
isolated leukocytes. 
 
 
Calcium mobilization 

Does the small inhibitor 
MKEY function in vivo 
compared to Met-CCL5? 
 
Cloning, expression and 
purification of Met-CCL5. 

 
  Do CCR1 and CCR5 form 

heteromers and is this 
involved in the 
CCL5/CXCL4 mediated 
cell arrest? 
 

  

 
 Laminar flow adhesion assay 

with THP-1 cells in the 
presence of specific CCR1 
or CCR5 antagonists. 
 
Co-immunoprecipitation and 
co-localization of CCR1 and 
CCR5. 

  

 

 

 

 

 



                                                                                                                                                                Results 

54 
 

III.1. PROTEIN EXPRESSION AND PURIFICATION 

(A)                                                                        (B) 

 
Fig.III.1.1. Flow chart of CCL5 purification strategies. 
(A) procedure using gel-filtration, affinity chromatography and ion exchange chromatography for CCL5 
purification (B) procedure using exclusively ion exchange chromatography to purify CCL5, Met-CCL5, 
CCL5_40S and CCL5_E66A. 
 

In this section the results for the expression and purification of CCL5 along with the three 

others (Met-CCL5, CCL5-40s and CCL5-E66A) will be displayed and described. Since 

results obtained here (e.g. chromatograms) are similar, representative images for each 

step are shown. 

To characterize the CXCL4 and CCL5 interaction and to develop a 3-dimensional model 

by NMR (nuclear magnetic resonance) spectroscopy, CCL5 had to be labeled with the 

stable isotope 15N, which considerably increases the resolution and sensitivity of the 

NMR spectra, hence the cells were grown in 15N-enriched media. For the use in 

functional assays, like chemotaxis, parallel flow chamber assay or application into mice 

CCL5 and the variants Met-CCL5, CCL5-40s and CCL5-E66A were cultivated in normal 
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LB medium. In many cases and several E. coli host systems, recombinant expressed 

proteins accumulate intracellularly in insoluble aggregates, the so-called inclusion bodies, 

which are the “starting material” for both purification strategies. In inclusion bodies the 

proteins are mostly inactive and denaturated and in addition dimers or multimers may be 

present. Beside the resultant necessity to first solubilize and secondly to refold the protein 

in vitro to gain the biological active form, the expression in inclusion bodies can be 

advantageous: the recombinant protein can make up to 50% or even more of the total 

cellular protein and the inclusion bodies often contain almost exclusively the 

overexpressed protein. Furthermore, inclusion bodies protect the protein from proteolytic 

degradation. Different fusion tags can be used to facilitate the protein purification, N15 

labeled CCL5 was expressed fused to a thioredoxin leader, from a pET-32a(+), which is 

supposed to increase the amount of soluble active protein accumulating in cytoplasm 

[170]. This, however, can only be achieved when the expression rate is limited and when 

using host strains that are permissive for the formation of disulfide bonds in the 

cytoplasm. Otherwise, like it is the case here, the overexpressed target protein will 

accumulate in inclusion bodies. The other constructs, based on pET-26b(+) or pET-

24a(+), for the expression of CCL5, Met-CCL5, CCL5-40s and CCL5_E66A are all N-

terminal fused to a small hexapeptide leader sequence MKKKWPR, which provide a 

cleavable basic leader and reduces mRNA secondary structure, improving the expression 

and facilitating purification. Two slightly different purification protocols have been used, 

the first one (see flow scheme III.1.1) uses in a first step gel-filtration as an initial 

purification step (A), to capture the inclusion bodies. The protocol depict under II.5.1 (B) 

directly processed the denaturated proteins to ion exchange chromatography, the 

beneficial feature of this protocol is a reduced expenditure of time. The inclusion bodies 

were purified from the bacterial lysate as described in section II.6.2 for protocol (A). Also 

for the second protocol (B) the inclusion bodies were purified (III.1.1.) but compared to 

the first protocol more intensively since the first capture step, where crude impurities are 

removed, is omitted.  
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III.1.1. EXPRESSION AND PURIFICATION OF RECOMBINANT CCL5, 
PROTOCOL A 

Following protocol A, pre-cleaned inclusion bodies were denatured in 50 mM Tris pH 8 

containing 6 M guanidine-HCl and 1 mM DTT, the resulting solution was applied in 4-5 

sequential steps onto the gel filtration column Sephacryl 200 HR (II.6.2) using a flow rate 

of 1 mL/min and 2.5 mL fractions were collected (Fig.III.1.2). The first opalescent 

fractions were discarded, all following fractions were pooled and subsequently processed 

to the refolding. Therefore the pre-cleaned proteins were at first 6-fold diluted in 50 mM 

Tris pH 8 buffer supplemented with the redox additives cysteine (1 mM) and cystine (8 

mM), the refolding reaction was run over night at 4°C gently stirring. 

 

 

Fig.III.1.1: Gel filtration chromatogram of 15N-CCL5 using a Sephacryl S-200HR column.  

The CCL5 fusion protein or Met-CCL5 was loaded in several successively steps with 6 M Guanidine-HCl; 
50 mM Tris; pH 8; 1 mM DTT onto the column. 5 mL fractions were collected and processed to the next 
purification step. 
 
The next purification step is based on the ability of the thioredoxin tag to bind Ni2+ ions, 

an immobilized metal affinity chromatography (IMAC) chromatography employing 

HiTrap Ni2+ chelating column (Fig. III.1.3), was used here. The refolded fusion protein 

was again loaded in sequential steps of 2 ml onto the column and eluted with 250 mM 

imidazole (II.6.2). All protein containing fractions were pooled and dialyzed against 20 

mM Tris pH 8 overnight at 4°C. 
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Fig.III.1.2: Affinity chromatography of the thioredoxin-CCL5 fusion protein using the HiTrap Ni2+ 
chelating column. 
As binding buffer 20 mM Tris pH 8; 2 M Urea was used. Bound proteins were eluted with the same buffer 
supplemented with 250 mM imidazole at 1mL/min. 2 mL fractions were collected and used for further 
purification. 

To prepare the obtained fusion protein for cleavage of the thioredoxin tag, at first the 

buffer was exchanged by dialysis and then the volume of the solution was decreased 

using a Macrosep® concentration tube. Subsequently the thioredoxin tag was removed by 

digestion with enterokinase (1 U/ 50 µg CCL5) for 16 hours at room temperature. The 

thioredoxin free 15N-CCL5 forms an insoluble hetero-aggregate with the 15N-CCL5-

thioredoxin fusionprotein, these aggregates were pelleted for 30 min at 25,000 g and 

redissolved in a buffer containing 8 M Urea and 20 mM Tris pH 7.5. The remaining 

thioredoxin CCL5 fusion protein was separated from the cleaved CCL5 employing ion 

exchange chromatography, using a MonoS™ column (II.6.2). To prevent aggregation and 

to facilitate the binding of the cleaved CCL5 to the column resin, the pH was set to 5.5. 

Meanwhile the column was equilibrated with a buffer composed of 50 mM sodium 

acetate (pH 5.5) containing 6 M urea. The bound protein was eluted with a linear 0-1 M 

NaCl gradient (Fig.III.1.3.-A). The fraction containing the cleaved CCL5 were pooled 

and dialyzed against acetic acid and 0.1% TFA for the final polishing. In case the 

cleavage was not sufficient, like shown in the chromatogram on the right (Fig.III.1.3.-B), 

all fractions in the peak area were collected, again dialysed against 20 mM Tris pH 8 

overnight at 4°C, concentrated and again digested with enterokinase (vide supra). 
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A                                                                                       B 

 

Fig.III.1.3: FPLC chromatogram using the Mono S™. To separate the thioredoxin-CCL5 fusion protein, 
first peak (fraction A10-A13), from the cleaved CCL5 second peak (fraction A14+A15) a ion exchange 
chromatography was performed, using a Mono S™ column with 50 mM NaAc; pH 5.5, 6 M Urea as 
binding buffer. CCL5 was eluted through increased ion concentration, by adding NaCl to the binding 
buffer. The chromatogram on the left site depicts a “good” enterokinase digestion, in contrast to the 
digestion in the right chromatogram, which was less efficient, only the second peak (B15) contains pure 
CCL5. 
 
Followed by the final polishing by the reverse phase HPLC, which is able to separate 

proteins with a very high resolution and therefore capable to remove incorrectly folded 

proteins or other impurities, like LPS. Since this step is the same for both purification 

protocols, it is only described once at the end of this section. 

III.1.2. EXPRESSION AND PURIFICATION OF RECOMBINANT CCL5 AND 

CCL5 VARIANTS, PROTOCOL B 

The second protocol (B) is shorter compared to the first protocol but achieved equal 

yields. The first capture step, as already mentioned, was excluded, therefore the purity of 

the inclusion bodies was even more important for a satisfactory further purification. Met-

CCL5, CCL5, CCL5-40s and CCL5-E66A were all expressed in inclusion bodies. To be 

able to proceed with the inclusion bodies directly to the ion exchange chromatography 

intensive washing is required to remove the crude impurities. Then the inclusion bodies 

were dissolved in 50 mM Tris pH 8 and solubilized by the addition of 6 M Gnd-HCl and 

1 mM DTT followed by dialysis against 1% acetic acid overnight at 4°C. Contaminants, 

like proteins (e.g. proteases) that adsorbed onto the hydrophobic inclusion bodies were 

precipitated during dialysis. The precipitated contaminants were then separated by 

centrifugation. To prepare the inclusion bodies for the ion exchange chromatography the 

supernatant was at first lyophilized then dissolved and at once denaturated in 6 M Gnd-

HCl and 1 mM DTT. For renaturation, the protein containing mixture was diluted 10x in 

50 mM Tris pH8 supplemented with the redox additives 0.01 mM oxidized glutathion and 
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0.1 mM reduced glutathion following stirring o.n. at 4°C. After centrifugation, adjustment 

of the conductibility to less than 20 mS and to a pH lower than 5 the protein solution was 

loaded onto the HiTrap SP FF column. CCL5 and the CCL5 variants were eluted by a 

linear 2 M NaCl gradient from 0-100%, fractions of 1 ml were collected and controlled by 

dot blot (Fig.III.1.4.). 

 

 
 
Fig.III.1.4. Ion exchange chromatography using a HiTrap SP FF column.  
CCL5 and its variants were bound to the column with 50 mM NaAc pH 5.5 and eluted by the addition of 
2M NaCl. The positive fractions (B13-B9), as determined by dot blot (II.5.6), were combined for further 
purification, cleavage of the MKKKWPR leader of CCL5, CCL5-40s and CCL5-E66A and Met-CCL5 
polishing by HPLC. The first peak contains mainly glutathion. 
 
Met-CCL5 was now directly processed to the polishing step employing the HPLC. CCL5, 

CCL5-40s and CCL5-E66A need to be liberated from the MKKKWPR leader. The 

positive fractions were pooled, extensively dialysed and lyophilized. Afterwards the 

protein was dissolved again in 50 mM Tris-HCl (pH8), with a concentration set to 

1mg/ml. The MKKKWPR leader was cleaved by the addition of trypsin. Since CCL5 

contains more than one trypsin cleavage site it is very important to stop the digestion after 

3h of incubation at 37°C by the addition of protease inhibitors. The mixture was then 

prepared as described before (first ion exchange chromatography) and loaded onto the 

column with a buffer containing 50 mM NaAc pH 5.5 and 6 M Urea. The CCL5 proteins 

were eluted using a linear NaCl gradient, 1 mL fractions were collected. The collected 

fractions were controlled by dot blot or as shown here by coomassie blue staining 

following SDS-PAGE (Fig.III.1.5).  
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Fig.III.1.5. Ion exchange chromatography to separate the MKKKWPR leader free CCL5.  
To separate the pure CCL5 from the cleaved leader the reaction mixture was bound to the HiTrap SP FF 
column in the presence of 50 mM NaAc (pH 5.5) and 6 M Urea. The eluted fractions were collected and 
controlled by SDS-Page followed by coomassie blue staining. The second peak (A15-B14) contains protein 
with the appropriate size (8kDa). The positive fractions were collected and prepared for the final polishing 
step.  
 
The final polishing by reverse phase HPLC is the step with the highest resolution, capable 

to remove incorrectly folded proteins or other impurities, like LPS. This is in particular 

important when the purified protein is used in an animal model, because LPS 

contaminations can trigger an undesirable immune response. After buffer exchange by 

dialysis against 0.1% TFA, the protein solution was loaded on the column with 1 mL/ min 

flow rate and recovered with the organic solvent acetonitril (90%) in 0.1% TFA using a 0-

67% gradient (II.6.2.- 6.3.) 

 

 

 

 

 

 
Fig.III.1.6. Reverse phase chromatography applying the high performance liquid chromatography 
(HPLC) using a preparative Grace Vydac C-8 column.  
The fractions in the peak area were manually collected and analyzed by western blot following SDS-PAGE. 
The fraction at a retention time of 25min was first dialyzed to further control purity and functionality.  
 

All peaks obtained from the HPLC run were collected and lyophilized to remove the TFA 

and acetonitril traces and dissolved in ultra pure H2O (Fig.III.1.6.). The purity and correct 

1 2

1 2
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size was further validated by SDS-PAGE followed by silver gel staining and by mass 

spectrometry (Fig.III.1.7.).  

 

Fig.III.1.7 Validation of the correct size and purity of Met-CCL5, CCL5 and CCL5-40s and E66A. 
Purity and correct size was controlled by silver gel staining following a SDS-PAGE (II.5.2., II.5.4.). The 
correct mass was determined by mass spectrometry, electro spray ionization, left panel before Trypsin 
digestion, right panel after trypsination with an estimated mass of 8807.29. 
 
To absolutely make sure that the purified protein is correctly folded and functional it is 

indispensable to control the activity, especially important for the use in in vivo cell 

adhesion (II.8.) or in vitro recruitment (II.10.1.) or parallel flow chamber assays (II.10.2.). 

Therefore the chemotactic activity of the purified proteins was measured using freshly 

isolated PBMCs from human peripheral blood (II.9.7.). Chemotaxis was investigated in 

TranswellTM migration assays (II.10.1.). For CCL5 different concentrations (50-150 

ng/ml) were tested compared to medium control (Fig.III.1.8.-A). For Met-CCL5 the 

inhibitory effect was determined in comparison to a medium control and to CCL5 or 

CCL5 together with Met-CCL5 (all 100 ng/ml) (Fig.III.1.8.-B). If not used directly the 

purified proteins were extensively dialyzed against 1% acetic acid and 0.1% TFA, 

lyophilized and the protein powder was stored at -20°C or -80°C. The lyophilized CCL5 

was always diluted first in water and, if necessary, by the addition of acetic acid to enable 

the protein to dissolve completely.  
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  A                                                        B 

 
Fig.III.1.8. Chemotaxis assay to determine the activity of the purified CCL5 and variants. 
PBMCs from human peripheral blood were used in a chemotaxis assay using Costar TranswellTM system 
(5.0-µm pore size) as described in section II.10.1. Cells were counted by FACS with the gate set on the 
cells of interest.  

III.2. NMR CHEMICAL SHIFT MAPPING OF CCL5-CXCL4 HETERODIMER 

Based on the observation that CXL4 accelerates primordial CCL5-mediated function and 

since this synergy could be explained by the formation of heterodimers, we wanted to 

clarify the structural basis of this interaction. The heterodimerization was characterized 

by the 15N-1H heteronuclear single quantum coherence (HSQC) nuclear magnetic 

resonance (NMR) technique in the lab of Dr. Kevin Mayo (Department of Biochemistry, 

University of Minnesota). With this method it is possible to determine chemical shifts of 

amino acids that are involved in the interaction of CXCL4 with CCL5. Titration of 

CXCL4 into a uniform 15N-labeled CCL5 solution caused a chemical-shift change and a 

decrease in CCL5 monomer signal intensities, coherent with the estimated interaction of 

CCL5 and CXCL4 (Fig.III.2.1.). The maximal 15N-1H chemical shift changes during 

heterodimer formation were observed in the N-terminal residues which indicated a CC-

type rather than a CXC-type interaction. The latter was further substantiated by only 

minimal chemical shift changes detected in the residues in the first β-strand of CCL5 

known to be involved in the CXC-type dimer formation. 
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Fig.III.2.1: Biophysical characterization of CCL5-CXCL4 interaction. A HSQC spectrum of 15N-CCL5 
in the absence (gray cross-peaks) or presence (blue cross-peaks) of CXCL4 (molar ratio 1:1) with numbers 
indicating the respective CCL5 aa residues. Inset: Region from the HSQC spectrum of 15N-CCL5, 
exemplifying chemical shift changes caused by the addition of CXCL4 at the molar ratio of 1:16 [98]. B. 
Chemical shift perturbations analysis. Changes in chemical shift of 15N-CCL5 backbone amides in ppm. 
caused by the addition of CXCL4 (molar ratio, 1:2). Bottom, schematic representation of the estimated 
CCL5 secondary structure; black boxes and the wavy line, β-strands and a α-helix, respectively [98]. 
 

The CC-type heterodimerization was confirmed molecular dynamics simulations on 

docked CC-type and CXC-type CCL5-CXCL4 heterodimers revealed a more 

thermodynamically favorable CC-type heterodimer conformation, as shown in the 

Fig.III.2.2 A for the calculated free energies. Based on the molecular dynamics simulation 

a structure of the CCL5-CXCL4 heteromer could be calculated (Fig.III.2.3 A). The N-

terminal residues of CCL5 (3-6 aa) were shown to be in close proximity to the N-terminal 

residues of CXCL4 (7-10 aa). In the presence of CXCL4 these residues of CCL5 

displayed the greatest chemical shift changes, in particular at high concentrations of 

CXCL4 (Fig.III.2.1 inset). The highly negatively charged residues of the N-terminal 

domain of CXCL4 were shown to cross the first and second loop of CCL5, characterized 

by a positive net charge (Fig.III.2.3 A). The chemical shift changes within the first and 

second loop of CCL5 affect the amino acids 21 to 24 and 44 to 46 (Fig.III.2.2). In line 

with chemical shift changes observed in residues 60 and 62, the N-terminus of CXCL4 is 

proximal to the C-terminus helix of CCL5. Differential scanning calorimetry indicated 

that CCL5-CXCL4 heterodimers are stable at temperatures up to 65°C (Fig.III.2.3 B).  
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Fig.III.2.2: Structural model of the CCL5-CXCL4 heterodimer. (A) The most prominently involved 
residues are shown in red (CXCL4) and black (CCL5). The negatively charged N-terminus of CXCL4 
extends over the net positively charged first and second loops of CCL5. (B) Differential scanning 
calorimeter analysis of the heteromer. Solvent-normalized heat capacity curves as a function of temperature 
obtained by heating of CCL5-CXCL4 complex in PBS. Black and red curves represent two separate 
experiments with calculated melting temperatures of CCL5-CXCL4 of 76 °C [98]. 
 

III.3. FUNCTIONAL ACTIVITY OF MKEY IN COMPARISON TO MET-CCL5 

Within the scope of the present study, small peptide antagonists to prevent the CCL5 

CXCL4 heterodimer formation have been designed and synthesized. They are termed 

“CKEY2” and a mouse orthologue “MKEY” and are composed of the aa residues 25–44 

found in the 1 and 2 β-strands of the native CCL5 and two cysteines at the N- and C- 

terminus, forming disulfide-bridges to obtain a cyclic structure, generating a β-hairpin-

like structure. 15N-1H HSQC chemical-shift mapping revealed that CKEY2 interacts with 
15N-CCL5 in a similar pattern than CXCL4 (data not shown), particularly with the N-

terminus of CCL5. Besides the biochemical analysis of the inhibitory potential of CKEY2 

on the CCL5-CXCL4 heterodimer formation its pharmacological properties were 

estimated by intravital microscopy to visualize (II.8.) the recruitment of rhodamine-

labeled leukocytes in carotid arteries of high-fat diet-fed hyperlipidemic mice (Apoe–/–). 

Compared with scrambled MKEY (sMKEY), pretreatment of mice with MKEY markedly 

reduced leukocyte arrest on activated endothelium, which is depended on CCL5 receptor 

ligands, as evidenced by its inhibition with Met-RANTES.  
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Establishing the role of the extracellular domains of CCR1 and CCR5 in CCL5 mediated 

cell recruitment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FigIII.3.1.Disruption of CCL5-CXCL4 reduces leukocyte adhesion to activated endothelium. 
Adhesion of rhodamine-labeled leukocytes to inflamed endothelium in carotid arteries of Apoe–/–  mice pretreated with 
sMKEY, MKEY or Met-RANTES (n = 3 each) as assessed by intravital microscopy. 
 



                                                                                                                                                                Results 

66 
 

III.4  ESTABLISHING THE ROLE OF THE EXTRACELLULAR DOMAINS OF 

CCR1 AND CCR5 IN CCL5 MEDIATED CELL RECRUITMENT 

III.4.1. DESIGN AND CHARACTERIZATION OF THE CHEMOKINE 

RECEPTOR CHIMERAS 

 

Previous reports have revealed a functional specialization of CCR1 and CCR5 in the 

recruitment of monocytes and T cells, whereby CCR1 was more important in promoting 

stable arrest on endothelial cells and CCR5 primarily mediated subsequent spreading and 

transendothelial migration [137, 155]. Yet, the three-dimensional structure of a natural 

chemokine binding to its receptor has not been solved but it is believed that the 

extracellular loops predominantly interact with larger ligands such as chemokines or 

heteromers as opposed to small molecule antagonists that bind deep in the ligand pocket 

located between the extracellular parts of the transmembrane domains [51, 163]. In 

contrast to the highly conserved transmembrane regions of CCR1 and CCR5, sequence 

analysis demonstrates that the extracellular regions are remarkably heterogeneous. In 

order to identify the role of these extracellular regions for leukocyte arrest and migration, 

we generated chimeric constructs by exchanging the respective extracellular loops of 

CCR1 and CCR5. These constructs were stably expressed in HEK-293 and L1.2 cells as 

described in section II.9.6. and clones with similar surface levels, as determined by flow 

cytometry (Fig.III.4.2.), were selected for transmigration and flow perfusion assays using 

CCL5, its mutants and/or CXCL4 as stimuli. 

Fig.III.4.1. Schematic diagram of the different 
CCR1- CCR5 chimeras. The CCR5 part of the 
various chimeras is marked in blue and the CCR1 
domains in gray. 
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Fig.III.4.2. Expression of CCR5, CCR1 and the related mutants on L1.2 pre-B lymphoma cells was 
analyzed by flow cytometry. The black lines represent the specific mAb against CCR1 or CCR5 and the 
gray lines illustrate the isotype control. 
 

CCL5 is known as a strong chemoatractant. Thus, to estimate the functionality of the 

CCR5, CCR1 and receptor chimera transfected cells, a TranswellTM chemotaxis assay 

was performed. CCR5-transfected cells robustly migrated towards wild-type CCL5 and 

(albeit less pronounced) to CCL5_40s and CCL5_50s, whereas CCR1-transfected cells 

migrated less efficiently towards CCL5 or its variants, which may be in line with previous 

data indicating a dominant role during cell arrest but a less important function during 

transmigration [155] (Fig.III.4.3.). All transfectants expressing chimeric CCR1/CCR5 

receptors (Fig.III.4.3.C-F) transmigrated towards CCL5 to a similar extent as CCR5 

transfectants, indicating that more than one extracellular loop has to be engaged in CCR5 

activation. None of the transfectants responded fully to the 40s mutant (Fig.III.4.3. A-F). 

In contrast to the other chimeras, the chimeric CCR5 receptor carrying the CCR1-N-

terminus (Fig.III.4.3.C) conferred comparable migration towards CCL5_50s as wild-type 

CCR5 (Fig.III.4.3.B). 
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Fig.III.4.3. Chemotaxis of receptor-transfectants towards CCL5 variants.  
Migratory response of HEK293 cells transfected with CCR1 (A), CCR5 (B), CCR5_1N1 (C), and 
CCR5_1E1–3 (D, E) towards CCL5, CCL5_50s, CCL5_40s (each 100ng/ml) or negative control expressed 
as chemotactic index (CI = ratio to the control).  

III.4.2. FUNCTIONAL ROLE OF THE EXTRACELLULAR DOMAINS IN 

CCL5-INDUCED ARREST UNDER FLOW 

To assess the differential roles of CCR1 and CCR5 in mediating stable leukocyte arrest 

induced by CCL5, we perfused L1.2 transfectants over TNF-activated SVEC (simian 

virus-40 transformed endothelial cells). In response to wild-type CCL5, all receptor 

variants showed a comparable capacity to induce arrest (Fig.III.4.4. A-G). None of the 

transfectants responded to CCL5_40s (Fig.III.4.4. A-G). It is conceivable that CCR1 

transfectants could not be brought to arrest by CCL5_40s, which lacks affinity for CCR1. 

The inability to induce significant arrest of CCR5 transfectants can be partially explained 

by the approximately 3-fold lower affinity of CCL5_40s to CCR5 as compared to wild-

type CCL5 [39] and because the 40s cluster supports GAG-dependent oligomerization 

[175].  
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Fig.III.4.4. Arrest of receptor-transfectants induced by CCL5 variants. 
Arrest of pre-B L1.2 cells transfected with CCR1 (A), CCR5 (B), CCR5-1N1 (C), CCR5-1E1–3 (D, E) and 
CCR1-5N1 (G) onto TNFα-activated SVEC cells under flow conditions in the absence or presence of 
CCL5, CCL5_50s or CCL5_40s (500 ng/ml).  
 
The mutant CCL5_50s, which has loss-of-function in a coordinative site for CCL5 

surface presentation, behaved differently, as the CCR1 transfectants responded equally 

potent to CCL50_50s and wild-type CCL5. This is in contrast to the CCR5, CCR5_1E1, 

CCR5_1E2 and CCR5_1E3 transfectants, which only responded to wild-type CCL5 but 

not to CCL5_50s (Fig.III.4.4. A-F). Interestingly, this effect could be reversed in 

transfectants expressing CCR5 containing the N-terminus of CCR1, which exhibited 

arrest comparable to CCR1, when stimulated with the CCL5_50s variant (Fig.III.4.4. A, 

C). Thus, it could be reasoned that the basic amino acid residues in the 50s cluster are not 

important for the functionality of CCR1 in mediating cell arrest. This was in contrast to 

CCR5, which was only responsive to CCL5 with an intact 50s cluster. This was further 

confirmed by reverse transfer of the N-terminal region of CCR5 to CCR1, which resulted 

in a poorly responding variant that did not mediate cell arrest induced by CCL5_50s 

under flow conditions (Fig.III.4.4. G). These results indicate that the 50s domain of CCL5 

is not only involved in GAG binding and cell surface presentation but might also be 

involved in direct interactions with CCR5. 
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Fig.III.4.5. Chemokine-induced arrest of chimeric receptor-transfected cells onto activated 
endothelial cells under flow conditions. Arrest of pre-B L1.2 cells transfected with CCR1 (A), CCR5 (B), 
CCR5-1N1 (C ), CCR5-1E1–3 (D - F) onto TNFα-activated SVEC cells under flow conditions in the 
absence or presence of CCL5, CCL5_NmeT7 or CCL5_E66A (500ng/ml). 

In addition, the oligomerization-deficient variants CCL5_NmeT7 and CCL5_E66A were 

inactive in promoting stable arrest under flow conditions This highlights the important 

role of CCL5 oligomerization for efficient stimulation of leukocyte arrest on inflamed 

endothelium [137] and also demonstrates that oligomerization of CCL5 is a requirement 

of cell arrest in general, independent of its activation of CCR1 or CCR5 (Fig.III.4.5 A-F). 

III.4.3. CCR1 EXTRACELLULAR DOMAIN 3 IS INVOLVED IN ENHANCED 

ARREST INDUCED BY CCL5 AND CXCL4 

Monocyte arrest induced by CCL5 is synergistically enhanced by CXCL4-CCL5 

heterodimer formation, a mechanism that plays an important role in the development of 

atherosclerosis [18, 98] and acute lung injury [176]. To investigate a possible 

specialization of CCR1 and CCR5 in the synergistic action of CCL5 and CXCL4 and to 

identify the domain(s) involved, stable arrest was stimulated by CCL5 in the presence or 

absence of CXCL4.  
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Fig.III.4.6. Arrest of receptor-transfectants induced by CCL5/CXCL4. 
Arrest of pre-B L1.2 cells transfected with CCR1 (A), CCR5 (B), CCR5-1N1 (C), CCR5-1E1–3 (D) and 
CCR1-5N1 (G) onto TNF-activated SVEC cells under flow conditions in the absence or presence of 
CCL5, CXCL4 or CCL5 and CXCL4 (500ng/ml). (H) Synergistic effect of CCL5 and CXCL4 in the 
indicated transfectants.  

All transfectants responded to stimulation with CCL5, whereas stimulation with CXCL4 

alone did not result in significant arrest (Fig.III.4.6. A-G). Notably, the CCL5-induced 

arrest of CCR1-transfected L1.2 cells was significantly enhanced by the presence of 

CXCL4 permissive to heteromer formation (Fig.III.4.6 A), whereas adhesion of CCR5-

transfected L1.2 cells was induced by CCL5 but not further increased by CXCL4 

(Fig.III.4.6. B). Exchange of the N-terminus or the first or second extracellular loop in 

CCR5 for that of CCR1 did not confer a synergistic cell-recruiting activity (Fig.III.4.6. C-

E). However, transposing the third extracellular loop of CCR1 into CCR5 resulted in a 

chimeric variant (CCR5_1E3) that mimicked the response of CCR1 towards synergistic 

stimulation with CCL5 and CXCL4 (Fig.III.4.6. F, H). To verify a possible involvement 

of the third extracellular domain of CCR1 in the synergistic activity of CCL5 and 

CXCL4, the corresponding domain of CCR5 was transferred to CCR1. This particular 

chimeric CCR5 variant (CCR1_5E3) did not mediate a specific enhancement of CCL5-

induced cell arrest by CXCL4 and but rather appeared to result in a loss of activity 

(Fig.III.4.6. G, H).  
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III.4.4. ROLE OF EXTRACELLULAR DOMAINS IN CCR1 AND CCR5 

HETERODIMERIZATION  

Monocytes and T cells have been shown to express both functional CCR1 and CCR5 

[155]. Moreover, chemokine receptors were shown to heteromerize modulating their 

functional activity in various studies [177]. Thus, we hypothesized that in addition to the 

effects observed with single transfectants, CCR1-CCR5 dimerization, and especially the 

third extracellular loop of CCR1, might play a role in the synergistic activity of CCL5 and 

CXCL4. To demonstrate a physical interaction between CCR1 and CCR5, we performed 

co-immunoprecipitations (co-IP) of HEK293 cells double-transfected with wild type 

receptors and the chimeric variants (CCR1_5E3 and CCR5_1E3), cytoplasmatically Myc- 

(CCR1 and CCR1_5E3) or HA-tagged (CCR5 and CCR5_1E3) receptors. 

 

Fig.III.4.7. CCR1 and CCR5 heterodimer formation. 
Co-immunoprecipitation (co-IP) of CCR1 with CCR5. Myc-tagged CCR1 was co-transfected with HA-
tagged CCR5 into HEK293 cells. The lysate was subjected to co-IP with anti-HA or anti-Myc antibody and 
probed with anti-Myc antibody and anti-HA antibody.  As a control, the same number of single transfected 
cells with either CCR5_Myc or CCR1_HA and untransfected HEK293 cells were treated in the exact same 
manner. (B) The chimeric receptors Myc-tagged CCR1_5E3 and Ha-tagged CCR5_1E3, single and double 
transfected or co-transfected with a wild-type receptor were subjected to co-IP with the anti-HA antibody 
and probed with antibodies against both tags. 
 

Pull-down of CCR1_Myc with an anti-Myc antibody resulted in the co-precipitation of 

CCR5_HA, as detected by an anti-HA antibody and accordingly pull-down of CCR5_HA 

resulted in co-precipitation of CCR1_Myc (Fig.III.4.7. A). Co-expression and subsequent 

co-IP of CCR1-Myc with CCR5_1E3-HA and of CCR5-HA with CCR1_5E3-Myc still 

resulted in heterodimer formation, indicating that the third extracellular loop does not 

affect heterodimer formation (Fig.III.4.7. B). To investigate whether CCR1 and CCR5 are 

co-localized on the surface of cells, we co-expressed CCR1_Myc and CCR5_HA in 

HEK293 transfectants, which were subsequently visualized by two photon microscopy 
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(Fig.III.4.8. C-E). When expressed separately, the CCR1_Myc and CCR5_HA receptors 

appeared to be dispersed over the surface of the cells (Fig.III.4.8. E). When co-expressed, 

however, both receptors were clearly co-localized on the cell surface of HEK293 

transfectants (Fig.III.4.8. C, D). 

 

Fig III.4.8. CCR1 and CCR5 co-localization  
The cellular distribution of the two chemokine receptors was analyzed by immunofluorescence. HEK293 
cells transfected with either wild-type or chimeric receptors were stained against HA and Myc and 
visualized using two photon microscopy. The upper panel shows a 3D reconstruction (xy-view) of 
transfectants displaying co-localization of the wild-type receptors CCR1 (green) and CCR5 (red), and a 
transversal reconstruction of the same cells (yz-view, approximate cell volume 1.7×104 µm3). The lower 
panel shows that CCR1_5E3 (green) and CCR5_1E3 (red) expressed in HEK293 cells also co-localize (xy-
view and corresponding transversal yz-view, approximate cell volume 2.2×104 µm3). (D) Representative 
section of double-transfected cells. (E) Control cells transfected with either CCR1_Myc (green) or 
CCR5_HA (red) alone were also subjected to immunofluorescence (approximate cell volume 1.2×104 µm3). 

III.4.5. MONOCYTIC CCR1 IS REQUIRED TO MEDIATE CCL5-CXCL4-
INDUCED ARREST 

Synergistic arrest induced by CCL5 and enhanced by CXCL4, may be mediated by 

several mechanisms including the activation of chemokine receptor hetero(di)mers 

resulting in a switch from Gαi to Gαq signaling [62]. Since the arrest experiments 

described above permitted only the investigation of single receptor types, we used the 

monocytic THP-1 cell line expressing CCR1, CCR5 and CCR3 at levels comparable to 

primary monocytes [178] to study arrest under flow conditions on human aortic 

endothelial cells. The THP-1 cells were incubated with antagonists against Gi (pertussis 

toxin) and CCR1/3 (J113863), CCR3 (SB297006) and CCR5 (DAPTA) for 30 minutes 

prior to the experiment.  
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Fig.III.4.9. Effect of antagonists on CCL5/CXCL4-induced arrest of THP-1 cells. 
Arrest of THP-1 cells on activated human aortic endothelial cells (HAoEC). THP-1 were stimulated with 
CCL5 (500 ng/ml) and/ or CXCL4 (500 ng/ml) with (solid bars) or without (empty bars) pertussis toxin 
(ptx), analyzed by 2-way-ANOVA (A-D) followed by Bonferroni pairwise analysis set to p<0.05. 
Receptors were blocked by specific antagonists against CCR5 (B), CCR1 and CCR3 (C) or CCR3 (D, 80 
nM SB297006) or left untreated (A). (Bonferroni, # P<0.05 +ptx vs –ptx; Newman-Keuls, ‡ P<0.05 vs 
CCL5, *<0.05 vs CCL5-CXCL4; n ≥4) 
 
Without inhibitors a significant increase in cell adhesion was induced only by CCL5-

CXCL4, which in turn was dependent on Gi-signaling (Fig.III.4.9. A). Selective 

inhibition of the receptors CCR3 (Fig.III.4.9. D) and CCR5 (Fig.III.4.9. B) did not 

significantly reduce the arrest response, although pertussis toxin again effectively 

diminished adhesion. Inhibition with J113863 however, which blocks CCR1 and CCR3, 

abolished the CCL5-CXCL4 effect consistent with a major role of CCR1 for leukocyte 

arrest (Fig.III.4.9. C). Thus, THP-1 cells activated by CCL5-CXCL4 require CCR1 

signaling via Gi for an efficient arrest on human aortic endothelial cells, consistent with 

our findings in CCR1-transfected cells (Fig.III.4.9. A). 
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III.5. FUNCTIONAL ROLE OF ST3GAL-IV IN CCL5 MEDIATED CELL 

RECRUITMENT 

Sialylation was found to affect the ability of CXCR2 to mediate neutrophil adhesion and 

recruitment [91] and since in vitro data also suggested an important influence on CCR5 

function [88], here we investigate the role of the α2-3 sialytransferase ST3Gal-IV in 

CCL5 receptor activation and leukocyte trafficking. At first, we determined the ability of 

murine CCL5 to bind peripheral blood leukocytes isolated from either mice deficient for 

ST3Gal-IV or control mice. As reported earlier, ST3Gal-IV–/– mice appeared healthyand 

fertile and showed no difference in systemic leukocyte counts compared to control mice 

[179]. Bound CCL5 was detected by a fluorescence conjugated antibody and measured by 

FACS (II.10.6). Moreover a distinction was made between neutrophils and classical 

monocytes by incubation with a specific antibody cocktail (II.2.1.and II.10.6.). The CCL5 

binding capacity to the ST3Gal-IV-/- leukocytes was reduced compared to the leukocytes 

isolated from the control animals. No significant difference could be observed between 

neutrophils and classical monocytes (Fig.III.5.1.), indicating that ST3Gal-IV is expressed 

in both cell types and that full binding capacity of CCL5 depends in part on the addition 

of negatively charged sialic acid residues to its corresponding receptors or in general to 

cell surface molecules.  

 

 

 

Fig.III.5.1. ST3Gal-IV- deficiency reduces Ccl5 binding to neutrophils and monocytes. 
Peripheral blood leukocytes were incubated with an antibody cocktail (anti-CD115,-Ly6G,-CD11b, -CD45) 
and murine Ccl5 (0.5 μg/sample) followed by incubation with a fluorescently labeled anti-Ccl5 antibody. 
Fluocrescence intensity was measured by FACS. Bar graphs depict mean binding capacity as MFI – MFI 
control calculated as % of control (n = 5 independent experiments). 
 

Chemokine chemokine-receptor signaling has been shown to mediate the activation of 

integrins from low to high affinity state, triggering firm adhesion [180, 181] and CCL5 in 

particular mediates leukocyte adhesion. To reveal the impact of ST3Gal-IV on the CCL5-
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mediated arrest, neutrophils and classical monocytes were perfused over TNFα-

stimulated vascular endothelium in flow chamber adhesion assays (II.10.2.). The cells 

were either directly activated with CCL5 or CCL5 was allowed to deposite onto the 

activated monolayer. Arrest of ST3Gal-IV-/- monocytes and neutrophils was significanly 

reduced independent from the specific conditions. Together with the comparably low 

decrease of the CCL5 binding capacity (III.5.1.) the significant impaired adhesion may 

support the predominant role of ST3Gal-IV in the generation of functional selectins [179, 

182-185]. Indicating a minor influence on the CCL5 chemokine receptor activation. 

 

 

Fig.III.5.2. ST3Gal-IV- deficiency reduces the CCL5 mediated adhesion of neutrophils and 
monocytes. 
Murine neutrophils (left) and monocytes (right) were perfused over TNF activated (20 ng, 4 h) mouse 
endothelial cells (SVEC) and the number of adherent cells was quantified. Ccl5 (5 μg) was deposited 10 
min prior to perfusion. Leukocytes were pre-treated with the murine Ccl5 (5ug, 10 min) where indicated (n 
= 5 independent experiments). * p<0.05, ** p<0.01, *** p<0.001; 1-way ANOVA with Tukey's Multiple 
Comparison test. Error bars represent mean ± SD. 
 
To further discriminate the influence of sialylation on the CCL5 receptor interaction and 

activation from the selectin functionality, we performed a calcium mobilization assay. 

Therefore neutrophils were isolated from mouse bone marrow cells employing FACS 

sorting. The cells were then loaded with the calcium indicator Fura-2 and the calcium 

burst was measured using a fluorescence spectrometer LS55 (PerkinElmer,USA) 

(II.10.5.). 
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FigIII.5.3. CCL5 receptor activation is not ST3Gal-IV-dependent.  
Calcium mobilization upon stimulation of neutrophils isolated from (A) ST3Gal-IV-/- or (B) ST3Gal-IV+/+ 
with CCL5. Calcium burst was visualized by using the calcium indicator Fura-2. Representative diagram of 
n=3 are shown.  
 

Deviating to the slightly reduced CCL5 binding, in leukocytes regardless if isolated from 

ST3Gal-IV-/- (FigIII.5.3.-B) or from ST3Gal-IV+/+ (FigIII.5.3.-A) mice similar calcium 

mobilization was measured upon stimulation with 100 ng/ml murine CCL5. This leads us 

to the conclusion that the extent in which the affinity of CCL5 is reduced might be rather 

due to “background binding”, to other molecules on the cell surface that are 

posttranslationally modified by ST3Gal-IV, than to the binding of CCL5 to the related 

receptors expressed by neutrophils and monocytes.  
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IV. DISCUSSION 

IV.1. TWO DIFFERENT STRATEGIES TO PURIFY CCL5 AND THE CCL5 

VARIANTS 

CCL5 and the CCL5 variants Met-CCL5, CCL5-40s and CCL5-E66A were 

recombinantly expressed in E. coli (III.1.), depending on the subsequent use in either 

normal LB medium or in 15N-enriched medium, enabling selective and uniform isotopic 

labeling of CCL5 with 15N for NMR based studies (III.2.). Although posttranslational 

modifications, e.g. N-terminal truncation [81, 82] or glycosylation [76] have been 

reported, the functionally active form in humans (1-68) requires neither of these 

modifications. For this reason recombinant expression in a prokaryotic system, employing 

the Rosetta (DE3)-pLysS, is particularly suitable to obtain high amounts of pure and 

active CCL5. High-level expression of recombinant proteins in E. coli lead to the 

formation of highly aggregated proteins but since proteins folded from these inclusion 

bodies were shown to have the same structural and conformational integrity [186], the 

advantages, which were already mentioned in section II.6., can be taken into account. 

Like other CC chemokines, CCL5 is a small (8kDa) protein characterized by a 

superimposable monomeric fold with two cysteine bridges [132, 171], hence CCL5 was 

folded in reasonable yields from extracted inclusion bodies, as previously published [141, 

187]. Following protocol B, where the solubilized protein was directly used in folding 

methodologies, it is essential to more extensively purify the inclusion bodies, as the 

bacterial contaminants may negatively influence protein folding [188]. This can be 

neglected if the protein is going to be partially purified by gel filtration (protocol A) prior 

to folding. Hence, for the second strategy B (II.6.3.) lysozyme and a DNAse were added 

to reinforce cell lysis, followed by intensive washing with a detergent-containing buffer. 

Nevertheless, both protocols require a similar labor input to obtain the pre-cleaned 

inclusion bodies. However, folding CCL5 directly from the guanidine-HCl–solubilized 

pre-cleaned inclusion bodies and removing contaminants by dialyzing against 1% acetic 

acid, reduced the workload, since two chromatographic purification steps can be omitted 

[187]. It can be further expected that the losses of protein using the second strategy 

decrease because less chromatographic steps were necessary. Nevertheless this is just an 

assumption, since different constructs were used and the cells employing protocol A, 
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were grown in flasks on an orbital shaker, whereas later (when employing protocol B) it 

was possible to grow the cells in a fermenter, continuously vented and pH-adjusted. 

These optimized culture conditions alone lead to an highly increased yield [189]. Taken 

together, for the second purification strategy, compare flow scheme Fig.III.1.1.-B, the 

workload is reduced and it is less time consuming to obtain highly pure and active protein 

in comparison to the first purification strategy (Fig.III.1.1.-A). Nevertheless, purity and 

yield obtained with both protocols were satisfying, for the usage in in vivo and in vitro 

functional assays and it was further possible to produce 15N-enriched CCL5, which 

improved possibilities for the structural characterization of the heterodimerization of 

CCL5 and CXCL4 (III.2.)  

IV.2. THE CXCL4/CCL5 HETERODIMER MEDIATES CELL RECRUITMENT 

FUNCTION VIA CCR1 AND/OR CCR5 

Initially it was observed that vascular deposition of CCL5 and CXCL4 could be 

associated with impaired atherosclerotic lesion formation after repeated injection of 

activated platelets into mice [190]. Atherosclerosis, is a chronic inflammatory disease of 

the arterial wall driven by chemokine mediated mononuclear cell recruitment to the lesion 

site, initiated by a local endothelial cell defect triggering intense immunological activity 

[191]. This is in line with the observation by von Hundelshausen et. al., who 

demonstrated that CXCL4 enhances the primary function of CCL5 in promoting cell 

arrest [18, 64]. Moreover CXCL4 and CCL5 appear to play a crucial role in the 

progression of atherosclerosis [192]. In mice deficient for CXCL4, examination of lesions 

in the aortic roots of mice fed an atherogenic diet demonstrated a 20% reduction in 

atherosclerosis in CXCL4-/- compared to the wt mice [193]. The observations, that the 

deposition of CCL5 triggers shear-resistant monocyte arrest on inflamed or 

atherosclerotic endothelium [194] and that this could be amplified by a heterophilic 

interaction with CXCL4 [18], gave rise to the assumption that the reduced lesion size 

might be caused by the lack of synergy with CCL5. Further, molecular dynamics 

simulations (MD) revealed that a CXCL4/CCL5 heterodimer is highly 

thermodynamically favored [27]. In line with the previous observations, here 

heteronuclear single quantum coherence (HSQC) spectra of CCL5 and CXCL4 identified 

a decrease in CCL5 monomer signal intensities and chemical-shift changes that indicated 

a CC-type conformation, consistent with the predicted CCL5 and CXCL4 interaction 
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[98]. Accordingly, small peptide antagonists named MKEY (for the application into 

mouse) or CKEY2 (human), disrupted the heterocomplex formation and notably 

attenuated the accelerating effects of the CXCL4/CCL5 heteromer. The human 

orthologue CKEY2, was shown to compete with CXCL4 for binding to the N-terminus of 

CCL5 with high affinity (Kd = 100 nM). Moreover the progression of atherosclerosis and 

the monocyte accumulation in the plaque were significantly reduced compared to a 

scrambled control peptide, sMKEY (data not shown). To further determine the 

pharmacological potential of MKEY, its inhibitory effect on monocyte recruitment in vivo 

was measured employing intravital microscopy, in comparison to the sMKEY control 

peptide and Met-CCL5. MKEY reduced the monocyte recruitment to the site of 

inflammation as effectively as Met-CCL5. Moreover, the comparable reduction of 

monocyte recruitment by MKEY and Met-CCL5, a strong antagonist of the CCL5 

receptors CCR1 and CCR5, leads to the suggestion that CCL5 might depend on the 

auxiliary action of CXCL4 in vivo. Whether this effect occurs by activation of CCR1 or 

CCR5 is subject of this thesis (see below). In conclusion, disrupting the formation of CC-

type CXCL4/CCL5 heteromers through the small peptide antagonist reduced 

inflammatory and atherogenic monocyte recruitment, pointing on the chemokine 

heterodimer formation as a promising therapeutic target. 

IV.3. EXCHANGE OF EXTRACELLULAR DOMAINS OF CCR1 AND CCR5 

REVEALS CONFINED FUNCTIONS IN CCL5-MEDIATED CELL 

RECRUITMENT 

Even though CCR1 and CCR5 share various ligands, precisely CCL3, 5, 7, 8, 14 and 16, 

the response was shown to depend on the physiological context and the manner of 

presentation of the chemokine. For example, CCL5 induced flow-resistant arrest of 

CD4+CD45RO+ T cells through CCR1, while subsequent transendothelial migration was 

triggered by CCR5 [137, 155]. This apparent specialization of CCR1 and CCR5 was 

facilitated by their specific requirements for the quaternary structure of CCL5, since the 

ability to form higher-order oligomers of CCL5 is important for the activation of CCR1 

but not of CCR5 [137]. This structural requirement might be related to the mode of 

presentation of CCL5 on the endothelium. The immobilization of CCL5 on the vessel 

wall might increase the formation of large oligomers [45] that enhance the “visibility” of 

the chemokine stimulus to a rolling leukocyte. A stably adherent leukocyte however 

could subsequently migrate towards a soluble chemokine gradient that might be released 
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from the endothelium of the vessel wall, for which oligomerization is less important. For 

instance, CCL3/CCL4 (macrophage inflammatory protein-1α and β) can form a 

polydisperse distribution of rod-shaped double-helical polymers, which protects the 

chemokine from degradation by insulin-degrading enzymes, so that regulated 

polymerization for selective release and inactivation of monomers could aid in controlling 

the chemotactic gradient for migration in vivo [36]. Nevertheless, structural elements in 

the CCR1 and CCR5 receptors themselves might be responsible for their functional 

specialization and their preference for oligomeric forms of CCL5. Thus, we sought to 

identify specific roles of the extracellular domains of CCR1 and CCR5 in their 

specialization and preference. Our chimeric CCR1 and CCR5 mutants were all correctly 

expressed and functional as measured by chemotaxis assays. Consistent with previous 

reports, CCR1 less effectively mediated chemotaxis than CCR5 [155] and the 40s mutant 

of CCL5 induced only a weak response in our experimental setting. A somewhat different 

picture emerged under flow conditions. While neither CCR1 nor CCR5, nor any of the 

chimeric receptors, responded to stimulation with the variants of CCL5, which are 

restricted to a monomeric or dimeric state (NmeT7, E66A), all of the receptor variants 

reacted to wild-type CCL5. This reflects the importance of oligomerization of CCL5 as a 

major determinant for stable arrest onto endothelial cells.  

The functional importance of the CCL5 oligomerization might be explained by a partial 

overlap of the GAG binding sites, such as the 40s cluster (RKNR), and the receptor 

binding or activation sites, preventing receptor binding when a CCL5 monomer is bound 

to a GAG. In the oligomeric state however, CCL5 might simultaneously bind to GAGs 

and to the receptor [38]. A model obtained from biophysical experiments provide a 

mechanism by which dual engagement could occur, supporting the concept that 

chemokines immobilized on the cell surfaces can simultaneously interact with receptors 

and GAGs [37]. In contrast to CCL5_40s, the CCL5_50s mutant is a CCL5 variant with a 

slightly reduced GAG-binding and substantial deficiency to bind endothelial cells, 

indicating a coordinative function in endothelial presentation [40]. In our experimental set 

up CCL5_50s effectively induced flow-resistant adhesion of the CCR1 transfectants. A 

similar arrest was mediated via CCR5_1N1, whereas CCR5_1E1, CCR5_1E2 and 

CCR5_1E3 cells lost the full ability to adhere upon stimulation with CCL5_50s. 

Accordingly, the reverse transfer of the N-terminal domain of CCR5 to CCR1 resulted in 

a CCR5 variant that responded well to wild-type CCL5 but poorly to CCL5_50s, 
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suggesting that the 50s region directly interacts with the N-terminal region of CCR5 but 

not with CCR1. Previous studies have demonstrated that the 55KKWVR59 cluster 

determines the affinity to GAGs to a minor extent, compared with the 44RKNR47 cluster 

[39, 40]. However the 50s cluster was critical for the presentation of CCL5 on endothelial 

cells, to structures in histologic lymphatic or kidney specimen and was shown to be 

important for the leukocyte recruiting activity in vivo [40, 195]. Compared to the 50-100-

fold reduced affinity of CCL5_40s to CCR1, the CCL5_50s mutant showed minimal 

alterations in CCR5 binding and activation, and had an approximately threefold reduced 

affinity (18 nM) for CCR1 [39]. This moderately reduced affinity was still sufficient to 

exert significant activity in our cell recruitment assays under flow conditions, particularly 

in combination with the CCR5_1N1 chimeric receptor. Given the defined functional 

specialization of CCR1 and CCR5 that was observed in previous studies [137, 155], it is 

somewhat surprising that CCR5 was able to mediate CCL5-induced stable arrest on 

activated endothelial cells. CCR5 might be able to take over some of the arrest-promoting 

functions of CCR1, when expressed alone on the cell surface.  

Nonetheless, since the leukocyte arrest-inducing function of CCL5 appears to be 

enhanced by the presence of CXCL4 in vivo [98, 173], our observations confirm that 

CCR1 might be the principal receptor promoting stable arrest. This is corroborated by the 

finding that it was possible to block the activity of the CCL5-CXCL4 heteromer by 

blocking CCR1 on THP-1 cells, known to express both CCR1 and CCR5. The structural 

requirement for this synergistic signal transduction appears to reside within the third 

extracellular domain of CCR1, since the chimeric CCR5_1E3 but not the CCR1_5E3 

transfectants displayed essentially the same response towards CCL5/CXCL4 compared to 

those CCR1 transfected cells. These data indicate an involvement of the third 

extracellular loop of CCR1, because the transfer of this loop to CCR5 results in a chimera 

(CCR5_1E3) able to mediate the synergy of CCL5 and CXCL4 confirmed by the reverse 

chimera CCR1_5E3, which behaved like CCR5 in this respect. CCL5 may function as a 

“partial agonist” that mediates leukocyte arrest. In an environment rich in CCL5-CXCL4 

heteromers, such as sites in the circulation where platelet activation takes place (e.g. 

plaque rupture, vessel injury), the heteromer may act as a “full agonist” accelerating the 

arrest response. The CCL5-CXCL4 complex can be regarded as a “full agonist” for 

CCR1. Different ligands can stabilize different active conformations of the same seven-

transmembrane receptor. This ligand specific conformation may than lead to an altered 
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coupling to different cellular signaling molecules [56, 196] and it seems that the third 

extracellular loop of CCR1 is involved in the stabilization of the CCL5-CXCL4 specific 

active conformation of CCR1. The enhancing effect of CXCL4 on CCL5-mediated arrest 

was even higher in CCR5_1E3 cells than in wild-type CCR1 cells. This chimera could 

reflect a CCR1/CCR5 heterodimer, which mediates the CCL5-CXCL4 signal under 

physiologic conditions where both receptors are expressed concomitantly.  

Chemokine receptors readily form functional hetero- and homo-oligomers [51, 177] even 

if the mechanisms still need to be elucidated. The first crystal structure of a chemokine 

receptor highlighted the role of the extracellular part of the transmembrane domains V 

and VI in homodimerization of CXCR4 [51], which are in close proximity to the third 

extracellular loop. Indeed, we identified the dimerization and co-localization of CCR1 

and CCR5 in double-transfectants, yet an exchange of the extracellular loop 3 did still 

allow the dimerization of CCR1 and CCR5. It is conceivable that a homodimerization of 

CCR1 could be as well involved in mediating the synergistic effects of CCL5 and 

CXCL4. Heteromerization of CCR2 and CCR5 has been shown to take place in 

recombinant cells and stimulation of CCR2-CCR5 co-transfectants with CCL2 and CCL5 

resulted in a shift of pertussis toxin sensitive Gαi to insensitive Gαq cell arrest over 

chemotaxis [62]. The CCL5-CXCL4 mediated arrest of THP-1 cells could be blocked by 

a CCR1 antagonist or by pertussis toxin. In our experimental set up we neither found that 

receptor heterodimerization nor another ptx Gαi independent signaling, were responsible 

for the additional effect through the CCL5-CXCL4 complex. CCR1 is sufficient in 

transmitting the arrest signal of the CCL5-CXCL4 heteromer via Gαi.  

In vivo, the ubiquitous inhibition of CCR1 did not necessarily result in a decreased 

monocyte or mononuclear cell recruitment as seen in increased arterial infiltration and 

atherosclerotic lesion development in CCR1-deficient mice which has been attributed to 

an altered immune response due to a change in the Th1/Th2 cytokine balance overriding 

the CCR1-mediated effects [157]. Likewise, CCR1 regulates inflammatory cell 

infiltration after renal ischemia-reperfusion injury without affecting tissue injury [197]. 

Moreover, a small molecule antagonist for CCR1 has been shown to prolong transplant 

rejection and to reduce progression of chronic renal allograft damage in models of heart 

and kidney transplantation, but developmental hurdles, such as lack of efficacy in clinical 

trials have not been resolved [198-200]. The important role of CCR1 and especially the 
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third extracellular loop in mediating the CCL5-CXCL4 effects may represent a new 

attractive target with a more selective structural site for designing future anti-

inflammatory therapies.  

IV.4. ST3GAL-IV DEFICIENCY REDUCES CCL5 MEDIATED LEUKOCYTE 

TRANSMIGRATION 

Proinflammatory signaling results in the increased expression of adhesion molecules like 

selectins, which facilitates “capture” of the leukocytes to the vessel wall. Three different 

selectins have been identified: E-selectin (CD62E), P-selectin (CD62P), and L-selectin 

(CD62L). L-selectin is expressed on most types of leukocytes, E-selectin is expressed on 

activated endothelium, and P-selectin was first found in storage granules of platelets and 

is also expressed by endothelial cells [181]. During leukocyte recruitment, an essential 

role of posttranslational glycosylation has been identified for selectin ligand function. 

This became particularly apparent in mice with a genetic deletion in glycosyltransferases 

such as alpha(1,3)fucosyltransferase Fuc-TVII or the core 2 beta-1,6-N-

acetylglucosaminyltransferase (C2 GlcNAcT) which led to a profound impairment of 

selectin-dependent leukocyte rolling in vivo [183, 184, 201]. While most 

glycosyltransferases involved in the generation of functional selectin ligands have not 

been reported to influence other steps of leukocyte trafficking, the α2-3 sialyltransferase 

(ST3Gal-IV) was suggested to influence the chemokine triggered arrest [202]. In 2002, 

mice deficient in the ST3Gal-IV were generated [203]. In vivo studies on P-, E-, and L- 

selectin-mediated leukocyte rolling in inflamed cremaster muscle venules of ST3Gal-IV-/- 

mice revealed a complete absence of L-selectin ligand function and a partial impairment 

in E-selectin dependent leukocyte rolling [179, 204]. In a recent publication, CXCR2 

function was shown to be dependent on ST3Gal-IV–mediated sialylation, in ST3Gal-IV-/- 

mice leukocyte adhesion to inflamed microvessels was significantly reduced upon 

injection of the CXCR2 ligands CXCL1 or CXCL8. Additionally, in vitro assays 

indicated a reduced binding capacity of CXCL8 to ST3Gal-IV-/- neutrophils [91]. Another 

study provides evidence that ST3Gal-IV may also influence the CCR5-mediated cellular 

response, by using cells stably expressing CCR5 and CCR5 mutants where the serine and 

threonine residues, offering crucial O-glycosylation sites for sialylation (e.g. S6 and S7) 

were neutralized by exchange to alanine. These mutants were employed to estimate the 

binding of CCL3 and CCL4, showing that binding was strongly impaired to a CCR5_S6A 
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mutant [88]. Since CCL5 binds and activates CCR5 and the CCL5/CCR5 axis is of great 

importance in many inflammatory diseases like atherosclerosis [157, 205] or rheumatoid 

arthritis [206, 207], we chose to investigate the role of ST3Gal-IV in CCL5-mediated 

leukocyte trafficking. Under steady state conditions, we could show here that the affinity 

of CCL5 to ST3Gal-IV-/- deficient neutrophils and monocytes was reduced in the same 

extent, indicating that in both cell types ST3Gal-IV is essential for the CCL5 receptor 

interaction or more generally for cell surface binding.  

The chemokine-driven recruitment of specific leukocyte subsets to the site of 

inflammation is a hallmark in the pathogenesis of inflammatory diseases. Thus, to 

determine the influence of ST3Gal-IV deficiency on CCL5-mediated leukocyte 

recruitment, we perfused neutrophils and monocytes from ST3Gal-IV-/- or wt mice over 

TNF-α–stimulated mouse vascular endothelial cells. The lack of ST3Gal-IV in leukocytes 

severely impaired CCL5-mediated neutrophil and classical monocyte adhesion to 

activated SVEC in laminar flow chamber adhesion assays. These findings were supported 

by data obtained from intravital microscopy, were the adhesion of ST3Gal-IV-/- 

leukocytes was almost completely diminished (data not shown). CCL5 binding to 

neutrophils and also to classical monocytes isolated from ST3Gal-IV-/- mice was reduced 

but this reduction was less pronounced as that observed the adhesion assays and intravital 

microscopy experiments, pointing towards a minor importance of ST3Gal-IV on the 

CCL5 receptor interaction. To further differentiate between the influence of ST3Gal-IV 

on the CCL5 receptor activation and selectin function, the calcium mobilization upon 

CCL5 stimulation was measured. Independent of the presence of ST3Gal-IV, CCL5 

induced a calcium burst in the cytoplasm of wt or ST3Gal-IV-/- cells to a similar extent. 

Although, in vitro observations indicated a decline of CCL3 and CCL4 binding to a 

CCR5 receptor mutant lacking a putative sialylation site (CCR5_S6A) [88], the latter 

results suggest that CCL5 binding and activation of its receptors in vivo is, if at all, only 

slightly reduced in the absence of ST3Gal-IV–mediated posttranslational modifications. 

We can not exclude the possibility that other CCL5 receptors expressed on neutrophils 

and monocytes [149], such as CCR1 and CCR3 compensate a reduced affinity to CCR5. 

However, the data so far do highlight the importance of ST3Gal-IV on the generation of 

functional selectins, supporting previous findings that describe a prominent role of 

sialyltransferases for selectin function [179, 183, 201, 203, 204].  
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V SUMMARY 

V.1. SUMMARY  

Chemokines are important mediators and regulators of leukocyte trafficking, therefore, 

they play a crucial role in the development of inflammatory diseases. CCL5 or RANTES 

(regulated upon activation, normal T cell expressed and secreted) is a chemokine of 

relevance to many diseases. Moreover, CCL5-induced monocyte adhesion to inflamed 

endothelium was shown to be improved in the presence of CXCL4 (Platelet Factor 4). 

Since this synergy could be attributed to heterodimer formation, the first section of the 

present study surveys the structural interaction of CCL5 with CXCL4. The interaction 

was monitored employing the 15N-1H heteronuclear single quantum coherence (HSQC) 

nuclear magnetic resonance (NMR) technique. For this purpose, 15N-enriched CCL5 was 

recombinantly expressed in E. coli and subsequently purified. In HSQC spectroscopy, 

chemical shift changes were mainly observed in the N-terminal residues, which pointed 

toward a CC-type rather than a CXC-type interaction. Furthermore, small peptide 

antagonists, inhibiting the CXCL4/CCL5 dimerization, were designed (CKEY2 and the 

mouse orthologue MKEY). To investigate their pharmacological potential, the influence 

of MKEY on leukocyte adhesion to activated endothelium was monitored using intravital 

microscopy. As a control Met-CCT5, a strong antagonist for CCR1 and CCR5, was 

cloned, expressed and purified employing FPLC and HPLC techniques. Leukocyte 

recruitment was severely impaired in the presence of MKEY, compared to a control 

peptide (sMKEY) and in a similar range of Met-CCL5 which encourages the assumption 

that the synergy is mediated via the receptors CCR1 and/or CCR5. 

Despite all similarities, CCR1 and CCR5 were shown to mediate distinct functions when 

bound to CCL5, CCR1 rather mediates arrest and CCR5 appears to be more responsible 

for transendothelial migration. To establish which domains are important for this 

functional selectivity, we constructed different CCR5 variants with the distinct 

extracellular regions of CCR1. These chimeras were stably expressed in L1.2 and 

HEK293 cells and we investigated their function in response to CCL5, different CCL5 

mutants, or together with CXCL4 using chemotaxis and cell arrest assays under laminar 

flow. First of all, CCL5, CCL5 40s and CCL5-E66A were recombinantly expressed and 

purified employing FPLC and HPLC techniques. By implementing CCL5 mutants (e.g. 

CCL5-E66A) with oligomerization defects in laminar flow assays, we were able to show 
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that all receptor variants require oligomerization of CCL5 in order to function properly. In 

addition, our results reveal that the 40S loop of CCL5 is important for both the CCR1- 

and CCR5-mediated cell arrest. The 50s loop of CCL5, however, appeared to have a 

strong preference for CCR5 in inducing cell arrest, since CCR1 responded normal 

towards CCL5 50s and CCR5 being non-responsive. When the N-terminal domain of 

CCR5 was exchanged for that of CCR1, the resulting chimera was fully responsive 

towards CCL5 50s, suggesting that the N-terminal region of CCR1 interacts with the 50s 

domain of CCR5. The synergistic effect of CXCL4 on CCL5 induced cell arrest was 

observed in cells exclusively expressing CCR1 when compared to cells expressing CCR5. 

When the third extracellular loop of CCR1 was engineered into CCR5, the resulting 

chimeric receptor showed a significant response to the CXCL4/CCL5 heterocomplex, 

compared to CCL5 alone. These results were confirmed by constructing CCR1-based 

reverse chimeras for the N-terminal domain and the third extracellular loop. Furthermore 

we could show the heterodimerization of CCR1 and CCR5 and the synergy of the 

CXCL4/CCL5 complex is in THP-1 cells mediated via Gαi. In conclusion these results 

indicate that the extracellular regions of CCR1 and CCR5 have distinct and defined 

functions in leukocyte recruitment in response to CCL5.  

In the third section of this thesis the role of the sialyltransferase ST3Gal-IV on CCL5 

receptor interaction was investigated, by using neutrophils and monocytes isolated from 

ST3Gal-IV deficient and from control mice in functional assays in vitro. The results 

indicate that the addition of sialic acids to the terminal portions of the N- or O-linked 

sugar chains of the corresponding receptors of CCL5 is of a minor importance for 

receptor binding and activation, since the cells similarly mobilize calcium upon 

stimulation with CCL5. Whereas, the adhesion of neutrophils and monocytes from 

ST3Gal-IV-/- was significant diminished. Taken together the results obtained here rather 

support the importance of ST3Gal-IV on the generation of functional selectins, which is 

in line with previous publications. 
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V.2. ZUSAMMENFASSUNG 

Chemokine sind bedeutende Mediatoren und Regulatoren der Leukozyten Migration und 

spielen dadurch eine wichtige Rolle bei der Entstehung verschiedener entzündlicher 

Erkrankungen. Das proinflammatorische Chemokin CCL5 oder auch RANTES (regulated 

upon activation, normal T cell expressed and secreted) ist für die Entstehung zahlreicher 

Krankheiten von besonderer Relevanz. Es konnte gezeigt werden, dass die durch CCL5 

vermittelte Adhäsion monozytärer Zellen auf entzündlichem Endothel durch das 

Zusammenwirken mit CXCL4 verstärkt wurde. Da dieser Synergismus der Dimerisierung 

von CXCL4 mit CCL5 zugeschrieben werden konnte, wurden im ersten Teil der 

vorliegenden Arbeit die strukturellen Grundlagen der Heterodimer Bildung untersucht. 

Diese Interaktion wurde mit Hilfe der 15N-1H HSQC (von „heteronuclear single quantum 

coherence“) Kernspinresonanzspektroskopie untersucht. Dazu wurde 15N angereichertes 

CCL5 rekombinant in E. coli exprimiert und anschließend aufgereinigt. Die HSQC 

Spektren zeigten chemische Verschiebungen insbesondere in den N-terminalen 

Aminosäuren von CCL5, was eher auf eine CC denn auf eine CXC typische Interaktion 

hindeutet. Im Rahmen dieser Studie wurden kleine antagonistische Peptide entwickelt 

und synthetisiert, CKEY2 und dessen Maus Ortholog MKEY, welche die Heterodimer 

Bildung von CXCL4 und CCL5 unterbinden. Um Ihre pharmakologische Wirksamkeit zu 

ermitteln wurde der Einfluss von MKEY auf die Leukozyten Adhäsion an entzündlichem 

Endothel untersucht. Zum Vergleich und als Kontrolle wurde Met-CCL5, ein Rezeptor 

Antagonist für CCR1 und CCR5, eingesetzt. Met-CCL5 wurde dazu kloniert,  

rekombinant exprimiert und mit Hilfe von FPLC und HPLC Methoden aufgereinigt. 

Dabei zeigte sich in Gegenwart von MKEY eine deutlich verminderte Adhäsion von 

Leukozyten. Darüber hinaus legte der Vergleich mit Met-CCL5, die Vermutung nahe, 

dass es sich bei CCR1 und/oder CRR5 um den Rezeptor für das CXCL4/CCL5 

Heteromer handelt. Die Chemokin Rezeptoren CCR1 und CCR5 sind sich in Struktur und 

auch Aminosäuresequenz sehr ähnlich. Abgesehen von dieser ausgeprägten Homologie 

konnte gezeigt werden, dass sie, durch CCL5 induziert, distinkte Funktionen vermitteln. 

CCR1 vermittelt verstärkt Arrest und CCR5 scheint in höherem Maße für die 

transendotheliale Migration verantwortlich. Um untersuchen zu können welche Rezeptor 

Domänen für diese funktionelle Selektivität von Bedeutung sind, wurden CCR5 

Varianten mit bestimmten extrazellulären Domänen von CCR1 konstruiert, L1.2 und 

HEK-293 Zellen stabil transfiziert und ihre Funktion nach Stimulation mit CCL5, 



Summary 
 

89 
 

verschiedenen CCL5 Mutanten oder zusammen mit CXCL4 in Chemotaxis und Zell 

Arrest Experimenten untersucht. Dazu wurden zunächst CCL5, CCL5-40s und CCL5-

E66A rekombinant exprimiert und aufgereinigt. Wir konnten zeigen dass, die Oligomer 

Bildung für alle Rezeptor Varianten zur Vermittlung der Zelladhäsion unter laminaren 

Flussbedingungen von Bedeutung ist. CCL5 Mutanten mit Defekten bei der 

Oligomerisierung (z.B. CCL5-E66A) waren nicht in der Lage einen sichtbaren Arrest zu 

induzieren. Darüber hinaus konnten wir feststellen, dass die 40s Domäne für den CCL5 

vermittelten Zellarrest sowohl für CCR1 als auch CCR5 von Bedeutung ist. Die 50s 

Domäne von CCL5 hingegen scheint nur von größerer Relevanz für den CCR5 

vermittelten Zellarrest zu sein, da CCR1 normal auf CCL5 mit einem mutierten 50s 

Motiv reagiert, wohingegen CCR5 exprimierende Zellen keine Adhäsion zeigen. Wenn 

allerdings die N-terminale Domäne von CCR5 gegen die von CCR1 ausgetauscht wurde, 

zeigte die daraus resultierende Chimäre ein mit CCR1 vergleichbares Verhalten. Dies ließ 

uns vermuten, dass der N-terminus von CCR5 mit 50s Motiv von CCL5 zu interagieren 

scheint. Der synergistische Einfluss von CXCL4 auf den CCL5 vermittelten Zellarrest 

wurde nur bei Zellen, die ausschließlich CCR1 exprimierten beobachtet. Eine Chimäre, 

bei der die dritte extrazelluläre Domäne von CCR5 durch die von CCR1 ersetzt wurde, 

reagierte wiederum signifikant auf den CXCL4/CCL5 Hetero-Komplex im Vergleich zu 

CCL5. Diese Ergebnisse konnten in Kontrollexperimenten mit entsprechenden 

Umkehrmutanten weiter verifiziert werden. Darüber hinaus konnten wir die 

Heteromerisierung von CCR1 und CCR5 zeigen, und dass sowohl das CCL5 Signal als 

auch das Signal des CXCL4/CCL5 Komplexes durch Gαi in THP Zellen vermittelt wird. 

Zusammenfassend lassen diese Ergebnisse vermuten, dass die extrazellulären Regionen 

der Rezeptoren CCR1 und CCR5 distinkte und definierte Funktionen bei der Interaktion 

mit und der Aktivierung durch CCL5 haben. Im dritten Abschnitt der vorliegenden Arbeit 

wurde der Einfluss der Sialyltransferase ST3Gal-IV auf die Interaktion von CCL5 mit 

seinen Rezeptoren untersucht. Dazu wurden Neutrophile und Monozyten aus ST3Gal-IV 

defizienten und Kontroll Mäusen isoliert und in funktionellen Experimenten verglichen. 

Die Ergebnisse lassen vermuten, dass eine fehlende Sialylierung die CCL5-Rezeptor-

Aktivierung nicht beeinträchtigt, da CCL5 in ST3Gal-IV defizienten und wt Zellen 

gleichermaßen Calcium mobilisieren konnte. Wohingegen die Adhesion von ST3Gal-IV-/- 

Zellen deutlich beeinträchtigt war. Unsere Ergebnisse stützen frühere Veröffentlichungen 

die eine besondere Bedeutung von ST3Gal-IV bei der Generierung funktioneller 

Selektine gezeigt haben. 
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