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Chapter 1 Introduction 

1.1 Supramolecular Chemistry 

Since Charles Pedersen found accidently crown ethers in 1967, supramolecular 

chemistry has developed rapidly and grown into a very interesting and useful field. In 

a broad sense, the beginning of supramolecular chemistry was recorded as the ap-

pearance of Charles Pedersen’s seminal paper in Journal of the American Chemical 

Society, entitled ―Cyclic Polyethers and Their Complexes with Metal Salts‖, in 1967.
[1]

 

It marked the significance of supramolecular chemistry that Charles J. Pedersen, Do-

nald J. Cram and Jean-Marie Lehn were awarded the Nobel Prize in Chemistry 1987 

"for their development and use of molecules with structure-specific interactions of 

high selectivity". Supramolecular chemistry has been defined by Jean-Marie Lehn as 

the ―chemistry beyond the molecule‖ and ―chemistry of molecular assemblies and of 

the intermolecular bond‖. It focuses on molecular assemblies of various chemical 

species based on weak non-covalent interactions. 

Charles J. Pedersen discovered crown ethers by chance, yet he won the Nobel 

Prize in Chemistry not by chance. Initially, he designed and tried to synthesize a mul-

tidentate phenolic ligand as ―a metal deactivator‖ to protect petroleum products from 

autoxidation through converting metal salts into inactive multidentate complexes.
[2]

 

He carried out the designed reactions, as shown in Figure 1. Though Pedersen knew 

that the partially protected catechol was not pure and was contaminated with about 10 

percent unreacted catechol, he went on carrying out the next reaction using the impure 

compounds as starting material because he thought he need to purify the target com-

pound anyway. To his surprise, he obtained only a small quantity (about 0.4% yield) 

of white crystals after purification. Pedersen was innovative because he did not follow 

dogma but followed his natural curiosity and intuition, and without hesitation, he stu-

died the unknown through ultraviolet spectroscopy. With his genuine curiosity and 

persistence, Pedersen hypothesized and determined the structure of the unknown 
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compound and investigated the cation complexation behavior. During the next nine 

years staying in Du Pont until his retirement, Pedersen focused on studying the crown 

ethers’ synthesis and cation complexation properties. Consequently, he deserved the 

Nobel Prize in Chemistry as a pioneer in supramolecular chemistry, a new uncharted 

territory of chemistry. 

Figure 1 The serendipitous discovery of crown ether by Pedersen. 

Inspired by Pedersen’s pioneering work, Donald J. Cram and J. M. Lehn carried 

out a lot of excellent work in this field.
[3]

 

Based on Charles Pedersen’s breakthrough findings, Donald J. Cram developed 

host-guest chemistry and expanded crown ethers into two-dimensional and 

three-dimensional organic compounds, which were synthesized through principle of 

preorganization and could bind selectively certain metal cations through structural 

recognition. With the help of CPK molecular models, Donald J. Cram and coworkers 

designed and synthesized a series of ligands as depicted in Figure 2. They reported the 

syntheses of spheraplex 5, complexes of 5 with Na
+
 and 5 with K

+
.
[4]

 In spheraplex 5, 

the binding oxygen atoms are preorganized in an octahedral array, ready to receive a 

metal cation due to the rigid structures. As a result of preorganization, the spherand 5 

binds Na
+
 more than 10

10
 more effectively than the analogous podand 6. Moreover, 

Donald J. Cram et al. have investigated extensively a transacylase mimic. They com-
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bined aryloxy, cyclic urea, pyridyl, biphenyl, ethylene, methylene, and oxygen units 

into certain 20-membered macrocycle hosts, which mimic serine transacylases.
[5]

 

Their studies have shown that the design and preparation of systems mimicking some 

properties of enzymes, such as to enhance reaction rates via complexation, is possible. 

In addition, Donald J. Cram developed synthetic receptors made from spheraplex 

building blocks: 3-dimensional synthetic molecular vessels – cavitands.
[6]

 A series of 

target cavitands with large internal surfaces were designed and readily prepared. Most 

of the cavitands were derived via rigidification from a simple cavitand 7, which was 

synthesized in good yield through treatment of resorcinol with acetaldehyde and ac-

id.
[6-7]

 They determined the association constant for a derivative of 7 with CS2 and 

observed a cocrystal, which showed that CS2 had occupied the cavity in the expected 

manner. As the development of cavitands, they also reported certain synthetic mole-

cular containers – carcerands.
[8]

 As an expert and talented professor in organic chemi-

stry, he managed to catch the cutting edge of chemistry and was good at thinking 

about the receptors’ design and skilled at long-pathway multiple-step synthesis. Cram 

successfully utilized his substantial knowledge in organic chemistry into the cut-

ting-edge field—supramolecular chemistry. He has made seminal and great contribu-

tions to the seedling-like field and has been regarded as a cofounder of supramolecu-

lar chemistry. 

  

Figure 2 The structures of spheraplex 5, podand 6 and cavitand 7. 

Jean-Marie Lehn, a further visionary leader in supramolecular chemistry, is 

known for cryptands and is still specializing and active in this field. Lehn
[9]

 began his 

research on natural products, where he learned to focus on the general importance of 
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individual molecular details at the University of Strasburg in France. He and cowork-

ers devised and developed a type of new molecules, called cryptands. Cryptands, a 

three-dimensional analogues of Pedersen’s crown ethers, are more selective receptors 

and bind more strongly for certain metal ions due to ―precise spatial organization of 

donor atoms‖. In general, cryptands are apt to bind a variety of ―hard cations‖, such as 

NH4
+
, alkali metal cations, alkaline earth metal cations and lanthanoid cations. In par-

ticular, the resulting complexes are lipophilic, which makes the ionic reactions occur 

in organic solvents and is crucial in both chemistry and biology.
[10]

 As a general ex-

ample, Figure 3 shows the structures of 2.2.2-Cryptand and its complex encapsulating 

a potassium cation. His group is also investigating anion chemistry and the recogni-

tion of anionic substrates. They have studied extensively anionic species’ (inorganic 

anions, carboxylates, phosphates, etc.) binding and recognition of macrocycles and 

macropolycycles resulting from both electrostatic, structural effects, and complemen-

tarities. For example, they devised and obtained cryptands with positively charged or 

neutral electron-deficient groups to serve as receptors to bind and recognize anions. 

As shown in Figure 3, receptor 10
[11]

 is formed by protonated macrobicyclic polya-

mines with an ellipsoidal pattern and is perfect complementary to azide anions but not 

fit well to halide anions. They studied the properties of macrobicyclic receptor 10 to 

recognize linear triatomic species, such as azide anions, through 
13

C FT NMR as well 

as to stabilize unstable species like F2H
-
, Cl2H

-
, F3

-
,
 
Cl2F

-
, etc. 

 

Figure 3 Structures of 2.2.2-Cryptand 8 and its potassium complex 9 as well as macrobicyclic poly-

amines 10 and its schematic diagram towards binding azide anions 11.
[12]

 

In addition, Lehn and coworkers attached appropriate functional groups into re-

ceptors to act as supramolecular catalysts.
[13]

 For instance, they reported both the su-
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pramolecular catalysis in the hydrolysis of ATP facilitated by macrocyclic protonated 

polyamines and the pyrophosphate synthesis from acetyl phosphate mediated by ma-

crocyclic polyamines.
[14]

 Furthermore, they studied self-assembly based on met-

al-ligand interactions for biological or material applications.
[15]

 As a general and clas-

sic example,
[15a]

 they described the self-recognition, self-organization and 

self-selection in helicate self-assembly. Firstly, they treated mixtures of four types of 

different chain-length the [oligo (2, 2′)-bipyridine] strands with copper(I) ions to yield 

spontaneously double helicates without significant crossover. Secondly, they treated 

the mixture of two types of tris-bipyridine ligands (with different substitutions) with a 

mixture of copper(I) and nickel(II) to form spontaneously mere the double helicate for 

copper(I) and the triple helicate for nickel(II), as shown in Figure 4. The processes 

can manage to yield spontaneous double and/or triple helical assembly species from 

mixtures of ligands and metal ions, which are attributed to the realm of programmed 

supramolecular systems. 

 

Figure 4 The schematic diagram for the self-recognition, self-organization, and self-selection in heli-

cate self-assembly. 

Lehn has been contributing original and a great deal of contributions to the 

fledging supramolecular chemistry, in particular molecular recognition and 

self-assembly.
[9, 16]

  

Besides the three founders, their peers and descendants have also been cease-
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lessly exploring and substantially developing supramolecular chemistry into applica-

tions in many fields, such as supramolecular catalysis.  

Julius Rebek Jr.,
[17]

 Makoto Fujita
[18]

 and Kenneth N. Raymond
[19]

 have made 

significant contributions to supramolecular catalysis in confined cavities. 

 

Figure 5 Representative nanocages for reactions.
[20]

 

George Whitesides, Fraser Stoddart, Peter Stang, Fritz Vögtle, Jean-Pierre Sau-

vage, François Diederich, Chad A. Mirkin, Vincenzo Balzani, Eric Anslyn, and Jerry 

Atwood have also made significant contributions to the development of supramolecu-

lar chemistry. 

With the untiring efforts of these pioneers as well as descendants, supramolecular 

chemistry has progressed into an interdisciplinary, serviceable, function-oriented do-

main.  

1.2 Anion Chemistry 

Compared to cation chemistry, anion chemistry is not explored extensively. Its 

birth dates back to the late 1960s, halide anions were encapsulated by protonated di-

azabicycloalkane ammonium ions reported by Park and Simmons,
[21]

 almost the same 

period of the beginning as cation chemistry. In contrast to the fully developed and ex-

tensively investigated cation chemistry, anion chemistry is in a fledging stage and 

needs more efforts to be made. The research on anion chemistry is more difficult. The 

reasons are various. 

Firstly, compared to the monotonous spherical shapes of most cations, anions re-

ally have various shapes, 1) all of the monoatomic anions are spherical, including ha-
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lide anions and O
2-

, S
2-

 etc; 2) N3
-
, CN

-
, SCN

-
, OH

-
, O2

-
, S2

-
, I3

-
, etc. are linear; 3) 

CO3
2-

, NO3
-
, HSO3

-
, SO3

2-
 etc are trigonal planar; 4) HOO

-
, NH2

-
, RCO2

-
, NO2

-
 etc are 

V-shaped; 5) ClO4
-
, BrO4

-
, HSO4

-
, SO4

2-
, H2PO4

-
, HPO4

2-
, PO4

3-
, MnO4

-
, BF4

-
 etc are 

tetrahedral; 6) Fe(CN)6
4-

, Co(CN)6
3-

, PF6
-
 etc are octahedral; (7) some anions have 

complex structures. Polyoxometalate anions have various and characteristic structures, 

for example, XM12O40
n- 

anions belong to Keggin structure, and Mo6O19
2-

 anions are 

Lindqvist structures; 8) poly charged DNAs are double helix structures,
[22]

 and some 

RNAs are hairpin loop structures.
[23]

  

Secondly, compared to corresponding cations, anions are more apt to be affected 

by solvents due to higher electron polarizability. In solution, anions are strongly sol-

vated through hydrogen bonding, polar moment and polarizability.  

Thirdly, pH can dramatically influence anions as Lewis bases. The changes of 

pH perhaps lead to the presence of different species of anions in solution, which 

makes the sensing and recognition of anions more difficult. 

Fourthly, many metal cations, as Lewis acids, can catalyze many reactions in or-

ganic chemistry. Thus, plenty of reaction-based indicator systems
[24]

 are ingeniously 

devised and utilized into recognition and sensing of cations,
[25]

 especially for mer-

cury(II) ions,
[26]

 copper(II) ions,
[27]

 and so on. On the contrary, only a few reac-

tion-based receptors are synthesized and used in anion sensing and recognition.
[28]

 

Until recently, most anion receptors mainly rely on electrostatic interactions 

(positive charged receptors, such as ammoniums), hydrogen bonds (acidic X-H 

groups, X = N, O, S, C etc), metal or Lewis acid coordination (electron-deficient met-

al cations or Lewis acidic receptors, such as receptors containing boron, mercury, sil-

icon, germanium, and tin etc), hydrophobic effects (receptors based on cyclodextrins 

etc) and a combination of two or more interactions.
[29]

  

The most significant backbones for anion receptors are N-H containing aromatic 

systems, including pyrroles,
[30]

 indoles,
[31]

 carbazoles,
[31-32]

 indolocarbazole
[33]

 etc. 

Due to the existence of acidic protons, once they are modified with other anion bind-

ing sites, such as amide or (thio)urea groups etc, or are cyclized,
[34]

 they are likely to 
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tightly bind anions. Some significant aromatic receptors containing N-H are displayed 

in Figure 6.  

 

Figure 6 Receptors containing aromatic N-H moiety: 1) pyrrole-based receptors 12, 2) indole-based 

receptors 13, 3) carbazole-based receptors 14, 4) indolocarbazole-based receptors 15; 5) a 

calix[4]pyrrole-based receptor 16. 

Philip A. Gale has been making vital contributions to the development of anion 

chemistry, and he has been summarizing the advances of anion chemistry frequent-

ly.
[35]

 

Some novel receptors, binding modes, and sensing mechanisms are developed 

gradually recently.  

In 2005, Resnati and coworkers reported the halogen-bonding-based heterodi-

topic receptors for alkali metal halides, such as NaI, KI, KBr and KCl, for the first 

time.
[36]

 Due to the tris[2-(2-hydroxyethoxy)ethyl]amine as metal binding sites and 

the iodotetrafluorophenyl groups as anion binding sites, the receptor can bind alkali 

cations and halide anions simultaneously and shows an unusual affinity order, de-

creasing in the order I
-
 > Br

-
 > Cl

-
, due to charge-transfer contributions to halogen 

bonding. More recently, Taylor and coworkers have further developed the application 

of halogen bonds in recognition of anions.
[37]

 They designed and synthesized a triden-

tate receptor with a combination of three ortho-substituted iodoperfluoroarenes and a 

hexasubstituted benzene derivative, which acted as a preorganized tridentate receptor 

for anions. The results demonstrated that the receptor achieved high-affinity molecu-
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lar recognition exploiting the halogen-bonding interactions alone. The affinities to-

wards anions are consistent with Resnati’s results, decreasing in the order I
-
 > Br

-
 > 

Cl
-
. Subsequently, they combined distinct non-covalent interactions, hydrogen and 

halogen bonding, and demonstrated that the two interactions can bind anions coopera-

tively and achieve high affinity and unusual selectivity towards anions.
[38]

 

Amar H. Flood and co-workers have carried out extensive research on the appli-

cation of weak C-H hydrogen bonds in anion sensing and recognition.
[39]

 Due to the 

well-designed preorganization and the shape-persistent macrocycle, the C-Hs of 

1,2,3-triazoles function perfectly as hydrogen bond donors to efficiently complex 

chloride with strong affinity in solution.
[40]

 In addition, they have demonstrated that 

the preorganization of intramolecular hydrogen bonds enhanced the affinity of 

1,2,3-triazoles towards chloride binding.
[41]

 

Kochi and collaborators intelligently employed anion-π interactions to recognize 

halide anions with olefinic and aromatic receptors.
[42]

 Upon addition of bromide salt 

into tetracyanopyrazine in acetonitrile, a new peak immediately appeared at roughly 

400 nm and rose with the increase of bromide concentrations, which indicated the 

formation of a charge-transfer complex between bromide anions and tetracyanopyra-

zine. Notably, a cocrystal of tetracyanopyrazine and tetrabutyl ammonium bromide 

was obtained and showed that the bromide anions laid 0.3 nm over the periphery of 

electron-deficient aromatic rings, showing the anion- interactions in solid. Later, 

Johnson and collaborators reported that anion- interactions can augment halide 

binding in solution.
[43]

 They devised and prepared two receptors with a pentafluoro-

phenyl as well as phenyl group, respectively. The phenyl group receptor showed no 

affinities towards halide anions in CDCl3, while the one with a pentafluorophenyl 

group showed moderate affinities towards halide anions with binding constants in the 

range of 20-34 M
-1

, in the order I
- 
> Cl

- 
> Br

-
 in CDCl3 through the 

1
H NMR spec-

troscopic method. This study highlighted the utilization of anion- interactions to bind 

anions by design. 
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Figure 7 Proposed schematic diagram for Johnson’s anion receptor and an anion (drawing from Chem-

Bio 3D Ultra). 

Beer and coworkers are considerably concerned to synthesize novel interlocked 

molecular architectures using anionic species as templating motifs and in turn use 

them to sense and recognize anions, mainly including halides (Scheme 1).
[44]

 Firstly, 

they prepared orthogonal complexes using anionic species as a template through hy-

drogen or halogen bonding, similar to Sauvage’s copper(I) templated systems. Se-

condly, they transformed the orthogonal complexes to pseudorotaxanes with anionic 

species as templates. They often employed Grubbs ring closing metathesis. Thirdly, 

the anionic species, templates during the construction of pseudorotaxane process, 

were removed through ion exchange and left perfect binding sites for the templating 

anionic species. Finally, the interlocked structures were utilized as anion receptors and 

showed enhanced anion binding properties and high selectivity, especially towards the 

anionic species as templates, due to the preorganization and perfect complementarity.  

 

Scheme 1 Beer’s interlocked sensors and complex architectures for anions. 

In 2010, V. Sindelar and co-workers described the preparation of a novel hex-

americ macrocycle (bambus[6]uril) through acid-catalyzed condensation of 

2,4-dimethylglycoluril with formaldehyde.
[45]

 The results showed that bambus[6]uril 
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can bind halide anions inside the cavity through twelve weak C-H
…

anion bonds be-

tween methylene carbon atoms on the convex face of glycoluril units and the corres-

ponding anion with high affinity and selectivity in the following order: I
-
 > Br

-
 > Cl

-
 > 

F
-
. 

1.3 Ion-pair Chemistry 

The concept of ion pairs was first introduced in mechanistic consideration of 

substitution reactions. Winstein et al. discussed the acetolysis of 3-anisyl-2-butyl 

arylsulfonates and of some other compounds.
[46]

 The concept is used to explain many 

phenomena in stereochemistry, especially for SN1 substitution.  

Ion-pair recognition as a fledging field, emerging from simultaneous anion and 

cation coordination, has become an interesting field in supramolecular chemistry
[47]

 

and its investigation helps us to understand further the mechanisms of catalysis and to 

design catalysts on target. Some elegant studies in the field were described by e.g. 

Reinhoudt,
[48]

 Beer,
[47c, 49]

 Smith,
[50]

 Barboiu,
[51]

 Sessler
[47a, 47b, 52]

 and their co-workers. 

Due to the conformational features of calix[4]diquinones, Beer and collaborators have 

investigated cooperative AND ion-pair recognition by a series of various calix[4] di-

quinone receptors.
[49c]

 Smith and coworkers focused on the ion pair binding properties 

of macrobicyclic receptors and used them in selective solid-liquid extraction as 

well.
[50b, 50e]

 Recently, Sessler and collaborators described the recognition behavior of 

ion pairs of KF and CsF by a calix[4]pyrrole and obtained the respective co-crystal 

structures.
[52b]

  

 

Scheme 2 Three types of ditopic receptors a) cascade complex (left), b) heteroditopic receptor for 

separated ion pairs (middle), and c) contact ion pairs (right). 

Salt extraction and solubilization has developed with the advances of ion pair 
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recognition and stabilization and is an inadequately explored area. It permits ionic 

reactions to occur in aprotic media.
[2]

 In 1996, Reinhoudt et al. reported a bifunctional 

calix[4]arene which was capable of binding anions and cations simultaneously and 

solubilized sodium halide salts into chloroform.
[48c]

 In 1999, White and Tasker et al. 

studied a series of ditopic ligands for the simultaneous extraction of cations and 

anions.
[53]

 Smith et al. ingeniously designed and investigated ion pair binding and so-

lubilization of KCl salts into DMSO.
[50b]

  

1.4 Anion- Interactions 

Although cation- interactions have been investigated and applied in various 

fields for several decades,
[54]

 only few reports on the anion- interactions appeared. 

Most people believed that anions and -aromatic ring systems would repulse each 

other until the year of 2002. Indeed, contrary to the chemical intuition, the interactions 

between anions and  systems can be attractive via umpolung or polarity inversion, 

namely converting electron-rich aromatic rings to electron-deficient aromatic ones. In 

the year of 2002, M. Mascal et al.,
[55]

 I. Alkorta et al.,
[56] 

and A. Frontera collaborated 

with P. M. Deyà
[57]

 et al. put intelligently forward the concept of anion- interactions 

and investigated it through quantum chemical calculations and the crystallographic 

experiments simultaneously. Since then, anion- interactions have been investigated 

broadly via theoretical calculations and single crystal structures due to their essential 

role in chemical processes/systems in form of catalysis and transport.
[58]

 

Anion- interactions are defined as favorable non-covalent contacts between 

electron-rich anions and electron-deficient aromatic systems (-acid). Typically, the 

anions, such as halide anions, ClO4
-
, BF4

-
, PF6

-
, SCN

-
, SO4

2-
, NO3

-
 etc and aromatic 

systems, e.g. hexafluorobenzene, pentafluorobenzene, triazine, trinitrobenzene, tetra-

nitrobenzene and their derivatives are exploited in the study on anion-interactions. 

Antonio Frontera is a pioneer on anion- interactions and has made plenty of 

contributions to this fledging field with his collaborators.
[58d]

 He and coworkers inves-

tigated the directionality of anion- interactions through comparison of the energetic 
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changes of moving the anions from the exact centre of electron-deficient aromatic 

rings to different directions with changes of corresponding cations by means of theo-

retical calculations.
[59]

 In addition, they reported the combined experimental and 

theoretical study of anion- interactions in N
5
-and N

9
- decyladenine and bis (pyridine) 

salts, complexes of Zinc(II) with N-imidazolyl- and N-pyrazolylpyrimidine donor li-

gands. The results of theoretical calculations are perfect in accordance with the expe-

rimental findings.
[60]

 Since asking the question ―Anion- interactions: do they exist?‖ 

in 2002, they have been answering that anion- interactions exit and are favorable.
[61]

 

Meixiang Wang et al. have made elegant work on anion- interactions through 

investigating tetraoxacalix[2]arene[2]triazine’s electron-deficient and self tunable na-

ture.
[62]

 They have studied the interactions between tetraoxacalix[2]arene[2]triazine 

receptors and halide anions and showed that the electron-deficient receptors interacted 

strongly in solution and solid state.
[63]

 Recently, collaborating with Dexian Wang, 

Meixiang Wang reported the generality, strength and structure between electron-rich 

anions and an electron-deficient tetraoxacalix[2]arene[2]triazine by the use of elec-

trospray ionization mass spectrometry, fluorescence titration and X-ray crystal struc-

tures. The perfect cooperation of anion- interactions and lone pair electron- interac-

tions was used in anion binding. The authors claimed that this way provided a new 

dimension on studying molecular recognition and self-assembly and potentiated the 

effect of anion- interactions in chemical and biological systems.
[62e]

 

 

Scheme 3 Schematic drawing of anion- interactions between a tetraoxacalix[2]arene[2]triazine recep-

tor and an anion. 

Reedijk, Gamez and co-workers reported the first host for anionic guest (a den-

dritic octadendate N ligand) and its encapsulation behavior of chloride anions by 
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anion- interactions.
[64]

  

Matile, Schalley and collaborators provided direct experimental evidences for 

anion- interactions through electrospray tandem mass spectrometry in combination 

with theoretical calculations and exerted anion- interactions on selective transport of 

anions across lipid bilayer membranes.
[65]

 

Ballester and co-workers evaluated quantitatively anion- interactions through 

1
H NMR spectroscopy in solution and X-ray crystallographic studies using a series of 

meso-tetraaryl calix[4]pyrrole receptors and halide anions.
[66]

 

Olefinic and aromatic receptors were used to recognize halide anions by Kochi 

and collaborators, which showed the applications of anion- interactions in anion 

recognition.
[42]

 Afterwards, Johnson and co-workers augmented halide binding ability 

in solution using anion- interactions.
[43]

 

Kim R. Dunbar, Helen T. Chifotides and their group focus on using anion- in-

teractions and other non-covalent interactions to construct cationic metallasupramo-

lecular architectures.
[58a]

 Most of their studies are involved in exceptional -acidic 

ligands, such as 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (bptz)
[67]

 or 

3,6-bis(2-pyrimidyl)-1,2,4,5-tetrazine (bmtz)
[68]

 or 1,4,5,8,9,12-hexaazatriphenyl 

enehexacarbonitrile (HAT(CN)6)
[69]

, as -electron receptors. The anion- interactions 

play a vital role in stabilizing the supramolecular architectures.
[67-68, 70]

 

Since 2008, Albrecht group has been conducting detailed studies on anion- in-

teractions of various anions with fluorophenyl moieties in the solid state as well as in 

solution.
[71]

 Initially, a series of pentafluorophenyl substituted ammonium, iminium, 

amidinium, and phosphonium halides were investigated and it was found that they 

showed extensive anion- interactions.
[71b]

 Meanwhile, the new 
2
-type coordination 

between anions and electron-deficient aromatic rings were reported. Subsequently, 

CH-directed anion- interactions in the crystals of pentafluorobenzyl-substituted 

ammonium and pyridinium salts were studied and it was found that the symmetric 

hydrogen bonding facilitated 
6
-type binding between anions and electron-deficient 

aromatic rings while asymmetric hydrogen bonding benefited other types (such as 
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
1
-type) binding.

[71h]
 Furthermore, the anion- interactions were implemented in salts 

to stabilize the rarely observed and unstable tetraiodide anion I4
2-

.
[71g]

 

 

Scheme 4 Interactions between anions and aromatic -systems. 
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Chapter 2 Objectives 

The work of this dissertation will be divided into five parts. 

2.1 Quinoline-based Anion Receptors 

Anion species play a vital role in human bodies and biological and physiological 

science. The study on recognition and sensing of anions are not as mature as cation’s 

study and there is more space to explore in this field. Urea as well as thiourea groups, 

particularly N, N-substitution modified ones, represent excellent hydrogen-bond do-

nors and binding sites for anion recognition and sensing.
[72]

 In proteins, the amide 

units, which are widely employed in anion recognition and binding, play an important 

role for the binding of anions and other functions.
23

 As electron-deficient moieties, 

pentafluorophenyl groups are used in anion sensing and recognition in order to en-

hance the positive polarity of the receptor binding sites and to introduce the possibili-

ty for anion- interactions.
[71b, 71g, 71h, 71j]

 Therefore, a series of quinoline-based halide 

receptors (1-6, Figure 8) were designed, in which pentafluorophenyl groups were in-

troduced as electron-withdrawing -acidic groups. In order to mimic oligopeptides in 

proteins, two amides were designed to attach to the quinoline backbone to form a 

preorganized bisamide cleft for binding halide anions (7-10, Figure 8). The novel 

anion receptors are based on a functionalized quinoline backbone capable for halide 

binding mainly through hydrogen bonding, perhaps somewhat with the help of 

anion- interactions. It is planned to tune the affinity of quinoline-based receptors to-

wards halide anions by virtue of mediating the electronic, solvent, and fluo-

ro-substitution effects. As an effective method, 
1
H and 

19
F NMR spectroscopy in 

CDCl3 and DMSO-d6 will be used in this study. 
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Figure 8 Designed receptors towards anions to tune halide affinity in solution. 

2.2 A Quinoline-substituted Crown Ether 

Crown ethers, unintentionally prepared by C. J. Pedersen in 1960s,
[2]

 have been 

widely applied in cation-sensing,
[1]

 ditopic recetpors,
[50c]

 rotaxane-construction,
[73]

 salt 

extraction,
[74]

 and phase transfer catalysis.
[75]

 Ion-pair recognition, emerging from ca-

tion and anion coordination, has become an interesting, ongoing but not fully unders-

tood field in supramolecular chemistry.
[47]

 Due to their intra-/intermolecular hydrogen 

binding sites, 2-amido-8-aminoquinolines are utilized as backbones for 

anion-sensing
[76]

 and foldamer-construction.
[77]

 Our group studied various types of 

2-amido-8-aminoquinoline derivatives to recognize anions in solution.
[78]

 

 

Figure 9 Molecular structure of receptor 11 and scheme for 11 binding ion pairs and salts. 

Herein, based on previous work,
[79]

 a combination of anion binding sites 

(2-amido-8-aminoquinolines) and cation binding sites (crown ether) was achived to 

form a novel ditopic receptor for ion-pairs or salts and to study solution behavior in 

chloroform and DMSO (Figure 9).
[79]

 Due to the presence of both an anion binding 

site and a cation binding moiety, receptor 11 has potential applications in catalysis and 
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selective separation. 

2.3 Anion Receptors Based on Biphenyl-substituted Quinoline 

Biphenyl is an interesting moiety due to the torsional angle between the two 

phenyl planes. The torsional angle depends on the energetic competition between fa-

vorable -conjugation and the repulsion of the two C-Hortho atoms.
[80]

 Herein, a com-

bination of two kinds of biphenyls (biphenyl and 2,3,4,5,6-pentafluorobiphenyl) and a 

2-amido-8-aminoquinoline derivative is designed to investigate anion binding proper-

ties and to probe anion- interactions in solution, respectively. Due to the torsion of 

the biphenyl and preorganization of 8-amino-2-quinolinecarboxylic amide, the recep-

tors are likely to form cavities for halide anions.  

Figure 10 Designed anion receptors 12, 13 and schematic diagram of 13 binding of an anion. 

2.4 Exploration of Anion- Interactions in Solution 

Compared to cation- interactions, the anion- interaction is still regarded as a 

fledging domain. There is infinite space to explore in this topic, such as its nature, its 

directionality and its applications in sensing and recognition of anions in solution. In-

doles are hydrogen bond donors for anion binding in biological systems. They have 

been widely exploited for the design of anion receptors.
[81]

 Pentafluorophenyl groups 

are perfect electron-deficient aromatic groups and have been delicately devised into 

receptors to track anion- interaction by many scientists.
[43, 71a, 71b, 71e, 71g, 71h, 71j]

 In-

spired by Johnson and co-workers’ work
[43]

, three groups of receptors were devised. 
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The focus is to probe the probability to capture anion- interactions in solution 

through 
1
H NMR and 

19
F NMR spectroscopic methods and to study their relevance. 

 

Scheme 5 Molecular structures of receptors 14-18 and concept of cooperative, competitive and repul-

sive interactions. 

2.5 Syntheses of Further Receptors for Anions 

In order to probe the anion binding behavior in solution, some other receptors for 

halide and biscarboxylate anions were designed and prepared. Their binding of anions 

will be measured in solution by means of NMR and UV-vis spectroscopy. 
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Figure 11 A series of designed receptors towards anions. 
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Chapter 3 Tuning the Halide Affinity of Quinoline-based 

Anion Receptors 

3.1 Introduction 

Supramolecular chemistry is defined as ―the chemistry beyond the molecule‖ and 

―chemistry of molecular assemblies and of the intermolecular bond‖ by Jean-Marie 

Lehn.
[82]

 Molecular assemblies are achieved through highly selective association be-

tween similar or different molecules. The design and accomplishment of molecular 

assembly are based on the development and applications of knowledge on molecular 

recognition. The knowledge on molecular recognition is vital for the molecular as-

sembly in supramolecular chemistry. Moreover, molecular recognition plays a promi-

nent role in physiological processes. The balance of ion concentrations in human body 

liquids relies on the selective recognition of ion carriers. Therefore, it is becoming 

more and more significant to foster molecular recognition knowledge and to develop 

molecular receptors with high selectivity and sensitivity. Compared to cation chemi-

stry, recognition and sensing of anions has been a less explored domain in supramo-

lecular chemistry. There are infinite space in the recognition and sensing of anion and 

anionic species. Halide anions are a group of anionic species and inextricably bound 

to human beings. For example, everyone acquires chloride anions in the form of table 

salt. The advances of anion chemistry have tremendously progressed recently. Beer 

and co-workers developed an anion template synthesis of interlocked structures, 

which are able to sense and recognize anions in solution, especially towards anions 

used as templates.
[44a]

 In addition, they ingeniously incorporated halogen bonding into 

the interlocked architectures as anion binding sites and achieved expressively high 

selectivity and high binding constants in solution.
[83]

 Meanwhile, Taylor et al exten-

sively investigated the binding behavior of halide and other anions through halo-

gen-bonding interactions alone or incorporation of halogen/hydrogen bonding interac-

tions in solution.
[37b, 38, 84]

 The tridentate halogen-bonding receptors showed interest-
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ing selectivity towards halide anions in the order I
-
 > Br

-
 > Cl

-
 and bound halide 

anions strongly in solution through halogen binding alone.
[37a]

 

Anion-interactions are attractive interactions between electron-rich anions and 

electron-deficient aromatic systems. The interest in anion- interactions has gained 

tremendously in the last couple of decades. However, there are many problems to 

solve in this field, such as their nature, their directionalities, and their applications in 

anion sensing and recognition and molecular assemblies. Our group has been studying 

the anion-interactions between pentafluorophenyl groups and various anions in the 

solid state
[71b, 71g, 71h]

 as well as by NMR titration studies in solution.
[71e]

 

Due to their excellent properties as hydrogen bond donors, (thio)urea groups, 

especially N,N′-substitution ones, are widely exploited in the design of anion recep-

tors and showed superior binding affinities towards anions.
[72]

 As functional groups in 

proteins, amides (peptide bonds) play a significant role in the functions of proteins. 

Amides are comprehensively used in binding and association of anions.
[23]

 

The intramolecular hydrogen bond networks of 2-amido-8-hydroxyquinoline 

were found by our group in 2000.
[78a]

 After much thought, it was managed to intro-

duce 2-amido-8-aminoquinoline derivatives, which were constructed by Jiang and 

Huc et al,
[77c, 85]

 as fluorescent anion receptors for fluoride anions.
[78a]

 The receptor 

showed high selectivity for fluoride in solution. Subsequently, various amide and urea 

groups were introduced into the backbone to provide receptors for halide and other 

anions in solution,
[78b, 86]

 as shown in Figure 12. 

 

Figure 12 The structures of a representative 2-amido-8-hydroxyquinoline derivative and some receptors 

from previous research. 

Based on previous research, two novel kinds of anion receptors were designed. 
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The first group combines (thio)urea and amide as anion binding sites in a cooperative 

fashion. The second group combines two amide groups in a receptor to bind anions in 

a cooperative type, which has the potential to mimic oligo peptides. In addition, the 

second group is regarded as better receptors to observe anion-interactions due to the 

relatively weak binding ability of amide groups in solution. 

The introduction of pentafluorophenyl groups offers the opportunity to investi-

gate the interplay of anion- interactions and hydrogen bonding in solution. The 

presence of phenyl and pentafluorophenyl groups provides the possibility to probe the 

electronic effects in solution. Different (thio)urea groups give a chance to compare 

their anion binding affinities in solution. Due to intramolecular hydrogen bonds, the 

acidic protons in amide and (thio)urea groups are likely to associate anions in a coop-

erative fashion, which facilitates the anion binding process. The presence of the iso-

butyl ether group is resulting from the synthesis requirement, and it should increase 

the solubility of compounds in common solvents. 

Figure 13 The structures of targeted quinoline-based receptors. 

3.2 Syntheses of Receptors 

Quinoline-based receptors are prepared by following the depicted processes 

(Figure 14, 15 and 16). The synthetic pathway is easy-to-operate, high yielding, and 

highly flexible in terms of structural modification. Nitroquinoline carboxylic acid is 

obtained from 2-nitroaniline according to the reported procedure by Huc and Jiang et 

al.
[87]

 Firstly, 2-nitroaniline reacts with dimethyl acetylenedicarboxylate in methanol 

for 16 h at room temperature, and then the reaction mixture is heated for 6 h to afford 
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2-[(2-nitrophenyl)amino]-2-butenedioic acid dimethyl ester 1 in a high yield. Second-

ly, ester 1 is cyclized to 1,4-dihydro-8-nitro-4-oxo-2-quinolinecarboxylic acid methyl 

ester 2 with PPA (polyphosphoric acid) dehydration at 120C for 1 h. Thirdly, ester 2 

reacts with iso-butanol under Mitsunobu conditions with the catalysis of DIAD in the 

presence of triphenyl phosphorus in dried THF overnight to provide methyl 

4-isobutoxyl-8-nitroquinoline-2-carboxylate 3. Finally, the saponification of 3 is ac-

complished in alkaline methanol and THF solution for 20 h and the product is neutra-

lized using an excess of acetic acid to provide 4-isobutoxyl-8-nitroquinoline 

-2-carboxylic acid 4, as shown in Figure 14. 

Figure 14 Syntheses of nitroquinoline carboxylic acid 4. 

To construct electron-deficient clefts, the precursor of pentafluorobenzyl amine 

is synthesized according to literature.
[88]

 2,3,4,5,6-Pentafluorobenzyl bromide reacts 

with tritylamine in DMF at room temperature for 1 h to afford N-trityl-2,3,4,5,6-penta 

fluorobenzyl amine 5. Subsequently, N-trityl-2,3,4,5,6-pentafluorobenzyl amine 5 is 

deprotected in TFA/CH2Cl2 solution for 10 minutes and then reacts with concentrated 

hydrochloric acid to provide 2,3,4,5,6-pentafluorobenzyl amine hydrochloride 6, 

which is used as the source of 2,3,4,5,6-pentafluorobenzyl amine in the presence of 

DIPEA. 
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Figure 15 Syntheses of salt 6 and pentafluoroaryl isothiocyanates 9 and 10. 

It is notable that pentafluorobenzyl isothiocyanate is not commercially available 

and is prepared from pentafluorobenzyl amine hydrochloride salts. Initially, precursor 

6 is transformed to pentafluorobenzyl amine in the presence of DIPEA. Subsequently, 

pentafluorobenzyl amine reacts with TCP (1,l'-thiocarbonyldi-2,2'-pyridone)
[89]

 to 

produce pentafuorobenzyl isothiocyanate 9 in good yield. The pentafluorophenyl iso-

thiocyanate 10 is prepared directly from pentafluoroaniline and TCP in DCM. 

Figure 16 Syntheses of 4-isobutoxyl-8-nitroquinoline-2-carboxylic benzylamides 7 and 8. 

Two amides 7 and 8 are synthesized from appropriate amines with nitroquinoline 

carboxylic acid 4 in the presence of DIPEA, HOBt and EDC·HCl in good yield. Nitro 

groups of the respective amides are reduced under the catalysis of Pd/C at the hydro-

gen gas atmosphere (20 bar) to afford the corresponding amines in nearly quantitative 

yield. The latter react with appropriate aryl isothiocyanates or isocyanates to form the 

(thio)urea receptors 11-16. In addition, reactions of the amines with pentafluoroben-

zoyl or benzoyl chloride in the presence of TEA (triethylamine) in dry acetonitrile af-

ford the corresponding four diamide receptors 17-20, possessing only two amides as 

hydrogen bond donors bearing fluorosubstituted or non-fluorosubstituted aromatic 
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rings. 

Figure 17 Syntheses of quinoline-based receptors. 

The above compounds are fully characterized by 
1
H NMR, 

19
F NMR (if possi-

ble), 
13

C NMR, IR, mass spectra, melting points and elemental analysis. In addition, 

for compounds 7, 11, 12, 13, 14, 16, and 18, single crystals are obtained and analyzed 

by X-ray diffraction (see Experimental Section for details). 

3.3 Solid State Structures and Conformational Considerations 

 

Figure 18 Single crystal structures of compound 7 (gray, C; white, H; green, F; blue, N; red, O). 

An X-ray crystal structure of intermediate 7 is obtained by slow evaporation of a 

solution of 7 in CH3OH/CH2Cl2, as shown in Figure 18. As anticipated, the NH proton 

is positioned in the front of the quinoline nitrogen rim via intramolecular hydrogen 

bonding. 
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Figure 19 Structures of receptor 14 in solid (gray, C; white, H; green, F; blue, N; red, O; yellow, S). 

Yellow crystals of receptor 14 are grown by slow evaporation of a 

CH3OH/CH2Cl2 solution of the receptor. The structure is elucidated by single crystal 

X-ray diffraction and is shown in Figure 19. The amide proton points to the nitrogen 

atom of the quinoline moiety with a distance of 2.263 Å and one of thiourea protons 

with a distance of 2.733 Å, well preorganized for anion complexation. On the other 

hand, the second hydrogen atom of the thiourea moiety and the attached elec-

tron-deficient arene are turned away from the front of the molecule. However, since 

the N-C single bond between the pentafluorobenzyl and the amide group is flexible, 

the pentafluorophenyl group is able to participate in the binding of anions by anion- 

interactions. The distance between the two protons, which are pointing to the direction 

of the quinoline N part, is 2.473 Å. Receptor 14 is a good receptor towards anions by 

preorganization. 

 

Figure 20 Single crystal structures of receptor 18 (gray, C; white, H; green, F; blue, N; red, O). 

Crystals of receptor 18 are obtained by slow evaporation of a solution of 18 in 

CH3OH/CH2Cl2. Figure 20 shows the structure of receptor 18 in the solid. Similar to 

14, the two hydrogen atoms of the amides create a cleft which should be appropriate 



28 

 

 

for the binding of anions. The distances between the two amide hydrogen atoms and 

the quinoline nitrogen atom are 2.232 and 2.267 Å, respectively. 

 

Figure 21 Structures of receptor 16 in solid (gray, C; white, H; green, F; blue, N; red, O; yellow, S). 

Besides, crystals of receptor 16 were grown from a DMSO solution of the re-

ceptor, because it has very poor solubility in CHCl3 and other common solvents. Not-

ably, all of the three NHs point to the front of the quinoline nitrogen rim in a conver-

gent fashion to form a hydrogen donor cavity by means of intra/intermolecular hy-

drogen bonding. Amazingly, the lone pair- interactions involved in a fluorine atom 

are observed in this molecule. Lone pair- interactions between a neutral electron-rich 

molecule (i.e. possessing one or more lone pairs) and a six-membered aromatic ring 

are very common in solid structure.
[90]

 Here, the intramolecular lone pair- interac-

tions are observed. As shown in Figure 22, one fluorine atom of the pentafluorophenyl 

group close to thiourea is positioned in close proximity to another pentafluorophenyl 

unit. It has to be mentioned that in the crystal the fluorine atom does not exactly lo-

cate above the center of the -system but shifts towards the rim of the pentafluoro-

phenyl moiety. One short close contact F-C 2.923 Å (sum of vdW radii = 3.17 Å) is 

observed. It can be described as a ―
1
‖ type lone pair  interaction. 
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Figure 22 Part of the X-ray structures of receptor 16 showing interactions between a fluorine atom and 

its neighboring pentafluorophenyl group (gray, C; white, H; green, F; blue, N; red, O; yellow, S). 

Table 1 Comparison of the F-C contacts [Å] in receptor 16. 

Bond 

distance 

F-centroidPh F-C1 F-C2 F-C3 F-C4 F-C5 F-C6 

3.268 2.923 3.204 3.772 4.098 3.834 3.267 

The X-ray diffraction data for corresponding compounds are reported in the Ex-

perimental Section in detail. 

3.4 
1
H NMR and 

19
F NMR Studies in Solution 

As an effective method to explore solution properties, NMR titrations are tre-

mendously applicable for host-guest systems.
[91]

 
1
H, 

19
F, 

13
C NMR spectroscopies are 

widely used in supramolecular chemistry. Here, the binding behavior of receptors to-

wards halide anions is studied by 
1
H NMR and 

19
F

 
NMR spectroscopic methods in 

solution. 

Job plot (method of continuous variation or Job’s method) has been applied to 

determine the binding ratio between hosts and guests since P. Job developed it in 

1928.  

3.4.1 Interactions of (Thio)urea-based Receptors with Halide Anions 

First of all, the interactions between the novel receptors and halide anions are 

examined in CDCl3. Considerable changes of 
1
H NMR spectra are observed with the 

successive addition of halide anions (as Bu4NX, tetrabutylammonium halide) in 

CDCl3. For receptor 14 and chloride anions as typical example, the changes are dis-

cussed in detail. Similar cases are observed for other receptors and halide anions.  

The signals of N-H protons of the amide and thiourea groups significantly shift 
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downfield, up to 2.280, 2.23, and 4.16 ppm, respectively. These data indicate that 

chloride anions are tightly bound by receptor 14, proposed in a cooperative fashion by 

the acidic protons, in CDCl3. Moreover, it is interesting to note that the saturation oc-

curs when the amount of chloride anions reaches 1.1 equivalents. It signifies that the 

binding ratio between the receptor and chloride anions is 1:1, which is further con-

firmed by a Job plot. 

 

Figure 23 Partial 
1
H NMR spectra (CDCl3, 300 MHz, 298 K) of receptor 14 after successive addition of 

Bu4NCl (the assignment of protons see Figure 17). 

Although above data provide useful information on the binding ratio, the asso-

ciating stoichiometry between receptor 14 and chloride anions is further examined by 

Job’s method. The variation of the weighted chemical shifts as a function of molar 

ratio clearly shows a 1:1 receptor: anion binding ratio between receptor 14 and chlo-

ride anions (Figure 24, top left). Meanwhile, the 
1
H NMR titration experiments be-

tween receptor 14 and chloride anions are conducted in CDCl3 with a concentration of 

0.01 M of receptor 14 and successive addition of Bu4NCl. The corresponding titration 

curves are shown in Figure 24, top right. The data are obtained and fitted using stan-

dard methods of nonlinear regression treatment
[92]

 to give the binding constant K = 

1.67*10
4
 M

-1
 between receptor 14 and chloride anions in CDCl3 at 298 K. The inte-

ractions of receptor 14 towards bromide and iodide anions are also examined and the 
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binding constants were obtained for a 1:1 binding ratio. 
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Figure 24 Titration curves of receptors 14 (right top) and 13 (right bottom) towards chloride anions in 

CDCl3 and corresponding Job plots in CDCl3 for receptors 14 (left top) and 13 (left bottom) towards 

chloride anions at 298 K (the total concentrations kept on 0.01 M). 

The presence of pentafluorobenzyl groups in receptor 14 is assumed to cause the 

protons to be more acidic than ones in its analog 13. To evaluate the effect of fluorina-

tion, the binding properties of receptor 13 towards halide anions are inquired by virtue 

of 
1
H NMR titration experiments and Job plots in CDCl3. Job plots clearly show 1:1 

binding stoichiometry between receptor 13 and chloride anions in CDCl3 (Figure 24, 

bottom left). The data obtained from 
1
H NMR titration experiments are fitted with 

standard methods of nonlinear regression
[92]

 (Figure 24, bottom right). The binding 

constant is reported as K = 3.11*10
3
 M

-1
 between receptor 13 and chloride anions in 

CDCl3 at 298 K. 

To survey the associating behavior of different kinds of thiourea groups, receptor 

12 is used to bind halide anions in CDCl3. The 
1
H NMR titration and Job plot experi-

ments in CDCl3 between receptor 12 and halide anions are carried out, too. An associ-

ation constant of K > 5*10
4
 M

-1 
is estimated for a 1:1 binding situation between re-

ceptor 12 and Cl
-
 in CDCl3 at 298 K. 
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Generally speaking, the solution NMR data are readily applicable to the 

host-guest systems whose binding constants are in the range of 10 – 10
4
 M

-1
.
[91a]

 In 

above investigations, the binding constant between receptor 12 and chloride anions is 

beyond this range. In order to acquire more reliable data between receptors and halide 

anions in solution, the binding behavior of the host-guest systems is pursued in 

DMSO-d6. Due to its more polar and more competitive nature as a solvent, the bind-

ing affinities of receptors for halide anions would become low and the binding con-

stants are likely to go to the range of 10 – 10
4
 M

-1
. 

As a representative case, the binding behavior of receptor 14 towards chloride 

anions in DMSO-d6 is discussed. Initially, the Job plots of receptor 14 and chloride 

anions from 
1
H NMR spectroscopy are achieved and apparently show a 1:1 binding 

stoichiometry in DMSO-d6 (Figure 25 right). Afterwards, the 
1
H NMR titration expe-

riments are conducted in DMSO-d6 and the obtained data are fitted using standard 

methods of nonlinear regression treatment (Figure 25, left). A binding constant K = 

744 M
-1 

is determined in DMSO-d6 at 298 K. The binding properties of all receptors 

11 - 16 and halide anions are also explored and provide the corresponding binding 

constants in DMSO-d6 at 298 K. 
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Figure 25 Titration curves of receptor 14 towards chloride anions in DMSO-d6 (left) and corresponding 

Job plots in DMSO-d6 at 298 K (right). 

In order to compare the binding constants of different receptors and to analyze 

the changing trends, the binding constants of all receptors (11 - 16) with halide anions 

(Cl
-
, Br

-
 and I

-
, as Bu4NX) in CDCl3 and DMSO-d6 are summarized in Table 2. 

 

 



33 

 

 

 

Table 2 Binding constants (K, M
-1

) of receptors 11 – 16 with halide anions (as tetrabutylammonium 

salts) in CDCl3, and DMSO-d6 containing 0.5% water at 298 K. The binding constants are determined 

by 
1
H NMR titration experiments in CDCl3 and DMSO-d6, and fitted according to a 1:1 binding ratio 

based on Job plots. Errors are estimated to be less than 20%. 

host Cl
-
 Br

-
 I

- 
 host Cl

-
 Br

-
 I

-
 

 CDCl3   DMSO-d6   

11 969 218 65 11 600  87 __ (b)

 

12 > 5·10
4
 3.52·10

4
 1.65·10

3
 12 845 21 __ (b)

 

13 3.11·10
3
 471 106 13 831  66 __ (b)

 

14 1.67·10
4
 3.22·10

3
 465 14 744 50 __ (b)

 

15 3.17·10
4
 4.32·10

3
 593 15 408 62 __ (b)

 

16  __(a)

 
__ (a)

 
__ (a)

 
16 809 73 __ (b)

 

[a] The receptor is not soluble in this solvent. [b] No significant shift observed. 

Comparison of these binding constants of various (thio)urea/amide-based quino-

line receptors 11 - 16 towards halide anions in solution reveals some interesting find-

ings: 

Firstly, all of the receptors, no matter fluorination or not, no matter in CDCl3 or 

in DMSO-d6, show increasing affinities towards halide anions in the order of I
-
 < Br

-
 

< Cl
-
. This result is ascribable to a combination of the basicity of halide anions and 

their size effects. Steiner stated that ―all hydrogen bonds can be considered as inci-

pient proton transfer reactions, and for strong hydrogen bonds, this reaction can be in 

a very advanced state.‖
[93]

 The binding affinities depend on the basicity of the anions 

for a given receptor. In addition, the size effect makes a contribution to the trend as 

well. As mentioned above, the distance between the two protons, which are pointing 

to the direction of the quinoline N atom, is 2.473 Å. The diameters corresponding to 

chloride, bromide, and iodide anions are 3.62, 3.92, and 4.40 Å, respectively. The 

smaller the diameter of an anion is, the fitter it is for a receptor. Therefore, a combina-

tion of these two effects leads to the binding trend. 
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Secondly, receptors exhibit higher binding affinities toward a given anion in 

CDCl3 than in DMSO-d6. DMSO-d6 is a more polar solvent and it is bound more 

strongly by receptors through hydrogen bonds. That DMSO-d6 occupies the binding 

sites of receptors causes the receptors to show relatively low binding affinities for 

anions. The binding process between receptors and halide anions in DMSO-d6 is pro-

posed to be less entropically favored than in CDCl3 because the separation of recep-

tors and DMSO-d6 consumes extra energies. 

Thirdly, the fluorinated receptors, such as 12 and 14, display higher binding abil-

ities than the non-fluorinated ones, such as 11 and 13. The first component that per-

haps leads to the difference is based on electronic effects. Due to the strong elec-

tron-withdrawing ability of pentafluorophenyl groups, the N-Hs in thiourea and amide 

groups attaching to fluorinated receptors are stronger polarized and therefore more 

acidic. The second component might be based on an anion- interaction. The anion- 

interaction perhaps contributes to the binding ability of fluorinated receptors towards 

anions in solution. 

Fourthly, receptor 12 binds each halide anion more strongly than receptor 14 

does. It is ascribable to the difference of substituted thioureas. In receptor 12, the 

pentafluorophenyl group, which is electron-deficient and withdraws electrons strongly, 

is directly attached to the thiourea; while in receptor 14, the pentafluorophenyl group 

is anchored to the thiourea moiety through a methylene linker. Consequently, the 

N-Hs in the thiourea group in receptor 12 are induced to be more acidic than in re-

ceptor 14. 

Fifthly, it occurrs in CDCl3 that the slight modification of receptors generate vast 

differences in binding ability; while the various receptors with different modifications 

in DMSO-d6 display similar binding ability towards a given anion. It is proposed that 

the stronger solvation of anions in DMSO-d6 decreases the selectivity of guests to-

wards the receptors. The signals of all receptors in 
1
H NMR spectra in DMSO-d6 do 

not change with the successive addition of iodide anions. Due to their weak basicity 

and bulk sizes, all receptors exhibit no binding affinities towards iodide anions in 
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DMSO-d6. 

3.4.2 Interactions of Diamide-based Receptors with Halide Anions 

(Thio)urea groups are excellent and strong binding sites for anions, while 

anion- interactions are severely weak and extremely difficult to observe in solution. 

In above receptors, even if anion- interactions exist, their contributions will sub-

merge in the titanic contributions of (thio)urea groups. Amide groups are relatively 

weak binding moieties. Amide groups as peptide bond in proteins play countless func-

tions, such as forming secondary or higher structures and transporting anions within 

the human body. Many receptors containing amide groups as binding sites have been 

designed and exploited to coordinate, bind, recognize and sense anions.
23

 

In order to mimic oligo peptides and to explore the contributions of anion- in-

teractions in the binding process, receptors 17 - 20 are used to recognize halide anions 

in solution. As discussed above, the two N-H protons in receptor 18 point to the front 

of the N atom of the quinoline backbone and are likely to bind anions cooperatively. 

The binding behavior of receptors 17 - 20 towards halide anions in CDCl3 is studied 

by means of 
1
H NMR spectroscopic titration and Job plots with Bu4N

+
 halide salts. 

The Job plots of receptor 17 towards chloride anion in CDCl3 are recorded in Figure 

26 right, exhibiting a 1:1 binding stoichiometry. With the addition of chloride anions, 

the chemical shifts go downfield in the 
1
H NMR spectra. The titration curves of re-

ceptor 17 towards chloride anions are also depicted in Figure 26. The fitted data pro-

vide a binding constant of K = 44 M
-1

 between receptor 17 and chloride anions in 

CDCl3 at 298 K. All of the titration curves and Job plots between receptors 17 - 18 

and halide anions are conducted in CDCl3 at 298 K. The signals of receptors 19 and 

20 in 
1
H NMR spectra do not change with the addition of halide anions. No binding 

constants data are obtained and recorded. All the obtained data are listed in Table 3. 
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Figure 26 
1
H NMR titration curves of receptor 17 towards chloride anions in CDCl3 (left) and corre-

sponding Job plots in CDCl3 (right). 

Table 3 Binding constants (K, M
-1

) of receptors 17 and 18 with halide anions in CDCl3 at 298 K. The 

binding constants are measured by 
1
H NMR titration experiments in CDCl3 and fitted according to a 

1:1 binding ratio. Errors are estimated to be less than 20%. 

host Cl
-
 Br

-
 I

-
 

17 44 35 18 

18 34 30 15 

The determined data are analyzed in brief. 

As expected, receptors 17 - 18 display lower binding affinities towards a given 

anion than receptors 10 - 16 do. This is attributed to the absence of stronger hydrogen 

donor groups (urea/thiourea). 

The selectivity of receptors 17 and 18 towards anions shows the same trend, in 

the sequence of Cl
-
  Br

- 
> I

-
 (considering of the estimated errors), which is in agree-

ment to receptors 11 - 16. This is ascribable to the differences of basicity and sizes of 

halide anions. The binding pockets of these receptors are fitter to small anions in solu-

tion. 

Receptor 17, containing two pentafluorophenyl groups, shows a somewhat 

stronger binding affinity than receptor 18, containing only one pentafluorophenyl 

group. The effect of fluorination can account for this. The electronic differences be-

tween receptors 17 and 18 resulting from the fluoro substituent influence the pKa of 

the N-H protons. In addition anion- interactions might contribute. So far it is not 

clear which effect is the dominant one and the amount of participation of each interac-

tion. 
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It is of interest to note that the pentafluorobenzoyl substituent is the prerequisite 

for the receptors. Compounds 19 and 20, which do not contain pentafluorobenzoyl 

substituents, show no detectable binding affinities for anions in CDCl3 at 298 K. 

3.4.3 
19

F NMR Studies in Solution 

Interactions between (thio)urea-based receptors and halide anions. 
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Figure 27 
19

F NMR titration curves of receptor 14 towards chloride anions in CDCl3 (right) and corre-

sponding Job plots in CDCl3 (left). 

19
F NMR spectroscopic method is widely used to analyze and determine the 

structures of organofluorine compounds due to its favorable nuclear properties and 

high natural abundance. Recently, Metrangolo, Resnati, Taylor and their co-workers
[38, 

94]
 used 

19
F NMR spectroscopic method to investigate halogen bonding and/or anion 

sensing in solution and provided excellent results. The anion binding behavior of flu-

orinated receptors is likewise investigated by means of 
19

F NMR spectroscopic me-

thod in solution. To find the binding stoichiometry between receptor 14 and chloride 

anions, a 
19

F NMR Job plot is depicted in Figure 27 (left). It shows a 1:1 binding 

stoichiometry in CDCl3, which is consistent with the result of related proton NMR 

studies. 
19

F NMR titration spectra of receptor 14 upon the addition of varying equiva-

lents of Bu4NCl are plotted in Figure 27 (right). Standard methods of nonlinear re-

gression treatment of the obtained data leads to the binding constant K = 1.82*10
4
 M

-1
 

between receptor 14 and chloride anions in CDCl3 at 298 K. 

Likewise, the anion binding properties of receptor 14 in DMSO-d6 by means of 

19
F NMR spectroscopy are examined. Initially, the Job plots experiments are carried 
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out in DMSO-d6 to check the binding ratio between receptor 14 and anions via 
19

F 

NMR spectra. The Job plots apparently show a 1:1 binding ratio between receptor 14 

and chloride anions through 
19

F NMR in DMSO-d6 (Figure 28, left), which is good 

agreement with the results of the 
1
H NMR studies. Titration curves are also plotted 

according to 
19

F NMR spectra in DMSO-d6. Standard methods of nonlinear regression 

treatment of the obtained data leads to the binding constant K = 711 M
-1

 between re-

ceptor 14 and chloride anions in DMSO-d6 at 298 K
 
, which is perfect accord with the 

results obtaining from 
1
H NMR studies. 
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Figure 28 
19

F NMR titration curves of receptor 14 towards chloride anions in DMSO-d6 (right) and 

corresponding Job plots in DMSO-d6 (left). 

It shows that the results obtained from 
1
H NMR studies and 

19
F NMR studies are 

in accord with one another. 

3.5 Conclusions 

A series of quinoline-based receptors towards anions has been synthesized suc-

cessfully in good yield, and is fully characterized by 
1
H NMR, 

19
F NMR, 

13
C NMR, 

mass spectra, infrared spectra, and elemental analyses. Some single crystals of the key 

compounds are prepared from appropriate solvents, and elucidated by single crystal 

X-ray diffraction. Their single crystal structures reveal that each receptor forms an 

appropriate preorganized structure for the binding of anions by virtue of in-

tra/intermolecular hydrogen bonding. Their binding abilities towards halide anions are 

investigated by 
1
H NMR and 

19
F NMR and they show from moderate to strong affini-

ties towards anions decreasing in the order of Cl
-
 > Br

-
 > I

-
 in CDCl3 and DMSO-d6 



39 

 

 

solution. In addition, tuning the halide binding affinities is achieved by modulating 

the electronic effects, functional groups, and fluorosubstituent effects. Thereby, the 

fluoro substituted receptors are stronger binders than the corresponding 

non-fluorinated derivatives. Anion- interactions potentially contribute to the en-

hanced binding affinities. Furthermore, a rough general sequence of NH-containing 

binding sites towards halide anions is found, as shown in Figure 29. This rough trend 

should offer useful information and suggestion for the design of further receptors in 

anion recognition, sensing chemistry and catalysis science. 

 

Figure 29 The general sequence of various NH-containing anion binding sites in solution. 
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Chapter 4 Salt-solubilization and Ion Pair Recognition 

through a Quinoline-substituted Crown Ether 

4.1 Introduction 

Crown ethers, the first generation marocyclic hosts, were first prepared and de-

scribed by C. J. Pedersen in the late 1960s.
[2]

 Since then, they have been widely ap-

plied in cation-sensing,
[1]

 ditopic recetpors,
[50c]

 rotaxane-construction,
[73]

 salt extrac-

tion,
[74]

 phase transfer catalysis
[75]

 and many other fields. Ion-pair recognition, 

emerging from binding of anions and cations at the same time, has become an inter-

esting field in supramolecular chemistry.
[47]

 Ion-pairs widely appear in organic reac-

tion processes. Reinhoudt,
[48]

 Beer,
[47c, 49]

 Smith,
[50]

 Barboiu,
[51]

 Sessler
[47a, 47b, 52]

 and 

their co-workers have extensively explored the ion-pair recognition in solution and 

provide elegant results. Beer’s group has developed a cooperative AND ion-pair rec-

ognition fashion by virtue of the conformational features of calix[4]diquinones.
[49c]

  

Smith and collaborators have made significant contributions to investigate the ion-pair 

binding properties of macrobicyclic receptors.
[50b, 50e]

 Recently, J. L. Sessler and col-

laborators demonstrated the recognition behavior of ion pairs of KF and CsF by a ca-

lix[4]pyrrole in both solution and the solid state.
[52b]

 

Inorganic salts play a vital role in many organic reactions, e.g. as reducing or 

oxidizing reagents. For example, sodium or potassium hypochlorite are exploited in 

enantioselective epoxidation of ,-unsaturated ketones.
[95]

 In addition, it permits io-

nic reactions to occur in aprotic media.
[2]

 However, most inorganic salts are not so-

luble in common organic solvents. Consequently, salt extraction and solubilization are 

developed to solve this problem. Although it has progressed in past couple years, it is 

still an inadequately explored area. In 1996, a bifunctional calix[4]arene-based recep-

tor was reported by Reinhoudt et al, which was capable of binding anions and cations 

simultaneously and solubilizing sodium halide salts into chloroform.
[48c]

 In 1999, a 
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series of ditopic ligands for the simultaneous solvent extraction of cations and anions 

were demonstrated by White and Tasker et al.
[53]

 The solubilization of KCl into 

DMSO were revealed by Smith and co-workers.
[50b]

  

Due to their intra- and intermolecular hydrogen bonding networks, 

2-amido-8-aminoquinolines are utilized as backbones for anion-sensing
[76]

 and folda-

mer-construction.
[77]

 Our group has systematically studied various types of 

2-amido-8-aminoquinoline derivatives to tune anion affinity.
[78, 96]

 

In this chapter, the synthesis and solution behavior of a novel ion-pair ditopic 

quinoline-based receptor is reported. The solubilization of chloride salts into organic 

solvents, such as chloroform or DMSO, is described. 

4.2 Syntheses 

The ditopic receptor is synthesized according to previous reports, as shown in the 

following scheme.
[79]

 Firstly, catalytic hydrogenation of methyl 

4-isobutoxyl-8-nitroquinoline-2-carboxylate 3 in CH2Cl2 with the catalysis of Pd/C in 

H2 gas atmosphere affords the corresponding amine, which is subsequently coupled 

with phenyl isocyanate in CH2Cl2 at reflux to afford methyl 

4-isobutoxy-8-(phenylureido)quinoline-2-carboxylate 21 in good yield. Secondly, the 

saponification of 21 is carried out in alkaline CH3OH/THF solution overnight and 

then neutralized using ice acetic acid to afford 4-isobutoxy-8-(phenylureido) quino-

line-2-carboxylic acid 22, which reacts with freshly reduced 

4-aminobenzo-18-crown-6 23 in the presence of HBTU (O-(Benzotriazol 

-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate) and DIPEA in a mixture 

of CH2Cl2 and CH3CN solution to afford the ditopic receptor 24 in satisfactory yield. 

4-Aminobenzo-18-crown-6 23 is prepared by catalytic reduction of 

4-nitrobenzo-18-crown-6 in CH2Cl2 in the presence of Pd/C and H2 gas atmosphere 

overnight in near to quantitative yield.  
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Figure 30 Syntheses of the ditopic receptor 24 and the structures of control compounds S1 and 15. 

The above compounds are fully characterized by 
1
H NMR, 

13
C NMR, IR, mass 

spectra, melting points and elemental analysis. In addition, compound 24 is crystal-

lized and analyzed by X-ray diffraction from DMSO (see Experimental Section for 

details). 

4.3 Solid State Structures and Conformational Considerations 

 

Figure 31 Crystal structures of ditopic receptor 24 (gray, C; white, H; blue, N; red, O; yellow, S). 

Crystals of ditopic receptor 24 are grown from a solution of receptor 24 in 

DMSO. The structure is elucidated by single crystal X-ray diffraction and is shown in 

Figure 31. As shown in Figure 31, 24 contains both an anion-binding site and a ca-

tion-binding site held in close proximity. As anticipated, the acidic hydrogen atom of 

the amide and one of urea groups are oriented to the front of the quinoline nitrogen 
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atom with a distance of 2.275 Å and 2.269 Å, respectively. Another proton in thiourea 

group points also to the cavity. This geometry facilitates the anion binding. The 

18-crown-6 has been well studied as an excellent binding site for cations, especially 

for potassium ions.
[1-2]

 The presence of both an anion binding site and a cation bind-

ing site should ensure the possibility of binding ion pairs in solution.  

4.4 
1
H NMR Studies in Solution 

4.4.1 Study of Substituent Effects 

First of all, the binding behavior of receptor 24 towards bromide anions (as te-

trabutylammonium Bu4N
+ 

halide salts) in CDCl3 is examined by virtue of 
1
H NMR 

spectroscopic studies. With the successive addition of bromide anions, the changes of 

chemical shifts in 
1
H NMR spectra for N-H protons are observed, up to 0.35, 0.67 and 

0.34 ppm, respectively. It exhibits that there are interactions between the receptor 24 

and bromide anions in solution. 

 

Figure 32 Partial 
1
H NMR spectra (CDCl3, 300 MHz, 298 K) of receptor 24 after successive addition of 

Bu4NBr (the assignment of protons see Figure 30). 
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Secondly, Job plots of receptor 24 towards bromide anions in solution are ob-

tained by virtue of 
1
H NMR spectroscopic method. The 1:1 binding stoichiometry is 

validated between receptor 24 and bromide anions in CDCl3 (Figure 33 right).  

Thirdly, anion binding investigations are conducted using Bu4N
+
 halide salts as 

anion sources in CDCl3 through 
1
H NMR spectroscopic method. The 

1
H NMR titra-

tion experiments are performed in 0.005 M solution of receptor 24 in CDCl3 by suc-

cessive addition of corresponding Bu4N
+
 halide salts. Titration curves of receptor 24 

towards bromide anions are shown in Figure 33. The data obtained from 
1
H NMR ti-

tration curves are fitted by standard methods of nonlinear regression treatment
[92]

 to 

provide a binding constant of K = 525 M
-1

 between bromide anions and receptor 24. 

The binding constants of receptor 24 towards chloride and iodide anions are also ac-

quired through the similar treatment. 
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Figure 33 Titration curves of receptor 24 towards bromide anions (left) in CDCl3 at 298 K and corre-

sponding Job plots in CDCl3 (right the total concentration kept 0.005 M) at 298 K. 

The binding constants of receptor 24 towards various halide anions in CDCl3 are 

listed in Table 4. In order to discuss the substituent effect on the binding ability, the 

data for control S1, which was reported previously, are also recorded in Table 4.
[78b]

 

The binding affinities of receptor 24 towards halide anions are becoming strong in the 

order: I
-
 < Br

-
 < Cl

-
, which is consistent with previous report. This tendency is hy-

pothesized to arise from the higher basicity of chloride anions, the size of the receptor 

binding pocket and the fitter size of small anions. Furthermore, receptor 24 displays 

weaker binding ability for given anions compared to analog S1. Presumably, the 

N-Hamide proton in 24 is less acidic due to the existence of extra alkyl-oxy groups at 
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the phenyl group as well as due to the steric hindrance effect of the bulky crown ether 

moiety. The existence of the bulky 18-crown-6 moiety makes receptor 24 show 

slightly weaker binding affinities for anions, but receptor 24 is still a good receptor 

for anions due to the preorganized hydrogen cavity. 

Table 4 Binding constants (K, M
-1

) of receptor 24 and control S1 with halide anions (Bu4N
+ 

salts) in 

CDCl3 at 298 K. The binding constants are determined by 
1
H NMR titration experiments in CDCl3 at 

298 K and fitted according to a 1:1 binding ratio based on Job plots. Errors are estimated to be less than 

15%. 

host Cl
-
 Br

-
 I

-
 

24 1008 525 236 

S1
[78b]

 7700 1100 ___
a
 

(a): Not reported. 

4.4.2 Complexation of Ion Pairs in DMSO-d6 

Due to the existence of both an anion binding site and a cation binding moiety, 

receptor 24 is likely to associate ion pairs simultaneously in solution. The ability of 

binding ion pairs for receptor 24 are evaluated by means of 
1
H NMR spectroscopic 

studies in DMSO-d6 due to solubilizition reasons. The binding behavior of receptor 24 

towards anions is studied in the absence and presence of a suitable coordinating cation 

in DMSO-d6. Bu4N
+
 halide salts and KBPh4 (potassium tetraphenylborate) are used to 

provide halide anions and potassium cations, respectively. Receptor 24 has negligible 

affinity for Bu4N
+
 and BPh4

-
. The binding ratio between receptor 24 and halide anions 

both in the presence and absence of potassium cations are examined in DMSO-d6. As 

a representative example, the Job plots are shown in Figure 34. In both cases, the 

binding stoichiometries are checked as 1:1 irrespective of the presence of potassium 

ions or not. Afterwards, the titration curves between receptor 24 and halide anions are 

operated and fitted using non-linear curve fitting method.
[92]

 The typical titration 

curves of receptor 24 for chloride anions are presented in Figure 34 in the presence 

and absence of potassium cations in DMSO-d6. The obtained binding constants are 

calculated as 212 M
-1

 and 397 M
-1 

in DMSO-d6 at 298 K corresponding to the absence 

and presence of potassium cations, respectively. To evaluate the cooperativity effect, 



46 

 

 

Kion pair/Kanion, free is defined as coopeativity factor in ion-pair recognition field by 

Beer.
[49c]

 For chloride anions, the cooperativity factor is calculated as 1.87. Other 

binding constants of receptor 24 for halide anions with and without potassium cations 

are also determined in DMSO-d6 at 298 K and other cooperativity factors are also ac-

quired. All of the obtained data are recorded in Table 5. 
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Figure 34 Titration curves of receptor 24 in the absence (left top) and presence (left bottom) of potas-

sium cations (as KBPh4) towards chloride anions in DMSO-d6 and corresponding Job plots in 

DMSO-d6 at 298 K (right top and right bottom). 
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Table 5 Binding constants (K, M
-1

) of receptor 24 with halide anions (as Bu4N
+
 salts) in the absence 

and presence of KBPh4 in DMSO-d6 and in mixed solvent (v/v/v 8/1/1, CD3CN/CDCl3/DMSO-d6) at 

298 K and cooperativity factors. The binding constants are determined by 
1
H NMR titration experi-

ments and fitted according to a 1:1 binding ratio based on Job plots. Errors are estimated to be less than 

15%. 

guest solvent 

host 

K cooperativity 

factor 

solvent 

host 

K cooperativity 

factor 

 DMSO-d6  CD3CN/CDCl3/DMSO-d6 

Cl
-
 free 24 212 1.87 free 24 470 3.31 

 24 + K
-
 397  24 + K

-
 1556  

Br
-
 free 24 45 1.13 free 24 106 2.39 

 24 + K
-
 51  24 + K

-
 253  

I
-
 free 24 __a __ free 24 __a __ 

 24 + K
-
 __a  24 + K

-
 __a  

a: No shift observed. 

A slight enhancement of binding affinity is detected in chloride and bromide 

recognition when potassium cations are present in solution. Presumably, there are two 

effects to facilitate the anion binding properties when potassium cations are present in 

solution. Firstly, the ion-dipole interactions between potassium cations and crown 

ether moieties are likely to induce a higher acidity of the amide N-H proton than the 

free receptor 24. Consequently, the binding ability increases. Secondly, an extra elec-

trostatic cation-anion interaction appears once potassium cations are bound by recep-

tor 24, which is favorable for stabilization of the receptor-anion complex. This factor 

also perhaps makes the binding ability increase in solution. Supposedly, the high polar 

solvents DMSO cause the cooperativity factors to be relatively small. It is possibly to 

determine bigger cooperativity factors in less competitive solvents. 

4.4.3 Complexation of Ion Pairs in Mixed Solvents 

In order to further probe the cooperativity effect, the ion-pair binding properties 

of receptor 24 are examined in less polar and competitive solvents. Considering of 

solubility, the mixture of CD3CN, CDCl3 and DMSO-d6 (v/v/v: 8/1/1) is chosen. All 

of the titration experiments between receptor 24 and halide anions in the presence and 

absence of potassium cations are conducted in these solvents. The corresponding ti-
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tration curves are displayed in Figure 35. The binding constants are obtained by the 

fitted data and are also listed in Table 5. 
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Figure 35 Titration curves of receptor 24 in the absence(left) and presence (right) of KBPh4 towards 

chloride anions in mixed solvent of CD3CN /CDCl3/DMSO-d6 (v: 8/1/1). 

After examination of the data in Table 5, some trends are exhibited. 

Firstly, the binding constants between receptor 24 and anions in both the absence 

and the presence of potassium cations become bigger in these less competitive sol-

vents than in DMSO-d6. This is anticipated to result from the decrease of polarity of 

solvents. 

Secondly, the binding affinities of receptor 24 towards halide anions in this 

mixed solvent also decrease in the order: Cl
-
 > Br

-
 > I

-
. The basicity of halide anions 

and the size of the cavity of receptor 24 lead to the sequence. The basicity of halide 

anions decreases in the order: Cl
-
> Br

-
> I

-
. Moreover, the smaller the anion is, the fit-

ter it is for the hydrogen cavity in receptor 24. 

Thirdly, a higher enhancement of binding affinities is obtained in the form of 

cooperativity factors for Cl
-
/Br

-
 1.87/1.13 in DMSO-d6 and 3.31/2.39 in mixed sol-

vents. Presumably, it results from the solvent effects on extra interactions between 

receptor 24 in the presence potassium cations and anions in mixed solvents relative to 

DMSO-d6. The decrease of solvent polarity not only facilitates the original hydrogen 

bonding interactions between anions and receptor 24, but also benefits the extra inte-

ractions, including induced acidity and electrostatic attractions. Consequently, the 

cooperativity factors rise. 
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Figure 36 Partial of the single crystal structure of receptor 24. 

Fourthly, receptor 24 does not show detectable affinity towards iodide anions in 

DMSO-d6, irrespective of the presence of potassium cations or not, which is in accord 

with previous report. Unexpectedly, receptor 24 does not show affinity towards iodide 

anions in the less polar mixed solvents either. It is hypothesized to result from the size 

matching rules. As shown in Figure 36, the distances between the two acidic hydrogen 

atoms are 2.968 Å and 3.956 Å, respectively. The diameters of chloride, bromide and 

iodide anions are 3.62 Å, 3.92 Å and 4.40 Å, respectively.
[97]

 The hydrogen cavity fits 

chloride anions well, and receptor 24 matches bromide anions not quite well. While 

the size of iodide (4.40 Å) is too big to fit into the hydrogen cavity (size: 2.968 Å and 

3.956 Å) in receptor 24.  

4.4.4 Predicted Binding Mode 

Owing to the small cooperativity factors, the binding mode between receptor 24 

and ion pairs is classified as separated heteroditopic ion pair recognition,
[47c, 49c]

 as 

shown in Scheme 6. Presumably, the rigid phenyl spacer between the quino-

line-backbone and crown ether moiety leads to the small cooperativity factors.  

 

Scheme 6 The possible binding mode of receptor 24 with ion-pair K
+
/Cl

-
. 



50 

 

 

4.4.5 Solubilizing of Salts into CDCl3 

Due to the existence of a cation binding site (crown ether moiety) and an anion 

complexation part (quinoline backbone), receptor 24 has an ability of binding ion 

pairs (such as K
+
/Cl

-
, K

+
/Br

-
) simultaneously. It is hypothesized to solubilize inorgan-

ic salts into organic salts. This hypothesis is validated by 
1
H NMR spectroscopic and 

mass spectra method. 

 

Figure 37 The N-Hs regions (top) and the crown ether regions (bottom) of the 
1
H NMR spectra of A) 

only 24, B) 24 in the presence of KCl, C) 24 in the presence of NaCl, D) 24 in the presence of NH4Cl 

in CDCl3 at 298 K. 
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The complex samples for 
1
H NMR are obtained by mixing of receptor 24 and an 

excess of solid salts (KCl, NaCl and NH4Cl) followed by stirring for 12 h in the NMR 

test tubes. The interacting behavior of receptor 24 and KCl in CDCl3 as a representa-

tive example is discussed here in detail. The 
1
H NMR spectrum of receptor 24 is dis-

played in Figure 37 A. After interacting with KCl, the peaks corresponding to N-H 

protons shift downfield dramatically, up to 1.31, 2.54 and 0.81 ppm (Figure 37, top A 

and B). This phenomenon is pretty similar to the presence of soluble chloride salts, 

such as Bu4NCl. Moreover, tremendous changes take place for the peaks correspond-

ing to the crown ether moiety. Presumably, they result from the interactions between 

receptor 24 and KCl in CDCl3. The crown ether moiety is flexible and shows overlap-

ping multiplets in the range of 3.60-4.05 ppm in the absence of KCl in CDCl3 (Figure 

37, bottom A). The peaks become less overlapping and expanded to 3.35 - 4.10 ppm 

region due to the existence of KCl, indicating the rigidification of crown ether moie-

ty.
[98]

 It is ascribed to the host reorganization and desolvation. The effect of ionic 

strength is ruled out, see below. All of these phenomena support the solubilization 

properties of receptor 24, capable of solubilizing KCl into CDCl3.  

Similar results are obtained for NaCl and NH4Cl in CDCl3, Figure 37. 
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Figure 38 The acidic proton regions of the 
1
H NMR spectra of a) only control 15 (bottom) and b) con-

trol 15 (top) in the presence of KCl in CDCl3 at 298 K and 
1
H NMR chemical shift changes of receptor 

24 in the presence of KCl, Δδ = δ(in the presence of salts) - δ(free receptor). 

To examine the role of the 18-crown-6 fragment in receptor 24, the solubilization 

properties of a control compound 15
[99]

 are tested. After a similar treatment process, 

the 
1
H NMR spectra are acquired in the absence and presence of KCl (Figure 38, top). 

The existence of KCl only causes negligible changes in 
1
H NMR for the control 15. 

The result shows that there are no detectable interactions between compound 15 and 

KCl salts in CDCl3 at 298 K. Control 15 is not capable of solubilizing KCl into CDCl3. 

The existence of a crown ether part serving as binding sites for cations is indispensi-

ble for the ditopic receptor.  

Afterward, the ability of extracting other inorganic salts into chloroform of re-

ceptor 24 is also examined by 
1
H NMR spectroscopic methods. The chemical shift 

changes of receptor 24 for various inorganic salts are summarized in Figure 38 bot-

tom. 

After examination and analysis of above data, some conclusions are drawn.  

1. Receptor 24 prefers chloride salts over other salt. The bigger downfield shifts 

in 
1
H NMR of receptor 24 towards alkali metal and ammonium chloride salts suggest 

stronger interactions between receptor 24 and chloride salts. Interestingly, the anion 

fragments are the vital control factors. Receptor 24 serves as a splendid solubilizer of 

chloride salts into CDCl3, irrespective of which cation part is used in salts. It shows 

relatively weak binding affinities toward bromide salts. This is consistent with the 
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preference order of Cl
-
 >Br

-
 > I

-
 in both CDCl3 and DMSO-d6.  

2. After comparison of the changes of chemical shifts in the presence of soluble 

Bu4NCl and KCl, it is found that receptor 24 extracts an almost stoichimetric amount 

of chloride salts into chloroform and almost all of the receptor 24 act as solubilizers 

for chloride salts. 

3. The benzo-18-crown-6 fragment is known to act as a splendid binder for po-

tassium cations. Consequently, the addition of potassium salts causes the biggest 

chemical shift changes. The rubidium cations are too big to fit the crown ether moiety 

well. 

4. Fluoride anions are strongly basic and can easily deprotonate species con-

taining acidc protons to form HF and HF2
-
 in solution. In solid, the fluoride part still 

keeps this property. With the addition of KF salts, the three N-H protons disappear in 

1
H NMR spectrum.  

4.4.6 Solubilizing of Salts into DMSO-d6 

Furthermore, the extraction ability of receptor 24 towards chloride salts into 

DMSO-d6 is studied. The results are illustrated in Figure 39. It exhibits that receptor 

24 is also able to solubilize chloride salts into DMSO-d6. 
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Figure 39 
1
H NMR chemical shift changes of receptor 24 in the presence of various chloride salts in 

DMSO-d6 [Δδ = δ(in the presence of salts) - δ(free receptor)]. 

Compared to the results in CDCl3, the ability of solubilizing salts into DMSO-d6 
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is weaker than that in CDCl3. This is also consistent with binding affinities of ditopic 

receptor 24 in solution. DMSO-d6 is a good hydrogen bonding partner and has 

stronger ability to compete with the guests than CDCl3 does. Due to the competition 

between bulk solvent molecules and guest molecules, the binding affinities in 

DMSO-d6 are weaker than those in CDCl3 for a given anion. Consequently, the bind-

ing affinity and solubilizing ability towards salts in DMSO-d6 are weaker than in 

CDCl3 due to the more polar nature of DMSO-d6. 

In addition, the ―titration‖ experiments of receptor 24 towards KCl are carried 

out in DMSO-d6 at room temperature (Figure 40). As shown, the 
1
H NMR signals 

corresponding to respective NH protons in receptor 24 go downfield dramatically 

with the addition of KCl in DMSO-d6. However, the binding constant between recep-

tor 24 and KCl salts cannot be obtained due to lack of the accurate solubility reasons. 

The cases for NaCl and NH4Cl are similar as for KCl. 

 

Figure 40 Partial 
1
H NMR regions of the receptor 24 with the successive addition of KCl in DMSO-d6. 

4.4.7 MS Study 

In order to further investigate the solubilization properties of receptor 24 towards 

salts, the complexes of receptor 24 and salts have also been confirmed by ESI mass 

spectrometry. After solid-liquid extraction, the mixtures are filtered, concentrated, 

dried in vacuo and measured in chloroform by ESI mass spectra. The potassium chlo-

ride complex is discussed as a representative example. In the positive ESI mass spec-
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tra region of the 24-KCl complex, two main peaks at 727.27875(100.00%) and 

1489.52856(80.00%) are clearly observed, corresponding to [24 + K]
+
 and [2 24+2 K 

+ Cl]
+
 or in the form of [2 24+ K + KCl]

+
, respectively. In addition, the peak at 

723.28241(100.00%) clearly appear in the negative region, corresponding to [24 + 

Cl]
-
 (Figure 41). 

 

Figure 41 The ESI mass spectra of positive region (top) and negative region (bottom) for 24-KCl. 

The case for NaCl is similar to that of KCl. Two peaks at 711.30175 (100.00%) 

and 1457.57471 (46.43%) are clearly observed in the positive region, corresponding 

to [24 + Na]
+
 and [2 24+2 Na + Cl]

+
 or in the form [2 24+ Na + NaCl]

+
, respectively. 

Furthermore, two peaks at 723.28021(100.00%) and 1411.59180 (93.03%) are clearly 

appeared in the negative region, corresponding to [24 + Cl]
-
 and [2 24 + Cl]

-
, respec-

tively. 

The case for NH4Cl is similar to that of KCl and NaCl, it will not be discussed 

here. 

These mass spectral results afford supportive proof of solubilization of MCl salts 

into chloroform by receptor 24. 

4.4.8 Extraction-release Solid-CHCl3-water-solid Cycle 

Moreover, the extraction-release of KCl in solid-CHCl3-water-solid cycles is 
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tested. Based on 
1
H NMR analysis, KCl is easily transferred into chloroform by re-

ceptor 24 and released by water-washing in a controlled fashion. First of all, a solu-

tion of receptor 24 (0.01 M) in 0.80 mL CDCl3 is analyzed by 
1
H NMR at 298 K, and 

the peaks of receptor 24 in CDCl3 solution corresponding to Ha, Hb and Hc are 10.01, 

8.55 and 9.48, respectively (Figure 42,top a). Secondly, an excess of KCl salts are 

added into the NMR test tubes and stirred for 12 h and then 
1
H NMR spectra are 

measured. The peaks of receptor 24 after treatment corresponding to Ha, Hb and Hc 

shifted downfield to 11.12, 10.75 and 10.14, respectively (Figure 42, top b).  
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Figure 42 The 
1
H NMR spectra of a) only 24, b) 24 in presence of KCl, c) after water-washing 24-KCl 

complex in CDCl3. 

Finally, receptor 24 and potassium chloride are conveniently recovered through a 

water-washing fashion. The 
1
H NMR spectra of the recovered receptor 24 in CDCl3 is 

measured. It is found that all of the signals corresponding to the N-H protons return, 

as shown in Figure 42. 

Similar case is observed for the crown ether part. In the absence of guests, the 

crown ether is flexible and shows overlapping multiples at the 3.60 - 3.95 ppm region 

of the 
1
H NMR spectrum (Figure 42, right bottom). In the presence of KCl salts, the 

corresponding 
1
H NMR partial become less overlapped and expand to 3.40 - 4.10 

ppm range due to the interaction between the receptor and salts. It is ascribable to the 

host reorganization and desolvation. After a water-washing process, the corresponding 

signals return to the range of 3.60-3.95 ppm. These chemical shift changes are con-

sistent with that of the low field region. These experiments exhibit that receptor 24 is 

able to solubillize salts (KCl) into organic media (CDCl3) and the salts can be conve-

niently removed through water-washing, as shown in Scheme 7. In addition, the re-

maining solution of the receptor 24 in chloroform can be used again for the solubili-

zation of KCl for several times. 

 

Scheme 7 Extraction-release solid-CHCl3-water-solid cycle of KCl and recovering of receptor 24. 
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4.4.9 Discussion of the Receptor as a Catalyst Precursor 

Many reactions involve in ion-pair type intermediates or transition states whose 

stabilization are critical for the realization of these type reactions, such as the cata-

lyzed ring-opening of episulfonium ions with indole.
[100]

 Chiral (thio)urea derivatives 

as privileged chiral catalysts have been broadly used in accelerating of this type of 

reactions through stabilization of the anions by means of hydrogen bonding.
[101]

 As far 

as the scaffold is concerned, the chiral centre can be easily introduced into the R 

group (Scheme 8), the preorganized hydrogen cavity (Scheme 8) for stabilization of 

anionic guests and the crown ether (Scheme 8) for stabilization of cationic species.  

 

Scheme 8 The diagram of receptor 24 as a catalyst precursor for enantioslective reactions. 

4.5 Conclusions 

In conclusion, a new ditopic receptor has been designed and prepared success-

fully, characterized fully by 
1
H NMR, 

13
C NMR, mass spectra, infrared spectra, X-ray 

diffraction, and elemental analyses. Its single crystals are obtained and elucidated by 

X-ray diffraction, and show perfect preorganization for ion pairs. It has been applied 

to bind simultaneously anions and cations and to solubilize chloride salts into chloro-

form and DMSO. The results show that the receptor is ideal for ion pair recognition, 

such Cl
-
/K

-
, Br

-
/K

-
, in DMSO-d6 and mixed solvents and show positive cooperative 

effects in both cases. Cooperativity factors rise with the decrease of polarity of sol-

vents. In addition, the receptor is able to solubilize inorganic halide salts into aprotic 

solvents, such as CDCl3 and DMSO-d6, and can be recycled repeatedly. Due to its 
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stabilization ability of ion pairs and solubilization of inorganic salts, this ditopic re-

ceptor should have wide potential applications in catalysis, separation, and transport-

ing anions and cations through membranes. Furthermore, this study potentiates the 

method that a straightforward combination of a common anion receptor and a 

well-studied cation-complexation moiety enables the formation of ion-pair receptors 

and solubilizers for salts in organic phases. 
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Chapter 5 Biphenyl-substituted Quinolines as Recep-

tors for Anions 

5.1 Introduction 

Anions almost exist ubiquitously in the earth and play a vital role in daily life 

and industry. The birth of anion chemistry was marked by the encapsulation of halide 

anions by protonated diazabicycloalkane ammonium ions in the late 1960s.
[21]

 It is 

still a relatively ―fledging‖ domain in chemistry. The significance of the study on 

anion recognition is clear without doubt. Chloride channels, which represent a rela-

tively under-explored field, are involved the recognition of chloride ions with high 

selectivity.
[102]

 Chemists on catalysis have learned much from anion recognition.
[103]

 

For example, Jacobsen and coworkers have utilized extensively the (thio)urea cata-

lysts to accelerate organic enantioselective reactions by means of binding countera-

nions of cationic species.
[100, 104]

  

 

Figure 43 Proposed thiourea-catalysed ring-opening of episulfonium ions with indole via anion bind-

ing. 

8-Amino-2-quinolinecarboxylic acid was initially synthesized by Huc and Jiang 

et al and utilized as a backbone for oligoamide foldamers.
[77a, 77c, 85]

 Inspired by the 

crystallographic data of amide substituted 8-hydroxyquinoline derivatives and their 

hydrogen bonding behavior, our group has developed a series of 8-amino- 

2-quinolinecarboxylic acid derivatives and investigated systematically the binding and 

sensing properties towards anions and ion-pairs in a tweezer-like form.
[78, 99, 105]

 Chen 

et al devised and prepared a fluorescent chemosensor towards anions using a cyclic 
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tetrapeptide based on 8-amino-2-quinolinecarboxylic acid backbones and the fluores-

cence quenched with the addition of fluoride anions as well.
[76]

 Biphenyl is an inter-

esting molecule due to the torsional angle. The torsional angle depends on a energertic 

balance of -conjugation between the two planes and repulsion of two ortho-position 

protons.
[80]

 

Herein, the synthesis, single crystal structure features and anion-binding proper-

ties of two types of biphenyl decorated 8-amino-2-quinolinecarboxylic acid deriva-

tives through 
1
H NMR study are reported. In addition, the thermodynamic origin of 

the binding process between one receptor and chloride anions in CDCl3 and DMSO-d6 

through variable-temperature 
1
H NMR study is investigated. 

5.2 Syntheses 

The receptors are synthesized according to the following schematic diagram. 

Firstly, 2,3,4,5,6-pentafluoro-2'-nitro-1,1'-biphenyl 25 is prepared by Pd-catalyzed 

decarboxylative arylation of pentafluorobenzene with 2-nitrobenzoic acid in DMSO at 

130C. Secondly, 2,3,4,5,6-pentafluoro-2'-nitro-1,1'-biphenyl 25 and 2'-nitro-1,1'-bi 

phenyl are reduced in dichloromethane with the catalysis of Pd/C at a hydrogen gas 

atmosphere to afford the corresponding amines (26a and 26b). Thirdly, the obtained 

amines react with 8-nitro-quinoline-2-carboxylic acid 4 to afford corresponding 

8-nitro-quinoline-2-carboxylic acid (pentafluoro)benzylamide (27 and 28). Fourthly, 

each 8-nitro-quinoline-2-carboxylic acid amide (27 and 28) is reduced in dichlorome-

thane with the catalysis of Pd/C at hydrogen gas atmosphere to afford corresponding 

8-aminoquinoline-2-carboxylic acid amide (29 and 32), which, subsequently, reacts 

with TCP to provide corresponding 8-isothiocyanatoquinoline-2-carboxylic acid 

amide (30 and 33). Finally, respective 8-isothiocyanatoquinoline-2-carboxylic acid 

amide (30 and 33) reacts with n-butyl amine in dichloromethane at room temperature 

to afford the respective target receptor (31 and 34). 

The above compounds are fully characterized by 
1
H NMR, 

13
C NMR, 

19
F NMR 

IR, mass spectra, melting points and elemental analysis. In addition, for the key com-
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pounds 28, 31 and 34, single crystals are obtained and analyzed by X-ray diffraction 

(see Experimental Section for details). 

Figure 44 Syntheses of quinoline-based receptors towards anions. 

5.3 Solid State Structures and Conformational Considerations 

 

Figure 45 X-ray structures of receptor 28 (gray, C; white, H; green, F; blue, N; red, O). 

Crystals of intermediate 28 are obtained by slow evaporation of a solution of 28 

in CH3OH/CH2Cl2, and the structure is elucidated by single crystal X-ray diffraction, 

as shown in Figure 45. As anticipated, the amide NH proton is positioned in the front 

of the quinoline nitrogen rim via intramolecular hydrogen bonding in a distance of 

2.063 Å. Moreover, the pentafluorophenyl group of the biphenyl is pointing to the 
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front of the quinoline, which benefits the probing of anion- interactions by means of 

the directionality of amide NH group. 

 

Figure 46 X-ray structures of receptor 31 (gray, C; white, H; blue, N; red, O; yellow, S). 

Yellow crystals of receptor 31 are grown by slow evaporation of a 

CH3OH/CH2Cl2 solution of the receptor. The structure is elucidated by single crystal 

X-ray diffraction and shown in Figure 46. The amide proton points to the nitrogen 

atom of the quinoline moiety with a distance of 2.237 Å and one of thiourea group 

protons with a shorter distance of 2.154 Å, well preorganized for anion recognition. In 

addition, the second hydrogen atom of the thiourea moiety also points to the front of 

the quinoline unit. The three N-Hs convergently form a cavity towards anion binding 

by design and preorganization. The configuration of biphenyl group is ascribable to 

the - interaction between C6H5 of the biphenyl group and the C=S double bonds of 

thiourea group. Those are roughly parallel to each other and held in close proximity 

(Figure 47). One feature of this receptor is that the hydrogen networks are embraced 

by biphenyl groups, which may affect the anion-binding. 
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Figure 47 Part of the X-ray structures of receptor 31. 

Crystals of receptor 34 for single crystal X-ray diffraction are obtained by slow 

evaporation of solvent from a solution of receptor 34 in CH2Cl2/MeOH and its struc-

tures are shown in Figure 48. Similar to receptor 31, the NH in amide and one NH in 

thiourea are positioned in close proximity to the quinoline N atom, in a distance 

2.246 Å and 2.321 Å, respectively. In sharp contrast to the configuration of receptor 

31 in which the biphenyl group is located in the front of the molecule due to the - 

interaction between C6H5 and S=C, the biphenyl in receptor 34 is turned away from 

the front of the molecule. The configuration is hypothesized to result from a lone 

pair- interaction between a carbonyl group in the amide and the pentafluorophenyl 

group (Figure 49). 

 

Figure 48 X-ray structures of receptor 34 (gray, C; white, H; green, F; blue, N; red, O, yellow, S). 

Lone pair-π contacts are very common supramolecular bonding interactions in 

solid-state structures.
[90]

 The parameters of lone pair-π interactions between C=O and 

C6F5 are examined, listed in Table 6 and illustrated in Figure 49. Since two of the dis-
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tances separating the electron-rich atom O from each atom of the aromatic ring (O-C
1
 

= 2.805 Å, O-C
2
 = 2.978 Å) are below the sum of the van der Waals radii (O-C = 

3.22 Å) and  = ~66.31 °, this lone pair-π interaction belongs to moderate ones ac-

cording to the empirical rule.
[90]

  

 

Figure 49 Part of the X-ray structures of receptor 34 (gray, C; white, H; green, F; blue, N; red, O, yel-

low, S). 

Table 6 Parameters of the O-C contacts [Å] in receptor 34. 

Bond 

distance 

O-centroid 

3.251 

O-C1 

2.805 

O-C2 

2.978 

O-C3 

3.677 

O-C4 

4.131 

O-C5 

4.007 

O-C6 

3.385 

5.4 
1
H NMR Study in Solution 

First of all, 
1
H NMR spectroscopic investigations are conducted in CDCl3 in 

0.01 M. The changes of the 
1
H NMR spectra of receptors 31 and 34 in CDCl3 upon 

addition of chloride, bromide and iodide ions are examined to study the ha-

lide-binding properties at 298 K. Tetrabutylammonium (Bu4N
+
) halide salts are added 

as halide anion sources. 
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Figure 50 Partial 
1
H NMR spectra (CDCl3, 300 MHz, 298 K) of receptor 34 after successive addition of 

Bu4NCl (the assignment of protons see Figure 44) 

The titration of 34 with Bu4N
+
Cl

-
 is discussed in detail. With the successive ad-

dition of chloride salt, the signals of NH protons of the amide and of the thiourea of 

34 are significantly shifted downfield (Figure 50) from 9.74, 8.61, and 6.46 ppm to 

11.53, 11.08 and 10.08 ppm, respectively. This means that chloride ions are tightly 

associated with the acidic hydrogen atoms (see below). 

Prior to titration experiments, the binding stoichiometry between receptors and 

anions are determined by Job plots. The variation of the weighted chemical shift as a 

function of molar ratio shows a 1:1 ratio of receptor to anion stoichiometry for 34 as 

well as 31 in CDCl3 at 298 K (Figure 51, top left and bottom left). 
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Figure 51 Titration curves of receptors 34 (right top) and 31 (right bottom) towards chloride anions in 

CDCl3 and corresponding Job plots in CDCl3 for receptors 34 (left top) and 31 (left bottom) at 298 K. 

Subsequently, the titration experiments are carried out in CDCl3 with a concen-

tration of 0.01 M of receptor 34 and successive addition of Bu4N
+
Cl

-
. The titration 

curves are shown in Figure 51 (right top). Standard methods of nonlinear regression 

treatment
[106]

 of the obtained data provide the binding constant of K = 467 M
-1

 for re-

ceptor 34 and chloride anions in CDCl3 at 298 K. The binding constants for receptor 

34 towards other halide anions in CDCl3 298 K are obtained through similar treatment 

as well, which are listed in Table 7.  

To probe the fluoro-substitute effects, the anion binding behavior of receptor 31 

is also studied in CDCl3 at 298 K. The data for receptor 31 towards halide anions in 

CDCl3 at 298 K are also gained and summarized in Table 7. 

To investigate the solvent effects, the anion binding properties of the receptors 

are also studied in DMSO-d6. First of all, the binding stoichiometry is determined 

through Job plots analysis in DMSO-d6 using 
1
H NMR spectra at a total concentration 

of 0.01 M at 298 K. The Job plots clearly show a 1:1 binding stoichiometry between 

receptors 34 and 31 for the investigated anions (Figure 52 top left and bottom left). 

Afterwards, titration experiments are conducted in DMSO-d6 with a concentration of 

0.01 M of receptor 34 and successive addition of Bu4N
+ 

halide salts at 298 K. Stan-

dard methods of nonlinear regression treatment
[106]

 of the obtained data yield the 

binding constant of K = 160 M
-1

 between receptor 34 and chloride anions in 

DMSO-d6 at 298 K. The data for other halide anions are also listed in Table 7. All of 

the binding constants for receptor 31 towards halide anions are obtained through 
1
H 
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NMR study and listed in Table 7 as well. 
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Figure 52 Titration curves of receptors 34 (right top) and 31 (right bottom) towards chloride anions in 

DMSO-d6 and corresponding Job plots in DMSO-d6 for receptors 34 (left top) and 31 (left bottom). 

For comparison purposes, all binding constants of receptors 34 and 31 towards 

halide anions (Cl
-
, Br

-
 and I

-
) in CDCl3 and DMSO-d6 at 298 K are summarized in 

Table 7. 

Table 7 Binding constants (K, M
-1

) of receptors 34 and 31 with halide anions in CDCl3 and in 

DMSO-d6 at 298 K. The binding constants are determined by 
1
H NMR titration experiments in CDCl3 

and DMSO-d6 and fitted according to a 1:1 binding ratio based on Job plots. Errors are estimated to be 

less than 20%. 

 Cl
-a

 Br
-a

 I
-a

 

In CDCl3    

34 

31 

467 

70 

129 

32 

67 

20 

In 

DMSO-d6 

   

34 

31 

160 

60 

48 

42 

--
b
 

--
b
 

a: added as tetrabutylammonium salts. b: no detectable data observed. 

After examination of the obtained data, some trends are summarized based on 

the two receptors: 



69 

 

 

For both receptors, the binding affinity towards halide anions decreases in the 

order: Cl
-
 > Br

-
 > I

-
 in both CDCl3 and DMSO-d3.This is mainly ascribable to the ba-

sicity of halide anions. Steiner stated, ―All hydrogen bonds can be considered as inci-

pient proton transfer reactions‖.
[93]

 That is to say, the binding affinity for a given 

NH containing receptor relies on the basicity of anions. The more basic the anion is 

(i.e. the less acidic the conjugate acid is), the higher the binding affinity is.
[107]

 More-

over, the size of the hydrogen cavity also contributes to the sequence. The cavity is 

fitter for smaller size of anions. Consequently, the binding affinity towards halide 

anions is decreasing in this sequence due to a combination of these two effects. 

The fluorinated receptor shows considerably stronger binding affinities for halide 

anions than the nonfluorinated receptor does in CDCl3 solution, while both show sim-

ilar affinities towards halide anions in DMSO-d6. It mainly results from the fluoro-

substituted effect. Anion- interactions perhaps make some contributions to it as well. 

Owing to the pentafluorosubstitution, the amide in 34 is more acidic than its counter-

part in 31. Since the binding affinity is a combination of interactions between three 

N-H groups and anions, one stronger anion binding hydrogen donor is likely to make 

the corresponding receptor exhibit a higher binding ability. The presence of pentaflu-

orophenyl groups facilitates anion- interactions to make contributions for the binding 

affinity. Moreover, presumably, the differences of configurations for the two receptors 

affect the binding constants. Given the shielding effect of the biphenyl group, the 

anion binding for receptor 31 is entropically unfavored compared to receptor 34. Due 

to a combination of these effects, receptor 34 shows a higher binding affinity towards 

a given anion than receptor 31 does in CDCl3. While these effects are not so signifi-

cant for receptors in DMSO-d6. This is consistent with our previous results.
[99]

 

As anticipated, receptor 34 displays higher binding affinity towards a given 

anion in CDCl3 than in DMSO-d6. It shows no detectable binding affinity towards 

iodide anions in DMSO-d6. This is attributable to the more polar nature of DMSO-d6 

and its stronger binding ability to compete as a hydrogen bonding partner. Unexpec-

tedly, receptor 31 shows similar binding affinities towards chloride and bromide 



70 

 

 

anions in CDCl3 and in DMSO-d6. This phenomenon is inconsistent with our previous 

results. Usually, the binding constants in CDCl3 are often bigger than in DMSO-d6. To 

elucidate this, the thermodynamic origin of the host-guest binding process between 

receptor 31 and chloride anions by means of variable-temperature 
1
H NMR study in 

both solvents is investigated.  

5.5 Thermodynamics of Receptor 31 Binding Chloride Anions 

in CDCl3 and DMSO-d6 Solution 

Rebek,
[108]

 Dougherty,
[109]

 Wilcox
[110]

 and coworkers have applied single-point 

variable-temperature 
1
H NMR studies to elucidate host-guest binding and provide 

valuable thermodynamic parameters.  
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Figure 53 Titration curves of receptor 31 (0.01 M) towards chloride anions at 20 C, 25 C, 30 C, 

40 C and 50 C in CDCl3. 

Here the variable-temperature 
1
H NMR study is used to investigate the thermo-

dynamic origin of the binding process between receptor 31 and chloride anions. The 

binding constants are obtained in CDCl3 at different temperatures: 20 C (293 K), K = 

74 M
-1

, 25 C (298), K = 70 M
-1

, 30 C (303 K), K = 64 M
-1

, 40 C (313 K), K = 

58 M
-1

, and 50 C (323 K), K = 53 M
-1

. 

A van’t Hoff plot for the binding process between receptor 31 and chloride 

anions in CDCl3 is obtained, as shown in Figure 54 (). After similar treatment of re-
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ceptor 31 and chloride anions in DMSO-d6, the corresponding van’t Hoff plot is ob-

tained and also illustrated in Figure 54 (). 

-0.00344 -0.00336 -0.00328 -0.00320 -0.00312
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36.0

R
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n
K

  
 (

J
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o
l-1

)  

-1/T (K
-1
)

Equation y = a + b*x

Adj. R-Squar 0.98894 0.97712

Value Standard Erro

B Intercept 5.48542 1.53265

B Slope -8868.2958 468.36538

C Intercept 18.26402 1.33715

C Slope -4694.8255 413.12326

 

Figure 54 The van’t Hoff plots for the binding process between receptor 31 and chloride anions in 

CDCl3 () and in DMSO-d6 (). 

In CDCl3, ΔH = -8.86  0.46 kJ mol
-1

 and ΔS = 5.49  1.52 J mol
-1

 K
-1

 are ob-

tained from the van’t Hoff plot; in DMSO-d6, ΔH = -4.69  0.41 kJ mol
-1

 and ΔS = 

18.26  1.34 J mol
-1

 K
-1

 are obtained from the van’t Hoff plot. They show that the 

binding of receptor 31 and chloride is both enthalpically favored and entropically fa-

vored, but it is primarily enthalpically driven at room temperature (when T = 298 K, 

ΔH = -8.86  0.46 kJ mol
-1

, -TΔS = -1.636  0.453 kJ mol
-1

). The loss of 4.17 kJ/mol 

of enthalpy is ascribable to DMSO-d6 as a competitive binding partner. However, this 

loss is considerably compensated by the changes of entropy of 12.77 J mol
-1

 K
-1

 at 

room temperature. In DMSO-d6, the binding behavior is driven by both enthalpy and 

entropy, and they make comparable contributions (when T = 298 K, ΔH = -4.69  

0.41 kJ mol
-1

, -TΔS = -5.44  0.399 kJ mol
-1

). Therefore, the binding process between 

receptor 31 and chloride anions in CDCl3 are mainly enthalpically driven, while the 

process in DMSO-d6 is both enthalpically and entropically driven. 

5.6 Conclusions 

Two kinds of biphenyl-conjugated quinoline receptors towards halide anions 

were successfully prepared and fully characterized by 
1
H NMR, 

13
C NMR, 

19
F NMR 
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IR, mass spectra, melting points and elemental analysis. In addition, the crystals of 

compounds 28, 31 and 34 are obtained and analyzed by X-ray diffraction. Both re-

ceptors are utilized to recognize halide anions in CDCl3 and DMSO-d6. Varia-

ble-temperature 
1
H NMR study is used to evaluate the thermodynamics of host-guest 

binding. The fluorinated receptor shows higher binding affinities towards a give anion 

than the non-fluorinated receptor.
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Chapter 6 Solution Investigation of Competitive Interactions 

in Anion Binding: NH-, CH-, Anion- and Lone-pair  Sup-

ported NH-anion Interactions
1
 

6.1 Introduction 

6.1.1 What Are Anion- Interactions? 

Cation- interactions have been extensively studied and exploited in various 

fields for couples of decades,
[54]

 but nobody has paid attention to the existence of 

anion- interactions. In 2002, M. Mascal et al.
[55]

, I. Alkorta et al.
[56] 

and P. M. Deyà
[57]

 

et al. ingeniously presented the anion- interactions concept and studied them through 

a combination of computational and crystallographic experimental studies almost at 

the same time as pioneers.  

Anion- interactions are defined as the attractions between electron-rich anions 

and electron-deficient systems. 

6.1.2 Why Do Chemists Study Anion- Interactions? 

Due to their essential role in chemical and biological processes/systems in form 

of catalysis and transport,
[58]

 anion-interactions have been broadly investigated by 

virtue of theoretical calculations and crystallographic experiments.  

6.1.3 Who Are and How Are Investigated Anion- Interactions? 

Wang et al. have studied the anion-interactions between tetraoxacalix[2] 

arene[2]triazine receptors and halide anions and showed that the electron-deficient 

                                                 

1
 I am extremely grateful to Dr. Michael Giese for his helpful discussion and communica-

tions on this work. 
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receptor bound strongly in both solution and solid state through 

anion-interactions.
[63]

 Reedijk, Gamez and co-workers reported a dendritic octaden-

tate N ligand as a host for anionic guests and exhibited its encapsulation behavior of 

chloride through anion-interactions.
[64]

 Matile, Schalley and collaborators afforded 

direct experimental evidence for anion-interactions through electrospray tandem 

mass spectrometry collaborating with theoretical calculations.
[65]

 Ballester group ap-

praised quantitatively anion-interactions through 
1
H NMR spectroscopic methods in 

solution using a series of meso-tetraaryl calix[4]pyrrole receptors and halide anions.
[66]

 

Very recently, Lopez-Garzon and Bianchi et al studied thermodynamics of 

anion-interactions in aqueous solution through potentiometric and isothermal titra-

tion calorimetry methods.
[111]

 Since 2008, our group has performed detailed studies on 

the interactions of various anions with fluorophenyl moieties in the solid state as well 

as in solution.
[71b, 71h, 71i]

  

6.1.4 Why to Study Anion- Interactions in Solution? 

Although a variety of important studies in this fledging area in supramolecular 

chemistry are performed,
[58a, 58d, 112]

 anion-interactions have not been well and fully 

understood and not explored sufficiently yet. Especially their role in the anion-sensing 

process and their nature in solution are unclear.
[112b]

 To gain more insight on 

anion-interactions in solution, the following study is planned and conducted. 

6.1.5 How to Study Anion- Interactions in Solution? 

After much thought, five simple yet novel receptors, 35-38 and 61, are designed 

and prepared, as shown in Scheme 9. Their anion-binding properties are explored in 

solution and the influence of three binding modes is probed. 

There are one hydrogen bond donor and one pentafluorophenyl/phenyl group in 

all of the receptors. Due to the different interactions between halide anions and pen-

tafluorophenyl/phenyl groups, there are three possible binding fashions, named as 

cooperative interactions, competitive interactions and repulsive interactions, as shown 
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in Scheme 9. This study focuses on quantifying the differences between the five re-

ceptors and halide anions in solution through 
1
H NMR and 

19
F NMR spectroscopic 

methods. Comparing the different binding abilities of the receptors towards halide 

anions in solution, it is likely to give a further apprehension in the strength and relev-

ance of anion-π interactions. 

 

Scheme 9 Concept of cooperative, competitive and repulsive interactions. 

6.2 Syntheses 

First of all, receptor 35 is obtained through a palladium-catalyzed Suzu-

ki-Miyaura coupling reaction of potassium phenyltrifluoroborates and 

7-bromo-1H-indole in satisfactory yield (Figure 55 left).
[113]

 Afterward, according to 

relevant literature, receptor 36 is tried to be prepared by a palladium mediated Ull-

mann coupling reaction,
[43]

 a copper mediated Ullmann coupling reaction,
[114]

 a palla-

dium catalyzed Suzuki−Miyaura Coupling reaction using pentafluorophenylboronic 

acid as starting material,
[115]

 a palladium-catalyzed Suzuki-Miyaura coupling reaction 

of potassium pentafluorophenyltrifluoroborates and 7-bromo-1H-indole,
[116]

 a palla-

dium-catalyzed Suzuki-Miyaura coupling reaction of 7-(4,4,5,5-Tetramethyl 

-1,3,2-dioxaborolane-2-yl)-1H-indole
[117]

, reactions of hexafluorobenzene
[118]

 and so 

on. However, none of them works. After many failures and much thought, it is gradu-

ally recognized that these methods are monotomous ways that a pentafluorophenyl 

group is tried to introduce into an existing indolyl group (Figure 55 right I) though the 
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mother backbones are attached with different reactive sites. Presumably, the strong 

electron-withdrawing effect of five fluorine atoms causes that the substitution of 

C6F5-group occurs difficultly. Maybe there is an alternative pathway. Finally, an al-

ternate pathway is put forward for the first time: first introduction of the pentafluoro-

phenyl group (Figure 55 right II1) and then construction of the indolyl ring (Figure 55 

right II2). After literature research, a practicable pathway is designed, shown in Figure 

55 right. Initially, 2,3,4,5,6-pentafluoro-2'-nitro-1,1'-biphenyl is prepared through 

Pd-catalyzed decarboxylative arylation of pentafluorobenzene with 2-nitrobenzoic 

acid.
[119]

 Subsequently, 7-pentafluorophenyl-1H-indole (36) is successfully synthe-

sized directly in excellent yield by Bartoli indole synthesis.
[120]

 Receptor 36 is synthe-

sized for the first time. 

 

Figure 55 Syntheses of receptors 35 and 36. 

The synthesis of receptor analogues 37 and 38 starts with catalytic hydrogenation 

of the corresponding nitro compound to afford the appropriate amine. The appropriate 

amine reacts with acetyl chloride in the presence of pyridine in dichloromethane to 

afford the receptors 37 and 38 in high yield. 2,3,4,5,6-Pentafluoro-4′-nitro 

-1,1′-biphenyl 60 is prepared from Pd-catalyzed direct arylation of pentafluoroben-

zene with 1-iodo-4-nitrobenzene in water.
[121]

 It is reduced in CH2Cl2 in the presence 

of Pd/C and 20 bar H2 gas and then reacts with acetyl chloride in CH2Cl2 in the pres-

ence of pyridine to provide receptor 61 in high yield. 
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Figure 56 Syntheses of receptors 37, 38 and 61. 

All the compounds are fully characterized by 
1
H NMR, 

13
C NMR, 

19
F NMR (if 

possible), MS, IR and elemental analysis (see Experimental Section for the detailed 

synthesis operations and characterizations). 

6.3 
1
H NMR Study in CD3CN 

First of all, the binding ratios between receptors and halide anions (as tetrabuty-

lammonium halide, Bu4NX) are examined in solution. All cases are measured by 

means of 
1
H NMR spectroscopic method.

[92]
 For receptors containing pentafluoro-

phenyl groups, the corresponding binding ratios are also checked through 
19

F NMR 

spectroscopic method. The titration experiments of 36 with Bu4NX are discussed as a 

representative example. The Job plots between receptor 36 and chloride anions in 

CD3CN are recorded in Figure 57 top. They both clearly show the 1:1 binding ratio 

between receptor 36 and chloride anions in CD3CN. 

Subsequently, to explore the binding behavior of these five receptors, 
1
H NMR 

and 
19

F NMR titration experiments are carried out in 0.01 M solution of each receptor 

in CD3CN at 298 K with the successive addition of halide anions. Once the data are 

collected, the titration curves are recorded and analyzed by non-linear regression to 

afford corresponding binding constants.
[92]

 The titration curves between receptor 36 

and chloride anions in CD3CN from 
1
H NMR and 

19
F NMR spectroscopic methods 

are exhibited in Figure 57 bottom. 
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Figure 57 Job plots for receptor 36 towards chloride anions in CD3CN obtained from 
1
H NMR (top, left) 

and obtained from 
19

 F NMR (top right) and corresponding titration curves of receptor 36 (0.01 M, 

bottom). The total concentrations for Job plots were kept at 0.01 M. 

During the titration process, a dramatic change of 
1
H NMR spectra for receptor 

36 is observed with the successive addition of chloride anions, up to 2.99 ppm; while 

the change of receptor 35 is smaller than with receptor 36, (1.31 ppm). 

In addition, an interesting phenomenon is observed for receptor 61. Not only the 

N-H proton but also the C-Ha/b protons dramatically move downfield with the addition 

of anions. The double protons Ha/b close to amide group in receptor 61 shift dramati-

cally downfield (0.35 ppm) with the addition of Bu4NCl salts, while their counterparts 

in other receptors go slightly high field. Presumably, the C-H protons participate the 

anion binding. Therefore, the gradual changes of the C-H protons with the addition of 

halide anions are also used to calculate the binding constants. The titration curves and 

Job plots between receptor 61 and chloride anions are displayed in Figure 58. A 1:1 

binding ratio is obtained from the Job plots. Both the N-H signal and C-H signal are 

used to calculate the binding constants and the results are fit to each other well. The 

similar treatments are performed for other halide anions. 
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Figure 58 Titration curves of receptor 61 towards chloride anions obtained from 
1
H NMR in CD3CN 

and corresponding Job plots in CD3CN. The total concentrations for Job plots were kept at 0.01 M. 

In order to analyze the results, the binding constants for each receptor are sum-

marized in Table 8, obtained from N-H signals, C-H signals, or C-F signals.  

Table 8 Binding constants (K, M
-1

) of receptors 35 – 38 and 61 with halide anions in CD3CN at 298 K. 

The binding constants were determined by 
1
H NMR and 

19
F NMR titration experiments in CD3CN and 

fitted according to a 1:1 binding ratio. Errors are estimated to be less than 20%. 

  Cl
-
 Br

-
 I

-
 

35 
1
H NMR

 
16.5 14.1 -

a
 

36 
1
H NMR

 
45.5 28.1 17.7 

 -G
b
 

(kcal/mol)
 

0.60 0.40 1.69 

 
19

F NMR
 

49.6 28.8 20.7 

37 
1
H NMR

 
27.9 26.0 23.6 

38 
1
H NMR

 
51.9 37.7 24.0 

 
19

F NMR
 

55.4 38.8 28.0 

61 
1
H NMR (N-H) 92.1 44.4 21.4 

 
1
H NMR (C-H)

 
128.0 47.3 23.7 

a
 No detective shift observed. 

b
G = GX@2-GX@1 

 

The above data were examined and compared to draw some useful conclusions, 

discussed as below:  

All receptors show decreasing affinities towards halide anions in the order Cl
-
 > 

Br
-
 > I

-
. Presumably, they are resulting from the Lewis basicity of halide anions in so-

lution.
[93]

 The Lewis basicity of halide anions decreased in the sequence of Cl
-
 > Br

-
 > 

I
-
. The binding affinity depends on the Lewis basicity and a given receptor shows 



80 

 

 

higher binding affinity for a more basic anion. Consequently, the binding sequence 

appeared. 

Receptor 36 exhibits somewhat higher binding abilities towards anions than re-

ceptor 35 does. It is attributed to either the electronic effect, resulting from the differ-

ent electron-withdrawing ability of phenyl and pentafluorophenyl groups, or the 

anion-interactions or a combination of both effects. Until now, it is not clear what 

the leading factor is and how many it accounts for. The changes of free energy value 

(G) show the thermodynamics of the binding process. Ballester et al introduced G 

to examine the substituent effects and to measure anion-interactions in solution.
[66]

 

Here, the difference in binding energies G = GX@2-GX@1 is calculated to esti-

mate the differences of the two binding affinities for a given halide anion (Table 8). 

Their absolute values are 0.6 and 0.4 kcal/mol for chloride and bromide anions, re-

spectively, which both are lower than the results of Johnson’s system.
[112b]

 It is pre-

sumably resulting from the avoidance of inter/intramolecular lone pair- interactions. 

Receptor 38 is a stronger binder for halide anions than receptor 36 and 37 in so-

lution. The differences between receptor 37 and 38 are contributed to either the elec-

tronic effects or the anion- interactions or a combination of these two effects. Pre-

sumably, the enhanced binding affinity of 38 is perhaps due to an additional effect - 

lone-pair  interactions. The Oamide atom is likely to interact with the pentafluoro-

phenyl group by lone-pair  contacts. This will polarize the amide group and cause a 

higher acidity of the Hamide proton, which results in a higher binding affinity to anions 

(Figure 59). Lone-pair  contacts are common supramolecular bonding interactions in 

solid state structures,
[90]

 and are proven in solution as well.
[122]

 This weak 

non-covalent interaction might contribute to the binding of anions in receptor 38. In 

order to prove this concept of cooperative effect of lone-pair  and NH∙∙∙anion inte-

ractions, simple force field calculation using ChemBio 3D Ultra (MMFF94) are per-

formed, which reveal the Oamide atom for receptor 38 locates closely above the centre 

of the pentafluorophenyl group; while the Oamide atom for receptor 37 is positioned far 

away from the centre of the phenyl group. The binding constants of 36 are slightly 
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lower than that of 38 towards a given anion. This might be attributed to the higher 

flexibility of 38 which facilitates its lone-pair  interactions. In contrast, receptor 36 is 

not able to form lone-pair  interactions. 

 

Figure 59 Possible binding modes between 38 and anions (left 1 and 2) and optimized molecular mod-

els for receptors 37 (right 2) and 38 (right 1) 

Receptor 61 shows higher binding affinities towards halide anions than any other 

receptors, which is unexpected. Surprisingly, dramatic changes of both C-H protons 

close to amide group are detected with the addition of halide salts, such as max = 

0.35 ppm for chloride anions. Presumably, the enhanced binding ability of receptor 61 

is ascribed to the participation of C-Ha/b protons as extra complexation sites due to the 

strong electron-withdrawing ability of a pentafluorophenyl group. 
1
H NMR, 2D 

NOESY experiments and the single crystal structure of an analogue support this ex-

planation. The peaks of N-H and C-Ha/b of 61 in 
1
H NMR spectra are singlet and 

doublet in the absence of chloride anions, respectively. They both split into multiplet 

upon the addition of chloride anions, as shown Figure 60. In addition, the cross-peak 

intensities between N-H and its closest C-Ha/b dramatically increase with the addition 

of chloride anions in 2D NOESY spectra. Furthermore, the participation of C-H pro-

ton in the anion binding behavior is observed in a single crystal structure, which inte-

racts with anions in the same mode as receptor 61, as shown in Figure 60 right. 

Therefore, the binding mode for receptor 61 towards anions is proposed to associate 

anions through the cooperation of N-H and C-Ha/b, as shown in Figure 61. The ap-

pearance of the 4-acetamide group is indispensible for the C-Ha/b to serve as anion 

binding site. The counterpart of C-Ha/b in receptor 38 goes slightly high field with the 

addition of anions and shows no binding affinities towards anions in solution. 
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Figure 60 Partial 
1
H NMR of N-H and C-Ha/b protons of receptor 61 in the absence of chloride anions 

(left bottom, a) and in the presence of chloride anions in CD3CN (left top, b) and single crystal struc-

ture of 3-amino-1-(pentafluorophenylmethyl)-pyridinium bromide
2
 (right).

[123]
 

 

Figure 61 The proposed binding mode for receptor 61 towards an anion. 

6.4 MS Study 

ESI-MS provides more evidence on the anion-binding behavior. A mixture of 35, 

36 (1.0 equiv. each) and one equivalent of Bu4N
+
Cl

-
 is mixed in chloroform for 

10 min, and subsequently the sample is measured in chloroform and acetonitrile using 

ESI-MS to monitor the binding behavior. The main peak 318.00969 corresponding to 

[36 + Cl]
-
 is observed; while no peak corresponding to [35 + Cl]

-
 is detected. 

                                                 

2 This single crystal structure was kindly recommended and provided by Dr. Michael Giese. 
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Figure 62 ESI MS of a mixture of equimolar solution of receptors 35, 36 and Bu4N
+
Cl

-
 in 

CHCl3/CH3CN. 

Two more samples are measured on ESI MS. One sample, equimolar solution of 

receptor 35 and Bu4N
+
Cl

-
 are electrosprayed under as mild as possible ionization con-

ditions. No peaks corresponding to [35+Cl]
-
 or its oligomers are detected. On the con-

trary, the main peak 318.01523 (100%) corresponding to [36+Cl]
-
 is found for the 

sample 36 and Bu4N
+
Cl

-
 in CHCl3 and CH3CN after the same treatment. The fragment 

ions produced by collision-induced dissociation (CID) are used to explore the peak 

318.01523. After collision-induced dissociation, two peaks, 297.98561 and 282.03379, 

are detected, corresponding to [C14H5ClF4N]
-
 and [C14H5F5N]

-
, respectively. Scheme 

10 is used to describe the process as bellow. 
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Figure 63 ESI MS spectra of equimolar solution of receptor 35 and Bu4N
+
Cl

-
 (top) and equimolar solu-

tion of receptor 36 and Bu4N
+
Cl

-
 in CHCl3 (bottom). 



85 

 

 

Scheme 10 Proposed reactions in gas phase for receptor 36 and Bu4N
+
Cl

-
. 

Similar results are obtained for the sample from receptors 37, 38 and Bu4N
+
Cl

-
. 

A sample of equimolar receptors 37, 38 and Bu4N
+
Cl

-
 in CHCl3 is stirred for 10 min 

and then measured using ESI-MS. There are no peaks corresponding to [37+Cl]
-
 or its 

oligomers in the spectrum, while a peak 336.02005 corresponding to [38+Cl]
-
 is de-

tected. 

 

Figure 64 ESI MS spectrum of a mixture of equimolar solution of receptor 37, 38, and Bu4N
+
Cl

-
 in 

CHCl3/CH3CN. 
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6.5 Conclusions 

In summary, a series of new receptors based on indole and biphenyl scaffolds are 

elaborately designed, prepared successfully and used to explore anion-interactions 

in solution. The fluorinated receptors show slightly higher binding ability towards a 

given halide anion. Due to the elaborate design and preparation, the effects of 

lone-pair  interactions in competition to anion- interactions are effectively pre-

vented, presumably. In addition, a new type of binding anions incorporating an amide 

and C-Hphenyl is found in solution and shows good anion binding ability in solution. 

Due to the small differences of binding affinities for receptors and many influencing 

factors, the relevance of anion- interactions are not fully explored. 
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Chapter 7 Synthetic Receptors for Anions 

Owing to the vital roles of anions in our daily life, physiological process and in-

dustrial field, it is becoming more and more fascinating to investigate the binding be-

havior of various receptors towards anions in solution. Herein, a series of receptors 

based on 2-amido-8-aminoquinolines and tripodal structures are devised and prepared. 

7.1 Anion Receptors Based on 2-Amido-8-aminoquinolines 

7.1.1 Synthesis and Structure of Indolyl-substituted Quinoline 

8-Nitroquinoline 8 is catalytically reduced into corresponding amine 39 in DCM 

in the presence of Pd/C and 20 bar H2 gas in an almost quantitative yield. It subse-

quently reacts with TCP to provide 8-isothiocyanatoquinoline 40. 7-Nitroindole is re-

duced to 7-aminoindole catalyzed by Pd/C in the presence of 20 bar H2 gas, which 

reacts with 40 to provide the indolyl decorated 2-amido-8-aminoquinoline 42 in mod-

erate yield. 

 

Figure 65 Synthesis of indolyl decorated quinoline 42. 
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Figure 66 The hydrogen networks in solid structure of receptor 42 (left) and the intermolecular hydro-

gen bond between two receptors 42 (right) (gray, C; white, H; blue, N; red, O; yellow, S). 

Due to intramolecular hydrogen bonding, the proton in amide and one proton in 

thiourea group are positioned in the front of the quinoline nitrogen site and the ob-

served N-H distances are 2.253 Å and 2.139 Å, respectively, shown as Figure 66 left. 

The presence of a DMSO molecule makes certain contributions to the formation of 

the hydrogen network. The observed NH-SDMSO distances for amide and thiourea 

groups are 2.480 Å and 2.156 Å, respectively. While another NH in thiourea group 

also locates in the hydrogen donor network primarily resulting from the coordination 

of a DMSO bound by NH-SDMSO interaction with a distance of 1.956 Å. While the 

proton of the indole group turns out of the hydrogen network. After examining the 

stacking interaction in crystals, the proton in indolyl group is observed to form an in-

termolecular NH-Oamide hydrogen bond in a distance of 1.904 Å with a neighboring 

receptor molecule, shown as Figure 66 right. 

7.1.2 Synthesis of Bispyrenyl-substituted Quinoline 

Bispyrenyl decorated quinoline is prepared as shown in Figure 67. Initially, qui-

noline acid 4 couples with 1-pyrenemethylamine hydrochloride in the presence of 

DIPEA, HOBt and EDC in DCM to provide 1-pyrenemethyl 8-nitroquino 

line-2-carboxamide 49, which is catalytically reduced to 1-pyrenemethyl 

8-aminoquinoline-2-carboxamide 50 catalyzed by Pd/C with 20 bar H2 gas in DCM in 

almost quantitive yield. Subsequently, 50 is transferred to 1-pyrenemethyl 

8-isothiocyanatoquinoline-2-carboxamide 51 by reaction with TCP in DCM at room 
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temperature. Finally, 51 couples with 1-pyrenemethylamine hydrochloride in the 

presence of DIPEA in DCM to provide bispyrenyl decorated quinoline 52 in moderate 

yield. 

 

Figure 67 Synthesis of bispyrenyl decorated quinoline 52. 

7.1.3 Synthesis of Diallyl-substituted Quinoline 

The synthesis of diallyl substituted quinoline receptor 47 is depicted in Figure 68 

as follows. Compound 45 is prepared from quinoline acid 4 and allylamine in the 

presence of DIPEA, HOBt and EDC in DCM. Subsequently, it is reduced in the pres-

ence of Pd/C and 20 bar H2 gas to provide allyl 8-aminoquinoline-2-carboxamide 46, 

which couples with allyl iothiocyanate in DCM to afford diallyl substituted quinoline 

receptor 47 in good yield. 

 

Figure 68 Synthesis of receptor 47. 

7.1.4 Synthesis of a Bisthiourea-conjugated Quinoline 

Receptor 43 is prepared from above described benzyl 8-isothiocyanato quino-

line-2-carboxamide 40 and 1,6-diaminohexane in DCM in high yield. Due to the mul-

tiple and preorganized hydrogen donors, receptor 43 is hypothesized to be a good re-

ceptor towards bis-carboxylate guests, such as isophthalate, oxalate, malonate, succi-
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nate anions. 

 

Figure 69 Synthesis of receptor 43. 

7.2 Syntheses of Anion Receptors Based on Pyrrole and Tren 

Backbone 

7.2.1 Synthesis of a Pyrrole-backbone Receptor 

Receptor tris(pentalfuorobenzyl) pyrrole 57 is synthesized as shown in Figure 70. 

The direct alkylation of pyrrole by nucleophilic substitution reaction in an ionic liquid 

is used to prepare receptor 57.
[124]

 A mixture of pentafluorobenzyl bromide, pyrroles, 

and [bmim][SbF6] is heated at 80 °C for 36 h to provide receptor 57. 

 

Figure 70 Synthesis of receptor 57. 

7.2.2 Syntheses of Tren-based Receptors 
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The syntheses
3
 of receptors 58 and 59 are shown in Figure 71. 

[125]
 The method 

of copper(I)-catalyzed azide-alkyne click (CuAAC) reaction is used to prepare recep-

tors 58 and 59. Initially, the appropriate benzyl bromide reacts with sodium azide in 

DMSO or mixed acetone/water at room temperature to afford corresponding benzyl 

azide. Subsequently, tripropargylamine reacts with the appropriate benzyl azide in the 

presence of TEA using H2O/DCM/THF as solvents to provide receptor 58 and 59 in 

excellent yield.  

 

Figure 71 Synthesis of receptors 58 and 59. 

                                                 

3
 The syntheses of 58 and 59 were conducted with the help of my research student Thomas Traill. 
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Chapter 8 Conclusions and Perspectives 

This thesis focuses on developing novel quinoline-based anion receptors and in-

vestigation of the applications of anion- interactions in anion sensing in solution. It 

has presented the construction of a series of anion and ion-pair receptors and their ap-

plications in supramolecular chemistry, as shown in Figure 72. Furthermore, five sim-

ple yet novel anion receptors were elaborately designed, prepared, and employed to 

study the relevance of anion-interactions in solution, as shown in Scheme 11.  

8.1 Conclusions for Quinoline-based Anion and Ion-pair Re-

ceptors 

First of all, the modulation of affinities of receptors towards halide anions in so-

lution was achieved through a series of quinoline-based receptors, as shown in Figure 

72, I. Two groups of receptors were devised, prepared and exploited in recognization 

of halide anions in CDCl3 and DMSO-d6 solution. The electronic, solvents, and fluo-

ro-substitution effects were investigated in detail. The affinities of receptors towards 

halide anions in CDCl3 are found to be higher than in DMSO-d6. In addition, the flu-

oro-substituted receptors were stronger binders than their nonfluoro-substituted ana-

logues. The affinities of receptors towards halide anions decreased in the sequence of 

Cl
-
 > Br

-
 > I

-
 in both CDCl3 and DMSO-d6. The presence of pentafluorophenyl group 

in anion receptors increased the possibility of participation of anion- interactions in 

anion sensing and recognition in solution. This study supports the method of the tun-

ing of affinities of receptors towards anions in solution by electronic, solvent, and 

fluoro-substituent effects. 

Secondly, the new biphenyl-conjugated quinoline receptors for halide anions 

were designed and synthesized, as shown in Figure 72 II. Their binding behavior to-

wards halide anions was studied in CDCl3 and DMSO-d6. Due to a combination of 

fluoro-substituted effects and lone-pair  interactions, two receptors showed different 

configurations in solid structures. Through the investigation of thermodynamic origin, 
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it was concluded that the binding process between the nonfluoro-substituted receptor 

in CDCl3 was majorly enthalpically driven, while the binding process in DMSO-d6 

was both enthalpically and entropically driven.  

 

Figure 72 The schematic diagram of quinoline-based anion. 

Thirdly, a novel quinoline-substituted crown ether was designed and prepared 

and its applications as a receptor towards anions and ion pairs were investigated in 

detail, as shown in Figure 72 III. The receptor showed moderate affinities towards ha-

lide anions in CDCl3 solution. Due to the presence of both a cation-complexation site 

and an anion-binding moiety, the receptor functioned as a good ion pair receptor in 

different solvents and showed positive cooperativity effects. In addition, it was uti-

lized repeatedly as a solubilizer of inorganic salts in organic phases, such as CDCl3 

and DMSO-d6. This study intensifies the method that a straightforward combination 

of a common anion receptor and a well-studied cation-complexation moiety enables 
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the formation of ion pair receptors and solubilizers of salts in organic solvents. 

Fourthly, different receptors have been obtained through derivation of quinoline 

backbones, as shown Figure 72 IV and V. Due to the presence of (thio)urea and amide 

groups, they are supposed to be good anion receptors towards halide anions and 

oxo-anions.  

Fifthly, the quinoline backbones with different substituent species can belong to 

different crystal systems, for example, receptor 11 with nonfluoro-substituents be-

longs to monoclinic systems; while receptor 12 with fluoro-substituents belongs to 

triclinic systems; and unexpectedly, receptor 42 with one indolyl group instead of 

phenyl group belongs to orthorhombic. Moreover, it seems that the role of solvents is 

not so vital in controlling the crystal systems for these quinoline backones. Two crys-

tals of receptor 24 were obtained from different solvents, e.g. DMSO and 

CH2Cl2/CH3CN, and after elucidation, both samples belong to triclinic systems and 

prove very similar. This study potentiates the method that the crystal systems of a 

given structure in solid can be tuned through different functionalities. 

Figure 73 The chemical structures of 4 receptors. 

Sixthly, various NH groups as hydrogen bond donors play a vital role in anion 

coordination, catalysis, and rotaxane-construction. This thesis showed various –NH- 

groups and offered a general order with the increasing ability as hydrogen bond do-

nors. This sequence should offer valuable information for the design of anion recep-

tors and catalysts and the construction of supramolecular architectures. 
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Figure 74 The general sequence of various NH-containing anion binding sites in solution. 

8.2 Conclusions of Anion- Interactions 

The anion-interactions are pretty weak in solution, so the study on this field 

normally is not easy to achieve. Especially, the study on anion-interactions is often 

influenced by other non-covalent interactions, such as inter-/intramolecular lone-pair 

contacts, electrostatic effects etc. By means of elaborate design and preparation, five 

receptors were utilized to associate anions in solution. The receptor containing mere 

one hydrogen bond donor and potential anion- interactions showed the weakest 

binding affinities towards anions. The receptor containing only one hydrogen bond 

donor and potential anion- interactions and lone-pair contacts showed slightly 

stronger binding affinities towards anions. The receptor containing two hydrogen 

bond donors and potential anion- interactions showed the strongest binding affinities 

towards anions. A novel binding backbone of incorporation of an amide N-H and a 

phenyl C-H was found and reported for the first time, as shown in Scheme 11. 
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Scheme 11 Three proposed binding modes for anions by studied receptors. 

8.3 Perspectives 

Owing to its interesting intra/inter molecular hydrogen bonding, 

2-amido-8-aminoquinoline and its derivatives have been widely utilized on anion 

recognition and sensing, ion pair recognition, and construction of foldamers in su-

pramolecular chemistry. Based on the study in this dissertation, the further study on 

this unique structure is proposed, as shown in Figure 75. Firstly, the macrocyle recep-

tors based on quinoline is likely to be excellent receptors for anions due to the preor-

ganization. Secondly, due to its two ―hands‖, the quinoline can be exploited in the 

construction of different size macrocycles using appropriate anions as a template. 

Thirdly, the quinoline can be employed in catalysis science. Chiral (thio)urea deriva-

tives as privileged chiral catalysts have been broadly used in accelerating reactions 

through stabilization of the anions by means of hydrogen bonding. As far as the scaf-

fold is concerned, the chiral centre can be easily introduced into R group, the preorga-

nized hydrogen cavity for stabilization of anionic guests and the crown ether for stabi-

lization of cationic species. Finally, the quinoline is potential to be applied in supra-

molecular catalysis through introduction of catechol groups in form of self-assembly 

nanocages. 
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Figure 75 Further studies on quinoline-based anion receptors. 
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Chapter 9 Experimental Section 

9.1 Chemical Reagents, Instruments and Typical Procedures 

9.1.1 Chemical Reagents 

Chemicals commercially available from Merck, Sigma Aldrich, Alfa Aesar, TCI, 

ABCR or Acros were used as received. All solvents were used after distillation with-

out further purification, unless otherwise indicated. After stirring with CaH2 overnight, 

dichloromethane or CH3CN was distilled for use. THF were dried by filtration over 

activated alumina (basic) in a column. After stirring with Mg powder overnight, me-

thanol was distilled for use. All reactions were carried out using pre-dried solvents 

and nitrogen atmosphere unless otherwise stated. All NMR spectra were recorded in 

deuterated chloroform (CDCl3), deuterated acetonitrile (CD3CN), deuterated methanol 

(CD3OD) or deuterated dimethyl sulfoxide (DMSO-d6) 

9.1.2 Instruments  

All NMR spectra were recorded by using a Varian Mercury 300, Varian 400 or 

Varian 600 spectrometer.  

Mass spectra were measured by using EI (70 eV ), CI (100 eV,methane) or ESI 

techniques on a Finnigan SSQ 7000 or Thermo Deca XP spectrometer. 

Infrared spectra were obtained on a Perkin-Elmer FTIR spectrometer spectrum 

100. The samples were measured in KBr (400-650 cm
-1

).  

Elemental analyses were performed on CHN-O-Rapid Vario EL instrument from 

Heraeus.  

Melting points were obtained on Büchi B-540 melting point apparatus.  

X-ray diffraction data has been collected at 100 K on a Bruker D8 goniometer 

equipped with an APEX CCD detector using Mo Kα radiation (λ = 0.71073 Å). The 

radiation source was an INCOATEC I-μS microsource.A cooling device Oxford 
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Cryosystems 700 controller was used to ensure temperature stability during data col-

lection. The SAINT software [1] was used for integration and SADABS [2] for mul-

ti-scan absorption correction.The structures were solved with direct methods 

(SHELXS97) and refined by full-matrix least squares on F^2 (SHELXL97) [3]. Ani-

sotropic displacement parameters were assigned to non-H atoms. H atoms bonded to 

N were localized in Difference Fourier maps; their positions were refined freely. (1) 

Bruker, 2003. SAINT+, Version 6.45; Bruker AXS Inc., Madison, Wisconsin, USA. 

(2) Sheldrick, G. M.; 2004.'SADABS, Program for Empirical Absorption Correction 

of Area Detector Data', University of Göttingen. (3) Sheldrick, G. M.; Acta Cryst., 

2008, A64, 112. 

9.1.3 Typical Procedures 

9.1.3.1 Solid-liquid Extraction 

Receptor 24 is soluble in appropriate deuterated solvents (CDCl3 or DMSO-d6). 

Insoluble guests (such as KCl, NaCl, NH4Cl etc.) were added in excess as powders, 

and the NMR tubes were stirred 12 h at room temperature. After standing 1h, the 

NMR spectra were acquired.
[126]

 

9.1.3.2 NMR Titration 

For binding constants calculated based on 
1
H NMR and 

19
F NMR titrations, 

chemical shift δ (ppm) are plotted against acceptor concentration (M). 

9.1.3.3 Job Plots 

Job plots were created using either 
1
H NMR or 

19
F NMR by plotting |δ·χ| 

against χ. 

 

9.2 Syntheses and Characterization of Compounds 

1.1. Synthesis of compound 1
[127]
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To a solution of 2-nitroaniline (3.45 g, 0.025 mmol) in 150 mL of MeOH was 

added dimethyl acetylenedicarboxylate (3.90 g, 0.0275 mmol). After stirring at rt. for 

18 h, the mixture was heated at reflux for 6 h and cooled, and then the resulting yel-

low solid were collected and washed with MeOH to yield 6.50 g of 

2-[(2-nitrophenyl)amino]-2-butenedioic acid dimethyl ester 1. 

Yield: 6.50 g. (M = 280.2 g mol
-1

, n = 0.023 mol, 92%). 

Melting point: 133.1-134.2 °C. 
1
H NMR spectrum (400 MHz, CDCl3): δ = 11.12 (s, 1 H), 8.16 – 8.13 (dd, 1 H), 

7.48 – 7.44 (m, 1 H), 7.10 – 7.06 (m, 1 H), 6.78 – 6.75 (dd, 1 H), 5.84 (s, 1 H), 3.81 (s, 

3 H), 3.75 (s, 3 H).  
13

C NMR spectrum (75 MHz, CDCl3): δ = 167.96, 164.33, 143.47, 138.06, 

136.86, 134.20, 126.20, 122.05, 120.38, 102.96, 53.06, 51.83. 

Mass spectrum (CI): m/z (%) = 281.1 (99.51) [M + H]
+
, 249.1 (100.00) [M – 

CH3O]
+
. 

IR (KBr): 3270, 2951, 2114, 1732, 1676, 1600, 1502, 1434, 1386, 1335, 1279, 

1210, 1158, 1027, 976, 850, 825, 776, 740, 690, 661 cm
-1

. 

Elemental analysis (%): C12H12N2O6 calcd. C 51.43, H 4.32, N 10.00; found C 

51.44, H 4.48, N 10.07.  

1.2. Synthesis of compound 2
[127]

. 

 

A mixture of 1 (1.70 g, 6.06 mmol) and ca. 10 mL (20 g) of PPA was heated at 

120 C for 1 h. The mixture was cooled and poured into saturated Na2CO3 solution 

and the resulting yellow solid was collected through filtration to provide 0.76 g of 

1,4-dihydro-8-nitro-4-oxo-2-quinoline carboxylic acid methyl ester 2. 

Yield: 0.76 g. (M = 248.2 g mol
-1

, n = 3.06 mmol, 51%). 

Melting point: 191-192 °C. 

Mass spectrum (CI): m/z (%) = 249.0 (100) [M + H]
+
. 

IR spectrum (KBr): 3334, 2981, 2717, 2319, 1723, 1599, 1499, 1456, 1369, 1272, 

1165, 1017, 875, 783, 747, 707, 663 cm
-1

. 

1.3. Synthesis of compound 3.
[77c]
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A mixture of 2 (2.0 g, 8.0 mmol), triphenylphosphine (2.25 g, 1.05 eq), 

2-methyl-1-propanol (0.82 mL, 1.1 eq), and anhydrous THF under nitrogen gas stir-

ring, was cooled down to 0 C using ice/water bath. DIAD was added and the mixture 

was stirred at 0 C for 30 min, then at room temperature overnight. The solvent was 

evaporated and the product was purified by flash chromatography (SiO2) eluting with 

CH2Cl2 or recrystalization from CH2Cl2/CH3OH to provide 2.07 g of methyl 

4-isobutoxyl-8-nitroquinoline-2-carboxylate 3. 

Yield: 2.07 g. (M = 304.11 g mol
-1

, n = 6.8 mol, 92%). 

Melting point: 174-175 °C. 
1
H NMR spectrum (400 M, CDCl3): δ = 8.43 – 8.40 (dd, 1 H), 8.05 – 8.03 (dd, 1 

H), 7.59 (m, 2 H), 4.03, 4.02 (d, 2 H), 3.97 (s, 3 H), 2.24 (m, 1 H), 1.09 (d, 6 H) . 
13

C NMR spectrum (101M, CDCl3): δ = 165.66, 162.74, 151.29, 140.02, 126.31, 

125.87, 125.06, 123.31, 102.18, 75.62, 53.36, 28.10, 19.16. 

Mass spectrum (CI): m/z (%) = 275.0 (100.00), [M – C2H5]
+
, 305.0 (100.00), [M 

+ H]
+
. 

IR spectrum (KBr): 3069, 2966, 2882, 2324, 2049, 1910, 1718, 1587, 1529, 1440, 

1361, 1267, 1119, 1011, 866, 785, 759, 667 cm
-1

. 

Elemental analysis (%): C15H16N2O5 Calcd: C, 59.21; H, 5.30; N, 9.21. Found: C, 

59.16; H, 5.15, N, 9.15. 

 

1.4. Synthesis of compound 4.
[77c]

 

 

The methyl ester 3 (150 mg, 0.49 mmol) was dissolved in a mixture of THF 

(20 mL) and methanol (10 mL), and KOH (100 mg, 1.79 mmol, 3.65 eq) was added, 

and the solution was stirred at ambient temperature for 20 h. The solution was neutra-

lized using excess of AcOH and the solvents were evaporated. Dichloromethane was 

added to the residue and washed with water. The organic phases from extraction were 

combined, dried over MgSO4, and the solvent was removed to provide a yellow solid. 

Yield:0.128 g. (M = 290.27 g mol
-1

, n = 0.44 mmol, 89%). 

Melting point: 140-141 °C. 
1
H NMR spectrum (400 M, CDCl3): δ = 8.49 – 8.47 (dd, 1 H), 8.17 – 8.15 (dd, 1 

H), 7.67 (m, 2 H), 4.08, 4.06 (d, 2 H), 2.26 (m, 1 H), 1.10, 1.08 (d, 6 H). 
13

C NMR spectrum (101M, CDCl3): δ = 164.24, 163.55, 149.26, 127.06, 126.48, 
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126.17, 123.68, 100.22, 76.20, 28.03, 19.10. 

Mass spectrum (CI): m/z (%) = 291.0 (100.00), [M + H]
+
; 319.1 (39.96), [M + 

C2H5]
+
; 247.1 (72.48) [M – C3H7]

+
. 

IR spectrum (KBr): 3323, 3076, 2966, 1765, 1584, 1527, 1423, 1368, 1179, 1120, 

1013, 873, 763, 675 cm
-1

. 

Elemental analysis (%): C14H14N2O5 Calcd: C, 57.93; H, 4.86; N, 9.65. Found: C, 

57.66; H, 4.74, N, 9.56. 

 

1.5. Synthesis of compound 5.
[88]

 

 

To a solution of tritylamine (520 mg, 2.0 mmol) in DMF (5 mL) was added 

2,3,4,5,6-pentafluorobenzyl bromide (260 mg, 1.0 mmol) and the resulting solution 

was stirred at room temperature for 1 h and monitored by TLC (hexane). The salt 

TrNH2·HBr had precipitated from solution was removed by filtration. The filtrate was 

concentrated in vacuo and the crude residue was purified by silica gel flash column 

chromatography (hexane) to give N-trityl-2,3,4,5,6-pentafluorobenzyl amine 5 

(403 mg, 92 %). 

Yield: 403 mg. (M = 439.42 g mol
-1

, n = 0.92 mol, 92%). 

Melting point: 112-113 °C. 
1
H NMR spectrum (400 M, CDCl3): δ= 7.53 – 7.50 (m, 6 H), 7.32 – 7.28 (m, 6 

H), 7.23 - 7.19 (m, 3 H), 3.37 (s, 2 H). 
19

F NMR spectrum (376 M, CDCl3): δ = 143.62 – 143.71 (dd, 2 F), 156.14 (t, 1 

F), 162.34 (m, 2 F). 

Mass spectrum (CI): m/z (%) = 243.3 (100.00), [M – C7H4F5N]
+
, 440.5 (74.67), 

[M + H]
+
. 

IR spectrum (KBr): 3326, 3062, 3028, 2881, 1657 1596, 1499, 1465, 1301, 1212, 

1124, 1062, 1018, 968, 931, 899, 851, 773, 746, 702 cm
-1

. 

Elemental analysis (%): C12H12N2O6 Calcd: C, 71.07; H, 4.13; N, 3.19. Found: C, 

70.89; H, 4.54, N, 3.09 

 

1.6. Synthesis of compound 6.
[88]

 

 

5 (439 mg, 1.0 mmol) in a solution of 60% TFA in CH2Cl2 (v/v)(5 mL) was 

stirred for 10 min at room temperature, then CH3OH (2 mL) was added. The solution 
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was stirred for 1 h and the solvent was evaporated in vacuo. A solution of concen-

trated HCl in CH3OH (1:1, 10 mL) was added. The slurry was filtered and the solid 

washed with dry ether. The filtrate was concentrated in vacuo to afford 210 mg of 

2,3,4,5,6-pentafluorobenzyl amine hydrochloride. 

Yield: 210 mg. (M = 233.57 g mol
-1

, n = 0.90 mol, 90%). 
1
H NMR spectrum (400 MHz, CD3OD): δ = 4.28 (s, 2H). 

19
F NMR (276 MHz, CD3OD): δ = -143.23 (m, 2 F), -154.52 (td, 1 F), -160.10 

(m, 2 F). 

IR spectrum (KBr): 2969, 2191, 1746, 1659, 1560, 1505, 1381, 1311, 1151, 1114, 

982, 925, 886, 735 cm
-1

.  

Elemental analysis (%): C7H5ClNF5, calcd. C 36.00, H 2.16, N 6.00; found C 

36.36, H 2.43, N 5.90. 

 

1.7. Synthesis of compound 7.
[128]

 

 
To an anhydrous CH2Cl2 (20 mL) solution of a mixture of 4 (290 mg, 1.0 mmol, 

1.0 eq) and pentafluorobenzylamine hydrochloride (467 mg, 2.0 mmol, 2.0 eq) were 

successively added DIPEA (1.27 mL), HOBt (270 mg, 2 mmol, 2 eq), and EDC·HCl 

(383 mg, 2 mmol, 2 eq). The process was monitored by TLC. Upon completion after 

stirring for ca. 6 h under nitrogen at room temperature, the reaction mixture was 

washed with saturated aqueous NH4Cl solution. The organic extract was dried over 

Na2SO4 and filtered off. Solvent was evaporated to dryness and the residue was puri-

fied on silica gel with dichloromethane or by recrystallization from dichlorome-

thane/MeOH to allow isolation of 4-isobutoxy-8-nitroquinoline-2-carboxylic acid 

pentafluorobenzylamide 7 (422 mg) as a colorless solid. 

Yield: 422 mg. (M = 469.36 g mol
-1

, n = 0.90 mol, 90%). 

Melting point: 153 °C. 
1
H NMR spectrum (300 MHz, CDCl3): δ = 8.54 (t, 1 H), 8.47 (dd, 1 H), 8.12 (dd, 

1 H), 7.76 (s, 1 H), 7.63 (m, 1 H), 4.78 (d, 2 H), 4.08 (d, 2 H), 2.29 (m, 1 H), 1.14 (d, 

6 H). 
19

F NMR (282 MHz, CDCl3): δ = -142.49 (dd, 2 F), -154.64 (t, 1 F), -161.67 (m, 

2 F). 
13

C NMR spectrum (75 MHz, CDCl3): δ = 163.63, 163.30, 152.38, 147.64, 

138.97, 126.72, 125.40, 125.24, 123.33, 99.91, 77.29, 76.97, 76.65, 75.78, 31.51, 

28.01, 19.10. 

Mass spectrum (ESI): m/z (%) = 470.92 (100.00), (M + H)
+
. 

IR spectrum (KBr): 3397, 2960, 2878, 1690, 1591, 1498, 1362, 1144, 1120, 1011, 

941, 868, 787, 758 cm
-1

.  
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Elemental analysis (%): C21H16N3O4F5, calcd. C 53.74, H 3.44, N 8.95; found C 

53.96, H 3.36, N 8.95. 

Crystallographic parameters for the structure determined: CCDC-906525, X-ray 

quality crystals were obtained from CH3OH/CH2Cl2; C21H16F5N3O4; Mr = 469.37; 

crystal size 0.23 × 0.15 × 0.10 mm
3
; monoclinic; space group P21/c (No.14); a = 

5.2515(1) Å, b = 24.8800(5) Å, c = 15.5918(3) Å; β = 93.978 (1)
°
; V = 2032.27(7) Å

3
; 

Z = 4; cal = 1.534 g cm
-3

;  = 0.137 mm
-1

; F(000) = 960; 12688 collected reflections 

(max = 27.87
°
) of which 4750 were independent (R int = 0.039); Tmax = 0.9864; Tmin = 

0.9691; T = 223(2) K; full-matrix least-square on F
2
 with 0 restraints and 303 para-

meters; GOF = 1.093; R1 = 0.0595(I > 2(I)); R2(all data) = 0.1389; peak/hole = 

0.213/-0.199 e Å
-3

. 

 

1.8. Synthesis of compound 8. 

 

To an anhydrous CH2Cl2 (20 mL) solution of a mixture of 4 (290 mg, 1.0 mmol, 

1.0 eq) and benzylamine (0.22 mL, 2.0 mmol, 2.0 eq) were successively added DI-

PEA (1.27 mL), HOBt (270 mg, 2 mmol, 2 eq), and EDC·HCl (383 mg, 2 mmol, 

2 eq). The process was monitored by TLC. Upon completion after stirring for ca. 6 h 

under nitrogen at room temperature, the reaction mixture was washed with saturated 

aqueous NH4Cl solution. The organic extract was dried over Na2SO4 and filtered off. 

Solvent was evaporated to dryness and the residue was purified on silica gel with 

dichloromethane or by recrystallization from dichloromethane/MeOH to allow isola-

tion of the compound 8 (322 mg) as a yellow solid. 

Yield: 322 mg. (M = 379.41 g mol
-1

, n = 0.85 mol, 85%). 

Melting point: 142 °C. 
1
H NMR spectrum (400 MHz, CDCl3): δ = 8.54 (t, 1 H), 8.49 (dd, 1 H), 8.09 (dd, 

1 H), 7.83 (s, 1 H), 7.61 (s, 1 H), 7.37 (m, 4 H), 7.28 (m, 1 H), 4.72 (d, 2 H), 4.13 (d, 

2 H), 2.30 (m, 1 H), 1.15 (d, 6 H). 
13

C NMR spectrum (100 MHz, CDCl3): δ = 163.66, 163.20, 153.13, 147.70, 

138.99, 137.98, 128.69, 127.55, 127.42, 126.67, 125.18, 125.03, 123.27, 100.07, 

75.73, 43.57, 28.06, 19.14. 

Mass spectrum (ESI): m/z (%) = 402.14352 (100) [M + Na]
+
, 380.16183 (10) [M 

+ H]
+
. 

IR spectrum (KBr): 3382, 3101, 2959, 2875, 1680, 1587, 1566, 1520, 1336, 1215, 

1129, 1014, 865, 742, 696 cm
-1

. 

Elemental analysis (%): C21H21N3O4 calcd. C 66.48, H 5.58, N 11.08; found C 

66.36, H 5.44, N 11.04.  
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1.9. Synthesis of compound 9. 

 

To an anhydrous CH2Cl2 (20 mL) were successively added 5 (150 mg, 

0.64 mmol, 1.0 eq) and DIPEA (0.135 mL, 1.29 mmol, 2.0 eq) and the mixture was 

stirred under nitrogen atmosphere for 10 min. Then, TCP (179 mg, 0.644 mmol, 

1.2 eq) was added to the mixture. After being stirred for 8 h under nitrogen atmos-

phere at room temperature, the solvent was evaporated to dryness, and the residue was 

chromatographed on silica gel with hexane as an eluent to allow isolation of 9 as a 

colorless oil, which was characterized by 
1
H NMR, 

19
 NMR as well as mass spectro-

metry and used for next reaction without further characterization. 

Yield: 130 mg. (M = 239.17 g mol
-1

, n = 0.54 mol, 85%). 
1
H NMR spectrum (300 M Hz, CDCl3):  δ = 4.76 (m, 2H). 

19
F NMR spectrum (282 M Hz, CDCl3): δ = -142.37 (m, 2 F), -151.57 (t,1 F), 

-160.29 (m, 2 F). 
13

C NMR spectrum (75M Hz, CDCl3): δ = 36.21. 

Mass spectrum (EI): m/z (%) = 181.1 (100.00), [C7H2F5]
+
; 240.1 (49.79), [M + 

H]
+
. 

 

1.10. Synthesis of compound 10. 

 

To an anhydrous CH2Cl2 (20 mL) solution of pentafluoroaniline (183 mmol, 

1.0 mml, 1.0 eq) was added DPTC (279 mg, 1.2 mmol, 1.2 eq). After being stirred for 

8 h under nitrogen atmosphere at room temperature, the solvent was evaporated to 

dryness, and the residue was chromatographed on silica gel with hexane as an eluent 

to allow isolation of 10 as colorless oil, which was characterized by 
1
H NMR, 

19
 NMR 

and mass spectrum and used for next reaction without further characterization.  

Yield:174 mg. (M = 225.14 g mol
-1

, n = 0.95 mol, 95%). 
1
H NMR spectrum (300 M, CDCl3): no signal. 

19
F NMR spectrum (282 MHz, CDCl3): δ = -145.34, -145.39 (d, 2F), -155.73, 

-155.80, -155.88 (t, 1F), -161.04, -161.12, -161.17 (m, 2F).  

Mass spectrum (EI): m/z (%) = 57.3 (100.00), [NCS]
+
; 225.2 (40.50), M

+
. 

 

1.11. Synthesis of compound 11. 

4-Isobutoxy-8-(phenylthioureido)quinoline-2-carboxylic acid benzylamide 
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A mixture of 8 (379 mg, 1.0 mmol, 1.0 equiv.) dissolved in CH2Cl2 (20 mL) and 

10% Pd/C was stirred at room temperature under an atmosphere of hydrogen (20 bar) 

overnight. The solution was filtered through Celite and the filtrate was evaporated to 

dryness. The residue was used directly in the next step.  

A solution of 4-isobutoxy-8-aminoquinoline-2-carboxylic acid benzylamide (1.0 

mmol, 1.0 equiv.) and phenyl isothiocyanate (0.33mL, 3.0 mmol, 3.0 equiv.) in dich-

loromethane (30 mL) was heated at reflux overnight. After cooling to room tempera-

ture, the solvent was removed in vacuo. The residue was purified by recrystallization 

from dichloromethane/MeOH to allow isolation of a light yellow solid.  

Yield: 344 mg (M = 484.61 g mol
-1

, n = 0.71 mmol, 71 %).  

Melting point: 194 °C.  
1
H NMR spectrum (600 MHz, CDCl3): δ = 10.22 (s, 1 H), 9.48 (d, 1 H), 8.04 (s, 

1 H), 7.89 (d, 1 H), 7.64 (s, 1 H), 7.52 (t, 1 H), 7.28 (m, 3 H), 7.20 (m, 5 H), 7.13 (d, 1 

H), 7.04 (t, 1 H), 4.46 (d, 2 H), 3.96 (d, 2 H), 2.19 (m, 1 H), 1.04 (d, 6 H).  
13

C NMR spectrum (150 MHz, CDCl3): δ = 177.16, 164.32, 163.51, 149.38, 

138.57, 138.13, 136.39, 134.33, 130.07, 128.61, 127.27, 127.24, 126.94, 126.79, 

125.03, 122.05, 118.52, 116.89, 99.78, 75.37, 43.11, 28.10, 19.18.  

IR spectrum (KBr): 3403, 3281, 3222, 2955, 1664, 1528, 1346, 1227, 1160, 1051, 

913, 861, 812, 755, 687 cm
-1

.  

Mass spectrum (ESI): m/z (%) = 507.18379 (100.00), [M + Na]
+
, 485.20196 

(90.00) [C28H29N4O2S + H]
+
, 350.18738 (55.00) [C21H24N3O2]

+
.  

Elemental analysis (%): C28H28N4O2S·0.5H2O: calcd. C 68.13, H 5.92, N 11,35; 

found C 68.40, H 5.51, N 10.87.  

Crystallographic parameters for the structure determined: CCDC-906526, X-ray 

quality crystals were obtained from MeOH/dichloromethane: C28H28N4O2S; Mr = 

484.60; crystal size 0.27 × 0.13 × 0.05 mm
3
; monoclinic; space group P21/c (No.14); 

a = 8.0294(2) Å, b = 16.1218(4) Å, c = 19.8969(6) Å; β = 100.567 (1)
°
; V = 

2531.94(12) Å
3
; Z = 4; calcd. = 1.271 g cm

-3
;  = 0.160 mm

-1
; F(000) = 1024; 7226 

collected reflections (max = 25.00
°
) of which 4340 were independent (Rint = 0.0251); 

Tmax = 0.9920; Tmin = 0.9580; T = 223(2) K; full-matrix least-square on F
2
 with 0 re-

straint and 327 parameters; GOF = 1.057; R1 = 0.0573(I > 2(I)); R2(all data) = 

0.1356; peak/hole = 0.197/-0.196 eÅ
-3

. 

 



107 

 

 

1.12. Synthesis of compound 12. 

 

The synthesis of 12 was done similar to that of 11. The compound was purified 

by recrystallization from dichloromethane/MeOH to obtain a colorless solid.  

Yield: 372 mg (M = 664.52 g mol
-1

, n = 0.56 mmol, 56%).  

M.p.: 167 °C.  
1
H NMR spectrum (300 MHz, CDCl3): δ = 9.49 (s, 1 H), 8.55 (d, 1 H), 8.45 (t, 1 

H), 8.08 (s, 1 H), 7.82 (d, 1 H), 7.44 (m, 2 H), 4.80 (d, 2 H), 3.86 (d, 2 H), 2.19 (m, 1 

H), 1.09 (d, 6 H).  
19

F NMR spectrum (282 MHz, CDCl3): δ = -142.72 (d, 2 F), -144.42 (d, 2 F ), 

-154.08 (m, 1 F ), -154.33 (t, 1 F ), -161.56 (m, 2 F ), -162.07 (d, 2 F ).  
13

C NMR spectrum (75 MHz, CDCl3): δ = 181.17, 165.17, 163.37, 149.80, 

139.44, 133.71, 126.84, 122.37, 121.37, 118.95, 99.34, 31.66, 28.16, 19.04. 

IR (KBr): 3369, 2949, 2234, 1713, 1611, 1502, 1464, 1324, 1197, 1134, 1099, 

993, 842, 750 cm
-1

. MS (ESI): m/z (%) = 665.58 (60) [M + H] 
+
, 440.85 (100) 

[C21H18F5N3O2 + H]
 +

.  

Elemental analysis (%): C28H18F10N4O2S, calcd. C 50.61, H 2.73, N 8.43; found 

C 50.56, H 2.79, N 8.39.  

Crystallographic parameters for the structure determined: X-ray quality crystals 

were obtained from chloroform: C28H18N4O2SF10·CHCl3; Mr = 783.89; crystal size 

0.20 × 0.05 × 0.02 mm
3
; triclinic; space group P-1 (No.2); a = 10.3604(6) Å, b = 

12.1417(7) Å, c = 13.7148(8) Å; β = 95.138(4)
°
; V = 1599.69(16) Å

3
; Z = 2; calcd. = 

1.627 g cm
-3

;  = 4.074 mm
-1

; F(000) = 788; 20060 collected reflections (max = 

25.00
°
) of which 5393 were independent (Rint = 0.058); Tmax = 0.9230; Tmin = 0.4960; 

T = 223(2) K; full-matrix least-square on F
2
 with 466 restraints and 466 parameters; 

GOF = 1.006; R1 = 0.068(I > 2(I)); R2(all data) = 0.2037; peak/hole = 0.87 /-0.59 

eÅ
-3

. 

 

1.13. Synthesis of compound 13. 
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The synthesis of 13 was as described for 11. It was purified by recrystallization 

from dichloromethane/MeOH to allow isolation of the compound as a light yellow 

solid.  

Yield: 339 mg (M = 498.64 g mol
-1

, n = 0.68 mmol,68 %). 

M.p.: 163 °C.  
1
H NMR (400 MHz, DMSO- d6): δ = 9.16 (s, 1 H), 8.43 (s, 1 H), 8.18 (s, 1 H), 

7.89 (dd, 1 H), 7.60 (s, 1 H), 7.43 (t, 1 H), 7.17 (m, 9 H), 6.77 (s, 1 H), 4.71 (d, 2 H), 

4.52 (d, 1 H), 3.87 (d, 2 H), 2.16 (m, 1 H), 1.01 (d, 6 H).   
13

C NMR (150 MHz, CDCl3): δ = 164.86, 163.38, 149.45, 139.24, 137.62, 

134.56, 128.64, 128.61, 127.80, 127.65, 127.44, 127.20, 126.93, 122.60, 119.82, 

117.30, 99.41, 75.12, 49.05, 43.39, 28.06, 19.13.   

IR (KBr): 3289, 2084, 1647, 1544, 1460, 1423, 1362, 1330, 1250, 1228, 1180, 

1143, 1041, 857, 724, 692 cm
-1

.   

MS (ESI): m/z (%) = 499.07 (99.68), [M + Na]
+
, 350.20 (100.00) [C21H24N3O2]

+
   

Elemental analysis (%): C29H30N4O32S, calcd. C 69.85, H 6.06, N 11,24; found C 

69.56, H 5.73, N 11.11.  

X-ray quality crystals were obtained from MeOH/dichloromethane: 

CCDC-906527, C29H30N4O2S; Mr = 498.63; crystal size 0.37 × 0.10× 0.06 mm
3
; mo-

noclinic; space group P21/c (No.14); a = 8.2730(2) Å, b = 31.1994(4) Å, c = 

20.2195(4) Å; β = 91.083(1)
°
; V = 5217.98(18) Å

3
; Z = 8; calcd. = 1.269 g cm

-3
;  = 

0.158 mm
-1

; F(000) = 2112; 16171 collected reflections (max = 25.00
°
) of which 9048 

were independent (Rint = 0.0491); Tmax = 0.9906; Tmin = 0.9440; T = 223(2) K; 

full-matrix least-square on F
2
 with 0 restraint and 671 parameters; GOF = 1.049; R1 = 

0.0677(I > 2(I)); R2 (all data) = 0.1556; peak/hole = 0.215/-0.206 eÅ
-3

. 

 

1.14. Synthesis of compound 14. 
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The synthesis of 14 was done similar to that of 11. It was purified by recrystalli-

zation from dichloromethane/MeOH to allow isolation of the compound as a yellow 

solid.  

Yield: 366 mg (M = 678.54 g mol
-1

, n = 0.54 mmol,54 %).   

M.p.: 196 °C.  
1
H NMR (300 MHz, CDCl3): δ = 8.99 (s, 1 H), 8.52 (t, 1 H), 8.03 (d, 2 H), 7.62 

(s, 1 H), 7.53 (t, 1 H), 6.92 (t, 1 H), 4.96 (t, 2 H), 4.75 (d, 2 H), 3.99 (d, 2 H), 2.25 (m, 

1 H), 1.12 (d, 6 H). 
19

F NMR (282 MHz, CDCl3): δ = -142.22 (dd, 2 F ), -142.58 (dd, 2 F ), -153.88 

(t, 1 F ), -154.52 (t, 1 F ), -161.41 (m, 2 F ), -161.67 (m, 2 F ). 
13

C NMR (75 MHz, CDCl3):  = 181.31, 164.16, 163.53, 149.88, 147.21, 139.93, 

133.81, 126.82, 123.05, 121.33, 119.02, 110.96, 99.63, 37.04, 31.56, 28.06, 19.12. 

IR (KBr): 3320, 3175, 2963, 1664, 1506, 1417, 1311, 1212, 1121, 1026, 965, 924, 

763 cm
-1

. 

MS (ESI): m/z (%) = 679.17 (100) [M + H] 
+
. 

Elemental analysis (%): C29H20F10N4O2S, calcd. C 51.33, H 2.97, N 8.26; found 

C 51.22, H 2.96, N 8.25.  

X-ray quality crystals were obtained from MeOH/CH2Cl2: CCDC-906528, 

C29H20F10N4O2S; Mr = 678.55; crystal size 0.27 × 0.13 × 0.10 mm
3
; triclinic; space 

group P-1 (No.2); a = 10.3605(3) Å, b = 12.1967(4) Å, c = 13.2370(4) Å; α = 

108.120(1)
°
, β = 108.706(2)

°
, γ = 99.221(3)

°
; V = 1441.59(8) Å

3
; Z cal = 1.563 

g cm
-3

;  = 0.213 mm
-1

; F(000) = 688; 13439 collected reflections (max = 25.00
°
) of 

which 5000 were independent (Rint = 0.036); Tmax = 0.9790; Tmin = 0.9447; T = 223(2) 

K; full-matrix least-square on F
2
 with 7 restraint and 426 parameters; GOF = 1.068; 

R1 = 0.0589(I > 2(I)); R2 (all data) = 0.1496; peak/hole = 1.019/-0.518 eÅ
-3

. 

 

1.15. Synthesis of compound 15. 
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The synthesis of 15 was similar as the one of 11. The compound was purified by 

recrystallization from dichloromethane/MeOH to allow isolation as yellow solid.  

Yield: 314 mg (M =468.55 g mol
-1

, n = 0.67 mmol,67 %).   

M.p.: 126 °C.  
1
H NMR (400 MHz, DMSO-d6):  = 9.66 (s, 1 H), 9.63 (t, 1 H), 9.27 (s, 1 H), 

8.52 (dd, 1 H), 7.72 (dd, 1 H), 7.66 (s, 1 H), 7.57 (t, 1 H), 7.49 (m, 2 H), 7.32 (m, 7 H), 

6.98 (t, 1 H), 4.67 (d, 2 H), 4.11 (d, 2 H), 2.19 (m, 1 H), 1.07 (d, 6 H).  
13

C NMR (100 MHz, DMSO-d6):  = 164.46, 163.13, 152.67, 149.65, 139.64, 

137.65, 136.50, 129.35, 128.84, 128.26, 127.62, 127.36, 118.95, 115.97, 113.68, 

99.63, 75.08, 43.07, 28.09, 19.38.  IR (KBr): 3324, 2964, 1646, 1523, 1416, 1313, 

1198, 1071, 1001, 752, 690 cm
-1

.   

MS (ESI): m/z (%) = 491.20361(100) [M + Na]
+
. 

Elemental analysis (%): C28H28N4O3·0.5H2O, calcd. C 70.42, H 6.12, N 11,73; 

found C 70.70, H 5.98, N 11.76.  

 

1.16. Synthesis of compound 16. 

 

The synthesis of 16 proceeded similar to the one of 11. The compound was puri-

fied by recrystallization from dichloromethane/MeOH to allow isolation as colorless 

solid.  

Yield: 512 mg (M = 648.45 g mol
-1

, n = 0.79 mmol,79 %).   

M.p.: 241°C.  
1
H NMR (400 MHz, DMSO-d6):  = 9.96 (s, 1 H), 9.53 (t, 1 H), 9.12 (s, 1 H), 

8.46 (dd, 1 H), 7.79 (dd, 1 H), 7.64 (m, 2 H), 4.78 (d, 2 H), 4.13, (d, 2 H) 2.21 (m, 1 
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H), 1.10 (d, 6 H). 
19

F NMR (376 MHz, DMSO-d6):  = -142.41 (dd, 2 F), -146.17 (dd, 2 F), 

-156.11 (t, 1 F), -159.31 (t, 1 F), -163.20 (m, 2 F), -163.85 (m, 2 F).   

IR (KBr): 3310, 2969, 1685, 1644, 1561, 1501, 1461, 1233, 1008, 980, 767, 745 

cm
-1

.  

MS (ESI): m/z (%) = 649.00 (100) [M + H] 
+
.  

Elemental analysis (%): C28H18F10N4O3·H2O, calcd. C 50.46, H 3.03, N 8.41; 

found C 50.71, H 3.19, N 8.57.  

X-ray quality crystals were obtained from DMSO: CCDC-906529, 

C28H18F10N4O3·(CH3)2SO; Mr = 726.59; crystal size 0.53 × 0.20 × 0.10 mm
3
; monoc-

linic; space group P21/n (No.14); a = 15.0156(3) Å, b = 9.5866(2) Å, c = 21.3804(5) 

Å; β = 92.722(1)
°
; V = 3074.21(11) Å

3
; Z = 4; calcd. = 1.570 g cm

-3
;  = 0.210 mm

-1
; 

F(000) = 1480; 9631 collected reflections max = 25.00
°
) of which 5343 were inde-

pendent (Rint = 0.0373); Tmax = 0.9793; Tmin = 0.8968; T = 223(2) K; full-matrix 

least-square on F
2
 with 68 restraint and 470 parameters; GOF = 1.059; R1 = 0.0630(I > 

2(I)); R2 (all data) = 0.1451; peak/hole = 0.358/-0.386 eÅ
-3

. 

 

1.17. Synthesis of compound 17. 

 

A mixture of 7 (469 mg, 1.0 mmol, 1.0 equiv.) dissolved in CH2Cl2 (20 mL) and 

10% Pd/C was stirred at room temperature under an atmosphere of hydrogen (20 bar) 

overnight. The solution was filtered through Celite and the filtrate was evaporated to 

dryness. The residue was used in the next step reaction without purification.  

To a 100 mL round-bottomed flask equipped with a magnetic stirrer in N2, the 

amine (ca. 439 mg, 1.0 mmol, 1.0 equiv.) was added. Subsequently, dried CH3CN (40 

mL) and triethylamine (0.33 mL) were successively added to the flask. After cooling 

the reaction to 0C, pentafluorobenzoyl chloride (0.14 mL, 2.2 mmol, 2.2 equiv.) was 

slowly added dropwise via syringe. The suspension was allowed to reach room tem-

perature and was stirred overnight. When the reaction finished, the solvent was eva-

porated and the residue was washed with saturated aqueous NH4Cl solution. Then the 

organic extract was dried over Na2SO4 and filtered off from an insoluble fraction. The 

filtrate was evaporated to dryness, and the residue was purified by crystallization from 

MeOH/dichloromethane to allow isolation of 17 as a light yellow solid.  

Yield: 456 mg (M = 633.44 g mol
-1

, n = 0.72 mmol, ca. 72 %). 

M.p.: 194°C. 
1
H NMR (300 MHz, CDCl3):  = 9.98 (s, 1H), 8.78 (dd, 1H), 8.15 (t, 1H), 7.95 

(dd, 1H), 7.65 (s, 1H), 7.55 (t, 1H), 4.76 (d, 2H), 4.00 (d, 2H), 2.22 (m, 1H), 1.07 (d, 

6H).   
19

F NMR (376 MHz, CDCl3):  = -140.57 (d, 2 F), -143.54 (d, 2 F), -149.12 (m, 

1 F), -154.29 (t, 1 F), -159.82 (m, 2 F), -161.65 (d, 2 F).    
13

C NMR (150 MHz, CDCl3):  = 164.03, 163.67, 155.10, 149.41, 133.00, 

127.50, 122.04, 118.85, 117.60, 99.53, 75.52, 31.31, 28.06, 19.08.    

IR (KBr): 3515, 3401, 2966, 1684, 1657, 1548, 1500, 1420, 1331, 1123, 1060, 

1012, 950, 764 cm
-1

. 
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MS (ESI): m/z (%) = 634.13 (100) [M + H]
+
. 

Elemental analysis (%): C28H17F10N3O3, calcd. C 53.09, H 2.71, N 6.63; found C 

53.38, H 2.87, N 6.18.  

 

1.18. Synthesis of compound 18. 

 
The synthesis of 18 was similar to that of 17. The compound was purified by re-

crystallization from dichloromethane/MeOH to allow isolation as a light yellow solid.  

Yield: 332 mg (M = 543.48 g mol
-1

, n = 0.61 mmol,61%).  

M.p.: 197°C.   
1
H NMR (600 MHz, CDCl3):  = 10.06 (s, 1 H), 8.83 (d, 1 H), 8.10 (s, 1 H), 8.02 

(d, 1 H), 7.76 (s,1 H), 7.60 (t, 1H), 7.34 (m, 5H), 4.68 (d, 2H), 4.09 (d, 2H), 2.30 (m, 

1H), 1.13 (d, 6H).   
19

F NMR (564 MHz, CDCl3):  = -140.28 (dd, 2 F), 149.20 (t, 1 F), -159.29 (m, 

2 F).   
13

C NMR (150 MHz, CDCl3):  = 164.04, 163.70, 154.99, 150.02, 137.82, 

137.79, 133.08, 128.73, 127.69, 127.63, 127.40, 122.06, 118.79, 117.61, 99.71, 75.49, 

43.86, 28.13, 19.18.   

IR (KBr): 3780, 3443, 3328, 2919, 2852, 1689, 1539, 1383, 1221, 1040, 998, 

756, 724 cm
-1

.   

MS (EI, 70 eV): m/z (%) = 543.2 (95.59) [M]
.+

, 410.1 (100) [C20H15F5N2O2]
.+

.  

Elemental analysis (%): C28H22F5N3O3, calcd. C 61.88, H 4.08, N 7.73; found C 

61.99, H 4.23, N 7.79.  

X-ray quality crystals were obtained from MeOH/CH2Cl2: CCDC-906530, 

C28H22F5N3O3; Mr = 543.49; crystal size 0.30 × 0.13 × 0.06 mm
3
; monoclinic; space 

group P21/c (No.14); a = 16.1036(3) Å, b = 8.2664(2) Å, c = 19.9664(5) Å; β = 

104.067(1)
°
; V = 2578.20(10) Å

3
; Z = 4; calcd. = 1.400 g cm

-3
;  = 0.116 mm

-1
; F(000) 

= 1120; 10498 collected reflections (max = 25.00
°
) of which 4389 were independent 

(Rint = 0.042); Tmax = 0.9931; Tmin = 0.9659; T = 223(2) K; full-matrix least-square on 

F
2
 with 0 restraint and 360 parameters; GOF = 1.097; R1 = 0.0651(I > 2(I)); R2 

(all data) = 0.1464; peak/hole = 0.216/-0.205 eÅ
-3

. 

 

1.19. Synthesis of compound 19. 
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The synthesis of 19 was similar to that of 17. The compound was purified by re-

crystallization from dichloromethan/MeOH to obtain a colorless solid.  

Yield: 462 mg (M = 543.48 g mol
-1

, n = 0.85 mmol, 85 %).   

M.p.: 215°C.   
1
H NMR (400 MHz, CDCl3):  = 10.13 (s, 1 H), 8.90 (dd, 1 H), 8.19 (t, 1 H), 

7.95 (m, 2 H), 7.88 (dd, 1 H), 7.64 (s, 1 H), 7.52 (m, 4 H), 4.78 (d, 2 H), 4.01(d, 2 H), 

2.22(m, 1 H), 1.07(d, 6 H).    
19

F NMR (376 MHz, CDCl3):  = -143.02 (dd, 2 F), -154.02 (t, 1 F), -161.10 (m, 

2 F).  
13

C NMR (100 MHz, CDCl3):  = 165.31, 164.15, 163.69, 148.87, 138.01, 

135.21, 134.18, 132.10, 128.96, 127.89, 126.91, 122.20, 117.92, 116.20, 99.35, 75.42, 

31.26, 28.09, 19.16.   

IR (KBr): 3380, 2975, 1660, 1528, 1501, 1417, 1328, 1259, 1017, 948, 761, 694 

cm
-1

. 

MS (EI, 70 eV): m/z (%) = 543.2 (100) [M]
+
.  

Elemental analysis (%): C28H22F5N3O3, calcd. C 61.88, H 4.08, N 7,73; found C 

61.47, H 3.77, N 7.65. 

 

1.20. Synthesis of compound 20. 

 

The synthesis of 20 was performed similar to the one of 17. The compound was 

purified by recrystallization from dichloromethane/MeOH to obtain a colorless solid.  

Yield: 245 mg (M = 453.53 g mol
-1

, n = 0.54 mmol, 54 %).   

M.p.: 191°C.  
1
H NMR (400 MHz, CDCl3):  = 10.19 (s, 1 H), 8.87 (dd, 1 H), 8.01 (t, 1 H), 

7.90 (dd, 1 H), 7.78 (dd, 2 H), 7.71 (s, 1 H), 7.54 (t, 1 H), 7.44 (m, 1 H), 7.36 (m, 5 H), 

7.22 (t, 2 H), 4.70 (d, 2 H), 4.04 (d, 2 H), 2.24 (m, 1 H), 1.08 (d, 6 H).   
13

C NMR (100 MHz, CDCl3):  = 165.03, 164.20, 163.70, 149.53, 138.02, 



114 

 

 

137.90, 135.06, 134.12, 131.82, 129.01, 128.89, 127.82, 127.69, 126.79, 117.68, 

116.19, 99.46, 43.92, 28.16, 19.22.   

IR (KBr): 3379, 2971, 1673, 1650, 1532, 1421, 1331, 1229, 1028, 911, 761, 697 

cm
-1

.   

MS (ESI): m/z (%) = 454.27 (100) [M+H]
+
. 

Elemental analysis (%): C28H27F5N3O3·0.5H2O, calcd. C 72.71, H 6.10, N 9.08; 

found C 73.04, H 5.85, N 9.08. 

 

1.21. Synthesis of compound 21. 

Methyl 4-isobutoxy-8-(phenylureido)quinoline-2-carboxylate (21).   

 

A mixture of 3 (304 mg, 1.0 mmol, 1.0 equiv.) dissolved in CH2Cl2 (20 mL) and 

10% Pd/C (30 mg) was stirred at room temperature under an atmosphere of hydrogen 

(20 bar) overnight. The solution was filtered through Celite and the filtrate was eva-

porated to dryness. The residue was used directly in the next step.  

A solution of methyl 4-isobutoxy-8-aminoquinoline-2-carboxylate (ca. 1.0 mmol, 

1.0 equiv.) and phenyl isocyanate (0.33 mL, 3.0 mmol, 3.0 equiv.) in dichloromethane 

(30 mL) was stirred overnight. Then, the solvent was removed in vacuo. The residue 

was purified by recrystallization from dichloromethane/MeOH to allow isolation of a 

light yellow solid.  

Yield: 169 mg (M = 393.44 g mol
-1

, n = 0.43 mmol, 43 %).  

M.p.: 198-200 °C.  
1
H NMR (600 MHz, CDCl3): δ = 9.54 (s, 1H), 8.68 (d, 1H), 7.80 (d, 1H), 7.57 

(m, 2H), 7.52 (d, 2H), 7.48 (s, 1H), 7.35 (t, 2H), 7.11 (t, 1H), 4.04 (m, 5H), 2.31 (m, 

1H), 1.16 (d, 6H).  
13

C NMR (151 MHz, CDCl3): δ = 166.03, 163.02, 152.58, 145.90, 138.55, 

136.35, 129.11, 128.74, 123.40, 122.15, 120.18, 116.00, 113.77, 100.99, 75.13, 53.00, 

28.21, 19.25.  

IR (KBr): 3441, 3345, 2959, 1706, 1603, 1525, 1442, 1417, 1388, 1358, 1315, 

1277, 1232, 1193,  1069, 1017, 994, 852, 817, 787, 754, 690 cm
-1

.  

MS (CI): m/z (%) = 301.2 (100.00), [C16H17N2O4]
+
, 394.2 (64.82) [M + H]

+
, 

275.2 (62.85) [C15H19N2O3]
+
.  

Elemental analysis (%): C22H23N3O4·H2O, calcd. C 64.22, H 6.12, N 10.21; 

found C 64.17, H 5.89, N 9.76. 

 

1.22. Synthesis of compound 22. 

4-isobutoxy-8-(phenylureido)quinoline-2- carboxylic acid (22).  



115 

 

 

 

The methyl ester 21 (787 mg, 2.0 mmol, 1.0 equiv.) was dissolved in a mixture 

of THF (100 mL) and methanol (50 mL). KOH (2.5 equiv.) was added, and the solu-

tion was stirred at room temperature overnight. The solution was neutralized using 

excess of AcOH. Then the solvents were evaporated and then dissolved in dichloro-

methane and washed with water, dried (MgSO4) and evaporated to give a yellow solid 

which was characterized by 
1
H NMR and MS and used without further purification.  

Yield: 668 mg (M = 379.41 g mol
-1

, n = 1.76 mmol, 88 %).  

Melting points: 209-210 °C 
1
H NMR (400 MHz, CDCl3) δ = 10.94 (s, 1H), 9.54 (s, 1H), 8.65 (d, 1H), 7.91 

(dd, 1H), 7.80 (s, 1H), 7.67 (t, 1H), 7.25 (m, 2 H), 7.24 – 7.21 (m, 2H), 6.98 (m, 1H), 

4.22 (d, 2H), 2.34 (m, 1H), 1.17 (d, 6H). 

MS (ESI): m/z (%) = 380.16144 (100) [M + H]
+
. MS (-c ESI): m/z (%) = 

259.11346 (100) [C14H15N2O3]
-
, 378.15274 (50) [M-H]

-
. 

 

1.23. Synthesis of compound 23.  

4-aminobenzo-18-crown-6 

 
A mixture of 4-nitrobenzo-18-crown-6 (178 mg, 0.5 mmol, 1.0 equiv.) dissolved 

in CH2Cl2 (20 mL) and 10% Pd/C (30 mg) was stirred at room temperature under an 

atmosphere of hydrogen (20 bar) overnight. The solution was filtered through Celite 

and the filtrate was evaporated to dryness. The residue was used directly in the next 

coupling step.  

 

1.24. Synthesis of compound 24. 

4-isobutoxy-8-(phenylureido)quinoline-2- carboxylic acid (6,7,9,10,12,13,15, 

16,18,19-deca hydro -5,8,11,14,17,20-hexaoxabenzocyclooctadecen-2-yl)-amide. 
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To an anhydrous CH2Cl2 (20 mL) and CH3CN (40 mL) solution of a mixture of 

quinoline acid 22 (189 mg, 0.5 mmol, 1.0 equiv.) and freshly hydrogenatively reduced 

4-aminobenzo-18-crown-6 (0.5 mmol, 1 equiv.) were successively added DIPEA 

(0.75 equiv.) and HBTU (0.75 equiv.). The process was monitored by TLC. After stir-

ring for 6 h under nitrogen at room temperature, the reaction mixture was washed 

with saturated aqueous NH4Cl solution. The organic extract was dried over Na2SO4 

and filtered off. Solvent was evaporated to dryness and the residue was purified on 

silica gel with dichloromethane/methanol (first 30/1, then 10/1, v/v) to allow isolation 

of the compound as a light yellow solid. 

Yield: 189 mg (M = 688.77 g mol
-1

, n = 0.27 mmol, 55 %).   

M.p.: 225-227 °C.   
1
H NMR (600 MHz, CDCl3): δ = 9.70 (s, 1H), 9.20 (s, 1H), 8.57 (d, J = 7.5 Hz, 

1H), 8.17 (s, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.61 (s, 1H), 7.42 (t, J = 7.9 Hz, 1H), 7.36 

(d, J = 7.7 Hz, 2H), 7.21 (s, 1H), 7.16 (t, J = 7.5 Hz, 2H), 6.91 (t, J = 7.2 Hz, 1H), 

6.78 (d, J = 8.4 Hz, 1H), 6.50 (d, J = 8.1 Hz, 1H), 3.96 (s, 2H), 3.90 (s, 2H), 3.83 (d, J 

= 3.3 Hz, 2H), 3.78 (d, J = 6.0 Hz, 2H), 3.72 (s, 4H), 3.69 – 3.65 (m, 6H), 3.63 (s, 4H), 

2.15 (m, 1H), 1.01 (d, J = 6.6 Hz, 6H). 
13

C NMR (151 MHz, CDCl3): δ = 174.15, 173.72, 164.18, 159.86, 159.62, 

156.88, 149.21, 148.77, 146.18, 141.64, 139.82, 138.53, 134.44, 132.86, 131.23, 

128.35, 125.51, 125.46, 124.89, 119.13, 109.55, 85.82, 81.52, 81.48, 81.42, 81.38, 

81.31, 80.34, 80.18, 80.01, 79.52, 38.81, 29.86.  

IR (KBr): 3532, 3262, 3127, 3070, 2875, 2292, 2108, 1990, 1957, 1693, 1600, 

1524, 1600, 1524, 1443, 1392, 1355, 1262, 1202, 1113, 1062, 950, 887, 858, 809, 755, 

694 cm
-1

.  

MS (+c ESI): m/z (%) = 711.29730 (100) [M + Na]
+
. (-c ESI): m/z (%) = 

723.26831 (100) [M + H2O+OH]
-
. 

Elemental analysis (%): C37H44N4O9, calcd. C 64.52, H 6.44, N 8.13; found C 

64.14, H 6.30, N 7.92.  

X-ray quality crystals were obtained from DMSO: CCDC-929585, 

C37H44N4O9·2(C2H6OS); Mr = 845.02; crystal size 0.24 × 0.09 × 0.04 mm
3
; Triclinic; 

space group Pī; a = 11.9166(16) Å, b = 13.5384(18) Å, c = 13.9031(19) Å;   = 

73.138(3)
°
; V = 2123.8(5) Å

3
; Z = 2; calcd. = 1.321 g cm

-3
;  = 0.19 mm

-1
; F(000) = 

900.0; 26044 collected reflections (max = 26.570
°
) of which 8807 were independent 

(Rint = 0.069); Tmax = 0.993; Tmin = 0.956; T = 100 K; full-matrix least-square on F
2
 

with 7 restraint and 551 parameters; GOF = 1.050; R1 = 0.0552(I > 2(I)); R2 (all 
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data) = 0.1254; peak/hole = 0.57/-0.38 eÅ
-3

. 

 

1.25. Synthesis of compound 25. 

2,3,4,5,6-pentafluoro-2'-nitro-1,1'-biphenyl 

 

To a two-neck round bottom flask equipped with a stirring bar under an atmos-

phere of nitrogen were successively added C6F5H (0.448 mL, 4.0 mmol), 

2-nitrobenzoic acid (1.002 g, 6.0 mmol), Ag2CO3 (4.48 g, 12.0 mmol), PdCl2 (142 mg, 

0.8 mmol), PPh3 (418 mg, 1.6 mmol) and DMSO (20 mL). The reaction mixture was 

stirred and heated at 130C for 12 h, and then cooled to room temperature. The mix-

ture was diluted with CH2Cl2 and filtered through Celite. The organic phase was 

washed with saturated NH4Cl solution, dried with MgSO4, filtered, and concentrated 

via vacuo. The residue was purified by flash column chromatography on silica gel 

(CH2Cl2/hexane = 1/1) to afford 500 mg of the product in 43% yield. 

Yield: 500 mg (M = 289.16 g mol
-1

, n = 1.73 mmol, 43%) 

M.p. 82 – 83 °C. 
1
H NMR (600 MHz, CDCl3): δ = 8.24 (dd, 1 H), 7.77 (td, 1 H), 7.70 (m, 1 H), 

7.45 (d, 1 H).  
13

C NMR (151 MHz, CDCl3): δ = 148.38, 144.61, 142.97, 140.39, 138.55, 

136.86, 133.63, 133.00, 130.85, 125.45, 121.49, 112.60.  
19

F NMR (376 MHz, CDCl3): δ = -141.24, -141.25, -141.29, -141.31, (dd, 2 F), 

-153.34, -153.39, -153.45 (t, 1 F), -161.44, -161.46, -161.50, -161.52, -161.56, 

-161.58 (td, 2 F). 

IR (KBr): 3105, 2868, 1656, 1574, 1491, 1439, 1347, 1092, 1055, 981, 839, 791, 

729, 688.  

MS (EI): m/z (%) = 289.1 (100.00), M
+
.  

Elemental analysis (%): C12H4NF5O2, calcd. C 49.84, H 1.39, N 4.84; found C 

49.34, H 1.50, N 4.73. 

 

1.26. Synthesis of compound 26a and 26b. 

26a 

 

A mixture of 2,3,4,5,6-pentafluoro-2'-nitro-1,1'-biphenyl (253 mg, 0.875 mmol) 

dissolved in CH2Cl2 (20 mL) and 10% Pd/C (30 mg) was stirred at room temperature 

under an atmosphere of hydrogen (20 bar) overnight. The solution was filtered 

through Celite and the filtrate was evaporated to dryness. The residue was used di-
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rectly in the next step.  

26b 

 
A mixture of 2-nitrobiphenyl (200 mg, 1.0 mmol) dissolved in CH2Cl2 (20 mL) 

and 10% Pd/C (30 mg) was stirred at room temperature under an atmosphere of hy-

drogen (20 bar) overnight. The solution was filtered through Celite and the filtrate 

was evaporated to dryness. The residue was used directly in the next step. 

 

1.27. Synthesis of compound 27. 

 

To an anhydrous CH2Cl2 (20 mL) solution of a mixture of 4-isobutoxy-8-nitro 

quinoline-2-carboxylic acid 4 (290 mg, 1.0 mmol, 1.0 equiv.) and freshly prepared 

2'-aminobiphenyl (1.0 mmol, 1.0 eq.) were successively added DIPEA (1.27 mL), 

HOBt (270 mg, 2.0 mmol, 2.0 eq.), and EDC·HCl (383 mg, 2.0 mmol, 2.0 eq.). The 

process was monitored by TLC. Upon completion after stirring for 6 h under nitrogen 

at room temperature, the reaction mixture was washed with saturated aqueous NH4Cl 

solution. The organic extract was dried over Na2SO4 and filtered off. Solvent was 

evaporated to dryness and the residue was purified on silica gel with dichloromethane 

and hexane (1/1 v/v) or by recrystallization from dichloromethane/MeOH to allow 

isolation of the compound as a yellow solid.  

Yield: 352 mg (M = 441.48 g mol
-1

, n = 0.80 mmol, 80%).   

M.p.: 168-170 °C.  
1
H NMR (600 MHz, CDCl3): δ = 10.20 (s, 1 H), 8.57, 8.56 (d, 1 H), 8.45, 8.44 (d, 

1 H), 8.04, 8.02 (d, 1 H), 7.84 (s, 1 H), 7.57 (m, 3 H), 7.49 (t, 1 H), 7.45 (m, 3H), 7.33 

(dd, 1H), 7.24 (m, 1H), 4.12, 4.11 (d, 2H), 2.29 (m, 1H), 1.13 (d, 6H).  
13

C NMR (151 MHz, CDCl3): δ = 174.07, 172.24, 164.21, 158.47, 149.59, 

148.46, 145.14, 144.37, 141.32, 140.03, 139.76, 139.00, 138.96, 137.24, 136.06, 

135.97, 135.42, 134.05, 132.03, 110.71, 86.52, 38.85, 29.92, 10.75. 

IR (KBr): 3328, 3064, 2971, 2881, 2326, 1897, 1677, 1579, 1523, 1355, 1268, 

1207, 1103, 1014, 870, 750, 687 cm
-1

.  

MS (EI): m/z (%) = 441.3(100) [M]
+
.  

Elemental analysis (%): C26H23N3O4·H2O, calcd. C 69.32., H 5.37, N 9.33; found 

C 69.87, H 4.82, N 9.24.  

 

1.28. Synthesis of compound 28. 

4-Isobutoxy-8-nitroquinoline-2-carboxylic acid 

2,3,4,5,6-pentafluoro-2'-biphenylamide 
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To an anhydrous CH2Cl2 (20 mL) solution of a mixture of 

4-isobutoxy-8-nitroquinoline- 2-carboxylic acid 4 (254 mg, 0.875 mmol, 1.0 equiv.) 

and freshly prepared 2,3,4,5,6-pentafluoro-2'-aminobiphenyl (ca. 0.875 mmol, 1.0 eq.) 

were successively added DIPEA (0.5 mL), HOBt (236 mg, 1.75 mmol, 2.0 eq.), and 

EDC·HCl (336 mg, 1.75 mmol, 2.0 eq.). The process was monitored by TLC. Upon 

completion after stirring for 6 h under nitrogen at room temperature, the reaction 

mixture was washed with saturated aqueous NH4Cl solution. The organic extract was 

dried over Na2SO4 and filtered off. Solvent was evaporated to dryness and the residue 

was purified on silica gel with dichloromethane or by recrystallization from dichlo-

romethane/MeOH to allow isolation of the compound as a colorless solid.  

Yield: 409 mg ( M = 531.43 g mol
-1

, n = 0.77 mmol, 88 %).   

M.p.: 204-206 °C. 
1
H NMR (600 MHz, CDCl3): δ = 9.98 (s, 1 H), 8.69, 8.68 (d, 1 H), 8.45, 8.43 (d, 

1 H), 8.02, 8.00 (d, 1 H), 7.82 (s, 1 H), 7.60 (m, 2 H), 7.28 (m, 2 H), 4.12, 4.11 (d, 2 

H), 2.29 (m, 1 H), 1.13, 1.12 (d, 6 H). 
19

F NMR (564 MHz, CDCl3): δ = -140.17, -140.18, -140.21, -140.22 (dd, 2F), 

-151.91, -151.95, -151.99 (t, 1F), -160.68, -160.69, -160.72, -160.73, -160.76, -160.77 

(td, 2F). 
13

C NMR (151 MHz, CDCl3): δ = 163.57, 161.15, 152.61, 147.63, 145.10, 

143.44, 139.16, 138.51, 137.48, 136.17, 131.35, 130.70, 126.43, 125.54, 124.83, 

124.58, 123.23, 121.09, 117.02, 110.97, 99.72, 75.85, 29.65, 28.05, 19.10. 

IR (KBr): 3748, 3289, 2974, 2327, 2111, 1691, 1583, 1523, 1497, 1352, 1102, 

1058, 1017, 984, 858, 758, 710 cm
-1

.  

MS (CI): m/z (%) = 532.4 (100.00), [M + H]
+
, 560.5 (12.62), [M + C2H5]

+
. 

Elemental analysis (%): C26H18F5N3O4, calcd. C 58.76, H 3.41, N 7.91; found C 

58.35, H 3.41, N 7.80. 

X-ray quality crystals were obtained from MeOH/dichloromethane: 

C26H18F5N3O4; Mr = 531.43; crystal size 0.3 × 0.3 × 0.3 mm
3
; Triclinic; space group 

P-1, a = 9.7294(19) Å, b = 10.317(2) Å, c = 12.072(2) Å;  = 86.237(8)
°
; V = 

1166.0(4) Å
3
; Z = 2; cal = 1.514 g cm

-3
;  = 1.547 mm

-1
; F(000) = 544; 40159 col-

lected reflections (max = 66.9
°
) of which 23523 were independent (R int = 0.061); Tmax 

= 0.7530; Tmin = 0.6235; T = 100 (2) K; full-matrix least-square on F
2
 with 0 restraint 

and 416 parameters; GOF = 2.85; R1 = 0.061(I > 2(I)); R2(all data) = 0.036; 

peak/hole = 1.41/-1.21 e Å
-3

.  
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1.29. Synthesis of compound 29. 

 

A mixture of 27 (162 mg, 0.367 mmol) dissolved in CH2Cl2 (20 mL) and 10% 

Pd/C (30 mg) was stirred at room temperature under an atmosphere of hydrogen (20 

bar) overnight. The solution was filtered through Celite and the filtrate was evapo-

rated to dryness. The residue was used directly in the next step.  

 

1.30. Synthesis of compound 30. 

 

To an anhydrous CH2Cl2 (20 mL) solution of 29 (ca. 0.367 mmol, 1.0 eq) was 

added TCP (102 mg, 0.44 mmol, 1.2 eq). After being stirred for 8 h under nitrogen 

atmosphere at room temperature, the solvent was evaporated to dryness, and the resi-

due was chromatographed on silica gel with hexane as eluents to allow isolation of 30 

as colorless oil, which was used for next reaction without characterization. 

 

1.31. Synthesis of compound 31.  

 

n-Butylamine (220 L, 2.22 mmol, 6.0 eq) was added to a solution of 30 (ca. 

0.367 mmol) in dry dichloromethane (15 mL) in a round flask filled with nitrogen. 

The mixture was stirred overnight and then the solvent was evaporated. The residue 

was chromatographed on silica gel with dichloromethane as an eluent to allow isola-

tion of 31 as a light yellow solid. 

Yield: 120 mg (M = 526.69 g mol
-1

, n = 0.228 mmol, ca. 62%) 

M.p.: 178-180 °C. 
1
H NMR (600 MHz, CDCl3): δ = 9.93 (s, 1 H), 8.82 (s, 1 H), 8.67 (s, 1 H), 8.34, 

8.33 (d, 1 H), 7.64 (s, 1 H), 7.51 (m, 4 H), 7.41 (m, 3 H), 7.24 (m, 3 H), 6.98 (s, 1 H), 
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3.84 (d, 1 H), 3.69 (s, 2 H), 2.18 (m, 1 H), 1.71 (m, 2 H), 1.46 (m, 2 H), 1.10, 1.09 (d, 

6 H), 0.97 (t, 3 H). 
13

C NMR (151 MHz, CDCl3): δ = 179.66, 163.18, 162.85, 149.69, 138.12, 

134.85, 133.93, 132.56, 130.20, 129.17, 128.36, 128.07, 126.92, 124.91, 121.84, 

121.09, 118.14, 115.89, 75.02, 44.49, 30.98, 28.09, 20.28, 19.15, 13.88. 

IR (KBr): 3306, 3060, 2959, 2871, 2116, 1665, 1577, 1529, 1452, 1356, 1316, 

1259, 1178, 1126, 1031, 811, 753, 694 cm
-1

. 

MS (ESI): m/z (%) = 527.24854 (100.00), [M + H]
+
. 

Elemental analysis (%): C31H34N4O2S, calcd. C 70.69, H 6.51, N 10.64; found C 

70.17, H 6.65, N 10.35. 

X-ray quality crystals were obtained from MeOH/dichloromethane: 

C31H34N4O2S; Mr = 526.68; crystal size 0.29 × 0.24 × 0.20 mm
3
; Triclinic; space 

group P-1, a = 13.6960 (16) Å, b = 14.7436 (17) Å, c = 15.3268 (18) Å;  = 77.575 

(2)
°
; V = 2756.3 (6) Å

3
; Z = 4; cal = 1.269 g cm

-3
;  = 0.15 mm

-1
; F(000) = 1120.0; 

25303 collected reflections (max = 26.59
°
) of which 11475 were independent (R int = 

0.058); Tmax = 0.970; Tmin = 0.957; T = 100 (2) K; full-matrix least-square on F
2
 with 

40 restraints and 666 parameters; GOF = 1.05; R1 = 0.087 (I > 2(I)); R2(all data) = 

0.254; peak/hole = 0.61/-0.65 e Å
-3

. 

 

1.32. Synthesis of compound 32.  

 
A mixture of 28 (118 mg, 0.222 mmol) dissolved in CH2Cl2 (15 mL) and 10% 

Pd/C (30 mg) was stirred at room temperature under an atmosphere of hydrogen (20 

bar) overnight. The solution was filtered through Celite and the filtrate was evapo-

rated to dryness. The residue was used directly in the next step.  

 

1.33. Synthesis of compound 33. 

 

To an anhydrous CH2Cl2 (20 mL) solution of 29 (ca. 0.222 mmol, 1.0 eq) was 

added TCP (62 mg, 0.266 mmol, 1.2 eq). After being stirred for 8 h under nitrogen 

atmosphere at room temperature, the solvent was evaporated to dryness, and the resi-

due was chromatographed on silica gel with hexane as an eluent to allow isolation of 

33 as colorless oil, which was used for next reaction without characterization. 
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1.34. Synthesis of compound 34.  

 

n-Butylamine (110 L, 1.11 mmol, 5.0 eq) was added to a solution of 30 

(0.222 mmol, 1.0 eq) in dry dichloromethane (15 mL) in a round flask filled with ni-

trogen. The mixture was stirred overnight and then the solvent was evaporated. The 

residue was chromatographed on silica gel with dichloromethane as an eluent to allow 

isolation of 34 as a light yellow solid. 

Yield: 87 mg (M = 616.64 g mol
-1

, n = 0.141 mmol, ca. 44%) 

M.p.: 138-140 °C. 
1
H NMR (600 MHz, CDCl3): δ = 9.74 (s, 1 H), 8.63 (s, 1 H), 8.06, 8.02 (m, 3 H), 

7.71 (s, 1 H), 7.55 (m, 2 H), 7.37 (m, 2 H), 6.49 (s, 1 H), 4.06, 4.05 (d, 2 H), 3.65 (m, 

2 H), 2.27 (m, 1 H), 1.61 (m, 2 H), 1.35 (m, 2 H), 1.13, 1.12 (d, 6 H), 0.93, 0.91, 0.90 

(t, 3 H). 
13

C NMR (151 MHz, CDCl3): δ = 180.47, 163.77, 162.37, 150.08, 135.58, 

134.19, 131.82, 130.55, 127.02, 125.97, 125.09, 120.05, 118.07, 99.78, 75.58, 30.88, 

28.17, 20.18, 19.21. 

IR (KBr): 3327, 3066, 2970, 2324, 2105, 1899, 1678, 1579, 1514, 1353, 1267, 

1206, 1162, 1113, 1014, 870, 816, 748, 687 cm
-1

. 

MS (ESI): m/z (%) = 57.5 (100.00), [C4H9]
+
; 501.3 (35.23), [C26H20F5N3O2]

+
; 

543.4 (14.70), [C27H18F5N3O2S]
+
, 616.5 (13.56), [M]

+
. 

Elemental analysis (%): C31H29N4F5O2S·0.5H2O, calcd. C 59.51, H 4.83, N 8.95; 

found C 59.44, H 4.37, N 8.71.  

X-ray quality crystals were obtained from MeOH/dichloromethane: 

C31H29N4F5O2S; Mr = 616.64; crystal size 0.272 × 0.335 × 0.806 mm
3
; Triclinic; 

space group P-1, a = 8.1926 (9) Å, b = 13.4425 (16) Å, c = 16.253 (3) Å;  = 97.983 

(3)
°
; V = 1575.4 (4) Å

3
; Z = 2; cal = 1.367 g cm

-3
;  = 0.178 mm

-1
; F(000) = 676; 

83520 collected reflections (max = 26.3
°
) of which 46227 were independent (R int = 

0.053); Tmax = 0.7453; Tmin = 0.5955; T = 100 (2) K; full-matrix least-square on F
2
 

with 40 restraints and 666 parameters; GOF = 5.17; R1 = 0.085 (I > 2(I)); R2(all 

data) = 0.09; peak/hole = 2.47/-1.14 e Å
-3

. 

 

1.35. Synthesis of compound 35. 

7-phenyl-1H-indole (35) 
[116]
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To a two-neck round bottom flask equipped with a stirring bar under an atmos-

phere of nitrogen in the presence of dry methanol were successively added potassium 

phenyltrifluoroborate (92 mg, 0.5 mmol), 7-bromo-1H-indole (98 mg, 0.5 mmol), 

K2CO3 (204 mg, 1.5 mmol), and Pd(OAc)2 (10 mg, 0.045 mmol). The reaction mix-

ture was stirred and heated at flux for 12 h, and then cooled to room temperature and 

diluted with water. The solvent was evaporated, washed with brine, extracted with 

CH2Cl2, and the organic extract was dried over MgSO4. Solvents were evaporated to 

dryness and the residue was purified on silica gel with dichloromethane as an eluent. 

The product was provided as a pale yellow solid in 47% (45 mg, 0.23 mmol).  

Yield: 45 mg (M = 193.24 g mol
-1

, n = 0.23 mmol, 47%) 

M.p.: 62 – 63°C.  
1
H NMR (400 MHz, DMSO-d6): δ = 10.97 (s, 1H), 7.66 (m, 1H), 7.64 (m, 1H), 

7.53 (m, 3H), 7.41 (m, 1H), 7.31 (t, 1H), 7.11 (m, 2H), 6.53 (m, 1H). 
13

C NMR (151 MHz, CDCl3): δ = 139.27, 133.72, 129.13, 128.26, 128.22, 

127.39, 125.59, 124.31, 121.88, 120.30, 120.03.  

IR (KBr): 3437, 3045, 1594, 1481, 1413, 1335, 1076, 995, 800, 759, 706 cm
-1

.  

MS (EI): m/z (%) = 193.2 (100.00), M
+
.  

Elemental analysis (%): C14H11N, calcd. C 87.01, H 5.74, N 7.25; found C 86.66, 

H 5.58, N 7.12. 

 

1.36. Synthesis of compound 36.  

7-(2,3,4,5,6-pentafluorophenyl)-1H-indole (36)
[120]

:  

 
Vinylmagnesium bromide (3.34 mL, 2.34 mmol) was quickly added to a stirred 

freshly dried THF solution of 2,3,4,5,6-pentafluoro-2'-nitrobiphenyl (225 mg, 

0.778 mmol) cooled to -40 C (dry ice/acetonitrile), under nitrogen. The reaction 

mixture was stirred for 30 minutes and then poured into saturated aqueous NH4Cl so-

lution, extracted with ether and dried over anhydrous sodium sulphate. Solvent was 

evaporated to dryness and the residue was purified on silica gel with hex-

ane/dichloromethane (v/v, 5/2) to allow isolation of the compound as a light brown 

yellow solid. 

Yield: 176 mg (M = 283.20 g mol
-1

, n = 0.622 mmol, 80%).  

M.p.: 111 - 113 °C.  
1
H NMR (300 MHz, DMSO-d6): δ = 11.11 (s, 1 H), 7.75 - 7.69 (m, 1 H), 7.43, 
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7.42, 7.41(t, 1 H), 7.16 - 7.14 (d, 2 H), 6.56 - 6.55 (m, 1 H).  
19

F NMR (282 MHz, DMSO-d6): δ = -140.08, -140.10, -140.16, -140.19 (dd, 2 

F), -157.00, -157.08, -157.15 (t, 1 F), -162.79, -162.82, -162.88, -162.90, -162.96, 

-162.98 (td, 2 F).  
13

C NMR (75 MHz, CDCl3): δ = 133.81, 128.71, 124.74, 124.49, 122.52, 119.83, 

103.32.  

IR (KBr): 3424, 2125, 1650, 1489, 1430, 1334, 1087, 982, 855, 806, 723 cm
-1

.  

MS (EI): m/z (%) = 283.2 (100%) [M, C14H6F5N]
+
.  

Elemental analysis (%): C14H6F5N (283.04), calcd. C 59.38, H 2.14, N 4.95; 

found: C 58.97, H 2.34, N 4.78. 

 

1.37. Synthesis of compound 37. 

N-(biphenyl-2-yl)acetamide (37)  

 

A mixture of 2-nitrobiphenyl (246 mg, 1.23 mmol) dissolved in CH2Cl2 (20 mL) 

and 10% Pd/C (30 mg) was stirred at room temperature under an atmosphere of hy-

drogen (20 bar) overnight. The solution was filtered through Celite and the filtrate 

was evaporated to dryness. The residue was used directly in the next step.  

To a solution of 2-aminobiphenyl (ca. 1.23 mmol) in CH2Cl2 (25 mL) was added 

pyridine (0.15 mL) and acetyl chloride (0.105 mL) at 0 ℃ under nitrogen atmosphere. 

The reaction mixture was warmed to rt and stirred overnight. The solvent was re-

moved in vacuo. The residue was washed with water, extracted with CH2Cl2, and pu-

rified on silica gel with dichloromethane/hexane (1/1) as an eluent. The product was 

provided as a yellow solid.  

Yield: 204 mg (M = 211.26 g mol
-1

, n = 0.97 mmol, ca. 79%) 

M.p.: 120 – 121 °C.  
1
H NMR (600 MHz, CDCl3): δ = 8.27, 8.26 (d, 1H), 7.50, 7.49, 7.48 (t, 2H), 7.43, 

7.42, 7.41 (t, 1H), 7.37 (m, 3H), 7.24 (m, 1H), 7.18 (t, 1H), 7.13 (s, 1H), 2.02 (s, 3H).  
13

C NMR (151 MHz, CDCl3): δ = 168.20, 138.14, 134.67, 132.15, 130.03, 

129.22, 129.08, 128.41, 127.96, 124.34, 121.62, 24.60.  

IR (KBr): 3283, 3028, 2321, 1962, 1656, 1530, 1433, 1369, 1298, 1006, 741, 

699 cm
-1

.  

MS (CI): m/z (%) = 212.2(100.00), M
+
, 240.2(13.31), [M + C2H5]

+
, 169.1(16.83), 

C12H11N
+
. 

Elemantal analysis (%): C14H13NO, calcd. 79.59, H 6.20, N 6.63; found C 79.72, 

H 5.71, N 6.28. 

 

1.38. Synthesis of compound 38. 

N-(2,3,4,5,6-pentafluorobiphenyl-2-yl)acetamide (38) 
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The synthesis of 38 was performed similar to that of 37. It was purified on silica 

gel with dichloromethane as an eluent. The product was provided as a solid in 83% 

(132 mg, 0.438mmol). 

Yield: 132 mg (M = 301.21 g mol
-1

, n = 0.438 mmol, ca. 83%)  

M.p.: 184 – 185 °C. 
1
H NMR (400 MHz, CDCl3): δ = 9.39 (s, 1H), 7.60 (d, 1H), 7.47 (m, 1H), 

7.33(m, 2H), 1.85(s, 3H).  
13

C NMR (151 MHz, DMSO-d6): δ = 168.64, 145.10, 143.64, 141.20, 138.28, 

137.38, 136.75, 131.53, 130.55, 125.75, 125.50, 120.53, 114.04, 23.46.  
19

F NMR (376 MHz, DMSO-d6): δ = -140.91, -140.93, -140.98, -141.00(dd, 2F), 

-156.65, -156.71, -156.77(t, 1F), -163.42, -163.44, -163.48, -163.50, -163.54, 

-163.56(td, 2F).  

IR (KBr): 3249, 2997, 1663, 1495, 1450, 1292, 1059, 981, 862, 838, 753, 682 

cm
-1

.  

MS (CI): m/z (%) = 302.1(100.00), [M+H]
+
, 330.2(15.92). [M + C2H5]

+
.  

Elemental analysis (%): C14H8F5NO, calcd. 55.82, H 2.68, N 4.65; found C 55.90, 

H 2.89, N 4.35. 

 

1.39. Synthesis of compound 39. 

 

A mixture of 8 (230 mg, 0.61 mmol) dissolved in CH2Cl2 (20 mL) and 10% Pd/C 

(75 mg) was stirred at room temperature under an atmosphere of hydrogen (20 bar) 

overnight. The solution was filtered through Celite and the filtrate was evaporated to 

dryness. The residue was used directly in the next step.  

 

1.40. Synthesis of compound 40.  

 

To an anhydrous CH2Cl2 (20 mL) solution of 39 (ca. 0.61 mmol, 1.0 eq) was 

added TCP (169 mg, 0.73 mmol, 1.2 eq). After being stirred for 8 h under nitrogen 

atmosphere at room temperature, the solvent was evaporated to dryness, and the resi-

due was chromatographed on silica gel with hexane as an eluent to allow isolation of 
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40 as colorless oil, which was characterized with 
1
H NMR and used for next reaction 

without characterization. 
1
H NMR (300 MHz, CDCl3): δ = 8.80 (t, 1 H), 8.15, 8.15, 8.13, 8.12 (dd, 1 H), 

7.78 (s, 1 H), 7.42 (m, 7 H), 4.73, 4.71 (d, 2 H), 4.11, 4.08 (d, 2 H), 2.29 (m, 1 H), 

1.14, 1.12 (d, 6 H). 

 

1.41. Synthesis of compound 41.  

 

A mixture of 7-nitroindole (99 mg, 0.61 mmol) dissolved in CH2Cl2 (20 mL) and 

10% Pd/C (30 mg) was stirred at room temperature under an atmosphere of hydrogen 

(20 bar) overnight. The solution was filtered through Celite and the filtrate was eva-

porated to dryness. The residue was used directly in the next step.  

 

1.42. Synthesis of compound 42.  

 
7-aminoindole 41 (ca. 0.61 mmol, 1.0 eq) was added to a solution of 40 (ca. 

0.61 mmol) in dry dichloromethane (15 mL), in a round bottom flask filled with ni-

trogen. The mixture was stirred overnight and then the solvent was evaporated. The 

residue was chromatographed on silica gel with dichloromethane as an eluent to allow 

isolation of 42 as a light yellow solid. 

Yield: 50 mg (M = 523.65 g mol
-1

, n = 0.095 mmol, 16%) 

M.p.: 168-169 °C. 
1
H NMR (600 MHz, DMSO-d6) : δ = 11.17 (s, 1 H), 10.62 (s, 1 H), 10.42 (s, 1 

H), 9.53, 9.52 (d, 1 H), 9.29 (w, 1 H), 7.86, 7.85 (d, 1 H), 7.70 (s, 1 H), 7.65, 7.63, 

7.62 (t, 1 H), 7.48, 7.47 (s, 1 H), 7.32 (m, 5 H), 7.24, 7.23, 7.22 (t, 1 H), 7.17, 7.16 (d, 

1 H), 7.02, 7.01, 6.99 (t, 1 H), 6.47, 6.47, 6.46 (t, 1 H), 4.65, 4.64 (d, 2 H), 4.14, 4.13 

(d, 2 H), 2.20 (m, 1 H), 1.08, 1.07 (d, 6 H). 
13

C NMR (151 MHz, DMSO-d6): δ = 179.37, 164.34, 163.22, 149.92, 139.56, 

138.56, 136.25, 132.59, 129.83, 128.80, 127.55, 127.32, 126.08, 123.11, 121.80, 

120.14, 119.40, 119.28, 118.37, 115.41, 102.11, 99.91, 75.16, 43.08, 28.11, 19.40. 

IR (KBr): 3405, 3263, 2962, 2031, 1668, 1535, 1422, 1345, 1218, 1163, 1057, 

954, 860, 790, 727 cm
-1

. 
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MS (EI): m/z (%) = 174.1 (100.00), [C9H6N2S]
+
, 349.3 (19.11), [C21H23N3O2]+, 

132.2 (25.52), [C8H8N2], 391.3 (5.17), [C22H21N3O2S]. 

Elemental analysis (%): C30H29N5O2S, calcd. C 68.81, H 5.58, N 13.37; found C 

68.26, H 5.65, N 13.25. 

X-ray quality crystals were obtained from DMSO: C30H29N5O2S·(CH3)SO; Mr = 

601.77; crystal size 0.43 × 0.36 × 0.25 mm
3
; Orthorhombic; space group Fdd2, a = 

28.616 (2) Å, b = 33.622 (2) Å, c = 12.8697 (9) Å;  = 90
°
; V = 12382.3 (15) Å

3
; Z = 

16; cal = 1.291 g cm
-3

;  = 0.21 mm
-1

; F(000) = 5088; 36864 collected reflections 

(max = 22.2306
°
) of which 6333 were independent (R int = 0.061); Tmax = 0.949; Tmin = 

0.914; T = 100 K; full-matrix least-square on F
2
 with 1 restraint and 383 parameters; 

GOF = 1.05; R1 = 0.038 (I > 2(I)); R2(all data) = 0.088; peak/hole = 0.21/-0.17 e 

Å
-3

. 

 

1.43. Synthesis of compound 43.  

 

1,6-diaminohexane (27 mg, 0.23 mmol, 1.0 eq) was added to a solution of 40 (ca. 

0.46 mmol) in dry dichloromethane (15 mL), in a round flask filled with nitrogen. The 

mixture was stirred overnight and then the solvent was evaporated. The residue was 

recrystallized from methanol/dichloromethane (v/v 1/2) as to allow isolation of 43 as 

a light yellow solid. 

Yield: 124 mg (M = 899.18 g mol
-1

, n = 0.138 mmol, ca. 60%) 

M.p. 219 – 221 °C. 
1
H NMR (600 MHz, DMSO-d6): δ = 10.29 (s, 2 H), 9.69 (s, 2 H), 9.16, 9.14 (dd, 

2 H), 8.75 (s, 2 H), 7.84, 7.83, 7.81, 7.81 (dd, 2 H), 7.66 (s, 2 H), 7.62, 7.59, 7.59 (t, 2 

H), 7.34 (m, 10 H), 4.65, 4.63 (d, 4 H), 4.16, 4.14 (d, 4 H), 3.54 (s, 4 H), 2.22 (m, 2 

H), 1.60 (s, 4 H), 1.38 (m, 4 H), 1.10, 1.08 (d, 12 H). 
13

C NMR (151 MHz, DMSO-d6): δ = 180.19, 164.38, 163.10, 149.88, 139.67, 

138.78, 136.55, 128.71, 127.64, 127.30, 121.80, 119.10, 114.93, 99.64, 75.07, 43.80, 

42.99, 28.67, 28.10, 26.64, 19.40. 

IR (KBr): 3310, 2963, 2929, 1643, 1544, 1457, 1353, 1316, 1258, 1140, 1039, 

1003, 869, 816, 757, 699 cm
-1

. 

MS (ESI): m/z (%) = 896.93 (100.00), [M - H]
-
, 933.00 (12.05), [M + H2O + 

OH]
-
. 

Elemental analysis (%): C50H58N8O4S2·H2O, calcd. C 65.48, H 6.59, N 12.22; 

found C 65.03, H 6.45, N 12.15. 

 

1.44. Synthesis of compound 44. 
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A solution of the acid 4 (482 mg, 1.66 mmol, 1.0 eq) in excess SOCl2 was heated 

to reflux for 3 h. The SOCl2 was flushed using nitrogen gas. The acid chloride was 

dissolved in anhydrous CH2Cl2 (5 mL), and added over a period of 10 min to a solu-

tion of 1,6-diaminohexane (77.1 mg, 0.66 mmol, 0.5 eq) and DIPEA (5.5 eq) in 

CH2Cl2 (10 mL) at 0°C. The reaction mixture was allowed to warm to room tempera-

ture and stirred overnight. The solvent was removed and the residue was purified by 

flash chromatography on silica gel eluting with CH2Cl2/CH3COOC2H5 (15:1) to af-

ford the pure product 44 as a light yellow solid. 

Yield: 350 mg (M = 660.72 g mol
-1

, n = 0.53 mmol, 80%). 

Melting point: 202-204 °C. 
1
H NMR (300 MHz, CDCl3): δ = 8.49, 8.49, 8.46, 8.46 (dd, 2 H), 8.26, 8.24, 

8.22 (t, 2 H), 8.12, 8.12, 8.09, 8.09 (dd, 2 H), 7.80 (s, 2 H), 7.63, 7.61, 7.58 (t, 2 H), 

4.13, 4.10 (d, 4 H), 3.53 (m, 4 H), 2.30 (m, 2 H), 1.71 (m, 4 H), 1.50 (, 4 H), 1.15, 

1.12 (d, 12 H). 
13

C NMR (75 MHz, CDCl3): δ = 163.49, 163.17, 153.38, 126.67, 125.03, 123.22, 

99.97, 39.60, 29.47, 28.06, 26.61, 19.15. 

IR (KBr): 3781, 3395, 3292, 2931, 2089, 1673, 1526, 1350, 1226, 1138, 1012, 

870, 824, 749, 668 cm
-1

. 

MS (ESI): m/z (%) = 683.27277 (100.00), [M + Na]
+
.  

Elemental analysis (%): C34H40N6O8, calcd. C 61.81, H 6.10, N 12.72; found C 

61.57, H 5.98, N 12.72. 

 

1.45. Synthesis of compound 45. 

 

A solution of the acid 4 (250 mg, 0.86 mmol, 1.0 eq) in an excess of SOCl2 was 

heated to reflux for 3 h. The SOCl2 was flushed using nitrogen gas. The acid chloride 

was dissolved in anhydrous CH2Cl2 (5 mL), and added over a period of 10 min to a 

solution of 3-aminopropene (0.128 mL, 1.72 mmol, 2.0 eq) and triethylamine (5.5 eq) 

in CH2Cl2 (10 mL) at 0°C. The reaction mixture was allowed to warm to room tem-

perature and stirred overnight. The solvent was removed and the residue was purified 

by flash chromatography on silica gel eluting with CH2Cl2 to afford the pure product 

45 as a light yellow solid. 
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Yield: 260 mg (M = 329.14 g mol
-1

, n = 0.79 mmol, 92%). 

Meilting point: 105-106 °C. 
1
H NMR (300 MHz, CDCl3): δ = 8.51, 8.51, 8.48, 8.48 (dd, 1H), 8.30 (t, 1 H), 

8.13, 8.13, 8.10, 8.10 (dd, 1 H), 7.81 (s, 1 H), 7.66, 7.63, 7.60 (t, 1 H), 5.97 (m, 1 H), 

5.28 (m, 2 H), 4.13 (m, 4 H), 2.30 (m, 1 H), 1.15, 1.13 (d, 6 H). 
13

C NMR (101 MHz, CDCl3): δ = 163.46, 163.19, 153.13, 147.69, 138.91, 

133.59, 126.65, 125.15, 124.95, 123.26, 116.46, 99.98, 91.88, 41.98, 28.06, 19.13. 

IR (KBr): 3390, 3058, 2965, 2079, 1679, 1588, 1526, 1421, 1356, 1260, 1139, 

1015, 865, 795, 759 cm
-1

. 

MS (ESI): m/z (%) = 330.14481 (100.00), [M + H]
+
.  

Elemental analysis (%): C17H19N3O4, calcd. C 62.00, H 5.81, N 12.76; found C 

62.12, H 5.63, N 12.75. 

 

1.46. Synthesis of compound 46.  

 

Iron powder (220 mg, 3.93 mmol, 13.0 eq) and concd. hydrochloric acid (ca. 

14 mL) were added to a solution of nitroquinoline 45 (100 mg, 0.304 mmol, 1.0 eq) in 

EtOH (10 mL) and water (ca. 2 mL) and the mixture was heated to reflux for 90 min. 

After the mixture was cooled to room temperature, DCM was added to the mixture, 

and it was dried with MgSO4. After filtration through Celite and evaporation of the 

solvent, the residue was used directly in the next step without further purification and 

characterization. 

 

1.47. Synthesis of compound 47. 

 
3-Isothiocyanato-1-propene (0.090 mL, 0.912 mmol, 3.0 eq) was added to a so-

lution of 46 (ca. 0.304 mmol, 1.0 eq) in dry DCM (15 mL)/EtOH (15 mL), in a round 

flask filled with nitrogen. The mixture was heated to reflux and stirred for 8 h, and 

then the solvents were evaporated. The residue was purified by flash chromatography 

on silica gel eluting with CH2Cl2/Ethyl acetate (15/1, v/v) to afford the pure product 

47 as a light yellow solid.  

Yield: 65 mg (M = 398.52 g mol
-1

, n = 0.163 mmol, 54%) 

M.p.: 177 – 178 °C. 
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1
H NMR (400 MHz, DMSO-d6): δ = 10.30(s, 1 H), 9.27, 9.26, 9.25(t, 1 H), 9.20, 

9.20, 9.18, 9.18(dd, 1 H), 8.88, 8.86, 8.85(t, 1 H), 7.82, 7.82, 7.80, 7.80(dd, 1 H), 7.62, 

(s, 1 H) 7.59, 7.57, 7.55(t, 1 H), 5.95(m, 2 H), 5.17(m, 4 H), 4.25, 4.24, 4.23(t, 2 H), 

4.12, 4.11(d, 1 H), 4.05, 4.04, 4.02(t, 2 H), 2.19(m, 1 H), 1.07, 1.05(d, 6 H). 
13

C NMR (151 MHz, CDCl3): δ = 180.54, 164.17, 163.48, 150.25, 139.53, 

134.20, 133.72, 132.80, 126.66, 122.81, 120.20, 117.97, 117.70, 116.73, 99.71, 75.36, 

47.48, 42.12, 28.08, 19.13. 

IR (KBr): 3293, 2964, 1640, 1534, 1356, 1316,1229, 1026, 920, 761, 695 cm
-1

. 

MS (ESI): m/z (%) = 56.3 (100.00), [C3H6N]
+
, 341.9 (80.19), [C18H20N3O2S]

+
, 

285.9 (60.96), [C17H21N2O2]
+
, 398.0 (23.04), [M]

+
. 

Elemental analysis (%): C21H26N4O2S, calcd. C 63.29, H 6.58, N 14.06; found C 

63.09, H 6.74, N 13.80. 

 

1.48. Synthesis of compound 48.  

 

The 2
nd

 generation Grubbs’ catalyst (19 mg, 0.0228 mmol, 0.15 eq) was added to 

a solution of 45 (50 mg, 0.152 mmol, 1.0 eq) in dry DCM (15 mL) in a round flask 

filled with nitrogen. The mixture was stirred overnight, and then the solvent was eva-

porated under reduced pressure. The residue was purified by flash chromatography on 

silica gel eluting with CH2Cl2 to afford a mixture of 48a and 48b as a light yellow 

solid.  

Yield: 20 mg (M = 329.35 g mol
-1

, n = 0.0607 mmol, 40%) 
1
H NMR (300 MHz, CDCl3) for isomer 1: δ = 10.02, 9.98 (d, 1H), 8.53, 8.53, 

8.50, 8.50 (dd, 1H), 8.21, 8.21, 8.19, 8.18 (dd, 1H), 7.79 (s, 1H), 7.65 (m, 1H), 6.91 

(m, 1H), 5.06(m, 1H), 4.14, 4.12(d, 2H), 2.31(m, 1H), 1.86, 1.86, 1.84, 1.83 (dd, 2H), 

1.16, 1.14 (d, 6H). 

For isomer 2: δ = 9.61, 9.57 (d, 1H), 8.51, 8.51, 8.48, 8.48 (dd, 1H), 8.15, 8.15, 

8.12, 8.12 (dd, 1H), 7.79 (s, 1H), 7.62 (m, 1H), 6.91 (m, 1H), 5.55(m, 1H), 4.13, 

4.11(d, 2H), 2.31(m, 1H), 1.81, 1.80, 1.78, 1.78 (dd, 2H), 1.16, 1.13 (d, 6H). 

n (isomer 1) / n (isomer 2) = 3/2 

MS (CI): m/z (%) = 330.4 (100.00), [M + H]
+
; 358.3 (10.48), [M + C2H5]

+
.  

 

1.49. Synthesis of compound 49.  

 

To an anhydrous CH2Cl2 (20 mL) solution of a mixture of 
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4-isobutoxy-8-nitroquinoline-2-carboxylic acid 4 (232 mg, 0.8 mmol, 0.8 equiv.) and 

1-Pyrenemethylamine hydrochloride (267 mg, 1.0 mmol, 1.0 eq.) were successively 

added DIPEA (0.5 mL), HOBt (135.13 mg, 1.0 mmol, 1.0 eq.), and EDC·HCl 

(191 mg, 1.0 mmol, 1.0 eq.). The process was monitored by TLC. Upon completion 

after stirring for 6 h under nitrogen at room temperature, the reaction mixture was 

washed with saturated aqueous NH4Cl solution. The organic extract was dried over 

Na2SO4 and filtered off. Solvent was evaporated to dryness and the residue was puri-

fied by recrystallization from dichloromethane/MeOH (v/v 2/1) to allow isolation of 

the compound as a light yellow solid.  

Yield: 300 mg ( M = 503.18g mol
-1

, n = 0.60 mmol,75 %). 

M.p.: 210-212 °C. 
1
H NMR (300 MHz, CDCl3): δ = 8.75, 8.73, 8.71 (t, 1 H), 8.44 (m, 2 H), 8.18 (m, 

4 H), 8.06, (m, 5 H) 7.88 (s, 1 H), 7.59 (m, 1 H), 5.46, 5.44 (d, 2 H), 4.15, 4.13 (d, 2 

H), 2.31 (m, 1 H), 1.16, 1.13 (d, 6 H). 
13

C NMR (101 MHz, CDCl3): δ = 190.32, 163.44, 163.20, 153.09, 147.58, 

138.93, 131.26, 131.11, 130.93, 130.76, 128.84, 128.16, 127.39, 126.68, 126.55, 

125.92, 125.23, 125.13, 124.91, 123.30, 122.71, 100.10, 41.78, 28.07, 19.14. 

IR (KBr): 3822, 3381, 2961, 2877, 2324, 2099, 1893, 1679, 1519, 1358, 1135, 

1017, 874, 832, 754 cm
-1

.  

MS (EI): m/z (%) = 230.3 (100.00), [C17H12N]
+
, 399.2 (20.03), [C27H16N2O2]

+
, 

503.3 (28.00), [M]
+
 

Elemental analysis (%): C31H25O4N3, calcd. C 73.94, H 5.00, N 8.34; found C 

73.39, H 5.11, N 8.09. 

 

1.50. Synthesis of compound 50.  

 

A mixture of 49 (85 mg, 0.169 mmol, 1.0 eq) dissolved in CH2Cl2 (20 mL) and 

10% Pd/C (30 mg) was stirred at room temperature under an atmosphere of hydrogen 

(20 bar) overnight. The solution was filtered through Celite and the filtrate was eva-

porated to dryness. The residue was used directly in the next step.  

 

1.51. Synthesis of compound 51. 

 

To an anhydrous CH2Cl2 (20 mL) solution of 50 (ca. 0.169 mmol, 1.0 eq) was 

added TCP (43 mg, 0.186 mmol, 1.1 eq). After being stirred for 8 h under nitrogen 

atmosphere at room temperature, the solvent was evaporated to dryness, and the resi-
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due was chromatographed on silica gel with hexane as an eluent to allow isolation of 

51 as a yellow solid, which was used for next reaction without characterization. 

 

1.52. Synthesis of compound 52.  

 
To an anhydrous CH2Cl2 (20 mL) solution of 1-Pyrenemethylamine hydrochlo-

ride (75 mg, 10.279 mmol, 1.5 eq.) were successively added DIPEA (0.5 mL), and 51 

(ca. 0.169 mmol, 1.0 eq) in a round flask filled with nitrogen. The mixture was stirred 

overnight and then the solvent was evaporated. The residue was chromatographed on 

silica gel with dichloromethane as an eluent to allow isolation of 52 as a light yellow 

solid. 

Yield: 63 mg (M = 746.92 g mol
-1

, n = 0.084 mmol, ca. 50%) 

M.p.: 186-188 °C. 
1
H NMR (300 MHz, DMSO-d6): δ = 10.49 (s, 1 H), 9.72 (t, 1 H), 9.33, 9.30 (d, 1 

H), 9.21, 9.20, 9.18 (t, 1 H), 8.42, 8.39 (d, 2 H), 8.33, 8.30 (d, 1 H), 8.24 (m, 4 H), 

8.08 (m, 8 H), 7.93 (m, 3 H), 7.84, 7.81 (d, 1 H), 7.66 (m, 2 H), 5.52, 5.51 (d, 2 H), 

5.25, 5.23 (d, 2 H), 4.12, 4.10 (d, 2 H), 2.18 (m, 1 H), 1.08, 1.06 (d, 6 H). 
13

C NMR (151 MHz, DMSO-d6): δ = 163.18, 138.91, 136.36, 136.32, 132.67, 

131.99, 131.16, 130.74, 130.60, 130.42, 128.93, 128.34, 127.73, 127.43, 126.64, 

125.87, 125.77, 125.69, 125.55, 125.20, 124.98, 123.60, 123.43, 121.85, 119.25, 

115.37, 99.75, 75.15, 45.83, 28.09, 19.38. 

IR (KBr): 3289, 3041, 2927, 2325, 2108, 1733, 1646, 1516, 1458, 1314, 1228, 

1178, 1037, 915, 842, 755, 701, 680 cm
-1

. 

MS (ESI): m/z (%) = 780.80 (100.00), [M + H2O + OH]
-
., 745.07 (52.48), [M - 

H]
-
. 

Elemental analysis (%): C49H38N4O2S·0.5H2O, calcd. C 77.85, H 5.20, N 7.41; 

found C 77.83, H 4.85, N 7.24. 

 

1.53. Synthesis of compound 53.  

 

A mixture of 3 (220 mg, 0.73 mmol, 1 equiv.) dissolved in CH2Cl2 (20 mL) and 

10% Pd/C (30 mg) was stirred at room temperature under an atmosphere of hydrogen 
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(20 bar) overnight. The solution was filtered through Celite and the filtrate was eva-

porated to dryness. The residue was used directly in the next step. 

 

1.54. Synthesis of compound 54. 

 

A solution of the acid 4 (220 mg, 0.73 mmol, 1.0 eq) in an excess of SOCl2 was 

heated to reflux for 3 h. The SOCl2 was flushed using nitrogen gas. The acid chloride 

was dissolved in anhydrous CH2Cl2 (5 mL), and added over a period of 10 min to a 

solution of 53 (ca. 0.73 mmol, 1.0 eq) and triethylamine (5.5 eq) in CH2Cl2 (10 mL) at 

0°C. The reaction mixture was allowed to warm to room temperature and stirred 

overnight. The solvent was removed and the residue was purified by flash chromato-

graphy on silica gel eluting with CH2Cl2 to afford the pure product 54 as a light yel-

low solid. 

Yield: 370 mg (M = 546.57 g mol
-1

, n = 0.68 mmol, 93%).  

Meilting point: 200-201 °C. 
1
H NMR (300 MHz, CDCl3): δ = 11.88 (s, 1 H), 9.11, 9.08 (d, 1 H), 8.55, 8.52 (d, 

1 H), 8.21, 8.19 (d, 1 H), 8.04, 8.01 (d, 1 H), 7.96 (s, 1 H), 7.63 (m, 3 H), 4.23 (s, 3 H), 

4.18, 4.16 (d, 2 H), 4.09, 4.07 (d, 2 H), 2.34 (m, 2 H), 1.17 (m, 12 H). 
13

C NMR (75 MHz, CDCl3): δ = 168.51, 166.91, 163.21, 162.75, 162.48, 153.98, 

148.34, 134.87, 127.81, 126.68, 125.40, 118.74, 116.69, 101.48, 100.24, 53.64, 28.19, 

19.19. 

IR (KBr): 3312, 2961, 1717, 1670, 1592, 1518, 1417, 1344, 1266, 1111, 1028, 

911, 867, 826, 736, 671 cm
-1

. 

MS (ESI): m/z (%) = 547.41 (100.00), [M + H]
+
.  

Elemental analysis (%): C29H30N4O7·0.5 H2O, calcd. C 62.69, H 5.62, N 10.08; 

found C 62.67, H 5.49, N 10.03. 

 

1.55. Synthesis of compound 55.  

 

A mixture of 54 (128 mg, 0.24 mmol, 1.0 equiv.) dissolved in CH2Cl2 (20 mL) 

and 10% Pd/C (30 mg) was stirred at room temperature under an atmosphere of hy-

drogen (20 bar) overnight. The solution was filtered through Celite and the filtrate 

was evaporated to dryness. The residue was used directly in the next step. 

 



134 

 

 

1.56. Synthesis of compound 56.  

 

A solution of the acid 4 (70 mg, 0.24 mmol, 1.0 eq) in an excess of SOCl2 was 

heated to reflux for 3 h. The SOCl2 was flushed using nitrogen gas. The acid chloride 

was dissolved in anhydrous CH2Cl2 (5 mL), and added over a period of 10 min to a 

solution of 55 (ca. 0.24 mmol, 1.0 eq) and triethylamine (5.5 eq) in CH2Cl2 (10 mL) at 

0°C. The reaction mixture was allowed to warm to room temperature and stirred 

overnight. The solvent was removed and the residue was purified by flash chromato-

graphy on silica gel eluting with CH2Cl2 to afford the pure product 56 as a light yel-

low solid. 

Yield: 75 mg (M = 788.84 g mol
-1

, n = 0.095 mmol, 40%).  

Meilting points:161-163 °C. 
1
H NMR (300 MHz, CDCl3) δ = 12.24, 12.21(d, 2 H), 9.02(m, 2 H), 8.49, 8.48, 

8.46, 8.45(dd, 1 H), 8.07, 8.07, 8.05, 8.04(dd, 1 H), 7.92(m, 2 H), 7.84(s, 1 H), 7.70(m, 

2 H), 7.57, 7.57, 7.54, 7.54(dd, 1 H), 7.38, 7.36, 7.33(t, 1 H), 6.76(s, 1 H), 4.13(m, 6 

H), 3.47(s, 2 H), 2.35(m, 3 H), 1.17(m, 18 H). 

MS (ESI): m/z (%) = 789.40 (100.00), [M + H]
+
.  

 

1.57. Synthesis of compound 57.
[124]

 

 

Pentafluorobenzyl bromide (1.5 mL, 2.61 g, 10 mmol, 5 eq.) was added to a 

mixture of pyrrole (0.140mL, 0.134 mg, 2.0 mmol, 1.0 eq.) and 

1-n-butyl-3-methylimidazolium hexafluoroantimonate [bmim][SbF6] (2.4 mL) in 

acetonitrile (0.6 mL). The mixture was stirred over 48 h at 80 °C. The reaction mix-

ture was extracted from ionic liquid phase with ether and filtered to remove the ionic 

liquid. The organic layer was dried over anhydrous sodium sulfate and evaporated 

under reduced pressure. The residue was purified by flash column chromatography 

(silica gel, hexane to hexane:ethyl acetate, 5/1, v/v). 

Yield: 35 mg (M = 607.31 g mol
-1

, n = 0.058 mmol, 2.9%).  
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1
H NMR (300 MHz, CDCl3): δ = 7.79 (s, 1 H), 5.66 (s, 1 H), 4.02 (s, 2 H), 3.85 

(s, 2 H), 3.79 (s, 2 H). 
19

F NMR (282 MHz, CDCl3): δ = -144.02 (m, 4 F), -144.28, -144.31, -144.36, 

-144.39 (dd, 2 F), -156.03, -156.10, -156.18 (t, 1 F), -156.31, -156.38, -156.45 (t, 1 F), 

-157.61, -157.68, -157.76 (t, 1 F), -161.30 (m, 2 F), -161.67 (m, 2 F), -162.48 (m, 2 

F).
 

IR (KBr): 3457, 2923, 2068, 1655, 1499, 1299, 1420, 1120, 996, 958, 897, 805, 

672 cm
-1

. 

MS (ESI): m/z (%) = 608.47 (100.00), [M + H]
+
.  

Elemental analysis (%): C25H8NF15, calcd. C 49.44, H 1.33, N 2.31; found C 

49.84, H 1.42, N 2.14. 

 

1.58. Synthesis of compound 58.  

 

A mixture of sodium azide (855 mg, 13.1 mmol, 1.5 eq) and benzyl bromide 

(1500 mg, 8,77 mmol, 1.0 eq) in mixed acetone/water (v/v, 1:4) solution was stirred 

over night and monitored by TLC. Upon no benzyl bromide left in solution, the reac-

tion solution was washed with water three times, dried with MgSO4, and evaporated 

the solvent. It was used for next reaction without further purification. 

To a mixture of freshly obtained benzyl azide (ca. 8.77 mmol) dissolved in 

mixed 15 mL DCM/H2O (v/v, 1/1) were added tripropargylamine (0.414 mL, 383 mg, 

2.92 mmol, 1.0 eq), CuSO4·5H2O (36.5 mg, 0.146 mmol, 0.05 eq), and sodium as-

corbate (86.4 mg, 0.439 mmol, 0.15 eq). The reaction mixture was vigorously stirred 

overnight at room temperature. The mixture was washed with water three times, and 

the organic phases were combined together and dried with MgSO4. After evaporation 

of the solvent, the residue was purified by flash chromatography (silica gel). The elu-

ents gradually changed from DCM to DCM/MeOH (19:1) to afford 58 as a light yel-

low solid. 

Yield: 1105 mg (M = 530.63 g mol
-1

, n = 2.08 mmol, 71%) 

M.p.: 136 °C. 
1
H NMR (300 MHz, CDCl3): δ = 7.66 (s, 3 H), 7.39 -7.22 (m, 15 H), 5.50 (s, 6 

H), 3.70 (s, 6 H).  
13

C NMR (151 MHz, DMSO-d6): δ = 144.2, 134.7, 129.1, 128.7, 128.0, 123.7, 

54.1, 47.1. 

IR (KBr): 3869, 3295, 3111, 3061, 2937, 2827, 2761, 2323, 2088, 1954, 1743, 

1587, 1549, 1496, 1453, 1327, 1214, 1169, 1125, 1087, 1046, 986, 929, 820, 755, 714 

cm
-1

. 

MS (ESI): m/z (%) = 553.25336 (100.00), [M + Na]
+
., 531.27197 (75.00), [M + 

H]
+
. 

Elemental analysis (%): C30H30N10·0.5H2O, calcd. C 66.77, H 5.79, N 25.96; 
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found C 66.83, H 5.80, N 25.55. 

 

1.59. Synthesis of compound 59. 

 

A mixture of a 0.50-molar sodium azide solution in DMSO (10.8 mL, 281 mg, 

5.40 mmol, 1.2 eq) and pentafluorobenzyl bromide (0.679 mL, 1174 mg, 4.50 mmol, 

1.0 eq) was stirred for 30 min and monitored by TLC. Upon no pentafluorobenzyl 

bromide left in solution with the light orange solution turning to milky white, the 

reaction solution was used for the next reaction without further purification or cha-

racterization. 

To the freshly obtained solution of pentafluorobenzyl azide (ca. 4.50 mmol) in 

DMSO were successively added tripropargylamine (164 mg, 1.25 mmol, 1.0 eq), 

CuBr (17.9 mg, 0.125 mmol, 0.10eq), and TEA (ca. 17μL, 12.6 mg, 125 μmol, 

0.10 eq). Subsequently, ca. 10 mL of water and DCM each were added to the solution. 

The mixture was vigorously stirred for 30 min. Upon no pentafluorobenzyl azide left 

in solution, the reaction was stopped. After water-wash three times, the organic phase 

was combined together, dried over MgSO4. After evaporation of solvents, the residue 

was purified by flash column chromatography (silica gel). Eluents changed gradually 

from DCM to DCM:MeOH (v/v, 19/1) to allow isolation of 59 as a light solid. 

Yield: 602.7 mg (M = 800.48 g mol
-1

, n = 0.753 mmol, 60%) 

M.p.: 145 °C. 
1
H NMR (300 MHz, CDCl3): δ = 7.83 (s, 3 H), 5.62 (s, 6 H), 3.74 (s, 6 H).  

13
C NMR (151 MHz, DMSO-d6): δ = 147.2, 144.3, 143.9, 136.1, 123.6, 108.2, 

46.9, 40.8. 

IR (KBr): 3129, 2973, 2846, 2652, 2164, 2101, 1987, 1739, 1659, 1588, 1502, 

1437, 1373, 1311, 1219, 1181, 1127, 1024, 968, 917, 801, 719, 682 cm
-1

. 

MS (ESI): m/z (%) = 823.10664 (100.00), [M + Na]
+
., 801.12685 (46.00), [M + 

H]
+
. 

Elemental analysis (%): C30H15N10F15, calcd. C 45.01, H 1.89, N 17.50; found C 

45.22, H 2.17, N 17.31. 

 

1.60. Synthesis of compound 60 

 

To a septum-capped 25 mL two-necked flask were added Pd(OAc)2 (11.2 mg, 

0.05 mmol, 0.05 eq), PPh3 (26.2 mg, 0.1 mmol, 0.1 eq), Ag2CO3 (207 mg, 0.75 mmol, 

0.75 eq), 1-iodo-4-nitrobenzene (249.0 mg, 1.0 mmol, 1.0 eq) and pentafluorobenzene 

(0.168 mL, 252 mg, 1.5 mmol, 1.5 eq) under nitrogen atmosphere. Subsequently, 
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deionized water (degased) (2 mL) was added into the mixture, and the mixture was 

warmed to 70 °C, and stirred for 24 h. The reaction mixture was cooled to room tem-

perature, and CH2Cl2 was added. The mixture was filtered through Celite and the fil-

trate was washed with water. The organic phase was dried with Na2SO4 and purified 

with chromatograph (silica gel, 10:1, hexane/DCM) to provide the target compound, 

which was characterized by NMR without further characterization and used directly 

for next reaction.  

Yield: 248 mg (M = 289.16 g mol
-1

, n = 0.858 mmol, 86%) 

M.p.:94 -95 °C. 
1
H NMR (600 MHz, CDCl3): δ = 8.37 (d, 2 H), 7.64 (d, 2 H).  

13
C NMR (151 MHz, DMSO-d6): δ = 131.28, 123.89. 

19
F NMR (564 MHz, DMSO-d6): δ = -142.51 (dd, 2 F), -152.46 (t, 1 F), -160.77 

(td, 2 F). 

 

1.61. Synthesis of compound 61. 

 

A mixture of 60 (100 mg, 0.50 mmol) dissolved in CH2Cl2 (20 mL) and 10% 

Pd/C (30 mg) was stirred at room temperature under an atmosphere of hydrogen (20 

bar) overnight. The solution was filtered through Celite and the filtrate was evapo-

rated to dryness. The residue was used directly in the next step.  

To a solution of freshly obtained 2,3,4,5,6-pentafluoro-4′-aminobiphenyl (ca. 

0.50 mmol) in CH2Cl2 (25 mL) was added pyridine (0.15 mL) and acetyl chloride 

(0.078 mL, 1.1 mmol, 3 eq) at 0°C under nitrogen atmosphere. The reaction mixture 

was warmed to room temperature and stirred overnight. The solvent was removed in 

vacuo. The residue was washed with water, extracted with CH2Cl2, and purified on 

silica gel with dichloromethane/hexane (1/1) as an eluent. The product was provided 

as a yellow solid in 83% (125 mg, 0.41 mmol).  

Yield:125 mg (M = 301.21 g mol
-1

, n = 0.0.41 mmol, 83%) 

M.p.: 196 – 198 °C.  
1
H NMR (600 MHz, CDCl3): δ = 7.63 (d, 2 H), 7.39 (d, 2 H), 7.30 (s, 1 H), 2.21 

(s, 3 H). 
13

C NMR (151 MHz, CDCl3): δ = 168.33, 130.89, 119.64, 24.71. 
19

F NMR (564 MHz, DMSO-d6): δ = -143.39 (dd, 2 F), -155.79 (t, 1 F), -162.27 

(td, 2 F). 

MS (ESI): m/z (%) = 324.04224 (100.00), [M + Na]
+
. 

IR (KBr): 3834, 3370, 2927, 2314, 2082, 1658, 1602, 1490, 1344, 1198, 1105, 

1061, 981, 834, 730, 688 cm
-1

. 

Elemental analysis (%): C14H8F5NO, calcd. 55.82, H 2.68, N 4.65; found C 56.00, 

H 2.51, N 4.51. 
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