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1
Introduction

In the last decades, the numerical prediction of the deformation
behavior of materials has become more and more important. On
the one hand, there is an ever growing demand for accurate
simulation tools due to new fields of application. As example may
serve, the simulation of single-crystalline turbine blades that have
to withstand extreme conditions in terms of temperature and
forces; another example are small-scale components used in
medicine or electronics that can exhibit a completely different
mechanical response than large-scale bulk material. On the other
hand, the technical advance concerning the resources of computer
simulation allows to apply models of increasing complexity that are
able to represent materials to finer and finer detail both in terms of
spatial accuracy as well as regarding the description of the physical
material behavior.
In this respect, the simulation of the deformation behavior of metals
is particularly challenging due to the large number of space and
time scales involved. This led to an exciting diversity of model
approaches ranging from an atomistic scale to large components.
Of particular interest for this work are those approaches that
explicitly model the behavior of dislocations, such as discrete
dislocation dynamics (DDD), dislocation-based constitutive models
of crystal plasticity, and the more recently emerged theory of
continuum dislocation dynamics (CDD) models.
The most straightforward description is done in the discrete
dislocation dynamics, which accounts for every dislocation line in a
discretized fashion at typically high spatial resolution. In this
approach the equation of motion for every dislocation segment is
solved numerically by evaluating the superposition of the stress
fields generated by all dislocations (and considering any
additionally applied boundary conditions). Discrete dislocation
dynamics can be simplified to two-dimensional cases (e.g. Van der
Giessen and Needleman1), or treat the dislocations in full

1 E. Van der Giessen and A. Needle-
man. Discrete dislocation plasticity:
a simple planar model. Modelling
Simul. Mater. Sci. Eng., 3:689–735, 1995

three-dimensional space (e.g. Kubin et al.,2 Zbib et al.,3 Schwarz,4

2 L.P. Kubin, G. Canova, M. Con-
dat, B. Devincre, V. Pontikis, and
Y. Bréchet. Dislocation microstructures
and plastic flow: a 3D simulation. Solid
State Phenomena, 23–24:455–472, 1992

3 H.M. Zbib, M. Rhee, and J.P.
Hirth. On plastic deformation and
the dynamics of 3D dislocations.
Int. J. Mech. Sci., 40:113–127, 1998

4 K.W. Schwarz. Simulations of
dislocations on the mesoscopic scale. I.
Methods and examples. J. Appl. Phys.,
85:108–119, 1999

Cai et al.,5 Weygand et al.,6 Motz et al.7), or blend both by

5 W. Cai, V.V. Bulatov, T.G. Pierce,
M. Hiratani, M. Rhee, M. Bartelt,
and M. Tang. Solid Mechanics and
Its Applications, volume 115, chapter
Massively-parallel dislocation dy-
namics simulations, page 1. Kluwer
Academic, Dordrecht, The Nether-
lands, 2004

6 D. Weygand, L.H. Friedman,
E. Van der Giessen, and A. Needle-
man. Aspects of boundary-value prob-
lem solutions with three-dimensional
dislocation dynamics. Modelling
Simul. Mater. Sci. Eng., 10:437–468, 2002

7 C. Motz, D. Weygand, J. Senger,
and P. Gumbsch. Initial disloca-
tion structures in 3-D discrete dis-
location dynamics and their influ-
ence on microscale plasticity. Acta
Mater., 57(6):1744–1754, 2009. doi:
10.1016/j.actamat.2008.12.020

incorporating kinematic knowledge of the three-dimensional
dislocation reactions into two-dimensional calculations
(e.g. Benzerga et al.8). Knowledge of the possible dislocation

8 A.A. Benzerga, Y. Bréchet, A. Needle-
man, and E. Van der Giessen. Incorpo-
rating three-dimensional mechanisms
into dislocation dynamics. Modelling
Simul. Mater. Sci. Eng., 12:159–196, 2004
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reactions and their respective energetics are a necessary ingredient
in all above calculations, which can be informed from calculations
at lower (atomistic) scale. Such discrete models of plasticity account
for the heterogeneity of the micromechanical problem and contain
many of the key details of dislocation mechanics, for instance their
tendency to cluster and the presence of spatio-temporal
correlations. The discrete representation, however, presently
requires a massive computational effort on their mutual long-range
interaction. Hence, simulations turn very costly with increasing
segment count, which limits strains to only a few percent even on
high-performance computing hardware for dislocation
multiplication rates typical of bulk deformation.
In contrast to DDD, dislocation-based constitutive models of crystal
plasticity represent the dislocation content by a field quantity
termed dislocation density, which measures the line length of
dislocations per volume. In these models, the constitutive response
depends on the evolution of the dislocation density, which is
formulated in rate equations (e.g. Kocks,9 Gottstein and Argon,10

9 U.F. Kocks. Laws for work-hardening
and low-temperature creep. J. Eng.
Mater. Tech. (ASME-H), 98:76–85, 1976

10 G. Gottstein and A.S. Argon. Dis-
location theory of steady state defor-
mation and its approach in creep and
dynamic tests. Acta Metallurgica, 35(6):
1261–1271, 1987. ISSN 0001-6160. doi:
10.1016/0001-6160(87)90007-1

Estrin et al.,11 Roters et al.,12 Ma and Roters,13 Cheong and

11 Y. Estrin, L.S. Tóth, A. Molinari,
and Y. Bréchet. A dislocation based
model for all hardening stages in large
strain deformation. Acta Mater., 46(15):
5509–5522, 1998. doi: 10.1016/S1359-
6454(98)00196-7

12 F. Roters, D. Raabe, and G. Gottstein.
Work hardening in heterogeneous
alloys – a microstructural approach
based on three internal state variables.
Acta Materialia, 48(17):4181–4189, 2000.
doi: 10.1016/S1359-6454(00)00289-5

13 A. Ma and F. Roters. A constitutive
model for fcc single crystals based
on dislocation densities and its ap-
plication to uniaxial compression
of aluminium single crystals. Acta
Mater., 52(12):3603–3612, 2004. doi:
10.1016/j.actamat.2004.04.012

Busso14). This statistical approach allows to also address problems

14 K.-S. Cheong and E.P. Busso.
Discrete dislocation density mod-
elling of single phase FCC poly-
crystal aggregates. Acta Materi-
alia, 52(19):5665–5675, 2004. doi:
10.1016/j.actamat.2004.08.044

concerning large strains or large time scales (e.g. creep) in a
computationally efficient manner. However, predictions often lack
accuracy when the dimensions of the microstructure and/or the
deforming volume decreases well into the micrometer range. Then,
the plastic response of crystalline materials changes noticeably (see
e.g. Fleck et al.,15 Dehm,16 Stölken and Evans,17 Uchic et al.18 for

15 N.A. Fleck, G.M. Muller, M.F. Ashby,
and J.W. Hutchinson. Strain gradient
plasticity: Theory and experiment.
Acta Metall. Mater., 42(2):475–487, 1994.
doi: 10.1016/0956-7151(94)90502-9

16 G. Dehm. Miniaturized single-
crystalline fcc metals deformed in ten-
sion: New insights in size-dependent
plasticity. Progress in Materials Science,
54(6):664–688, 2009. ISSN 0079-6425.
doi: 10.1016/j.pmatsci.2009.03.005

17 J.S. Stölken and A.G. Evans. A
microbend test method for measuring
the plasticity length scale. Acta
Materialia, 46(14):5109–5115, 1998. doi:
10.1016/S1359-6454(98)00153-0

18 M.D. Uchic, D.M. Dimiduk, J.N.
Florando, and W.D. Nix. Sample
Dimensions Influence Strength and
Crystal Plasticity. Science, 305(5686):
986–989, 2004. ISSN 0036-8075. doi:
10.1126/science.1098993

experimental evidence). At this length scale, the motion of
dislocations, which is the origin of plastic slip, becomes apparent,
since it may on the one hand lead to accumulation of dislocations
where the boundary conditions are not uniform; on the other hand,
it may lead to starvation in areas where dislocation multiplication
does not suffice to compensate the outflow of dislocations, i. e.,
where there are not enough active dislocation sources. Any local
constitutive model naturally has to fail in the prediction of these
effects, since the dislocation density may evolve in time, but does
not account for any redistribution in space.
For this reason, a new class of simulation approaches has emerged
in the recent years that tries to combine the efficiency of the
continuum crystal plasticity approaches with the detailed
description of dislocation motion in the discrete dislocation
dynamics. These so-called continuum dislocation dynamics (CDD)
models treat the dislocation content as continuously defined
dislocation density that evolves in time but is also transported in
space. They differ in the degree of detail for the description of the
dislocation content. The possibly closest description to DDD is
achieved when the discrete, curved dislocation segments are
represented by a higher-order dislocation density tensor that retains
information about the line direction and the curvature. With this
description introduced by Hochrainer19 it is possible to rigorously

19 T. Hochrainer. Evolving systems
of curved dislocations: Mathematical
foundations of a statistical theory. PhD
thesis, Universität Karlsruhe (TH),
Aachen, 2006
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formulate evolution laws for the dislocation density based only on
the motion of dislocations. When supplemented by a kinetic law,
this formulation captures the kinematics of crystal plasticity to very
fine detail (see, for instance, Sandfeld et al.20). Nevertheless, in 20 S. Sandfeld, T. Hochrainer, P. Gumb-

sch, and M. Zaiser. Numerical im-
plementation of a 3D continuum
theory of dislocation dynamics and
application to micro-bending. Philo-
sophical Magazine, 90(27-28):3697–
3728, 2010. ISSN 1478-6435. doi:
10.1080/14786430903236073

order to reduce the still substantial computational effort involved,
suitable simplifications of this large configuration space are sought.
Among the proposed simplifications are the restriction to two
excess densities of edge and screw character plus their mean
curvature and the total dislocation content,21 or four densities of

21 S. Sandfeld, T. Hochrainer, M. Zaiser,
and P. Gumbsch. Continuum model-
ing of dislocation plasticity: Theory,
numerical implementation, and vali-
dation by discrete dislocation simula-
tions. Journal of Materials Research, 26

(05):623–632, 2011. ISSN 0884-2914.
doi: 10.1557/jmr.2010.92

straight edge and screw dislocations of opposite signs,22,23 or one

22 D. Walgraef and E.C. Aifantis. On
the formation and stability of dislo-
cation patterns–I: One-dimensional
considerations. International Journal of
Engineering Science, 23(12):1351–1358,
1985. doi: 10.1016/0020-7225(85)90113-
2

23 A. Arsenlis and D.M. Parks. Mod-
eling the evolution of crystallographic
dislocation density in crystal plas-
ticity. J. Mech. Phys. Solids, 50(9):
1979–2009, 2002. doi: 10.1016/S0022-
5096(01)00134-X

excess density and the total dislocation density when restricting the
picture to two dimensions,24 or a single, but spatially variable, line

24 S. Yefimov. Discrete dislocation and
nonlocal crystal plasticity modelling. PhD
thesis, Rijksuniversiteit Groningen,
2004

direction.25 To date, no definite conclusion has been reached on

25 R. Sedláček, J. Kratochvíl, and
E. Werner. The importance of be-
ing curved: bowing dislocations in
a continuum description. Philo-
sophical Magazine, 83(31):3735–
3752, 2003. ISSN 1478-6435. doi:
10.1080/14786430310001600213

how to best capture the dislocation dynamics and associated
structure evolution in a continuum framework.
The latter works will serve as a starting point for this thesis. A
physics-based constitutive model will be developed that includes
dislocation transport in a similar fashion to Arsenlis and Parks
[2002]. One aim of this work is to improve the understanding of
what happens at the transition from the discrete to the continuum
description.
There is still little application of the CDD to problems that allow for
a direct comparison to experiments and a validation of the obtained
effects—perhaps also due to the non-trivial implementation of the
constitutive equations in a crystal plasticity framework. Hence, a
second goal is the comparison to existing experimental references in
order to analyze the impact of such a theory on the simulation of
“real” microstructures.

Outline of the thesis

Chapter 2 is devoted to an introduction of the notion of crystal
defects and to the definition of basic terms and equations.

Chapter 3 of the thesis starts by introducing the constitutive
equations of the model: the parametrization of the dislocation
structure in terms of state variables, the evolution equations of
these state variables with special focus on the transport equations of
the dislocation density, and the kinetics of dislocations.

Chapter 4 presents the implementation of the constitutive model.
This concerns the coupling of the constitutive model with a solver
for the mechanical boundary value problem and the internal time
integration of the stress. More important is the integration of the
state variables, since the nonlocal nature of the constitutive model
requires additional effort compared to the usually employed rate
equations in classical crystal plasticity modeling.
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Chapter 5 analyses the most essential part of the constitutive
model, namely the dislocation flux. For a two-dimensional
cross-section of a single expanding dislocation loop, two important
properties are evaluated: the conservation of dislocation density in
the course of dislocation transport; and the stress field that a
dislocation exerts in an elastic medium.

Chapter 6 focuses on the comparison of discrete dislocation
dynamics results with the present continuum formulation of
dislocation dynamics. Three main questions are addressed:
1. How well do discrete and continuum dislocation dynamics

simulations match?
2. Does one observe any size effect?
3. What is the role of correlation in a DDD system and how can one

account for this in a continuum theory?

Chapter 7 presents the simulation of an existing experiment:26 a 26 J.C. Kuo. Mikrostrukturmechanik von
Bikristallen mit Kippkorngrenzen. PhD
thesis, RWTH Aachen, 2004

simple shear test of an Aluminum bicrystal separated by a
small-angle tilt grain boundary. Comparison of simulation and
experiment is made for three different models, namely a simple
phenomenological model, a local variant of the presented
physics-based model that does not account for dislocation fluxes,
and the full nonlocal model. A detailed analysis of the simulation
results explains the success of the physics-based model to match
experiment and the failure of the phenomenological model. The
minor influence of the dislocation flux in the nonlocal model
variant is discussed and contrasted to earlier simulation approaches
to the same experiment by Ma.27 27 A. Ma. Modeling the constitutive

behavior of polycrystalline metals based
on dislocation mechanisms. PhD thesis,
RWTH Aachen, 2006

Chapter 8 presents the application of the model to an existing
indentation experiment in single-crystalline Nickel.28 This specific 28 J.W. Kysar, Y. Saito, M.S. Oztop,

D. Lee, and W.T. Huh. Experimen-
tal lower bounds on geometrically
necessary dislocation density. In-
ternational Journal of Plasticity, 26(8):
1097–1123, 2010. ISSN 0749-6419. doi:
10.1016/j.ijplas.2010.03.009

experiment is chosen, since its special planar geometry and the
resulting limitation of active slip systems allows to derive the
geometrically necessary dislocation (GND) density under the
indenter from experimentally measured lattice rotations. The
simulated rotation patterns and the evolution of the GND density
under the indenter is shown to match the experimental
observations. A detailed analysis of the involved plastic slips and
lattice rotations explains the distribution of the GND density and
the formation of an antisymmetry boundary under the indenter.
Comparison to a local model variant without dislocation fluxes
shows the importance of the dislocation flux in this example having
an effect on the evolution of the microstructure, as well as on the
mechanical behavior.

Chapter 9 summarizes the major results of the thesis, gives a
critical assessment, and discusses continuations of and extension to
the presented model.



2
Background

2.1 The ideal crystal

The atomic structure of metals is characterized by an undirected
force between the atoms. As a result, the atoms in metals tend to
arrange in very regular, closed packed structures, which are
reminiscent of a stacking of layers of hard spheres. In a highly pure
grown metal, this also macroscopically leads to a regular shape,
which is typical for pure crystalline matter.
The crystalline structure can be described by an idealized
mathematical concept: the crystal lattice. It envisages the atoms as
points on a regular grid with defined distances and angles. Most of
the metallic crystals form one of the following three lattice types:
face-centered cubic (fcc), body-centered cubic (bcc), and hexagonal
(hex). The face-centered cubic lattice can be described by a cubic
cell with an atom sitting in each of the eight corners and in the
center of each of the six faces (see fig. 2.1). This smallest repeating
unit of the lattice structure is termed unit cell. In an ideal crystal
with all atoms having the same size, the fcc structure corresponds
to the closest three-dimensional packing of spheres that is possible.
The body-centered lattice can also be described by a cubic unit cell
with one atom in each corner, but, in contrast to the fcc lattice, with
one further atom in the center of the cell. This results in a slightly
less dense packing than for the fcc case. The third important crystal
lattice structure, the hexagonal lattice, can be described by layers of
a hexagonal grid. The unit cell consists of two triangular prisms. If
three of the unit cells are attached to each other, one obtains the
often used representation of a hexagonal prism. The hexagonal
lattice resembles the fcc lattice, since it can also describe a closed
packed lattice called hexagonally closed packed (hcp), if all atoms
are of same size. Then, the two lattice types only differ in the
stacking order of the closed packed planes.

Figure 2.1: Unit cell of the face-
centered cubic lattice structure.

Directions and planes in the crystal lattice are usually described by
Miller indices. For directions, they denote the coordinates given
in a system defined by the edges of the unit cell with the length 1
corresponding to the respective length of the unit cell edges. The
coordinates are always given as smallest possible integers, i. e., a
direction (0 , 1/2 , 1/3) in the cubic lattice corresponds to Miller
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indices [0 3 2]. While a specific direction is given in square brackets
[h k l], symmetrically equivalent directions are denoted by sharp
brackets 〈h k l〉. Lattice planes are denoted by normal brackets
(u v w) for specific planes and curly brackets for symmetrically
equivalent planes {u v w}. For the lattice planes the indices describe
the reciprocal of the intersection point coordinates of the plane with
the unit cell axes. A similar notation is possible for the hexagonal
lattice type.

2.2 Defects in real crystals

Real crystalline metals do not preserve the perfect lattice structure.
In contrast, they contain an abundance of defects. Compared to
other types of bondings between atoms, e.g., the ionic bonding,
metallic bonds are relatively weak. This facilitates the creation and
motion of defects in the material—and in the end the deformation
of metals. The different types of defects in metals can be classified
according to their dimensionality:

• 0-dimensional: vacancies, interstitial and substitutional atoms
• 1-dimensional: dislocations
• 2-dimensional: grain- and phase boundaries, stacking faults

Three-dimensional defects can usually be characterized by their
two-dimensional interfaces. Especially dislocations play an
important role for the deformability of a metal as will be seen later
and are of particular interest for this work.

The concept of the dislocation The concept of the dislocation was
introduced in the early twentieth century by Volterra,1 however, 1 V. Volterra. Sur l’équilibre des corps

élastiques multiplement connexes.
Ann. Sci. Ecole Norm. Super., 24:401–517,
1907

without making the connection to crystalline matter. He explored
the properties of a line singularity in a continuous elastic body. This
line singularity can be produced when a cylindrical body is cut, the
two newly exposed surfaces are laterally translated with respect to
each other, and then again joint. The boundary of the cut
constitutes a line singularity, which Volterra [1907] called
dislocation.

Figure 2.2: Schematic of a part of a
dislocation with edge (E), screw (S),
and mixed (M) character. Image is
taken from Hull and Bacon [2001].

Inside a crystal, a dislocation describes the border of an area
between two regions that are laterally shifted with respect to each
other (see fig. 2.2). For the fcc lattice, the displacement usually takes
place on the closed packed lattice plane {1 1 1} along the closed
packed direction 〈1 1 0〉 on this plane. The actual displacement step
is denoted Burgers vector b. For a dislocation in an fcc crystal
lattice it amounts to b = 1

2 〈1 1 0〉. Since an area inside a volume
always has a closed border, also a dislocation does not simply end
inside a crystal. However, the area may reach the surface of the
material (as indicated in fig. 2.2) and the distorted lattice can locally
relax there. The tangent vector along the dislocation line is termed
dislocation line direction l . According to the orientation of the line
direction, different dislocation types are distinguished. If the line
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direction is perpendicular to the Burgers vector, one speaks of
edge dislocations; if both are parallel, the dislocation has screw
type. However, due to the often irregular shape of a dislocation, a
mix of both types is present in most part of the dislocation. A
segment of a dislocation can now be completely described by three
quantities: the Burgers vector b, the line direction l , and the
lattice/slip plane on which the dislocation resides.

elastic
deformation

plastic

deformation

Figure 2.3: Elastic and plastic deforma-
tion of a crystal.

Dislocations as source of plastic deformation Independently of each
other, Orowan,2 Taylor,3 and Polanyi4 discovered that the concept

2 E. Orowan. Zur Kristallplastizität
I.–III. Z. Phys., 89:605–659, 1934

3 G. Taylor. The Mechanism of Plastic
Deformation of Crystals. Part I. Theo-
retical. Proceedings of the Royal Society
of London. Series A, Containing Papers
of a Mathematical and Physical Character
(1905-1934), 145(855):362–387, 1934.
doi: 10.1098/rspa.1934.0106

4 M. Polanyi. Über eine Art Gitter-
störung, die einen Kristall plastisch
machen könnte. Z. Phys., 89:660–664,
1934

of a dislocation can explain the high deformability of metals. Until
then, it had been unclear, why the stress that is needed to
permanently deform a metal was much lower than expected. A
permanent deformation of a crystal—also called plastic
deformation—occurs when atomic planes in the crystal lattice slide
over each other (see fig. 2.3). In a perfect crystal this can only be
accomplished by simultaneous motion of all atoms in the lattice
plane. However, Frenkel5 showed that the stress needed for this

5 J. Frenkel. Zur Theorie der Elas-
tizitätsgrenze und der Festigkeit
kristallinischer Körper. Zeitschrift für
Physik, 37:572–609, 1926

mechanism to occur is much higher than the experimentally
observed stresses. The presence of dislocations in the material,
however, facilitates the permanent deformation of crystals at much
lower stresses. Under a positive applied shear stress a dislocation
loop expands (and shrinks if the applied shear stress is negative).
The expanding dislocation line leads to a propagation of the lattice
discontinuity through the crystal (see fig. 2.4). Since this
rearrangement of the atoms happens only locally, the stress that is
needed to drive this motion is much lower than a simultaneous
motion of all atoms in the lattice plane. Macroscopically, the
expansion of dislocation loops results in a shear deformation of the
solid and, if the dislocation reaches the surface, in visible steps on
the surface.

Figure 2.4: Schematic sequence show-
ing an edge dislocation moving
through a crystal. The dashed line
indicates the slip plane.

The rate at which the the crystal is sheared directly relates to the
evolution rate of the slipped area A per volume V:

γ̇ =
bȦ
V

(2.1)

Dislocation measures Since the amount of dislocations in a crystal
heavily influences the deformation behavior of the material, it is
important to quantify the dislocation content. A scalar measure of
the dislocation content is the dislocation density $, which is defined
as the total length of dislocation lines per unit volume. A subset of
the total dislocation content are the so-called statistically stored
dislocations (SSD), which comprise all dislocations that can be
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combined with other dislocations such that the vector sum of the
line directions equals zero. Those dislocations that are left after the
summation form a signed quantity called geometrically necessary
dislocation density (GND density). The term is reminiscent of the
connection to a geometric shape change of the material that can
only be explained by the presence of GNDs.6

6 M.F. Ashby. The deformation of plas-
tically non-homogeneous materials.
Philosophical Magazine, 21(170):399–424,
1970. doi: 10.1080/14786437008238426

One has to keep in mind that both the statistically stored and the
geometrically necessary dislocation density depend on the length
scale on which they are defined, i. e., the size of the averaging
volume (see fig. 2.5).

ρgnd = 0
ρssd > 0

ρgnd > 0
ρssd = 0

Figure 2.5: Two dislocation loops with
same line orientation sense. Depend-
ing on the probed volume, either only
geometrically necessary dislocation
density $gnd or only statistically stored
dislocation density $ssd is measured.

With the dislocation density at hand, the rate of plastic slip can be
defined via the average dislocation velocity v.7

7 E. Orowan. Problems of plastic glid-
ing. Proc. Phys. Soc., 52(1):8–22, 1940.
doi: 10.1088/0959-5309/52/1/303

γ̇ = $vb (2.2)

2.3 Continuum mechanical framework of deformation

The description of the kinematics follows the established
continuum mechanical framework of finite strain, recalled, for
instance, by Roters et al.8 Consider an infinite number of particles,

8 F. Roters, P. Eisenlohr, L. Hantcherli,
D.D. Tjahjanto, T.R. Bieler, and
D. Raabe. Overview of constitutive
laws, kinematics, homogenization,
and multiscale methods in crystal
plasticity finite element modeling:
theory, experiments, applications. Acta
Materialia, 58:1152–1211, 2010. doi:
10.1016/j.actamat.2009.10.058

also termed material points, aggregated into a deformable body (or
continuum). This body shall occupy the regions B0 and B in
three-dimensional Euclidean space R3 at two different times t0 and
t. B0 denotes the undeformed (or “reference”, subscript “R”)
configuration and B the deformed (or “current”, subscript “D”)
configuration. The motion from the undeformed to the deformed
configuration follows a mapping y(x) : x ∈ B0 7−→ y ∈ B. The local
deformation in an infinitesimal neighborhood δx of material point x
can be linearly approximated by the deformation gradient
F = ∂y/∂x, which, in the general case, varies with material point
position.

Xx

reference current

intermediate

F(x )
y (x )

infinitesimal
neighborhood of x

Fp Fe

n ζ

s ζ

Figure 2.6: Multiplicative decom-
position of the total deformation
gradient F into two parts. The plastic
deformation gradient Fp relates the
reference and intermediate config-
urations. Next, the transformation
from the intermediate to the current
configuration is characterized by the
elastic deformation gradient Fe. The
crystal lattice remains undistorted in
the intermediate configuration since
dislocation glide rearranges the lattice
in a translation-invariant fashion. The
slip plane normal nξ and slip direction
sξ are exemplarily shown for one slip
system ξ.

The multiplicative decomposition of the deformation gradient

F = FeFp (2.3)

introduces a stress-free intermediate (or “lattice”) configuration (see
fig. 2.6) by conceptually splitting the deformation into a purely
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inelastic (or plastic) part, Fp, and a remaining “elastic” part, Fe,
which accounts for (linear) elastic distortions of the crystal lattice
and additionally rigid rotation of the entire body.9,10,11 Based on 9 B.A. Bilby, L.R.T. Gardner, and A.N.

Stroh. Continuous distributions
of dislocations and the theory of
plasticity. In Proc. 9th Int. Congr.
Appl. Mech., volume 8, pages 35–44,
Bruxelles, 1957. Université de Bruxelles

10 E. Kröner. Allgemeine Kontin-
uumstheorie der Versetzungen
und Eigenspannungen. Arch. Ra-
tion. Mech. An., 4:273–334, 1960

11 E.H. Lee and D.T. Liu. Finite-
Strain Elastic—Plastic Theory with
Application to Plane-Wave Analysis.
J. Appl. Phys., 38(1):19–27, 1967. doi:
10.1063/1.1708953; and E.H. Lee.
Elastic-plastic deformation at finite
strains. J. Appl. Mech. ASME, 36(1):1–6,
1969

the right Cauchy–Green deformation tensor, an elastic strain
measure is given by the Green–Lagrange strain tensor:

Ee =
1
2

(
Fe

TFe − I
)

. (2.4)

The second Piola–Kirchhoff stress S, as its work-conjugate
stress measure in the intermediate configuration, is related to this
elastic strain tensor through

S = det Fe Fe
−1σFe

−T = C : E (2.5)

with C being the fourth-order elasticity tensor and σ the Cauchy

stress derived by mapping the second Piola–Kirchhoff stress
from the intermediate into the current configuration.
Plastic deformation is driven by S and in the present case assumed
to be mediated exclusively by dislocation glide on slip systems
defined by two unit vectors n and s as the slip plane normal and
slip direction with the latter being parallel to the respective
Burgers vector b of length b. The shear rates γ̇ξ resulting from
corresponding changes in slipped area on systems ξ = 1, . . . , N
contribute additively to the plastic velocity gradient 12 12 J.R. Rice. Inelastic constitutive

relations for solids: an internal variable
theory and its application to metal
plasticity. J. Mech. Phys. Solids, 19:
433–455, 1971

Lp = ∑
ξ

γ̇ξ(τξ) sξ ⊗ nξ , (2.6)

which in turn results in an evolution of the plastic deformation
gradient at the rate

Ḟp = LpFp. (2.7)

The driving force for dislocation motion is provided by the resolved
shear stress

τξ = S :
(

sξ ⊗ nξ
)

, (2.8)

which is the second Piola–Kirchhoff stress S projected onto the
slip system.

2.4 Connection between kinematics and dislocation content

Already in the 1950s Kröner13 and Nye14 pointed out a

13 E. Kröner. Kontinuumstheorie der
Versetzungen und Eigenspannungen,
volume 5 of Ergebnisse der angewandten
Mathematik. Springer, Berlin, 1958

14 J.F. Nye. Some geometrical relations
in dislocated crystals. Acta Metall., 1

(2):153–162, 1953. doi: 10.1016/0001-
6160(53)90054-6

fundamental link between the kinematics of deformation and the
dislocation content associated with it. Their findings are based on a
linear theory of strains, hence the multiplicative decomposition of
the deformation gradients (see eq. (2.3)) turns into an additive
decomposition of so-called distortions.15

15 The nonlinear version of the the-
ory is much more complicated, but
qualitatively gives the same result.β = βe + βp (2.9)
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Kröner [1958] introduced a tensor α that is associated with the net
Burgers content bC of a Burgers circuit C around a surface S in a
crystal: ∫

S

dS · α = bC (2.10)

Then, he showed that this dislocation tensor α can be directly
related to the plastic distortion βp by virtue of the differential curl
operation:

α = curl βp (2.11)

and—under the assumption that the deformed body remains
compact—also to the negative curl of the elastic distortion:

α = − curl βe. (2.12)

This implies that given that the total distortion of a crystal is
compatible, i. e., the body is not torn apart, the plastic
incompatibility directly relates to the net Burgers content in the
material. Nye [1953] came to the same result, however based on
somewhat different arguments related to the lattice curvature.
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3
Constitutive laws

3.1 Parametrization of microstructure

The properties of a material are characterized by its microstructure,
which has to be parametrized in order to model the material
behavior. However, due to the abundance of properties that
influence the material behavior, there is no unique way of
parametrizing the microstructure. One always has to pick those
properties that are decisive for the current considerations. The
present constitutive model will be based on two main
microstructural properties that describe the state of the material
and may evolve during the simulation. The first is the crystal lattice
and its orientation in space, which entails a finite number of
discrete deformation modes. Secondly, the dislocation structure will
be considered in terms of dislocation densities of different kinds.
All other microstructural parameters in this model will either be
deduced from these two; or they are considered as material
constants that do not evolve and rather serve as input parameters of
the constitutive model.

3.1.1 Crystal orientation

The crystal orientation is a rotation that transfers the sample
coordinate system into the crystal or lattice coordinate system.
Hence, the orientation is by concept included in the elastic
deformation gradient, which is a mapping from the lattice to the
current configuration:

Fe = OTU, (3.1)

where U is the elastic stretch tensor. In case of an undeformed
reference state, this stretch is initially equal to identity. Then, the
initial crystal orientation O0 corresponds to

O0 = Fe0
T. (3.2)

3.1.2 Dislocation structure

ξ slip plane slip direction

1 [0 1 1]
2 (1 1 1) [1 0 1]
3 [1 1 0]

4 [0 1 1]
5 (1 1 1) [1 0 1]
6 [1 1 0]

7 [0 1 1]
8 (1 1 1) [1 0 1]
9 [1 1 0]

10 [0 1 1]
11 (1 1 1) [1 0 1]
12 [1 1 0]

Table 3.1: Naming convention used for
fcc slip systemsThe complex dislocation structure has to be simplified and is

approximated by different densities $ξ per slip system ξ = 1, . . . , N
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(table 3.1 denoting the fcc slip systems as an example). A
distinction between the different densities on a specific slip system
can be made via:

• the dislocation character c: edge (subscript “e”) or screw
(subscript “s”),

• the dislocation polarity: monopolar density of positive or
negative sign (subscript + or -), or unsigned dipolar density
(subscript ±),

• and the dislocation status: free (subscript “u” for unblocked) or
blocked (subscript “b”).

As an example, $3
e-u denotes the density of unblocked negative edge

dislocations on slip system 3.

l1 l2

l3

e1 ‖ sξ

e2 ‖ tξ

e3 ‖ nξ

edge+ sc
re

w
+

edge-

sc
re

w
-

mξ
s-

mξ
e+

mξ
s+

mξ
e-

Figure 3.1: Schematic dislocation loop
(dark shade) on its slip plane with
normal nξ , slip direction sξ , and pos-
itive line direction of positive edge
dislocations tξ defining (thick) slip
system triad e1, e2, e3. Arrows along
the loop periphery indicate positive
line direction giving rise to the conven-
tion for signed dislocation characters
as shown. The small (dashed) interior
cube illustrates the crystal unit cell
orientation with the lattice basis l1, l2,
l3. A displacement step by bξ occurs
when passing from below to above the
shaded slip plane, i. e., along its normal
nξ .

Monopolar dislocation density A positive or negative sign reflects the
monopolar nature of a single dislocationÕs stress field. Figure 3.1
illustrates the convention adopted in this work for the sign of edge
and screw dislocations on a slip plane. The signed character of
these dislocations entails a directionality of their motion under
given resolved shear stress. According to fig. 3.1, for a positive
shear increment, i. e., increase in the slipped area by loop expansion,
these directions of motion m follow as:

mξ
e+ = sξ (3.3a)

mξ
e- = −sξ (3.3b)

mξ
s+ = tξ (3.3c)

mξ
s- = −tξ (3.3d)

tξ being a unit vector in positive line direction of a positive edge
dislocation:

tξ = nξ × sξ . (3.4)
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Accordingly, the plastic shear rate can be split into four parts for
the four types p ∈ {e+, e-, s+, s-} of monopolar dislocation
populations.

γ̇ξ = ∑
p

γ̇
ξ
p = ∑

p
$

ξ
pvξ

pb (3.5)

Furthermore, a distinction into free and blocked status is made for
the monopolar densities depending on their ability to move in the
direction dictated by the resolved shear stress (blocked, for instance,
by a grain boundary).

$
ξ
p = $

ξ
pu +

∣∣∣$ξ
pb

∣∣∣ (3.6)

The blocked density is a signed quantity, since immobility always
applies to one direction of motion only1. This direction can be 1 Note, that the usage of the term

“immobility” differs from the usually
implied notion of dislocation locks.

determined by multiplying the direction of motion as specified in
eq. (3.3) by the sign of the blocked density. Thus, the density is able
to move (again) provided the sign of the resolved shear stress is
opposite to the sign of the respective blocked density.

Figure 3.2: Stress field of an edge
dipole. The positions of the disloca-
tions are marked by yellow dots.

Figure 3.3: Stress field of a screw
dipole. The positions of the disloca-
tions are marked by yellow dots.

Dipole dislocation density The presence of stable dipoles enables
dislocation annihilation and is explicitly accounted for in the
present parameterization. Stable dipoles contain two monopolar
dislocations of the same character but opposite sign, hence two
dipole densities, $

ξ
e± and $

ξ
s±, per slip system are tracked and sum

up to the overall dipole density on slip system ξ.

$
ξ
± = $

ξ
e± + $

ξ
s± (3.7)

These densities quantify the length per volume contributed by both
constituents, thus dislocations changing between monopolar and
dipolar state do not alter the sum of both densities.
A dipole will be stable against dissociation under the resolved
shear stress τ if the mutual elastic interaction between the two
constituents is strong enough, i. e., if the distance between the glide
planes of the two dislocations does not exceed

d̂e =
µ b

8π (1− ν)

1
|τ | (3.8a)

d̂s =
µ b
4π

1
|τ | (3.8b)

with µ the shear modulus and ν Poisson’s ratio (see appendix A.3).
On the other hand, there exists a minimum glide plane separation,
ďc, below which the dipole spontaneously disintegrates by either
producing point defects (edge dipoles) or immediate cross-slip
(screw dipoles).2

2 U. Essmann and H. Mughrabi. Anni-
hilation of dislocations during tensile
and cyclic deformation and limits of
dislocation densities. Philosophical
Magazine A, 40(6):731–756, 1979. doi:
10.1080/01418617908234871

The constituents in such a dipole are linked, which means that
motion of this pair is not changing the overall slipped area, and no
further shear is contributed by it.
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Total and excess density The polar nature of densities allows to
discriminate between the total dislocation densities

$ξ = $
ξ
e + $

ξ
s (3.9a)

$
ξ
e =

︷ ︸︸ ︷
$

ξ
e+ + $

ξ
e- + $

ξ
e± (3.9b)

$
ξ
s =

︷ ︸︸ ︷
$

ξ
s+ + $

ξ
s- + $

ξ
s± (3.9c)

and the (either positive or negative) excess densities of edge and
screw character

$
ξ
∆e = $

ξ
e+ − $

ξ
e- (3.9d)

$
ξ
∆s = $

ξ
s+ − $

ξ
s- . (3.9e)

Forest dislocation density Following Ma and Roters,3 the density on 3 A. Ma and F. Roters. A constitutive
model for fcc single crystals based
on dislocation densities and its ap-
plication to uniaxial compression
of aluminium single crystals. Acta
Mater., 52(12):3603–3612, 2004. doi:
10.1016/j.actamat.2004.04.012

any particular system ζ can be projected with respect to system ξ

into a corresponding forest density. By summation of the
contribution of each slip system ζ the overall forest density on
system ξ results as:

$
ξ
f = $

ζ
e

∣∣∣nξ · tζ
∣∣∣+ $

ζ
s

∣∣∣nξ · sζ
∣∣∣ (3.10)

The mean spacing between forest dislocations piercing through slip
system ξ can be derived from the forest dislocation density:

λ
ξ
f =

1√
$

ξ
f

(3.11)

3.2 Microstructure evolution

3.2.1 Crystal rotation

In the course of deformation the orientation of the crystal lattice
changes. The rotation that translates the initial crystal orientation
O0 into the current crystal orientation O is called crystal rotation R:

O = RO0 (3.12)

and stems from either local elastic lattice distortion or global rigid
body rotation. The current crystal orientation rotates the current
sample coordinate system into the lattice coordinate system. Hence,
it can be obtained by splitting the elastic deformation gradient into
a rotation part and the stretch U by means of a polar decomposition
(see eq. (3.1)):

Fe = OTU = (RO0)
TU (3.13)

We make use of the eigendecomposition of the symmetric tensor
Fe

TFe (with λi as the eigenvalues and vi as the eigenvectors)

Fe
TFevi = λivi (3.14)
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to get the (symmetric) stretch tensor U.

U =
3

∑
i=1

√
λi vi ⊗ vi (3.15)

Then, one can solve eq. (3.13) for the rotation tensor R by making
use of the inverse of the stretch tensor.

R = U−1Fe
TOT

0 (3.16)

3.2.2 Dislocation transport inside a single crystal

The equations for the dislocation transport will be derived from
basic equations of dislocation theory, which are, however, based on
continuous fields. Since internal boundaries, such as grain or phase
boundaries constitute discontinuities in the plastic strain fields, we
will assume a single crystalline material for the moment. Then, we
can drop the distinction between blocked and unblocked
dislocations as introduced in section 3.1.2, since the notion of
blocked dislocations is only needed at discontinuities of the plastic
strain field. At a later stage, special care will be taken of these
discontinuities (see sections 3.2.3 and 4.3.1).
The state of dislocation in a crystal lattice can be constructed from
superposition of the contributions of all dislocation segments
present in a given volume (including the case of multiple slip) as∫

l ⊗ b d$, where l denotes a unit vector along the dislocation line
direction. This state of dislocation corresponds to the so-called
Kröner–Nye tensor α,4,5 which in turn is equivalent to the 4 J.F. Nye. Some geometrical relations

in dislocated crystals. Acta Metall., 1

(2):153–162, 1953. doi: 10.1016/0001-
6160(53)90054-6

5 E. Kröner. Kontinuumstheorie der
Versetzungen und Eigenspannungen,
volume 5 of Ergebnisse der angewandten
Mathematik. Springer, Berlin, 1958

negative curl (incompatibility) of the plastic distortion βp. The
contribution per individual slip system to this state reads

∑
p

$
ξ
plξ

p ⊗ b = αξ = − curl β
ξ
p. (3.17)

Since segments of opposite line direction cancel out in above sum,
only the excess density contributes to incompatibility.6 6 In the following the superscript ξ for

the slip system will be dropped.

∑
c

$∆clc+ ⊗ b = α = − curl (γ n ⊗ s) (3.18)

To arrive at the rate of change of dislocation content, eq. (3.18) is
differentiated with respect to time t.

∂t ($∆ele+ + $∆sls+)⊗ b = − curl (γ̇/b n)⊗ b (3.19)

Without loss of generality we choose our coordinate system as
shown in fig. 3.1 to transform eq. (3.19) into

∂t

 $∆s
−$∆e

0

 = − curl

 0
0

γ̇/b

 =

− gradt γ̇/b
grads γ̇/b

0

 , (3.20)

which reflects the increase of (positive) excess density resulting
from a (negative) gradient in the slip rate along the (positive)
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direction of dislocation motion:

∂t$∆s = − gradt ($e+ve+ + $e-ve- + $s+vs+ + $s-vs-) (3.21a)

∂t$∆e = − grads ($e+ve+ + $e-ve- + $s+vs+ + $s-vs-) , (3.21b)

where eq. (3.5) was substituted for the shear rate.
To uncouple the equation system of all four dislocation types we
note that the dislocation densities of same character but opposite
sign evolve independent of each other:

∂t$e+ + grads ($e+ve) = − κes grads ($svs) (3.22a)

∂t$e- − grads ($e-ve) = (1− κes) grads ($svs) (3.22b)

and

∂t$s+ + gradt ($s+vs) = − κse gradt ($eve) (3.22c)

∂t$s- − gradt ($s-vs) = (1− κse) gradt ($eve) , (3.22d)

with κes and κse denoting arbitrary fractions of one. The right-hand
side terms in eqs. (3.22a) to (3.22d) reflect the fact that a gradient in
slip caused by one character of dislocations results in changes in the
other character (here: formation or annihilation of kinks). In the
present treatment, such effects are considered to be of second order,
which is tantamount to the assumption of straight dislocations that
are not interconnected. Dropping these terms transforms above
evolution equations for the dislocation densities into pure transport
equations.

∂t$e+ + grads ($e+ve) = 0 (3.23a)

∂t$e- − grads ($e-ve) = 0 (3.23b)

and

∂t$s+ + gradt ($s+vs) = 0 (3.23c)

∂t$s- − gradt ($s-vs) = 0 (3.23d)

In the following we denote the product of the unblocked dislocation
density and velocity of type p on slip system ξ as dislocation flux

f ξ
p = $

ξ
pu vξ

p with its scalar magnitude f ξ
p = $

ξ
pu

∣∣∣vξ
p

∣∣∣. For the regular
case inside a single crystal we can then summarise eqs. (3.23a)
to (3.23d) as

∂t$
ξ
pu + div f ξ

p = 0. (3.24)

3.2.3 Dislocation transport at discontinuities

The dislocation transport can be altered at internal or external
surfaces, such as grain or phase boundaries as well as free surfaces.
These interfaces constitute a discontinuity in the dislocation flux.
Hence, the derivative needed for the transport eq. (3.24) is not
defined at this point. However, reformulating eq. (3.24) in terms of
finite volumes, one is able to give physically meaningful
expressions around the discontinuities. The exact treatment is
explained in detail in section 4.3.1. Here, we will focus on the
physical motivation and the basic concepts.
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Free surfaces As no dislocations can enter the material from beyond
the free surface, the entering flux density7 is always zero.8 On the

7 An entering flux of dislocations is
identified by a positive component
of its flux vector in direction of the
inward pointing surface normal.

8 Although dislocations can be gener-
ated at a free surface, this contribution
would rather be incorporated into
the evolution equations as additional
source term at the surface, and not as a
dislocation flux.

other hand, the leaving flux remains unaltered, if there is no
additional obstacle at the surface, as, e.g., an oxide layer. Such an
oxide layer changes the character of the interface from an external
free surface to an internal phase boundary.

Grain/phase boundaries Both grain and phase boundaries form
discontinuities in the crystal lattice and as such act as an obstacle
against dislocation motion. This gives rise to various reactions, such
as dislocation absorption, transmission, reflection, and nucleation
(for details on the reactions of dislocations with grain boundaries
see e.g. Livingston and Chalmers,9 Darby et al.,10 Shen et al.,11 and 9 J.D. Livingston and B. Chalmers.

Multiple slip in bicrystal deformation.
Acta Metallurgica, 5(6):322–327, 1957.
ISSN 0001-6160. doi: 10.1016/0001-
6160(57)90044-5

10 T.P. Darby, R. Schindler, and R.W.
Balluffi. On the interaction of lattice
dislocations with grain boundaries.
Philosophical Magazine A, 37(2):245–
256, 1978. ISSN 0141-8610. doi:
10.1080/01418617808235438

11 Z. Shen, R.H. Wagoner, and W.A.T.
Clark. Dislocation and grain boundary
interactions in metals. Acta Metal-
lurgica, 36(12):3231–3242, 1988. doi:
10.1016/0001-6160(88)90058-2

Lee et al.12). Here, we represent these interactions as an effective

12 T.C. Lee, I.M. Robertson, and H.K.
Birnbaum. TEM in situ deformation
study of the interaction of lattice
dislocations with grain boundaries in
metals. Philosophical Magazine A, 62(1):
131–153, 1990. ISSN 0141-8610. doi:
10.1080/01418619008244340

property of the interface that changes the transmissivity for
dislocations. A reduced transmissivity of the interface impedes the
flux of dislocations, so that only part of the dislocations crosses the
boundary. Technically, this is realized by a reduction of the
dislocation flux across the interface by a factor 0 ≤ χ < 1 called
“transmissivity”. Any remainder of the dislocation flux gets stuck
in front of the boundary and is left there as blocked dislocation
density. Hence, an interface with reduced transmissivity behaves as
a source for blocked dislocation density in front of it, and as a sink
for (unblocked) density behind it.
This rather simplistic approach has the advantage of a flexible and
straight-forward implementation. In contrast to other approaches
(see e.g. Arsenlis et al.,13 Bayley et al.,14 Puri et al.15), it does not

13 A. Arsenlis, D.M. Parks, R. Becker,
and V.V. Bulatov. On the evolution of
crystallographic dislocation density in
non-homogeneously deforming crys-
tals. J. Mech. Phys. Solids, 52:1213–1246,
2004. doi: 10.1016/j.jmps.2003.12.007

14 C.J. Bayley, W.A.M. Brekelmans,
and M.G.D. Geers. A compari-
son of dislocation induced back
stress formulations in strain gradi-
ent crystal plasticity. Int. J. Solids
Struct., 43(24):7268–7286, 2006. doi:
10.1016/j.ijsolstr.2006.05.011

15 S. Puri, A. Acharya, and A.D. Rollett.
Controlling Plastic Flow across Grain
Boundaries in a Continuum Model.
Metallurgical and Materials Transactions
A, 42(3):669–675, 2011. ISSN 1073-5623.
doi: 10.1007/s11661-010-0257-8

require any additional boundary conditions for the dislocation
density or flux. This enables to easily control the properties of the
interface, and even to specify different properties for different
density types, slip systems, stress states, etc.

3.2.4 Dislocation generation

New dislocations are generated in the course of plastic deformation
and lead to an increase of the dislocation density. Here, we regard
multiple cross slip of screw dislocations as the most relevant
mechanism for dislocation multiplication. Screw dislocations
change their habit slip plane, i. e. cross glide, if they encounter an
obstacle that impedes further loop expansion on the primary slip
plane, and if at the same time dislocation glide on a collinear
system is possible. When relating the obstacles that promote cross
slip to the dislocation forest, the multiplication rate due to multiple
cross slip of screws linearly depends on the inverse of the forest
dislocation spacing. With |γ̇s| /b as the rate of slipped area per
volume due to glide of screw dislocations one obtains the
relationship

multΦpu ∝
|γ̇s|
b λf

. (3.25)
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In the following, any source or sink term for the dislocation density
will be denoted by Φ and goes to the right-hand side of eq. (3.24).
Dislocations of edge type contribute to a minor extent to the
production of new dislocation line length by loop expansion or—for
very high concentration of vacancies—by Bardeen-Herring
sources.16 16 D. Hull and D.J. Bacon. Introduc-

tion to Dislocations. Butterworth-
Heinemann, 2001

For the total dislocation generation we define an effective rate

multΦpu =
|k1γ̇e + γ̇s|

k2 b λf
=

(k1 fe + fs)
√

$f
k2

, (3.26)

with 0 < k1 ≤ 1 as parameter that controls the edge contribution to
dislocation generation, and with a second (phenomenological)
scaling parameter 10 . k2 . 100.

3.2.5 Change of dislocation state

A change in the dislocation state comprises all reactions that lead to
a relabeling of the dislocation. Here, this refers to either a change in
the polarity (monopolar/dipolar) or in the status
(blocked/unblocked). The equations for the rate of formation and
dissociation of dipolar dislocations are based on the work of
Eisenlohr.17 17 P. Eisenlohr. On the role of dislocation

dipoles in unidirectional deformation
of crystals. PhD thesis, Universität
Erlangen-Nürnberg, 2004Remobilization of monopolar dislocations Blocked dislocations can be

remobilized if the resolved shear stress changes sign. Then, the
direction of dislocation motion is reversed and the formerly
immobile dislocations move in opposite direction. If we assume
that all blocked dislocations instantaneously remobilize, the entire
blocked dislocation density is converted to unblocked dislocation
density.

remobΨpb = −
∣∣∣$pb

∣∣∣ (3.27)

remobΨpu =
∣∣∣$pb

∣∣∣ (3.28)

Since the rate associated with this instantaneous change in
dislocation state is infinite, the above reaction is not formulated as
rate equation, but as a step function Ψ.

sampled
volume

fe+dt

capturing
dipole partner

captured
dipole partner

d̂e

d̂e

Figure 3.4: Example for the formation
of dislocation dipoles: A flux of
positive edge dislocations fe+ captures
negative edge dislocation density $e-
that is in a strip of height 2d̂e.

Dipole formation To arrive at the transformation rate of monopolar
to dipolar dislocations, it is helpful to consider the volume fraction

dln V =
dV
V

= 2 d̂c
dA
V

= 2 d̂c
|dγc|

b
= 2 d̂c fcdt (3.29)

that is sampled by gliding monopolar dislocations of character c per
shear increment dγc. A dipole is formed if a gliding dislocation hits
a dislocation of opposite sign within this volume fraction.
Unblocked monopolar density can transform by either actively
moving towards an opposite (unblocked or blocked) dislocation, or
by passively having an opposite unblocked dislocation move
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towards itself. These two configurations lead to a combined
transformation loss rate of monopolar dislocations of

mono→diΦc+u = −2 d̂c ($c- fc+ + $c+u fc-) (3.30a)

mono→diΦc-u = −2 d̂c ($c+ fc- + $c-u fc+) . (3.30b)

Blocked monopolar dislocations only serve as a passive partner in
the creation of a dipole, therefore their rate is given by

mono→diΦc+b = −2 d̂c $c+b fc- (3.30c)

mono→diΦc-b = −2 d̂c $c-b fc+ . (3.30d)

Since the total dislocation content is not changed by such
transformations, the corresponding rate of change (production) of
dipolar density follows as the negative sum of eqs. (3.30a)
to (3.30d).

mono→diΦc± = 4 d̂c ($c+ fc- + $c- fc+) (3.30e)

Dipole dissociation Dipoles that were formed by gliding monopolar
dislocations can dissociate again when the stress level increases. If
we assume that the distribution of dipole heights is uniform within
the stability range, then a reduction in the upper stability limit due
to increasing resolved shear stress will lead to a symmetric
dissociation of dipoles back into monopolar unblocked dislocation
density.

If ∆d̂c < 0:

di→monoΨc± = $c±
∆d̂c

d̂c − ďc
(3.31a)

di→monoΨc+u = di→monoΨc-u = −1
2 di→monoΨc± (3.31b)

Elseif ∆d̂c ≥ 0:

di→monoΨc+u = di→monoΨc-u = di→monoΨc± = 0 (3.31c)

3.2.6 Dislocation annihilation

A decrease in the overall dislocation density is considered a result
of athermal as well as thermally activated annihilation of dipoles.

Thermal annihilation of edge dipoles Edge dislocation dipoles can
annihilate by out-of-plane climb motion of their two constituents.
This process requires production and diffusion of vacancies and is
thermally activated.18 Consequently, annihilation by climb of edges

18 J.P. Hirth and J. Lothe. Theory of
dislocations. John Wiley & Sons, New
York, 1982

is significant only at high temperatures or very high degrees of
deformation19. Here, we introduce climb by means of the edge

19 In case of very high deformation
(ε > 1) large amounts of vacancies are
produced. As shown by Zehetbauer
and Seumer [1993], these deforma-
tion induced high concentrations of
vacancies facilitate climb motion of
edge dislocations, hence can lead to
significant annihilation of edge dipoles
by climb already at room temperature.

dipolar dislocation density and the average separation of the
dipoles d̂e − ďe. If half the average dipole separation is overcome by
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climb, all dipoles would be annihilated, so the annihilation rate by
climb of edges reads

climbΦe± = −$e±
2 vclimb(

d̂e − ďe

)
/2

= −4 $e±
vclimb

d̂e − ďe
. (3.32)

Athermal annihilation by instantaneous recombination Annihilation of
edge dipoles by climb does not readily occur at low temperatures.
Yet, very close edge dipoles can nonetheless annihilate
spontaneously and form either vacancy or interstitial point
defects.20 This athermal annihilation process is modeled by 20 J. Friedel. Dislocations. Addison-

Wesley, Reading, Massachusetts, 1964;
and U. Essmann and H. Mughrabi.
Annihilation of dislocations during
tensile and cyclic deformation and lim-
its of dislocation densities. Philosophical
Magazine A, 40(6):731–756, 1979. doi:
10.1080/01418617908234871

assuming that out of all edge dipoles newly formed by glide
(eq. (3.30e)) those annihilate instantaneously that have a glide plane
separation below ďe. In addition to these close encounters among
monopolar dislocations, moving monopolar dislocations may knock
out a compatible constituent from an already existing dipole.
Combining both reactions leads to

athAnnΦe± =− 4 ďe ($e+ fe- + $e- fe+)

− 2 ďe $e± ( fe- + fe+) .
(3.33)

Screw dipoles can annihilate by cross-slip, i. e., by a change from the
habit slip plane onto a collinear slip plane.21 While this process can

21 U. Essmann and H. Mughrabi. Anni-
hilation of dislocations during tensile
and cyclic deformation and limits of
dislocation densities. Philosophical
Magazine A, 40(6):731–756, 1979. doi:
10.1080/01418617908234871

be thermally activated, hence depend on temperature and
mechanical assist, we assume it to take place instantaneously for all
screw dipoles having a glide plane separation below ďs.
Consequently, the cross-slip process of screw dipoles is treated in
the same manner as the athermal disintegration of edge dipoles.

cross-slipΦs± =− 4 ďs ($s+ fs- + $s- fs+)

− 2 ďs $s± ( fs- + fs+)
(3.34)

However, the minimum glide plane separation that controls these
mechanisms can differ significantly.22

22 For copper Essmann and Mughrabi
[1979] report a value of about 6b for
the minimum stable dipole height of
edges and of about 200b− 2000b for
screw dipoles.
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[1 1 1]
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Figure 3.5: Cross-slip of a screw dipole
leaving an edge jog on the collinear
slip system behind.

While the annihilation of edge dipoles produces vacancies or
interstitials, screw dipoles that annihilate by cross-slip deposit two
edge jogs on the collinear slip system (see fig. 3.5). Each annihilated
screw dipole creates two edge jogs of the length equal to the mean
dipole height

ljog =
1
2

(
d̂s + ďs

)
. (3.35)

The number of screw dipoles that annihilate by cross-slip can be
determined from the cross-slip annihilation rate cross-slipΦs±, if one
assumes that the average segment length of a screw dipole is
proportional to the forest spacing. Then, screw dipoles of the
primary slip system ξ that annihilate by cross-slip generate an
average density of both positive and negative unblocked edges on
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the according collinear slip system ζ:

jogΦζ
e+u = jogΦζ

e-u = −k3
cross-slipΦs±

2
ljog

λf

= − k3

4

√
$

ξ
f

(
d̂ ξ

s + ď ξ
s

)
cross-slipΦξ

s± ,
(3.36)

where k3 is a scalar factor between 0 and 1.

Summary of state evolution equations The equations derived above
form a system of partial differential equations (PDE) with the local
rate equations for generation, annihilation and state change as sink
or source terms. Hence, for each slip system ξ we have the
following set of PDEs:

∂t$
ξ
e+u + div f ξ

e+ = interfΦ
ξ
e+u + multΦ

ξ
e+u + mono→diΦ

ξ
e+u + jogΦξ

e+u + ∂t

(
di→monoΨξ

e+u + remobΨξ
e+u

)
(3.37a)

∂t$
ξ
e-u + div f ξ

e- = interfΦ
ξ
e-u + multΦ

ξ
e-u + mono→diΦ

ξ
e-u + jogΦξ

e-u + ∂t

(
di→monoΨξ

e-u + remobΨξ
e-u

)
(3.37b)

∂t$
ξ
s+u + div f ξ

s+ = interfΦ
ξ
s+u + multΦ

ξ
s+u + mono→diΦ

ξ
s+u + ∂t

(
di→monoΨξ

s+u + remobΨξ
s+u

)
(3.37c)

∂t$
ξ
s-u + div f ξ

s- = interfΦ
ξ
s-u + multΦ

ξ
s-u + mono→diΦ

ξ
s-u + ∂t

(
di→monoΨξ

s-u + remobΨξ
s-u

)
(3.37d)

∂t$
ξ
e+b = interfΦ

ξ
e+b + mono→diΦ

ξ
e+b + ∂t

(
remobΨξ

e+b

)
(3.37e)

∂t$
ξ
e-b = interfΦ

ξ
e-b + mono→diΦ

ξ
e-b + ∂t

(
remobΨξ

e-b

)
(3.37f)

∂t$
ξ
s+b = interfΦ

ξ
s+b + mono→diΦ

ξ
s+b + ∂t

(
remobΨξ

s+b

)
(3.37g)

∂t$
ξ
s-b = interfΦ

ξ
s-b + mono→diΦ

ξ
s-b + ∂t

(
remobΨξ

s-b

)
(3.37h)

∂t$
ξ
e± = mono→diΦ

ξ
e± + climbΦξ

e± + athAnnΦξ
e± + ∂t

(
di→monoΨξ

e±

)
(3.37i)

∂t$
ξ
s± = mono→diΦ

ξ
s± + cross-slipΦξ

s± + ∂t

(
di→monoΨξ

s±

)
(3.37j)

Here, the rates interfΦ account for the blocking of dislocations at
interfaces, which will be deduced in section 4.3.1. The derivatives of
the jump functions Ψ will in practice not be calculated (as they are
infinite by definition), but only the jump itself will be used for the
state integration (also see section 4.3.2).

3.3 Dislocation kinetics

The kinetics of dislocations are controlled by the two types of
dislocation motion, namely dislocation glide and dislocation climb.
The former is associated with the in-plane motion of monopolar
dislocations and leads to plastic deformation. The latter describes
the out-of-plane motion of dipolar dislocations and leads to mutual
annihilation of the two constituents of a dislocation dipole, hence,
gives rise to recovery. The minor contributions to deformation from
climb motion is neglected here.
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3.3.1 Dislocation glide velocity

The driving force for the in-plane motion of dislocations is the
second Piola–Kirchhoff stress resolved onto the slip system: the
resolved shear stress τ as defined in eq. (2.8). The glide motion of
dislocations is impeded by various obstacles, out of which some
may be overcome by thermal activation, and some by mechanical
stress alone (see table 3.2). The mutual interaction of dislocations is
considered too strong as to allow for thermal activation. Hence, we
describe the effect of dislocation obstacles in terms of a mechanical
threshold stress, reffered to as critical resolved shear stress τcr.

obstacle activation

phase boundaries mechanical
grain boundaries mechanical

dislocations mechanical
solid-solution atoms thermal

Peierls barrier thermal

Table 3.2: Obstacles for dislocation
motion that are taken into acount in
this work.

For an applied resolved stress below this value no dislocation
activity occurs. Above this threshold, an effective resolved shear
stress τeff that is reduced by the critical resolved shear stress is
acting as driving force for dislocation motion.23

23 A. Seeger. The Temperature De-
pendence of the Critical Shear Stress
and of Work-hardening of Metal
Crystals. Philosophical Magazine Se-
ries 7, 45(366):771–773, 1954. doi:
10.1080/14786440708520489

τeff =

 (|τ | − τcr) sign τ if |τ | > τcr

0 if |τ | ≤ τcr

(3.38)

The flowstress τcr accounts for the different strength aξζ of the
interacting dislocations on slip systems ξ and ζ.

τ
ξ
cr = µb

√
∑
ζ

aξζ $ζ , (3.39)

ζ

ξ
1 2 3 4 5 6 7 8 9 10 11 12

1 s cp cp h l g cl g g h g l

2 cp s cp l h g g h l g cl g

3 cp cp s g g cl g l h l g h

4 h l g s cp cp h g l cl g g

5 l h g cp s cp g cl g g h l

6 g g cl cp cp s l g h g l h

7 cl g g h g l s cp cp h l g

8 g h l g cl g cp s cp l h g

9 g l h l g h cp cp s g g cl

10 h g l cl g g h l g s cp cp

11 g cl g g h l l h g cp s cp

12 l g h g l h g g cl cp cp s

Table 3.3: Interaction types between
slip systems ζ and ξ in an fcc crystal
structure; s: self interaction; cp: copla-
nar interaction; cl: collinear interaction;
h: Hirth locks; g: glissile junctions; l:
Lomer locks. Slip systems are defined
in table 3.1.

In the case of fcc crystals, six distinct reactions with characteristic
strength can be identified (see table 3.3 for a correlation between
slip systems and interaction types). Values for junction and lock
forming are taken from Kubin et al.;24 they are given in table 3.4.25

24 L. Kubin, B. Devincre, and
T. Hoc. Modeling dislocation stor-
age rates and mean free paths in
face-centered cubic crystals. Acta
Mater., 56(20):6040–6049, 2008. doi:
10.1016/j.actamat.2008.08.012

25 According to Kubin et al. [2008]
the three coefficients for junction
forming mechanisms (Hirth, glissile
and Lomer) slightly depend on the
dislocation density because of line
tension effects. This can be captured
by a correction term

c =

0.2 + 0.8
log
(
0.35b√$f

)
log
(

0.35b√$ref

)
2

with $ref = 1·1012 m−2.
Yet, in contrast to Kubin et al. [2008] we assume the coefficients for
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interaction type interaction coefficient

self 0
coplanar 0
collinear 0.625

Hirth 0.07
glissile 0.137
Lomer 0.122

Table 3.4: Interaction coefficients for
fcc crystals. Values for the collinear in-
teraction, Hirth locks, glissile junctions
and Lomer locks are taken from Kubin
et al. [2008].

the self and the coplanar interaction to be equal to zero. Instead,
self hardening is implied by the sink term for the monopolar
density due to formation of dipoles, which decreases the amount of
available carrier density for dislocation slip (see eqs. (3.30a)
and (3.30b)). A second source for self hardening stems from the
deposition of edge jogs on the cross-slip plane due to the
annihilation of screw dipoles as described in section 3.2.6. These
edge jogs act back on the primary slip system via the strong
collinear interaction and contribute to self hardening. While Kubin
et al. [2008] included these effects implicitly by a non-zero
hardening coefficient for self and coplanar hardening, the present
work tries to make direct use of the information about the
annihilation of screw dipoles. The rate of screw dipole annihilation
entails a production rate of edge jogs on the collinear system as
given in eq. (3.36). This production term on the collinear system
then leads to significant hardening of the primary slip system,
similar to a self hardening effect.
In addition to dislocation obstacles, the present work considers
thermally activated obstacles against dislocation motion such as
Peierls barriers and solid solution atoms. Thermal activation of
this effect is treated according to Kocks et al.26 The probability P to 26 U.F. Kocks, A.S. Argon, and M.F.

Ashby. Thermodynamics and Kinetics
of Slip. Progress in Materials Science, 19:
1–291, 1975

overcome an obstacle by thermal activation at temperature T is
given by

P = exp

(
− Q

kBT

(
1−

(∣∣τeff

∣∣
τ̂

)p)q)
, (3.40)

where Q is the activation energy required to overcome the obstacle,
τ̂ is the strength of the obstacle, and p and q are parameters
describing the shape of the energy profile of the obstacle.27 The 27 The probability for backward jumps,

i. e. in direction opposed to the me-
chanical driving force, is considered
negligible.

activation energy is determined by the work that is done when a
shear stress equal to the obstacle strength acts on the slip plane and
causes a relative displacement of b over the slipped area A:

Q = τ̂Ab = τ̂lsb, (3.41)

where the slipped area A results from a jump of width s along the
activation length l of the dislocation. Obstacles of differing strength
and geometry can concurrently influence the effective dislocation
velocity. E.g., for solid solution particles, the geometry is
determined by the atomic concentration of solid solution particles
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cat and the particle size dobst:

lS =
b√
cat

, sS = dobst , (3.42)

where subscript S stands for solid solution. Equivalently, for the
Peierls mechanism as thermally activated obstacle one can define

lP = wk , sP = b, (3.43)

with wk denoting the double kink width and subscript P for the
Peierls mechanism. By use of eq. (3.40) we can define the waiting
time t in front of an obstacle as the inverse of the product of the
attempt frequency νa and the success probability P:

tP =
1
νa

exp

(
QP

kBT

(
1−

(∣∣τeff

∣∣
τP

)p)q)
(3.44)

tS =
1
νa

exp

(
QS

kBT

(
1−

(∣∣τeff

∣∣
τS

)p)q)
, (3.45)

where τP denotes the Peierls stress and τS the strength of the solid
solution particles. After a successful event the dislocation will on
average travel a distance that is equal to the mean space between
obstacles λ, e.g., in case of solid solution particles

λS =
b√
cat

(3.46)

or for a Peierls valley

λP = b. (3.47)

The travel time for this distance depends on the travel velocity vT,
which is assumed to depend linearly on the applied stress:

vT =
b
η
|τeff| , (3.48)

where η is a scalar constant inversely proportional to the mobility
of the dislocations.
The effective velocity can then be determined from the waiting time
at an obstacle and the travel velocity between the obstacles.

v =
λ

t + λ
vT

=

(
t
λ
+

1
vT

)−1
(3.49)

The ratio t/λ is an effective value in case that different obstacles
can be thermally activated.

t
λ

=
tP

λP
+

tS

λS
+ ... (3.50)

If we consider Peierls barriers and solid solution particles to be
the dominant obstacles, we obtain the dislocation velocity by
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inserting eqs. (3.44), (3.45) and (3.48) into eq. (3.49).

v =

[
1

νaλP
exp

(
QP

kBT

(
1−

(∣∣τeff

∣∣
τP

)p)q)
+

1
νaλS

exp

(
QS

kBT

(
1−

(∣∣τeff

∣∣
τS

)p)q)
+

η

b
∣∣τeff

∣∣
]−1

sign τ

(3.51)

The sign function at the end of eq. (3.51) ensures that positive
resolved shear stress leads to an expansion of the slipped area,
while a negative shear stress leads to loop shrinkage.

3.3.2 Dislocation climb velocity

Additionally to expansion and shrinkage of a dislocation loop
within the glide plane, the edge components of a dislocation loop
are able to move out of the glide plane by dislocation climb. An
expression for this climb velocity can be found in e.g. Hirth and
Lothe:28 28 J.P. Hirth and J. Lothe. Theory of

dislocations. John Wiley & Sons, New
York, 1982vclimb =

DSD

b

[
exp

(
Ω σc

kBT

)
− 1
]

, (3.52)

where Ω denotes the atomic volume, σc the stress driving the climb
process and DSD the self diffusivity of vacancies, which can be
calculated from the activation enthalpy for self diffusion ∆HSD as

DSD = D0
SD exp

(
−∆HSD

kBT

)
. (3.53)

The stress σc that leads to edge climb is the normal stress
component parallel to the Burgers vector that consists of the
externally applied stress and the internal stress between the two
dipole constituents. The contribution of the external stress is
neglected and it is assumed that the mutual elastic interaction
between dipole constituents is decisive for their out-of-glide-plane
motion.29 29 P. Eisenlohr. On the role of dislocation

dipoles in unidirectional deformation
of crystals. PhD thesis, Universität
Erlangen-Nürnberg, 2004

σc =
µb

2π(1− ν)

2
d̂e + ďe

(3.54)

Provided that Ω σc � kBT one can linearize the exponential term in
eq. (3.52). Inserting eq. (3.54) into this linearized equation finally
leads to the following expression for the climb velocity:

vclimb =
1

π(1− ν)

DSD

d̂e + ďe

µ Ω
kBT

. (3.55)





4
Implementation

4.1 Solution of the mechanical boundary value problem

The simulation of the deformation of crystalline matter poses a
mechanical boundary value problem (BVP). This can be solved by
different numerical strategies. Here, two techniques will be applied:
the (most commonly used) Finite Element Method (FEM) and a
spectral method based on fast fourier transforms. Both rely on the
formulation of a constitutive relation between stress and strain, i. e.,
for a given deformation, the constitutive model has to return a
corresponding stress (and a stiffness). The FEM or the spectral
method, then iteratively ensures balance of linear and angular
momentum.
In this work, the commercially available software MSC.Marc2010

was used for the FEM. The employed spectral solver is an integral
part of DAMASK,1 the “Düsseldorf Advanced Material Simulation 1 DAMASK. Düsseldorf Advanced

Material Simulation Kit. URL http:

//damask.mpie.de/
Kit”, which also contains the constitutive model presented here.
Implementation details concerning the spectral solver can be found
in Eisenlohr et al. [2013]
In order to be able to use the important nonlocal dislocation
transport of the constitutive model, two specialities in the use of the
solvers have to be mentioned.
First, the solution of the dislocation flux relies on a complete
knowledge of the neighborhood relations of all integration points
(IPs) in the model. In the case of the FEM, this information is
reconstructed from the connectivity of the elements that are defined
by the FE solver and accessible via an ASCII text file. Although this
procedure can be quite time consuming for large number of
elements, this has to be done only once during initialization of the
simulation. Another speciality of the nonlocal model is that the
deformation state always has to be known for the neighborhood of
an integration point, since the dislocation transport depends on the
plastic slip activity—thus deformation—at the neighboring material
points. As a consequence, all integration points have to be solved
simultaneously, i. e., the constitutive solution of the integration
points cannot (as is usually done in standard FEM) computed one
after another. Instead, for the calculation of the constitutive
response always the complete information of the entire

http://damask.mpie.de/
http://damask.mpie.de/
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computational domain is required. Since the interface to the FEM
only allows to pass the deformation gradient of a single integration
point, a special numerical strategy is employed that consists of two
stages. In the first stage, the material subroutine collects the
requested deformation gradient of all integration points one after
another. At the same time an “odd” stress and an extremely high
stiffness is returned to the FE solver. This ensures that the solver
does 1) not converge for this increment and 2) not change the
requested deformation gradients for the next iteration. If the latter
is fulfilled, then, in the next iteration, all the requested deformation
gradients are already known when the first integration point is
called. During this call, the material subroutine can then calculate
the constitutive response for all integration points at once. In the
subsequent calls of the other integration points, the already
calculated results are returned one by one.

4.1.1 Material point grid and associated finite volumes

Having in mind the typically irregular grid of integration points in
an FE discretization, finite volumes (cells) are defined that have the
shape of arbitrarily distorted eight-node hexahedrons, each
attached to one integration point (corresponding to a “material
point”).2 The cell volume is denoted by V. Each cell has exactly six 2 In general, the volume center of such

a cell does not have to coincide with
corresponding integration point. Here,
this difference will be neglected.

nearest neighbors n that define its neighborhood. A shared
interface with area An is situated between neighboring cell volumes
and is characterized by its outward pointing unit normal an (see
fig. 4.1).

a6
R

a5
R a4

R

a3
R

a2
R

a1
R

r2
r1

r3

Figure 4.1: Exemplary orthogonal cell
with basis triad r1, r2, r3 in reference
configuration. Interfaces between
neighboring material points are char-
acterized by their outward pointing
normals an

R and have area An
R.

Each cell undergoes a deformation that is defined by the
deformation gradient associated with its material point. This has to
be taken into account for the unit normals an and the interface area
An. As these measures are always shared among two neighboring
material points (see fig. 4.1), their values in the deformed
configuration result, to a first-order approximation, from averaging
the two deformation gradients, F and Fn, valid at the central and
neighboring material point.

F = (F + Fn) / 2 (4.1)

Using the average deformation gradient to define a common
deformed configuration allows for pushing forward to that and
pulling back into the lattice configuration.

an =
Fe

TF−Tan
R∣∣∣∣∣∣Fe

TF−Tan
R

∣∣∣∣∣∣ (4.2)

An = An
R det

(
FeF−1

) ∣∣∣∣∣∣Fe
TF−Tan

R

∣∣∣∣∣∣ (4.3)

Subscripts “R”, none, and “D” refer to quantities defined in the
reference, lattice, and common deformed configuration,
respectively. Note that an remains at unit length due to the
normalizing denominator in eq. (4.2).
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4.2 Coupling of elasticity and plasticity

In order to arrive at a solution for stress equilibrium and strain
compatibility the solver of the mechanical boundary value problem
needs to know the stress response of the integration points to a
given deformation. More precisely, for each time increment ∆t the
BVP solver requests a stress that results from a change in the
deformation gradient from F(t0) to F(t0 + ∆t = t). Depending on
the BVP solver the stress measure that is required is either a
Cauchy stress σ (FE solver) or a first Piola–Kirchhoff stress P
(spectral solver). Both measures can, however, be calculated from
any other stress measure by simple transformation rules (see
appendix A.1). Here, the connection between strain and stress is
based on the Green–Lagrange strain E and its work-conjugate,
the second Piola–Kirchhoff stress S.

S = C : E =
1
2
C :

(
Fe

TFe − I
)

(4.4)

By applying the multiplicative decomposition of the deformation
gradient (eq. (2.3)) one can equally express this in terms of the
plastic deformation gradient Fp.

S =
1
2
C :

(
Fp
−TFTFFp

−1 − I
)

(4.5)

In any case, the partitioning between elastic and plastic part of the
deformation gradient determines the stress response. This
partitioning has to be calculated for each increment in order to
obtain the stress response. While the material initially deforms
purely elastic, the proportion of the plastic deformation will
increase once the yield point of the material is reached. The rate
with which the plastic deformation gradient evolves is determined
by the plastic velocity gradient Lp.

Lp = ḞpFp
−1 (4.6)

Ḟp = LpFp (4.7)

The plastic velocity gradient in turn depends on the second
Piola–Kirchhoff stress acting as a driving force for the plastic
deformation, as well as on the underlying microstructure
represented by some state variables ω. The exact relationship is
part of the constitutive behavior of the material point and is
described by the function h.3 3 Here, the plastic deformation is

assumed to be mediated exclusively
by dislocation glide, so the constitutive
function h is given by eq. (2.6):

h(S, ω) = ∑
ξ

γ̇ξ sξ ⊗ nξ .

Lp = h(S, ω) (4.8)

The microstructure at the material point evolves simultaneously
with the kinematic quantities. So, additionally, there is a second
constitutive equation called g that describes the evolution rate of
the state variables.

ω̇ = g(S, ω) (4.9)
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In some cases it might be necessary to express the change in the
microstructure in terms of an instantaneous jump rather than by a
rate of change. For this case, a third constitutive equation g∆ that is
not formulated as rate equation can equally be defined.

∆ω = g∆(S, ω) (4.10)

The two differential eqs. (4.7) and (4.9) (plus eq. (4.10) for
instantaneous jumps) describe the time evolution of the plastic
deformation gradient and the microstructure and are coupled by
eqs. (4.5) and (4.8), which in turn give the local material response to
the prescribed total deformation in terms of the stress. Under the
assumption that the microstructure, i. e., the state variables, evolves
slower than the stress, one can decouple eq. (4.9) from the others.
Then, the set of equations can be solved in two levels (see fig. 4.2):

1. In an inner level, the stress S is obtained by solving eqs. (2.3),
(4.4), (4.7) and (4.8) at constant state ω.

2. In an outer level, the state ω is obtained by solving eq. (4.9) for a
given stress S.

Time integration of state
(section 4.2.2)

ω̇ = g(S, ω)

∆ω = g∆(S, ω)

Time integration of stress at
constant state (section 4.2.1)

S =
1
2
C :

(
Fe

TFe − I
)

Fe = FFp
−1

Ḟp = LpFp

Lp = h(S, ω = const.)

Figure 4.2: Equations used for the
time integration of the stress and the
microstructural state

4.2.1 Inner level of integration: the stress

In order to solve the set of eqs. (2.3), (4.4), (4.7) and (4.8) for the
time integration of the stress, eq. (4.7) is expressed in an implicit
manner:

Fp(t)− Fp(t0)

∆t
= Lp(t)Fp(t) , (4.11)

where t0 is the time at the beginning of the increment and t the
time at the end of the increment. Then, the plastic and elastic
deformation gradient at the end of the time increment are given by

Fp(t) =
(

I − ∆tLp(t)
)−1Fp(t0) (4.12)

Fe(t) = F(t)Fp
−1(t0)

(
I − ∆tLp(t)

)
. (4.13)

By this linearization procedure, one obtains a system of three
nonlinear algebraic equations with three unknowns S(t), Fe(t), and
Lp(t):

S(t) =
1
2
C :

(
Fe

T(t)Fe(t)− I
)

(4.14)

Fe(t) = A
(

I − ∆tLp(t)
)

(4.15)

Lp(t) = h(S(t), ω(t)), (4.16)

where the known quantity F(t)Fp
−1(t0) is substituted by A for

brevity.
This system can be solved by a Newton–Raphson scheme by
either minimizing the residuum in S, Fe, or Lp. Choosing the norm
of the residuum in S as an objective function has the advantage that
the inverse that is needed for the Newton–Raphson procedure is
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Residuum S Fe Lp

Jacobian 6x6 9x9 9x9

Sensitivity high high low
Implementation Kalidindi et al. [1992] 4.2.1

Table 4.1: Properties of the Newton–
Raphson scheme depending on the
selected residuum

only 6× 6 compared to 9× 9 for Lp or Fe, since the stress tensor is
symmetric, while Lp and Fe are not. However, it is much harder to
guess for S than for Lp, since the latter can change by orders for a
small deviation in S (see table 4.1). So in contrast to e.g. Kalidindi
et al.,4 the Newton–Raphson scheme is chosen to be build 4 S.R. Kalidindi, C.A. Bronkhorst, and

L. Anand. Crystallographic texture
evolution in bulk deformation process-
ing of fcc metals. J. Mech. Phys. Solids,
40(3):537–569, 1992. doi: 10.1016/0022-
5096(92)80003-9

around Lp. Hence, the residuum in Lp for the ith iteration is
defined as

Ri = L̃p
i − h(S(Fe(L̃p

i
))) (4.17)

and the objective function, which will be minimized, as the
Frobenius norm of the residuum.

min
Lp
||R||2 with ||R||2 =

√
R : R (4.18)

L̃p
0
= Lp(t0)

For i = 0, 1, ..., n

Ri = L̃p
i − h(S(L̃p

i
))

Y
∣∣∣∣Ri

∣∣∣∣
2 < εtol N

break Y
∣∣∣∣Ri

∣∣∣∣
2 ≤

∣∣∣∣Ri−1
∣∣∣∣

2 or i = 0 N

αi = 1 αi = βαi−1

solve Ri + R,L̃p •◦∆Li
p = 0 L̃p

i
= L̃p

i−1

L̃p
i+1

= L̃p
i
+ αi∆Li

p

Lp(t) = L̃p
i

Figure 4.3: Newton–Raphson

scheme for Lp. The constant β is
usually chosen to be equal to 0.5.

The minimization procedure employs a modified
Newton–Raphson scheme with variable step length α (see
fig. 4.3). The correction of the ith guess for Lp is based on the
derivative of the residuum and is obtained by solving the following
linear equation for ∆Li

p:

Ri + R,L̃p •◦∆Li
p = 0. (4.19)

The derivative of the residuum depends on the constitutive
equation eq. (4.8) (see eq. (4.17)).

R,L̃p = I− h,S •◦S,Fe •◦Fe,L̃p (4.20)

In this equation the derivative h,S is known from the constitutive
equation (see appendix A.4). The derivative of the second
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Piola–Kirchhoff stress with respect to the elastic deformation
gradient can be derived from eq. (4.14).

S,Fe =
1
2

(
C :

(
Fe

TFe − I
))

,Fe

=
1
2
C :

(
Fe

TFe

)
,Fe

=
1
2
C :

(
I

RFe + Fe
T
I

)
=

1
2
C :

(
I � Fe + Fe

T ⊗ I
)

(4.21)

Similarly, with eq. (4.15), one finds the derivative of the elastic
deformation gradient with respect to the plastic velocity gradient.

Fe,L̃p =
(

A
(

I − ∆tL̃p

))
,L̃p

= −∆t AI

= −∆t A⊗ I

(4.22)

Inserting this into eq. (4.20) one obtains the jacobian.

R,L̃p = I+
∆t
2

h,S •◦C :
(

I � Fe + Fe
T ⊗ I

)
•◦A⊗ I

= I+
∆t
2

h,S •◦C :
(

I � ATFe + Fe
T A⊗ I

) (4.23)

Now, eq. (4.19) can be solved by means of any method for linear
equation systems. Here, a standard solver from the “Linear Algebra
PACKage” 5 is employed, which uses an LU decomposition with 5 http://www.netlib.org/lapack

partial pivoting and row interchanges. The resulting correction ∆Lp

is used to update the guess for Lp. The updated guess is only
accepted if the residuum is decreased in the next step. Otherwise,
subsequent guesses are based on the same (old) jacobian, but with a
step that is cutbacked by a factor β (usually chosen equal to 0.5)
until the solution has improved. This procedure ensures faster
convergence both from the viewpoint of iterations and
computational effort, because the costly solution of eq. (4.19) is not
needed in every iteration.
The Newton–Raphson scheme is regarded converged when the
residuum drops below a given tolerance ε. This tolerance can either
be specified as relative (εr) or absolute value (εa).

ε = max
{

εr
∣∣∣∣Lp

∣∣∣∣
2 ; εr

∣∣∣∣∣∣L̃p

∣∣∣∣∣∣
2

; εa

}
(4.24)

4.2.2 Outer level of integration: the state

The outer level in the integration procedure sketched by fig. 4.2
consists of the integration of the microstructural state variables ω in
time. Different schemes can be used to accomplish this integration.
The following schemes are implemented and tested in order to
compare their performance and choose the best suited for this task:

1. a fixed-point iteration scheme,
2. an explicit Euler integrator,

http://www.netlib.org/lapack
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3. an adaptive Euler integrator,
4. a fourth-order explicit Runge–Kutta integrator, and
5. a fifth-order adaptive Runge–Kutta integrator.

All of the above listed are based on the constitutive rate equation
for the state eq. (4.9).

Fixed-point iteration Kalidindi et al. [1992] originally used a simple
fixed-point procedure to integrate the state. This scheme
subsequently evaluates the state and the stress until a fixed-point
for the state is found. This leads to a final solution with a consistent
stress and state.

i = 0

S0 = S(t0)

ω0 = ω(t0) + g(S0, ω(t0))∆t

i = i + 1

integrate Si = S(ωi−1)

ωi = ω(t0) + g∆(Si , ωi−1)

ωi = ωi + g(Si , ωi)∆t

Until |||ωi ||∞ − ||ωi−1||∞| < εtol

ω(t) = ωi ; S(t) = Si

Figure 4.4: Fixed point integration
scheme for the state ω

However, the error of the final solution cannot be controlled. Only
the error of the fixed-point is known and used as convergence
criterion. How close this fixed-point is to the exact solution is
unknown. Kalidindi et al. [1992] use a second criterion to control
the length of the step size. However, for a negative curvature of the
state (i. e., decreasing evolution rate with increasing state) the error
will always be better than first-order independent of the step size.
A schematic of the integration procedure is given in fig. 4.4.

Explicit Euler integrator The simplest integrator is the explicit
Euler. It consists of a single explicit time step without any control
of the error:

ω(t) = ω(t0) + ω̇(t0)∆t + ∆ω(t0) (4.25)

The last term in eq. (4.25) describes an instantaneous jump in the
state variables that cannot be formulated as rate equation.

ω = ω(t0) ; S = S(t0)

ω = ω + g∆(S, ω)

ω = ω + g(S, ω)∆t

integrate S(ω)

ω(t) = ω ; S(t) = S

Figure 4.5: Explicit Euler integration
scheme for the state ω

The stress integration is executed after the state update, so that the
calculated stress at the end of the increment is always consistent
with the state. A schematic of the complete integration procedure is
given in fig. 4.5.

Adaptive Euler integrator An enhancement of the explicit Euler

integrator is the adaptive Euler integrator, which also performs a
single explicit step, but uses a second evaluation of the state
integration to estimate the error.

ε =
∆t
2

(ω̇(t)− ω̇(t0)) (4.26)

ω = ω(t0) ; S = S(t0)

ω = ω + g∆(S, ω)

ε = − 1
2 g(S, ω)∆t

ω = ω + g(S, ω)∆t

integrate S(ω)

ε = ε + 1
2 g(S, ω)∆t

Y ε < εtol N

ω(t) = ω ; S(t) = S cutback

Figure 4.6: Adaptive Euler integra-
tion scheme for the state ω

This error estimate can then be compared to a given tolerance; in
case that the tolerance is not achieved it can trigger a cutback of the
time step. Since a cutback of the time step would have no influence
on an instantaneous jump in the state, it is natural to not include
the state jump in the error estimate. As for the explicit Euler

integrator the stress integration is done after the state evolution. A
schematic of the integration procedure is given in fig. 4.6.

Fourth-order explicit Runge–Kutta integrator Both the explicit Euler

and the adaptive Euler integrator are first-order schemes, hence
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they produce an accumulated error of the order of ∆t. One way to
reduce the error is to go to higher order integration schemes. The
fourth-order Runge–Kutta integrator provides such a scheme
with an accumulated error of the order of ∆t4. In this scheme, the
state at the end of the increment is calculated on the basis of a
weighted average of four different slopes, namely

1. g1
RK at the beginning of the increment based on the state ω(t0),

2. g2
RK in the middle of the increment based on the state

ω(t0) +
1
2 g1

RK∆t,

3. g3
RK in the middle of the increment based on the state

ω(t0) +
1
2 g2

RK∆t, and

4. g4
RK at the end of the increment based on the state ω(t0) + g3

RK∆t.

Whenever the state is evaluated at intermediate time steps, also the
stress integration has to use only half the time increment and only
half the deformation increment for these integration steps.

ω = ω(t0) ; S = S(t0) ; gRK = 0

a1 = 1
2 ; a2 = 1

2 ; a3 = 1

b1 = 1
6 ; b2 = 1

3 ; b3 = 1
3 ; b4 = 1

6

For i = 1, ..., 3

∆̃t = ai∆t , F̃(t) = F(t0) + ai∆F

gRK = gRK + bi g(S, ω)

ω = ω(t0) + g(S, ω)∆̃t

ω = ω + g∆(S, ω)

integrate S(ω, F = F̃, ∆t = ∆̃t)

gRK = gRK + b4 g(S, ω)

ω = ω(t0) + gRK∆t

ω = ω + g∆(S, ω)

integrate S(ω)

ω(t) = ω ; S(t) = S

Figure 4.7: Fourth-order Runge–
Kutta integration scheme for the state
ω

All in all, one needs four evaluations of the state evolution function
g and four inner level stress integrations. This entails additional
computational costs for each integration step, which, however, often
pays off in nonlinear problems, since it allows much bigger time
increments than first-order methods as e.g. the adaptive Euler

method. A schematic of the integration procedure is given in
fig. 4.7.

Fifth-order adaptive Runge–Kutta integrator This fifth-order adaptive
Runge–Kutta integrator6 combines the high-order solution of the 6 J.R. Cash and A.H. Karp. A variable

order Runge-Kutta method for initial
value problems with rapidly varying
right-hand sides. ACM Transactions
on Mathematical Software, 16(3):201–
222, 1990. ISSN 0098-3500. doi:
10.1145/79505.79507

fourth-order explicit Runge–Kutta integrator with the possibility
of the adaptive Euler integrator to control the error. By an
additional evaluation of stress and state this integrator allows to
estimate the error. The Butcher tableau (see table 4.2) is
constructed in such a way that the additional evaluation can also be
used for the final solution increasing its order to five. A schematic
of the integration procedure is given in fig. 4.8.

0 0 c A
1
5

1
5 0 bT

3
10

3
40

9
40 0 dT

3
5

3
10 − 9

10
6
5 0

1 − 11
54

5
2 − 70

27
35
27 0

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096 0

37
378 0 250

621
125
594 0 512

1771
2825

27648 0 18575
48384

13525
55296

277
14336

1
4

Table 4.2: Butcher tableau for fifth-
order Runge–Kutta integrator. The
notation is given in the upper right
corner.

Benchmark of the state integrators With the exception of the
fixed-point iteration scheme proposed by Kalidindi et al. [1992], all
the integrators that were briefly introduced above are used for the
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ω = ω(t0) ; S = S(t0) ; g1
RK = 0

For i = 1, ..., 5

∆̃t = ci+1∆t

F̃(t) = F(t0) + ci+1∆F

gi
RK = g(S, ω)

ω = ω(t0) + ∑i+1
j=2 aji g j−1

RK ∆t

ω = ω + g∆(S, ω)

integrate S(ω, F = F̃, ∆t = ∆̃t)

g6
RK = g(S, ω)

ω = ω(t0) + ∑6
i=1 bi gi

RK ∆t

ε = ∑6
i=1 di gi

RK ∆t

ω = ω + g∆(S, ω)

integrate S(ω)

ω(t) = ω ; S(t) = S

Figure 4.8: Fifth-order Runge–Kutta

Cash–Karp integration scheme for
the state ω

integration of ordinary differential equations (ODE). The present
application of these integration schemes is special for two reasons.
Firstly, the integrand, namely the state ω, depends on a second
variable that also evolves with time, namely the stress. In order to
solve for both variables, they were uncoupled as explained in
section 4.2 (see also fig. 4.2). Secondly, the integrand does not
necessary need to be smooth, since jumps in the state by means of
the constitutive function g∆ are allowed.
In order to evaluate the effects of these two specialities of the
system, a benchmark test for the different integration schemes is
carried out. As a benchmark problem may serve the compression of
a fully periodic single crystal in [1 2 3] orientation. The mechanical
BVP is solved by means of a spectral solver. The sample is
compressed with a rate of deformation Ḟ = −1·10−3 s−1 in
direction of the z-axis for a time of t = 500 s with varying step size
∆t = 0.05− 50 s, which leads to a final strain of εzz ≈ −0.7. The
reference solution is calculated with the explicit Euler integrator at
a step size of ∆t = 0.005 s, so ten times smaller than the smallest
tested step size. Figure 4.9 shows the results of the benchmark test
for a simple phenomenological constitutive model7 at two different 7 J.R. Rice. Inelastic constitutive

relations for solids: an internal variable
theory and its application to metal
plasticity. J. Mech. Phys. Solids, 19:
433–455, 1971; and J.W. Hutchinson.
Bounds and Self-Consistent Estimates
for Creep of Polycrystalline Materials.
Proceedings of the Royal Society A:
Mathematical, Physical and Engineering
Sciences, 348:101–127, 1976

state tolerances, and for the nonlocal model presented in this work.
A couple of observations can be made for the simulations with the
phenomenological model:

• None of the non-error controlling state integrators (explicit
Euler, explicit Runge–Kutta, fixed-point iteration) could
reach step sizes larger than ∆t = 10 s, while the adaptive
Runge–Kutta could reach ∆t = 20 s for low state tolerance, and
the adaptive Euler went up to ∆t = 50 s for both state
tolerances.

• The relative error in the stress component in loading direction
scales perfectly linearly with the time step for all integrator types
up to a time step ∆t . 1 s. Above that, individual simulations
deviated from this linear scaling behavior, while the general
trend is preserved.

• In most of the simulations the error in stress is little influenced
by the type of state integrator.

• Either the adaptive Euler, or the adaptive Runge–Kutta are
always best in terms of the relative error.

• The relative error in the stress is only slightly—if at
all—improved by a decrease in the state tolerance from 1·10−4 to
1·10−6.

• At the same step size the computation time is always highest for
the higher order methods (explicit and adaptive Runge–Kutta).

• The computation time scales inversely linear with the time step
for the explicit state integrators (explicit Euler, explicit
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Figure 4.9: Effect of time step on the
relative error in the stress for differ-
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columns show the results for a simple
phenomenological power-law for two
different state tolerances: the right col-
umn show the results for the nonlocal
model.
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Runge–Kutta), as well as for the adaptive and implicit
integrators up to the point where no cutbacking or iteration is
needed. Beyond this point, additional internal evaluations due to
cutbacks (adaptive Euler, adaptive Runge–Kutta) or iterations
(fixed-point iteration) raise the computation time again.

• The adaptive Euler integrator at low state tolerance has the
least computational cost per relative error for all step sizes.

For the flux model the following observations can be made:

• Again the adaptive Euler integrator could reach five times
larger step sizes than all other state integrators. The fixed-point
iteration procedure finished the loadcase only for very small step
sizes ten times smaller than for the adaptive Euler.

• In contrast to the results obtained from the phenomenological
model the relative error differs a lot between the state integrators
for the nonlocal model. For the higher order methods (explicit
and adaptive Runge–Kutta) the error does not change at all
with varying time step and is about two orders larger than for
the other integrators. For the first order methods (explicit Euler,
adaptive Euler, fixed-point iteration) the error is similar and
again depends linearly on the time step.

• For all integrator types the computation time is inversely
proportional to the step size and highest for the higher order
methods.

In summary, one can say that for a local constitutive model the
higher order Runge–Kutta methods can slightly improve the
accuracy of the solution, but at the expense of an increased
computational effort. However, for the nonlocal model, the solution
even deteriorates and becomes independent of the stepsize, so the
order of convergence is several orders worse than expected. One
possible reason for this can be the uncoupling of the stress and state
integration. While this works for models where the state indeed
evolves much slower than the stress (as usually in any
phenomenological model), it seems to pose problems for the
nonlocal flux model. Then, the state, namely the dislocation density,
may well evolve as fast as (or even faster than) the stress.
Additionally, the discontinuous jumps in the state evolution
introduced by the g∆ function may be a reason for the decrease in
the convergence order. So, at least in the present benchmark the
higher order methods do not pay off for the state integration. On
the other hand, the fixed-point iteration procedure proposed by
[Kalidindi et al., 1992] reveals an appealing combination of high
accuracy and low computational costs. However, it does not
converge for large step sizes, which led [Kalidindi et al., 1992] to
the introduction of an additional criterion that controls the step
size. The explicit Euler integrator is comparable to the fixed-point
iteration, but allows for slightly larger step sizes. The best
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performance both for the phenomenological and for the flux model
was obtained for the adaptive Euler integrator, which revealed a
comparable error to the other low order methods, but allowed for
the largest step sizes at still very low computational costs (see also
table 4.3).

method formulation error control order observed order costs stability

fixed-point iteration implicit no ? 1 low low
explicit Euler explicit no 1 1 low high
adaptive Euler explicit yes 1 1 low very high
explicit Runge–Kutta explicit no 4 ≤ 1 high high
adaptive Runge–Kutta explicit yes 5 ≤ 1 high high

Table 4.3: Properties of different state
integrators

4.3 Internal state variables

The internal state variables ω comprise all the dislocation densities
as defined in section 3.1.2. They are stored in a one-dimensional
array ordered by dislocation type and corresponding slip system.

ω =
[
$1

e+u , $1
e-u , $1

s+u , $1
s-u , $1

e+b , $1
e-b , $1

s+b , $1
s-b , $1

e± , $1
s± ,

$2
e+u , $2

e-u , $2
s+u , $2

s-u , $2
e+b , $2

e-b , $2
s+b , $2

s-b , $2
e± , $2

s± ,

. . .

$N
e+u , $N

e-u , $N
s+u , $N

s-u , $N
e+b , $N

e-b , $N
s+b , $N

s-b , $N
e± , $N

s±

]
(4.27)

For the time integration of the state variables the two constitutive
functions g and g∆ are needed, which describe the continuous
evolution and possible jumps in the state respectively. Due to the
transport of dislocations this state evolution cannot be described by
an ordinary differential equation, but it also contains some spatial
derivatives (see eq. (3.37)). In the following, it will first be described
how this partial differential equation is solved numerically; then, a
complete description of the constitutive functions that contain the
state evolution can be given.

4.3.1 Finite volume upwind scheme for the dislocation transport
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Figure 4.10: Deformed material point
with exemplary slip plane ξ (inclined)
in intermediate configuration. Inter-
face normals correspond to those of
fig. 4.1. Dashed vectors on slip plane
periphery indicate directions mξ

p of
dislocation motion for a positive shear
increment (loop expansion). Positive
screw dislocations traveling along
mξ

s+ (thick peripheral vector) leave
the material point volume (and enter
the neighboring volume, if existent)
through the dotted interfaces on right,
front, and bottom defining the set Sξ

s+.

The incorporation of the transport of dislocations into the
constitutive model renders the evolution equations for the
dislocation density a system of partial differential equations (see
eq. (3.37)). In order to be able to integrate these PDEs, a finite
volume (FV) scheme will be employed. The differential equation is
integrated over the Wigner–Seitz cell of volume V that surrounds
each discrete material point. By means of the Stokes theorem, the
volume integral of the flux divergence∫

V

div f dV =
∮

∂V

f · a dA = ∑
n

f̃ n · an An (4.28)



implementation 55

is replaced by summing the fluxes8 that pass through the volume 8 the dislocation type p and the slip
system ξ are dropped for brevitysurfaces An with outward unit normal an (see fig. 4.10). The mean

dislocation flux f̃ n at the interface n takes either the value f from
the central point or f n from a neighboring point n such that it
fulfills the following upwind scheme:

f̃ n =


f if f · an > 0

f n if f · an ≤ 0 and f n · an < 0

0 otherwise

(4.29)

This scheme is only first-order accurate and can produce significant
numerical diffusion, but it is unconditionally bounded and highly
stable, and ensures that dislocation density is transferred only in
direction of the actual dislocation motion.
A non-existent neighboring cell (corresponding to a free surface) or
a neighboring cell centered on a material point of differing crystal
orientation or phase (corresponding to a grain or phase boundary)
requires special treatment of fluxes. At free surfaces the entering
flux is simply set to zero and any leaving flux remains unaltered,
since it is assumed to be not impeded by, e.g., oxide layers.
Grain and phase boundaries are treated as interfaces with reduced
transmissivity for dislocations. Therefore, the dislocation flux
density at the interface is decreased by the factor χ. This factor
could account for the lattice compatibility allowing interchange of
dislocations between two neighboring material points. For a grain
boundary, a transmissivity factor 0 ≤ χ < 1 is defined so that just a
fraction of the dislocation flux can enter the neighboring cell.

div f =
1
V ∑

n
χn f̃ n · an An (4.30)

If the transmissivity is set equal to one in the case of material point
neighbors that share the same orientation and phase, one can
reformulate the divergence term of the flux density consistent to the
rate equations given in section 3.2.

fluxΦξ
pu = − 1

V ∑
n

χn f̃ ξ,n
p · an An (4.31)

Any remainder of the dislocation flux that is not transmitted to the
neighboring cell, i. e., the equivalent of the flux multiplied by
(1− χ), gets stuck in front of the grain boundary and is left there as
blocked dislocation density. This provides a sink term for the
unblocked and a corresponding source term for the blocked
dislocation density.

interfΦ
ξ
pu =− 1

V ∑
n∈Sξ

p

(1− χn) f̃ ξ,n
p · an An (4.32a)

interfΦ
ξ
pb =+

1
V ∑

n∈Sξ
p

(1− χn) f̃ ξ,n
p · an An sign vξ

p (4.32b)
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The sign operator in eq. (4.32b) defines the blocked direction of the
immobile dislocation density. The set of interfaces with leaving
fluxes is defined as (see fig. 4.10)

Sξ
p =

{
n
∣∣∣ f ξ

p · an > 0
}

. (4.33)

A special treatment is needed in case that the resolved shear stress
changes its sign between neighboring material points and the flux
vectors of the neighboring cells point towards each other. Then, the
dislocations should clearly stop moving somewhere close to the
interface in between the two neighbors. In the present
implementation, dislocations would, however, be able to move back
and forth between the neighboring cells, and generate an ever
growing plastic deformation in both cells. Hence, these dislocations
are forced to stop at the interface by setting the transmissivity for
this case equal to zero. Then, all dislocations change there state
from unblocked to blocked and cannot generate any further plastic
slip. However, if the sign of the resolved shear stress changes in one
of the cells, then the respective dislocations on both sides are
remobilized again and able to move in opposite direction.
The discretization of the spatial domain into cells entails an upper
bound for the propagation speed of dislocations. Within a time step
∆t on average all dislocations that exceed a velocity v̂ will have
crossed the entire cell volume.

v̂ =
3
√

V
∆t

(4.34)

To ensure that no dislocation can move further than the next
neighboring cell the dislocation velocity will be limited to v̂. In
practice though this will be guaranteed by choosing an appropriate
time step.

4.3.2 State evolution functions

With the reformulation of the dislocation transport according to
section 4.3.1 one is able to express the constitutive functions g and
g∆ in a consistent manner. For brevity, only the first entries of the
functions are given, which correspond to the ten different
dislocation types on the first slip system. All consecutive entries can
be obtained by replacing the superscript for the first slip system by
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the corresponding index.

g(S, ω) =
[

fluxΦ1
e+u + interfΦ

1
e+u + multΦ

1
e+u + mono→diΦ

1
e+u + jogΦ1

e+u ,

fluxΦ1
e-u + interfΦ

1
e-u + multΦ

1
e-u + mono→diΦ

1
e-u + jogΦ1

e-u ,

fluxΦ1
s+u + interfΦ

1
s+u + multΦ

1
s+u + mono→diΦ

1
s+u ,

fluxΦ1
s-u + interfΦ

1
s-u + multΦ

1
s-u + mono→diΦ

1
s-u ,

interfΦ
1
e+b + mono→diΦ

1
e+b ,

interfΦ
1
e-b + mono→diΦ

1
e-b ,

interfΦ
1
s+b + mono→diΦ

1
s+b ,

interfΦ
1
s-b + mono→diΦ

1
s-b ,

mono→diΦ
1
e± + climbΦ1

e± + athAnnΦ1
e± ,

mono→diΦ
1
s± + cross-slipΦ1

s± , . . .
]

(4.35)

g∆(S, ω) =
[

di→monoΨ1
e+u + remobΨ1

e+u ,

di→monoΨ1
e-u + remobΨ1

e-u ,

di→monoΨ1
s+u + remobΨ1

s+u ,

di→monoΨ1
s-u + remobΨ1

s-u ,

remobΨ1
e+b ,

remobΨ1
e-b ,

remobΨ1
s+b ,

remobΨ1
s-b ,

di→monoΨ1
e± ,

di→monoΨ1
s± , . . .

]

(4.36)

4.3.3 Efficient cutback procedure

As a consequence of eq. (4.34), the time step that is needed to
integrate the state can be much smaller than the time step required
by the mechanical boundary value solver at the end of the
simulation chain. Thus, excessive cutbacking is often needed inside
the material subroutine. Due to the non-locality of the constitutive
model, the integration of neighboring material points is not
independent of each other. Hence, also the time step has to be
chosen such that neighboring material points do not diverge in
time. One way of ensuring synchronized time steps in all neighbors
is a fixed time step throughout the whole computational domain.
This means that the one integration point that needs the smallest
time step determines the time step for all. As a result, a lot of
cutbacks would be done for integration points that do not needed
any cutback. Especially for localized deformation problems as, e.g.,
in indentation simulations, this would lead to an inefficient time
integration that hinders practical application. In order to
circumvent this, an efficient cutback scheme is introduced that only
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locally uses small time steps where needed. This cutback scheme,
in principal, allows each integration point to have its own time step.
Nonetheless, if an IP does not converge and has to do a cutback,
then all neighbors have to do a cutback as well, so that
non-converged IPs are always surrounded by a layer of already
converged IPs, all doing the same time integration step. A detailed
description of this synchronization procedure can be found in
appendix A.8.



Validation and comparison to experiments





5
Validation of the dislocation transport equations

Any dislocation slip activity entails a motion of dislocation defects
through the material. This motion is often negligible in a
completely homogeneous material with much larger extent than the
average dislocation spacing. Then, the motion of dislocations does
not become apparent, although the consequence, namely the
shearing of the material, does have macroscopical effect. On a small
scale, the motion of dislocations can play an important role, since it
may on the one hand lead to accumulation of dislocations of one
sign, i. e., GNDs, where the boundary conditions are not uniform;
on the other hand, it may lead to starvation in areas where
dislocation multiplication does not suffice to compensate the
outflow of dislocations due to their motion, i. e., where there are not
enough active dislocation sources. For this reason, the transport of
dislocations is incorporated as an essential part of the constitutive
model.
In this chapter, the transport of dislocations is evaluated for a
simple test case that allows to directly compare to an analytical
solution, hence, that allows to validate the implementation of the
constitutive equations.

5.1 Problem setup

The test case used here is the simplest scenario one can possibly
think of, namely the cross-section of a single expanding dislocation
loop in an fcc crystal under simple shear in direction of the
Burgers vector. The cross-section is taken normal to the Burgers

vector and the slip plane normal. The effect of curvature on the
driving force will be neglected, so that the scenario can be
described by two infinitely long edge dislocations of opposite sign
(see fig. 5.1). The orientation is chosen such that the x-axis points in
direction of the Burgers vector, the y-axis in direction of the slip
plane normal, and the z-axis in line direction of the positive edge
dislocation. A dislocation source is assumed to be located at the
origin of this coordinate system emitting exactly two dislocations of
opposite sign. Under sufficiently high positive simple shear τxy,
these two dislocations separate from each other, i. e., the positive
edge dislocation moves in positive x-direction and the negative
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edge dislocation in negative x-direction. The separation of the two
dislocations is restricted to a distance L = 1 µm by two
impenetrable boundaries at x = ±0.5 µm.

τext
discrete description

x

y

continuum description

x

y

11
µm

11 µm

L = 1 µmh
=

0.
1

µm

Figure 5.1: Periodic geometry of a
narrow slit of plastically deforming
material (white) in an elastic matrix
(gray). The crystal orientation of the
slit is chosen such that the slip sys-
tem has its Burgers vector aligned
with the x-direction and its slip plane
normal with the y-direction. The
boundary between the plastic slit and
the elastic matrix is set impenetrable
for dislocations. The two edge dislo-
cations in the discrete description are
represented by dislocation densities of
positive edge type (red) and negative
edge type (blue) in the continuum de-
scription. In the continuum description
the density that corresponds to one
dislocation is divided on two stacked
cells.

Figure 5.1 shows the geometrical setup that is used to simulate the
previously described scenario. A thin, plastically deformable strip
of length L = 1 µm and height h = 0.1 µm is embedded in an elastic
medium of size 11× 11 µm2. Since a spectral method is used to
solve the mechanical boundary value problem, the whole geometry
is periodically repeated in all directions. A two-dimensional regular
grid of 220× 220 points is adopted in the spectral solution method
to spatially discretize the periodic domain, which corresponds to
20× 2 cells inside the plastic strip. The boundary conditions
enforce a simple shear stress of τxy = τext = 100 MPa; the normal
stress components are set equal to zero; the xy, xz, and yz
components of the deformation gradient are also set to zero. Due to
the employed spectral method, all boundary conditions are kept on
average, but not necessarily at the boundary of the periodic domain.
The final deformation of the material is sufficiently small so that
lattice rotations do not play a significant role.
In the continuum description, the two dislocations that are
supposed to originate from a source in the origin of the geometry
are represented by dislocation densities of positive and negative
edge type ($e+ and $e-), which are initially located directly right and
left of the origin, respectively. For reasons of numerical stability of
the spectral method, one dislocation is conceptually distributed on
two stacked cells. Hence, each of these two cells contains an initial
dislocation density of

$0
e+/- =

1
2

1
(h/2)2 =

2
h2 = 2·1014 m−2. (5.1)

For the moment, any microstructural evolution apart from the
transport of dislocations is disregarded. This means that all rate
terms in the state evolution eq. (3.37) are dropped except for the
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flux and the interface blocking terms. Moreover, the state equations
have to be formulated only for the first slip system. Thus, the 120

state evolution equations that the constitutive model usually
requires for the simulation of fcc crystals reduce to only four.

The flux density vector fp is defined as
the product of the dislocation density
$p and the velocity vector vp, which
points into the direction of motion of
the respective dislocation type.

∂t$e+u = fluxΦe+u + interfΦe+u (5.2a)

∂t$e-u = fluxΦe-u + interfΦe-u (5.2b)

∂t$e+b = interfΦe+b (5.2c)

∂t$e-b = interfΦe-b (5.2d)

For simplicity, the dislocation velocity is assumed to have a linear
viscous velocity law with mobility B.1 1 Any velocity law could be used here

to demonstrate the correct behavior of
the dislocation transport.v = Bτ (5.3)

Table 5.1 lists the values used for the material properties. For a
straightforward analytical treatment, the elasticity tensor is
assumed isotropic.

Property Value Unit

isotropic elasticity constants C11 100 GPa
C12 50 GPa

isotropic shear modulus µ 25 GPa
Poisson ratio ν 0.333
length of Burgers vector b 0.3 nm
dislocation mobility B 30 µm s−1 GPa−1

Table 5.1: Material parameters used for
the simulation of the cross-section of
an expanding dislocation loop.

5.2 Results

Figure 5.3 shows the evolution of the excess dislocation density and
the accumulated plastic shear deformation along the plastic strip.
As also seen in fig. 5.2, the positive applied shear stress drives the
two dislocation densities of different sign apart: the positive edge
dislocation density $e+ moves in positive x-direction and the
negative density $e- in negative x-direction. While the dislocation
density is initially concentrated in the cells directly left and right of
the origin, the transport of the dislocation density also leads to a
diffusive broadening of the density into a bell-shaped distribution
along the direction of motion. The boundary at x = ±0.5 µm, then,
enforces the density to pile up; and the entire density is again
concentrated in a sharp peek. The total sum of the dislocation
density is preserved throughout the entire process.

0 µs:

5 µs:

10 µs:

15 µs:

20 µs:

25 µs:

100 µs:

Figure 5.2: Distribution of excess
dislocation density in the plastic strip
at time t = 0, 5, 10, 15, 20, 25, and
100 µs.

The accumulated plastic slip evolves according to the transport of
the dislocation density (see lower graph in fig. 5.3). First it grows
mainly for the central cells that contain the initial dislocation
density. Then the plastic slip expands to the left and right along
with the expanding dislocation density. Finally, when all the
dislocation density has gathered at the boundary, the accumulated
plastic slip amounts to exactly 3·10−3 throughout the plastic strip.
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This corresponds to a shear of b/h, the shear that results from a
dislocation of Burgers vector b crossing a volume of height h.
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Figure 5.3: Evolution of the dislocation
density (top) and the corresponding
accumulated plastic slip (bottom)
along the plastic strip for different
times t = 0, 5, 10, 25, and 100 µs (from
light gray to black).

The plastic deformation inside the plastic strip results in elastic
strains in the surrounding matrix that ensure the compatibility of
the material. These strains entail a stress field in the material, which
is shown in the left column of fig. 5.4.2 The (homogeneous) 2 Due to the isotropic elasticity, the

components yz and xz are zero.externally applied shear stress is subtracted from the xy shear
component in order to visualize only the internally induced
stresses. Although the origin of the deformation in the strip does
not play a role for the evolving stress field, here, it is precisely the
motion of dislocations through the material. Hence, the elastic
stress field can also be analytically derived by textbook formulas
from the position of the two dislocations at the end of the
simulation. Those stress fields are shown in the second column of See appendix A.2 for the anaytical

expressions of the stress field around
an edge dislocation of infinite length in
an isotropic medium

fig. 5.4. They perfectly match the internal stress fields that are
induced by the plastic deformation of the strip in the simulation.
This is also demonstrated by the plots in the third column of fig. 5.4
that compare the simulated and the analytical results along the
dashed lines shown on the maps. Only slight deviations are visible
directly at the boundary, where the analytical solution predicts
higher values. Indeed, exactly on the boundary, the analytical
solution has a discontinuity with values tending towards positive
and negative infinity on both sides.3 3 The discontinuity in the analytic

stress field stems from the fact that the
equations are strictly spoken not valid
inside the core region of a dislocation.5.3 Discussion

The flux equations for the dislocation density lead to the expected
redistribution of density in the material according to the applied
driving forces. As an important condition, the dislocation content is
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Figure 5.4: Non-zero components
of the dislocation stress tensor as
obtained in the flux model (first
column) and the analytical solution
(second column). For the flux model,
the dislocation stress results from
the overall stress field minus the
externally applied stress. The third
column shows plots along the lines
as indicated in the maps to the left of
both the continuum (black circles) and
the analytical solution (gray dots).
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maintained, so no dislocation sinks or sources are artificially
introduced by the dislocation flux. It should be noted that, in
general, dislocation motion entails the generation of new
dislocation line length by virtue of the expansion of the dislocation
loop’s diameter. However, the present implementation of the
dislocation flux does not aim at a precise description of this
production term, but rather at a way to describe the redistribution
of dislocation density on a scale larger than a single dislocation
loop. Later on, the production of new dislocation density via
(generation of dislocation sources and subsequent) loop expansion
will be implicitly covered by a source term based on standard mean
free path arguments (see section 3.2.4). A different approach is
followed by Sedláček et al.4 and more recently by Hochrainer et al.5

4 R. Sedláček, J. Kratochvíl, and
E. Werner. The importance of be-
ing curved: bowing dislocations in
a continuum description. Philo-
sophical Magazine, 83(31):3735–
3752, 2003. ISSN 1478-6435. doi:
10.1080/14786430310001600213

5 T. Hochrainer, M. Zaiser, and
P. Gumbsch. A three-dimensional
continuum theory of dislocation
systems: kinematics and mean-field
formulation. Philosophical Magazine, 87

(8-9):1261–1282, 2007. ISSN 1478-6435.
doi: 10.1080/14786430600930218

and Sandfeld et al.6 They consider the dislocation curvature as an

6 S. Sandfeld, T. Hochrainer, M. Zaiser,
and P. Gumbsch. Continuum model-
ing of dislocation plasticity: Theory,
numerical implementation, and vali-
dation by discrete dislocation simula-
tions. Journal of Materials Research, 26

(05):623–632, 2011. ISSN 0884-2914.
doi: 10.1557/jmr.2010.92

additional state variable, which allows to evolve the dislocation
density due to a change in the dislocation curvature. However, also
with these formulations, the key aspect of dislocation
multiplication, namely the conditions under which new dislocation
sources are formed, remains to be specified.
As one perceive in figs. 5.2 and 5.3, the implementation of the
dislocation transport induces significant numerical diffusion that is
manifested by the broadening of the dislocation density
distribution. This diffusion is a property of the first-order upwind
scheme that is applied for the integration of the partial differential
equations of the dislocation density. Although higher-order
integration schemes exist that are able to significantly decrease
numerical diffusion (e.g., the class of weighted essentially
non-oscillatory schemes based on work by Liu et al.7), the 7 X.-D. Liu, S. Osher, and T. Chan.

Weighted Essentially Non-oscillatory
Schemes. Journal of Computational
Physics, 115(1):200–212, 1994. ISSN
0021-9991. doi: 10.1006/jcph.1994.1187

additional computational costs would obstruct the application of
the model in many cases. Moreover, most higher-order numerical
schemes can lead to negative values for the dislocation density. On
the other hand, Baskaran et al.8 demonstrated that a semi-discrete 8 R. Baskaran, S. Akarapu, S.D.

Mesarovic, and H.M. Zbib. Ener-
gies and distributions of dislocations
in stacked pile-ups. International
Journal of Solids and Structures, 47(9):
1144–1153, 2010. ISSN 0020-7683. doi:
10.1016/j.ijsolstr.2010.01.007

description of dislocations, with the Burgers vector “smeared out”
in the slip plane, matches discrete results for double-pileups of
dislocations to a high extent.9 This is in agreement with the

9 Baskaran et al. [2010] identify the ra-
tio between the pileup length and the
slip plane spacing as key parameter
that determines how well semi-discrete
and discrete simulations match. If this
ratio was approximately larger than
five, then, they state, the difference
between the two descriptions would be
negligible.

observation that, despite the numerical diffusion of the dislocation
density, the accumulated plastic slip perfectly corresponds to the
density distribution. In particular, at the end of the simulation, the
accumulated plastic slip in the entire deformed strip corresponds to
the deformation that would have been created by a dislocation loop
that expanded exactly about this distance.
The eigenstrains induced by the plastic deformation in the central
strip are shown to result in a stress field that matches the stress
field calculated analytically from the positions of the dislocations.10

10 The high frequency oscillations in
the normal stress components close to
the plastic strip in the first column of
fig. 5.4 can be attributed to numerical
instabilities of the spectral solver.

This observation is a direct consequence of the fact that the
presence of dislocations entails a plastic incompatibility that is
balanced with a corresponding elastic incompatibility, provided the
crystal lattice maintains overall compatibility. The corresponding
lattice strains result in stresses that have to fulfill the elastic
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equilibrium equations.11 In essence, this means that at least the 11 B.A. Bilby and E. Smith. Continuous
Distributions of Dislocations. III. Proc.
Roy. Soc. London A, 236(1207):481–505,
1956

long-range stress field of dislocations is captured by solving
strain-compatibility and stress equilibrium in conjunction with the
transport of dislocations as also recently remarked by Liu et al.12

12 Z.L. Liu, X.M. Liu, Z. Zhuang, and
X.C. You. A multi-scale computa-
tional model of crystal plasticity at
submicron-to-nanometer scales. In-
ternational Journal of Plasticity, 25(8):
1436–1455, 2009. ISSN 0749-6419. doi:
10.1016/j.ijplas.2008.11.006

5.4 Conclusions

The transport of two infinitely long edge dislocations of opposite
sign in an isotropic elastic medium was simulated and compared to
analytical solutions in order to validate the implementation of
dislocation transport in the constitutive model. The following
conclusions can be drawn.

• The dislocation flux equations lead to transport of dislocations as
expected: under a positive applied shear stress, the two edge
dislocations of opposite sign separate from each other by moving
in opposite directions.

• Along its path, the dislocation density produces plastic slip that
exactly amounts to the expected values of one Burgers step
over the height of the considered volume.

• The total sum of dislocation density is preserved during the
redistribution of dislocation density.

• The employed integration scheme for the partial differential
equation of the dislocation flux induces significant numerical
diffusion.

• Despite the numerical diffusion, the final state of dislocation
density and plastic slip matches the analytical solution, when the
entire density is accumulated at the impenetrable boundaries.

• Due to compatibility requirements, the plastic deformation of the
central, plastic strip enforces elastic stresses in the surrounding
matrix. This leads to a stress field that matches the stress field
that is calculated from the position of the dislocations at the end
of the simulation. This means that (at least the long-range) stress
field of dislocations is captured by solving mechanical
equilibrium in a compatible continuum in conjunction with the
transport of dislocations.

• The partial differential equations of the constitutive model
adequately reflect the consequences of dislocation motion, in
particular with respect to generation of strain and stress.





6
Comparison of discrete and continuum
dislocation dynamics simulations

Discrete dislocation simulations can serve as a benchmark for a
continuum theory of dislocation dynamics. Although
computationally expensive, they are an important tool for the study
of the behavior of dislocations, since they retain the discrete nature
of dislocations, hence, naturally include much details as, e.g.,
reactions between dislocations that have to be incorporated by
additional formulations in a continuum model.
It might be possible to obtain equally detailed results with a simple
continuum model, if the resolution is chosen sufficiently high such
that individual dislocation segments can be resolved. However, this
should not be the aim of a continuum model, which has its
advantages when it is applied to larger structures. Nonetheless, an
important question is what happens at the transition from a
discrete to a continuum representation of dislocations. This can
help to improve modeling of dislocation plasticity especially at
small scales.
Hence, a continuum mechanical boundary value problem is sought
that is simple (analytically tractable) and dominated by dislocation
redistribution during plastic deformation such that size effects
might be expected and studied. A suitable two-dimensional
problem for this purpose is a plastic inclusion in an elastic and fully
compatible matrix with both being infinitely long in one dimension.
Broadly speaking, such a situation is reminiscent of the softest grain
within a polycrystalline aggregate starting to deform.

6.1 Problem setup

6.1.1 Geometry

The periodic geometry considered here is shown in fig. 6.1. It
extends infinitely along the out-of-plane z direction and consists of
a periodic elastic medium (gray) with a translation period of
11L× 11L into which a circular plastic inclusion (white) of diameter
L is embedded. Inclusion sizes of L = 1 and 10 µm are selected. The
overall domain is single-crystalline and oriented such that the one
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Figure 6.1: Periodic geometry of
a circular inclusion of plastically
deforming material (white) inside
an elastic matrix (gray). The crystal
orientation of the inclusion is chosen
such that the slip system has its
Burgers vector aligned with the x
direction and its slip plane normal
with the y direction. The boundary
between the plastic inclusion and the
elastic matrix is set impenetrable for
dislocations.

slip system considered here has its slip plane normal along y and
its slip direction along x.1 A regular grid of 550× 550× 1 points is 1 For an fcc lattice this corresponds to

Euler angles equal to ϕ1 = 230.769°,
φ = 114.095°, ϕ2 = 116.565° in Bunge
[1982] notation.

adopted in the (two-dimensional) spectral solution method to
spatially discretize the periodic domain resulting in close to 2·103

cells of size l = L/50.

6.1.2 Inclusion analysis

The static equilibrium of the circular inclusion under imposed shear
stress might be derived from Eshelby’s solution of an ellipsoid
experiencing an eigenstrain and embedded in an infinite isotropic
medium, both having µ and ν as shear modulus and Poisson ratio,
respectively. When viewing the circular inclusion as an ellipsoid
with axes ax = ay = L and az = ∞ the (constant) shear stress within
such an ellipsoid is related to the (pure and also constant) shear
eigenstrain by2 2 T. Mura. Micromechanics of Defects in

Solids. Martinus Nijhoff Publishers,
Dordrecht, 2nd edition, 1987σincl

xy /εE
xy = − 2µ

1− ν

L L
(L + L)2 = −1

4
2µ

1− ν
. (6.1)

Thus, a (simple) shear eigenstrain of

γE := 4 (1− ν)
τext

µ
(6.2)

leads to equilibrium between internal and externally applied shear
stress, i.e., τext + σincl

xy = 0 within the inclusion.3 3 Since, Eshelby’s analytical solu-
tion holds for an infinite medium,
eq. (6.2) is only an approximation to
the present application. As tests with
an ideally plastic inclusion showed,
the surrounding elastic medium is,
however, sufficiently large, so that
deviations from the analytical solution
in terms of the total strain of less than
2 % are expected.

For a limited dislocation content inside the inclusion (as is assumed
here—see next section) this stress-free eigenstrain γE may, however,
not be attainable by plastic shearing. The maximum plastic (simple)
shear of a horizontal strip at coordinate y in the inclusion for a
homogenous distribution of initial dislocation density $0

e is given by

γmax(y) = $0
e b L/2

√
1− (y/0.5L) (6.3)

Hence, an external stress of

τ∗ext = µ
$0

e b L
8 (1− ν)

(6.4)
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will just suffice to exhaust the “plastic capacity” of a circular
inclusion, i. e., reaches the condition γE = γmax for given size and
dislocation content at all coordinates y.

6.1.3 Initial and boundary conditions

An equal amount of positive and negative edge dislocations is
homogeneously distributed within the inclusion (white area in
fig. 6.1), i. e., no net Burgers vector content remains. In the DDD
case, equal numbers of positive and negative edge dislocations are
put at random inside the area that makes up the inclusion. In the
CDD cases, this is carried out in a homogenized fashion by starting
with constant and equal densities $0

e+ = $0
e- = $0

e/2 for positive and
negative edge dislocations on all material points falling within the
inclusion.
The matrix (gray area in fig. 6.1) is free of dislocations and can,
thus, only deform elastically. The boundary between elastic matrix
and plastic inclusion is impenetrable for dislocations; the flux at
this interface is set to zero. All dislocations that arrive at the
interface are immobilized, relabeled internally as “blocked”
dislocations, and do not contribute to plastic slip anymore.
Combined with the fact that dislocation multiplication has been
disregarded for the moment, this leads to a constant overall
dislocation density within the plastic inclusion.
Periodic displacements are enforced in the CDD simulations with a
period of 11L× 11L in x and y directions.
The sample is subjected to simple shear by means of a constant
applied shear stress of τext = 25, 100, and 400 MPa. According to
eq. (6.2) this corresponds to a shear strain of at most 0.043, hence
lattice rotations are expected to be relatively small and can be
neglected in the DDD simulations. The applied stress is hold until
an equilibrated state is reached. In the DDD simulations this is
defined by the rate of plastic slip dropping below 3·10−7 s−1. As it
is not easily possible to directly check for the sliprate in the CDD
simulations, a fixed simulation time is used; the simulation time is
chosen such that the final plastic velocity gradient Lp attains similar
or lower values than in the DDD case.
In order to obtain results comparable to the CDD, the DDD
simulations were repeated up to 500 times and averaged.

6.1.4 Material parameters

Table 6.1 lists the values used for the material properties. Matrix
and inclusion share the same isotropic elasticity tensor. The
particular value of dislocation mobility is not crucial for the results,
since the simulations are followed in time until an equilibrated
situation (negligible shear rate) is reached.
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Property Value Unit

isotropic elasticity constants C11 100 GPa
C12 50 GPa

isotropic shear modulus µ 25 GPa
Poisson ratio ν 0.333
length of Burgers vector b 0.3 nm
dislocation mobility B 3 µm s−1 GPa−1

Table 6.1: Material parameters used for
the simulation of the plastic inclusion
pictured in fig. 6.1.

6.1.5 CDD simulations

A reduced form of the constitutive equations of the CDD model is
used here in order to achieve comparable results to the DDD
simulations. Only dislocation transport, blockage, and dipole
formation and dissociation are incorporated into the state evolution
equations. With one active slip system and only edge type
dislocation density present the evolution equations reduce to

∂t$e+u = fluxΦe+u + interfΦe+u + mono→diΦe+u + di→monoΨe+u/∆t

∂t$e-u = fluxΦe-u + interfΦe-u + mono→diΦe-u + di→monoΨe-u/∆t

∂t$e+b = interfΦe+b + mono→diΦe+b

∂t$e-b = interfΦe-b + mono→diΦe-b

∂t$e± = mono→diΦe± + di→monoΨe±/∆t
(6.5)

The dislocation velocity is assumed to have a linear viscous velocity
law with mobility B.

v = Bτ (6.6)

6.1.6 DDD simulations

The discrete dislocation dynamics model calculates the shear stress
induced by each of the i = 1, . . . , N dislocations located at positions
ri by means of the standard textbook equation for a straight edge
dislocation of infinite length (see appendix A.2). The superposition
of all those dislocation stress fields plus the applied external shear
stress then acts as the local driving force for dislocation motion.

vi = B

(
τext +

N

∑
j=1, j 6=i

σxy

(
ri − r j

))
(6.7)

An exception to this are dislocations that form a very close dipole
with a distance of below one Burgers vector length; the velocity of
these dislocations are explicitly set to zero.
A simple two-dimensional discrete dislocation dynamics code is
used, which is implemented in the commercially available software
MatlabR2011a by MathWorks with an external Fortran routine for
the computationally intensive parts of the calculation. The time
integration of the dislocation velocities uses a first order adaptive
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Euler scheme that allows to control the numerical error of the
dislocation positions.

6.1.7 Evaluation methods

Since there are no dislocation sources considered, the (positive)
strain at position (x, y) can be derived from the positive/negative
dislocation content that passed the dividing plane at that position
from the left/right. In case of CDD simulations, this leads to

γ(x, y) = b
x∫

− L
2

$0
e+ −

(
$e+ + 1

2 $e±

)
dx̃ + b

L
2∫

x

$0
e- −

(
$e- +

1
2 $e±

)
dx̃ .

(6.8)

For the DDD simulations the change from initial, r0
i , to final, ri,

positions of all individual dislocations is evaluated on a grid
corresponding to the CDD simulations. Then the plastic shear at
the cell center (x, y) of a cell of size l follows as

γ(x, y) =
b
l ∑

i∈P
sign

(
mi ·

(
ri − r0

i

))
with P =

{
i :

∣∣∣(ri − (x, y, 0)
)
· (0, 1, 0)

∣∣∣ < l
2

}

∩
{

i :
(

r0
i − (x, y, 0)

)
·
(

ri − (x, y, 0)
)
< 0

} (6.9)

where the first set comprises all dislocations traveling in the
horizontal strip of the cell and the second set comprises all
dislocations that have passed through the cell.

6.2 Comparison of DDD and CDD simulation results for a plas-
tic inclusion under different external stresses

First, the DDD and CDD results are compared for one specific
inclusion size and dislocation density, before systematically varying
those quantities.

6.2.1 Results

Figure 6.2 shows maps of the plastic shear γ, the total dislocation
density $e, and the excess dislocation density $∆e for a plastic
inclusion of size L = 1 µm and with a dislocation content of
$0

e = 2·1014 m−2. DDD and CDD simulation results are directly put
on top of each other for better comparison.
The plastic shear of the circular inclusion systematically increases
from a load of 25 to 400 MPa. For the CDD, it is always very
uniform along the horizontal direction and, except for 400 MPa, also
along the vertical direction, which is characteristic for an Eshelby

type inclusion. At 400 MPa the plastic capacity is exhausted in the
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Figure 6.2: Comparison of CDD and
DDD simulation results of plastic
shear γ, total dislocation density $e,
and excess dislocation density $∆e for
a plastic inclusion of size L = 1 µm
inside an elastic matrix. The homo-
geneous initial dislocation density for
the CDD is $0

e = 2·1014 m−2, which
corresponds to 158 dislocations in the
DDD. A shear stress of τext = 25, 100,
400 MPa was applied.
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entire inclusion. The variation of plastic shear observed along the
vertical direction at this stress is due to the corresponding change
of inclusion width, i. e., maximum distance each dislocation can
glide, which according to eq. (6.3) restricts the plastic capacity from
0.03 (black) in the middle to zero (white) at the top. The plastic
shear in the DDD results reaches the same absolute level. However,
the distribution along the horizontal axes is somewhat different in
that the inclusion deforms slightly more in the center, but forms a
small, yet recognizable boundary layer of reduced strain at the
walls.
In the selected crystal orientation and load case, positive (edge)
dislocations are pushed along the positive x-direction and negative
ones move in the opposite direction. They stop when the local
internal stress field equilibrates the externally applied stress, or
when they reach the hard interface between plastic inclusion and
the elastic matrix. When turning to the profiles of total and excess
dislocation density in fig. 6.2, the increasing redistribution of
dislocations towards the inclusion walls with increasing stress is
obvious. Starting from close to the walls the zone of depleted total
dislocation density gradually grows towards the inclusion center at
increasing loads. In consequence, the polarity of dislocations is
building up at the walls.
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Figure 6.3: Comparison of CDD and
DDD simulation results of plastic
shear γ, total dislocation density $e,
excess dislocation density $∆e, and
dipole dislocation density $e± along
the “equator” of a plastic inclusion
of size L = 1 µm inside an elastic
matrix. The homogeneous initial
dislocation density for the CDD is
$0

e = 2·1014 m−2, which corresponds to
158 dislocations in the DDD. A shear
stress of τext = 100 MPa was applied.

Figure 6.3 shows line plots of the plastic shear and the total, excess,
and dipolar dislocation density along the “equator” of the inclusion
at the intermediate stress level. Again, the monopolar character of
the dislocation density at the wall becomes apparent. In contrast,
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the majority of dislocations in the center of the inclusion forms
dipoles.4 Due to a lack of potential partners of opposite sign, 4 Dipoles in the discrete simulations

where identified by an algorithm
searching for dislocations that mutu-
ally have the same nearest neighbor
of opposite sign located at an angle
between 10° and 80°.

dipoles do not easily form close to the walls. Nonetheless, in the
DDD simulations, dipoles can move if they are pushed by a third
dislocation. This leads to a slight diffusion of dipolar dislocation
density towards the walls, thus the non-vanishing dipolar
dislocation density at the walls for the DDD results.5 A similar 5 Motion of a dislocation dipole does,

however, not generate any plastic
strain.

effect is not observed in the CDD results, since dipoles are
considered immobile here. This also explains why the depletion
zone of the total dislocation density in fig. 6.2 is less pronounced
for the DDD than for the CDD results.
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Figure 6.4: Plastic shear along the
equator of a circular inclusion of size
L = 1 µm inside an elastic medium
at an applied stress of τext = 25, 100,
and 400 MPa. The dislocation density
inside the plastic inclusion amounts
to 2·1014 m−2. Solid lines show the
results of the CDD simulations, dotted
lines those of the DDD simulations;
the dashed line corresponds to the
maximum plastic shear that can be
generated; the bullet symbol corre-
sponds to the shear strain of an ideal
Eshelby inclusion.

Figure 6.4 shows the plastic shear along the “equator” of the
inclusion at increasing stresses of τext = 25, 100, and 400 MPa. The
level of plastic shear strain naturally increases with increasing
stress. However, while at the lower stress levels of 25 and 100 MPa
the plastic capacity suffices to accomplish the requested strain that
is given by the Eshelby strain γE, at the high stress of 400 MPa the
plastic capacity is exhausted and the Eshelby strain cannot be
reached. The reason why the plastic capacity is not fully exploited
at 400MPa is the small fraction of dislocations that is bound in very
close dipoles (see fig. 6.5).

DDD
CDD

25 MPa 100 MPa 400 MPa

$e± / $0
e

0

1
4

1
2

Figure 6.5: Dipole dislocation density
$e± in a plastic inclusion of size L =
1 µm with dislocation content $0

e =
2·1014 m−2 as obtained by DDD and
CDD simulations at different levels
of applied stress τext = 25, 100, and
400 MPa.
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6.2.2 Discussion

Although on average, the plastic shear in CDD and DDD match
very well, the shear profiles along the slip direction are qualitatively
different, since the DDD clearly reveals a boundary layer at the wall
where the CDD does not. The reason for this lies in the
quantization of dislocation slip in the DDD, which by design is not
part of the CDD model. A detailed analysis of this effect follows
later in section 6.4 and section 6.5.
The formation of dislocation dipoles plays an important role in the
mechanical behavior of the system, since it affects the amount of
available mobile carrier density. While in the DDD simulations,
dipoles naturally form by two dislocations of opposite sign passing
in close distance to each other, the formation in the CDD
simulations is modeled by a rate equation that is based on the
stable dipole distance. As shown in fig. 6.5, the dipole dislocation
densities of CDD and DDD simulations match indeed very well,
which indicates that the CDD model for the dipole formation and
dissociation works well. Reasons for the still present differences
between CDD and DDD might stem for instance from the
inhomogeneous distribution of dipole heights6 or additional 6 P. Eisenlohr. On the role of dislocation

dipoles in unidirectional deformation
of crystals. PhD thesis, Universität
Erlangen-Nürnberg, 2004

reactions between dipoles and a third dislocation or two dipoles.7

7 P.D. Neumann. The interactions
between dislocations and dislocation
dipoles. Acta Metall., 19(11):1233–1241,
1971. doi: 10.1016/0001-6160(71)90057-
5

In contrast to the current treatment, the effect of dislocation dipoles
on the mechanical behavior is often described by a local flowstress
(see for instance Groma et al.8 and Sandfeld et al.9). An athermal

8 I. Groma, F.F. Csikor, and M. Zaiser.
Spatial correlations and higher-order
gradient terms in a continuum de-
scription of dislocation dynamics.
Acta Materialia, 51(5):1271–1281, 2003.
ISSN 1359-6454. doi: 10.1016/S1359-
6454(02)00517-7

9 S. Sandfeld, T. Hochrainer, M. Zaiser,
and P. Gumbsch. Continuum model-
ing of dislocation plasticity: Theory,
numerical implementation, and vali-
dation by discrete dislocation simula-
tions. Journal of Materials Research, 26

(05):623–632, 2011. ISSN 0884-2914.
doi: 10.1557/jmr.2010.92

flowstress is usually attributed to precipitate hardening or—in case
of multiple slip—to interactions with forest dislocations from
inclined slip systems; both obstacles cannot be thermally activated
and, hence, constitute a fix barrier for dislocation motion. Yet, for
the case of a single slip system and without any precipitates a local
flowstress is also often attributed to a “jamming” of dislocations
due to the formation of stable dipoles. Similar to the description of
a flowstress in multiple slip, it is related to the square root of the
dislocation density:

τcr = α µ b
√

$ (6.10)

with α usually chosen close to 0.3. The dislocation velocity law in
the present case then reads

v =


B (τ − τcr) if τcr < τ

0 if τcr ≥ τ ≥ −τcr

B (τ + τcr) if τ < −τcr

(6.11)
$e/m−2

1015

0
Figure 6.6: Spurious high frequency
spatial oscillation of the total disloca-
tion density that occurs when a local
flow stress due to dislocations on the
same slip system is introduced in the
constitutive law of the CDD model.

Although a local flowstress might often be adequate to model the
effect of dislocation dipoles, it can not be used here in the context of
a nonlocal dislocation based constitutive model. As shown in
fig. 6.6, the distribution of total dislocation density after plastic
straining exhibits a high-frequency oscillation between regions of
high and low values (typically vertically aligned) that is not
observed in the corresponding DDD results. The reason for its
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occurrence lies in an inherent instability of the system of partial
differential equations for the state evolution when using a kinetic
equation such as eq. (6.11).
For a more straightforward stability analysis of the state evolution
equations, the terms for the dislocation blockage are dropped in
eq. (6.5), since they do not play an essential role in the stability
properties of the PDE. The evolution terms regarding the formation
and dissociation of dipoles are dropped anyways, since their effect
should be covered by the flowstress term in the velocity eq. (6.11).
The resulting system of two PDEs reads

∂t$e+ + ∂x ($e+v) = 0 (6.12a)

∂t$e- − ∂x ($e-v) = 0 (6.12b)

It is useful to express the evolution in terms of the total $ and
excess dislocation density κ by a subtraction and summation of the
latter two equations.10 10 In order to avoid confusion with the

nabla operator the excess dislocation
density is here denoted by the symbol
κ and not by $∆.

∂t$− ∂x (κv) = 0 (6.13a)

∂tκ + ∂x ($v) = 0 (6.13b)

In combination with the velocity law eq. (6.10) and eq. (6.11) one
obtains a system of nonlinear PDEs.

∂t$− ∂x ((Bτ − αµbB
√

$) κ) = 0 (6.14a)

∂tκ + ∂x ((Bτ − αµbB
√

$) $) = 0 (6.14b)

Inside the inclusion, the resolved shear stress τ is homogeneous in
space and slowly varying with time. Hence, τ will be treated as
constant. With the introduction of the two constants a = Bτ and
c = αµbB one obtains:

∂t$− ∂x ((a− c
√

$) κ) = 0 (6.15a)

∂tκ + ∂x ((a− c
√

$) $) = 0 (6.15b)

For c = 0 the flowstress term disappears and the system has elliptic
character and a stable and smooth solution. For non-vanishing
flowstress, i. e., when c > 0, the system has mixed, nonlinear
character and cannot easily be solved. However, the linearized
version of eq. (6.15) turns into a hyperbolic PDE (see appendix A.5).
This indicates that small perturbations in the solution of the
linearized PDE are retained. The nonlinear character of the original
PDE apparently leads to an amplification of these perturbations and
to instability.
Let us assume homogeneous initial conditions for eq. (6.15) with
$(0, x) = $0 and κ(0, x) = 0, which corresponds to the initial
conditions of the current plastic inclusion problem. Now, a small
positive perturbation in the total density is introduced. Having in
mind the numerical integration on a linear grid, the perturbed grid
point exhibits a slightly higher flowstress than the surrounding
integration points. In case that the resolved shear stress is much
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larger than the flowstress, the velocity is not very sensitive to a
change in the flowstress; so the decrease in the velocity will be
smaller than the increase in the dislocation density. Hence, the
dislocation flux will be slightly increased and tend to level out the
perturbation by moving more dislocation content to the neighbors
than is entering from the neighbors.
However, if the resolved shear stress is close to the flowstress, the
behavior changes. Then a small change in the dislocation density
can lead to a large relative change in the velocity. For a resolved
shear stress just above the flowstress, a small positive perturbation
of the total dislocation density then results in a reduced dislocation
flux to the neighbors and a net gain of dislocation density, while the
neighboring integration points will encounter a net loss of
dislocation density (see fig. 6.7). As a consequence, the flowstress of
the central integration point increases and the flowstress of the
neighbors decreases. This effect is self-amplifying and can lead to a
complete depletion of every other integration point and a
corresponding accumulation of dislocation density in between. The
frequency of this oscillation is mesh dependent and does not
correspond to any physical length.

Figure 6.7: Schematic diagram ex-
plaining how oscillations in the total
dislocation density can occur when
the resolved shear stress is just above
the flowstress. The size of the gray
squares indicates the amount of dislo-
cation density and accordingly also the
height of the flowstress. The length of
the arrows indicate the dislocation flux
to the neighbors. A slightly increased
dislocation density and flowstress
at the central point leads to a lower
velocity. If the relative decrease in the
velocity is larger than the increase in
the dislocation density, this results in a
lower dislocation flux. Then, the cen-
tral integration point effectively gains
dislocation density while the neighbors
loose dislocation density. This leads
to a self-amplification and eventually
to complete depletion of dislocation
density at every other integration
point.

For a nonlocal model that incorporates transport of dislocation
density, a flowstress can lead to spurious oscillations in the
solution, if the flowstress contains self-interaction of dislocations.
Yet, the effect might be less pronounced if the flowstress is
dominated by the interaction with other slip systems or if the
applied stresses are considerably higher than the local flow stress
caused by dislocation density. On the other hand, if the dislocation
velocity is not modeled by a linear viscous law, but by a power-law
or an exponential function, the dislocation velocity is much more
sensitive to changes in the flowstress; and the occurrence of
instabilities in the solution becomes more probable.

6.3 Geometric invariance

Another important question is how the mechanical behavior of the
system changes with varying size: which effects occur in the DDD
simulations and to which extent are they reflected by the CDD
simulations?
At least four concurring characteristic lengths of the system can be
identified, which influence the behavior:
1. the inclusion/grain size L,
2. the average dislocation spacing λ = 1√

$ ,
3. the average slip plane spacing h,
4. and the Burgers vector length b,
where the latter is a property of the crystal lattice and is fixed.
One variation of the system occurs when the inclusion size L is
changed while the number of dislocations N is kept constant. This
linearly scales all positions of the dislocations such that the
geometrical arrangement is maintained. In the following, this will
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be called a geometrically invariant change of the system with
respect to the total number of dislocations N.11 11 Since N is required to be a multiple

of 2, eq. (6.16) is in general not exact.

N =
π

4
$L2 (6.16)

6.3.1 Results

Figure 6.8 shows DDD simulation results of the plastic shear γ, the
total dislocation density $e, and the excess dislocation density $∆e
for three different combinations of inclusion size L and dislocation
content $0

e. For the simulations shown in the first two rows of
fig. 6.8, L and $0

e are chosen such that the number of dislocations is
the same, i. e., both setups are geometrically invariant. Clearly, one
can see that the plastic response of the two systems is not the same.
The larger inclusion has generated much less strain than the smaller
one. Also the redistribution of the dislocations differs: while in the
larger, but loosely populated inclusion (top row in fig. 6.8) almost
all dislocations are pushed to the walls, the smaller and denser
populated inclusion (mid row in fig. 6.8) exhibits a significant
amount of dislocation density remaining in the entire inclusion.

6.3.2 Discussion

As already seen, a change of the inclusion size L at constant
number of dislocations N results in a different dislocation density
$. This means that a simple scaling of the geometry entails an
equivalent relative change in two of the other identified
characteristic lengths of the system, namely the dislocation spacing
λ and the slip plane spacing h. According to eq. (6.3), this also
entails an inverse change of the plastic capacity γmax, since an
increased size L leads to a quadratic reduction of the dislocation
density $: the larger the plastic inclusion, the smaller the plastic
capacity. As long as the plastic capacity suffices to accomplish the
required deformation given by the Eshelby strain γE, the
mechanical behavior does not change. Only when the plastic
capacity is exhausted, because all dislocations got either stuck at the
wall or are bound in dislocation dipoles, the plastic strain is limited
and declines with increasing geometry size. This is the reason for
the much lower strain for the larger of the two geometrically
invariant inclusions in fig. 6.8. The plastic capacity of γmax = 0.003
is much smaller than the Eshelby shear strain γE = 0.011.
In case that dislocation multiplication was incorporated in the
simulations, there would be no defined plastic capacity and the
larger inclusion would also generate a strain equal to the
corresponding Eshelby strain as long as enough mobile
dislocations can be produced by dislocation sources. However, the
main goal of the present study is not necessarily a one to one
correlation to a real physical system, but rather the analysis of
single effects on the mechanical behavior especially with regards to
any size dependency. In this respect, a simple linear scaling of the
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Figure 6.8: Comparison of CDD and
DDD simulation results for three
plastic inclusions with sizes L = 1
and 10 µm and dislocation densities
$0

e = 2·1012, 2·1014, and 2·1013 m−2.
The externally applied shear stress
τext is 100 MPa for all three cases. The
first and the second parameter setup
result in the same overall number
of dislocations inside the plastic
inclusion, i. e., geometric invariance;
the first and the third parameter setup
result in the same plastic capacity of
the inclusion, i. e., kinematic invariance.
Since the number of dislocations N has
to be a multiple of 2, the number of
dislocations for the inclusions in the
last two rows does not exactly scale by
a factor of 10.
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geometry at constant number of dislocations is not appropriate to
study a possibly present size effect, since the change of the plastic
capacity leads to different kinematic prerequisites.

6.4 Kinematic invariance

As shown in the last section, a simple scaling of the geometry,
although maintaining the number of dislocations, changes the
plastic capacity of the system. A consequent next step is to keep the
plastic capacity of the inclusion constant while changing the system
size. This so-called kinematic invariance is maintained when the
dislocation density (instead of the dislocation spacing) is inversely
proportional to the inclusion size (see fig. 6.9).
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Figure 6.9: Selected combinations
of size L and (constant) dislocation
density $0

e in the plastic inclusion. Blue
solid lines indicate coincidence of the
maximum attainable plastic shear γmax
(kinematic invariance), red dashed
lines coincidence of the number of
dislocations N (geometric invariance).
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Figure 6.10: Plastic shear along the
equator of the two kinematically
equivalent circular inclusions of size
L = 1 and 10 µm at an applied stress
of τext = 25, 100, and 400 MPa. Solid
lines show the results of the CDD
simulations, dotted lines those of the
DDD simulations.

6.4.1 Results

Figure 6.10 shows the plastic shear stress along the equator of the
two kinematically equivalent inclusions of size L = 1 and 10 µm at
three different levels of applied stress. The predicted plastic
response of CDD and DDD matches to a high degree. Due to the
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kinematic invariance, there is also almost no difference between the
plastic response of the two different inclusions at same stress. Only
directly at the walls, the smaller inclusion tends to form a slight
boundary layer of relatively lower strain, while such a boundary
layer is almost not noticeable for the larger inclusion. A
corresponding pileup of excess dislocations is, however, relatively
weak as shown in fig. 6.11 for the intermediate stress level.
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Figure 6.11: Excess dislocation density
along the equator of the two kinemat-
ically equivalent circular inclusions of
size L = 1 and 10 µm at an applied
stress of τext = 100 MPa. Solid lines
show the results of the CDD simula-
tions, dotted lines those of the DDD
simulations.

6.4.2 Discussion

Two systems (with a random population of dislocations) behave
identically if both geometric and kinematic invariance are fulfilled.
Then, the two systems not only contain the same number of
dislocations N and have the same plastic capacity γmax, but as a
consequence, also the ratio of Burgers vector length to inclusion
size L has to be equal for both systems. Yet, if both the Burgers

vector and the positions of the dislocations are equally scaled, then
the stress field is identical.12 12 For simplicity, the equation for the

shear stress field given here only
considers positive edge dislocations.
The same holds for dislocations of
screw or negative edge type.σi

xy =
N

∑
j=1, j 6=i
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However, since the Burgers vector is a material constant, either
geometric or kinematic invariance but not both can be achieved for
the same material parameters.
So, the two kinematically equivalent inclusions of 1 and 10 µm look
overall very similar, but not exactly the same in the DDD (see
second and third columns in fig. 6.8). The smaller inclusion reveals
a weak, yet recognizable, boundary layer while none is visible for
the larger inclusion. The fact that in the CDD there is no boundary
layer for both inclusion sizes indicates that the effect is related to
the discreteness of the dislocations.
Figure 6.12 explains the effect for a wall of edge dislocations, which
is very similar to what one finds in the circular inclusion except for
the curvature of the wall. In the first row of fig. 6.12 the stress field
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Figure 6.12: Stress field of two edge
dislocation walls of different height l
but same dislocation spacing h. The
upper row shows the stress field of
discrete dislocations, the lower row
the continuum stress field. The graphs
in the third column plot the stress
along the dashed lines of the maps
(gray: small wall, black: large wall);
both stress and space coordinate
are used in dimensionless form, so
σ∗ = σh/(µb)/(2π(1 − ν)) and
x∗ = x/l.

in front of two walls of different height l, but with same spacing of
the dislocations h is shown. This corresponds to two kinematically
equivalent inclusions of different size. Three observations are
important here:
1. The stress field in front of the wall can be subdivided into a

short-range stress field close to the wall, which reflects the
frequency of the dislocation spacing h, and a long-range stress
field further away that is very uniform.

2. The long-range stress field of the wall scales with the wall height
l, i. e., it is equivalent with respect to relative space coordinates
(x∗ , y∗) = (x/l , y/l).

3. The short-range stress field close to the wall does not scale
relative to the wall height, but has a constant thickness of about
one dislocation spacing h, which reflects the equal spacing of the
dislocations in the two walls.

As a consequence of the latter two observations, the short-range
stress field has a larger relative size for the smaller setup. This is
visualized in the graph in the third column of fig. 6.12, which plots
the stress along the dashed lines in the maps.13 13 The relative y positions of the

dashed lines in the maps is not ex-
actly equal. The positions were chosen
such that they correspond to a po-
sition of a dislocation in the wall.
The difference in the position leads
to slight mismatch of the long-range
stress, which is, however, almost not
recognizable.

In a continuum description, a dislocation wall is represented by a
wall of continuously distributed density. Compared to the stress
field of the discrete dislocations, a corresponding stress field of a
wall of continuously distributed density does not reveal an
equivalent short-range stress.14 Hence, the stress field of the two

14 A. Roy, R.H.J. Peerlings, M.G.D.
Geers, and Y. Kasyanyuk. Continuum
modeling of dislocation interactions:
Why discreteness matters? Materials
Science and Engineering: A, 486(1-2):
653–661, 2008. ISSN 0921-5093. doi:
10.1016/j.msea.2007.09.074

linearly scaled pileups is identical with respect to relative
coordinates (see second row of fig. 6.12). Compared to the discrete
wall, the stress field smoothly decays to zero when advancing the
wall.
Turning again to the circular inclusions, this means that in the
continuum description the dislocation density can easily propagate
up to the wall independent of the size of the inclusion. In the
discrete description, however, dislocations “feel” an additional
stress when getting close to the walls. This stress is repelling if the
advancing dislocation moves on (nearly) the same slip plane (see
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graph in the first row and third column of fig. 6.12), so that those
dislocations will tend to reach their equilibrium position in some
short distance from the wall. Since the short-range stress field
depends on the slip plane spacing, it does not change for
kinematically equivalent inclusions of randomly distributed
dislocations with the same average slip plane spacing h defined as

h =
L
N

=
4

π$0
eL

. (6.18)

As a consequence, in the DDD, the influence of the short-range
stress field grows for decreasing size of kinematically equivalent
inclusions and leads to the small boundary layer seen in the left
graph of fig. 6.10. In other words, for a small inclusion, the discrete
spacing between dislocations on the wall becomes apparent while
for larger inclusions the wall appears more and more smooth and
resembles the continuum solution. However, the effect is
comparably small here, since the start configurations of the
dislocations in the DDD simulation are given by a random
distribution of positions inside the plastic inclusion. For such a
random distribution the probability of dislocations to have exactly
the same slip plane is relatively low. Hence, also the probability of
forming pileup configurations that would lead to larger boundary
layers is low. This is also in agreement with work of Groma et al.
[2003], who showed that, if one relaxes a system of randomly
distributed dislocations, the pair-correlation functions for
dislocations decay within only a few dislocation spacings, i. e.,
dislocations do not form strong pileups. Under an applied shear
stress this effect will become even stronger, since dislocations can
more easily pass each other.
In a sense, a random distribution of dislocations is the closest
configuration to a continuous (and homogeneous) dislocation
density. In fact, one can think of a homogeneous dislocation density
as a random distribution of infinitesimal small Burgers vectors.
Thus, the CDD model is a limiting case of the random distribution
of dislocations that was used for the DDD.
Although the assumption of a random distribution of dislocations
is useful to compare with continuum results, it might be far from
the situation in a real crystal, where dislocations are emitted in
pairs from dislocation sources. Hence, the next section will focus on
the effect of correlated dislocation positions in the start
configuration of the DDD simulation.

6.5 Influence of dislocation correlation

In order to study the effect of correlated dislocation positions, an
increasing degree of order is introduced in the start configurations
of the DDD simulations. This means that the dislocation positions
are not anymore completely random. Instead, dislocations are
inserted pairwise, i. e., one positive and one negative dislocation, at
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a (still random) position in the inclusion that can be thought of as a
dislocation source. The number of dislocation pairs that are emitted
by such a single dislocation source is denoted multiplicity m. The
multiplicity of the dislocation sources is controlled, since it
determines the degree of correlation or order in the system.15 The 15 The number of dislocation pairs that

is emitted by a dislocation source is
controlled only in an average manner.
To a certain extent, dislocation sources
are allowed to deviate from the multi-
plicity m as long as the average value
for m per simulation is maintained.

number of dislocations that are on average emitted by a dislocation
source does not change the dislocation content of the system, since
the total dislocation density is kept constant. Only the distribution
of the dislocation positions is changed.
The number of dislocation sources Nsource is determined by

Nsource =
N

2m
=

π$0
eL2

8m
. (6.19)

Then, a change in the number of dislocation sources does not
influence any of the identified characteristic length scales of the
system except for the average slip plane spacing h, which can de
defined (in contrast to eq. (6.18) ) as

h =
L

Nsource
=

8m
π$0

eL
. (6.20)

6.5.1 DDD Results

The most apparent change of the inclusion’s plastic response in the
DDD simulations is the formation of a significant boundary layer.
As shown in fig. 6.13, this boundary layer is not yet visible for a
multiplicity of the dislocation sources of m = 1. For this setup, the
behavior is very similar to a random configuration of dislocations:
more or less the entire monopolar dislocation density is pushed to
the walls. Already for a multiplicity of m = 2, the excess dislocation
density directly at the wall has decreased significantly. Instead, a
boundary layer is formed with a smooth increase in excess density
towards the wall. This boundary layer extents further for
multiplicity m = 3, while the height of the dislocation pileup at the
wall shrinks.

m = 1 m = 2 m = 3
$∆e/$0

e

10

−10

Figure 6.13: Excess dislocation density
distribution in a circular inclusions
of size L = 1 µm with a dislocation
density of $0

e = 2·1014 m−2 and at
an applied stress of τext = 100 MPa.
From left to right the degree of order
in the start configuration of the DDD
increases from one to three pairs of
dislocations per source.

6.5.2 Phenomenological backstress in CDD

While the degree of correlation or order can be directly controlled
in the DDD simulations, this is not easily possible for the CDD
simulations, if one does not want to resolve the initial heterogeneity
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of the dislocation structure. Thus, a backstress term is introduced in
order to phenomenologically capture the effect of the dislocation
pileup seen in the DDD results (fig. 6.13). The chosen formulation
for the backstress is based on similar expressions as proposed by
Groma et al.16 and Evers.17 Groma et al. [2003] derive their 16 I. Groma, F.F. Csikor, and M. Zaiser.

Spatial correlations and higher-order
gradient terms in a continuum de-
scription of dislocation dynamics.
Acta Materialia, 51(5):1271–1281, 2003.
ISSN 1359-6454. doi: 10.1016/S1359-
6454(02)00517-7

17 L.P. Evers. Strain Gradient Crystal
Plasticity based on Dislocation Densities.
PhD thesis, Technische Universiteit
Eindhoven, 2003

expression of a backstress directly from statistical averaging of the
equations of motions of the discrete dislocations. During this
averaging procedure a characteristic length scale has to be
introduced, which is chosen as the mean dislocation spacing 1/

√
$.

This results in an expression for the backstress that scales with the
spatial gradient of the excess dislocation density and with the
inverse of the total dislocation density.

τGroma
b = − Dµb

2π(1− ν)

grads $∆e
$e

(6.21)

where D is a scalar constant. Although based on somewhat
different arguments, the backstress term in Evers [2003] looks very
similar.

τ
Bayley
b = − µbR2

8(1− ν)
grads $∆e (6.22)

They derive this expression by integration of a linear gradient in the
excess dislocation density over a circular area with radius R, where
R is treated as a fitting parameter.
Here, the formulation of Groma et al. [2003] is adopted, however,
with a different characteristic length scale than the mean dislocation
spacing, which would clearly fail to predict the different results as
shown in fig. 6.13, since the mean dislocation spacing is actually
independent of the correlation and in particular the same for all
three simulation results in fig. 6.13. Instead, the average slip plane
spacing is assumed to be the decisive characteristic length. Thus,
the backstress term is formulated as

τb =
µbh̃2

2π(1− ν)
grads $∆e (6.23)

with h̃ as an effective slip plane spacing, which linearly relates to
the average slip plane spacing h by a phenomenological fitting
parameter chosen here to be equal to 1/2.

h̃ =
1
2

h (6.24)

Figure 6.14 compares results obtained by the modified CDD model
with a nonlocal backstress and the DDD results for the three values
of the multiplicity m. While the excess dislocation density matches
almost perfectly for all three cases, the plastic shear is slightly too
low for the CDD model compared to the DDD results. Nonetheless,
the growing boundary layer in the shear distribution is still well
predicted.
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Figure 6.14: Plastic shear and excess
dislocation density along the equa-
tor of a circular inclusions of size
L = 1 µm with a dislocation density
of $0

e = 2·1014 m−2 and at an applied
stress of τext = 100 MPa. Solid lines
show the results of the CDD simula-
tions, dotted lines those of the DDD
simulations. From left to right the
degree of order in the start configura-
tion of the DDD increases from one to
three pairs of dislocations per source;
the corresponding CDD simulations
include a backstress that depends on
the average slip plane spacing h.

6.5.3 Discussion

A distinct boundary layer evolves in the DDD simulations with
increasing slip plane spacing, which can be modeled in the CDD by
a backstress term that is scaled by the slip plane spacing. Yet, the
average plastic shear of the inclusion is only very little influenced
by the evolving boundary layer. Figure 6.15 shows the average
plastic shear in the inclusion for random start configuration and for
one, two, and three pairs of dislocations per dislocation source.
From a random configuration to a multiplicity of m = 1 the average
plastic shear increases slightly by approximately 5 %. For higher
multiplicities m = 2 and 3 the plastic shear decreases again
approximately by 2 % each. This rather weak influence of the
boundary layer on the global mechanical response can be explained
as follows.

random m = 1 m = 2 m = 3

γ

0

0.005

0.010

Figure 6.15: Average plastic shear
γ of a circular inclusion of size
L = 1 µm with dislocation content
$0

e = 2·1014 m−2 and at an applied
stress of τext = 100 MPa as obtained
from DDD simulations. From left to
right the degree of order in the start
configuration of the DDD increases
from completely random to one, two,
and three pairs of dislocations per
dislocation source.

The increased slip plane spacing does not only lead to a stronger
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backstress, hence a larger pileup. It also influences the formation of
dislocation dipoles. As shown in fig. 6.16, from a random
distribution of dislocations to a correlation of m = 3 the dipolar
dislocation density $e± in the DDD simulations shrinks from a
random configuration to multiplicity m = 3 by almost 40 %. The
larger spacing between the slip planes obviously leads to a lower
probability for two dislocations of opposite sign passing each other
at sufficiently close distance. A lower formation rate of dislocation
dipoles entails a higher density of mobile dislocations. Thus, the
impeded dislocation slip near the boundary is almost compensated
by an increased strain in the center of the inclusion (compare first
row of fig. 6.14). Since this effect is not captured in the CDD model,
the dipolar dislocation density here remains almost constant; and
the plastic shear is consequently lower compared to the DDD.

DDD
CDD

random m = 1 m = 2 m = 3

$e± / $0
e

0

1
4

1
2

Figure 6.16: Dipole dislocation density
$e± of a plastic inclusion of size L =
1 µm with dislocation content $0

e =
2·1014 m−2 and at an applied stress
of τext = 100 MPa as obtained from
DDD and CDD simulations. From
left to right the degree of order in
the start configuration of the DDD
increases from completely random to
three pairs of dislocations per source;
the corresponding CDD simulations
include either no backstress (random)
or a backstress that depends on the
average slip plane spacing h (for
m ≥ 1).

One could argue that the effect of the backstress increases
nonlinearly with the slip plane spacing and will be decisive for
larger numbers of dislocations per source. However, for the present
inclusion, an average number of three dislocation pairs per slip
plane was the maximum which still resulted in a stable
configuration.18 Although a single linear pileup would be able to 18 Simulations for larger inclusions

of size L = 10 µm showed to be able
to contain up to 20 dislocation pairs
per slip plane. The relative size of the
boundary layer with respect to the
inclusion is, however, even smaller.

contain up to seven dislocation pairs, multiple simultaneously
operating dislocation sources emit less dislocations, since the
(back)stress mutually exerted from the other pileups leads to an
earlier shut down. In a real crystal, this can partly be compensated
by activation of additional dislocation sources in between the ones
that have already shut down. In this respect, the fixed number of
dislocation sources in the present simulations rather lead to an
amplification of the boundary layer effect.
Moreover, despite the fact that the influence of correlated
dislocation positions generated significant boundary layers, it did
not alter the overall plastic response to a large extent as is usually
implied by the presence of dislocation pileups. Hence, for the
following simulations, the influence of the discrete slip plane
spacing will not be taken into account. Eventually, the only
important size effect that could unmistakably be observed, is the
trivial exhaustion of mobile carrier density for plastic slip by either
locking or accumulation at the boundary.
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6.6 Conclusions

A comparative study between DDD simulations of the present
nonlocal CDD model was carried out for a two-dimensional
representation of an Eshelby type inclusion inside an elastic
medium. The inclusion deformed by single-slip of dislocations of
pure edge character. Dislocation multiplication and annihilation
was disregarded here. The following conclusions can be drawn
from this comparison.

• The continuum model is able to match the discrete dislocation
dynamics results to a large extent. A careful treatment of the
dislocation transport is a natural prerequisite for this good
agreement. Clearly, any local approach would fail to predict the
redistribution of dislocation density and accumulation at the
walls.

• Despite the multiple reactions involved in the formation and
dissociation of dislocation dipoles, a straightforward model of
dipole formation in the CDD is able to reproduce most of the
effects seen in the DDD simulations. Especially the densities of
dipolar dislocations in the CDD and DDD simulations match.

• A local flowstress based on the dislocation density of the own
slip system leads to oscillations in the solution when used in
combination with the transport of dislocations. These
(mesh-dependent) oscillations are not seen in the DDD
simulation results. They develop due to an instability in the
governing partial differential equations that is introduced by the
flowstress term.

• A geometrically invariant change of the system is obtained when
both the inclusion size and all dislocation positions are equally
scaled at a fixed number of dislocations. Then, the mechanical
response remains unchanged as long as the maximum attainable
shear is not reached. Beyond this limit the provided plastic
deformation depends on the product of dislocation density and
inclusion size.

• A kinematically invariant change of the system is obtained when
the inclusion size scales inversely proportional to the dislocation
density. Then, the maximum plastic shear, hence the plastic
response of the system as the product of density and size,
remains unchanged.

• No significant boundary layer is visible in the DDD simulations
if the dislocations are randomly distributed in the plastic
inclusion. This corresponds to the implicitly made assumption of
a homogeneous dislocation density in the CDD.

• If the dislocations are pairwise distributed in the DDD
simulations, a significant boundary layer can arise. This is
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attributed to the concentration of slip on specific slip planes and
the resulting formation of pileups. The boundary layer grows in
extent if the number of active slip planes is reduced at constant
overall dislocation content.

• The boundary layer effect can be reproduced by the CDD model
if a nonlocal backstress term is introduced that depends on the
spacing of the slip planes.

• An increased slip plane spacing also leads to a reduction in
dipolar dislocation density. This leads to an increased strain in
the center of the inclusion, which partly compensates the
reduced strain at the walls due to the boundary layer.

• As a consequence, the overall plastic response of the inclusion
does not change much if the slip plane spacing is increased.

• For the following simulations, the backstress term is considered
insignificant and therefore neglected.





7
Simple shear of an Aluminum bi-crystal with a small
angle tilt grain boundary

The deformation of poly-crystals fundamentally differs from that of
single-crystal material. The reason for that stems from the inherit
anisotropy of plastic deformation caused by the discrete nature of
available modes of lattice deformation. In fcc metals, e.g., the
conservative motion of dislocations that leads to slip is bound to
the {1 1 1} lattice planes. In a poly-crystal, the lattice orientation
changes from grain to grain. Thus, at the interface between two
grains, i. e., the grain boundary, the lattice planes for dislocation
glide usually do not match—the grain boundary impedes
dislocation motion across it.1,2 1 M.D. Sangid, T. Ezaz, H. Sehitoglu,

and I.M. Robertson. Energy of slip
transmission and nucleation at grain
boundaries. Acta Materialia, 59(1):
283–296, 2011. ISSN 1359-6454. doi:
10.1016/j.actamat.2010.09.032

2 B. Liu, D. Raabe, P. Eisenlohr, F. Rot-
ers, A. Arsenlis, and G. Hommes.
Dislocation interactions and low-
angle grain boundary strengthen-
ing. Acta Materialia, 59(19):7125–
7134, 2011. ISSN 1359-6454. doi:
10.1016/j.actamat.2011.07.067

Here, the focus is set on the effect of a small-angle grain boundary.
Small-angle boundaries are of special interest, because the relatively
low orientation difference of the adjacent grains results in minor
differences in the single-crystal behavior of the grains. Thus, the
effect of the grain boundary is not superimposed by a large
difference in the Schmid factors of the grains and becomes visible
more clearly.
An existing shear experiment of an aluminum bi-crystal is chosen
in order to study the effect of the nonlocal dislocation flux with
respect to a grain boundary.3 The available experimental data 3 J.C. Kuo. Mikrostrukturmechanik von

Bikristallen mit Kippkorngrenzen. PhD
thesis, RWTH Aachen, 2004

comprises surface strain maps obtained by means of digital image
correlation (DIC) and force measurements by means of a load cell.
The chosen experimental reference has already been simulated in
an earlier work by Ma,4 who employed a nonlocal model that is not 4 A. Ma. Modeling the constitutive

behavior of polycrystalline metals based
on dislocation mechanisms. PhD thesis,
RWTH Aachen, 2006

based on the redistribution of dislocation density but on additional
kinematical constraints at the grain boundary. The results of the
two different approaches will be compared.

7.1 Problem setup

The sample used in the experiments is a 3.1× 17.0× 2.0 mm3

aluminum bi-crystal of 99.999 wt % purity with a planar grain
boundary normal to the y direction as shown in fig. 7.1.
Orientations of the upper and lower grain are ϕ1 = 264.7°,
φ = 32.2°, ϕ2 = 44.3° and ϕ1 = 277.0°, φ = 32.2°, ϕ2 = 37.4°
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Figure 7.1: Aluminum bi-crystal in
simple shear.

expressed in Bunge5 notation. This orientation relationship induces 5 H.J. Bunge. Texture Analysis in
Materials Science. Butterworths,
London, 1982

a 7.4° symmetric tilt boundary with rotation axis in [1 1 2] crystal
direction, which is perpendicular to the x–y image plane of fig. 7.1.
The tall bi-crystal is clamped normal to the z direction and sheared
parallel to the grain boundary with a constant shear rate of
γ̇ = γ̇xy = −4.5·10−4 s−1 up to a final (technical) shear of almost
−γtec

xy = 0.6 (see [Kuo, 2004] for details). Local deformation of the
sample surface was captured in the area of 3.1× 2.2 mm2 visible in
fig. 7.1 after shear increments of 4.5·10−2 using DIC.

Mesh Boundary conditions

x

y

z
fix x fix y
fix z move x

Figure 7.2: Mesh and boundary condi-
tions of the model used for the finite
element simulations.

For the simulations the sample geometry is meshed by 16× 15× 5
quadratic finite elements of reduced integration capacity with
decreasing element size towards the grain boundary (see fig. 7.2).
The uppermost and lowest two levels of elements mainly serve as
support in order to achieve realistic boundary conditions. The
fixation of the nodes in z direction mimics the clamping of the
sample. Owing to the fact that this clamping does not hold
perfectly and that the sample is slightly pulled out of the clamp in
the experiment, only part of these nodes are fixed in x and y
direction. The model is deformed in simple shear by means of a
linearly increasing displacement in x direction that is applied to the
top surface nodes and the nodes that touch the clamp on the right
side of the sample in fig. 7.1.
The bi-crystal deformation is simulated by means of four different
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models: a standard phenomenological model following Rice6 and 6 J.R. Rice. Inelastic constitutive
relations for solids: an internal variable
theory and its application to metal
plasticity. J. Mech. Phys. Solids, 19:
433–455, 1971

Hutchinson,7 and three different variants of the constitutive model

7 J.W. Hutchinson. Bounds and Self-
Consistent Estimates for Creep of
Polycrystalline Materials. Proceedings
of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 348:
101–127, 1976

that is presented in this work. The first variant does not consider
any flux of dislocations, which renders the model purely local,
although it is still based on dislocation mechanics. The second
variant includes dislocation flux with a transmissivity set to χ = 1.0
to reflect the assumption of perfect slip transfer at the low-angle
grain boundary. Finally, the third variant also includes flux, but sets
the transmissivity to χ = 0.0 at the grain boundary, so that no
dislocation can cross the boundary between the two crystals.

Single-crystal Bi-crystal
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Figure 7.3: Stress strain curve of an
aluminum single-crystal (left) and
bi-crystal (right) under simple shear.
The single-crystal curve is used for
fitting of the material parameters,
the bi-crystal curve for validation.
Experimental data (dashed lines) is
taken from Kuo [2004].

A stress–strain curve of a single-crystal simple shear experiment of
the same material as the bi-crystal is used to fit the material
parameters (table 7.1 and fig. 7.3).8 8 F. Roters, Y.W. Wang, J.C. Kuo,

and D. Raabe. Comparison of
single crystal simple shear defor-
mation experiments with crystal
plasticity finite element simulations.
Adv. Eng. Mater., 6(8):653–656, 2004.
doi: 10.1002/adem.200400079

7.2 Results

In addition to the single-crystal results used for parameter fitting,
fig. 7.3 also shows the stress-strain response of the bi-crystal. All
four simulations predict a lower stress response than measured in
the experiment (dashed line). Yet, there is a difference between the
phenomenological and the dislocation-based model. While the
phenomenological model predicts an almost constant hardening,
the dislocation-based model shows a clearly increasing hardening
after a shear of about 0.15, which is also visible in the experimental
data. In general, the stress response of the physics-based model is
closer to the experiment than the phenomenological model. There
is virtually no difference in the stress-strain curve of the three
variants of the physics-based model.
Figure 7.4 compares the von Mises strain distribution at different
levels of deformation between experiment and simulation. The
strain deformation pattern obtained in the experiment
unambiguously reflects the bi-crystal character of the sample: high
deformation in the interior of the grains and a zone with noticeably
less shear around the horizontal grain boundary. This partitioning
of strain between the upper and lower grain is well captured by the
physics-based model, as well as the main locations and directions of
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Property Value Unit

cubic elasticity constants C11 106.75 GPa
C12 60.41 GPa
C44 28.34 GPa

isotropic shear modulus µ 26.27 GPa
Poisson ratio ν 0.345
length of Burgers vector b 0.286 nm
atomic volume Ω 0.017 nm3

minimum edge dipole separation ďe 1.6 nm
minimum screw dipole separation ďs 10 nm
dislocation multiplication constant λ0 60
edge contribution to multiplication k1 0.1
initial overall dislocation density $0 6 ·1010 m−2

self-diffusivity (at T = 300 K) DSD 7 ·10−29 m2 s−1

solid-solution activation energy QS 1.25 eV
solid-solution concentration cat 1.5 ·10−6

solid-solution size dobst 0.572 nm
Peierls stress τP 0.1 MPa
double kink width wk 2.86 nm
energy barrier profile constants p 1

q 1
attack frequency νa 50 GHz
dislocation viscosity η 0.01 Pa s
edge jog formation factor k3 1

Table 7.1: Material parameters used to
simulate simple shear of the aluminum
bi-crystal
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xy = −0.360

phenomenological
model

local
physics-based

model

nonlocal
physics-based
model (χ = 1)

nonlocal
physics-based
model (χ = 0)

experiment

0.00 0.08 0.16 0.24 0.32
εvM

Figure 7.4: Surface maps of von Mises
logarithmic strain for an aluminum
bi-crystal with small-angle grain
boundary at different levels of simple
shear. Experimental data taken from
Kuo [2004].
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Figure 7.5: Evolution of the mean
shear stress εxy, the mean crystal
rotation ω, and the mean accumulated
plastic shear γ per slip slip system for
the upper and the lower grain in the
bi-crystal for the physics-based model
with flux and zero transmissivity at
the grain boundary. Slip systems are
indicated by numbers next two the
graph.

the shear gradients, although the contrast between grain interior
and grain boundary is not as high in the simulations as in the
experiment. The three variants of the physics-based model reveal
only slight differences in the strain distribution. The
phenomenological model is not able to reproduce the partitioning
of strains with the zone of reduced strain around the grain
boundary.
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Figure 7.6: Initial lattice orientation in
upper and lower grain of the bi-crystal
with slip direction b and slip plane
normal n of slip system 6.

A more quantitative evaluation of the deformation evolution is
given in fig. 7.5 for the nonlocal model with zero transmissivity at
the boundary. The figure shows the evolution of the lattice rotation,
the total shear strain (with experimental data as dashed line), and
the accumulated plastic slip as a function of the applied shear and
separated for the upper and lower grain. In both experiment and
simulation the lower grain initially carries virtually all the
deformation until plastic slip in the upper grain is activated and
eventually takes over the deformation. The evolution of the
accumulated plastic slip in the rightmost column of fig. 7.5 shows
that both grains initially exhibit single glide on the same slip
system 6. This slip system is (initially) oriented such that the slip
plane normal points into negative x direction and the Burgers

vector into y direction (see fig. 7.6), thus the slip plane lies
orthogonal to the grain boundary. Due to the symmetry of the
stress state, this slip system reveals a high theoretical Schmid factor
although the resulting dislocation slip does not correspond to the
externally applied displacement and leads to a shear deformation
perpendicular to it. As a consequence, a lattice rotation around the
z axis of nearly the same amount is needed to compensate for the
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given boundary conditions (see first column in fig. 7.5). At about
γtec

xy = −0.2 secondary slip systems start to contribute while the
primary (number 6) stays predominant.
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Figure 7.7: Profiles of the von Mises
logarithmic strain εeq, the total dis-
location density $ and the critical
resolved shear stress τcr on the mainly
active slip systems 6, 11 and 12. The
line profiles are taken orthogonal to
the grain boundary in y-direction at
a shear deformation of γtec

xy = −0.36.
Dashed lines in the total shear strain
profiles show experimental data taken
from Kuo [2004].

Figure 7.7 shows line plots of the strain profile along the y direction
across the grain boundary. The experimentally observed zone of
reduced deformation (last row of strain maps in fig. 7.4) appears as
a sharp minimum in the strain profile (dashed line). This cusp is
also present in the physics-based simulation results but not for the
phenomenological model where, in contrast, the strain has a
maximum at the grain boundary. For the two nonlocal models with
fluxes of dislocations one observes a slightly stronger dip in the
strain at the grain boundary than for the local model variant.
The second column of fig. 7.7 shows line plots of the total
dislocation density and the density on the mainly active slip
systems 6, 11, and 12.9 For all three variants of the physics-based 9 Since the phenomenological model

does not have the dislocation density
as an internal state variable, there are
no results shown for this model.

model one finds local maxima of the dislocation density in the
grain interior that correspond to the maxima of the strain profiles in
the first column. The local variant of the model reveals a sharp
minimum of dislocation density directly above the grain boundary
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in the upper grain, while for the two nonlocal variants this
minimum is not as pronounced. As a result of the dislocation
redistribution in the nonlocal model variants, dislocation density
accumulates in front of the boundary, especially on slip system 6.
This dislocation pileup is more pronounced for the nonlocal model
with no transmission at the boundary than for the fully
transmissive boundary.
The third column of fig. 7.7 shows line plots of the critical resolved
shear stress τcr on slip systems 6, 11 and 12. The phenomenological
model reveals a strong link between the critical resolved shear
stress and the von Mises strain: both profiles follow the same trend
with a slight maximum at the boundary. For the physics-based
model the critical stress is significantly smaller due to the
completely different kinematics.10 The three model variants have a 10 In fact, the meaning of the critical

resolved shear stress differs in both
models: in the present physics-based
model this stress constitutes the
mechanical limit below which no
dislocation motion is possible. In
the phenomenological model this
stress rather plays the role of an
effective parameter that controls plastic
deformation; so plastic slip is also
possible below the critical stress in the
phenomenological model.

very similar critical stress in the grain interior, but differ at the
grain boundary: the nonlocal variant with no dislocation
transmission at the boundary reveals a strong increase of the critical
resolved shear stress for slip systems 11 and 12 at the boundary,
while the increase is less pronounced for the other two variants; the
mainly active slip system 6 faces the highest resistance to
dislocation glide in the nonlocal simulation with complete
transmission at the boundary.

7.3 Discussion

The specific orientation of the bi-crystal with respect to the applied
deformation gives rise to a deformation mode that is rather
unexpected for a simple shear experiment: the main dislocation
activity entails motion of dislocations perpendicular to the applied
shear deformation—and perpendicular to the grain boundary. This
particularity leads to a pileup of dislocations towards the grain
boundary in the simulations for the nonlocal model with
transmissivity equal to zero (see second column of fig. 7.7), while
the pileup is less pronounced in the simulation with transmissive
boundary, and not visible in the local model without any
dislocation flux. However, this does not lead to a noticeable
difference in the global stress response (see fig. 7.3) and does not
significantly alter the distribution of strains in the bi-crystal (see
rows two to four in fig. 7.4). Only in the strain line plots across the
grain boundary (first column of fig. 7.7) one can observe that both
nonlocal models are slightly less compliant directly at the grain
boundary than the local model; however, the effect amounts only to
about five percent compared to the local model.
The reason for the strain at the grain boundary not being affected
much can be understood from the specific mode of deformation of
the bi-crystal. As shown in fig. 7.5, the deformation of the two
crystals is dominated by single-glide on slip system 6 up to a total
shear of ten to fifteen percent (depending on the specific grain)
until two secondary slip systems 11 and 12 start to produce plastic
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strain. This is also reflected by the stress strain curve of the
bi-crystal in fig. 7.3, which for both (physics-based) simulation and
experiment shows an increasing hardening at about fifteen percent
when the predominant slip system 6 becomes less favorable for
plastic glide due to strong lattice rotation and the secondary slip
systems 11 and 12 become active in both crystals (see fig. 7.5).
Consequently, at that point the interaction of the now three slip
systems leads to a faster growing critical resolved shear stress
(CRSS).
More interesting than the global behavior of the individual slip
systems is the local behavior, especially at the grain boundary,
where one does not observe a strong influence of the dislocation
transport and transmissivity on the strain. Looking at the line plot
across the CRSS on the three mainly active slip systems (third
column of fig. 7.7) is helpful in this respect. While both nonlocal
models reveal higher values for the CRSS on slip systems 11 and 12
than for the local model, the difference for slip system 6 is not very
pronounced, although exactly this system is decisive for the total
deformation and creates strong pileups at the grain boundary. The
reason that slip system 6 does not significantly increase its slip
resistance is related to the way the CRSS is designed: there is no
direct self-interaction of the dislocation density with the same slip
system (see table 3.4). In the present model a slip system can only
self-harden indirectly by creation of edge-jogs via annihilation of
screw dipoles (see section 3.2.6). Much more effectively, any
dislocation activity on different slip planes increases the slip
resistance. This is the case for slip systems 11 and 12, which do not
share the slip plane with system 6, hence feel the strong dislocation
pileup on 6 in terms of additional Lomer and Hirth locks,
respectively. In contrast, slip system 6 does not face any significant
hardening due to pileups on other slip systems. E.g., slip systems
11 and 12 do not form pileups at the boundary, since their
orientation is such that the slip plane lies almost parallel to the
grain boundary. So the transport and pileup of dislocations
towards/at the boundary does not remarkably alter the strain
response.
Ma [2006] also reports an increased hardening of the grain
boundary, although he does not quantify the effect. It can be
presumed that the effect will be larger for two reasons. Firstly, the
CRSS in Ma [2006] considers also self-hardening. This can in
particular lead to an increased hardening of the mainly active slip
system 6 due to the strong pileup at the boundary. The second
more obvious reason is the explicit additional hardening that Ma
[2006] introduces at the grain boundary by an increase in the
activation energy of plastic slip. He argues that dislocations can
only cross the grain boundary—and produce slip—if misfit
dislocations at the boundary balance out the orientation change of
the lattice of the two adjacent grains; the formation of these misfit
dislocations required an additional amount of energy, hence the
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increased activation energy for slip. However, the increased
hardening is reasoned by an implied pileup of GNDs at the
boundary. The results of the present model indicate that this effect
is actually rather weak, or at least confined to a very small region
that does not influence the overall strain behavior significantly.
In the experiment, one can clearly perceive a zone of reduced
deformation around the grain boundary (see fig. 7.4). This zone can
be reproduced by all three variants of the physics-based model, yet
not for the phenomenological model. The fact that already the local
variant of the physics-based model captures the effect of the grain
boundary gives further evidence that—in this example—the
accumulation of dislocation density at the grain boundary is not
decisive for the plastic response. Instead, the intricate dependency
of dislocation slip on the lattice orientation and the boundary
conditions seems to be more important here. Given that the
kinematics of dislocation slip for the individual grains is properly
described, the solution of mechanical equilibrium in a compatible
continuum already suffices to correctly predict the influence of the
grain boundary.11 The less sophisticated phenomenological model 11 This might, however, change for

smaller grain sizes when dislocation
slip is more confined and dislocation
pileups gain influence.

does obviously not provide a sufficient description of the
kinematics and, hence, fails to predict the influence of the grain
boundary.

7.4 Conclusions

The simple shear deformation of an Aluminum bi-crystal with
small angle tilt grain boundary has been simulated and compared
to an experimental reference. The following conclusions can be
drawn:

• The plastic deformation of the bi-crystal is almost exclusively
generated by dislocation glide on a slip system that initially is
oriented with Burgers vector perpendicular to the direction of
the prescribed shear displacement; so dislocation slip is almost
perpendicular to the shape change of the sample. This entails
large lattice rotations in order to accomplish the prescribed
simple shear deformation.

• In agreement with experiments, the physics-based model
predicts an increase in the hardening behavior at about 20 %
strain. This correlates with the change from single-glide to
multiple-glide in the simulation, hence is attributed to stronger
cross-hardening. The phenomenological model does not predict
this change in the hardening behavior.

• Due to the fact the mainly active slip system generates slip
(initially) almost perpendicular to the grain boundary,
dislocation density accumulates at the grain boundary in the
nonlocal model variants that include dislocation transport.
Although this leads to a slightly increased hardening at the
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boundary, it does not significantly alter the strain response
compared to the local (non-flux) model variant.

• A distinct reduction in strain around the grain boundary, which
is observed in the experiment, is predicted by both the local and
nonlocal physics-based models, however, not for the
phenomenological model. While the failure of the
phenomenological model is in agreement with Ma [2006], the
behavior of the physics-based model is reasoned differently here.
Ma [2006] relates the proper behavior of his physics-based model
to its nonlocal hardening properties. In contrast, the present
results indicate that indeed a correct description of the kinematic
hardening suffices.

• The influence of the redistribution of dislocation density by
transport of dislocations did not influence the plastic response
significantly. The change of the grain boundary transmissivity
from transmissive to blocking resulted in a different distribution
of dislocation density, but did not significantly affect the strain
response.

• For large grain sizes as in this example and given a sufficient
number of dislocation sources, the effect of the dislocation flux
on the constitutive response can presumably be neglected.





8
Indentation of single-crystalline nickel
with a wedge indenter

The indentation of metals is widely used for material
characterization and the derivation of mechanical properties.
Although the deformation process follows in principal a simple
setup, the boundary conditions and kinematics involved are highly
complex. Hence, a thorough understanding of the underlying
physics especially with respect to the plastic deformation is of high
importance.
One reason for the complexity of the deformation state is its strong
variation both in space and time. Since the load of the indenter is
locally applied, high gradients in the stress, strain and rotation field
naturally arise. As e.g. demonstrated by Zaafarani1 for a 1 N. Zaafarani. Experimental and theo-

retical investigation of nanoindentation in
a Cu-single crystal. PhD thesis, RWTH
Aachen, 2008

sphero-conical indenter, the loading of the material under the
indenter ever changes with increasing indentation depth and
induces a rapid change of the activated slip systems with space and
time.
Variations in the plastic deformation also lead to a heterogeneous
distribution of the dislocation content: regions of high plastic slip
activity naturally contain more dislocation content than low
deformation regions. This relation between slip—hence slipped
area—and statistically stored dislocation density (SSD density) can
well be described by a local dislocation-based constitutive model by
means of the Orowan equation. If all dislocation loops are
statistically equally distributed within and between the slip
systems, then on average the signed character of the single
dislocation segments countervail and the ensemble of dislocations
appears neutral. A gradient in plastic slip activity, however, gives
rise to an imbalance of dislocation segments of positive and
negative character, thus an excess of signed dislocation density, also
called geometrically necessary dislocation density (GND
density).2,3 It is these GNDs that are needed to explain the

2 E. Kröner. Kontinuumstheorie der
Versetzungen und Eigenspannungen,
volume 5 of Ergebnisse der angewandten
Mathematik. Springer, Berlin, 1958

3 M.F. Ashby. The deformation of plas-
tically non-homogeneous materials.
Philosophical Magazine, 21(170):399–424,
1970. doi: 10.1080/14786437008238426

presence of gradients in the rotation field. However, they cannot
directly be predicted by any local constitutive law, since their origin
is inherently nonlocal.
For that reason, the present nonlocal constitutive model will be
employed to an existing reference of an indentation experiment,
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which allows to directly compare model predictions with the
experimental findings.

8.1 Problem setup

An elegant wedge indentation study published by Kysar et al.4 (see 4 J.W. Kysar, Y. Saito, M.S. Oztop,
D. Lee, and W.T. Huh. Experimen-
tal lower bounds on geometrically
necessary dislocation density. In-
ternational Journal of Plasticity, 26(8):
1097–1123, 2010. ISSN 0749-6419. doi:
10.1016/j.ijplas.2010.03.009

also Kysar et al. [2007] for earlier studies on copper and aluminum)
is used as a suited reference example for comparing simulations
with experiment. In this experimental work, pure single-crystalline
face-centered cubic Nickel was indented by a 90° wedge indenter to
an indentation depth of about 200 µm. The indent was placed into a
(0 0 1) oriented surface; the indenter axis was aligned parallel to the
[1 1 0] lattice direction (see fig. 8.1). On the basis of work by Rice,5 5 J.R. Rice. Tensile Crack Tip Fields

in Elastic-Ideally Plastic Crystals.
Mechanics of Materials, 6:317–335, 1987

Kysar et al. [2010] suggest that these specific loading conditions
lead to a plane strain deformation state accomplished by the
collective activation of certain slip systems. After indentation, the
sample was cut in half normal to the wedge indent and the exposed
surface was analyzed by electron backscatter diffraction (EBSD).

90°

3mm

1.
2m

m

5µm
Figure 8.1: FE mesh used for the
simulation of wedge indentation.
The indenter is modeled by two flat
surfaces that have an inclination angle
of 90° and a flat tip of 5 µm width.

The experiment is modeled by a finite element simulation with a
planar mesh of 1092 hexahedral elements with quadratic
interpolation functions and reduced integration capacity as shown
in fig. 8.1. Except for the indented surface, all nodes on outer
surfaces of the model were constrained to in-plane motion, i. e., no
displacement normal to the respective surface was allowed. In
particular, displacement in direction of the wedge indent was
constrained to be zero on the front and back surface in fig. 8.1 in
order to mimic plane-strain conditions. Due to the plane-strain
conditions only one mesh element is used in depth. The lateral
extent of the FE mesh does not cover the complete sample domain
(which was approximately 1× 1× 1 cm3), but is chosen sufficiently
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large for the boundaries to not influence the predictions. The wedge
indenter was modeled by two rigid surfaces that draw an angle of
90° and a flat tip surface of 5 µm width (see blow-up in fig. 8.1).
The exact shape of the indenter tip does, however, not play an
important role as long as the tip geometry is smaller than the
minimum distance between nodes, since in the simulation contact is
evaluated only at and not in between nodes. Contact conditions
between the indenter and material surface were modeled by
Coulomb friction with a friction coefficient of 0.3.6 6 The friction conditions in the exper-

iment are not known to the author.
However, the influence of the friction
coefficient on the simulation results
was found to be rather small.

The sample coordinate system is chosen such that the indentation
proceeds in negative z direction and the indenter axis is parallel to
the x direction. This implies an orientation of the single-crystal of
ϕ1 = 315°, φ = 0°, ϕ2 = 0° expressed in Bunge7 notation, such that 7 H.J. Bunge. Texture Analysis in

Materials Science. Butterworths,
London, 1982

in the reference configuration the [1 1 0] direction corresponds to the
x axis, [1 1 0] direction to the y axis and the [0 0 1] direction to the z
axis, respectively.
Elastic constants of Nickel are taken from Hirth and Lothe.8 An 8 J.P. Hirth and J. Lothe. Theory of

dislocations. John Wiley & Sons, New
York, 1982

experimentally obtained value for the minimum dipole separation
distance ďe is taken from Tippelt et al. [1997].9 The self diffusivity

9 B. Tippelt, J. Breitschneider, and
P. Hähner. The Dislocation Mi-
crostructure of Cyclically Deformed
Nickel Single Crystals at Different
Temperatures. physica status so-
lidi (a), 163(1):11–26, 1997. ISSN
0031-8965. doi: 10.1002/1521-
396X(199709)163:1<11::AID-
PSSA11>3.0.CO;2-X

of Nickel at room temperature was calculated on the basis of
material parameters from Gottstein;10 yet, the self diffusivity at

10 G. Gottstein. Physikalische Grundlagen
der Materialkunde. Springer, Berlin,
2007

room temperature is small enough so that dislocation climb can be
neglected. All other material parameters have to be fitted to
experimental data, but have clear physical bounds. Apart from a
force-displacement measurement of the actual indentation
experiment, Kysar et al. [2010] do not provide further material
characteristics of the sample. Therefore, data from uniaxial tensile
tests of highly pure poly-crystalline Nickel taken from Keller
et al.11 were used to fit the material parameters of the model. The 11 C. Keller, E. Hug, and D. Chateigner.

On the origin of the stress decrease
for nickel polycrystals with few grains
across the thickness. Materials Science
and Engineering: A, 500(1-2):207–
215, 2009. ISSN 0921-5093. doi:
10.1016/j.msea.2008.09.054

stress-strain curves of both experiment and fitting simulation can be
seen in fig. 8.2. A list of all material parameters is given in table 8.1.
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Figure 8.2: Stress-strain curve of
a tensile test of a poly-crystalline
sample. Experimental data was taken
from Keller et al. [2009] and used for
fitting of the material parameters.

8.2 Results

8.2.1 Lattice rotation

Figure 8.3 juxtaposes the lattice rotation in the yz plane
experimentally measured by EBSD (see Kysar et al. [2010] for
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Property Value Unit Reference

cubic elasticity constants C11 246.5 GPa Hirth and Lothe [1982]
C12 147.3 GPa Hirth and Lothe [1982]
C44 124.7 GPa Hirth and Lothe [1982]

isotropic shear modulus µ 94.66 GPa Hirth and Lothe [1982]
Poisson ratio ν 0.277 Hirth and Lothe [1982]
length of Burgers vector b 0.248 nm Cordero et al. [2008]
atomic volume Ω 0.012 nm3 Cordero et al. [2008]
minimum edge dipole separation ďe 2.6 nm Tippelt et al. [1997]
minimum screw dipole separation ďs 12 nm
dislocation multiplication constant k2 45
edge contribution to multiplication k1 0.1
initial overall dislocation density $0 2.88 ·1012 m−2

self-diffusivity (at T = 300 K) DSD 3 ·10−53 m2 s−1 Gottstein [2007]
solid-solution activation energy QS 1.12 eV
solid-solution concentration cat 5 ·10−7

solid-solution size dobst 1 b
Peierls stress τP 0.1 MPa
double kink width wk 10 b
energy barrier profile constants p 1

q 1
attack frequency νa 50 GHz
dislocation viscosity η 0.001 Pa s
edge jog formation factor k3 0.01

Table 8.1: Constitutive parameters of
single-crystalline Nickel used for a
simulation of wedge indentation
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details) and the simulated rotation pattern. The experimentally
obtained and the simulated rotation maps reveal the same features.
In general, the simulation slightly overestimates the rotations
compared to the experiment. Regions of high rotation can be found
on both flanks of the indent and directly below the tip of the
indent. A boundary running vertically down from the indenter tip
divides the sample into two halves with symmetric rotation
patterns but inverted sign. The out-of-plane rotations were
negligibly small both in experiment and simulation.
The observation that the absolute values of the rotations are higher
in the simulations compared to the experiments can be explained in
terms of the fact that the highest reorientation would be expected to
occur close to the interface between indenter and crystal. However,
the metallographic preparation required for the EBSD
characterization leads to a modest curvature of the sample edges.
Hence, the contact area between tool and metal cannot be mapped.

150 μm

Experiment [Kysar et al., 2010] Simulation

−20° 20°

Figure 8.3: In-plane lattice rotation
below the wedge indent as obtained
from experiment and from simulation.

8.2.2 Strain and stress states

For understanding the material behavior especially with respect to
dislocation activity it is helpful to map the strain and stress state
below the indenter.
Figure 8.4 shows a map of the von Mises logarithmic strain after
unloading. It reveals several distinct regions of concentrated strain
and a symmetric distribution with respect to the vertical
indentation axis. The highest strains of about 1 occur directly under
the indenter tip. Around the tip one observes a triangular region
with still comparably high strains around 0.5 that encloses
approximately the same area as the actual indent. Within this
central region two deformation modes prevail. Directly under the
indenter tip the material deforms by compression in z direction and
extension in y direction (see right side of fig. 8.4). In the lateral
corners of the triangle the material rather deforms by simple shear:
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on the right side by a positive deformation gradient in z with
respect to y (Fzy > 0) and on the opposite left side by a negative
deformation gradient (Fzy < 0). Two regions of slightly lower
equivalent strain are visible on both sides of the symmetry axis.
They have a beam like shape that points away from the symmetry
axis at an angle of nearly 45° and extent into the sample to
approximately five times the indentation depth. The first region,
which is attached to the lower sides of the central triangular region,
exhibits the same deformation mode as under the indenter tip:
compression in z and extension in y direction. The second region,
which starts slightly below the flank of the indent, reveals biaxial
strain with extension in z and compression in y direction. In
between these strain concentrations, the material stays almost
undeformed with ε . 0.1.

0 ε
eq
log 1

100 μm

Figure 8.4: Simulated von Mises
logarithmic strain distribution with
schematic representation of the pre-
dominant deformation modes below
a wedge indent in single-crystalline
Nickel.

Figure 8.5 shows the equivalent Cauchy stress just before
unloading (left) and after unloading (right). In both the loaded and
unloaded condition there are mainly two different regimes
(however, less pronounced for the unloaded situation). In a circular
area of about the indentation depth around the indenter the
material faces almost pure hydrostatic pressure. Around this central
area of hydrostatic pressure, the stress has uniaxial compressive
character. The principal direction of this compressive stress points
radially away from the central regime. This means, that on the
indentation axis, the compressive stress acts in z direction, i. e., in
direction of the evolving boundary, while close to the material
surface the principal axis of the stress lies almost parallel to the y
axis. The highest stress occurs in between these two positions when
the principal stress axis draws a 45° angle with the indentation axis,
i. e., is perpendicular to the indenter flanks.
While the highest strain is found in a circular area directly under
the indenter, the highest stress values are found around this area. It
is just at the edge of these two areas were most of the plastic shear
occurs, as will be discussed next.
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stress before unloading stress after unloading

150 μm 150 μm

σeq/MPa
800

0

Figure 8.5: Simulated von Mises
Cauchy stress around a wedge indent
before and after unloading. Main
stress states are indicated by white
arrows.

8.2.3 Plastic slip

The deformation of the material under the indenter is accomplished
by only six slip systems (table 8.2). All other systems do not
significantly contribute to plastic deformation. As shown by Rice12

12 J.R. Rice. Tensile Crack Tip Fields
in Elastic-Ideally Plastic Crystals.
Mechanics of Materials, 6:317–335, 1987

and in detail for the current geometry by Kysar et al.,13 the six 13 J.W. Kysar, Y. Saito, M.S. Oztop,
D. Lee, and W.T. Huh. Experimen-
tal lower bounds on geometrically
necessary dislocation density. In-
ternational Journal of Plasticity, 26(8):
1097–1123, 2010. ISSN 0749-6419. doi:
10.1016/j.ijplas.2010.03.009

active slip systems form three pairs of “partner” slip systems that
cooperatively accomplish a plane strain deformation when
subjected to a line load along the [1 1 0] direction (see
appendix A.6). The two collinear slip systems 3 and 6 in
combination allow for slip in direction of [1 1 0] on an effective slip
plane (0 0 1), hence shear in the (1 1 0) plane. The two coplanar slip
systems 7 and 8 in combination allow for slip in an effective
direction [1 1 2] on the slip plane (1 1 1), hence also shear in the
(1 1 0) plane. Finally, the two coplanar slip systems 10 and 11 in
combination allow for slip in an effective direction [1 1 2] on the slip
plane (1 1 1), hence again shear in the (1 1 0) plane. All six observed
activated slip systems lead to a plane strain deformation in the
(1 1 0) lattice plane, which is normal to the lab x axis.

ξ slip plane slip direction

1 (1 1 1) [0 1 1]
2 (1 1 1) [1 0 1]
3 (1 1 1) [1 1 0]

4 (1 1 1) [0 1 1]
5 (1 1 1) [1 0 1]
6 (1 1 1) [1 1 0]

7 (1 1 1) [0 1 1]
8 (1 1 1) [1 0 1]
9 (1 1 1) [1 1 0]

10 (1 1 1) [0 1 1]
11 (1 1 1) [1 0 1]
12 (1 1 1) [1 1 0]

Table 8.2: Slip systems for a [0 0 1]
wedge indent. Active slip systems are
typed in black, all others in light gray.
Slip system numbering as introduced
in table 3.1.

The exact distribution of the accumulated plastic slip on the six
active slip systems is shown in fig. 8.6. The two “partner” slip
systems cover the same regions of activity, but with inverted signs
of the accumulated slip due to the symmetric orientation of the two
slip systems with respect to the indentation axis. For the slip
systems 3 and 6 the opposite orientation of the slip plane normals
with respect to the indentation axis entails opposite signs of the
resolved shear stress on the slip plane, hence opposite signs of the
plastic slip. In case of slip systems 7/8 and 10/11 the opposite
orientation of the slip direction with respect to the indenter axis has
the same effect. The most striking feature of the maps for slip
systems 7/8 and 10/11 is the sharp edge of the slipped volume
right below the indenter tip, which is in contrast to the gradual
decay in slip activity elsewhere.
Figure 8.7 shows the evolution of the shear rate on two of the active
slip systems with increasing indentation depth.14 On slip system 3, 14 The shearrate on the other active slip

systems follows from inversion accord-
ing to the maps of the accumulated
slip in fig. 8.6.

plastic slip starts in two bands, which point away from the surface
at a 45° angle. With increasing indentation these micro-bands of
concentrated slip become broader, less intense, and move
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slip system in
reference

configuration

b3

n3

b6
n6

b7
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b11 n11

accumulated plastic slip
γ

−0.8 0.8

edge GND density
$∆e / 1013 m−2

−5 5

screw GND density
$∆s / 1013 m−2

−5 5

150 μm

Figure 8.6: Simulated accumulated
slip and edge/screw GND density for
the six active slip systems below the
wedge indent.
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downwards. At the same time, a region of no slip activity expands
around the indenter tip. This corresponds to the hydrostatic
pressure regime seen in fig. 8.5 that does not provide any resolved
shear stress for plastic slip. The slip activity on slip system 11 also
starts in two bands of 45° from the surface. Yet, the active regions
evolve differently on both sides of the rotation boundary. The red
band on the left is moving up while keeping its relative position on
the indenter flank. The blue band on the right side splits up into
two branches with an inflection point at the boundary that moves
down. The upper branch describes an arc towards a stationary
point at the same relative position on the indenter flank as where
the red band starts at on the left side. With increasing indentation,
the arc bows out leaving behind a region of virtually no slip activity
similarly to what can be seen for slip system 3. The lower branch of
the active region becomes broader to the bottom with increasing
indentation and rotates towards the indentation axis.

Indentation
depth

40 µm 80 µm 120 µm 160 µm 200 µm

system 3
(1 1 1)[1 1 0]

250 μm

γ̇/s−1

0.06

−0.06

system 11
(1 1 1)[1 0 1]

250 μm

Figure 8.7: Simulated plastic shear
rate on slip systems (1 1 1)[1 1 0] and
(1 1 1)[1 0 1] for a wedge indent of
depth 40, 80, 120, 160, and 200 µm.

Plastic slip propagates through the material in inclined or as an arc
like front moving away from the indenter tip. The plastic front
evolves, since the material is highly pure and initially deficient on
dislocations, so the material is initially very soft and plastic slip can
readily occur where the stresses reach the critical resolved shear
stress. Then, the dislocation density quickly increases, the material
hardens and becomes less favorable for plastic deformation leaving
behind a region of high dislocation content but no plastic activity.

8.2.4 Dislocation density

Figure 8.8 shows the distribution of the dislocation density summed
over all slip systems and dislocation types in terms of total and
excess dislocations. Here, the first comprises the sum of all
dislocations ∑ξ ∑c $

ξ
c , whereas the latter comprises the L1 norm of

the excess dislocations ∑ξ ∑c

∣∣∣$ξ
∆c

∣∣∣.15 The highest total dislocation 15 Index ξ denotes the slip system, c the
dislocation character, namely edge or
screw.

density can be found around the indenter tip (which corresponds to
the region of highest deformation seen in fig. 8.4) and in five
narrow bands: one around the deformation-induced boundary and
four (less pronounced ones) at ±45° and ±50° from it. The same
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pattern can also be found for the excess dislocation density.
However, in the tapered bands the excess dislocation density seems
not very high, thus the bands mainly contain statistically stored
dislocations. In contrast, the band around the deformation-induced
boundary is almost as pronounced as for the total density, which
means that the boundary mainly consists of geometrically
necessary dislocations.

150 μm

$/m−2

1015

1012
150 μm

$∆/m−2

1015

1012

Figure 8.8: Simulated values of total
and excess dislocation density under
a wedge indent in single-crystalline
Nickel. Dislocation densities are
summed over slip systems and disloca-
tion types.

8.3 Discussion

The presented case of wedge indentation in single-crystalline
Nickel was chosen because of its well defined boundary conditions,
the two-dimensional strain mode and the high symmetry
orientation, which facilitates the analysis of the obtained results.
Yet, the deformation mechanisms occurring in the material still
reveal a high complexity and are not restricted to any special case.
E.g., all types of considered dislocation interactions, namely
collinear junctions, glissile junctions, Hirth locks, and Lomer locks
can be found in the material (however, not always all in the same
place). Also the deformation state reveals different modes around
the indent: biaxial extension/compression in y/z and z/y direction
and positive and negative simple shear in z direction. undeformed

deformed

slip traces of  
systems 7 and 8

tensile
component

compressive
component

Figure 8.9: Blow-up of fig. 8.4 with a
sketch of the deformation that results
from active slip systems 7 and 8 in the
band-like of increased strain right and
left of the indent.

Deformation state While the compression zone under the indenter
and the sheared region at the flanks of the indent can intuitively be
understood from the geometrical constraints of the indent, the
tensile strains in direction of the indentation axis to the left and
right of the indent seem a bit counterintuitive in the first place (see
also Bouvier and Needleman16 who observed tensile strains in

16 S. Bouvier and A. Needleman. Effect
of the number and orientation of
active slip systems on plane strain
single crystal indentation. Modelling
and Simulation in Materials Science and
Engineering, 14(7):1105–1125, 2006.
ISSN 0965-0393. doi: 10.1088/0965-
0393/14/7/001

indentation simulations). By taking a closer look at the involved
slip systems one can, however, better understand this. Figure 8.9
schematically shows the slip traces of slip systems 7 and 8, which
are the only active slip systems in this region to accommodate the
deformation (compare first row in fig. 8.6). The inclination of the
slip plane with respect to the sample system leads to an effective
extension in the spatial z and a compression in the spatial y
direction. The band-like shape of the strained region then follows
from the specific orientation of the slip plane, since slip acts only in
direction of the band, which is indeed a broad shear band. These
shear bands can expand very easily due to the more or less single
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glide behavior. This is the reason for their very long extent of about
1 mm deep into the material compared to the small region of high
deformation around the indenter tip, which extents only about 100
to 200 µm.

Active slip systems In order to understand the evolution of lattice
rotations and GND densities it is useful to first have a closer look at
the evolution of plastic slip on the individual slip systems. As
pointed out above, the stress that drives dislocation motion is of
almost pure uniaxial compressive nature with the principal axis
pointing radially away from a central region of hydrostatic pressure
and no slip activity. The highest stress values are found in two
regions left and right of the rotation boundary, where the principal
stress direction draws a 45° angle with the indentation axis.
Figure 8.10 plots an (0 0 1) inverse pole figure of these two principal
directions. Both directions lie on symmetry lines: the compression
axis on the left side of the indent on the [0 0 1]–[1 1 1] and the
compression axis on the right side of the indent lies on the
[0 0 1]–[1 1 1] line, respectively. This would normally imply
activation of slip systems 2 and 4 on the one side and activation of
1 and 5 on the other. The reason that none of these slip systems is
actually active is the plane-strain deformation state that is enforced.
As exemplarily shown in appendix A.6 for slip systems 1 and 5,
those pairs of slip systems with the highest Schmid factors induce
a normal strain component in x direction, thus out-of-plane. As a
result, dislocation glide happens on the “unexpected” slip systems
7/8, 10/11, and 3/6. A positive lattice rotation around the x=[1 1 0]
direction (or a negative rotation of the principal stress axis)
increases the Schmid factor of systems 10 and 11 on the right side
and decreases the Schmid factor of systems 7 and 8. The opposite
holds for inverted rotation sense or on the other side of the
indentation axis. Slip systems 3 and 6 initially have their highest
possible Schmid factors with respect to a rotation around the [1 1 0]
direction for a 45° principal stress axis, so that any change in the
lattice orientation or the principal stress axis decreases the Schmid

factor.

[0 0 1] [0 1 0][0 1 0]

[1 0 0]

[1 0 0]

[0 1 1][0 1 1]

[1 0 1]

[1 0 1]
[1 1 1]

[1 1 1]

[1 1 1]

[1 1 1]

[1 1 0]

[1 1 0]

[1 1 0]

[1 1 0]

Figure 8.10: (0 0 1) inverse pole figure
of the undeformed crystal with the
two principal axis of compressive
stress on the left and right side of the
indentation axis. The lower left point
corresponds to the stress axis on the
right side of the indenter, the upper
right point to the stress axis on the left
side.Figure 8.11 shows the evolution of the plastic slip on the six active

slip systems exemplarily for three points on the right side of the
indentation axis. For the point directly next to the boundary (first
row), the principal stress direction is almost aligned with the
indentation axis. This stress state initially equally favors slip on 7, 8,
10, or 11.17 However, before the yield point is reached, the lattice 17 Slip systems 1, 2, 4, and 5 that have

an equally high Schmid factor cannot
be activated due to the plane-strain
deformation mode.

has already rotated slightly in negative sense around the [1 1 0] axis
and continues to do so. As a result, slip on systems 10 and 11 is
preferred and dominates the plastic behavior. Only at the end of
loading, slip systems 3 and 6 start to become active due to the
negative lattice rotations reorienting these slip systems to their
preferential orientation. The second point (second row in fig. 8.11)
is located in an area of modest lattice rotations of not more than
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Figure 8.11: Inverse pole figures and
evolution of plastic shear with inden-
tation depth ∆h for three different
material points close to a wedge in-
dent. Positions of the material points
are marked in blowups of fig. 8.12 in
the first column (open circles corre-
spond to position before loading, filled
circles to positions at end of loading;
the initial geometry is indicated by a
dashed gray line). The (0 0 1) inverse
pole figures in the second column
show the rotation of the principal axis
of compressive stress for the respective
material points (i. e., in direction of
(y, z) = (0,−1) for the first point,
(y, z) = (1,−1) for the second point,
and (y, z) = (1, 0) for the third point).
The third column shows evolution
plots of the accumulated plastic slip on
the six active slip systems 3, 6, 7, 8, 10,
and 11, which always act pairwise.
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10°. In the course of deformation, the point actually reverts its
rotation sense and finally again reaches almost its initial
orientation. The principal stress axis at this point is close to a 45°
angle, which favors the activation of 3/6 and particularly 10/11, but
not 7/8. The reason for slip systems 3 and 6 being activated at a
later stage compared to 10/11 can be attributed to the mutual
strong collinear interaction, which requires higher stresses for
activation. The last point (third row in fig. 8.11) lies close to the
surface. The stress axis at this point is nearly aligned with the y
axis. Slip systems 7 and 8 become active first, but get less favorable
for slip due to the positive lattice rotation around [1 1 0]. Plastic
deformation becomes harder and enforces further lattice rotation in
order to accommodate for the geometrical constraints of the
indenter, finally leading to such high rotations that slip systems
10/11 become favorable for slip and take over as the prevalent
carriers of deformation. In general, both the rotations of the lattice
and the changing stress state lead to a complex activation behavior
of the slip systems.

Rotation As seen in fig. 8.3, the lattice rotation changes abruptly
within a few µm across a vertical line below the indenter. More
specifically, in the simulation this jump in lattice rotation occurs
among neighboring integration points. If there was a gradual
change in the rotation, then the lateral mesh resolution of about
5 µm did not suffice to resolve this gradient. Kysar et al. [2010]
specify the resolution of their orientation measurements with 3 µm,
hence, comparable to our simulation.
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x /
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Figure 8.12: Simulated in-plane lattice
rotation below a wedge indent in
single-crystalline Nickel. Left: Overlay
of a line plot showing the rotation
across the central antisymmetry
boundary along the gray line. Right:
Overlay of the (0 1 0) lattice plane
traces. The nominal spacing of the
traces is 10 µm.

Figure 8.12 shows the lattice rotation jump on a line across the
vertical division line. This discontinuity in the lattice rotation
evolves due to the left and right half of the crystal rotating away
from each other. Figure 8.13 illustrates the evolution of the lattice
rotations directly right and left of the boundary as a function of the
position under the indenter. The lattice rotations quickly converge
towards a maximum value of approximately ±35° at about 30 µm
below the indenter tip already for small indentation depth ∆h.
These high rotation differences grow further down into the
material, such that at the final indentation depth of ∆h = 200 µm a
boundary length of more than 100 µm reveals a misorientation of
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Figure 8.13: Simulated lattice rotation
directly left (upper curves) and right
(lower curves) of the antisymmetry
boundary with evolving indentation
depth ∆h and along the indentation
axis. The origin at −z − ∆h = 0
corresponds to the indenter tip.

70°. Interestingly, this is very close to a 〈1 1 0〉 Σ 3 orientation
relationship of 70.5°.
The reason for this large misorientation can be understood when
looking at the traces of the (0 1 0) lattice planes around the indent
shown on the right hand side of fig. 8.12. Although these lattice
traces do not correspond to any slip traces in the material,18 they 18 Note that the traces in fig. 8.12

should not be confused with slip traces
that occur when dislocations leave the
surface. Here, the traces simply show
the intersection lines of the (0 1 0)
lattice planes with the image plane.

reflect the curvature of the lattice in general. As seen in fig. 8.6, the
specific crystal orientation does not allow for large plastic
deformation at the upper indenter flanks, so that the material
mainly performs a rigid-body rotation following the inclination
angle of the indenter (The orientation dependence of the rotation
pattern was already reported by Bouvier and Needleman [2006]).
Thus, the (0 1 0) plane traces in fig. 8.12 hit the surface at an almost
90° angle. This induces counter-rotations further below in order to
compensate for the unrotated lattice in the undeformed regions
way below the indenter. The deeper the indenter penetrates into the
material the deeper these counter-rotations extent.
The diverging traces of the (0 1 0) lattice plane below the
indentation axis also indicate that a significant amount of material
is transported there. Clearly, this is the material that is pushed
away by the indenter above. The compression of material in this
region leads to the hydrostatic pressure seen in fig. 8.5.

Excess dislocation density and character of deformation-induced boundary
Since the axis of principal compressive stress changes its direction
across the indentation axis, the resolved shear stress on the active
slip systems changes sign, and the direction of slip is reverted.
Dislocations cannot travel across the indentation axis and become
stored there (see third and fourth column of fig. 8.6).19 This

19 It should be noted here, that due to
the first order upwind formulation of
the dislocation transport, dislocations
will indeed be pushed across the
boundary if the shear rate is zero on
the other side. However, they will then
not be able to propagate further. So,
essentially this will at most result in
an inaccuracy of the position of the
dislocations by one integration point.

explains why almost the entire dislocation density at the boundary
has excess character (compare total and excess density in fig. 8.8).
All active slip systems pile up dislocations at the boundary, the
majority of dislocations yet has edge character and comes from
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systems 7/8 and 10/11. As indicated by the (0 1 0) plane traces in
fig. 8.12 these dislocations form a disclination under the indenter.
This disclination exerts a stress field that is visible in fig. 8.5 as dark
line below the indentation axis. The fact that this stress is still
visible after unloading is understandable, because the disclination
will not disappear when the external load is released. It should be
emphasized that no additional gradient-dependent stress terms
were used in this simulation to explicitly induce a stress field by the
excess dislocations. Instead, the observed stress arises naturally
from an unbalanced flux of dislocations and the accumulation of
density that goes along with this and leads to a different strain and
stress response.

Influence of the dislocation flux The most obvious effect of the
dislocation flux is that it naturally leads to the formation of excess,
i. e., GND density. While the GND density is related to a curvature
of the crystal lattice, it is not easily possible to (inversely) derive it
solely from lattice rotations. Additional assumption have to be
made, e.g. minimization of line energy or line length. The latter
method was used by Kysar et al. [2010] to calculate a lower bound
for the GND density from measured lattice orientations. As
explained in detail in Kysar et al. [2010], for this special case of
plane-strain deformation, this lower bound even corresponds to the
exact solution where not more than two effective slip systems are
active (which is the case in almost the entire sample). The obtained
results fit both qualitatively and quantitatively to the simulated
GND densities (see second row of fig. 8.14); this confirms the
validity of the predictions from the dislocation transport model.
Since the complete deformation history of each slip system is
known in the simulation, the GND density can also be derived from
a gradient in the dislocation slips. This method was applied to both
the simulation results of the dislocation transport model and the
local model variant without dislocation transport.20 For the 20 The applied method to calculate

GNDs from a gradient in slip is
described in detail in appendix A.7

nonlocal simulation, the GND densities derived from slip gradients
perfectly match the results as-obtained by the dislocation transport.
In contrast, GND densities cannot adequately be reproduced from
gradients in slip when dislocation transport is not included in the
simulation, as the corresponding map of GND densities reveals
(second row and column in fig. 8.14). The local simulation
overestimates the GND density with respect to the nonlocal model
and even introduces features that are not visible in the experimental
results.
The influence of the dislocation transport and generation of GNDs
becomes apparent in rows three and four of fig. 8.14, especially
with regards to the rotation boundary. In the absence of dislocation
transport, no dislocations pile up around the boundary in the local
simulation and do not influence the mechanical response. In
contrast, for the nonlocal model, the accumulated density at the
boundary leads to an increased hardening and higher stresses that
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are visible as dark line below the indenter (third row of fig. 8.14). It
should be emphasized that no additional gradient-dependent stress
terms were used in the simulation to explicitly induce a stress field
by the excess dislocations. Instead, the observed stress arises
naturally from an unbalanced transport of dislocations and the
resulting accumulation of density.
In general, the incorporation of the dislocation transport leads to a
stiffer response. In the local model, the average equivalent Cauchy

stress in the region of interest shown in fig. 8.14 is 20 % lower
during loading (yet slightly higher after unloading). This results in
higher strains of about 10 % with a larger zone of concentrated
deformation under the indent when compared to the nonlocal
model.
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Figure 8.14: Comparison of simula-
tions performed with and without
dislocation flux and experimental ref-
erence taken from Kysar et al. [2010].
Maps show the in-plane lattice rota-
tion, the excess dislocation density,
the equivalent Cauchy stress, and
the equivalent logarithmic strain after
unloading.
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8.4 Conclusions

• Most of the deformation is concentrated in a region of about the
size of the indent around it. Yet, two broad shear-bands form on
both sides of the indenter that advance about five times the
indentation depth into the material. This is possible due to only
two slip systems being active there, so that almost single-glide
without pronounced forest hardening is achieved. (figs. 8.4
and 8.9)

• The stress state in the material can be divided into two regions:
hydrostatic pressure in a circular area around the indenter tip
and more or less uniaxial compressive stress radially pointing
away from the central region. The highest uniaxial stresses can
be found on the indenter axis and in two broad areas that draw
an 45° angle with the indentation axis. (fig. 8.5)

• The plane-strain deformation state prohibits slip on six out of the
twelve fcc slip systems, although they partly have the highest
theoretical Schmid factors. The six active slip systems always
have to act pairwise in order to achieve a plane-strain
deformation.

• From the six active slip systems two systems harden very quickly
due to strong collinear interaction and cannot contribute much to
deformation. As a result, almost the entire deformation is
accommodated by four slip systems, which are mainly active
only on either side of the indentation axis, i. e., in most of the
volume there are only two systems active at the same time.
(figs. 8.6 and 8.7)

• The low dislocation activity at the indenter flanks requires large
rigid-body rotations in order to accommodate the geometrical
constraints of the indenter, which are also observed in
experiment. (fig. 8.3)

• High rotations at the indenter flank induce equally high
counter-rotations below the indenter. Due to the symmetry of the
orientation and the antisymmetric stress state with respect to the
indentation axis, these counter-rotations have different sign on
both sides of the indentation axis. (fig. 8.12)

• A high gradient in the lattice rotations on a vertical axis below
the indenter arises with a change from +35° to −35° within a
distance of at most 5 µm; this is in agreement with experimental
observations. The jump of 70° is already visible in the simulation
after an indentation depth of 80 µm. In the following, the
magnitude of the jump does not significantly change anymore;
however, the lattice rotation jump propagates further into the
material along the indentation axis. (figs. 8.12 and 8.13)
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• Due to a sign change of the resolved shear stress across the
antisymmetry boundary, dislocations pile up on both sides and
form a disclination. (figs. 8.8 and 8.12)

• The GNDs at the antisymmetry boundary induce a stress field
that is also visible in the unloaded state. This residual stress field
cannot be predicted by the local (non-flux) model variant.
(fig. 8.14)

• In general, the local model behaves significantly softer than the
nonlocal model, i. e., the equivalent Cauchy stress is on average
lower by −20 % during loading (yet slightly higher after
unloading). This results in higher strains of about +10 %.
Furthermore, the lattice rotations (+13 %) are higher in the local
model and are overestimated with respect to the experimental
reference values taken from literature. (fig. 8.14)

• GND densities derived from the measured lattice rotations fit
both qualitatively and quantitatively to the simulated excess
dislocation densities of the nonlocal model. GNDs can also
indirectly be determined from spatial gradients in the
accumulated plastic slip resolved onto individual slip systems.
While this indirect method gives comparable results when
applied to the nonlocal simulation results, a local model variant
without fluxes overestimates the GND densities significantly
(+215 % compared to the nonlocal model). (fig. 8.14)

• While the computational costs of the nonlocal model are
significantly higher than for the local model, the obtained
solution for the local model contains significant numerical
artifacts that are prevented in the nonlocal simulations. In this
respect, the dislocation flux seems to naturally balance out
numerical inaccuracies and thus improves stability. (fig. 8.14)



Summary and outlook





9
Summary and outlook

A constitutive model of crystal plasticity has been presented that
describes the evolution of a crystal’s microstructure in terms of
dislocation densities of edge and screw type. Both edge and screw
dislocation densities can either occur with monopolar properties,
i. e., a single dislocation with positive or negative line sense, or with
dipolar properties, i. e., two dislocations of opposite line sense
combined. The particularity of the model lies in the description of
the dislocation density evolution, which not only comprises the
usual rate equations for dislocation multiplication, annihilation, and
formation and dissociation of dislocation dipoles. Additionally, the
spatial redistribution of dislocations by slip is explicitly accounted
for. This entails an advection term for the dislocation density that
turns the evolution equations for the dislocation density from
ordinary into partial differential equations. The associated spatial
gradients of the dislocation slip render the model intrinsically
nonlocal, i. e., the time integration of the state equations depends on
the neighborhood of the integration point. As a result, complete
information about the neighbors’ states has to be provided at each
integration point. The state integration itself employs a first-order
upwind scheme that is based on finite volumes attached to each
integration point. The constitutive model is coupled to a solver for
the mechanical boundary value problem that ensures mechanical
equilibrium and compatible strains.
The most essential part of the constitutive model, namely the
dislocation transport or flux, has been tested by means of the
redistribution of two edge dislocations of opposite signs that are
reminiscent of the cross-section through an expanding dislocation
loop. In the two-dimensional simulation the two edge dislocations
are represented by an equivalent dislocation density that is
concentrated at two integration points and surrounded by initially
purely elastic integration points without any dislocation content.
The results of the simulation show the propagation of the
dislocation density through the formerly elastic material and the
resulting plastic strain. It has been demonstrated that the
dislocation density is conserved in the course of dislocation
transport and the plastic strain exactly corresponds to one Burgers

step. Additionally, it has been shown that the stress field of the
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dislocations is captured by solving mechanical equilibrium in a
compatible continuum in conjunction with the transport of
dislocations.
A still heavily debated question is whether such nonlocal theories
are able to properly describe the inherently discrete phenomena
associated with dislocation slip. As a contribution to this discussion
(and also as an additional validation of the model), a comparison
between the continuum constitutive model and discrete dislocation
dynamics simulations has been made. In order to facilitate
comparableness a simple simulation setup had been chosen: a
two-dimensional plastic inclusion inside an elastic medium,
separated by an impenetrable boundary for dislocations; only one
active slip system and only edge type dislocations; no
multiplication or annihilation; simple shear deformation by virtue
of a homogeneously applied shear stress that is hold until an
equilibrated state is reached. Different combinations of applied
shear stress, inclusion size, and dislocation density have been used
for the simulations. The results showed that the continuum model
is able to match the discrete dislocation dynamics results to a large
extent. Deviations occur when the size of the inclusion becomes
smaller than approximately one micrometer. Then, the discrete
dislocation simulations reveal a distinct boundary layer while the
continuum model does not. This could been explained by the fact
that the continuum model implicitly smears out the Burgers

vector perpendicular to the slip plane, which is equivalent to an
infinite number of infinitesimal small Burgers vectors. This results
in a weaker stress field than the one exerted by a discrete number
of dislocations. This effect gains importance at scales small enough
so that the discrete structure of dislocations becomes apparent. It
could also be shown that the concentration of dislocations on a
limited number of slip planes amplifies this effect such that the
boundary layer becomes larger. A nonlocal backstress term has
been introduced, which is inspired by work of Mesarovic et al.1 and 1 S.D. Mesarovic, R. Baskaran, and

A. Panchenko. Thermodynamic
coarsening of dislocation mechanics
and the size-dependent continuum
crystal plasticity. Journal of the Me-
chanics and Physics of Solids, 58(3):
311–329, 2010. ISSN 0022-5096. doi:
10.1016/j.jmps.2009.12.002

Geers et al..2 This backstress term depends on the average slip

2 M.G.D. Geers, R.H.J. Peerlings, J.P.M.
Hoefnagels, and Y. Kasyanyuk. On a
Proper Account of First- and Second-
Order Size Effects in Crystal Plasticity.
Adv. Eng. Mater., 11(3):143–147, 2009.
doi: 10.1002/adem.200800287

plane spacing and was able to account for the formation of a
boundary layer in the continuum model. Assessment of the average
plastic deformation of the inclusion has, however, revealed that the
influence of the boundary layer on the average strain is relatively
small, so that the backstress term might not be necessary.
In a next step, the constitutive model has been applied to two
existing experiments. The first is a simple shear test of an
Aluminum bi-crystal with small-angle tilt grain boundary.3

3 J.C. Kuo. Mikrostrukturmechanik von
Bikristallen mit Kippkorngrenzen. PhD
thesis, RWTH Aachen, 2004

Although the transport of dislocations led to accumulation of
density around the grain boundary, the influence of the nonlocality
of the constitutive model has been found to be rather small—in
contrast to earlier simulation approaches to the same experiment by
Ma.4 The overall agreement between the results from the 4 A. Ma. Modeling the constitutive

behavior of polycrystalline metals based
on dislocation mechanisms. PhD thesis,
RWTH Aachen, 2006

constitutive model and the experiment is already very good when
the dislocation flux is not considered, i. e., the model being purely
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local. At least for this rather large-scale problem it has been found
that, if the kinematics of dislocation slip for the individual grains is
properly described, the solution of mechanical equilibrium in a
compatible continuum already suffices to correctly predict the
influence of the grain boundary. Consequently, a less sophisticated
phenomenological model failed in comparison to predict the
influence of the grain boundary.
The second experiment that the model has been applied to is an
existing indentation experiment in single-crystalline Nickel.5 This 5 J.W. Kysar, Y. Saito, M.S. Oztop,

D. Lee, and W.T. Huh. Experimen-
tal lower bounds on geometrically
necessary dislocation density. In-
ternational Journal of Plasticity, 26(8):
1097–1123, 2010. ISSN 0749-6419. doi:
10.1016/j.ijplas.2010.03.009

specific experiment has been chosen, since its special planar
geometry allows to derive the GND density under the indenter
from experimentally measured lattice rotations. The lattice rotations
obtained in the simulation match the experimentally measured ones
to a large extent. Especially, the simulations could predict a high
gradient in the lattice rotations on a vertical axis below the indenter
with a change from +30° to −30° within a distance of at most 5 µm.
A local (non-flux) model variant behaved significantly softer than
the nonlocal model, i. e., stresses were about 20 % lower while
strains and lattice rotations were about 10 % and 13 % higher,
respectively. The transport properties of the nonlocal model led to
an accumulation of dislocation density on both sides of the
boundary below the indenter. Since the model is able to directly
predict the GND densities, it was possible to reveal the nature of
the disclination that forms at the boundary. The simulated GND
densities have been shown to match the GND densities that are
derived from the experimentally measured lattice rotations both
qualitatively and quantitatively. GNDs have also indirectly been
determined from spatial gradients in the accumulated plastic slip
resolved onto individual slip systems. While this indirect method
gave comparable results when applied to the nonlocal simulation
results, a local model variant without fluxes overestimated the GND
densities significantly by more than 200 % (compared to the
nonlocal model). The simulated and measured GNDs at the
boundary induce a stress field retained in the unloaded material.
Since the local (non-flux) model variant does not account for the
accumulation of GNDs at the boundary, it could not properly
predict this residual stress field.
In general, the nonlocal constitutive model has been shown to
improve model predictions of crystal plasticity dominated by
dislocation glide, especially when applied to problems at a scale of
less than a millimeter, where the transport of dislocations becomes
important. For larger problems the model may still be applicable;
yet, the additional effort of solving the flux balance of dislocations
then does not have a big influence on the results and local models
are probably better suited. For the application to very small-scale
problems of less than approximately ten micrometer the model
might have to include further terms that take into account the
discreteness of slip. In this respect, the application of a backstress
that depends on the slip plane spacing has been shown a promising
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approach. Perhaps even more important, dislocation multiplication
can probably not anymore been treated as a strain driven process at
these scales, but has to take into account the limited number of
available dislocation sources.
One particular strength of the model is the prediction of GND
densities, which is not directly accessible in any local constitutive
model. Future studies of the influence of the GND density on the
plastic response should further exploit this property of the model.
Another promising application of the model is the analysis of
grain/phase boundary behavior with respect to dislocation glide by
altering the transmissivity property of interfaces according to e.g.
the orientation relationship at the boundary.
Also cyclic loading could be an interesting application of the model,
since a Bauschinger effect would automatically arise from the
dislocation flux under reversed load.
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Additional material

A.1 Stress and strain measures

The following formulas can be used for conversion of the three
stress measures used in this work: the first Piola–Kirchhoff

stress P, the second Piola–Kirchhoff stress S, and the Cauchy

stress σ.

P S σ

P P det Fp FeSFp
−T det F σF−T

S 1
det Fp

Fe
−1PFp

T S det Fe Fe
−1σFe

−T

σ 1
det F PFT 1

det Fe
FeSFe

T σ

Table A.1: Conversion between differ-
ent stress measures

A.2 Stress field of a straight edge and screw dislocation

In an infinite and isotropic elastic medium, a straight edge
dislocation of infinite length located at the origin with line direction
along z and Burgers vector along x exerts a stress field at point
r = (x, y) given by the following set of equations:1 1 J.P. Hirth and J. Lothe. Theory of

dislocations. John Wiley & Sons, New
York, 1982

σxx = − µb
2π(1− ν)

y(3x2 + y2)

(x2 + y2)2 (A.1a)

σyy =
µb

2π(1− ν)

y(x2 − y2)

(x2 + y2)2 (A.1b)

σzz = − νµb
π(1− ν)

y
x2 + y2 (A.1c)

σxy = σyx =
µb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2 (A.1d)

σxz = σzx = σyz = σzy = 0 (A.1e)

Similarly, for a straight screw dislocation of infinite length with line
direction and Burgers vector along z and the normal of the habit
plane along y exerts a stress field at point r = (x, y) that is defined
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by:

σxz = σzx = − µb
2π

y
x2 + y2 (A.2a)

σyz = σzy =
µb
2π

x
x2 + y2 (A.2b)

σxx = σyy = σzz = σxy = σyx = 0 (A.2c)

A.3 Stable dislocation dipole height

A dislocation dipole forms if two dislocations of character c and
opposite sign pass each other in close distance. The passing
distance below which a stable dipolar configuration exists is termed
stable dislocation dipole height d̂c. It can be directly derived from
the stress field of dislocations given in appendix A.2.
For edge dislocations the stress that drives dislocation motion is
defined by the only non-zero shear stress component

τ = Dx
x2 − d2

(x2 + d2)
2 with D =

µb
2π(1− ν)

(A.3)

The maximum stress that is felt by a dislocation passing in distance
d can be derived by simple differentiation of the stress filed with
respect to the direction of motion x.

dτ

dx
= −D

x4 − 6d2x2 + d4

(x2 + d2)
3 = 0 (A.4)

x4 − 6d2x2 + d4 = 0 (A.5)

This quartic equation has four real valued solutions.

x = ±
√

3± 2
√

2 d (A.6)

Inserting these into eq. (A.3) yields the following maximum stress
at distance d.

τ = D
1

4d
(A.7)

Now, the stable dipole height d̂e can be defined as the distance at
which the applied stress is just below the stress given in eq. (A.7).

d̂e =
D
4τ

=
µb

8π(1− ν)

1
τ

(A.8)

Similarly, one can derive the maximum stable dipole height for
screw dislocations d̂s.

d̂s =
D
4τ

=
µb
4π

1
τ

. (A.9)

A.4 Partial derivative of the plastic velocity gradient

For the time integration of the stress one needs the derivative of the
constitutive function h with respect to the stress expressed by the
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second Piola–Kirchhoff stress. The constitutive function h
describes the plastic velocity gradient resulting from combined
dislocation glide on all slip systems.

h(S, ω) = Lp = ∑
ξ

Lξ
p = ∑

ξ

γ̇ξ sξ ⊗ nξ (A.10)

Hence, the partial derivative of h with respect to the second
Piola–Kirchhoff stress is defined by the sum of the derivatives
of the plastic velocity gradient of the respective slip systems.

h(S, ω),S = Lp,S = ∑
ξ

Lξ
p,S (A.11)

The single derivatives can be obtained as follows:

Lξ
p,S =

(
γ̇ξ sξ ⊗ nξ

)
,S

=
(

sξ ⊗ nξ
)
� γ̇ξ ,S

= ∂τξ γ̇ξ
(

sξ ⊗ nξ
)
� τξ ,S

= ∂τξ γ̇ξ
(

sξ ⊗ nξ
)
�
((

sξ ⊗ nξ
)

: S
)

,S

= ∂τξ γ̇ξ
(

sξ ⊗ nξ
)
� sym

(
sξ ⊗ nξ

)
(A.12)

where symmetry of S was used in the last row. The corresponding
derivative in different tensor notation reads

Lξ
p;S = ∂τξ γ̇ξ

(
sξ ⊗ nξ

)
⊗ sym

(
sξ ⊗ nξ

)
. (A.13)

In the latter two equations the derivative of the plastic slip rate can
be obtained by the chainrule.

∂τξ γ̇ξ = $ξ b ∂τξ vξ (A.14)

Finally, one needs the stress derivate of the dislocation velocity,
which is defined in eq. (3.51).

∂τ v = −v2
(

∂τ tP

λP
+

∂τ tS

λS
− η

b
sign τ

τeff
2

)
(A.15)

∂τ tP = −tP
p q VP

kBT

(
1−

(∣∣τeff

∣∣
τP

)p)(q−1) (∣∣τeff

∣∣
τP

)(p−1)

sign τ

(A.16)

∂τ tS = −tS
p q VS

kBT

(
1−

(∣∣τeff

∣∣
τS

)p)(q−1) (∣∣τeff

∣∣
τS

)(p−1)

sign τ

(A.17)

A.5 Analysis of the linearized partial differential equation for
a dislocation flux with flowstress

One can describe the transport of positive and negative dislocation
density under consideration of a flowstress that depends on the
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square root of the total density by the following system of
first-order nonlinear partial differential equations.

∂t$− ∂x ((a− c
√

$) κ) = 0 (A.18a)

∂tκ + ∂x ((a− c
√

$) $) = 0 (A.18b)

where the two constants a = Bτ and c = αµbB are used. A
linearized version of the latter equation for small perturbations $∗

and κ∗ around an existing solution $0 and κ0 reads

∂t$
∗ − (a− c

√
$0) ∂xκ∗ +

c
2

κ0√
$0

∂x$∗ = 0 (A.19a)

∂tκ
∗ +

(
a− 3

2
c
√

$0

)
∂x$∗ = 0 (A.19b)

By differentiation of eq. (A.19a) and substitution of the mixed term
by eq. (A.19b) one obtains a second order PDE for $∗

∂tt$
∗ + (a− c

√
$0)

(
a− 3

2
c
√

$0

)
∂xx$∗ +

c
2

κ0√
$0

∂xt$
∗ = 0 (A.20)

with coefficients

A = 1 , B =
c
2

κ0√
$0

, C = (a− c
√

$0)

(
a− 3

2
c
√

$0

)
.

(A.21)

The sign of the discriminant B2 − 4AC determines the character of
the PDE.

B2 − 4AC =
1
4

c2 κ2
0

$0
− 6c2$0 + 10ac

√
$0 − 4a2 (A.22)

After resubstitution of the constants a and c and some
simplification one arrives at the following equation for the
discriminant.

B2 − 4AC = −4

(
τ2 − 5

2
ττcr +

(
3
2
− 1

16
κ2

0
$2

0

)
τcr

2

)
(A.23)

The PDE has hyperbolic character if the discriminant is positive. By
finding the roots of the quadratic equation eq. (A.23) one can
determine the conditions under which this occurs.(

5
4
− 1

4

√
1 +

κ2
0

$2
0

)
τcr < τ <

(
5
4
+

1
4

√
1 +

κ2
0

$2
0

)
τcr (A.24)

In this inequality, the ratio of the squares of the excess and total
dislocation density can only take values between 0 and 1, namely
when either the entire dislocation density is of SSD or GND
character. For these two limiting cases one finds:

τcr < τ < 1.5τcr if κ0 = 0 (A.25)

0.89τcr < τ < 1.61τcr if κ2
0 = $2

0 (A.26)

This means that whenever the resolved shear stress reaches the
flowstress and the material starts to become plastic, the linearized
PDE turns hyperbolic.
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A.6 Active slip systems in an fcc crystal under line load in [1 1 0]
direction

The stress acting on the material can in general be described in the
deformed configuration by a symmetric Cauchy stress tensor σ.

σ =

σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (A.27)

The initial orientation of the sample in Euler angles is ϕ1 = 315°,
φ = 0°, ϕ2 = 0°. This corresponds to the following orientation
matrix O:

O =
1√
2

1 −1 0
1 1 0
0 0

√
2

 . (A.28)

If one assumes lattice rotations to happen exclusively around the
sample x-axis (with angle ω), then the combined rotation from the
current frame into the lattice frame reads

R = O

1 0 0
0 cos ω sin ω

0 − sin ω cos ω

 =
1√
2

1 − cos ω − sin ω

1 cos ω sin ω

0 −
√

2 sin ω
√

2 cos ω


(A.29)

The second Piola–Kirchhoff stress is then obtained by rotation
of the Cauchy stress into the lattice frame.

S = RσRT (A.30)

The resolved shear stress on any slip system ξ can be calculated
from the projection of the second Piola–Kirchhoff stress onto
the Schmid matrix.

τξ = S :
(

sξ ⊗ nξ
)

(A.31)

For slip system 1 (numbering according to table 3.1) one obtains

τ1 =
1√
6

(
σxx+

1
2

σyy

(
−1 + cos(2ω)− 1√

2
sin(2ω)

)
+

1
2

σzz

(
−1− cos(2ω) +

1√
2

sin(2ω)

)
+σyz

(
sin(2ω) +

1√
2

cos(2ω)

)
+σxy

(
cos ω +

1√
2

sin ω

)
+σxz

(
sin ω− 1√

2
cos ω

))
(A.32)
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Similarly, one obtains for slip system 5

τ5 =
1√
6

(
− σxx−

1
2

σyy

(
−1 + cos(2ω)− 1√

2
sin(2ω)

)
−1

2
σzz

(
−1− cos(2ω) +

1√
2

sin(2ω)

)
−σyz

(
sin(2ω) +

1√
2

cos(2ω)

)
+σxy

(
cos ω +

1√
2

sin ω

)
+σxz

(
sin ω− 1√

2
cos ω

))
(A.33)

If one assumes that the shear stress components in xy and xz are
negligible under a line load in x-direction, then the resolved stress
on slip systems 1 and 5 are indeed of same absolute value, but
opposite sign. Similar results hold for slip system pairs 2/4, 3/6,
7/8, 9/12, and 10/11, which means that they tend to act pairwise.
As a consequence of the equally high resolved shear stress on slip
systems 1 and 5, the effective plastic velocity of both systems is
proportional to the difference in the Schmid matrices.

Lp ∝ s1 ⊗ n1 − s5 ⊗ n5 =
1√
6

1 1 −1
1 1 1
0 0 −2

 (A.34)

If one rotates this tensor back into the current configuration, one
obtains

RTLpR ∝

 1 1 0
−1 1 0
0 0

√
2


1 1 1

1 1 −1
0 0 −2


1 −1 0

1 1 0
0 0

√
2

 (A.35)

=

2 0 0
0 −2 sin2 ω− 1√

2
sin(2ω)

√
2 cos2 ω + sin(2ω)

0 sin(2ω)−
√

2 sin2 ω 1√
2

sin(2ω)− 2 cos2 ω


(A.36)

The xx component in this tensor would lead to compression or
tension in x direction, which is clearly not possible in plane-strain
deformation. Hence, these two slip systems cannot be activated,
although they might have a high Schmid factor. Similar results can
be obtained for the slip system pairs 2/4 and 9/12. On the other
hand, combined slip on the system pairs 3/6, 7/8, and 10/11
results in a pure plane-strain deformation mode.

A.7 Geometrically necessary dislocation density derived from
plastic shear gradients

The amount of geometrically necessary dislocations is closely
related to spatial gradients in the plastic slip gradient. It is these
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gradients in the plastic strain that necessitate the presence of GNDs
in order to maintain compatibility. Thus, if one knows the
individual contributions of the plastic shear on all slip systems, one
can determine the amount of GNDs. If one integrates the evolution
equations for the excess dislocation density of eq. (3.20) one obtains

$
ξ
∆e = −grad γξ · sξ

b
(A.37a)

for the excess dislocation density of edge type and

$
ξ
∆s = −

grad γξ ·
(
nξ × sξ

)
b

(A.37b)

for the corresponding screw type. Thus, the GND densities of edge
and screw type are proportional to projections of the shear
gradients onto the respective directions of motions. The shear
gradient can be calculated from central differences with six
different neighboring integration points (denoted in the following
by an index i, j ∈ 1, ..., 6. The position of the neighboring integration
points in the current configuration is known and denoted by r. For
better readability, two short-hand notations are introduced for the
differences between two position vectors and the plastic shears on
slip system ξ:

rij := ri − rj and γ
ξ
ij := γ

ξ
i − γ

ξ
j . (A.38)

The shear difference between two neighbors 1 and 2 can then be
derived from the shear gradient.

γ
ξ
12 = grad γξ ·

(
Fe
−1r12

)
(A.39)

Note that the integration point coordinates are mapped into the
lattice frame by means of the elastic deformation gradient Fe.
Similar formulations can be given for four more integration point
neighbors and one finally obtains an equation for the plastic shear
gradient on a specific slip system.

grad γξ = Fe
T
(

r12 r34 r56

)−T

γ
ξ
12

γ
ξ
34

γ
ξ
56

 (A.40)

Inserting the last equation into eq. (A.37) results in an expression
for the GND density of edge and screw type on each slip system.

A.8 Efficient cutback algorithm
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Algorithm: main cutback and wind forward procedure

f = 0
∆ f = 2
todo = 1
converges = 0
clearToWindForward = 1
clearToCutback = 1
sync = 0
syncCompleted = 0
en f orceCutback = 0
while any todo do

determine synchronization (see fig. A.2)
foreach integration point i do

if converged[i] and clearToWindForward[i] then
∆ fold = ∆ f [i]
f [i] = f [i] + ∆ f [i]
∆ f [i] = min(1− f [i], ∆ f [i])
if ∆ f [i] > 0 then

wind forward variables
if sync[i] then

syncCompleted[i] = 1
sync[i] = 0
todo[i] = 0

else todo[i] = 1
else if ∆ fold > 0 then todo[i] = 0

else if not converged[i] and clearToCutback[i] then
if sync[i] then ∆ f [i] = f̃
else ∆ f [i] = 0.5∆ f [i]
restore variables
if ∆ f [i] > ∆ fmin then todo[i] = 1
else todo[i] = 0

if todo[i] and (clearToWindForward[i] or
clearToCutback[i]) then converged[i] = 0

if any todo then
do calculations // this will change converge
todo = 0

foreach integration point i do
if not converged[i] and ∆ f [i] > fmin then todo[i] = 1

Figure A.1: Algorithm that winds
forward or does a cutback.
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Algorithm: synchronization

if any syncCompleted then
foreach integration point i do

if syncCompleted[i] then converged[i] = 0
syncCompleted[i] = 0
clearToWindForward[i] = 0
clearToCutback[i] = not (converged[i])

else
clearToWindForward[i] = 0
clearToCutback[i] = 0
if all converged then

if all f + ∆ f ≥ 1 then clearToWindForward = 1
else

foreach integration point i do
if ∆ f [i] < 1 then clearToCutback[i] = 1
else clearToCutback[i] = 0

else
f̃ = max( f )
if f̃ = 0 then

en f orceCutback = 0
foreach integration point i do

foreach neighbor n of i do
if not converged[n] then en f orceCutback[i] = 1

foreach integration point i do
if en f orceCutback[i] then converged[i] = 0

else
sync = 0
foreach integration point i do

foreach neighbor n of i do
if not converged[n] then sync[i] = 1

foreach integration point i do
if sync[i] then converged[i] = 0

foreach integration point i do
if ∆ f [i] < 1 then converged = 0

if any sync then
clearToWindForward[i] = 0
clearToCutback[i] = sync[i]

else
foreach integration point i do

if not converged[i] then clearToCutback[i] = 1

foreach integration point i do
if not converged[i] then ∆ f [i] = min(∆ f )
if not (clearToWindForward[i] or clearToCutback[i]) then
todo[i] = 0

Figure A.2: Algorithm that determines
which integration points do a cutback
or wind forward their data.





B
Notation and tensor operations

Vector products
c = a · b = aibj gi · gj

C = a⊗ b = aibj gi ⊗ gj

c = a× b = ajbkεijk gi

C = a× B = ajBklε
ijk gi ⊗ gl

C = A× b = Ajkblε
ijk gi ⊗ gl

Tensor products
C = A⊗ B = AijBkl gi ⊗ gj ⊗ gk ⊗ gl

C = A� B = AijBkl gi ⊗ gk ⊗ gl ⊗ gj

= Ail Bjk gi ⊗ gj ⊗ gk ⊗ gl

C = A� B = AijBkl gi ⊗ gk ⊗ gj ⊗ gl

= AikBjl gi ⊗ gj ⊗ gk ⊗ gl

Single contraction
c = Ab = Ai.j bj gi

C = AB = Ai.k Bkj gi ⊗ gj

C = AB = AijkmBm.l gi ⊗ gj ⊗ gk ⊗ gl

Double contraction
c = A : B = AijBij

C = A : B = Aijkl Bkl gi ⊗ gj

C = A : B = AijBijkl gk ⊗ gl

C = A : B = Aijkl Bklmn gi ⊗ gj ⊗ gm ⊗ gn

C = A•◦B = Aijkl Bjk gi ⊗ gl

C = A•◦B = Ail Bijkl gj ⊗ gk

C = A•◦B = Aijkl Bjmnk gi ⊗ gm ⊗ gn ⊗ gl

C = A◦•B = Aijkl Bil gj ⊗ gk

C = A◦•B = AjkBijkl gi ⊗ gl

C = A◦•B = Aijkl Bmiln gm ⊗ gj ⊗ gk ⊗ gn

Table B.1: Tensor operations
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Identity tensors
I = gi ⊗ gi

I = I ⊗ I = gi ⊗ gi ⊗ gj ⊗ g j

IR = I � I = gi ⊗ g j ⊗ gi ⊗ gj

IL = I � I = gi ⊗ gj ⊗ g j ⊗ gi

Identities
I•◦A = A◦•I = A

I◦•A = A•◦I = A

IR : A = A : IR = A

IR : A = I•◦A = I◦•A = A
IL : A = IR•◦A = IR◦•A = AT

I : A = IL•◦A = IL◦•A = I tr A

Table B.2: Second- and fourth-order
identity tensors

Basis rearrangement
AR = Aijkl gi ⊗ gl ⊗ gj ⊗ gk

= Aikl j gi ⊗ gj ⊗ gk ⊗ gl

AL = Aijkl gi ⊗ gk ⊗ gl ⊗ gj

= Ail jk gi ⊗ gj ⊗ gk ⊗ gl

Table B.3: Basis rearrangement of
fourth-order tensors

Partial derivative

A,B =
∂Aij
∂Bkl

gi ⊗ gk ⊗ gl ⊗ g j

A;B =
∂Aij
∂Bkl

gi ⊗ g j ⊗ gk ⊗ gl

A,B = (A;B )
L

A;B = (A,B )
R

Chain and product rule
A,B = A,C •◦C,B

(AB),C = A,C B + AB,C

Special derivatives
A,A = I

A,AT = AT,A = IR

A−1,A = −A−1 ⊗ A−1

A,A−1 = −A⊗ A
A−T,A = −A−T � A−T

A−1,AT = −A−1 � A−1

Table B.4: Derivatives of tensor-valued
tensor functions
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Abstract

This dissertation presents a physics-based constitutive model of
dislocation glide in metals that explicitly accounts for the
redistribution of dislocations due to their motion. In this respect, it
is settled between a) discrete dislocation dynamics models, which
solve the equation of motion for every discretely represented
dislocation segment by superposition of all dislocation stress fields,
and b) local continuum dislocation-based models of
crystal-plasticity, which represent the dislocation content by a
dislocation density field and solve for mechanical equilibrium in a
compatible medium. The model parametrizes the complex
microstructure by dislocation densities of edge and screw character,
which either occur with monopolar properties, i. e., a single
dislocation with positive or negative line sense, or with dipolar
properties, i. e., two dislocations of opposite line sense combined.
The particularity of the model lies in the description of the
dislocation density evolution, which not only comprises the usual
rate equations for dislocation multiplication, annihilation, and
formation and dissociation of dislocation dipoles. Additionally, the
spatial redistribution of dislocations by slip is explicitly accounted
for. This entails an advection term for the dislocation density that
turns the evolution equations for the dislocation density from
ordinary into partial differential equations. The associated spatial
gradients of the dislocation slip render the model intrinsically
nonlocal, i. e., the time integration of the state equations depends on
the neighborhood of the integration point.
After an assessment of the transport properties of the constitutive
model, the predictions for a simple test case are compared to
discrete dislocation dynamics results of the same setup. It is
discussed what happens at the transition from the discrete to the
continuum description. It is found that the continuum model is
able to match the discrete dislocation dynamics results to a large
extent.
The model is applied to two existing experiments: simple shear of
an Aluminum bi-crystal with small-angle tilt grain boundary1 and

1 J.C. Kuo. Mikrostrukturmechanik von
Bikristallen mit Kippkorngrenzen. PhD
thesis, RWTH Aachen, 2004

indentation in single-crystalline Nickel.2 Both simulations reveal a
2 J.W. Kysar, Y. Saito, M.S. Oztop,
D. Lee, and W.T. Huh. Experimen-
tal lower bounds on geometrically
necessary dislocation density. In-
ternational Journal of Plasticity, 26(8):
1097–1123, 2010. ISSN 0749-6419. doi:
10.1016/j.ijplas.2010.03.009

very good match between model predictions and experimental
data. It is found that for the large scale simple shear experiment the
redistribution of the dislocation density has, however, little
influence on the plastic response, and the influence of the grain



152

boundary is already captured by a local model variant without
dislocation transport, yet not for a phenomenological constitutive
model. This is in contrast to previous results that indicated the
need of a nonlocal model in order to properly represent the grain
boundary behavior.3 In the simulation of the Nickel indent, the 3 A. Ma. Modeling the constitutive

behavior of polycrystalline metals based
on dislocation mechanisms. PhD thesis,
RWTH Aachen, 2006

dislocation transport led to accumulation of GND density around a
vertical boundary with a high orientation gradient below the
indenter that is decisive for the plastic material response. A local
model variant without dislocation transport is shown to behave
significantly softer, which results in an overestimation of the lattice
rotations compared to experiment.



Zusammenfassung

In dieser Dissertation wird ein physikalisch-basiertes konstitutives
Materialmodell für Versetzungsgleitung in Metallen entwickelt, das
den Transport von Versetzungen explizit berücksichtigt. Das Modell
ist angesiedelt an der Schnittstelle zwischen a) diskreten
Versetzungsmodellen, die die Versetzungslinien durch diskrete
Segmente darstellen und die dazugehörigen
Bewegungsgleichungen mittels der Spannungsfelder der
Versetzungen bestimmen und b) lokalen versetzungs-basierten
Kristallplastizitätsmodellen, die Versetzungen durch
Versetzungsdichte modellieren und die mechanischen
Gleichgewichtsbedingungen in einem kompatiblen Medium lösen.
Das Modell parametrisiert die Mikrostruktur durch
Versetzungsdichten mit Stufen- oder Schraubencharakter, die
entweder mit monopolaren Eigenschaften auftreten, das heisst
einzelne Versetzungen mit positiver beziehungsweise negativer
Linienrichtung, oder als Versetzungsdipol. Die Besonderheit des
Modells liegt in der Beschreibung der Versetzungsdichteevolution,
die nicht nur die gewöhnlichen Ratengleichungen für
Multiplikation, Annihilation und Bildung und Zerfall von Dipolen
beinhaltet. Zusätzlich wird die Umverteilung von
Versetzungsdichte berücksichtigt. Dies führt zu einem
Transportterm, der den Charakter der Evolutionsgleichungen von
gewöhnlichen Differentialgleichungen zu partiellen
Differentialgleichungen ändert. Die dadurch auftretenden
räumlichen Ableitungen der plastischen Scherung bedingen eine
Nichtlokalität des Modells, das heisst die Zeitintegration der
Evolutionsgleichungen hängt von der Nachbarschaft jedes
Integrationspunktes ab.
Anhand eines Vergleiches der Modellvorhersagen mit diskreten
Versetzungsrechnungen für einen einfachen Testfall wird diskutiert,
welche Effekte beim Übergang von einer diskreten zu einer
Kontinuumbeschreibung von Versetzungsbewegung auftreten. Ein
Resultat ist, dass die Vorhersagen des Kontinuumsmodells in guter
Übereinstimmung mit dem diskreten Modell stehen.
Das Modell wird im Anschluss auf zwei existierende Experimente
angewendet: die Scherverformung eines Aluminium Bikristalls mit
Kleinwinkel-Kippkorngrenze4 und die Indentierung von

4 J.C. Kuo. Mikrostrukturmechanik von
Bikristallen mit Kippkorngrenzen. PhD
thesis, RWTH Aachen, 2004

einkristallinem Nickel.5 Beide Simulationen zeigen gute

5 J.W. Kysar, Y. Saito, M.S. Oztop,
D. Lee, and W.T. Huh. Experimen-
tal lower bounds on geometrically
necessary dislocation density. In-
ternational Journal of Plasticity, 26(8):
1097–1123, 2010. ISSN 0749-6419. doi:
10.1016/j.ijplas.2010.03.009Übereinstimmung mit den Experimenten. Dabei zeigt sich, dass der



154

Einfluss des Versetzungstransportes auf das Verformungsverhalten
beim großskaliegen Scherversuch gering ist, da der Einfluss der
Korngrenze schon durch eine lokale Modellvariante ohne
Versetzungstransport beschrieben werden kann. Dies steht in
teilweisem Widerspruch zu früheren Ergebnissen, die darauf
hindeuteten, dass das Verhalten der Korngrenze nur durch einen
nichtlokalen Ansatz beschrieben werden kann.6 In der Simulation 6 A. Ma. Modeling the constitutive

behavior of polycrystalline metals based
on dislocation mechanisms. PhD thesis,
RWTH Aachen, 2006

der Indentierung von Nickel führt der Transport von Versetzungen
zu einem Aufstau von geometrisch notwendigen Versetzungen an
einer vertikalen Grenze unterhalb des Indenters, die einen hohen
Orientierungsgradienten aufweist und entscheidend für das
Verformungsverhalten der Probe ist. Eine lokale Modellvariante
ohne Versetzungstransport führt zu einem signifikant weicheren
Materialverhalten und einer Überschätzung der Gitterrotationen im
Vergleich zum Experiment.
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