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Abstract

This thesis investigates the theoretical and algorithmic framework for intercell inter-

ference mitigation in multicell networks based on transmitter optimization. A prob-

lem in multiuser multicell communication systems is the unfair distribution of the

achievable data rate. By the exchange of channel state information (CSI) and coop-

eration among base station antenna arrays max–min fairness can be achieved in the

network. Especially in multicell networks, the CSI is out-dated very rapidly. Conse-

quently, fast algorithms are required for the optimization.

The theory of the unicast max–min beamforming problem (MBP) in a single base

station scenario with a single sum power constraint is well understood. Low com-

plexity algorithms based on uplink–downlink duality exist. This thesis extends the

duality framework of the single base station scenario to the multicell scenario where

multiple heterogeneous power constraints are practically more relevant. Based on

this duality, an algorithm with low complexity is developed. For the more general

case of a multicast MBP, a dual problem, which can be solved efficiently, does not

exists. However, this thesis presents an equivalent quasi-convex form of the multicast

MBP for a special case of long-term CSI which is practically relevant. In addition to

the quasi-convex form, a dual problem is also presented. While strong duality is not

given in general, a duality-based algorithm finds near optimal solutions with better

performance than conventional solutions based on convex relaxation.

Based on Multicast Beamforming, this work finally presented an adaptive ap-

proach for the global adjustment of the cell pattern of a multicellular network using

globally available long-term channel statistics of users. Additionally, users in the net-

work are selected based on instantaneous but local channel statistics.

A problem of unicast max–min beamforming (MBF) is a decreased sum rate per-

formance in some cases. One reason is interference due to beam collisions. A for-

mulation of an optimization problem to avoid these collisions is derived and its NP-

hardness is proved. Furthermore, this thesis presents several methods with polyno-

mial complexity to find near optimal solutions for this problem. Another reason for

an impairment of the sum rate in MMF systems are strongly shadowed users. To

improve the sum rate of the MMF system, this thesis presents a solution based on

one-way half-duplex relays.
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Chapter 1

Introduction

In the field of wireless communication enormous progress has taken place in the last

two decades. The development began in the early 90s with the 2nd generation of mo-

bile communication called Global System for Mobile Communications (GSM), which

was the first standardized wireless communication system. Due to a constantly grow-

ing number of subscribers, already at the end of the 90s, the transition to the next

generation mobile communication system, called Universal Mobile Telecommunica-

tions System (UMTS), was initiated. At the beginning of this century the number of

subscribers reached its maximum in developed countries.

Although the number of subscribers reached its maximum, the recent years have

shown an enormous demand in data rate through wireless communication channels.

Although the first wireless communication standards like GSM are primarily devel-

oped for mobile phoning, the demand in data rate for video or other multimedia

applications and internet access grows dramatically, e.g., due to the development of

smart phones.

The achievable rate in wireless systems is naturally limited by bandwidth; con-

sequently, it is an expensive and limited resource in wireless systems. An efficient

utilization of this resource is, therefore, very important. A measure for an efficient

utilization of the bandwidth (spectrum) is the spectral efficiency [55].

Wireless networks are usually composed of so-called cells. Each cell covers an area

with multiple subscribers.1 The users within the cell are served by one or multiple

(BS) antenna arrays. The resources, e.g., bandwidth or spatial resources, are lim-

ited. Consequently, resources must be reused. However, reusing resources in cellular

networks results in interference among different sites which becomes a performance

limiting factor. Interference concerns in particular users far away from their serving

BS in the cell edge region. Cell edge users receive signals with a low power. Addi-

tionally, the received signal power of other BSs (interference power) is comparatively

high. A performance measure determining the quality of the downlink signal re-

ceived by users is the signal-to-interference-plus-noise ratio (SINR). The SINR is the

ratio of the power of the useful signal divided by the power of the signals received

from interfering BSs plus the noise power. In a cell, an unfair distribution of the SINRs

arises if the interference of adjacent cells (intercell interference) can not be mitigated.

Figure 1.1a depicts the SINR as a function of the location. Close to the cell center, the

users will have a high SINR (red color). However, in the cell edge region (blue color)

the SINR is very low. In addition to intercell interference also intracell interference

can be regarded: users inside a cell are separated by orthogonal or semi-orthogonal

1 Subscriber in a wireless network are often simply termed as user.

1



2 Chapter 1. Introduction

(a) Omnidirectional transmission. (b) Beamforming.

Figure 1.1: SINR as a function of the location. Warm colors (red/yellow) indicate high
SINR, cold colors (green/blue) indicate low SINR.

resources. In the case of semi-orthogonal separation, intracell interference occurs as

a performance limiting factor. To simplify the investigation in a multicell network,

this thesis only focuses on intercell interference. Intracell interference is avoided by

orthogonal frequency resources.

Increasing the spectral efficiency by reusing resources or using so-called semi-

orthogonal resources results in interference. An unfair distribution of the performance

among the users can be the consequence. Cooperative and adaptive technologies are

required to mitigate interference.

Interference can be avoided by a smart assignment of temporal, frequency, orthog-

onal codes, or spatial resources. The first three resources are particularly considered

in the wireless communication standards of the second and third generation. GSM

considers frequency division multiple access (FDMA) to separate users by orthogo-

nal frequency resources. Intercell interference is avoided by using different frequency

bands in adjacent cells. Consequently, a low spectral efficiency was the result. The

third generation uses orthogonal codes for a separation of users. However, the num-

ber of orthogonal codes is limited as well. In upcoming standards, a combination

of different dimensions (frequency or time) is considered. The usage of multiple an-

tennas in so-called antenna arrays at the BSs allows the exploitation of an additional

dimension: the spatial domain. The ongoing standardizations Long-Term Evolution

(LTE) and LTE advanced allow the usage of antenna arrays. So-called smart anten-

nas allow the focusing of the transmit power in dedicated directions. This concept

is called beamforming and enables separation of users in the spatial domain. Figure

1.1b shows the SINR as function of the location in the case of beamforming. Now

user 1 and user 3 can achieve a higher SINR. Beamforming can be also categorized

in orthogonal and semi-orthogonal approaches. Orthogonal beamforming results in

a complete interference free transmission. However, as in other approaches, the or-

thogonal spatial directions are a limited resource. Semi-orthogonal beamforming is
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more flexible and enables other objective functions as max–min fairness or sum rate

maximization. Interference mitigation with semi-orthogonal beamforming in a small

domain, e.g., among a BS and multiple users, was deeply investigated in the last 15

years, e.g., [10]. This scenario is often termed as broadcast channel and is well un-

derstood. The goal for semi-orthogonal beamforming in a broadcast scenario is the

mitigation of intracell interference. Different objective functions are possible: A fa-

mous approach is the minimization of the total transmit power where each user is

guaranteed a so-called quality-of-service (QoS) SINR. However, the amplifiers of an-

tenna arrays have power constraints. These constraints are given due to regulations or

due to technical constraints. Therefore, the so-called max–min approach is practically

more relevant. In this approach the BS is subject to a total power constraint and it is

desired to maximize the SINR of the weakest users.

Furthermore, current wireless networks are heterogeneous because they consist of

multiple, different BSs with different power constraints. An optimization of these het-

erogeneous networks based on beamforming is more complex due to heterogeneous

power constraints.

1.1 Scope of the Thesis

Max-min fairness is important in wireless systems. In particular, in modern wire-

less networks, due to multiple wireless multimedia applications, customers desire a

sufficient data rate at each location. By reason of the previous mentioned causes espe-

cially intercell interference leads to an unfair distribution of the SINR and, therefore,

of the available data rates. A necessary technological step in wireless networks is

cooperation among different stations, cells, or users. Cooperative multicell transmis-

sion enables mitigation of intercell interference and, therefore, fairness in multicell

networks. This thesis aims to answer several questions emerging in this new field of

research.

First of all, the downlink transmission can be separated into two different schemes:

• In a downlink unicast transmission, each user gets different contents.

• In a downlink multicast transmission several users, belonging to the same mul-

ticast group, receive the same content.

This thesis presents findings in both areas. Furthermore, the following key issues

should be considered in the context of intercell interference mitigation:

• Heterogeneous power constraints

• Complexity and optimality of algorithms

• CSI assumptions

• Sum rate performance vs. max–min fairness
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1.1.1 Heterogeneous Power Constraints

Beamforming algorithms and methods regarding the single cell unicast/broadcast

scenario are well understood. However, a simple migration to a scenario with coor-

dination is not straightforward. For example, in a heterogeneous multicell network

each station, or each antenna is subject to a power constraint. Methods or algorithms

regarding the unicast/broadcast2 scenario consider a sum power constraint which is

reasonable if only one BS is optimized. In a multicell network such an approach will

lead to a network-wide power constraint which is practically not relevant.

1.1.2 Complexity and Optimality of Algorithms

Unicast max–min fair beamforming is a complex and non-convex optimization prob-

lem [54]. However, if a sum power constraint is given, efficient methods exist. A low

complexity and fast converging algorithm becomes even more relevant in multicell

scenarios, where the channel state information must be updated among multiple BSs.

In optimization theory, a promising approach for those fast algorithms is based on

the so-called uplink–downlink duality.

Furthermore, an optimization problem can be efficiently solved if it is quasi-

convex or convex. The max–min beamforming problem with a sum power constraint

has a dual problem which can be solved efficiently base on an eigenvalue decompo-

sition. The question arises: Is there also a dual problem in the case of heterogeneous

power constraints, e.g., per BS array power constraints, in the multicell scenario?

In addition to the complexity of the algorithms for the unicast max–min beam-

forming problem, the solution itself is not perfectly characterized. If a sum power

constraint is used, a balanced SINR3 among all jointly active users can be achieved.

The question arises: Is this also always given in the case of per-station power con-

straints?

Another question regards the assignment of BSs to users. Distributed antenna

arrays can increase the coverage of the BS. However, then an optimal assignment of

antenna arrays to users must be determined. Does there exists a simple algorithm

which jointly finds the beamforming weights and assignments of BSs to users?

1.1.3 CSI Assumptions

Multicell beamforming requires the channel state information of multiple BSs. Opti-

mization approaches for the unicast/broadcast scenario are based on instantaneous

channels. This is reasonable in this small scenario but challenging in a multicell

scenario, due to the required frequent update of the instantaneous channel state in-

formation (CSI). The CSI must be transferred to a central unit or exchanged among all

base stations. Consequently a very fast backhaul network is required if instantaneous

CSI is used.

2 Unicast/broadcast terms the information theoretic broadcast scenario which is different to the multi-
cast/broadcast scenario where the same content is transmitted to multiple users.

3 Balanced SINR means the SINR of all jointly scheduled users is equal.
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Therefore, this thesis regards optimization based on the channel statistics in the

form of spatial correlation information. This so-called long-term CSI is valid over

the stationary interval of the channel which is much longer compared to the instan-

taneous CSI. In the case of instantaneous CSI, several equivalent quasi-convex forms

are known but this equivalence is not given for long-term CSI in the form of spatial

correlation knowledge.

1.1.4 Sum Rate Performance vs. Max–Min Fairness

Unicast max–min fair beamforming can achieve a balanced SINR among all jointly

active users. However max–min fairness has the disadvantage that bad conditions

for one users can decrease the performance of all jointly active users. For example, a

beam collision can decrease the SINR of all jointly served users in the network. The

question arises: Are there low complex solutions to avoid beam collisions and can

an optimal solution be achieved with an polynomial algorithm? In addition to beam

collisions shadowed users can decrease the performance of all jointly served users.

Are there simple and low-cost possibilities to avoid shadowing and to increase the

coverage in a multicell network with beamforming?

In future wireless networks, besides conventional unicast transmission, multicast

services are considered as well. Famous examples are digital audio broadcasting

(DAB) [49] and digital video broadcasting (DVB) [50]. The multicast beamforming

can also be used for unicast transmission. For example the sector pattern of a cell can

be adapted with multicast beamforming based on the spatial correlation information

of all users inside this cell. The multicast max–min beamforming problem is NP-

hard in general. However, for special instances an equivalent quasi-convex form of

the problem might exist. Furthermore, an unanswered question is, whether there

exists a dual problem similar to the unicast case, or are there also further equivalent

quasi-convex forms?

1.2 Structure of the Thesis

The questions of the previous section should be answered in a structured way. For

a better understanding some fundamentals are required. Chapter 2 briefly illustrates

the multicell scenario and introduces the data and signal models used in this thesis.

Several findings of this thesis are based on optimization theory. Chapter 3 presents

a summary of all applied optimization theory. The theory of convex optimization is

well known and several tutorials and textbooks exist. However, several findings of

non-convex optimization problems are distributed in several mathematical publica-

tions. Chapter 3, therefore, concentrates on some new approaches regarding non-

convex problems, such as quasi-convex or fractional programs.

The thesis is separated in two parts: The main part of this thesis considers unicast

beamforming schemes and consists of the Chapters 4 5 and 6. The second part of

the thesis focuses on multicast beamforming and consists of the Chapters 7 and 8.
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The first chapter of each part presents basic theories and the last chapter presents

applications.

Chapter 4 answers several questions regarding the theory of the unicast max–min

beamforming problem. In particular, this chapter introduces a novel duality frame-

work for the unicast max–min beamforming problem in heterogeneous networks with

multiple power constraints. Based on the duality framework a low complexity algo-

rithm with a fast convergence is derived and its near optimality is shown by numerical

results.

Chapter 5 considers the beam collision problem which is one difficulty of the max–

min fairness approach. To avoid beam collisions, this chapter defines the multicell

beamscheduling problem and proves the NP-hardness of the problem in the general

N-cell scenario. In the N ≤ 2-cell scenario this problem is proved to be optimally

solvable with a polynomial time algorithm. Furthermore, several heuristics providing

near optimal solutions for the general N ≥ 2-cell are presented.

Chapter 6 presents a different approach to avoid a low balanced SINR in max–

min fair systems. This Chapter considers relays to serve small cells which increases

the coverage and, therefore, improves the performance of shadowed users in the net-

work. If max–min fairness among the users is desired all users can gain from an

improvement of a single link. Several beamforming and scheduling approaches for

these heterogeneous networks are presented.

The second part only considers multicast beamforming and begins with Chap-

ter 7. This chapter answers several questions regarding the theory of the multicast

beamforming problem. An equivalent quasi-convex form for the case of long-term

CSI in the form of Hermitian positive semidefinite Toeplitz matrix is presented. In

addition to this equivalent quasi-convex form, this chapter presents a novel duality

framework for the multicast beamforming problem similar to the duality framework

of the unicast case. Based on this theory this chapter presents a low complexity algo-

rithm which finds near optimal solutions.

Chapter 8 shows a practically relevant application of the multicast beamforming

problem in a multicell scenario with a unicast transmission. Each base station opti-

mizes the beamforming vector to cover all users inside a cell (multicast). Then, one of

these users is scheduled based on local channel quality information. Hence, actually

a unicast transmission is realized. This so-called sector pattern adaptation scheme

results an adaptation of the sector pattern based on the available spatial correlation

information of all active users in a network. Due to these low fluctuations of the

beams this technique can be combined with channel aware scheduling methods. Fur-

thermore, this chapter compares different unicast beamscheduling approaches with

sector pattern adaptation and channel aware scheduling methods in a joint scenario.

Finally, Chapter 9 gives an overall summary of this thesis by answering the ques-

tions of Section 1.1.
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1.5 Notation

The main notations are given in the following table. Further details regarding the

notations are presented in the glossary.

Table 1.1: Overview of the notations

a vector

A matrix

[a]n nth element of a vector

[A]n,m element with indices n, m of a matrix A

[A]:,m mth column vector of a matrix A

[A]m,: mth row vector of a matrix A

AH conjugate transpose of a matrix A

at
k t and k denote indexes of vector

IN identity matrix of dimension N × N

|S| cardinality of a set S
diag(A1, . . . , AN) block-diagonal matrix of matrices Ai and i = 1, . . . , N

< matrix inequality on a cone of nonnegative definite matrices

Tr(A) trace operation on a square matrix A

LCM lowest common multiple



Chapter 2

Scenario

2.1 Network Layout

A frequency reuse-1 factor is used in future wireless multicell networks to increase

the spectral efficiency. As a performance limiting factor, intercell interference occurs

in these networks. Especially cell edge users suffer from interference of adjacent

BSs. Therefore, smarter technologies, e.g., beamforming or multiuser scheduling are

required to mitigate interference. Interference can be mitigated locally at each BS or,

more promisingly, globally by intercell interference coordination among different BSs.

Figure 2.1 depicts an example of a multicell network. A set S = {1, 2, 3, 4} of N = 4

BSs transmit to a set U = {1, 2, 3, 6, 8} of M = 6 scheduled users. In this example BS

c = 1 serves user i = 1. This link is marked by red color. All other links (blue) cause

interference for user i = 1.

This section introduces the multicell multiuser scenario of this thesis which is

focused on the downlink transmission from multiple BSs to multiple users. During

the entire thesis the following assumptions are made:

• The multicell network uses frequency reuse-1 factor.

• Only downlink beamforming is investigated.

• The antennas at the BS arrays1 are correlated.

• A multiple input single output (MISO) system is regarded. The BS has NA > 1

antenna elements and each user is equipped with a single antenna.

• All channels are assumed to be constant over the regarded time slot [151].

• Long-term channel state information of all links is perfectly known and station-

ary over multiple time slots.

• The complex noise ni is circularly symmetric Gaussian with zero-mean and a

variance σ2
i > 0 and the system is interference dominated.

• In all simulation results the system is interference limited (dominated). This is

a reasonable assumption especially for cell edge users.

1 BS and BS array are often used in the same context. Note a BS may have multiple antenna arrays.
Then BS array is the correct term.

9
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Figure 2.1: Example of a wireless network with 4 BSs and 8 mobile stations (MSs).

The received signal over the wireless channel is modeled by a summation of multiple

path components caused by multiple reflections [7]. The result is a frequency selec-

tive channel. Multicarrier systems like orthogonal frequency division multiplexing

(OFDM) [126] transform a frequency dispersive channel in multiple frequency flat

channels [151]. Furthermore, these parallel frequency flat sub-channels are orthogo-

nal2, therefore, intra-cell interference can be avoided by a smart assignment of these

orthogonal channels3 to users. However, the number of carriers is limited and in a

network with a frequency reuse-1, therefore, these carriers are reused in adjacent cells.

Intercell interference is the result and especially cell edge users suffer interference. An

unfair distribution of the achievable rate [151] of each user is the result.

A promising technology to mitigate interference is the use of multiple anten-

nas at the BSs. A system with multiple antennas at the transmitter and a single

antenna at the receiver is called MISO system. Using multiple antennas, each BS

can focus the transmit signal in the desired direction, hence, unnecessary interfer-

ence in other directions is avoided. A combination of MISO and OFDM is called

MISO-OFDM [51, 105, 113, 138] and is depicted in Figure 2.2. Assuming there are

MC carriers, the transmit signal si(m) transmitted from BS array c(i) to user i on

a carrier m is weighted by weights (beamforming weights), e.g. ωc(i)(n, m). Each

weighted signal is transmitted over an orthogonal channel hc,i(n, m) to the user. Let

hc,i(m) = [hc,i(1, m), . . . , hc,i(NA, m)] ∈ CNA×1 be the channel vector for the mth sub-

2 assuming a perfect synchronization
3 Each sub-channel is assigned to carrier.
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carrier between BS c and user i and let ωc(m) = [ωc(1, m), . . . , ωc(NA, m)] ∈ CNA×1 be

the precoding vector for the mth subcarrier, the received signal at user i on subcarrier

m is:

ri,m =
N∑

c=1

hH
c,i(m)ωc(m)si(m) + ni, (2.1)

This thesis is focused on intercell interference. To simplify the signal model and

for better presentation of the effects on intercell interference, intracell interference is

eliminated by orthogonal subchannels. Intercell interference occurs by reusing the

same subchannel in an adjacent cells. To simplify the notation in this thesis, the

subchannel index m will be dropped from now on.

Definition 1. The base band [151] channel vector between a BS c and a user i is presented by
the vector hc,i = [hc,i(1), . . . , hc,i(NA)] ∈ CNA×1.

Given the definition of the channel vector hH
c,i ∈ CNA×1, a user i receives the signals

(desired signal and interference) of N BS arrays:

ri =
N∑

c=1

hH
c,iωcsi + ni, (2.2)

where ni denotes additive noise with σ2
i = E{|ni|2} > 0 and sc is the symbol trans-

mitted from BS array c.

2.2 CSI Assumption

In a system with a large number of subcarriers, transmit beamforming on each sub-

carrier independently results in a huge amount of required channel feedback [105].

Furthermore, in fast fading scenarios, an accurate knowledge is difficult to obtain even

in a local (single cell) scenario [9]. In multicell scenarios with a centralized coordina-

tion an accurate knowledge of the instantaneous channel is even more challenging. A

fast backhaul network is required then, otherwise the CSI is outdated at the network

coordinating unit.

Due to the above mentioned reasons it is justified to use the so-called spatial

correlation matrices of the channels. The spatial correlation matrices are also-called

long-term CSI in this thesis. Assuming correlated antennas at each BS array, the long-

term spatial correlation matrix is given by

R̂c,i = EH{hc,ih
H
c,i}. (2.3)

where EH{ } denotes the expectation over the channel realizations H. In time divi-

sion duplex (TDD) systems the spatial correlation can be simply estimated from the

uplink signal, since uplink and downlink share the same carrier frequencies. In fre-

quency division duplex (FDD) systems, uplink and downlink are on separate carrier

frequencies, therefore, estimation of the spatial correlation matrix is more challeng-
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ωc(i)(1, 1)

ωc(i)(1,MC)

ωc(i)(NA, 1)

ωc(i)(NA,MC)

si(1)

si(MC)

IFFT

IFFT

CP

CP 1

NA

hc(i),i(1, ·)

hc(i),i(NA, ·)

user i

Figure 2.2: Blockdiagram of a MISO-OFDM system similar to [26].

ing. The user might estimate the downlink correlation and feed it back to the BS. A

consequence would be an increased uplink load. However, in the literature, various

methods are investigated to estimate the downlink correlation without explicit user

feedback [74, 80, 81, 104].

A special role have uniform linear arrays (ULAs). Considering a ULA with NA

antenna elements and an antenna spacing δ (and d = δ/λ, where λ denotes the wave

length) at the BS and letting Rc,i = R̂c,i/σ2
i and σ2

i > 0, the spatial correlation matrix

is given by a Toeplitz matrix and can be decomposed as follows [1]:

Rc,i = A(θc,i)Pc,iA(θc,i)
H. (2.4)

Using this notation, the spatial correlation is observed as a combination of NP un-

correlated waves with directions of arrival given by θc,i = [θc,i,1, . . . , θc,i,NP
] and path

powers given by Pc,i = diag(qc,i,1, . . . , qc,i,NP
) ∈ RNP×NP . The matrix

A(θc,i) = [a(θc,i,1), . . . , a(θc,i,Np
)] ∈ C

NA×Np is a Vandermonde matrix containing the

steering vectors:

a(θc,i,p) = [1, exp(ζ sin(θc,i,p)), . . . , exp(ζ(NA − 1) sin(θc,i,p))]
T, ζ = j2πd. (2.5)

The formulation of (2.4) can be rewritten as:

Rc,i = A(θc,i)Pc,iA(θc,i)
H =

NP∑

p=1

qc,i,pa(θc,i,p)a(θc,i,p)
H (2.6)

with
∑NP

p=1 qc,i,p = 1. The matrix in (2.4) is a Hermitian positive semidefinite Toeplitz

matrix which is a reasonable assumption if ULAs are used at the BSs [53,104]. Toeplitz

matrices can be estimated perfectly when an infinite number of pilot sequences is

given. Different methods exist to approximate the Toeplitz matrices, e.g., the method

in [132].



Chapter 3

Optimization Theory

This Chapter summarizes theorems and fundamentals of optimization theory applied

in the rest of this thesis. This chapter investigates constrained continuous problems.

Optimization theory is a broad topic and can be categorized in theory for convex

and non-convex optimization problems. Section 3.2 summarizes several fundamentals

of convex optimization theory. Convex problems have the advantage that an efficient

algorithm can find a globally optimal solution. Section 3.3 gives a short summary for

non-convex optimization problems. Non-convex problems do not have a unique op-

timal value in general. A polynomial algorithm will usually find only locally optimal

solutions. Some non-convex problems are even NP-hard. However, for some special

non-convex problems an efficient algorithm can find a global optimal value. Exam-

ples for these problems are quasi-convex problems and some generalized fractional

programs.

Beside the categorization in convexity and non-convexity, optimization problems

are often categorized into continuous and discrete problems. The later ones appear

in this thesis in the context of scheduling problems presented in Chapter 5. Some

heuristics for the optimization of assignment problems are very useful for scheduling

problems in the field of wireless communications.

In any optimization problem, the variables x can be defined over an Euclidian

space denoted by En. This Euclidian space can either be the space of real numbers R

or the space of complex numbers C [108]. This thesis considers multiple optimization

problems with complex or real variables; hence; the general Euclidian space is used

in this section to broadern the scope of the theory.

The objective functions of this thesis are bounded −∞ < f (x) < ∞ and the do-

main of the variables X ⊂ En is assumed to be a closed set, hence, the objective

function can attain its optimum and minx∈X f (x) or maxx∈X f (x) can be used instead

of infx∈X f (x) or supx∈X f (x). This is a valid assumption if the objective function

is the, e.g., minimum signal-to-interference-plus-noise ratio (SINR) and the transmit

power is limited.

3.1 Complex–Real Isomorphism

Various optimization problems of this thesis are based on complex valued optimiza-

tion variables X ∈ Cn×n. However, in multiple books about optimization theory, real

variables Y ∈ Rn×n are used to simplify the investigations.

These complex variables can be transformed to real variables in a straight-forward

way:

13
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Definition 2. Let X ∈ Cn×n be a complex valued matrix, the corresponding real vector
Y ∈ R2n×2n can be obtained by the transformation [16]:

Y =

[

Re(X) − Im(X)

Im(X) Re(X)

]

(3.1)

If the variables are given by complex vectors x ∈ Cn, the following transformation

to real vectors y ∈ R2n can be used.

Definition 3. Let x ∈ Cn be a complex valued vector, the corresponding real vector y ∈ R2n

can be obtained by the transformation [16]:

y =

[

Re(x)

Im(x)

]

(3.2)

Theorem 1. The transformation (3.1) is an isomorphism between a subspace of R2n×2n and
Cn×n.

Proof. A proof is presented in [123].

Isomorphism is a useful property in mathematics. Two isomorphic objects have

the same properties. If there exists an isomorphism between a “new” field of mathe-

matics and a very well understood field of mathematics, then this isomorphism allows

to apply many available methods, theorems, and algorithms of the well understood

field of mathematics in the “new” field of mathematics.

The isomorphic transformation (3.1) preserves any operation as, addition, sub-

traction, multiplication, and inversion [16]. If X is Hermitian, then Y is symmetric

and if X is positive semidefinite, the same holds for Y.

This thesis often presents vector–matrix–vector products as xHXx with x ∈ Cn

and X ∈ Cn×n. Let y ∈ R2n and Y ∈ R2n×2n, with Definitions 2 and 3 and Theorem 1,

xHXx = yTYy holds.

3.2 Convex Optimization

Convex optimization problems have the elegant property that an efficient algorithm

can find the global optimum if its domain is a closed convex set [15]. A convex

maximization problem consists of a concave objective function and convex constraints.

A concave function is formally defined by the following Definition:

Definition 4. A function f : X ⊂ En → R is concave if the domain X of f is a convex set,
and if for all x, y ∈ X , and for all θ ∈ [0, 1]

f (θx + (1− θ)y) ≥ θ f (x) + (1− θ) f (y) (3.3)

holds.

Correspondingly, a convex function is defined by:
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Figure 3.1: Example of a concave function.

Definition 5. [15] A function f : X ⊂ En → R is convex if the domain X of f is a convex
set, and if for all x, y ∈ X , and for all θ ∈ [0, 1]

f (θx + (1− θ)y) ≤ θ f (x) + (1− θ) f (y) (3.4)

holds.

Definition 4 is illustrated in Figure 3.1. The figure shows an example of a concave
function, where any line segment between two points of this function is below the
function. Such a function has a unique global maximum value.

Definition 6. Let X be a closed convex set of En and f : X ⊂ En → R be a concave function,
and all gi : X ⊂ En → R ∀i = 1, . . . , m, be convex functions, a convex maximization
problem with the optimization variable x ∈ X ⊂ En in its standard form is given by

t0 = max
x∈X

f (x) (3.5)

s.t. gi(x) ≤ 0 ∀i = 1, . . . , m.

Definition 7. [15] Let X be a closed set of En and f : X ⊂ En → R be a convex function,
and all gi : X ⊂ En → R ∀i = 1, . . . , m, be convex functions, a convex minimization
problem with the optimization variable x ∈ X ⊂ En in its standard form is given by

t0 = min
x∈X

f (x) (3.6)

s.t. gi(x) ≤ 0 ∀i = 1, . . . , m.

Throughout this thesis the domain dom() of an optimization problem is defined
as:

X = dom( f ) ∩
m⋂

i=1

dom(gi). (3.7)

Furthermore, the domain X is assumed to be non-empty, closed, and convex. The
following part of this section presents a compact summary of well known convex op-
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timization programs, as linear programming, semidefinite programming, and second
order cone programming. These problems also appear in this thesis in different chap-
ters. A linear problem is a special convex problem where the objective function and
the constraint functions are all linear functions.

Definition 8. [15] (Linear Program) A convex optimization problem according to Definition

6 or 7 is called a linear program (LP) if the objective function f (x) = f Tx is a linear function
with f ∈ Rn and the constraints are affine functions gi(x) = gT

i x + di with vectors gi ∈ Rn

and constants bi ∈ R ∀i = 1, . . . , m.

The feasible set of a linear program is a polyhedron and the optimum, if it exists,
is attained at a vertex of this polyhedron. An efficient algorithm can find this optimal
solution in polynomial time. Linear programs appear in this thesis in the context
of power control problems, e.g, the multicast power control problem in Chapter 7.
Definition 8 holds for maximization problems as well as for minimization problems.
A generalization is a so-called second order cone problem.

Definition 9. [15] (Second Order Cone Program) A convex optimization problem ac-
cording to Definition 6 or 7 is called a second order cone problem (SOCP) if the objec-

tive function f (x) = f Tx is a linear function with f ∈ Rn and the constraint functions
gi(x) = ||Aix + bi|| − cT

i x− di, with vectors ci ∈ Rn, bi ∈ Rn, matrices Ai ∈ Rm×n, and
constants di ∈ R ∀i = 1, . . . , m, implying second order cone constraints.

Second order cone problems appear in this thesis in Section 4.3.3. The most gen-
eral form of a convex optimization problem in this thesis is given by a semidefinite
program. A semidefinite program is defined in this thesis on Hermitian positive
semidefinite matrices. The set of Hermitian positive semidefinite matrices P = {X ∈
Cn×n | X = XH � 0} is convex.

Definition 10. [15] (Semidefinite Program) Let x = vec(X)1 and X ∈ P , a convex opti-
mization problem according to Definition 6 or 7 is called a semidefinite program (SDP) if the
objective function f (x) = Tr{CX} is a general linear function with C ∈ Rn×n and the con-
straint functions are given by gi(x) = Tr{AiX} − di, with symmetric matrices Ai ∈ Rn×n

and constants di ∈ R ∀i = 1, . . . , m.

SDPs are a well known method to solve beamforming problems. Several non-
convex beamforming problems can be relaxed to SDPs. In this thesis SDPs are used
in several sections, e.g., Section 4.3.1.

3.2.1 Lagrange Duality

Several technical problems are difficult to solve in the primal representation. Multiple
problems appear non-convex in the primal representation. However, all problems can
be relaxed to a so-called Lagrangian dual problem which is convex in the Lagrangian
dual variables. Hence, such a dual problem can be efficiently solved.

However, a Lagrangian dual problem provides only a lower bound, if the primal
problem is a minimization problem, or an upper bound, if the original problem is

1 vec(X) denotes the vectorized version of a matrix X given by the stacked column vectors.
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a maximization problem. In special cases, e.g., if the primal problem is convex and
strictly feasible, the value of a Lagrangian dual solution is equal to the value of the
primal solution.

In most optimization problems, the constraints cause difficulties in solving the
primal problem. These constraints are weighted by Lagrangian dual variables and
subtracted from the objective function in the case of a maximization problem. Hence,
the concept of Lagrangian duality can be understood as a relaxation.

In what follows, the primal problems (3.5) and (3.6) can also be non-convex. The
theory of Lagrangian duality is well known and summarized in [15]. Some of these
definitions and Lemmas are introduced here for the minimization as well as for max-
imization.

Definition 11. The Lagrangian L : X ⊂ En ×Rm → R of a maximization problem (3.5)
defined as: Let µ∈ Rm

+ be the vector of so-called Lagrangian dual variables, and let g(x) =
[g1(x), . . . , gm(x)]T denote the vector of the constraints functions, the Lagrangian is given by

L(x, µ) = f (x)− µTg(x). (3.8)

The Lagrangian dual function is then given by

l(µ) = sup
x∈X

L(x, µ). (3.9)

Lemma 1. The Lagrangian dual function l(µ) is an upper bound of the primal problem (3.5).

Proof. Let x∗ be feasible in (3.5), obviously f (x∗) ≤ L(x∗, µ). Consequently, f (x∗) ≤
L(x∗, µ) ≤ supx∈X L(x, µ) = l(µ) holds.

The Lagrangian dual problem of the primal maximization problem aims to find
the tightest of these upper bounds:

Definition 12. Let µ ∈ Rn
+, the Lagrangian dual problem is defined as d = minµ l(µ).

In general, so-called weak duality d ≥ t0 holds [15].

Definition 13. The Lagrangian L : En × Rm → R of a minimization problem (3.6) is
defined as: Let µ ∈ Rm

+ be the vector of so-called Lagrangian dual variables, and let g(x) =
[g1(x), . . . , gm(x)]T denote the vector of the constraints functions, the Lagrangian is given by

L(x, µ) = f (x) + µTg(x). (3.10)

The Lagrangian dual problem is then given by

l(µ) = inf
x∈X

L(x, µ). (3.11)

Lemma 2. The Lagrangian dual function l(µ) is a lower bound of the primal problem (3.6).

Proof. Let x∗ be feasible in (3.6), obviously f (x∗) ≥ L(x∗, µ). Consequently, f (x∗) ≥
L(x∗, µ) ≥ infx∈X L(x, µ) = l(µ) holds.
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The Lagrangian dual problem of the primal minimization problem aims to find
the tightest of these lower bounds:

Definition 14. Let µ ∈ Rn
+, the Lagrangian dual problem is defined as d = maxµ l(µ).

In the case of a minimization, weak duality d ≤ t0 holds.
Given special conditions (Slater conditions) even so-called strong duality d = t0

holds. This is satisfied if, e.g., the primal problem is convex. In addition, strong
duality is even given for some special non-convex problems.

The concept of Lagrangian duality is used in this thesis in several sections, e.g, in
Chapter 4. The concept of Lagrangian duality is extended in Section 3.3.2 to a more
general duality concept, termed surrogate duality. Surrogate duality yields tighter
bounds compared to the Lagrangian duality.

3.2.2 Convex Optimization with Finite Autocorrelation Sequences

Several non-convex optimization problems can be solved with an equivalent convex
problem. The optimization variables are replaced by new optimization variables al-
lowing an equivalent convex representation of the original non-convex problem.

Variables of some non-convex optimization problems can be sometimes repre-
sented as finite autocorrelation sequences (FASs). A representation of the original
problem by using FASs leads to an equivalent convex problem. The idea of convex
optimization with FASs is introduced in the work [4] and is based on the following
definitions [4]:

Definition 15. [4] Ek denotes the kth power of the matrix E where E has zero entries except
on the 1st lower subdiagonal where it has only ones.

In [4] the following definition is introduced:

Definition 16. With the shift matrix Ek, the autocorrelation sequence is defined by

x(k) = uHEku = Tr{EkuuH}, (3.12)

k ∈ {0, . . . , n− 1} with vectors u ∈ Cn×1. The matrix Ek has zeros everywhere, except on
the k-th subdiagonal.

Equation (3.12) is non-convex because of the rank-1 U = uuH constraint. Remark-
ably, the same set as in the definition of the FAS given by (3.12) can be described with
a relaxed rank-1 constraint.

Lemma 3. [4] Using some positive semidefinite matrix U � 0 such that

x̂(k) = Tr{EkU}, k = 0, ..., n− 1, (3.13)

the above equation describes the same set as

x(k) = uHEku = Tr{EkuuH}.

Proof. The proof is presented in [4, Appendix A].
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Figure 3.2: Example of a non-concave (quasi-concave) function.

This thesis uses convex optimization with FASs in Section 7.3.1 to find an equiva-
lent quasi-convex form for the non-convex multicast max–min beamforming problem.

3.3 Non-Convex Optimization

In the case of a convex optimization problem efficient algorithms can find the globally
optimal value if the objective function is bounded and its domain is compact. How-
ever, many technical problems are non-convex. A non-convex minimization problem
has a non-convex objective function or non-convex constraints or both. A non-concave
maximization problem has a non-concave objective function. This thesis considers
non-convex optimization problems with a non-convex objective function and convex
constraints. Figure 3.2 depicts a non-concave function; in contrast to Fig. 3.1 the line
segment can be also “above” the function.

3.3.1 Quasi-Convex Optimization

A special case of non-convex problems are the quasi-convex optimization problems.
A quasi-convex function is defined by its lower level sets:

Definition 17. [15] A function f : X ⊂ En → R defined on a convex set X is quasi-convex
if every lower level set

Sα = {x ∈ X : f (x) < α} (3.14)

of f (x) is convex for every value of α.

Similarly, a quasi-concave function is defined by its upper level sets:

Definition 18. [15] A function f : X ⊂ En → R defined on a convex set X is quasi-concave
if every upper level set

Sα = {x ∈ X : f (x) > α} (3.15)
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of f (x) is convex for every value of α.

Figure 3.2 shows an example of a quasi-concave function. In contrast to a concave
function the line segment can also be “above” the function. Based on these definitions
a, e.g., quasi-convex maximization problem is defined by

Definition 19. Let f : X ⊂ En → R be a quasi-concave function and all gi : X ⊂ En → R

are convex, then the problem

t0 = max
x∈X

f (x) (3.16)

s.t. gi(x) ≤ 0 ∀i = 1, . . . , m

is called quasi-convex.

Analogously, a quasi-convex minimization problem is defined by

Definition 20. Let f : X ⊂ En → R be a quasi-convex function and all gi : X ⊂ En → R

are convex, then the problem

t0 = min
x∈X

f (x) (3.17)

s.t. gi(x) ≤ 0 ∀i = 1, . . . , m

is called quasi-convex.

A quasi-convex optimization problem has a global and unique optimum. As
shown in [15], a quasi-convex optimization problem can be solved by a bisection
over a set of convex representations of the quasi-convex objective function. A quasi-
convex(concave) function f : X ⊂ En → R is defined by its lower(upper) level sets
as in Definition 17 (Definition 18). The family of convex functions of a quasi-convex
function is defined by φt : X ⊂ En → R with:

f (x) ≤ t ⇔ φt(x) ≤ 0. (3.18)

With this family of convex functions, the quasi-convex minimization problem (3.17)
can be solved by the following feasibility check problem [15]:

find x (3.19)

s.t. φt(x) ≤ 0

gi(x) ≤ 0 ∀i = 1, . . . , m.

The problem (3.19) is convex. If the problem (3.19) is feasible the quasi-convex ob-
jective function satisfies f (x) ≤ t. If the problem is infeasible, then t0 ≥ t. This
observation leads to a bisection algorithm [15]. A bisection algorithm for the maxi-
mization problem can be derived correspondingly. Algorithm 1 can iterate arbitrary
tightly to the global optimum until a precision of ǫ.
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Algorithm 1 Bisection algorithm for quasi-convex problems [15]

given l ≤ t0, u ≥ t0, accuracy ǫ > 0
repeat

m := (l + u)/2
Solve problem (3.19)
if problem (3.19) is feasible then

u := m
else

l := m
end if

until (u− l) ≤ ǫ
return x, m

3.3.2 Surrogate Duality

The previous section describes a simple way to solve a quasi-convex problem, e.g.,
(3.17) by its feasibility check problem (3.19). However, similar to convex optimization,
also for quasi-convex problems dual problems, satisfying strong duality, are known.

In the literature, multiple publications for the duality beyond convex duality ex-
ist and several dual problems are proposed. The framework of surrogate duality is
a generalization. The idea of surrogate duality is the combination of multiple con-
straints to a single constraint. In this thesis this idea leads to a simple method for
the multicell max–min beamforming problem with multiple per-antenna power con-
straints (see Chapter 4). Strong duality was so far only proved for the case of a single
constraint.

For special non-convex problems, e.g., quasi-convex problems, the surrogate dual
provides a tight bound. Regard the maximization problem (3.16).

Definition 21. Let f : X ⊂ En → R 2 be an arbitrary objective function, let gi : X ⊂
En → R be an arbitrary constraint function, let µ ∈ Rm

+ be the vector of surrogate variables,
and let g(x) = [g1(x), . . . , gm(x)]T denote the vector of the constraints functions, [107, 117]
proposed a solution based on a so-called surrogate dual function

s(µ) = max
x∈X

f (x) (3.20)

s.t. µTg(x) ≤ 0, µi ≥ 0 i = 1, . . . , m.

Let
F (µ) = {x ∈ X | µTg(x) ≤ 0} (3.21)

be the feasible region of s(µ), and let

F = {x ∈ X | gi(x) ≤ 0, ∀i = 1, . . . , m} (3.22)

2 The objective function must not be necessarily quasi-concave.
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be the feasible region of (3.16), weak duality,

t0 ≤ s(µ), (3.23)

holds, due to F ⊆ F (µ). Hence, (3.20) provides an upper bound.

Example 1. Regard the simple example of an objective function over x = [x1, x2]
T ∈ R2

f (x) = x3
1 + x3

2. (3.24)

The function is depicted in Fig. 3.3. Let the optimization problem be

t0 = max
x

f (x) (3.25)

s.t. x1 ≤ 1,

x2 ≤ 1.

The maximal value for the given constraints is t0 = 2 at x = [1, 1]T. Let µ = [µ1, µ2]
T ∈ R2

+
be a non-negative vector, the surrogate function of problem (3.25) is:

s(µ) = max
x

f (x) (3.26)

s.t. µ1(x1 − 1) + µ2(x2 − 1) ≤ 0

Figure 3.4 depicts the lines µ1(x1 − 1) + µ2(x2 − 1) = 0 for different values µ1, µ2 ≥ 0
Finally, Fig. 3.5 depicts the values of the surrogate function s(µ). As it can be observed from
Figures 3.3, 3.4, and 3.5, the feasible set F (µ) of s(µ) is larger than the feasible set F of
(3.25). Obviously, weak duality holds

t0 ≤ s(µ). (3.27)

Definition 22. A function f : X ⊂ En → R is upper semicontinous at x0 if there exists the
limes superior

lim supx→x0
f (x) ≤ f (x0). (3.28)

Definition 23. A function f : X ⊂ En → R is lower semicontinous at x0 if there exists the
limes inferior

lim infx→x0 f (x) ≥ f (x0). (3.29)

Luenberger proved the following theorem:

Theorem 2. [107] Let f : X ⊂ En → R be a quasi-concave lower semi-continuous3 objective
function and let all gi : X ⊂ En → R be convex, assume that t0 = supx∈X { f (x) : g(x) ≤
0} is finite. Then, t0 = minµ{s(µ)}, where the minimum is achieved for some µ ≥ 0.

3 “Along lines, e.g., every concave function is lower semi-continuous along lines” [107].
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Definition 24. In the case of a minimization problem [117] (3.17) with an arbitrary objective
function f : X ⊂ En → R, convex constraints gi : X ⊂ En → R , the surrogate dual
function of D. Luenberger [107] is given by

s(µ) = min
x∈X

f (x) (3.30)
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s.t. µTg(x) ≤ 0, µi ≥ 0 i = 1, . . . , m.

Correspondingly, to the maximization, weak duality

t0 ≥ s(µ), (3.31)

always holds. In the case of a minimization the surrogate function provides a lower
bound.

Theorem 3. [107] Let f : X ⊂ En → R be a quasi-convex upper semi-continuous4 objective
function and let all gi : X ⊂ En → R be convex, assume that t0 = infx∈X { f (x) : g(x) ≤ 0}
is finite. Then, t0 = maxµ{s(µ)}, where the maximum is achieved for some µ ≥ 0.

Note, instead of D. Luenberger’s [107] minimization problem, this thesis mainly
regards maximization problems, hence the reversals of the minimization and maxi-
mization can be used [117]. Here, the surrogate dual aims the tightest of the upper
bounds [117] instead of the tightest of the lower bounds like in [107]. The dual prob-
lem can have an easier structure and can offer simple methods without the need of
a convex solver. In wireless communication this mathematical framework is strongly
connected with the so-called uplink–downlink duality which offers simple and op-
timal low complexity algorithms for transmitter optimization. Theorem 3 requires a
quasi-concave objective function. In what follows, the maximization (3.16) is regarded.
The theorems for the minimization are analogue. The following theorem generalizes
the work of Luenberger:

Theorem 4. [60, 101] If an x∗ solves (3.20) for a µ∗ ∈ Rn
+ and x∗ is feasible in (3.16), then

x∗ solves (3.16) and t0 = minµ{s(µ)}.

4 “Along lines, e.g., every convex function is upper semi-continuous along lines” [107].
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Proof. The proof is straightforward and outlined briefly for a better understanding.
This proof regards a maximization over a function f . Both problems (3.16) and (3.20)
have the same objective function f . Note f must not necessarily be quasi-concave.
The feasible region F of the original problem is a subset of the feasible region F (µ)
of the surrogate function, hence, F ⊆ F (µ) holds.

The optimal solution of (3.16) with the value t∗0 is denoted by x∗.
Assume x∗ is feasible in surrogate problem which has the value s(µ∗). Conse-

quently, because of F ⊆ F (µ∗) and due to the weak duality t∗0 ≤ s(µ∗), ∀µ∗ ∈ RN
+ ,

the maximizer x∗ must be also an maximizer over (3.16). Consequently, f (x∗) = t∗0 ≤
s(µ∗) = f (x∗) ⇒ t∗0 = s(µ∗) holds.

A fundamental result in the surrogate duality theory is proved in [60]:

Theorem 5. [60] The surrogate dual function s(µ) is quasi-convex in µ.

Hence, a global minimizer over µ can always attain the minimum. Furthermore,
the surrogate dual problem is connected with the Lagrangian dual problem. Green-
berg et. al. have proved the following Theorem [60]:

Theorem 6. [60,101] The surrogate dual problem minµ s(µ) is a tighter bound than the La-
grangian dual problem minµ l(µ), hence minµ s(µ) ≤ minµ l(µ). If minµ s(µ) = minµ l(µ)

then there exists an x such that µTg(x) = 0. Consequently, the surrogate constraint is
satisfied with equality, in this case.

Proof. The Lagrangian dual function can be upper bounded as follows:

l(µ) = sup
x

(

f (x)− µTg(x) | x ∈ X )
)

(3.32)

≥ sup
x

(

f (x)− µTg(x) | µTg(x) ≤ 0, x ∈ X
)

(3.33)

≥ sup
x

(

f (x) | µTg(x) ≤ 0, x ∈ X
)

= s(µ) (3.34)

The first row (3.32) is the Lagrangian dual function. It is an unconstrained function;
consequently, (3.32) is an upper bound of (3.33). Finally, removing the positive sum
−µTg(x), surrogate dual function is the result. Hence, l(µ) ≥ s(µ) holds. If l(µ) ≥
s(µ) also minµ l(µ) ≥ minµ s(µ) holds.

The constraint µTg(x) ≤ 0 is satisfied with equality, if and only if, minµ l(µ) =
minµ s(µ). Let x∗ be a solution of s(µ∗). If x∗ is feasible in s(µ∗), then the constraint

µTg(x) ≤ 0 is satisfied. Furthermore, x∗ is also feasible in l(µ∗) and

l(µ∗) ≥ f (x∗)− µ∗Tg(x∗) ≥ f (x∗) = s(µ∗) (3.35)

holds. If l(µ∗) = s(µ∗), the constraint µ∗Tg(x∗) = 0.

3.3.3 Fractional Programming

In various technical applications, a ratio of two functions is optimized. This op-
timization is called fractional programming. A generalization is the optimization
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of multiple ratios, called generalized fractional programming. This thesis applies
the frame-work of fractional programming in the context of the max–min multicast
beamforming problem (see Section 7.5) where the minimal ratio of the received power
divided by the interference power of a set of users is maximized over a convex set of
power constraints. A generalized fractional program is formally defined by [29]:

Definition 25. Let fi : X ⊂ En → R be a continuous and convex function and let di : X ⊂
En → R be a continuous and concave function on the convex set X , consider the following
quasi-convex problem:

Θ̄ = min
x∈X

max
i∈I

fi(x)

di(x)
(3.36)

where I is a finite set of integer numbers.

This quasi-convex program can be solved with the following parametric program
[28, 29]:

Definition 26. Let fi : X ⊂ En → R be a continuous and convex function and let di : X ⊂
En → R be a continuous and concave function on the convex set X , the parametric program,
associated to (3.36), is defined by

F(Θ) = min
x∈X

max
i∈I
{ fi(x)−Θdi(x)}. (3.37)

The idea of the algorithm presented in this section is based on searching the root
F(Θ) = 0. The optimality conditions of the solution Θ̄ based on F(Θ) are presented
in [29] by the following proposition:

Proposition 1. [29] Among the quasi-convex fractional program (3.36) and the parametric
program (3.37) the following conditions hold:
(i) F is nonincreasing and upper semicontinuous; (ii) F(Θ) < 0 if and only if Θ > Θ̄; hence,
F(Θ̄) ≥ 0; (iii) If (3.36) has an optimal solution, then, F(Θ̄) = 0; (iv) If F(Θ̄) = 0, then
programs (3.36) and (3.37) have the same set of optimal solutions (which may be empty).

Proof. A proof is presented in [29, Proposition 2.1].

In particular, condition (iii) is useful for an algorithmic solution. If the parametric
program (3.37) is very close to zero, the solution is near optimal and the solution
of the parametric program is also a solution for the original generalized fractional
program.

In general the minimum is replaced by the infimum. However this thesis regards
objective functions where the minimum can be attained; hence the infimum equals
the minimum. The following example shows general objective functions where only
the infimum exists and the minimum can not be attained. In this case F(Θ̄) = 0 does
not imply the existence of an optimal solution [29].

Example 2. [29] Let I = {1}, n = 1 and X = R, regard the fractional program

Θ̄ = inf
x∈X

(
ex

e2x

)

= inf
x∈X

(e−x). (3.38)
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The parametric program is then

F(Θ) = inf
x∈X

(ex −Θe2x) =

{

0 if Θ ≤ 0

−∞ if Θ > 0
(3.39)

It follows F(Θ̄ = 0) = 0 and (3.38) and (3.39) do not have an optimal solution.

Now regard the following example where the minimum can be attained:

Example 3. Let I = {1, 2}, n = 2 and X = {x ∈ R2 | −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1},
regard the fractional program

Θ̄ = min
x∈X

max{ −x1

x2 + 1
,
−x2

x1 + 1
} = −1

2
(3.40)

Obviously, the value of the solution is Θ̄ = −1/2 and the value of the parametric program is

F(Θ̄) = inf
x∈X

max{−x1 − Θ̄(x2 + 1),−x2 − Θ̄(x1 + 1)} = 0. (3.41)

Hence, in this example the optimal value can be attained. This example can be also seen as a
very simple example for SINR balancing, where the negative SINR of two users is minimized.
All channel gains are equal to 1 and the power is given by the variables x1 and x2. Due to the
noise level of 1 and the power constraints x1 ≤ 1 and x2 ≤ 1, the ratios are always bounded
and no definition gaps exist.

The parametric program is convex if the functions fi : X ⊂ En → R are convex,
the functions di : X ⊂ En → R are concave, and X is a closed convex set. The
following algorithm can efficiently solve a convex parametric program (3.37). Algo-

Algorithm 2 Root finding algorithm (Dinkelbach type-1 algorithm) [30]:

Let x1 ∈ X and Θ1 = maxi∈I
fi(x1)
di(x1)

and k = 1

repeat
Determine the optimal solution xk of
F(Θk) = minx∈X maxi∈I{ fi(x)−Θkdi(x)}
Let Θk+1 = maxi∈I

fi(x
k)

di(xk)
and set k = k + 1

until |F(Θk)| < ǫ
return xk

rithm 2 has a linear convergence. If X is compact and all di : X ⊂ En → R satisfy
the Lipschitz condition, Algorithm 3 can reach super-linear convergence [29], which
is faster than linear convergence. The theory of generalized fractional programs is
used in Chapter 7 to solve the equivalent quasi-convex form of the multicast max–min
beamforming problem with long-term CSI in form of Hermitian positive semidefinite
Toeplitz matrices.
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Algorithm 3 Root finding algorithm (Dinkelbach type-2 algorithm) [30]:

Let x1 ∈ X and Θ1 = maxi∈I
fi(x1)
di(x1)

and k = 1

repeat
Determine the optimal solution xk of

F(Θk) = minx∈X maxi∈I{ fi(x)−Θkdi(x)
di(xk)

}
Let Θk+1 = maxi∈I

fi(x
k)

di(xk)
and set k = k + 1

until |F(Θk)| < ǫ
return xk

3.3.4 Semidefinite Relaxation

Several beamforming problems appear in form of a quadratic program with quadratic
constraints which is defined as follows:

Definition 27. Quadratically Constrained Quadratic Program: Consider the general
minimization problem according to Definition 7. An optimization problem is called a quadrat-
ically constrained quadratic program (QCQP) if the objective function f (x) = xHFx is a
quadratic function with a symmetric matrix F ∈ Rn×n and the quadratic constraint functions
are given by gi(x) = xHGix, with symmetric matrices Gi ∈ Rn×n, ∀i = 1, . . . , m.

If all matrices F and Gi ∀i = 1, . . . , m are positive semidefinite, the problem de-
fined in Definition 27 is convex. The problem defined in Definition 27 is non-convex
if at least one of the matrices F and Gi ∀i = 1, . . . , m is not positive semidefinite. Then
the problem is called non-convex QCQP.

A non-convex QCQP isNP-hard in general. Using matrices X = xxT, the problem
of Definition 27 can be transformed to the equivalent problem

min
X

Tr{XF} (3.42)

s.t. Tr{XGi} ≤ 0, ∀i = 1, . . . , m

rank(X) = 1.

Removing the non-convex constraint rank(X) = 1 (rank-1 constraint) and replac-
ing it with the constraint X � 0 [5], the problem (3.42) can be transformed to the
following convex problem

min
X

Tr{XF} (3.43)

s.t. Tr{XGi} ≤ 0, ∀i = 1, . . . , m

X � 0.

Problem (3.43) is an SDP as defined in Definition 10. This relaxation technique is,
therefore, called semidefinite relaxation (SDR). The optimal value of (3.43) is a lower
bound for the original non-convex QCQP. The resulting SDP can be efficiently solved
with convex solvers as [59, 139]. In this thesis, CVX [59] was used to solve the convex
problems.
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The technique of SDR offers a straightforward method to solve non-convex beam-
forming problems. This thesis uses this method in several chapters. The SDR tech-
nique is well known and used as a reference method for improved alternative meth-
ods to solve beamforming problems. More details concerning SDR are presented
in [5, 109].
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Chapter 4

Theory of the Unicast Multicell
Max–Min Beamforming Problem

The content presented in this Chapter is published in the publications [37, 41]. This
chapter only considers unicast beamforming. The term unicast is omitted to shorten
the wordings.

4.1 Introduction

Max–min beamforming is a transmitter optimization technique to improve the fair-
ness in wireless networks with a frequency reuse-1 factor.

To achieve a higher spectral efficiency future networks should use the whole band-
width. However, in such a single frequency network, (intra-cell and inter-cell) interfer-
ence will occur. Users far away from their serving BS are subject to strong interference
of adjacent BSs. An unfair distribution of the SINR among the users in the network
will be the result. However, besides a high spectral efficiency, future networks should
guarantee fairness among the users as well.

Smart antennas at the BSs allow mitigation of interference and, therefore, the
improvement of the SINR of cell edge users. This can be achieved by closed loop
beamforming, i.e., by an optimization of the weighting factors of each antenna ele-
ment based on the available CSI of all links in the considered network. Two different
cases of CSI are feasible in general:

1. Instantaneous CSI requires a fast CSI feedback mechanism. Especially in a large
network with multiple BSs, a fast backbone network based on fiber is essential
to update the information of all users in the network.

2. A more practical approach is the use of long-term CSI. In this case, the spatial
correlation matrices are estimated over a longer time interval. Therefore, an
update of this form of CSI is required during each local stationary interval which
is less frequent compared to the use of instantaneous CSI.

Using the long-term CSI of all links, max–min beamforming (MB) enables to in-
crease the SINR fairness among all jointly scheduled users in a network. However,
the MB problem (MBP) is a complex problem if general power constraints and long-
term CSI are given. Low complexity solutions are required in pratice. This chapter
discusses the complexity and the duality theory of the MBP, which is known to be
non-convex in general. However, some equivalent quasi-convex forms are identified.
A quasi-convex optimization means in this context that the maximization problem

31
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Figure 4.1: Scenario: The lobes show the orientation of the antenna pattern.

has a quasi-concave objective function and convex constraints. Therefore, a global op-
timum exists and an efficient iterative algorithm can converge arbitrary tight to this
optimum [15].

Furthermore, only the unicast MBP is investigated in this chapter. The more gen-
eral multicast case is discussed later in Chapter 7. In the unicast case, each user in
the network gets different contents. Hence there is only one beamforming vector per
transmitted information symbol. For the unicast MBP an equivalent quasi-convex
form is derived only for instantaneous CSI and per-antenna power constraints [148].
The problem can be solved globally optimal for both instantaneous CSI or arbitrary
long-term CSI and a sum power constraint [128]. An open question is whether there
exists an efficient solution for the MBP in the case of long-term CSI given by spatial
correlation matrices with rank larger than one and more general power constraints.

4.1.1 Scenario

This chapter uses a scenario consisting of a wireless network with multiple BSs de-
noted by triangles in Fig. 4.1 and multiple users and frequency reuse-1. Each BS array
is a ULA and has an antenna spacing of half the wave length. Each antenna element
at the BS is equipped with a 120◦ antenna pattern. Each user in this network has
only one antenna. If unicast transmission is considered, only one user will be served
inside a cell by the antenna array of the cell serving BS to simplify the signal model.
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Table 4.1: Overview of related problems.

Problem Objective Power Constraints CSI Proved

PMP sum power - long-term or inst. CSI strong duality

PMP sum power per-antenna power inst. CSI convex form

MBP min. SINR sum power long-term or inst. CSI strong duality

MBP min. SINR per-antenna inst. CSI quasi-convex form

The optimization of the beamforming vectors is based on long-term CSI in the form
of spatial correlation matrices.

4.1.2 Related Work

Transmit beamforming has been investigated intensively since 1998. A central aspect
of this field is the uplink–downlink duality in unicast beamforming. First works
regarding this aspect are [125,161]. Various publications generalize their work or give
further proofs and extensions. An overview of these publications is given in Tables
4.2 and 4.3. A deep information theoretic background concerning the duality of the
Gaussian broadcast channel is studied in [156].

Unicast beamforming is non-convex with general power constraints and if long-
term CSI is used [9]. However, several equivalent quasi-convex or even convex forms
are currently identified for some special cases. Table 4.1 gives an overview of all
related problems.

Based on long-term CSI, the unicast beamforming problem of minimization of
the sum power subject to individual SINR constraints was investigated in [9]. This
problem is called power minimization problem (PMP). In [9], the authors showed that
the non-convex PMP can be relaxed to a convex semidefinite program which has no
relaxation gap. The unicast PMP and the unicast MBP are reciprocal problems [157].
In [10–12,128], the authors presented an optimal solution for the MBP based on long-
term CSI and a sum power constraint. The convergence of the iterative low complexity
algorithm is later proved in [19]. Later this work was extended with additional soft
shaping constraints [64].

The framework of the Lagrangian duality theory was introduced to solve the uni-
cast multiuser beamforming problem in the work of [157] and [163]. In the case of
instantaneous CSI, the PMP has an equivalent convex form, as opposed to the MBP
which has a merely quasi-convex form. The authors in [163] propose a fast direct so-
lution for the minimization of the maximum power margin over all antennas subject
to per-antenna power constraints and individual SINR constraints. The authors of [31]
extended the work to the multicell case. The PMP requires a properly chosen SINR.
The MBP is more flexible and overcomes this complication. The MBP allows finding
the highest SINR constraint such that the problem is feasible. In [143], the authors in-
vestigated the max–min weighted SINR problem with individual power constraints.
The authors derived a fast algorithm based on the non-linear Perron Frobenius theory.
In [148], the authors presented an equivalent quasi-convex form of the unicast MBP
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Table 4.2: Overview of some regarded problems of related work in the last 14 years.

Year Author Problem Power constr. CSI

1998 Rashid-Farrokhi et al, [125] PMP - instant.

1998 Yang, Xu, [161] MBP sum power instant.

2001 Bengtsson, Ottersten, [9] MBP sum power long-term

2002 Boche, Schubert, [10] MBP sum power long-term

2005 Song, Cruz, Rao, [137] PMP - instant.

2006 Wiesel, Eldar, Shamai, [157] MBP sum power instant.

2007 Yu, Lan, [163] PMP per-antenna instant.

2008 Tölli, Codreanu, Juntti [148] MBP per-antenna instant.

2010 Dartmann, Afzal, Gong, Ascheid [32] MBP per array long-term

2011 Tan, Chiang, Srikant [143–145] MBP sum power instant.

2011 Cai, Tan, [19–21] MBP per array instant.

2011 Negro, Cardone, Ghauri, Slock, [116] MBP per array instant.

2012 Dartmann, Gong, Afzal, Ascheid [37] MBP per-antenna long-term.

Table 4.3: Overview of some solutions of related work in the last 14 years.

Year Author Theory, Solution

1998 Rashid-Farrokhi et al, [125] Perron Frobenius Theorem

1998 Yang, Xu, [161] Perron Frobenius Theorem

2001 Bengtsson, Ottersten, [9] SDP

2002 Boche, Schubert, [10] Perron Frobenius Theorem

2005 Song, Cruz, Rao, [137] Linear programming duality

2006 Wiesel, Eldar, Shamai, [157] Lagrangian, SOCP

2007 Yu, Lan, [163] Lagrangian, SOCP

2008 Tölli, Codreanu, Juntti [148] SOCP

2010 Dartmann, Afzal, Gong, Ascheid [32] Lagrangian
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with per-BS antenna array power constraints for the case of instantaneous CSI. Similar
to [157], the authors presented an approach in the form of a feasibility check prob-
lem given as SOCP. The work [32] presented a fast direct solution for the MBP with
long-term CSI and per-BS antenna array power constraints based on the framework
of the Lagrangian duality theory. This scenario is not proved to have an equivalent
convex form, hence, strong duality is not given in general. In [40], the MBP based
on instantaneous CSI was investigated and the solution is extended to per-antenna
power constraints.

4.1.3 Contributions

This chapter presents the following contributions:

• This chapter presents an approach involving a dual uplink problem for the MBP
with multiple power constraints based on the surrogate dual problem. If instan-
taneous CSI is available, an equivalent quasi-convex form of the MBP exists and
strong surrogate duality can be directly proved with a duality theorem for quasi-
convex programming [107]. The approach presented in [164] also combines the
power constraints to a weighted sum power constraint. However, strong duality
was not proved in this work.

• If only long-term CSI in the form of higher rank spatial correlation matrices is
available no equivalent quasi-convex form is known and the surrogate duality
theorem of [107] can not be applied. An additional proof is presented to show
strong duality in the case long-term CSI is given and one per BS power constraint
is satisfied with equality.

• The surrogate dual problem is proved to be quasi-convex, hence it can be solved
efficiently.

• The surrogate dual problem can be proved to be equal to the Lagrangian dual
and, at the optimum, the combined power constraint of the surrogate dual prob-
lem is satisfied with equality.

• The surrogate dual problem leads to an iterative low complexity algorithm. The
convergence of the proposed iterative method is shown.

• In the literature usually scenarios with a balanced SINR are investigated. How-
ever, this is not always given. This Chapter presents some conditions where a
balanced SINR does not exists for the given set of power constraints.

• In the literature several generalized MB scenarios with a cooperative multipoint
(CoMP) transmission exist, e.g, [150]. A beamforming gain can be achieved if the
BSs are perfectly synchronized and the instantaneous CSI is available. However,
this assumption is very challenging. This thesis extends the MBP with a CoMP
transmission based on long-term CSI. Due to the max–min fairness, a gain in
the spatial domain can be achieved. Only BSs close to the users are active, the
others are switched of to avoid intercell interference. The presented solution is
able to out-perform the convex solver based bisection method.
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4.1.4 Outline

Section 4.2 gives a detailed description of the system model for the unicast MBP. Each
user is served by exactly one BS.

Section 4.3 introduces the MBP and defines the Pareto optimality condition. Note
that only interference coupled networks are assumed. Further, this section derives an
equivalent quasi-convex form of the MBP for the above mentioned special instances.
In the case of higher rank spatial correlation matrices with a Toeplitz structure, the
equivalent quasi-convex form is derived for per-BS antenna array power constraints
for a unicast and multicast transmission. A convex solver based solution is proposed.
Besides the convex solver based solutions a surrogate dual uplink problem of the
primal downlink MBP is derived and strong duality is proven.

Section 4.4 presents a fast direct solution for the unicast MBP with per-antenna
power constraints based on the surrogate dual problem. The presented algorithms is
able to find the same solution as a convex solver based algorithm if a balanced SINR
exists. The section underlines the performance of the presented iterative solution with
some numerical results and a complexity analysis.

Section 4.6.2 discusses the Pareto optimality of the MBP with general power con-
straints and generalizes the solution of the MBP, where a balanced SINR is given, to
interference decoupled networks without a balanced SINR.

Section 4.6.3 shows a further extension of iterative algorithm which exploits the
spatial diversity if multiple BSs transmit jointly to a scheduled user. Hence, multiple
BSs are assigned to a scheduled users and this scheme corresponds to non-coherent
CoMP transmission based on long-term CSI. This section concludes with some results,
which show the performance of the iterative solution compared to classical convex
solver based approaches.

4.2 System Model for Unicast Downlink Transmission

As depicted in Figure 4.1, the network consists of N = M cooperating BS arrays,
each equipped with NA antennas. At a time instant, M users of the index set U =
{1, . . . , M}, each equipped with a single antenna, are served jointly in this network.
A BS array of cell with index c serves a scheduled user inside this cell. In each cell
c a set Uc of Nc users are equally distributed. For simplification there is no intracell
interference. Thus, at a given time instant the BS array c serves one user from the set
Uc. This scheduled user i ∈ Uc(i) receives a signal

ri = hH
c(i),iωc(i)sc(i) +

∑

l∈U ,c(l) 6=c(i)

hH
c(l),iωc(l)sc(l) + ni. (4.1)

from its BS array of the cell c(i). Here, ni is noise. In the unicast case, there is
always one scheduled user per-antenna array. Therefore, the signal model (5.2) can be
simplified as follows:

ri = hH
i,iωisi +

∑

l∈U ,l 6=i

hH
l,iωlsl + ni. (4.2)
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This section only regards the unicast beamforming problem, hence, only the model
(4.2) is used for simplification. The signal transmitted to user i is given by si with
E{|si|2} = 1 and E{sls

∗
i } = 0 if l 6= i. The channel vector between the lth BS array

and user i is given by hH
l,i ∈ C1×NA . The beamforming vector of the lth antenna array

with NA antenna elements is denoted by ωl = [ωl(0), ωl(1), . . . , ωl(NA − 1)]T.

Definition 28. With the assumption E{|ni|2} = σ2
i and E{ni} = 0, the instantaneous

downlink SINR is:

γ̂i =
|hH

i,iωi|2
∑

l∈U
l 6=i
|hH

l,iωl|2 + σ2
i

. (4.3)

A well known performance measure of the wireless channel is the ergodic capacity
of the downlink to user i.

R̂i = E{log(1 + γ̂D
i )}. (4.4)

A global optimization based on instantaneous CSI over a large number of slots in
a large network with multiple users and BSs is very difficult. However, practically
relevant is an optimization based on the long-term CSI. Therefore, as in [93], the
ergodic capacity is approximated by

R̂i = E{log(1 + γ̂i)} ≈ log(1 + γD
i ) = Ri. (4.5)

The variable γD
i denotes the mean SINR:

γD
i =

ωH
i E{hi,ih

H
i,i}ωi

∑

l∈U
l 6=i

ωH
l E{hl,ih

H
l,i}ωl + σ2

i

(4.6)

This section discusses the complexity and solvability of the MBP in general. The
quasi-convexity of the MBP depends on the given CSI. Two cases of CSI are considered
in this thesis. If instantaneous CSI is used, the following matrices normalized to the
noise power are given:

Rl,i =
1

σ2
i

hl,ih
H
l,i. (4.7)

Long-term CSI is often used in a multicell optimization due to the reduced CSI feed-
back rate. The assumption of this long-term CSI results in a mean SINR. Here, an
additional expectation over the channel realizations H is done. The result is the spa-
tial correlation matrix given by

Rl,i =
1

σ2
i

E{hl,ih
H
l,i}. (4.8)

Definition 29. Downlink SINR: Using the definitions of the spatial correlation matrices (4.7)
or (4.8), the SINR is then defined by

γD
i (Ω) =

ωH
i Ri,iωi

∑

l∈U
l 6=i

ωH
l Rl,iωl + 1

. (4.9)
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Besides the downlink (DL) SINR (4.9), the uplink (UL) SINR (4.9) can be defined
as follows:

Definition 30. [163] Uplink SINR: With the uplink receive beamforming vectors of a BS
given by vi, with ||vi|| = 1, ∀i ∈ U with the UL power λi ∀i ∈ U , and with some matrices
Mi � 0, the dual UL unicast SINR is defined by

γU
i (µ, λ, vi) =

λiv
H
i Ri,ivi

vH
i (Mi +

∑

l∈U
l 6=i

λlRi,l)vi
. (4.10)

The diagonal matrix Mi � 0, called UL-scaling matrix in the following, depends
on three power constraints and is defined below. Definition 30 is used later in the
derivation of the duality in Section 4.3.4 and provides a low complexity solution. In
what follows, the matrix V ∈ V with

V = {V ∈ C
NA×M : ||[V]:,i|| = 1, [V]:,i ∈ C

NA×1, ∀i ∈ U} (4.11)

is the matrix of all UL receive beamforming vectors of all BS arrays V = [v1, . . . , vM].
Power constraints: In practically relevant networks each transmitting station is

subject to a power constraint. These power constraints have a strong impact on the
complexity and on the optimality of the solution of the MBP. The power constraints
determine the domain where a solution can be found. The domain determined by the
power constraints is denoted by P . This set is a convex set. This thesis discusses the
following three types of power constraints:

• Sum power constraint: The most flexible constraint is the so-called sum power
or network power constraint. In this case the total power of all transmitting
stations is limited by P ∈ R+. This constraint has a more theoretical intention
in multicell networks. In a unicast max–min beamforming problem, an opti-
mal balanced SINR can be obtained for higher rank spatial correlation matrices
(long-term CSI) [128]. The MBP is convex in this case. The convex cone of
beamforming vectors fulfilling the sum power constraint is given by

P = {ωl ∈ C
NA×1 :

∑

l∈U
ωH

l ωl ≤ P}. (4.12)

• Per BS antenna array power constraints: These constraints are stricter. In this
case each antenna array l of a BS will be subject to a total power budget Pl ∈ R+

and is, obviously, practically more relevant compared to the sum power con-
straint. The convex cone of beamforming vectors fulfilling the per-BS antenna
array power constraints is given by

P = {ωl ∈ C
NA×1 : ωH

l ωl ≤ Pl ∀l ∈ U}. (4.13)

In the definition of the UL-SINR, the UL-scaling matrix Mi = µiINA
for some

µi ∈ R+ is used.
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• Per antenna power constraints: These are strictest constraints. Then the power
of each antenna element with index a of the total set of A is constrained. There-
fore, these constraints are closest to the practice, where the power of each an-
tenna amplifier is limited. It is assumed each BS array l has the same number
NA of antenna elements given by the set Al. The power of each antenna element
a of BS array l is constrained by Pl,a ∈ R+. The convex cone of beamforming
vectors fulfilling the per-antenna power constraints is given by

P = {ωl ∈ C
NA×1 : |[ωl]a|2 ≤ Pl,a ∀a ∈ Al ∀l ∈ U}. (4.14)

Let diag(·) denote the diagonal matrix, Mi = diag(µi,1, . . . , µi,NA
) denotes the

UL scaling matrix in the definition of the UL SINR for some µi,a ∈ R+.

4.3 Optimization Problem and Uplink–Downlink

Duality

In modern wireless networks fairness among the users is desired. A max–min op-
timization of the DL-SINR achieves SINR fairness among the users and is formally
defined by

Definition 31. MBP: With the definition of downlink SINR according to Definition 29 the
max–min optimization of the beamforming matrix Ω = [ω1, . . . , ωM] subject to a set P of
convex cones defining the power constraints, the MBP is defined by

γD = max
Ω

min
i∈U

γD
i (Ω) (4.15)

s.t. ωl ∈ P ∀l ∈ U .

A balanced SINR can be the result. However, such an approach requires a smart
selection of the set U of active users, otherwise a single bad user can degrade the
performance of all jointly active users. Different scheduling techniques discussed,
e.g., in [153] can avoid such a such a situation. Chapter 5, investigates this problem in
detail.

The introduction of an additional slack variable γ simplifies the problem to:

γD = max
Ω,γ

γ (4.16)

s.t. γD
i (Ω) ≥ γ ∀i ∈ U

ωl ∈ P ∀l ∈ U .

The MBP is non-convex because of the non-convex SINR constraints for arbitrary
matrices Rl,i and with the constraints (4.13) and (4.14). If a sum power constraint is
used, [128] proves the global optimality for arbitrary correlation matrices (4.8) based
on the Frobenius Perron theory [70].
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4.3.1 Semidefinite Relaxation

The MBP is not convex for arbitrary spatial correlation matrices Rl,i and using stricter
power constraints like per-BS antenna array power constraints (4.13). However, for all
of these non-convex cases, the MBP can be relaxed to a quasi-convex program. The
resulting convex feasibility check problem is an SDP [15]. Definition 10 presents the
general form of an SDP. A bisection over γ can iterate arbitrarily tightly to the optimal
value if the bisection interval is correctly chosen. This approach is a standard method
of solving the MBP and is used as a reference in this chapter.

With X = [X1, . . . , XN ] consisting of semidefinite matrices Xl = ωlω
H
l , dropping

the non-convex rank-1 constraint rank(Xl) = 1 ∀l ∈ U , and fixing γ, the SDP is given
by [90]:

find X, (4.17)

s.t. − 1

γ
Tr{XiRi,i}+

∑

l∈U ,l 6=i

Tr{XlRl,i}+ 1 ≤ 0,

Xi � 0, Tr{Xi} ≤ Pi, ∀ i ∈ U . (4.18)

In the case of a sum power constraint
∑

l∈U Tr{Xl} = P instead of (4.18), the result-
ing matrices are proved to all have rank 1 and are, therefore, optimal [9]. With a
per-BS antenna array or per-antenna element power constraints and arbitrary spatial
correlation matrices, the solution has not been proved to be globally optimal in the
literature.

4.3.2 Remark on the Pareto Optimality Condition in Unicast

Max–Min Beamforming

Proposition 8 and Proposition 6 of Section 4.3.4, assumes the existence of a balanced
SINR among the users.

Definition 32. A tuple of SINRs (γD
1 , γD

2 , . . . , γD
M) is balanced if

γD
1 = γD

2 = . . . = γD
M. (4.19)

In general networks this condition is not always given if, e.g., per-BS antenna array
power constraints are used. Figure 4.2 shows an example of a network without the
existence of a balanced SINR among users when per-BS antenna power constraints
are used. Two users outside the building are served by their adjacent BSs. Each user
is subject to interference of the corresponding other BS. The MB will converge to a
balanced SINR γopt among these two coupled users. However, there is a third user
inside a building and decoupled from the other two users. This user is served by a
small hotspot inside the building. If there is no interference to the outer world and
there is no interference from the outer world to the user inside the building, the user
is decoupled form the network. The existence of the balanced SINR depends on the
power constraints:

Assuming, all BSs are subject to a per-BS antenna array power constraint (4.13), an
unbalanced SINR is the result in this scenario. The BS serving the decoupled user can
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γopt γoptγ3

Figure 4.2: Example

increase its power until it reaches its per-BS antenna array power constraint, hence,
the SINR of the decoupled user can be larger than the balanced SINR among the two
interference coupled users.

The result is different if all BS are subject to a total sum power constraint (4.12)
instead of the per-BS antenna array power constraints (4.13). Then, because of the
sum power constraint, power of the BS inside the building1 will be shifted to the two
coupled BSs in order to increase the balanced SINR among the coupled users and the
SINR of all three users can be balanced.

For the rest of this section only interference coupled networks are considered to
achieve a balanced SINR. If the system is not interference coupled, the algorithm
presented in Section 4.4 will not provide an optimum solution. Especially the sub-
gradient projection based method of (Section 4.4.2) converges slowly if the scenario is
not interference coupled. A small violation of the power constraints can be a result
in case a balanced SINR can not be achieved. To ensure that a balanced SINR exists,
sufficient interference is generated. This assumption is reasonable, because, e.g., cell
edge users who are usually considered for cooperative beamforming are subject to
strong interference. For the scenario in Fig. 4.1, a weaker antenna pattern (−3dB at
60◦) and a broader angular spread (33◦) is used. Typical values are between 5◦ up to
40◦ [114]. Hence, it is assumed there is a Pareto-optimal solution [165] of the balanced
downlink SINR. The following definition is similar to the definition in [84, 165]

Definition 33. A tuple (γD
1 , γD

2 , . . . , γD
M) is Pareto optimal if there is no other tuple

(γ̂D
1 , γ̂D

2 , . . . , γ̂D
M) with

(γ̂D
1 , γ̂D

2 , . . . , γ̂D
M) ≥ (γD

1 , γD
2 , . . . , γD

M)

(the inequality is component-wise) and

(γ̂D
1 , γ̂D

2 , . . . , γ̂D
M) 6= (γD

1 , γD
2 , . . . , γD

M)

Networks where a Pareto optimal balanced DL SINR for the given power con-
straints exist, are defined as balanced interference coupled networks in this thesis.
The more general scenario, with the lack of a balanced SINR, is discussed in Sec-

1 if the channel conditions of the third user are better the channel conditions of the two coupled users
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tion 4.6.2. More details concerning conditions for a balanced SINR are also explained
in [129, 130].

4.3.3 Equivalent Quasi-Convex Form

Quasi-convex optimization problems have the advantage of the existence of a unique
optimum. Optimization problems are called quasi-convex if the objective function [15]
is quasi-convex and the constraints are convex. Such a problem can be solved by the
surrogate dual problem [107].

The theory of surrogate duality is used to derive the dual UL problem of the MBP.
This dual UL problem offers a low complexity algorithm which solves the MBP. In
general, the problem (4.15) is non-convex because of the non-convex objective function
over Ω:

f (Ω) = min
i∈U

ωH
i Ri,iωi

∑

l∈U
l 6=i

ωH
l Rl,iωl + 1

. (4.20)

The domain P of the objective function is determined by the power constraints. Due
to the power constraints the value of the minimum SINR is bounded: 0 ≤ f (Ω) < ∞.
If instantaneous CSI is available at the BSs, the MBP has an equivalent quasi-convex
form for a sum power constraint, for per-antenna array and for per-antenna power
constraints (see Proposition 2). It is desired to maximize (4.20); hence, the objective
function must have an equivalent quasi-concave form to prove that the MBP has an
equivalent quasi-convex form.

Proposition 2. Let γD denote the solution of the MBP (4.15). Then the MBP (4.15) has an
equivalent quasi-convex form with an optimal solution γ∗D for the given power constraints
(4.12)-(4.14) and in the case of instantaneous CSI and matrices Rl,i defined in (4.7). Conse-
quently γD = γ∗D holds.

Proof. The point-wise minimum of a quasi-concave function is quasi-concave. There-
fore, only the upper level sets (see Definition 18)

Sγ,i = {Ω ∈ P :
ωH

i Ri,iωi
∑

l∈U
l 6=i

ωH
l Rl,iωl + 1

≥ γ} (4.21)

must be convex. The same idea as, e.g., in [9, 163] is used to prove the convexity of
the SINR constraint

1

γ
ωH

i Ri,iωi ≥
∑

l∈U ,l 6=i

ωH
l Rl,iωl + 1. (4.22)

An arbitrary phase rotation of the beamforming vectors does not affect the SINR [9],
if instantaneous CSI is given. Hence, the constraint (4.22) can be rewritten as in [9]:

1√
γσi

hH
i,iωi ≥

√
∑

l∈U ,l 6=i

ωH
l Rl,iωl + 1, with Im{hH

i,iωi} = 0, hH
i,iωi ≥ 0, (4.23)
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if Rl,i is given by (4.7). The constraint (4.23) is a second order cone constraint [15] for a
fixed parameter γ. With the SINR constraint (4.23) and per-antenna power constraints,
the MBP (4.15) can be rewritten as a SOCP.

For a fixed (constant) γ, the feasibility check problem of the MBP can be expressed
as a SOCP (see Definition 9). The upper level sets of the equivalent form of the
objective function are convex. Consequently the objective function has an equivalent
quasi-concave form. With the convex form of the SINR constraint (4.23), the MBP can
be solved with the following convex feasibility check problem similar to [9]:

find Ω (4.24)

s.t.
1

σi
√

γ
hH

i,iωi ≥
√

∑

l∈U ,l 6=i

ωlRl,iωl + 1

|[wi]a|2 ≤ Pi,a Im{hH
i,iωi} = 0, hH

i,iωi ≥ 0, ∀i, a.

A bisection over γ can iterate arbitrarily closely to the global optimum if the bisection
interval is correctly chosen. In the case of per-antenna array power constraints, the
feasibility check problem can be analogously derived.

Note, the SINR constraints (4.22) are only convex for a fixed parameter γ and if
the spatial correlation matrices have rank 1. In the case of instantaneous CSI this is
always satisfied. However, arbitrary spatial correlation matrices do not have rank-1 in
general. In this case, the spatial correlation matrices (4.8) will usually have a higher
rank. Therefore, this technique can not be used to prove the transformation to an
equivalent quasi-convex problem if arbitrary long-term CSI is given. Furthermore,
the proof only holds for the unicast case, because then an arbitrary phase rotation of
the beamforming vector does not affect the SINR. The SINR constraints become real
valued and can be written as a second order cone constraint. In the case of more than
one user per transmit antenna array vector (multicast case), not all SINR constraints2

can be made real valued by an arbitrary phase rotation at each BS antenna array. The
multicast case3 with long-term CSI is discussed in Part II of this thesis.

However, this kind of solution still requires a convex solver to solve the convex
feasibility check problem. Therefore, the work of [116] proposes a more elegant way
of solving the MBP based on the PMP. The PMP corresponds to the feasibility check
problem of the MBP. Hence instead of the convex solver, the iterative algorithm de-
veloped in [163] can be used for a bisection. However, the iterative solution presented
in [163] works with rank-1 spatial correlation matrices or instantaneous CSI and is
based on two loops. The solution, presented in the next section, also consists of two
loops and solves the MBP directly.

4.3.4 Duality Theory of the Max–Min Beamforming Problem

The dual problem of the MBP formulated in this section delivers an iterative solution
based on simpler mathematical operations than in the primal downlink case. Sec-

2 the SINR constraints for all users belonging to the same multicast group
3 which also covers the unicast case
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tion 4.4 presents the details of the iterative solution which is based on the surrogate
dual problem of the MB derived in this section.

The previous Section 4.3.3 presents an equivalent quasi-convex form of the MBP.
A quasi-convex problem can be solved directly by using the convex feasibility check
problem of the primal problem. A simple bisection over multiple convex feasibility
check problems can be made to iterate until a tolerance of ǫ to the optimal solution is
reached [15]. This section introduces a duality framework for the MBP with multiple
power constraints. The derived dual UL problem can be solved efficiently and finds
the same SINR as the original MBP. Furthermore, the dual problem can be solved
iteratively based on simpler mathematical operations.

4.3.4.1 Surrogate Duality for the Max–Min Beamforming Problem

This section introduces a new framework for a dual UL problem that is equivalent to
the original MBP (4.15) if both, instantaneous CSI, or arbitrary long-term CSI in the
form of higher rank spatial correlation matrices is available. Section 4.3.3 illustrates
that the MBP has equivalent quasi-convex form if instantaneous CSI is available. A
quasi-convex problem can be solved directly by using the convex feasibility check
problem of the primal problem.

In [116], the authors propose a similar way to solve the unicast MBP. However,
instead of the feasibility check problem of the primal problem, the dual UL problem
of the PMP is used which is equivalent to the MBP for a given SINR γ. In [32], a
direct solution based on the dual UL problem was proposed. The proposed iterative
algorithm is derived based on the Lagrangian dual problem, which provides an upper
bound of optimal solution. However, the MBP with more general power constraints,
e.g., per-BS antenna array power constraints has merely an equivalent quasi-convex
form. Therefore, the strong duality of the Lagrangian dual problem can not be proved
so easily in this case. The Lagrangian dual is a tight bound if the original problem is
convex and has a non-empty interior [15].

This section proposes an alternative and simpler framework for UL–DL duality
based on the work on surrogate duality in quasi-convex programming of D. Luen-
berger [107]. The surrogate dual provides a tight bound and it can be proved, that
the Lagrangian dual problem is equivalent to the surrogate dual, consequently strong
duality is also given for the Lagrangian dual.

Several publications on quasi-convex programming exist (e.g., [107]), and several
dual problems have been proposed. A detailed overview of the surrogate duality
theory is presented in Section 3.3.2.

This duality theory is used in this section to derive a dual UL problem of the uni-
cast MBP. The multiple power constraints are combined to a single power constraint
as shown in (3.30). At this point it could be helpful to give a short overview of the
propositions for the duality proof in this chapter:

• The combination of multiple power constraints to a single weighted sum power
constraint results in a UL MBP with an inner and an outer problem. The in-
ner problem corresponds to a DL MBP with a weighted sum power constraint.
Transformation of this problem to the UL domain leads to a problem which can
be solved globally optimal. The Lagrangian dual UL problem of this problem is
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presented in Lemma 4. Strong duality is proved for the sum power constrained
case, consequently, the Lagrangian duality is tight.

• In Proposition 3, the surrogate dual function is derived by using the previous
result in Lemma 4. The surrogate dual function combines multiple power con-
straints to a single weighted sum power constraint. This surrogate function is
transformed to the UL domain where it can be solved efficiently. The surrogate
function in the UL domain leads to the surrogate dual problem of the original
MBP with multiple power constraints.

• The question is now whether this surrogate dual problem solves the MBP with
multiple power constraints. In the case of instantaneous CSI or rank-1 spa-
tial correlation matrices, an equivalent quasi-convex form exists. Based on the
equivalent quasi-convex form, strong (surrogate) duality can be directly proved
with the duality theorem of Luenberger (Theorem 2). This is proved for Propo-
sition 5.

• If arbitrary long-term CSI in the form of higher-rank spatial correlation matrices
is given no equivalent quasi-convex form is known. Thus Theorem 2 can not be
applied. Based on Theorem 4, Proposition 6 represents an alternative proof for
strong duality in the case of per BS power constraints and one power constraint
is satisfied.

• With the help of Theorem 5, Proposition 7 states that the surrogate dual problem
is quasi-convex; hence, a global optimal value exists.

• Proposition 8 shows the equivalence of the surrogate dual problem and the La-
grangian dual problem of the MBP with more general power constraints. Ac-
cording to Theorem 6, it follows that the weighted sum power constraint is
satisfied with equality.

The derivation of the surrogate dual problem is based on an inner MBP with a
weighted sum power constraint and its Lagrangian dual problem, which is tight if
a sum power constraint is given. Consider the following unicast DL MBP where the
weighted sum power is limited to P:

f D(µ) = max
Ω

min
i∈U

γD
i (Ω) (4.25)

s.t.
∑

i∈U
ωH

i Miωi ≤ P. (4.26)

where Mi = diag(µi,1, . . . , µi,NA
) � 0 in the case of per-antenna array element power

constraints and Mi = µiINA
� 0 in the case of per-BS antenna array power constraints.

The vector µ is the vector of all µi,as or µis. For a fixed µ, this problem is an MBP with
a weighted sum power constraint. The Lagrangian dual UL problem is given by the
following lemma:
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Lemma 4. With the definition of the UL SINR (4.10), the Lagrangian dual of the unicast DL
MBP (4.25), (4.26) is given by

f U(µ) = max
λ,V

min
i∈U

γU
i (µ, λ, vi) (4.27)

s.t.
∑

i∈U
λi ≤ P (4.28)

λi ≥ 0, ∀ i ∈ U . (4.29)

At the optimum, the power constraints of problems (4.25) and (4.27) are satisfied with equality
and both problems have the same SINR f U(µ) = f D(µ) for a µ ≥ 0 and µ 6= 0.

Proof. The derivation of the Lagrangian dual problem is a simple extension of [57].
The proof of the strong duality is an extension of [128, Lemma 2]. [19, 20] presents
the duality in the case of instantaneous CSI or rank-1 spatial correlation matrices and
per-BS power constraints. The proof for the case of per-antenna power constraints is
a straightforward extension and presented in Appendix A.1.

Remark 1. Note that λ = 0 results in γU = 0 which can not be an optimal solution.
Consequently, we can also restrict λ to λ > 0.

Proposition 3. With the diagonal matrices Pi = diag(Pi,1, . . . , Pi,NA
) in the case of per-

antenna power constraints, or diagonal matrices Pi = Pi
NA

INA
in the case of per-BS array

power constraints, the surrogate dual function (or surrogate problem) of the unicast DL MBP
(4.15) with general (per-antenna or per-antenna array) power constraints is given by

sU(µ) = max
λ,V

min
i∈U

γU
i (µ, λ, vi) (4.30)

s.t.
∑

i∈U
λi ≤

∑

i∈U
Tr{MiPi}

λi ≥ 0, Mi � 0, ∀ i ∈ U .

for a µ ≥ 0 and µ 6= 0.

Proof. The surrogate dual function of the MBP with per-antenna power constraints is
given by

sD(µ) = max
Ω

min
i∈U

γD
i (Ω) (4.31)

s.t. pΣ(µ, Ω) ≤ 0. (4.32)

Mi � 0 ∀ i ∈ U .

With the diagonal matrices Pi = diag(Pi,1, . . . , Pi,NA
), the per-antenna power con-

straints are combined to the weighted sum power constraint:

pΣ(µ, Ω) =
∑

i∈U

∑

a∈Ai

µi,a(|[ωi]a|2 − Pi,a) ≤ 0 ⇔
∑

i∈U
ωH

i Miωi ≤
∑

i∈U
Tr{MiPi}.
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With the diagonal matrices Pi =
Pi

NA
INA

, the per-antenna array power constraints are

combined to the weighted sum power constraint:

pΣ(µ, Ω) =
∑

i∈U
µi(ω

H
i ωi − Pi) ≤ 0 ⇔

∑

i∈U
ωH

i Miωi ≤
∑

i∈U
Tr{MiPi}.

Thus, the problem (4.31) can be stated as:

sD(µ) = max
Ω

min
i∈U

γD
i (Ω) (4.33)

s.t.
∑

i∈U
ωH

i Miωi ≤
∑

i∈U
Tr{MiPi} (4.34)

Mi � 0, ∀ i ∈ U .

With P =
∑

i∈U Tr{MiPi} and Lemma 4, the problem (4.33) can be transformed to the
UL domain and the problem (4.30) is the result.

Proposition 4. If instantaneous CSI according to (4.7) is given, let s∗D(µ) denote the sur-
rogate dual of the equivalent quasi-convex form of the original MPB (4.15), then s∗D(µ) =
sD(µ) holds.

Proof. The proof is a straightforward extension of [157].

Lemma 5. The objective function (4.20) is a continuous function.

Proof. The proof is straightforward and presented in Appendix A.3.

Assuming there exists an equivalent quasi-convex form of the MBP (4.15), the
proof of strong duality is straightforward with the help of Theorem 4.

Proposition 5. If the primal unicast DL MBP (4.15) has an equivalent quasi-convex form
which has the solution γ∗D, the optimal solution γD of (4.15) is given by

γD = γU
S = min

µ
sU(µ) (4.35)

for a µ ≥ 0 and µ 6= 0.

Proof. Problem (4.35) is the surrogate dual problem. Proposition 3 proves the lack of
a duality gap for the inner problem hence,

sD(µ) = sU(µ)

holds. Consequently, also

γD
S = min

µ
sD(µ) = min

µ
sU(µ) = γU

S (4.36)

holds. Lemma 5 states that the objective function is continuous. According to the
duality theorem of Luenberger (Theorem 2), strong duality between the surrogate
dual problem and the primal problem holds if the primal problem is quasi-convex,
assuming γ∗D is the solution of the equivalent quasi-convex form of the MBP (4.15)
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and s∗D(µ) is the equivalent quasi-convex form of the surrogate function. Due to
(4.36), also

γ∗D = min
µ

s∗D(µ) = min
µ

s∗U(µ) = γ∗U
S (4.37)

holds. Since s∗D(µ) = sD(µ), s∗U(µ) = sU(µ) and since γ∗U
S = sU(µ), and γ∗D = γD

holds,4 (4.35) holds as well.

Given arbitrary higher rank spatial correlation matrices as (4.8), the proof of strong
duality is not straightforward, because, then, no equivalent quasi-convex form of the
MBP is known. The following proposition formulates the general duality result for
the case of higher rank spatial correlation matrices.

Proposition 6. Assuming per BS power constraints and only one power constraint is active
in the original problem (4.15). Given arbitrary higher rank spatial correlation matrices as
(4.8), the solution of the dual UL problem is equal to the solution of the primal unicast DL
MBP (4.15). Hence, with µ 6= 0 and γU

S = γD, the solution is given by

γU
S = min

µ
sU(µ). (4.38)

Proof. Due to sD(µ) = sU(µ), also

γD
S = min

µ
sD(µ) = min

µ
sU(µ) = γU

S (4.39)

holds. Assume Ω
∗ is optimal for the surrogate dual problem. The question is whether

γD
S = γD. If an Ω

∗ is feasible in sD(µ∗), there must be a µ∗ ≥ 0 and µ∗ 6= 0 which
is also feasible in (4.15) according to Theorem 4. We must show the feasibility of Ω

∗

in the original problem so that ω∗k
Hω∗k ≤ Pk ∀k ∈ U . Let µ∗k ∈ RM×1 be a vector with

exactly one non-zero element, µ∗k > 0. Then, the surrogate problem is

sD(µ∗k) = max
Ω

min
i∈U

γD
i (Ω) (4.40)

s.t. µ∗k ωH
k ωk ≤ µ∗k Pk µk > 0. (4.41)

where (4.41) is finally ωH
k ωk ≤ Pk. The kth constraint of the original problem (4.15)

is satisfied if the constraint (4.41) of surrogate problem sD(µ∗k) is satisfied. As in [20,
Theorem 4], let P denotes the feasible set of the original problem (4.15), and

PD
k = {Ω

∗
k ∈ C

NA×M : ωH
k ωk ≤ Pk}

denotes the feasible set of (4.40), (4.41), then P = ∩k∈UPD
k . Furthermore, the SINR is

balanced and s(µ∗k) is the corresponding SINR. According to Lemma ??, the index

k∗ = argmink∈U{sD(µ∗k)}
4 In the case of instantaneous CSI and a weighted sum power constraint or per-antenna or per-antenna

array power constraints, the MBP has an equivalent quasi-convex form (see Propositions 2 and 4).
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can be seen as the limiting link of the fair system where all power constraints are
satisfied.

According to Theorem 4, Ω
∗
k∗ ∈ P solves the surrogate dual problem for a µ∗k∗ ≥ 0,

µ∗k∗ 6= 0 and is also feasible in the primal problem (4.15). Consequently, according to
Theorem 4, the solution of the surrogate dual problem is a tight upper bound.

From the proof we can also observe that the worst link k∗ determines the SINR of
the entire system.

The question is now whether (4.38) attains the optimal value. In [60], the authors
prove that the surrogate dual provides a tighter bound than the Lagrangian dual. The
following proposition declares the quasi-convexity of the surrogate dual problem.

Proposition 7. The surrogate dual problem (4.38) can be globally optimally solved.

Proof. Due to Theorem 5, the surrogate dual function is quasi-convex, hence a global
minimizer can attain the value of the global minimum.

If a balanced SINR according to Definition 32 exists, the Lagrangian dual problem
and the surrogate dual problem of the MBP (4.15) are equivalent. A balanced SINR
may not exist if, e.g., a user does not receive any interference from other BSs in the
network; hence the network is not interference coupled. More details concerning
conditions for a balanced SINR are explained in [129, 130]. The following proposition
is used in the next section for the derivation of the iterative algorithm.

Proposition 8. If a balanced SINR according to Definition 32 exists, the Lagrangian dual
problem of the MBP (4.15) is given by

γU
L = min

µ
max
λ,V

min
i∈U

γU
i (µ, λ, vi) (4.42)

s.t.
∑

i∈U
λi ≤

∑

i∈U
Tr{MiPi},

λi ≥ 0, Mi < 0, ∀ i ∈ U .

and at the optimum the weighted sum power constraint (4.34) is satisfied with equality.

Proof. The derivation of the Lagrangian is presented in Appendix A.2. The surrogate
dual (4.38) is equivalent to the Lagrangian dual problem (4.42), γU

L = γU
S . According

to Theorem 6, the weighted sum power constraint (4.34) is satisfied with equality.
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4.4 Iterative Algorithm for Interference Coupled

Networks

The structure of the dual UL problem (Proposition 6) offers a solution based on simple
mathematical operations. The solution consists of an outer minimization over µ (4.38)
and an inner maximization over λ and V (4.30). Thus, two loops (an inner and an
outer loop) as in [163] are used in what follows. In [110], the authors proposed
a heuristic extension of Schubert’s and Boche’s method [128] to jointly satisfy the
multiple power constraints based on a subgradient method as in [163].

The previous works of this thesis [37, 40] directly derive a solution based on in
inner and outer loop for the MBP. The problem (4.25), (4.26) corresponds to an MBP
with a weighted sum power constraint. For the problems (4.25), (4.26) and (4.27),
(4.28) strong duality is proved in Lemma 4. The corresponding UL problem (4.27),
(4.28) is reduced to a computation of the largest eigenvalue and the corresponding
eigenvector. This chapter presents an iterative computation of the largest eigenvector
instead of an eigenvector decomposition. In [56], the so-called power iteration is
shown to be a low complexity solution if only the largest eigenvalue is desired.

Regarding the surrogate dual problem (4.38), the inner problem in the downlink
domain for fixed µ is just an MBP as in [19], [144], with a weighted sum power
constraint, where each beamforming vector is scaled by Mi. However, in contrast
to [19] and [144], the CSI is given here in the form of higher rank spatial correlation
matrices. In the following section (Section 4.4.1), a low complexity method based on
an iterative computation of the UL beamforming vectors and the UL power λ for a
fixed vector µ is presented. Section 4.4.2 presents a solution, similar to [163], where
the optimal vector µ is found by a subgradient projection algorithm in an outer loop.
However, it is known that a subgradient projection method requires a properly chosen
step size; otherwise, the convergence is very slow [163]. Therefore, a faster converging
low complexity method based on a simple scaling of the µis or µi,as is presented as
well. The iterative algorithm has a lower complexity than to the convex solver based
methods, especially for a low accuracy.

4.4.1 Inner Loop

The inner function corresponds to an MBP with a weighted sum power constraint.
The inner maximization in the dual UL problem (4.27) of (4.25) is optimized over
λ and V. This is done iteratively in the inner loop by first computing the optimal
receive beamforming vectors vis and then updating the optimal UL power allocation
λ for fixed V until convergence is achieved. In [157] and [144], where instantaneous
CSI is used, a fixed point iteration for the λ vector is introduced. The convergence
is proved in [19]. The authors of [19] use instantaneous CSI to balance the SINR.
Using these resulting rank-1 matrices, an optimal closed form solution is given by
the minimum variance distortion-less response (MVDR) beamformers. For a given
λ vector, a closed form solution for the UL beamformers exists. In contrast to that,
the MBP is based here on higher rank spatial correlation matrices. Consequently,
no closed form solution exists. A solution based on higher rank spatial correlation
matrices for a sum power constraint MBP is already proposed in [128]. In [57], a
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solution with reduced complexity compared to [128] is proposed. In [57], in each
iteration a complete matrix inversion of the interference matrix

Σi = Mi +
∑

l∈U ,l 6=i

λlRi,l (4.43)

and an eigenvalue decomposition is calculated. The inner problem (4.27) of the surro-
gate dual problem is the maximization of the balanced UL SINR (4.10) and is equiva-
lent to the eigenproblem

Ri,ivi = χi,nΣivi, (4.44)

with the largest eigenvalue χi,max = max1≤n≤NA
(χi,n) = (λi)

−1. The matrix Σi is reg-
ular if all Ri,l are positive definite, hence, the generalized eigensystem can be trans-
formed to a special eigensystem [56] and the UL power can be directly computed as
in [57]:

λi =
1

χi,max(Σ
−1
i Ri,i)

(4.45)

The convergence of the resulting fixed point iteration is proved in [19].
This chapter proposes a further complexity reduction, as a complete eigenvalue

decomposition is not necessary. The eigenvalues corresponding to the UL power and
the eigenvectors corresponding to the UL beamformers can be computed iteratively
and jointly with the uplink power computation. Hence, compared to [57], less com-
plexity per iteration is achieved, because instead of an eigenvalue decomposition,

just a matrix vector multiplication vi = Σ
−1
i Ri,ivi is performed. If (λi)

−1 is strictly
the largest eigenvalue, the eigensystem can be solved iteratively by the power iter-

ation [56]. The inverse of the largest eigenvalue χi,max(Σ
−1
i Ri,i) corresponds to UL

power λi which is computed for fixed V directly by

λi =
vH

i Σivi

vH
i Ri,ivi

. (4.46)

The power iteration is a low complex algorithm for finding the dominant eigenvector
of an eigensystem [56]. It is listed in Algorithm 4. As in [144] and [57], the λis are
scaled such that the constraint

∑

i∈U λi ≤
∑

i∈U Tr{MiPi} of the dual problem in (4.30)
is satisfied with equality.

If there exists a unique spectral radius

ρ(Σ−1
i Ri,i) = max

1≤n≤NA

(χi,n(Σ
−1
i Ri,i))

of the matrix Σ
−1
i Ri,i, the power iteration will converge. The convergence is geomet-

ric with a ratio of the largest eigenvalue to the second largest eigenvalue [56]. If the
largest eigenvalue is significantly larger than the second largest eigenvalue, the con-
vergence of the inner loop is very fast. The numerical results suggest that the case
of multiple identical eigenvalues does not occur. The inner loop converges after 29
iterations for a accuracy of 10−5.
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Algorithm 4 Inner loop: vector iteration

repeat
for i = 1 to M do

vi ← Σ
−1
i Ri,ivi

Set ‖vi‖ = 1 ∀i ∈ U
λi ← vH

i Σivi

vH
i Ri,ivi

end for
λi = βλ̃i, ∀i ∈ U , with β =

∑
i∈U Tr{MiPi}∑

i∈U λ̃i

until convergence
p = ( 1

γ D−1 −Ψ)−11

return V, γU
opt = β

After obtaining the normalized UL beamformer, the DL beamforming weights can
be obtained by wi =

√
pivi. In Appendix A.1, the DL power vector p is derived and

given by

p = (
1

γ
D−1 −Ψ)−11 (4.47)

if γ = γD = γU. Algorithm 4 has similarities to the solution proposed in [19].
However, the proposed solution is also able to solve the MBP if long-term CSI in
the form of higher rank spatial correlation matrices is available.

4.4.2 Outer Loop

The outer loop minimizes f D(µ) (4.25) such that the given transmit power constraints
are met. In this chapter, two methods for updating the µ vector or the Mi matrices are
proposed:

1. Method 1: Subgradient projection method: The update of the µ is based on
the subgradient method such that

∑

i∈U ωH
i Miωi equal to the total power P [32].

This method is based on the subgradient projection method proposed in [163] for
the power minimization problem. Later, [21] proposed a subgradient projection
method which solves the MBP directly.

2. Method 2: Low complexity µ-scaling (µ-SC): In the constraint (4.34), the two
sums are weighted sums over µ. Since, the constraint is satisfied with equality
at the optimum (Proposition 8),

∑

i∈U
Tr{MiPi} =

∑

i∈U
ωH

i Miωi (4.48)

the Mis can be updated by comparing the power coupled with each Mi with
Pi and then scaling the µi,as such that the constraint in (4.34) is satisfied with
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equality [32]. Let M̂i be the value of Mi of the previous iteration, the Mi s are
computed by the following update in the case of per-antenna power constraints:

M̃i = diag(ωiω
H
i )P−1

i M̂i, Mi =
1Tp

∑

i∈U Tr{M̃iPi}
M̃i. (4.49)

In the case of per-BS antenna array power constraints the update is similar:

M̃i =
[p]i
Pi

M̂i, Mi =
1Tp

∑

i∈U Tr{M̃iPi}
M̃i. (4.50)

The update of Method 2 is based on the decoupling as in (4.40) and (4.41), where each
Mi is optimized independently. Let ρi = ωiω

H
i in the case of a per-BS antenna array

power constraint and ρi,a = |[ωi]a|2 in the case of a per-antenna power constraint. Fur-
thermore, at the optimum some of the ρis or ρi,as are equal to Pi or Pi,a, because they
can not exceed the power constraint and the µis (if a per-BS antenna array constraint
is used) or µi,as (if a per-antenna constraint is used) corresponding to these ρis or
ρi,as have a finite value. Using this observation, the Mis can be scaled per-BS antenna
array with αi = ρi/Pi so that µ̃i = αiµ̂i or per-antenna element with αi,a = ρi,a/Pi,a so
that µ̃i,a = αi,aµ̂i,a. This factor αi or αi,a will be larger than one if the ρis or ρi,as do not
violate the power constraint Pi or Pi,a. On the other hand, it will be smaller than one
and decrease the µi or µi,as if the constraint is violated. The ρis or ρi,as are monotonic,
therefore, the scaling of the Mis is monotonic as well. Thus, after sufficient number
of iterations the Mis scale the UL SINR (4.10) so that the power constraint is satisfied
for all BS arrays or antenna elements.

For fixed Ω, the update (4.49), (4.50) can be seen as a normalized affine selfmap-
ping satisfing the sum power constraint (4.48). [94, Theorem 1] proves that a nor-
malized selfmapping converges if the mapping is concave or affine. With (4.48), the
mappings (4.49), (4.50) are affine in µ for a fixed Ω. Hence, there can be also a way to
prove that the iteration converges to a fixed point based on the theory of [94].

If just a single BS exploits its power constraint (see Proposition 6), the algorithm
must only search the worst link. Consequently, a convergence is very fast is this case.

The outer loop is shown in Algorithm 5. With the updates (4.49), (4.50), a conver-
gence is given in the case a balanced DL SINR exists.

Algorithm 5 Outer loop: DL Power and iterations over µ

Initialize µ = 1
repeat

Inner loop (Algorithm 1)
Update the µ vector by method 1 or 2.

until Convergence
return Ω
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Table 4.4: Simulation parameters.

Number of user drops 1000

Number of users per user drop 21

Number of BSs drop 21

Transmit antenna arrays ULA

Number of antenna array elements at BS 4

Number of antenna array elements at MS 1

Intersite distance 2000 m

Antenna spacing half wavelength

Path loss exponent 3.76

Available CSI long-term CSI

Power angular density Laplacian [52, 114]

Power constraint per-BS antenna array power constraint

4.4.3 Complexity

[57] presents a complexity analysis of the inner loop with an eigenvalue decomposi-
tion. In this chapter, the complexity of the inner loop is further reduced by replacing
the eigenvalue decomposition with a power iteration method [56]. In Appendix A.4,
the computation of the flop count is derived in detail. Assuming KI is the number of
iterations of the inner loop and KO is the number of iterations of the outer loop, the
upper bound of the complexity of the proposed iterative algorithm with update (4.49)
and with N users and NA antenna elements per BS is in the order of

O(KOKI N2(N3
A + N2

A) + KON2N2
A)

The complexity of the bisection with an SDP is in the order of

O(KO log(1/ǫ)
√

NNA(N3N6
A + N2N2

A)).

4.5 Numerical Results

Table 4.4 summarizes the main simulation parameters for the network. The numerical
results are based on long-term CSI in the form of higher rank spatial correlation
matrices. The power angular density distribution is assumed to be Laplacian [120]
and a similar simulation setup compared to [83] is used here. The pathloss gain is
(r/1000)−3.76, where r is the distance in meters. For all BSs the same power constraints
are given and all users have the same thermal noise level σ2. The users are randomly
distributed in the multicell network, but with a distance larger than 50 meters away
form the BSs. Assuming a single antenna at the BS, the largest possible SNR in this
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Figure 4.3: Cumulative distribution function (CDF) of the SINR of the new iteration based
method of Section 4.4 (red) and the conventional SDP based bisection based method of Section
4.3.1. The scaling of both axes is logarithmic.

model is at a distance of 50 meters in the direction of the antenna broadside. It is
given by SNR = 57.16dB.

Three algorithms are compared in this section:

• The bisection algorithm with an SDP as feasibility check problem given in Sec-
tion 4.3.1. The beamforming vectors are calculated based on the largest eigen-
value of and the correponding eigenvector of solution of the SDP.

• The new iterative algorithm of Section 4.4 with Method 1 (subgradient method).

• The new iterative algorithm of Section 4.4 with Method 2 (4.49), (4.50).

Regarding Figure 4.3, the approach based on the interior point method to solve the
SDP [139] requires a higher accuracy for the bisection algorithm to find an optimally
balanced solution. As the accuracy increases, the solution for the SDP found by the
interior point method improves (see Figure 4.4). The optimality ratio is the ratio of
the largest eigenvalue of the solution matrices of the SDP divided by the sum of
all eigenvalues of the solution matrix. The solution is nearly optimal at a accuracy
smaller than 10−5.

Figure 4.3 shows that the iterative method is already very close to the optimum
for a low accuracy around ǫ = 10−3. At a accuracy of ǫ = 10−5, the solution of the
interior point method for the SDP is nearly optimal (see Figure 4.4). The new iterative
algorithm (Section 4.4) to determine the Mi matrices iterates over an MBP with a
weighted sum power constraint. In each iteration, the matrices Mi are determined so
that, e.g., the per-antenna array power constraints are satisfied. Hence, the balanced
SINR decreases per iteration. This convergence behavior can also be observed in
Figure 4.5.



56 Chapter 4. Theory of the Unicast Multicell Max–Min Beamforming Problem

1e−2 1e−3 1e−4 1e−5
0

20

40

60

80

100

precision

o
p

ti
m

a
li
ty

 r
a

ti
o

 [
%

]

Figure 4.4: Optimality ratio of the SDP based bisection method (Section 4.3.1) for different
accuracies.
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Figure 4.5: Convergence behavior of the different algorithms.

The interior point methods for the SDP perform not sufficiently well for a lower
accuracy and, therefore, there are often users with an SINR below the optimal value.
An advantage of the presented solution is the convergence behavior. For a low accu-
racy, after a few iterations, the found SINR is already close to the lower bound or the
optimal value. In Figure 4.5 the convergence behavior of the presented algorithm is
depicted for an exemplified user drop. After a few iterations the algorithm is very
close to the optimal value. The algorithm based on the subgradient based outer up-
date can converge very fast if the step size is correctly chosen. This is not always the
case.
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Figure 4.6: Number of iterations for different accuracies.

The outer loop of the presented algorithm is solved by the subgradient projection
method or by the µ-SC method (4.49). The subgradient projection method requires
a quite low step size to avoid divergence. Here,the step size is adapted as in [163].
Using a sufficiently small step size, the method based on the subgradient method in
some cases (user drops) requires a large number of iterations to find the solution.

Figure 4.6 depicts the number of iterations of the presented µ-SC method (4.49),
(4.50) (outer loop), the inner loop and the bisection algorithm with the SDP. The
number of required iterations increases linearly with the given accuracy. For a high
accuracy, the presented algorithm requires more than 50 iterations. However, for a
low accuracy, the presented solution with the µ-SC method (4.49) requires only a
few iterations. For a low accuracy, the solution of the bisection algorithm with the
SDP is not optimal (see Figure 4.4). The bisection algorithm requires a accuracy of
ǫ = 10−5 to achieve a balanced SINR and the µ-SC method achieves the same result at
a accuracy of 10−3 (Figure 4.3). The inner loop has a accuracy of 10−5, then it requires
KI = 28 iterations to converge.

Regarding the order of the complexity, the largest term of the O-complexity-
function of the conventional convex solver based algorithm grows in N3.5N6.5

A per

iteration. The largest term of the new algorithm grows in N2N3
A per iteration. Table

4.5 compares the largest terms of the complexity for a precision of ǫ = 10−3. Al-
though the new algorithm needs more iterations, the complexity is smaller compared
to the conventional convex solver based approach due to the reduced complexity per
iteration.

4.6 More General Scenarios

This sections discusses the MBP in two more general scenarios. The previous sections
always assumed a balanced SINR (see Definition 32). This is given in many of sce-
narios. However, there are cases where a balanced SINR does not exist. Therefore,
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Table 4.5: Estimation of the complexity for ǫ = 10−3, N = 21 and NA = 4.

Algorithm largest term number of iterations

SDP based N3.5N6.5
A = 3.47 · 108 KO log(1/ǫ) = 19 log(1/ǫ)

New iterative N2N3
A = 2.824 · 104 KOKI = 980

Section 4.6.2 discusses more general scenarios without a balanced SINR for a given
set of power constraints.

Additionally, the previous section only considers an assignment of one BS to one
user. An extension where users can be served by multiple BSs is presented in Section
4.6.3. Both generalizations can have an influence on the optimality of the proposed
solutions.

4.6.1 Weighted Max-Min Beamforming

As illustrated in the previous section, max–min beamforming results in a balanced
SINR and, hence, in a fair distribution of the achievable rate among the users. How-
ever, the sum rate performance of a system with max–min beamforming can decrease
if, e.g., a user with very weak channel conditions is scheduled. Then, due to the bal-
ancing of the SINR among the users, the SINR of all jointly scheduled users decreases
and a low sum rate can be the result.

A simple solution to avoid this scenario is a weighting of weak users by a factor
δi. Then the downlink SINR of a user i is given by

Definition 34. Downlink SINR: Using the definitions of the spatial correlation matrices (4.7)
or (4.8) and a priority vector δ = [δ1, . . . , δM]T, the weighted downlink SINR is then defined
by

γD
i (Ω) =

1

δi

ωH
i Ri,iωi

∑

l∈U
l 6=i

ωH
l Rl,iωl + 1

. (4.51)

Instead of a new definition of the DL SINR, this weighting can be transparently
achieved by a weighting of the spatial correlation matrices. Using the matrices

Rl,i =







E{hl,ih
H
l,i}

δi·σ2
i

if i = l

E{hl,ih
H
l,i}

σ2
i

otherwise,
(4.52)

the original definition (Definition 4.9) of the DL SINR can be used. A weighted SINR
is used in Chapter 6 for a combination of max–min beamforming with relays. A
weighting of weak users results again in an unfair distribution of the SINR. Therefore,
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Chapters 5 and 6 present better solutions based on an avoidance of weak channel
conditions.

4.6.2 Interference Decoupled Scenarios

In this section the theoretical background concerning the optimality of the MBP is
investigated. In the previous section, the assumption of an balanced SINR for a given
noise level and a given set of power constraints is used. Hence, it is assumed that
there exists a balanced Pareto-optimal solution [165] of the DL SINR according to
Definition 33.

Definition 35. Networks, where a Pareto optimal balanced DL SINR for the given power
constraints exist, are defined as balanced interference coupled networks.

This section investigates a more general case, where for a decoupled structure of
the network for a given set of per-antenna power constraints or per-station power
constraints, a balanced SINR is not feasible. This section considers the same per-BS
power constraint PC for all BS arrays to simplify the discussion. The SINR of a user
i ∈ U can be expressed by

γD
i (Ω) =

pi
∑

l∈U
l 6=i

plGl,i + νi
, (4.53)

with the resulting interference attenuation and an effective noise level respectively:

Gl,i =
vH

l Rl,ivl

vH
i Ri,ivi

, and νi =
1

vH
i Ri,ivi

. (4.54)

The optimality conditions for more general power constraints need to be discussed
at first. The optimality condition for a per cell constrained max–min optimum is for-
mulated in the following well known proposition. A similar observation is presented
in [58].

Proposition 9. If γ∗ = maxp mini∈U γD
i and subject to pi ≤ PC, then at least one pi ∈ p

will satisfy pi = PC.

Proof. Contrary: Assuming all pi < PC and it is further assumed that:

γD
i =

pi
∑

l∈U
l 6=i

plGl,i + νi
= γ∗, (4.55)

then there exists a δ > 1 that at least one δ · pi = PC so that

γD
i =

δ · pi
∑

l∈U
l 6=i

δplGl,i + νi
=

pi
∑

l∈U
l 6=i

plGl,i + νi/δ
> γ∗ (4.56)

holds.
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Obviously, users served by BSs transmitting with the full power PC are the bottle-
neck.

4.6.2.1 Coupled Network

At first, the case of a network with a balanced SINR is discussed. A coupled net-
work is usually given in outdoor scenarios, where all users are subject to intercell
interference. This situation can be formally defined as:

Definition 36. A user i is coupled with the network if all Gl,i > 0 and Gi,l > 0 ∀l 6= i.

Proposition 10. A network with only interference coupled users according to Definition 36,
can always balance the SINR among all users.

Proof. Assuming, there exists one weakest user i with

Ii =
∑

l∈U
l 6=i

plGl,i + νi (4.57)

and Ii = max(I1, . . . IM). Then, the BS serving this user i will transmit with the full
power pi = PC according to Proposition 9. The resulting SINR of user i is then given
by

γD
i =

PC
∑

l∈U
l 6=i

plGl,i + νi
.

The SINR is balanced if the network is coupled:

γ∗ = γD
1 = . . . = γD

i = . . . = γD
M

By increasing the noise level νi an unbalanced SINR could be created. Assuming the
noise level νi will be scaled by with a δi > 1 so that

γD
i =

PC
∑

l∈U
l 6=i

plGl,i + νi
>

PC
∑

l∈U
l 6=i

plGl,i + δi · νi
. (4.58)

The SINR of user i is now decreased without any effect of the SINR of the other users
l 6= i, their SINR is still balanced. The power of BS i can not be increased to recover a
balanced SINR because it already reaches its power constraint. But if the network is
coupled, Gl,i > 0 ∀l 6= i, each BS l 6= i can reduce its own power to balance the SINR
of all users again.

4.6.2.2 Decoupled Network

A special structure of the network can result in conditions, where a balanced SINR
does not exist for a given set of power constraints. In this chapter two cases are
identified. The SINR remains unbalanced if a user is physically decoupled from the
network, e.g., the user could be strongly protected from intercell interference by build-
ings, strong antenna patterns. From the first impression this could be a suitable con-
dition for those users, on the other hand the algorithms requiring the existence of a



4.6. More General Scenarios 61

balanced SINR can not converge to a feasible solution in this case. At first, a formal
definition for the decoupled user is needed.

Definition 37. A user i is called decoupled from the network with per cell power constraints,

1. if this user does not receive interference from other users j 6= i, thus, Gj,i = 0 ∀j 6= i,

2. if this user does not generate any interference to other users j 6= i, thus, Gi,j = 0 ∀j 6= i.

Proposition 11. For a given set of power constraints PC it is not always possible to find a
balanced SINR γ∗ if there exists a user i which is decoupled from the network.

Proof. In the two cases of Definition 37, a balanced SINR can not be recovered:

1. Assuming user i is the weakest user in the network, which can be achieved by an
arbitrary large δi as in (4.58) and there is no intercell interference every Gl,i = 0
∀l 6= i, then the SINR of user i is given by

γD
i =

PC

δi · νi
(4.59)

Now, there is no possibility by power control to recover a balanced SINR. The
SINR of user i can be made arbitrarily small by increasing δi and the BS i can
only transmit with the maximal power pi = PC, because it can not exceed the
power constraint PC. The other BSs can not influence the SINR of user i.

2. Another situation is the opposite case, where the user i is not the weakest user
and its BS does not create interference to other users Gi,l = 0 ∀l 6= i. Then the
transmitted power of BS i to user i can not reduce the SINR of the other users l.
The BS i can increase its transmit power until pi = PC. The resulting SINR γD

i

can be larger than the SINR γD
l of the other users l 6= i because user i does not

create any interference to the residual network.

In these interference decoupled networks a balanced SINR is not feasible. The
solution presented in Section 4.4 requires a balanced SINR to converge to a solution,
where all power constraints are met.

4.6.3 Exploiting the Spatial Diversity with a CoMP Transmission

The previous sections only regard the assignment of one previously selected BS to a
user. A generalization is the so-called CoMP transmission where multiple BSs can
transmit to a user.

A large beamforming gain can be achieved if multiple BSs have a synchronized
phase. Then the BS array can be seen as a large virtual array. The received power
grows proportionally to the square of the number of antennas [124]. The works
[149, 150] investigate the CoMP transmission in the context of a network-wide co-
ordination. Multiple works investigate practical difficulties regarding CoMP in future
wireless systems [3,85]. The promising results of a first field trial are proposed in [75].
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However, the investigated scenario in this study is small. Furthermore, this study
shows, an enormous increase of the backhaul effort to a achieve a coherent transmis-
sion and the cell area where CoMP is feasible is limited by the length of the cyclic
prefix.

If the phase is not synchronized among the BS arrays, a diversity (spatial, and or
temporal) gain can be achieved [17, 102]. Another scenario is proposed in the con-
text with a multicast transmission in [82, 83]. If long-term CSI in the form of spatial
correlation information is available, a spatial diversity gain can be achieved. The ad-
vantage is a reduced backhaul effort due to the use of long-term CSI. The algorithms
presented in the previous section can be simply extended to this CoMP scenario by a
simple reformulation of the spatial correlation matrices and beamforming vectors.

4.6.3.1 Extension of the Spatial Correlation Matrices to the CoMP case

In this section, a network with N > M cooperating BSs is investigated. A user inside
a cell is served by three stations each equipped with NA antennas, as depicted in Fig.
4.7. At a time instance in each cell c one user i is jointly served by the three BSs
belonging to this cell c. Let Bi be the set of cooperating BSs for user i, then the signal
ri user i at a time instant is

ri =
∑

c∈Bi

ĥH
i,cω̂csi +

∑

k∈B̄i

ĥH
i,kω̂ksk + ni, (4.60)

where ĥi,c ∈ CNA×1 is the channel vector from the cth BS to the ith user. The set B̄i

denotes the set of interfering BSs such that Bi ∩ B̄i = ∅ and Bi ∪ B̄i = S , S being
the set of the currently active BSs. ω̂k ∈ CNA×1 is the transmit beamforming vector
at BS k, si is the information signal to user i with E{|si|2} = 1 and E{sks∗i } = 0 if
i 6= k. The noise signal plus the interference of other networks is given by ni. To
simplify the notation, the channel vectors of the cooperating BSs, given by set Bl,
can be stacked into a large virtual antenna array hl,i. This corresponds to a channel
vector hl,i between the virtual array serving user l to user i. The same can be done
with the beamforming vectors at the BSs of the set Bl, which results in a large virtual
beamforming vector ωl. Using these notations the received signal can be rewritten as:

ri = hH
i,iωisi +

∑

l∈U ,l 6=i

hH
l,iωlsl + ni. (4.61)

Here, U denotes the set of indices of users or cells with one scheduled user. The
perfect knowledge of instantaneous CSI and a perfect synchronization among the co-
operative BSs is very challenging in large networks. Instead of the instantaneous CSI,
a more practically relevant approach is the usage of the long-term CSI because of its
long stationarity compared to the instantaneous CSI [77]. As in the previous section,
the assumption of long-term CSI results in the mean SINR where an additional aver-
aging over the channel realizations H is done. With the assumption E{|ni|2} = σ2

i ,
the mean SINR is defined by Eq. (4.6). Assuming the channels of the different links
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are uncorrelated, the spatial correlation matrices in Eq. (4.6) in the case of a CoMP
transmission are given by

Rl,i =
1

σ2
i

E{hl,ih
H
l,i} =

1

σ2
i

⊕c∈Bl
E{ĥi,cĥH

i,c} =
1

σ2
i

⊕c∈Bl
R̂i,c. (4.62)

Here, ⊕ denotes the direct sum of two matrices, e.g, ⊕i∈{1,2}Ai = diag(A1, A2). A
similar approach is used in [8] for the optimal assignment of a single BSs to users in
a network. The extension to the CoMP transmission only results in a new definition
of the spatial correlation matrices. Hence, the algorithmic solution in Section 4.4 is
unchanged.

The more theoretic case of a coherent transmission of multiple BSs to one user by
a virtual large array is presented in [150]. In this case all BS transmit synchronized
in phase. Hence, a beamforming gain can be achieved. The spatial correlation matrix
for this perfect phase synchronized transmission is

Rl,i =
1

σ2
i

hl,ih
H
l,i. (4.63)

In a similar way the UL SINR can be formulated for the CoMP transmission as
follows: The UL (receive) beamforming vectors of a single BS are given by v̂c. Con-
catenating the receive beamforming vectors v̂c of the set of BSs (c ∈ Bi) from a user i
in a large vector vi in the UL, and with µa,i ∈ R+ ∀a ∈ Ai, where Ai is the set of array
elements serving user i and A =

⋃

i∈U Ai denotes the total set of antenna elements,
and the definition of the matrix Mi = ⊕a∈Ai

µa, the dual UL SINR of the virtual BS
array serving user i is given by

γU
i (µ, λ, vi) =

λiv
H
i Ri,ivi

vH
i (Mi +

∑

l∈U
l 6=i

λlRi,l)vi
. (4.64)

Using the DL and UL SINR with spatial correlation matrices according to (4.62), the
algorithm presented in Section 4.4 can also exploit the spatial diversity.

4.6.3.2 Numerical Results

This section presents some numerical results for the CoMP assignment scenario pre-
sented by Section 4.6.3. The simulation scenario corresponds to the scenario depicted
in Fig. 4.7. Three BS arrays form a large virtual array to a user inside a cell. Each
array is a ULA. The optimization is based on long-term CSI in the form of Hermitian
positive semidefinite Toeplitz matrices among each BS array and user. To a avoid an
interference decoupled scenario a weaker antenna pattern is used at each BS. Further
simulation parameters are summarized in Tab. 4.6. For all BSs the same per-antenna
power constraints are given and all users have the same thermal noise level σ2. As-
suming a single antenna at the BS, the SNR at 50m before the BS is given this scenario
by SNR = 48.9dB.

Fig. 5.5 depicts the cumulative distribution functions (CDFs) of the following
algorithms:
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Figure 4.7: Scenario with a CoMP transmission: The lobes show the orientation of the an-
tenna pattern. Users are served by the three BSs of each cell.

Table 4.6: Simulation parameters

Number of user drops 1000

Number of users per user drop 21

Number of BSs 21

Transmit antenna arrays ULA

Number of antenna array elements at BS 4

Number of antenna array elements at MS 1

Interference of adjacent networks By ring of omnidir. BSs

Intersite distance 500 m

Antenna spacing half wavelength

Available CSI long-term CSI

Path loss exponent 3.76

Power angular density Laplacian [52, 114]

Power constraint per-antenna

All algorithms use an accuracy of ǫ = 10−6. The proposed architecture with two
additional BSs in the cell edge region results in a higher gain for all users compared
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Figure 4.8: Cumulative distribution function (CDF) of the SINR

Figure 4.9: The SINR as a function of the location. The red circles denote users.

to the single BS per cell case (see Fig. 4.8). The extended algorithm A1 finds the same
SINR as the convex solver based bisection method A2.

Fig. 4.9 depicts the SINR as a function of the location. The color denotes the SINR.
High SINR corresponds to red areas, low SINR corresponds to blue areas. Only BSs
close to users are active and these BSs focus their power in the direction of the served
users, to avoid intercell interference.

4.7 Summary

• This chapter presents a new framework for uplink–downlink duality for the
max–min beamforming problem with general power constraints. In the case an
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equivalent quasi-convex form of the max–min beamforming problem exists, if,
e.g, instantaneous CSI is available, strong duality is directly proven by a duality
theorem for quasi-convex programming [107].

• If long-term CSI in the form of higher rank spatial correlation matrices is given,
no equivalent quasi-convex form is known. However, in this case the max–min
beamforming problem can be also solved by derived framework for uplink–
downlink duality.

• The presented dual problem can be efficiently solved. Based on this framework
a low-complexity iterative solution is presented. This presented algorithm is
based on an inner and outer loop and outperforms the known convex solver
based solution.

• This chapter further discusses the SINR balancing conditions of the max–min
beamforming and gives a discussion of the interference decoupled cases. A
finding is, that a balanced SINR can not always be assumed. Decoupled users
can get a different SINR than the residual coupled network. However in outdoor
scenarios such a situation does not often occur, hence interference coupling is a
reasonable assumption.

• Finally, a straightforward extension to cooperative multipoint transmission is
presented. An efficient method can be applied is derived in the case each BS
array knows the spatial correlation matrices. The applicability of the proposed
iterative solution is illustrated.



Chapter 5

Theory of the Multicell
Beamscheduling Problem

The content presented in this Chapter is prepublished in the publication [42]. This
chapter considers only a unicast downlink transmission.

5.1 Introduction

In multicell networks intercell interference limits the performance if the frequencies
are reused in adjacent cells. Section 4 examines a method to achieve a max–min fair
SINR among all jointly scheduled users.

However, max–min fairness has the drawback of a low overall sum rate: A user
with bad channel conditions can decrease the performance of all jointly scheduled
users. This thesis mainly regards a network optimization based on long-term statis-
tics, hence, fast fading does not influence the instantaneous SINR if the beamforming
weights are found by using available long-term CSI. Also, shadow fading can decrease
the overall performance. Section 6 presents an approach to overcome this shadow fad-
ing problem in max–min fair systems.

This section regards another effect, which also results in a low sum rate. In ad-
dition to shadow fading, unfavorable scheduling decisions can decrease the sum rate
performance.

If two users are closely located and served by different BS arrays and their antenna
array vectors are optimized with MBF, a low balanced SINR among the users can
be the result. Consequently, different and jointly served links should be spatially
separated, otherwise mutual interference can decrease the sum rate. The avoidance
of these unfavorable scheduling decisions is called beam-scheduling problem. The
combination of MBF and beam scheduling may result in a fair distribution of the
SINR and jointly in a larger sum rate of the system.

5.1.1 Scenario

A fully coordinated multicell network, as depicted in Fig. 4.1 on Page 32, is con-
sidered. Each of the N BS arrays uses NA correlated antenna elements to form beam
lobes in the direction of scheduled users. The transmit power of each antenna element
a of BS array c is limited to a power constraint of Pc,a. Each user has a single antenna
element. The optimization is centralized and based on long-term CSI in form of spa-
tial correlation matrices to reduce the backhaul effort as in the previous sections. For
transmit beamforming, this statistical CSI is a practically relevant information to form
beam lobes in the direction of users, while considering the interference of adjacent

67
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networks [76]. The previous Chapter 4 discusses the unicast MBP. Based on long-
term CSI in the form of spatial matrices, a low complexity iterative algorithm exists,
hence, the MBP can be solved efficiently.

The previous chapter only assumes properly scheduled users. However, the prob-
lem of user selection is another difficult problem and has a strong influence on the
system performance, especially, if fairness among the users is desired [153]. This
chapter proposes an extension to a joint optimization of the beamforming vectors, the
power control, and the beam scheduling along with multiuser scheduling.

5.1.2 Related Work

Intercell interference mitigation based on multicell transmit beamforming with joint
power control has been investigated intensively during the last ten years, [9, 31, 150,
157]. Coordinated max–min beamforming (MBF) achieves a fair balanced SINR among
all jointly scheduled users in a network while the transmit power per-antenna element
or per-antenna array is limited to a power constraint [19,20]. Iterative low complexity
algorithms for the MBF with per-antenna power constraints are proposed in [19,20,40].
Hence, the joint optimization of transmit power and beamforming vectors enables a
fair distribution of the SINR among a set of scheduled users. A drawback of MBF
is the low sum rate that results in case of unfavorable scheduling decisions. Conse-
quently, a smart scheduling of the users is required.

The work [153] discusses the information theoretical aspects of multiuser schedul-
ing and beamforming. The authors show that in environments with slow fading, the
diversity gain can be improved with multiuser scheduling along with opportunistic
beamforming.

A problem related to beam scheduling is called channel assignment problem
(CAP). In addition to the exploitation of multiuser diversity, interference mitigation
is another important issue, especially in multicell networks. The assignment of chan-
nels to users or cells also influences the interference in a network. In [112], the authors
propose the CAP for cellular networks. The aim was to allocate a number of channels
to cells such that certain constraints are satisfied.

Another possibility to improve the SINR is an optimized beam scheduling, since
beam lobes cause interference in adjacent sectors [72]. A first simple round-robin
beam switching approach to avoid these beam collisions is proposed in [96]. The
articles [71, 72] propose optimized approaches which take into account the channel
quality information of the users or the geographical data. However, these approaches
consider only small, e.g, 2-cell scenarios and do not jointly optimize the beamforming
vectors. The work [66] considers a spatial scheduling with the objective to cancel the
interference by, e.g. zero-forcing.

In contrast to [66,71,72], this chapter uses long-term CSI in the form of spatial cor-
relation matrices to optimize the beam scheduling, beamforming and user scheduling
jointly. The MBF optimization results in a balanced SINR and these SINR values are
used to compute a cost function for the beam scheduling problem.

Later, [160] proves the NP-hardness of a similar problem. In contrast to this
chapter, where the balanced mean SINR is used for the objective function, the authors
in [160] use so-called interference constraints to define groups of beams which are
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mutually interfering with each other. Hence, instead of the SINR optimization this
scheme can be seen as an orthogonal approach of finding non-interfering beams such
that the overall performance is maximized.

Instead of an interference avoidance, the authors of [2] propose a max–min fair an-
tenna assignment scheme for a system with geographically dispersed antenna ports.
The selection of antenna ports is optimized such that the SINR of the weakest user is
maximized. Instead of a simple optimization of the assignment of stations to users [2],
this paper proposes optimization techniques to optimize the beamforming vectors
along with the temporal scheduling of users such that the sum rate, or the minimum
SINR is maximized. This problem is called beam scheduling problem in this pa-
per. This paper shows the close relationship between the multicell beam scheduling
problem and the NP-hard multidimensional assignment problem (MAP) [18,122]. A
commonly used approach for the MAP is simulated annealing [23]. In addition to
simulated annealing, dimension-wise optimization approaches are recently proved to
have a better performance [62].

5.1.3 Contributions

This chapter presents the following extensions:

• Previous works as [66, 71, 72, 160] use predefined beamformers or zero-forcing
or avoid interference by a beam selection. This chapter uses the balanced SINR
of a max–min beamformer as cost function for a temporal user scheduling. The
result is an avoidance of a low balanced SINR which is a known drawback of
MBF.

• The schemes in [2, 66, 71, 72, 160] use instantaneous CQI. Furthermore, the op-
timization is performed only for one time instant. This paper generalizes this
approach and optimizes the beam scheduling over the stationary interval of the
long-term statistics of channel [76]. Therefore, this chapter considers in addition
to SINR fairness also temporal fairness.

• This chapter proves the NP-hardness of the general beamscheduling problem
and shows additionally that the general beamscheduling problem in the 2-cell
scenario is equivalent to a linear assignment problem which can be optimally
solved by a well known polynomial time algorithm. Furthermore, this chapter
presents the optimal solution for the 2-cell case. The heuristics for the general
N-cell scenario show a similar behavior.

• The N-cell beam scheduling problem has a close relation with the multi-dimen-
sional assignment problem (MAP). A useful approach to solve the MAP is sim-
ulated annealing. This chapter proposes a simulated annealing based beam
scheduling algorithm and additionally dimension-wise optimization methods
based on an extension of the optimal approaches for the 2-cell scenario. The
algorithms are compared in terms of complexity, sum rate performance and
max–min SINR fairness.
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Table 5.1: Overview of the different algorithms

Algorithm Temp. fairness Objective Approach Complexity

A1: random RRS RRS - random solution low

A2: dim.-wise sum rate max. QFS sum rate dimension-wise high

A3: dim.-wise max–min QFS max–min dimension-wise high

A4: greedy sum rate max. ORRS sum rate greedy algorithm low

A5: sum rate based SA QFS sum rate local search high

• Different objective functions are used in this chapter: If the maximized sum rate
is the objective, a higher system throughput will be the result in the case of max–
min beamforming. If fairness is desired this approach will be not the best choice.
Therefore, this chapter additionally presents a novel problem formulation based
on a graph theoretical max–min problem which achieves a more fair distribution
of the mean SINR in the whole stationary interval of the long-term CSI. Table
5.1 depicts an overview of all proposed algorithms.

• In extension to the sum rate maximization approaches, this paper shows a low
complexity algorithm with less than half of the complexity compared to the
other algorithms. Additionally, the new approach can guarantee a higher tem-
poral fairness. Instead of a so-called quasi-fair scheduling (QFS), where each
user is scheduled equally often, the greedy approach can guarantee so-called
opportunistic Round-Robin scheduling (ORRS) fairness which is a temporal fair
scheduling scheme (further details are introduced in Section 5.5.1). Table 5.1
depicts an overview of all proposed algorithms.

• This chapter presents an optimization problem for minimizing the delay be-
tween two consecutive transmissions to users in the system. This chapter proves
the NP-hardness of this problem and shows that multiple heuristics, which are
developed for the traveling salesmen problem, are suitable to solve this problem.

• Finally, a detailed analysis of four proposed algorithms concerning complexity,
temporal fairness, SINR fairness and sum rate is presented.

Outline: Section 5.2 presents the system setup and the data model of the inves-
tigated system depicted in Fig. 4.1. Section 5.3 defines the MB problem and the
beamscheduling problem and proves the NP-hardness of the general N-cell beam-
scheduling problem. For N = 2 an optimal solution can be computed in polynomial
time. Two optimal approaches, a fair and a sum rate maximizing approach, are pre-
sented in Section 5.4. Section 5.5 presents four heuristics for the general N-cell case.
Finally, Section 5.6 presents a subsequent optimization which can further enhance the
delay between two consecutive transmissions to users in the network. This chapter
concludes with a summary and a short discussion in Section 5.7.
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5.2 System Setup and Data Model

Consider a network with N cooperative BS arrays as depicted in Fig. 4.1. Each antenna
array is equipped with NA antennas. In this network, M users are equally distributed.

The matrix S ∈ NN×K defines the assignments of these users to BSs and schedul-
ing slots with index k. Each element in S with index c, k is given by

[S]c,k = i, user i is scheduled by BS c in slot k. (5.1)

The variable K denotes the total number of orthogonal slots. Here, orthogonal means
orthogonal in the temporal domain or orthogonal scheduling slots. However, an ap-
plication to channels orthogonal in the frequency domain is also feasible. An exten-
sion to a multi-carrier system is straightforward. Let Cc ∈ NKT×KF denote the matrix

of all KT orthogonal time and KF frequency slots. Then, sc = vec(Cc) ∈ N1×[KT ·KF]

denotes the vectorized version of this matrix and corresponds to one row of the matrix
S.

This chapter uses a similar signal model as introduced in Chapter 4. However,
a few modifications concerning the indexes are required here. At a time instant,
each BS array serves one user equipped with one antenna element, hence, N users
are scheduled at the same time for a given orthogonal frequency resource. A user
i = [S]c,k in cell c receives from its BS array of the cell c in slot k the signal

ri,k = hH
i,i,kωi,ksi +

∑

l∈[S]:,k, l 6=i

hH
l,i,kωl,ksl + ni. (5.2)

The vector hl,i,k ∈ CNA×1 is the MISO channel between the BS antenna array of cell l
serving user l and user i. Each BS antenna array serving a user i uses beamforming
vectors ωi,k ∈ CNA×1 to form a beam lobe to user i in slot k. The scalar ni denotes the
interference plus noise of adjacent networks with the assumption E{|ni|2} = σ2

i and

E{ni} = 0. The desired signal transmitted to user i is denoted by si with E{|si|2} = 1
and E{sls

∗
i } = 0 if l 6= i. With the instantaneous downlink SINR

γ̂i,k =
|hH

i,i,kωi,k|2
∑

l∈[S]:,k
l 6=i

|hH
l,i,kωl,k|2 + σ2

i

, (5.3)

the ergodic capacity a user i achieves is given by

R̂i,k = E{log(1 + γ̂i,k)}. (5.4)

As already mentioned in Section 4.2, the optimization based on the long-term CSI is
practically more relevant in a multicell scenario. Therefore, as in Eq. (4.5) the ergodic
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Figure 5.1: Example: Beamforming based on scheduling decisions.

capacity is approximated with the mean SINR (by spatial correlation matrices (4.7))
which is denoted as a function of the scheduling matrix S by

γi,k =
ωH

i,kRi,iωi,k
∑

l∈[S]:,k
l 6=i

ωH
l,kRl,iωl,k + 1

. (5.5)

The rate Ri,k is an approximation of the ergodic capacity and is the performance mea-
sure. All optimizations of the beamforming vectors ωl,k and the scheduling decisions
are made based on the long term CSI given in (2.3). The matrix concatenated by the
total set of beamforming vectors in slot k is denoted by Ωk. For a fixed beamforming
strategy (in this chapter MB), the total sum rate over all scheduling slots K

R(S) =
K∑

k=1

∑

i∈[S]:,k
log(1 +

ωH
i,kRi,iωi,k

∑

l∈[S]:,k
l 6=i

ωH
l,kRl,iωl,k + 1

) (5.6)

is used as a cost function.

5.3 Problem Formulation

A single frequency network will result in a high spectral efficiency if intercell interfer-
ence can be mitigated. A promising method to mitigate interference among a set of
scheduled users and to achieve fairness is MB. The result is a balanced SINR among
all jointly active users using the same channel ressource. However, an unfavorable
scheduling decision can result in a low balanced SINR among all jointly scheduled
users. Fig. 5.1(a) depicts an example with a low balanced SINR among the scheduled
users. Users 1, 3, 6 and 7 are jointly scheduled and located in the same geographical
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region. Therefore, all beams (denoted by dashed lobes) are directed in the same re-
gion. Hence, the number of degrees of freedom to achieve high balanced SINR among
the users with MB is limited. Fig 5.1(b) shows a better scheduling decision. The users
2, 3, 4, and 8 are located geographically more separately. Therefore, a higher SINR
can be achieved with MB.

5.3.1 Beamforming Problem

It is desired to maximize the lowest SINR γi,k of all jointly scheduled users i ∈ [S]:,k
in slot k, where the power of each antenna element is subject to a power constraint
Pc,a. This problem can be formally expressed as a MB problem with per-antenna array
element power constraints:

γk = max
Ωk

min
i∈[S]:,k

γi,k (5.7)

s.t. |[ωl]a|2 ≤ Pl,a ∀a ∈ Al, ∀l ∈ [S]:,k.

The index set of antenna array elements of the BS array serving user i is denoted
by Ai. For simplification each BS antenna array uses the same number NA of array
elements. The matrix concatenated by the total set of beamforming vectors in slot k
is denoted with Ωk = [ω1,k, . . . , ωN,k]. The problem (5.7) is non-convex in general.
However, for special instances, Chapter 4 presents efficient solutions of the problem
(5.7). Section 4.4 presents a low complex iterative approach for the MBP (5.7) based
on the UL-DL duality. Hence, the MBP is solved efficiently.

5.3.2 Beamscheduling Problem

A smart assignment of jointly scheduled users increases the balanced SINR which is
the solution of the MBF problem (5.7). The main idea for the optimization presented
in this thesis is now the avoidance of unfavorable scheduling decisions such that the
beamforming vectors can achieve a higher balanced SINR which results in a higher
sum rate.

All optimizations (beamforming and scheduling) presented in this chapter are
based on long-term CSI. This approach is based on the idea to compute the assign-
ments of users i to BSs c and scheduling slots k in advance and reuse them as long
as the channel is stationary. This assignment is given by the matrix (5.1). Hence,
matrix S is beside the beamforming vectors Ωk another optimization variable. The
optimization presented in this section is based on permutations.

Definition 38. Let π1 = [i1, i2, . . . iK] ∈ NK be an index vector and let Pc ∈ {0, 1}K×K

be a permutation matrix, with
∑K

l=1[Pc]n,l = 1 and
∑K

l=1[Pc]l,n = 1, ∀n = 1, . . . , K. A
permutation πc = κ(π1) of a index-vector π1 = [i1, i2, . . . , iK] is given by a permutation of
the elements of the vector: πc = κ(π1) = π1Pc.

To simplify the following notations, each cell contains exactly K active users. A
straightforward optimization goal is the sum rate maximization of the approximated
rate defined in (4.5). With the assumption of an equal number of users per cell and
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BS antenna array and with the set W = {Ω1, . . . , ΩN} of all feasible beamforming
matrices, the optimization problem can be stated as:

Definition 39. Find the optimal permutations πc of row vectors of the scheduling matrix S
such that the sum rate is maximized. The permutation form of the scheduling matrix is S =
[πT

1 , πT
2 , . . . , πT

N ]
T. With the assumption of a fixed first permutation π1, the optimization of

the scheduling matrix S is defined by finding optimal permutations of π2, . . . , πN of the row
vectors S:,2, . . . , S:,N such that

RΣ = max
π2,...,πN

K∑

k=1

∑

i∈[[πT
1 ,...,πT

N ]T ]:,k

Ri,k(π1, . . . , πN) (5.8)

with

Ri,k(π1, . . . , πN) = log(1 +
ωH

i,kRi,iωi,k
∑

l∈[[πT
1 ,...,πT

N ]T ]:,k
l 6=i

ωH
l,kRl,iωl,k + 1

) (5.9)

is maximized.

Using long-term CSI in form of spatial correlation matrices, the solution of prob-
lem (5.8) gives the matrix S for an optimized beamscheduling. The cost function is the
sum rate of the approximated rates (4.5). The beamforming vectors stored in matrix
Ωk are optimized based on a MB problem given by Eq. (5.7). Both, the set of beam-
forming matrices W and the scheduling matrix S, can be computed once at a central
unit and reused several times as long as the channels are stationary. Therefore, this
technique reduces the overhead in the backhaul network. The problem (5.8) matches
to a problem of the graph theory.

Definition 40. Axial multidimensional assignment problem (MAP) [62]: Having a N-partite
graph G with parts X1 = X2 = . . . = XN = {1, 2, . . . , K}, find a set of K disjoint cliques
in G of the maximal total weight if every clique ek in G is assigned a weight w(ek), with
k = 1, . . . , K.

Proposition 12. The axial MAP is NP-hard.

Proof. In [91], the author proves that the 3-dimensional axial assignment problem is
NP-hard. This is a special case of the MAP, consequently, the MAP is NP-hard as
well.

Proposition 13. Finding the optimal scheduling matrix maximizing the sum rate in problem
(5.8) is NP-hard.

Proof. The proof of the the NP-hardness is straightforward and is proven by the
relation of the beamscheduling problem to the NP-hard axial MAP. This problem
given in Definition 40 directly maps to a special case of the beam switching problem
(5.8). In the case of exactly K users per cell, the number of scheduling slots assigned
to the users is K. Then, each cell c (row index of S) corresponds to a dimension of a N-
dimensional axial MAP with K elements per dimension. Note, each user is assigned
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MS2 MS3 MS6 MS8

MS1 MS4 MS5 MS7

slot 1

slot 2

w(e1) = log(1 + γ2,1) + log(1 + γ3,1) + log(1 + γ6,1) + log(1 + γ8,1)

w(e2) = log(1 + γ1,2) + log(1 + γ4,2) + log(1 + γ5,2) + log(1 + γ7,2)

Figure 5.2: Example of a scheduling graph with four cells and two slots. The users
(mobile stations (MS)) are denoted by nodes (circles). The selected disjoint cliques
are connected with edges. A part corresponds to a cell. Each cell contains two users.
Costs of clique 1: w(e1) = log(1 + γ2,1) + log(1 + γ3,1) + log(1 + γ6,1) + log(1 + γ8,1)

Costs of clique 2: w(e2) = log(1 + γ1,2) + log(1 + γ4,2) + log(1 + γ5,2) + log(1 + γ7,2)

exactly once to a scheduling slot. The goal is finding the optimal permutations of row
vectors of the matrix S, so that the costs (5.8) are maximized. The costs of scheduling
decisions [S]:,k correspond to the costs w(ek) of cliques ek given by

w(ek) :=
∑

i∈[[πT
1 ,...,πT

N ]T ]:,k

Ri,k(π1, . . . , πN).

Thus, maximizing the sum rate of all slots k also solves the axial N-dimensional MAP
with K elements per dimension.

Example 4. Regard the example in Fig. 5.1b) and assume the scheduling decision of a joint
scheduling of users 2, 3, 6, and 8 in the first slot and the scheduling of users 1, 4, 5, and 7 in
the second slot results in a maximized overall sum rate. The optimal scheduling matrix is then
given by

Sexample =









2 1

3 4

6 5

8 7









. (5.10)

Hence there are K = 2 scheduling slots and N = 4 cells. This corresponds to a N-partite
graph with K elements. The problem of finding the maximum sum rate is equivalent to a 4-
dimensional MAP of finding 2 disjoint cliques with 4 elements. Fig. 5.2 depicts the equivalent
graph representation of the example.
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5.4 Optimal 2-Cell Scenario

To simplify the understanding of the investigations of the general N-cell scenario of
Section 5.5, this section investigates the simple 2-cell scenario at first.

The 2-cell scenario is part of the genereal N-cell scenario depicted in Fig. 4.1 where
only two adjacent cells are cooperative. As already introduced in Section 5.3, MBF can
result in a very low balanced SINR and, therefore, in a low sum rate. The goal is to
find optimal scheduling decisions in the adjacent cells such that the balanced SINR is
improved. This section discusses two approaches:

1. The first approach targets a maximized sum rate over all scheduling slots (see
Section 5.4.1). This approach is useful for applications where a quality-of-service
rate is not desired, e.g., internet downloads.

2. The second approach improves the weakest SINR over all scheduling slots. Con-
sequently, the max–min fairness is further improved (see Section 5.4.2). The out-
come of this approach is an increased worst SINR. Hence, this approach can be
applied in a scenario where each user requires constantly the same rate, e.g, in
video conferences.

These two approaches for the 2-cell beam scheduling problem are formulated based
on a simple bipartite graph model. Assuming each cell contains K users. The users of
each cell correspond to a part of the bipartite graph. The problem of beam schedul-
ing is to find K pairs of users, where one user is selected from both cells, so that the
objective (sum rate 1) or minimum SINR 2) ) is maximized. Hence, K disjoint cliques
in the bipartite graph must be selected. Fig. 5.4 presents an example for the 2-cell sce-
nario. The following sections present two methods to optimize the beam scheduling
problem according to the two presented objectives.

5.4.1 Linear Sum Assignment Problem

The first problem is to find the optimal scheduling matrix S such that the max–min
fair beamforming problem (5.7) results in a higher balanced SINR which corresponds
to a higher sum rate. One advantage of the 2-cell scenario is the efficient algorithm
which exists in this case. As already mentioned in Section 5.3 the N-cell beamschedul-
ing problem maps perfectly to the N dimensional assignment problem. In the 2-cell
scenario, this problem corresponds to a linear sum assignment problem.

Definition 41. Linear sum assignment problem (LSAP): Having a bipartite graph G with
parts X1 = {1, 2, . . . , K} and X2 = {1, 2, . . . , K}, find a set of K disjoint cliques in G of the
maximal total weight if every clique ek in G is assigned a weight w(ek).

In Fig. 5.4, a bipartite graph depicts a possible assignment of a 2-cell example with
K = 4 users per cell. Let W be a cost matrix with [W]k1,k2

= wk1,k2
∈ R+, and X be
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Figure 5.3: 2-cell scenario: The BSs are denoted by triangles and the users are marked
users with asterisks ∗ and an index. In each cell K = 12 users are randomly dis-
tributed.
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cell 2
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Figure 5.4: Example of a 2-cell scheduling graph. The users are denoted by nodes
(circles). The selected disjoint cliques are connected with edges. Each cell contains
four users. Each clique corresponds to a scheduling slot. In this example K = 4
disjoint cliques are selected.

a matrix of assignments with [X]k1,k2
= xk1,k2

∈ {0, 1}, the LSAP can be also modeled
as:

max

= f0(W,X)
︷ ︸︸ ︷

K∑

k1=1

K∑

k2=1

wk1,k2
xk1,k2

(5.11)

s.t.
K∑

k2=1

xk1,k2
= 1 k1 = 1, . . . , K,
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K∑

k1=1

xk1,k2
= 1 k2 = 1, . . . , K,

xk1,k2
∈ {0, 1} k1, k2 = 1, . . . , K.

Let k(i) denote the slot in which user i has been scheduled. Regarding the notation
of LSAP presented in (5.11), the LSAP corresponds to the bipartite matching problem
where the weights wk1(i1),k2(i2) of the edges among all disjoint node pairs of the two
parts X1 and X2 are maximized. The variable xk1(i1),k2(i2) is equal to one if a user i1
in slot k1(i1) of cell 1 is jointly scheduled with a user i2 in slot k2(i2) of cell 2. The
objective function f0(W, X) is then the sum rate of all user pairs i1, i2 in the slot pair
k1(i1), k2(i2). Using MB, the cost matrix for a maximized sum rate can be defined as:

[W]k1(i1),k2(i2) = log(1 +
ωH

i1
Ri1,i1ωi1

ωH
i2

Ri2,i1ωi2 + 1
)

+ log(1 +
ωH

i2
Ri2,i2ωi2

ωH
i1

Ri1,i2ωi1 + 1
). (5.12)

To simplify the notation the index k is removed at the beamforming matrix and vec-
tors. In this chapter, the SINR fairness is desired and the solution of a MB problem is
used for the beamforming matrices Ω. The LSAP can be solved optimally in polyno-
mial time. In [95] and [115] the authors present the first polynomial time algorithm
that computes the optimal solution of the LSAP based on a cost matrix W. The so-
called Hungarian method solves the LSAP in O(K4). Later, the work [100] presents
an O(K3) implementation of the Hungarian method. In this thesis, the Munkres as-
signment algorithm [22] was used.

5.4.2 Linear Bottleneck Assignment Problem

Another objective function for the optimization of the scheduling matrix S is a further
improvement of the fairness. The idea is to find scheduling decisions in the two cells
such that the SINR of the weakest slot is maximized. This corresponds to an additional
SINR balancing over all slots by an optimal assignment of jointly scheduled users.

The linear bottleneck assignment problem (LBAP) of the graph theory matches
perfectly to this approach. It has a similar linear programming formulation as the
LSAP:

max min
1≤k1,k2≤K

wk1,k2
xk1,k2

(5.13)

s.t.
K∑

k2=1

xk1,k2
= 1 k1 = 1, . . . , K,

K∑

k1=1

xk1,k2
= 1 k2 = 1, . . . , K,

xk1,k2
∈ {0, 1} k1, k2 = 1, . . . , K.
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Table 5.2: Simulation parameters

Number of user drops 1000

Number of users per user drop and cell 12

Transmit antenna arrays ULA

Number of antenna array elements at BS 4

Number of antenna array elements at MS 1

Intersite distance 2000 m

Antenna spacing half wavelength

Path loss exponent 3.76

Power angular density Laplacian, 10◦ [52, 114]

Power constraint per-BS antenna array power constraint

The only difference to the LSAP is the objective function. The optimal value of the
objective function is one of the coefficients wk1,k2

of the cost matrix. The result is an
assignment such that the lowest costs are maximized. The MB (5.7) directly delivers
the coefficients of the cost matrix:

[W]k1(i1),k2(i2) = max
Ω

min {
ωH

i1
Ri1,i1ωi1

ωH
i2

Ri2,i1ωi2 + 1
,

ωH
i2

Ri2,i2ωi2

ωH
i1

Ri1,i2ωi1 + 1
} (5.14)

s.t. |[ωi1 ]a|2 ≤ Pi1,a ∀a ∈ Ai1 ,

|[ωi2 ]a|2 ≤ Pi2,a ∀a ∈ Ai2 .

As in the previous section the index k is removed at the beamforming matrix and
vectors. The LBAP can be solved with less complexity compared to the LSAP.

Theorem 7. [18, page,174] An LBAP with an K × K cost matrix W can be solved in

O(K2.5
√

log(K)).

To find the optimal solution of the LBAP, this chapter uses the threshold algorithm
presented in [18].

5.4.3 Numerical Results

The results presented in this section are based on the scenario depicted in Fig. 5.3.
Tab. 5.2 summarizes the main simulation parameters. As in Section 4.5, the pathloss
gain is (r/1000)−3.76, where r is the distance in meters. For all BSs the same power
constraints are given and all users have the same thermal noise level σ2. The users
are randomly distributed in the multicell network, but with a distance larger than
50 meters away form the BSs. In this two cell example no antenna patter is needed,
because no interference of adjacent cells is considered in the optimization. Fig. 5.5
depicts the cumulative distribution functions (CDFs) of the following algorithms:
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Figure 5.5: Performance (SINR and sum-rate) of the 2-cell scenario.

• A1: MB and random scheduling

• A2: MB and optimized scheduling based on a LSAP presented in Section 5.4.1

• A3: MB and optimized scheduling based on a LBAP presented in Section 5.4.2

As expected, algorithm A2, where a maximized sum rate is desired, maximizes the
overall sum rate with a marginal impairment of the fairness. The fair LBAP improves
the fairness and is able to outperform the random approach also for higher SINRs.

Figure 5.5.b depicts the sum rate (5.6) gains of the algorithms A2 and A3 relative to
A1. As expected, A2 has the best sum rate performance with nearly 20% performance
gain. However, even the max–min fair approach A3 can achieve an improvement of
the sum rate.

These gains are relatively small. The reason for these small gains is the limited
scenario. Only two cells are regarded. Consequently, the degrees of freedom for a
scheduling optimization are limited compared to a scenario with a large number of
cells. Therefore, the following section presents an optimization scenario with N = 21
cells. In this case, the beam scheduling problem is NP-hard, however due to the
large number of cell, more degrees of freedom for an optimized beamscheduling are
available.

5.5 N-Cell Scenario

The optimization of the beamscheduling problem in a N-cell scenario is NP-hard.
No optimal polynomial time solution exists. The beam scheduling problem is a graph
theoretical problem. As explained in Section 5.3.2, the optimization of the scheduling
matrix S corresponds to a MAP. An N = 4-cell scenario is presented in Example 4.
Each cell contains K = 2 users. The optimization of the beam scheduling is to find
K = 2 disjoint groups of users where exactly one user out of each cell is selected, such
that a performance metric (e.g., sum rate) is maximized. This group of users is served
together in a slot. The graph theoretic interpretation as an MAP is as follows: a slot
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corresponds to a clique in the N-partite graph. Each user i is a node in this graph.
The set of users in a cell c corresponds to a part of nodes Xc. Hence, the problem is
the search for K disjoint cliques in a N-partite graph, such that the costs of the each
clique are maximized. The costs are given by the total sum rate (5.6).

Definition 42. Using permutations π1, . . . , πN of the parts X1, . . . , XN of an N-partite
graph, the permutation form of the MAP is given by [62]:

max
π2,...,πN

K∑

i=1

w(i, π2(i), . . . , πN(i)). (5.15)

Comparing (5.15) with (5.8) underlines the perfect matching of the beamschedul-
ing problem with the MAP. The MAP or the beamscheduling problem can also be
seen as a generalized (multidimensional) LSAP [62]:

max
K∑

kj=1
j=1,...,N

wk1,...,kN
xk1,...,kN

(5.16)

s.t.
K∑

kj=1

j=1,...,N j 6=1

xk1,...,kN
= 1, k1 = 1, . . . , K,

· · ·
K∑

kj=1

j=1,...,N j 6=N

xk1,...,kN
= 1, kN = 1, . . . , K,

xk1,...,kN
∈ {0, 1} k1, . . . , kN = 1, . . . , K

with a multidimensional cost matrix W ∈ R

N times
︷ ︸︸ ︷

K× K× · · · × K
+ . The axial MAP is NP-

hard, therefore, only suboptimal solutions are feasible. In the next sections four dif-
ferent heuristics are investigated.

5.5.1 Scheduling Fairness

The previous sections always assume an equal number of active users per cell. This
is an ideal scenario because usually the number of users is different among adjacent
cells. In addition to a fair distribution of the mean SINR per user and slot, a fair
allocation of the scheduling slots to users is desired. Let Uc,0 be the set of Nc = |Uc,0|
active users in cell c. To achieve an equal number of users per cell, in cells with less
than K users, a user index can be inserted several times. However, all users must be
scheduled equally often. To guarantee a fair allocation of the scheduling slots to users
in each cell at least

K = LCM{N1, N2, . . . , NN} (5.17)
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scheduling slots are needed. After K slots the scheduling matrix S and the set of
beamforming vectors W can be reused as long as the long-term CSI is stationary.

Example 5. Consider a small network with a cell c1 with users Uc1
= {1, 2, 3} and a cell

c2 with users Uc2 = {4, 5}. The number of scheduling slots to achieve a fair allocation of
scheduling slots per user in a cell is K =LCM{2, 3} = 6. Hence, a valid scheduling matrix
could be

S1 =

[

3 3 2 2 1 1

4 4 5 4 5 5

]

. (5.18)

According to the scheduling matrix S1 in cell c1, each user is scheduled twice and in cell c2

each user is scheduled three times.

In some applications, besides the overall fair allocation of all scheduling slots
to users, temporal fairness is also important. The delay between two consecutive
transmissions should not be too large. This chapter uses two definitions of temporal
fairness:

Definition 43. In opportunistic Round Robin scheduling (ORRS), the transmission time of
each BS is divided to rc = K/Nc rounds, whereby each user in the cell must be served once in
every round without a fixed order. With this scheme, the maximum time interval between two
consecutive slots allocated to a user equals to 2(Nc − 1) scheduling slots.

Definition 44. In quasi fair scheduling (QFS), the users can be arbitrarily assigned to the K
time slots. With this scheme, the maximum delay between two consecutive transmissions to a
user equals to (Nc − 1)K/Nc time slots. This constraint is temporally unfair.

Example 6. The scheduling matrix (5.18) of example 5 satisfies the QFS criterion but violates
the ORRS criterion, because, e.g, in the first round of cell c1 the user 1 is not scheduled. The
following permutation of row vectors of matrix S given by

S2 =

[

2 1 3 2 3 1

4 5 5 4 5 4

]

(5.19)

satisfies the ORRS fairness constraint.

5.5.2 Heuristics

Many heuristics for the axial MAP rely on a so-called local neighborhood search. The
heuristics in this chapter use two different types of local neighborhoods:

1. Local neighborhood with a permutation in s dimensions (see Definition 45) and

2. local p-exchange neighborhood (see Definition 46).

The next two sections define these two types of local neighborhoods.

Definition 45. Dimension-wise permutation neighborhood: Using the permutation form
(5.15) of the MAP, a local neighborhood can be defined by a permutation over a subset of
dimensions D [62]. Let π1, . . . , πN be arbitrary permutations of the parts X1, . . . , XN of
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an N-partite graph and let Ψ = {ρ1, . . . , ρN} be permutations of Π = {π1, . . . , πN}. Then
a(Π, Ψ) is the assignment obtained by permutations ρ1, . . . , ρN. A dimension-wise permuta-
tion over a subset of dimensions D can then be formally defined by [62]

d̂(Π, Ψ,D) = a

(

Π,

[{

ρ1 if 1 ∈ D
π1 otherwise

, . . . ,

{

ρN if N ∈ D
πN otherwise

])

. (5.20)

With (5.20), a local neighborhood of size s = |D| of a dimension-wise heuristic is
denoted by

Nd̂(Π, s) = {d̂(Π, Ψ,D) : D ⊂ {1, . . . , N}, |D| = s}. (5.21)

The work [62] computes the size of the neighborhood Nd̂(Π, s) with a permutation of
one dimension to

|Nd̂(Π, s)| = s · (K!− 1) + 1. (5.22)

Example 7. In the regarded multicell network with N = 21 and, e.g, K = 12 users per cell
the size of the neighborhood Nd̂([π1, . . . , π21], 2) ≈ 1.0059e+10.

Definition 46. p-exchange neighborhood: The p-exchange neighborhood is a special case of
the dimension-wise permutation neighborhood, where in one of the N dimensions p elements
are exchanged. Let ξ(p, πn) be the permutation of p elements of πn then the p-exchange
permutation is formally given by

p̂(Π, p, n) = a

(

Π,

[{

ξ(p, πn) if 1 = n

π1 otherwise
, . . . ,

{

ξ(p, πn) if N = n

πN otherwise

])

. (5.23)

With (5.23), a local neighborhood of a p-exchange heuristic is denoted by

N p̂(Π, p) = { p̂(Π, p, n) : ∀n = 1, . . . , N}. (5.24)

Proposition 14. [61] For any p = 2, . . . , K, the size N p̂(Π, p) of the p-exchange local
neighborhood of a feasible solution of a MAP is equal to

|N p̂(Π, p)| = N

p
∑

k=2

D(k)

(
K

k

)

(5.25)

with

D(k) =
k∑

j=0

(−1)k−j

(
k

j

)

j!. (5.26)

In practice 2-exchange local neighborhoods are often used [61].

Example 8. Using the same K = 12 and N = 21 setting as in Example 7, the size of
2-exchange local neighborhood is given by |N p̂([π1, . . . , π21], p = 2)| = 1386.

Comparing the size of the 2-exchange neighborhood with the total number of pos-
sible solutions given by (K!)N−1 = 4.0433e+173 it is clear that a 2-exchange heuristic
is not the best solution.
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Comparing the size of the 2-exchange neighborhood with the size of the dimension-
wise permutation neighborhood according to Definition 45, it is obvious that the solu-
tion space of the dimension-wise permutation is larger. Therefore, a dimension-wise
algorithm can possibly find better solutions than an algorithm based on a 2-exchange
neighborhood. In what follows different heuristic are proposed. At first, Section
5.5.2.1 introduces a method based on simulated annealing with a 2-exchange neigh-
borhood. This section is followed by dimension-wise approaches (Section 5.5.2.2 and
5.5.2.3) which outperform the simulated annealing technique. The simulated anneal-
ing and the dimension-wise algorithms satisfy the QFS constraint. Therefore, Section
5.5.2.4 additionally presents a low complexity greedy approach that satisfies the ORRS
constraint.

5.5.2.1 Simulated Annealing based Sum Rate Maximization

In [23], the authors propose a 2-exchange local search to solve a MAP. A similar ap-
proach is applied in this chapter for the N-cell beamscheduling problem. The number
of beamforming problems increases strongly with the number of scheduling matrices.
Simulated annealing is a local search algorithm and has less computational complex-
ity compared to, e.g., genetic algorithms where multiple solutions (scheduling matri-
ces) are required. The algorithm presented in [23] is based on four simple steps and
can be directly applied to the scheduling matrix S:

1. Random selection of a cell c (dimension) of the initial matrix Sa.

2. Random selection of two user indexes i and j of this cell c.

3. Compute Sb by exchanging the two indexes i and j in c.

4. If the new solution Sb has a higher sum rate (5.6) than Sα, then accept the new
solution. The search is continued until some maximum number of iterations is
reached.

Local search algorithms can stay in local optima. To escape from these suboptimal so-
lutions, an extension of the local search to a randomization algorithm as simulated an-
nealing is useful. At the first iterations, the simulated annealing algorithm takes with
some probability Prob(T, R(Sa), R(Sb)) a weaker solution Sb with R(Sb) ≤ R(Sa).
With an increased number of iterations this probability decreases, so that at the end
only the strong solutions are taken. To avoid the multiple computation of one
solution, the investigated simulated annealing heuristic never computes the same 2-
exchange solution again. Algorithm 6 depicts the used simulated annealing heuristic.
The algorithm starts with an initial solution S0 and returns the best solution Sbest that
is computed during the whole search. In each iteration, two columns are changed due
to the 2-exchange approach, Consequently, two beamforming problems of a network
with N users are solved to calculate the cost matrix.

5.5.2.2 Dimension-Wise Sum Rate Maximization

Compared to a p-exchange neighborhood, a dimension-wise permutation neighbor-
hood is much larger and a heuristic using such a large neighborhood can achieve
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Algorithm 6 Sum rate based simulated annealing

Initialize: T0, T := T0

Create random solution S0

Sbest := S0 , Sa := S0

while T > 0 do
Take randomly a cell c

Compute random neighboring solution : Sb := p̂(ST
a , 2, c)

Solve the kth MB problem (5.7) with S = Sb → W
With W compute (5.6) → R(Sb)
if R(Sb) ≥ R(Sbest) then

Sbest := Sb

end if
if R(Sb) ≥ R(Sa) then

Sa := Sb

else
Generate random number r uniformly in the range (0, 1)
if r ≤ Prob(T, R(Sa), R(Sb)) then

Sa := Sb

end if
end if
T := T − 1

end while
return Sbest, W

better solutions at the expense of an increased number of solutions which must be in-
vestigated. This section presents a heuristic based on a dimension-wise permutation
heuristic for the N-cell beamscheduling problem based on the following observations:

• A user i in a cell c mainly receives interference from its two adjacent cells if a
sector pattern as in Fig. 4.1 is used.

• In the case of N = 2, the MAP is a LSAP. In this case the MAP can be solved
optimally in O(K3) as presented in Section 5.4.1.

Due to the pattern and the property that most of the interference is received from the
two adjacent cells, a LSAP finds near optimal solutions. Consequently, the algorithm
must investigate a lower number of solutions. The dimension-wise heuristic combines
the two observations to reduce the number of beamforming optimizations. The idea
of the algorithm can be summarized in the following steps:

• The algorithm starts in cell c = 1 and selects an adjacent cell c = 2. For all users
with index i1 of cell c = 1 and all users with index i2 of cell c = 2 a cost matrix W
of a LSAP according to (5.14) is computed by solving the beamforming problem
(5.7) for all user combinations. The first row of the final scheduling matrix is
S = [πT

1 ]
T. The result of the LSAP is an optimal permutation π2. The solution

is then fixed and stored in the scheduling matrix S = [πT
1 , πT

2 ]
T.
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• With the fixed assignments stored in S, the algorithm selects the next adjacent
cell c and finds the optimal permutation πc of users with index ic in slot kc in
this cell to the previously fixed assignments based on the 2-dimensional cost
matrix, as in (5.14)

[W]k,kc(ic) =
∑

i∈{[S]:,k∪ic}
log(1 +

ωH
i Ri,iωi

∑

l∈{[S]:,k∪ic}
l 6=i

ωH
l Rl,iωl + 1

). (5.27)

The result is the optimal 2-dimensional assignment of users of a new cell c to all
previous selected and fixed assignments stored in S. Note, the overall assign-
ment is still suboptimal. However, the result of this dimension-wise optimiza-
tion is already near optimal due to the fact that the majority of the interference
is caused by the adjacent cells. To simplify the notation, the index k is removed
from the beamforming vectors ωl. The MB algorithm optimizes in each step k
the beamforming vectors of all selected cells and stores them in a matrix Ωk.

• If all N cells are visited, the algorithm terminates and returns the optimal
scheduling matrix S and the set of all optimized beamforming matrices W .

The dimension-wise heuristic optimizes the beamforming vectors only for the already
selected cells. In each iteration the beamforming problem grows by one cell. Espe-
cially, at the beginning, the beamforming problems are small. Alg. 7 depicts the
details of the implementation.
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Algorithm 7 Dimension-wise sum rate maximization

Initialize: S = [πT
1 ]

T

for c = 2 to N do
Select an adjacent cell c with the users with index ic stored in Uc.
for all slots kc(ic) = 1, . . . K of users with index ic in cell c do

for all slots k = 1 to K do
Compute the beamforming matrices Ωk:

Ωk = argmax
Ω

min
i∈{[S]:,k∪kc}

ωH
i Ri,iωi

∑

l∈{[S]:,k∪ic}
l 6=i

ωH
l Rl,iωl + 1

s.t. |[ωi]a|2 ≤ Pi,a

∀a ∈ Ai, ∀i ∈ {[S]:,k ∪ ic}.

With Ωk determine the cost matrix

[W]k,kc(ic) =
∑

i∈{[S]:,k∪ic} log(1 +
ωH

i Ri,iωi∑
l∈{[S]:,k∪ic}

l 6=i

ωH
l Rl,iωl+1

)

end for
end for
Compute the optimal assignment for W with a LSAP → πc.
S = [ST, πT

c ]
T

end for
return S,W

5.5.2.3 Dimension-wise Max–Min Optimization

In addition to the optimization of the sum rate, fairness is often desired. MB achieves
a balanced mean SINR for a given scheduling slot k. However, the mean SINR can
vary among different scheduling slots. Therefore, an optimization of the sum rate is
not the best strategy if fairness among the users is desired. An optimal solution for a
fair assignment is presented in Section 5.4.2 for the 2-dimensional case. This approach
can be extended to the N-dimensional generalized (multidimensional) LBAP

Definition 47. Using permutations π1, . . . , πN of the parts X1, . . . , XN of a N-partite graph,
the permutation form of the MAP is given by [92]:

max
π2,...,πN

min
i=1,...,K

w(i, π2(i), . . . , πN(i)). (5.28)

The equivalent linear programming form is defined by [92]:

max min
1≤k1,...,kN≤K

wk1,...,kN
xk1,...,kN

(5.29)
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s.t.
K∑

kj=1

j=1,...,N j 6=1

xk1,...,kN
= 1, k1 = 1, . . . , K,

· · ·
K∑

kj=1

j=1,...,N j 6=N

xk1,...,kN
= 1 kN = 1, . . . , K,

xk1,...,kN
∈ {0, 1} k1, . . . , kN = 1, . . . , K

Theorem 8. The multidimensional bottleneck assignment problem (MBAP) is NP-hard.

Proof. In [91], the author proved the NP-hardness of the 3-index bottleneck assign-
ment problem which follows form the NP-completeness of the 3-dimensional match-
ing problems with cost in {0, 1}.

The dimension-wise heuristic Alg. 7 can be simply modified to solve a MABP by
using the following cost matrix

[W]k,kc(ic) = max
Ω

min
i∈{[S]:,k∪ic}

ωH
i Ri,iωi

∑

l∈{[S]:,k∪ic}
l 6=i

ωH
l Rl,iωl + 1

(5.30)

s.t. |[ωi]a|2 ≤ Pi,a ∀a ∈ Ai, ∀i ∈ {[S]:,k ∪ ic}.

To achieve a max–min fairness over all slots, the dimension-wise heuristic based on a
LBAP uses the MB optimization (5.30) to balance the mean SINR among users as in
Section 5.4.2 (for the 2-dimensional case). The dimension-wise max–min optimization
is similar to the algorithm presented in Section 5.5.2.2. The heuristic stores fixed
assignments in S and keeps them unchanged. Then heuristic computes the costs of
combinations of the users ic of a new cell c to the previous assignments based on the
resulting mean SINR after MB. The MB optimization results in max–min-fair mean
SINR for a given slot k among all active users in this slot k. The MBAP, on the other
hand, searches for an optimal assignment so that the mean SINR over all scheduling
slots k is balanced. Hence, fairness in both directions, among the users and among
the slots, can be achieved. Alg. 8 depicts the detail of the implementations.

5.5.2.4 Greedy Algorithm

Straightforward heuristics for NP-hard graph problems are based on a greedy strat-
egy. A greedy algorithm always takes the best decision for the moment. It never
reconsiders previous decisions [73], therefore, it is only able to find suboptimal solu-
tions. On the other hand, due to the simple decisions, a greedy algorithm has a low
complexity. These decisions should be as good as possible which is the idea of the
developed greedy algorithm.

In a given slot k, the algorithm starts in a randomly selected cell and randomly
selects a user. The idea is similar to a puzzle: Rotate the beampattern in an adjacent
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Algorithm 8 Dimension-wise max–min optimization

Initialize: S = [πT
1 ]

T

for c = 2 to N do
Select an adjacent cell c with the users with index ic stored in Uc.
for all slots kc(ic) = 1, . . . K of users with index ic in cell c do

for all slots k = 1 to K do

[W]k,kc(ic) = max
Ω

min
i∈{[S]:,k∪ic}

ωH
i Ri,iωi

∑

l∈{[S]:,k∪ic}
l 6=i

ωH
l Rl,iωl + 1

s.t. |[ωi]a|2 ≤ Pi,a

∀a ∈ Ai, ∀i ∈ {[S]:,k ∪ ic}.

end for
end for
Compute the optimal assignment for W with a LBAP → πc.
S = [ST, πT

c ]
T

end for
return S,W

cell by a proper user selection such that the mutual interference among the selected
users is minimized. Hence, the newly found user perfectly fits to the already selected
users. The algorithm uses the following steps.

• For a given slot k, the algorithm starts randomly in a cell of the network and
schedules randomly a user i0.

• The interference, a user receives, is caused almost exclusively from its adjacent
BSs. The algorithm continues the search in an adjacent cell c (adjacent to the cells
of previous selected users). In the chosen adjacent cell, the greedy algorithm
selects the strongest user ibest form set of available unscheduled users.

• The strongest user is the user that maximizes the sum rate achieved in slot k
(greedy step).

• After the selection of the strongest user ibest in cell c, the algorithm continues
the search in the next adjacent cell until all cells are visited. Then the next slot
k + 1 is optimized.

• The algorithm terminates until all slots are optimized.

The algorithm requires a set of free users Uc given for each cell c. According to the
QFS criterion, a user with index i can appear several times in the set Uc. Therefore,
this set is formally defined as a multiset [141].

Definition 48. Assume the multiset A contains na times the element a:

A = {a, a, . . . a
︸ ︷︷ ︸

na times

, b, c, . . .}, (5.31)
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The set minus operation A \ a applied to a multiset A results in the set

Ã = { a, a, . . . a
︸ ︷︷ ︸

na − 1 times

, b, c, . . .}. (5.32)

Definition 49. With Definition 48 the following update function

F(A,B, a) =

{

A \ a if A \ a 6= ∅

B if A \ a = ∅
(5.33)

for the greedy algorithm can be defined.

Function (5.33) will remove a selected element (user index) a from multiset (or set
of free users) A if A without a unequals the empty set. Otherwise the set is initialized
with a new set B. With the definition of function (5.33), the greedy algorithm achieves
either QFS fairness or ORRS fairness with different initializations of the matrices Uc.

• QFS: The set of free users is a multiset Uc. With K = LCM{N1, N2, . . . , NN}, the
multiset Uc contains each user i exactly K/Nc times. Therefore, the BS antenna
array of cell c serves each user equally often during the K slots.

• ORRS: The set of free users is a simple set Uc and contains each user only once.
After Nc slots, each user is scheduled again. Therefore, this initialization results
in a ORRS fair scheduling.

The greedy algorithm is depicted in Alg. 9. The index c(i) denotes the cell of user i.
At the initialization the sets (ORRS) or multisets (QFS) Uc,0 are initialized for each cell.
If ORRS is desired, the set Uc,0 contains each user exactly once. If QFS is desired, the
set Uc,0 contains each user K/Nc times. The algorithm uses a working set or multisets
Uc = Uc,0. If a user is scheduled by the greedy approach, the user will be removed
from this set with the update function (5.33). If, e.g., ORRS is desired, the user can
not be scheduled until all other users of the set are scheduled. One advantage of the
greedy algorithm is, therefore, the possibility of a ORRS fair scheduling. Low delays
between two consecutive transmissions are guaranteed. Another advantage is the low
complexity.

5.5.3 Complexity Analysis

Regarding all beamscheduling algorithms presented in Sections 5.5.2.1-5.5.2.4, the
computation of the beamforming weights for the cost computation has the largest
complexity. The complexity of, e.g., the LSAP to compute the assignments is low
compared to the complexity of the beamforming optimization to compute the cost
matrix. Therefore, the overall complexity is expressed in terms of required beam-
forming optimizations. The beamforming optimizations can have different sizes and
their complexity depends on the number of participating BS arrays. In the following
section, the complexity of a beamforming problem with a size of N cells or BS arrays
is denoted by OB(N).
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Algorithm 9 Sum-rate based greedy user selection

Initialize: Compute all Uc,0 ∀c = 1...N
Set Uc = Uc,0 ∀c = 1...N
for k = 1 to K do
S := ∅

Randomly take a user i0
[S]c(i0),k := i0
Update: Uc(i0) := F(Uc(i0),Uc,0, i0)
for c = 1 to N do

Find next cell c adjacent to the visited cells C
C := C ∪ c
for all ic ∈ Uc do

Ωk = argmax
Ω

min
i∈{[S]:,k∪ic}

ωH
i Ri,iωi

∑

l∈{[S]:,k∪ic}
l 6=i

ωH
l Rl,iωl + 1

s.t. |[ωi]a|2 ≤ Pi,a

∀a ∈ Ai, ∀i ∈ {[S]:,k ∪ ic}.

Compute RΣ

ic
=
∑

i∈{[S]:,k∪ic} log(1 +
ωH

i Ri,iωi∑
l∈{[S]:,k∪ic}

l 6=i

ωH
l Rl,iωl+1

)

end for
ibest = argmax

ic∈Uc

(RΣ

ic
)

[S]c,k := ibest

Update: Uc(ibest
:= F(Uc(ibest)

,Uc,0, ibest)
end for

end for
return S, W

5.5.3.1 Sum Rate based Simulated Annealing

To compute the costs R(Sb) for the solution based on simulated annealing presented
in Alg. 6, the beamforming weights for the exchanged columns of the scheduling ma-
trix must be computed. Hence, problem (5.7) is solved with Sb as a given scheduling
matrix. In total 2 beamforming problems of size N are solved. Let OB(N) be the
complexity of a MB problem with N BS arrays the total complexity of the cost com-
putation is given by 2 · OB(N). Assuming the annealing process needs T0 iterations
the total complexity is

C = T0 · 2 · OB(N). (5.34)

5.5.3.2 Dimension-wise Optimization

The dimension-wise optimizations presented in Sections 5.5.2.2 and 5.5.2.3 are based
on the computation of a cost matrix. The algorithm iterates over all cells with index
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c. In each iteration a new cell c is added to the set of the visited cells. Therefore, the
beamforming problem grows in each iteration by one BS. Assuming the current cell
index is c, then c cells are added to the set of visited cells S . With this assumption the
beamforming algorithm in iteration c has a complexity of OB(c), the computation of
the cost matrix requires K2 beamforming optimizations with a complexity of OB(c) to
compute the cost matrix in iteration c. In total, the algorithm visits N cells, therefore,
the total complexity is

C = K2 · OB(2) + . . . + K2 · OB(N) = K2 ·
N∑

c=2

OB(c). (5.35)

5.5.3.3 Sum Rate Based Greedy Algorithm

the greedy algorithm iterates over all slots K and in each slot with index k, the algo-
rithm iterates over all cells. For a given selected cell c, the greedy algorithm searches
the strongest user in this cell. Assume each cell has K users, to determine the strongest
user, K beamforming optimizations are computed. Hence, the total complexity of slot
k = 1 is given by

C1 = K · OB(2) + . . . + K · OB(N) (5.36)

Then, the algorithm removes the strongest user from the set Uc. In the next step k = 2
in cell c the algorithm searches the strongest user out of the set K − 1 users and the
complexity in step k = 2 is

C2 = (K− 1) · OB(2) + . . . + (K− 1) · OB(N)). (5.37)

In the last step just one user is left in each cell and the complexity is simply

CK = OB(2) + . . . +OB(N) (5.38)

to compute the last beamforming vectors. The total complexity is then C = C1 +
. . . CK. Rearranging the sum, the overall complexity is given by

C = OB(2) · (K + (K− 1) + . . . + 1) + . . . +OB(N) · (K + (K− 1) + . . . + 1). (5.39)

Using the formula of the arithmetic serie the final complexity can be simplified to

C =
(K− 1) · K

2
·

N∑

n=2

OB(n). (5.40)

5.5.3.4 Comparison

For a large K, the greedy algorithm has approximately half of complexity of the
dimension-wise optimization approaches in the sense of required beamforming opti-
mizations. The complexity of the simulated annealing approach depends on the start
temperature T0. This chapter selects a start temperature such that the complexity of
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the simulated annealing approach is as large as the complexity of the two dimension-
wise approaches. Consequently the equality

C = K2 ·
N∑

c=2

OB(c) = T0 · 2 · OB(N). (5.41)

must hold. With

T0 =
K2 ·∑N

c=2OB(c)

2 · OB(N)
. (5.42)

the complexity (5.34) of the simulated annealing approach is equal to the complexity
of the dimension-wise approaches.

5.5.4 Results and Discussion

The simulation parameters are the different from Section 5.4.3. In this section N = 21
cells and 100 user drops are optimized. In each drop 12 users are placed in each cell.
In this scenario, interference is dominating the noise. The antenna pattern is set to
−3dB at 45◦. The largest possible SNR in this model is at a distance of 50 meters in
the direction of the BS antenna. It is given by SNR = 64.94dB. Fig. 5.5 depicts the
cumulative distribution functions (CDFs) of the following algorithms:

For a fair comparison of the SINR performance, all cells have the same number of
active users, therefore, all algorithms satisfy the QFS constraint according to Defini-
tion 44. The CDFs of the following algorithms are compared:

• A1: Random ORRS and MB

• A2: Dimension-wise sum rate maximization according to Section 5.5.2.2

• A3: Dimension-wise max–min SINR optimization according to Section 5.5.2.3

• A4: Greedy user selection according to Section 5.5.2.4

• A5: Simulated annealing according to Section 5.5.2.1

As expected all algorithms outperform the random ORRS (A1) concerning the
sum rate performance. The greedy algorithm (A4) is a bit weaker for the low SINR
region but achieves the best results for a high SINR. Regarding the high SINR, the
dimension-wise sum rate maximization (A2) achieves the best result. The fair ver-
sion of a dimension-wise optimization (A3) is the best approach regarding the SINR
fairness. However, as expected, the strongest users do not gain as much from this
approach. The simple simulated annealing based approach (A5) is outperformed by
all approaches for the strongest 35% of the users. Only for the weakest users, the
simulated annealing approach achieves better results than A4. Regarding the com-
plexity, the simulated annealing based approach (A5) has the same complexity as the
dimension-wise approaches (A2 and A4).

The new method A3 has the advantage of an improved SINR fairness compared
to the sum rate based approach A4. The weakest 45% of the users gain in SINR
compared to A5 and compared to the random solution A1 all users gain in SINR.
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Figure 5.6: Comparison of the SINR CDF of the different algorithms A1-A5.

An often used indicator in multicell optimization is the performance of the weak-
est 5% of the users. Figure 5.6(b) shows the mean SINR of the weakest 5% of the users
in all slots and simulation runs. Regarding fairness, the max–min fair dimension-wise
approache A3 achieve a significant performance gain. Hence, this approach can be
useful in applications where fairness among the users is desired.

As it can be observed from Fig. 5.7(a), all proposed algorithms outperform the
random and simulated annealing approach regarding the sum-rate performance. The
new max–min fair scheduling algorithm A3 achieves the best SINR fairness and a
system with the sum-rate based dimension-wise approach will have the best sum-rate
performance. Figure 5.7(b) depicts the relative complexity of all algorithms compared
to the reference simulated annealing approach. According to [90], the complexity
of the max–min fair beamforming approach grows cubically in the number of users
N. Hence, the complexity is of each beamforming problem of size N is in the order
of OB(N) = O(N3 · KC). Here, KC denotes a constant factor. Regarding the trade-
off between complexity and sum-rate performance the greedy approach A4 is the
best approach. For a large number of users per cell K, the greedy algorithm A4
requires the half number of beamforming optimizations compared to A2, A3, and A5.
Additionally, A4 can guarantee the ORRS fairness constraint. Therefore, this approach
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Figure 5.7: Comparison of the sum rate performance and complexity of the new
algorithms.

may be useful in systems where the delay among two consecutive transmissions to a
users can not be too large. The other approaches satisfy the QFS constraint. To achieve
a lower delay, a post-processing (Appendix) for the scheduling matrix can reduce the
delays.

The other approaches satisfy the QFS constraint. To achieve a lower delay, a post-
processing (Section 5.6) for the scheduling matrix can be applied. However, a low
delay can not be guaranteed as in the greedy based approach A4. Table 5.3 summa-
rizes the results of the algorithms A1-A5.

5.6 Latency Optimization to Improve the Temporal

Fairness

Depending on the application, besides the SINR fairness or the sum rate performance,
the delay among consecutive transmissions is another design criterion. Assuming an
arbitrary number Nc of users per cell c, large delays between two consecutive trans-
missions to a user are possible. In Definition 44 and 43 two temporal fairness con-
straints are defined. The ORRS constraint guarantees a small delay because a user
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Table 5.3: Summary of the advantages of the different algorithms regarding different
properties ((++): very good, (+): good, (0): fair, (-): weak).

Algorithm Temp. fairness Sum rate SINR fairness Complexity

A1: random RRS (++) (-) (-) (+)

A2: dim.-wise sum rate max. (0) (++) (+) (-)

A3: dim.-wise max–min opt. (0) (+) (++) (-)

A4: greedy sum rate max. (+) (+) (-) (0)

A5: SA based sum rate max. (0) (0) (0) (-)

must be scheduled exactly once per scheduling round. The greedy approach pre-
sented in Section 5.5.2.4 maximizes the sum rate while the ORRS constraint is satisfied.
However, the other approaches, e.g., the dimension-wise optimizations presented in
Sections 5.5.2.2 and 5.5.2.3 only satisfy the QFS constraint. Therefore, our earlier
work [39] presents a further improvement to reduce the delay when the scheduling
matrix only satisfies the QFS constraint. Our earlier work [39] presents a low com-
plexity greedy algorithm for the delay optimization. However, it does not discuss
the complexity of the resulting optimization problem. Therefore, this section gives a
detailed complexity theory for the latency optimization to conclude the work.

The total costs defined by the sum rate R(S) in (5.6) of a scheduling matrix S
are given by a summation of the rates per scheduling slot k of each column of the
scheduling matrix.

Rk =
∑

i∈[S]:,k
log(1 +

ωH
i,kRi,iωi,k

∑

l∈[S]:,k
l 6=i

ωH
l,kRl,iωl,k + 1

). (5.43)

If the columns are fixed, the mean SINR does not change if the column-vectors are re-
arranged. Hence, rearranged columns [S]:,k do not change the total rate R(S) as well.
However, the delay between two consecutive transmissions to a user can be reduced.
Note, the scheduling matrices can be reused as long as the channel is stationary and
as long as the number of active users does not change. Hence, the scheduling matrix
can be concatenated several times and a big matrix Sσ = [S, . . . , S] is the result. The
overall sum rate is still unchanged, as long as the statistics are unchanged.

First of all the question arises whether all matrices satisfying the QFS constraint
can be rearranged in a way so that they satisfy the ORRS constraint. This can be
simply proven by contradiction.

Proposition 15. Not every matrix SQFS satisfying the QFS constraint can be column-wise
rearranged to a matrix SORRS satisfying the ORRS constraint.
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Proof. The proof is straight-foreward and can be proven by contradiction. The follow-
ing matrix

SQFS =









a b c a b c

g f g f e e

h i j j h i

k l l k l k









(5.44)

satisfies the QFS constraint. However, it can not be column-wise rearranged to a
matrix SORRS satisfying the ORRS constraint.

A solution satisfying the QFS constraint can not be guaranteed. However, an
algorithm can rearrange the columns of a matrix S:

1. Rearrange the columns so that the maximum delay among all consecutive trans-
missions to all users i is minimized. This is the maximal fairness constraint.

2. Another criterion could be a minimized total delay among all users.

Definition 50. The maximum delay di,c of all consecutive transmissions to a user i in cell c
is the maximum number (circular) of slots of all consecutive transmissions to user i.

Example 9. Regard the matrix (5.44), the maximum delay of user e in cell 2 is de,2 = 5. User
e is served in the 5th slot and in the 6th slot. The delay from the 5th to the 6th slot is 1 but the
circular delay to the next 5th slot is 5. The curricular delay is the result of the concatenation
of the optimized scheduling matrices, which are reused (possibly) several times to reduce the
backhaul overhead.

The maximum delay of all users in a cell is then δc = maxi∈[S]c,:
di,c.

Definition 51. Column-wise delay optimization problem (CDP) of a scheduling matrix:

1. The minimization of the maximum delay is the search of the optimal permutation of
columns [S]:,k of the scheduling matrix such that

δ(S) = max
c={1,...,N}

max
i∈[S]c,:

di,c (5.45)

is minimized.

2. The optimization of the total delay is the search of the optimal permutation of columns
[S]:,k of the scheduling matrix such that

δ(S) =
N∑

c=1

∑

i∈[S]c,:

di,c (5.46)

is minimized.

The question is now, whether a polynomial time algorithm exists which finds the
optimal solution for the CDP. The answer is no. The following NP-hard problems
are helpful to prove the NP-hardness of the CDP.
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Definition 52. The bottleneck traveling salesman problem (BTSP): Search for a Hamiltonian
cycle C in a weighted graph G = (V, E) which minimizes the weight of the maximal weighty
edge of the C.

Definition 53. The traveling salesman problem (TSP): Search for a Hamiltonian cycle C in a
weighted graph G = (V, E) which minimizes the total weight of the C.

It is well known that both problems, the TSP and the BTSP, are NP-hard [63].

Proposition 16. The CDP of finding the optimal permutation of rearranged columns [S]:,k
of a scheduling matrix S, so that the maximum or the total delay δ(S) of all consecutive
transmissions to all users is minimized, is NP-hard.

Proof. To prove the NP-hardness, the following proof shows that the CDP contains
the BTSP, if fairness is desired, as a special case or it contains the TSP if minimized
total delay is desired. The search for the optimum permutation of column vectors
to achieve for all users a, e.g., perfectly balanced delay of consecutive transmissions
to users can be expressed by a search for a weighted Hamiltonian cycle (HC) in a
graph. This graph is constructed as follows: The nodes of the graph correspond to the
columns of the scheduling matrix S. Hence, a node vk ∈ V is given by [S]:,k. All nodes
K are connected by an edge e ∈ E so that a complete graph G = (V, E) is the result.
The search of a minimized largest delay of all users in all cells corresponds to a search
of an HC with the following costs: Assuming there is an already determined part of
an HC H which starts at a node v1 and ends at a node vk and the next node vk+1 will
be added to the HC and let q(H, v1, vk, vk+1) ∈ NN×1 be a vectorial function, then
qc(H, v1, vk, vk+1) determines the minimum feasible delay the user with the largest
delay in cell c will have if all previously selected nodes v1 to vk are considered. If
fairness among all users in all cells is desired, the goal is now to find HC H such that

max
k={1,...,K−1}

max
c={1...,N}

qc(H, v1, vk, vk+1) (5.47)

is minimized. This problem is equivalent to case 1 of the CDP. A special case of the
fair CDP is a BTSP if

max
c={1...,N}

qc(H, v1, vk, vk+1) = w(vk, vk+1) (5.48)

and if w(vk, vk+1) ∈ N are some arbitrary cost values which do not depend on the
previously selected part of an HC H. Hence, the result is now the search for a HC H
that minimizes the weight of the maximal weighty edge on H. If a minimized total
delay is desired, the goal is now to find HC H such that

K−1∑

k=1

N∑

c=1

qc(H, v1, vk, vk+1) (5.49)
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is minimized. This problem is equivalent to the second case of the CDP and it contains
the TSP as special case if

N∑

c=1

qc(H, v1, vk, vk+1) = w(vk, vk+1). (5.50)

Hence, the result is now the search for an HC H that minimizes the total weight of an
HC H.

Example 10. The following matrix is optimized so that the overall sum rate is maximized:

S =









a b c c a b

e e e f f f

g h h h g g

j k k i i j









(5.51)

The maximum delay in cell 1 is d1 = max{4, 4, 5}, in cell 2 it is d2 = max{4, 4}, in cell 3 it is
d3 = max{4, 4} and in cell 4 is d4 = max{5, 5, 5}. Fig. 5.8 depicts the graph representation
of CDP. The four numbers in each box correspond to the four cells. Assume the starting node
is (a, e, g, j), the costs of selecting the next node (b, e, h, k) are then (3, 3, 2, 3). For example,
the minimum feasible worst delay in the second cell is then 3 if e is the first and in the second
node. Selecting the next node (c, e, h, k) increases the minimum feasible worst user delay from
3 to 4, because user e is now 3 times scheduled and now user f must be scheduled 3 times and
the next transmission for user e will be in 4 slots. If fairness is desired, the green and the blue
HC are equivalent. If a minimized total delay is desired, the blue is selected. The green HC
shows the initial solution given by (5.51). The red HC has the best temporal fairness.

Due to the similarity of the CDP to the TSP multiple approaches in the literature
developed for the TSP can also find local optimal solutions for the CDP. The approach
presented here has similarities to the nearest neighbor algorithm [63]. However, multi-
ple different algorithms for the TSP or the BTSP are possible and exist in the literature.

The total costs of a scheduling matrix are given by a summation of the costs of
each column of the scheduling matrix. Thus, rearranging the columns [S]:,k does
not change the total costs but the delay between two consecutive transmissions to a
user can be reduced. The following final post-processing of the scheduling matrix
can reduce the delay by rearranging the column vectors of the scheduling matrix.
Algorithm 10 creates a new scheduling matrix SLD with a lower delay between two
consecutive transmissions to the scheduled users. The algorithm searches in the initial
matrix SQFS for column vectors s, which together with the already found column vec-
tors in SLD, do not violate the ORRS constraint. If no column exists in SQFS, the algo-
rithm takes the best fitting vector s̃, which violates the ORRS constraint in the lowest
number of cells. In several cases, the algorithm rearranges SQFS to SLD satisfying the
ORRS temporal fairness constraint in all cells. Fig. 5.9 compares the histogram of the
delay between two consecutive transmissions to a user of a random ORRS scheduling
matrix, a non optimized scheduling matrix as a result of e.g. Algorithm 7 and the op-
timized scheduling matrix after applying Algorithm 10. The number of delay values
larger than 10 is significantly reduced after applying Algorithm 10.
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Figure 5.8: Graph representation of (5.44). Three Hamiltonian cycles (a green, a blue
and a red one) are depicted. The numbers at the edges denote the minimum feasible
delay the user with the largest delay will have in this cell if the next node (in the
direction of the arrow) is selected.

Algorithm 10 Delay optimization

Require: Scheduling matrix SQFS = S
[SLD]:,1 = [S]:,1
for k = 2 to K do

Find a column vector s = [SQFS]:,κ, so that
SLD = [SLD, s] does not violate ORRS in any cell
if ∃ s ∈ SQFS then

SLD = [SLD, s]
else if ∄ s ∈ SQFS then

Take a column vector s̃ = [SQFS]:,κ, so that
SLD = [SLD, s̃] violates ORRS in the lowest number of row vectors [SLD, s̃]c,:

end if
end for
return SLD

5.7 Summary

This chapter presents the general graph theoretic background of the multicell beam-
scheduling problem. The following most significant insights into the beamscheduling
problem can be stated:
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Figure 5.9: Histogram of the delays for different temporal fairness schemes [39].

• Max–min beamforming can result in a low balanced SINR and, therefore, in
a low sum rate if there is a beam collision. A beam collision is given if two
different links are in the same region. A high mutual interference can be the
consequence. In particular, cell edge users are often affected. The avoidance of
these beam collisions based on the long-term channel statistics is called beam-
scheduling. Different objective functions are investigated.

• The general N-cell beamscheduling problem is NP-hard in general. However,
in the 2-cell scenario optimal solutions are feasible.

• The result of a 2-cell optimization is optimal because it is equivalent to the linear
sum assignment problem. Based on a fixed 2-cell approach the assignments of
users in a new cell can be obtained by considering the assignment of the fixed 2-
cell approach. By a cell by cell optimization, a near optimal solution maximizing
the sum rate can be found. This optimization technique is called dimension-wise
optimization.

• In addition to the sum rate maximizing approach, a max–min fair approach can
achieve large gains for the weakest users.

• A simple greedy-based approach can find temporal fair solutions maximizing
the sum rate with half the complexity compared to the dimension-wise opti-
mization methods at the expense of a reduced SINR performance for the weak-
est users.

• A final post-processing optimization to reduce the delay among two consecutive
transmissions to the users is proven to be NP-hard as well. However, a close re-
lation to the traveling salesmen problem enables a variety of useful approaches.
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Chapter 6

Application: Multicell Unicast
Beamforming with One-Way Relays

The content presented in this Chapter is published in the publications [46, 47].

6.1 Introduction

This chapter shows a practically relevant application of unicast beamforming in mul-
ticell networks. BSs are usually expensive; hence, cheaper alternatives are desired.
Relays can be an alternative because they can be applied without a direct connection
to the backhaul network, especially in scenarios where low-cost small BSs are de-
sired to increase the coverage. The low cost BSs can be placed in regions where users
are strongly shadowed. These small BSs usually have a lower transmit power and a
smaller coverage; hence, these networks consist of different types of stations and are
called heterogeneous.

This chapter investigates beamforming in a heterogeneous multicell network with
BSs and relay stations. As in the previous chapters, a frequency reuse-1 is desired to
increase the spectral efficiency of the network. However, then intercell interference
will occur and an unfair distribution of the SINR of all jointly served users can be a
consequence.

In Chapter 4, max–min beamforming was introduced, its duality was established
and a low complexity iterative algorithm was employed form the previous research.
With max–min beamforming, the SINR among the users can be balanced. Hence,
a fair distribution of achievable rate among the users is possible. However, in net-
works where fairness is desired, some bad links can decrease the performance of the
entire system. Chapter 5 presents beam scheduling techniques to avoid unfavorable
scheduling decisions which result in beam collisions. All jointly active links can gain
from the avoidance of these bad beam scheduling decisions.

In addition to beam collisions, shadowed1 users can deteriorate the performance
of all jointly active users as well. Smart beam scheduling can not help in this case. A
solution would be a weighted SINR to avoid the sum rate degradation if these users
are scheduled. However, an unfair system will be the consequence.

Another approach is the usage of low-cost relays which can be placed in regions
with bad coverage. Relays are located closer to the users, therefore, a link without
strong shadowing is more likely. The SINR of all other jointly served users increases.

1 This thesis considers shadowing in a urban cell model. Shadow fading can be caused by multiple
reasons, e.g., high buildings.
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In addition to the intercell interference, this chapter considers shadow fading as
another performance limiting factor. These two technologies are combined to jointly
overcome the interference and shadow fading problems:

• Coordinated max–min beamforming is a well known technique to deal with the
interference in a multiple input single output (MISO) channel. It results in a fair
distribution of the SINR among the users. In some cases even a balanced SINR
can be achieved.

• Relays are a well known approach to overcome the shadowing problem. Shad-
owed users can gain a larger spatial diversity or an improved received power of
the desired signal due to a reduced distance or by a line-of-sight connection to
a relay.

Figure 6.1 illustrates the motivation of beamforming with relays. Figure 6.1a shows a
conventional network with BSs and max–min beamforming. Several users are shad-
owed; hence, the balanced SINR will be possibly low. An improvement of the bal-
anced SINR can be achieved if relays serve shadowed users as depicted in Fig. 6.1b.
If the relays have a line-of-sight (LOS) connection to their BSs, the SINR in the first
hop (green) will be high. Due to avoidance of shadow fading, also the SINR of the
second hop (blue) will be higher compared to the scenario in Fig. 6.1a. The question
is whether the capacity loss due to the half duplex transmission over the relays can
be compensated by this SINR gain.

6.1.1 Scenario

Figure 4.7 shows the considered multicell network with N = 21 cells, each equipped
with one BS and two relay station (RSs) arrays. Each BS has a height of 32 meters
and the decode-and-forward half duplex RSs have a height of 20 meters. Each station
(BS or RS) consists of three sectors with a 120◦ antenna pattern. The sector pattern is
illustrated with lobes in Figure 4.7 on Page 64. Each BS antenna array or RS antenna
array directed to the cell center can serve users inside this cell. The relays are so-called
in-band relays. Hence, each relay will cause interference to all jointly active BS-mobile
station (MS) and RS-BS links. Three types of DL-transmissions are considered in this
chapter:

• Only the RS serves the user. The BS transmits in the first hop to the RS (backhaul
link) and the RS decodes and forwards the signal to the user.

• The user is served jointly by a RS and the BS. The BS transmits the signal in the
first hop to the RS and in the second hop the RS helps the BS in the transmission
to the user. In the case of a coherent transmission based on instantaneous CSI,
a beamforming gain can be achieved. Without a tight synchronization, e.g., if
long-term CSI is used, only a spatial diversity gain is feasible, e.g., [82, 83].

• Direct transmission: The BS transmits the signal directly to the user without a
RS.
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Figure 6.1: Example: Beamforming with and without relays.

To guarantee a strong backbone (BS-RS) link this chapter considers a static line of
sight (LOS) connection in a rooftop-to-rooftop scenario. All other links (BS-MS and
RS-MS) have a non-LOS (NLOS) connection.

Furthermore, all stations in the network are assumed to be synchronized. [86]
presents a simple synchronization scheme based on global positioning system (GPS)
signals.
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6.1.2 One-Way Relays

Multiple types of relays are proposed in the last years. The two most famous types
are called one-way amplify-and-forward and one-way decode-and-forward relays.

• Amplify-and-forward relays amplify the signal received from the source in the
first hop and forward the amplified signal to the destination in the second hop.
Due to this amplification, the noise also is amplified.

• Decode-and-forward relays decode the signal received from the source in the
first hop, encode it again and forward the signal to the destination in the second
hop. Decode and forward relays are considered in current standards due to the
minimal standardization effort. These relays can be simply integrated in systems
appearing in the next future, as LTE. Furthermore, several studies show advan-
tages of decode-and-forward relays compared to amplify-and-forward relays in
multicell applications regarding the cell edge region [13].

6.1.3 Related Work

The information theoretical fundamentals of the relay channel were investigated in
[27]. In the later work [99], space-time-diversity-achieving half duplex relay protocols
called selective relaying or selection decode-and-forward were investigated. In [99],
the BS transmits to the RS and the user in the first hop. In the second hop the relay
forwards the correctly decoded signal to the user. A diversity gain is achieved due to
the relayed transmission. Another transmission scheme is presented in, e.g. [167]. In
this article the BS transmits in a first hop to the RSs. After decoding only the relays
forward the signal to the user. The BS stays silent. In both hops precoding vectors are
optimized. Zero-forcing beamforming was used to avoid mutual interference among
the jointly transmitting RSs. However, this scenario was limited to a single cell. An
extension to a multicell scenario is presented in [121]. The authors propose different
relay techniques (one-way and two-way relaying) to mitigate intercell interference in
a multicell network.

Coordinated beamforming is useful for interference mitigation. Chapter 4 presents
the theoretical background of the downlink beamforming and SINR balancing. Beam-
forming as a promising technique to mitigate interference and can be combined with
RSs which is a useful solution to achieve spatial diversity and to overcome shadow
fading. Combinations of beamforming and relaying are presented in [68] and [46].

6.1.4 Contributions

• Using decode-and-forward relays, the total (achievable) rate over the two hops
is the minimum rate achieved in each hop. This chapter extends the MBP by an
additional SINR constraint to constrain the SINR of the second hop to the SINR
of the first hop. Power is wasted if, e.g., the SINR of the second hop is larger
than the SINR of the first hop. This idea results in an additional constraint. A
reduction of the transmit power is possible. Therefore, a new formulation of
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the optimization problem is introduced which results in a low complexity so-
lution. If instantaneous CSI is available a reduced transmit power without any
performance loss is feasible. If only long-term CSI in the form of spatial corre-
lation matrices is available for the optimization, a performance loss is possible
because of the lack of the fading information. However, due to the assumed
static LOS link in the first hop, the SINR in the first hop has a very low and slow
fading. Therefore, only the fading of the second hop can cause a performance
loss. Simulation results have shown that this performance loss is relatively small
compared to the achieved reduction of the transmit power.

• Finally, this chapter proposes joint optimization of beamforming and beam-
scheduling in a multicell network with RSs at the cell edge region. Techniques
for joint optimization of beamforming and beamscheduling, presented in Chap-
ter 5, are extended by an additional optimization of the assignment of RSs or
BSs to users. This approach searches for the optimal selection of users and serv-
ing stations so that the mutual interference among all links is minimized and,
therefore, the sum rate of the network is maximized.

Figure 6.2: Possible assignments of BSs and RSs to users (MSs).

6.2 System Setup

Figure 4.7 on Page 64 depicts the investigated network layout consisting of NS = 63
cooperative antenna arrays, NB = 21 at BSs and NR = 42 at the RSs. Each cell has
one BS and two RS antenna arrays with NA = 4 antenna elements. Figure 6.2 illus-
trates the possible assignments of stations to users. The blue connection denotes the
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Table 6.1: Assignment of stations to MSs and time division channel allocation

1st hop 2nd hop

BS1 cell 1 MS1 MS1

RS1 cell 1

RS2 cell 1

BS2 cell 2 RS3

RS3 cell 2 MS2

RS4 cell 2

transmission of the first hop, the green connection is the transmission of the second
hop.

1. Case 1 shows the conventional transmission scheme. Mobile station (MS) 1 is
served by a BS in two hops.

2. Case 2 is a transmission of a BS via a RS to MS 2.

All a priori assignments of users to BSs or RSs are based on local long-term CSI.
Figure 6.3 and Table 6.1 illustrate possible transmissions by a small two cell example.
The situation in the first cell correspond to case 1. The BS 1 serves user MS 1 over the
two hops. In cell 2, BS 2 transmits to RS 3 in the first hop and then RS 3 forwards
the decoded signal to MS 2. In the first hop, there is intercell interference among BS 1
and BS 2. In the second hop, there is interference among BS 1 and RS 3.

In the first hop the channel matrix HH
b,r(i) ∈ CNA×NA denotes the MIMO channel

between the RS r(i) assigned to user i and the BS b. The transmit beamforming
vectors at the BSs are denoted with ωb(r(i)). The index b(r(i)) denotes the BS b(r(i))

serving RS r(i) serving user i. With the assumption of maximum ratio combing (MRC)
Vr(i) = ωH

b(r(i))Hb(r(i)),r(i) at the RSs, a RS serving user i receives the signal

g1
r(i),k = Vr(i)

(

HH
b(r(i)),r(i)ωb(r(i))xr(i) + fr(i),k + nr(i)

)

(6.1)

where the interference signal of different BS-RS or BS-MS links is given by

fi,k =
∑

b(l)∈B1
k ,

b(l) 6=b(r(i))

HH
b(l),r(i)ωb(l)xl. (6.2)

The set of active BSs is given by Bt
k, where t ∈ {1, 2} is the index of the hop.

The vector nr(i) is the noise signal plus the interference of adjacent networks and the

transmitted symbols are denoted with xr(i) with the assumptions E{|xr|2} = 1 and

E{xlx
∗
k} = 0 if k 6= l.
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Figure 6.3: Two cell scenario with 2 BSs, 4 RSs and 2 MSs.

User i has a single antenna element and receives at a time instant k in hop t ∈
{1, 2} the signal

gt
i,k = hH

s(i),iωs(i)xi +
∑

s(j)∈S t
k,

j 6=i,s(j) 6=s(i)

hH
s(j),iωs(j)xj + ni (6.3)

where hi,s is the channel vector from the station s serving the user i and ωs is the
beamforming vector of station s. The set S t

k denotes the set of active transmitting

stations (BSs or RSs) in hop t of slot k. In hop t = 1 only BSs s ∈ B1
k serve users and

in hop t = 2 BSs and RSs s ∈ S1
k can serve a user. The noise signal plus interference

of adjacent networks is given by ni.
Using a decode-and-forward relay, the total rate Ri user i has over two hops is

given by [121, 167]:

Ri = min{R1
r(i), R2

i }. (6.4)

Here R1
r(i) is the rate, the RS r(i) serving user i achieves in the first hop with an SINR

γ1
r(i):

R1
r(i) = log2(1 + γ1

r(i)) (6.5)
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and
R2

i = log2(1 + γ2
i ) (6.6)

is the rate user i achieves in the second hop by a transmission of RS r(i) to user i. If
user i is served by a BS directly, the user receives two different symbols and the rate
is given by

Ri = R1
i + R2

i . (6.7)

Therefore, a link over a RS causes a capacity loss. A network-wide optimization based
on instantaneous CSI over both hops in all cells is difficult due to the fast fading. Two
practically relevant assumptions are made here:

• The optimization is made based on the long-term CSI in the form of spatial
correlation matrices Rm,s [162] between a transmitting station s and a receiving
station m. The result is the approximation of the SINRs γ1

r(i) or γ2
i by the mean

SINR and given by

γt
m ≈ γ̄t

m(Ω
t
k) =

(ωt
s(m))

HRs(m),mωt
s(m)

∑

l∈Sk
l 6=s(l)

(ωt
s(l)

)HRs(l),mωt
s(l)

+ σ2
m

, (6.8)

where Ω
t
k denotes the matrix consisting of all beamforming vectors ωt

s of hop
t in slot k. The beamformer for different scheduling decisions are computed by
a central unit in advance and they can be reused as long as the channels are
stationary.

Due to the fixed roof-top to roof-top LOS connection between the BSs and the
RSs, the instantaneous SINR does not vary very much. In this case, the mean
SINR is a good measure for the optimization.

The basic idea for the following approach is the optimization of the spatial di-
mension to find links (BS-MS or BS-RS-MS) with minimized mutual interference.
Additional RSs in a network offer more degrees of freedom for the optimization.
On the other hand, the capacity loss due to the half duplex transmission results
in a seldom selection of RSs. However, in some cases RSs are useful for shad-
owed users, for users at the cell edge region, or if a beam collision among two
BSs can not be avoided.

• A low complexity receiver technology is feasible at the RSs due to the static BS-
RS and the assumed rooftop-to-rooftop link. Therefore, this chapter assumes a
simple maximum ratio combining (MRC) based receiver at the RSs based on the
local CSI, which has low complexity. Due to this static behavior, the first hop
long-term CSI is a good performance measure.

Hence, the rate a receiving station achieves can be approximated like in [93] by

Rt
m = E{log(1 + γt

m)} ≈ log(1 + γ̄t
m(Ω

t
k)) (6.9)

Note the achievable rate (6.9) is only used for an optimization of, e.g., the beam-
forming vectors or the beam scheduling. The final results are determined by the
instantaneous rates, e.g., (6.4).
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6.3 Unicast Beamforming Optimization Problem with

Relays

This section presents the beamforming optimization for the relay network. Similar to
the previous section max–min fairness is targeted. This section shows, that a max–
min fair system can profit from relays. An a priori assignment of either a BS (Case
1) or a RS (Case 2) to a user i, based on the best local long-term CSI, is made. To
achieve fairness in a multicell network it is desired to maximize the SINR of the
weakest link. This problem is called MBP [40, 128]. The two SINRs in the first and
the second hop are decoupled if all transmitting stations are subject to a per-antenna
array power constraint. The transmission in the first hop does not create interference
to a transmission in the second hop, therefore, the beamforming problem is separated
in two sub-problems: The MBP in the first hop is:

γ̄1 = max
Ω1

k ,γ
γ (6.10)

s.t. γ̄1
i ≥ γ ∀i ∈ Uk ∪Rk

(ω1
b)

Hω1
b ≤ Pb ∀b ∈ B1

k ,

where Uk denotes the set of active users and Rk denotes the set of active RSs in slot k.
As in [46], the second hop is optimized by

γ̄2 = max
Ω2

k ,γ
γ (6.11)

s.t. γ̄2
i ≥ γ ∀i ∈ Uk

(ω2
s )

Hω2
s ≤ Ps ∀s ∈ B2

k ∪Rk.

One further aspect in the network design is a reduced power consumption of the
network. In a relay transmission with decode-and-forward relays, power is wasted
if there is a rate missmatch in the two hops. Consequently, no power is wasted if
γ̄1

r(i) = γ̄2
i . Note that here only long-term SINR is regarded for the optimization of the

beamforming vectors. The final results in Section 6.3.1 are based on the instantaneous
channels. For the optimization of the beamforming vectors long-term CSI is a good
assumption, especially in a scenario where the channel of the first hop has a very low
fading, as in a roof-top-to-roof-top connection. The mean SINR is very close to the
actual SINR. In this case only the fading of the second hop can cause a performance
loss if the optimization is based on the mean SINR. If global instantaneous CSI is
available, no performance loss will result.

This idea results in, e.g., additional constraints for the MBP of the second hop:

max
Ω2

k ,γ
γ (6.12)

s.t. γ̄1
r(i) ≥ γ̄2

i ≥ γ ∀i ∈ Uk

(ω2
s )

Hω2
s ≤ Ps ∀s ∈ B2

k ∪Rk.
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Here γ̄1
r(i) is a parameter and represents the mean SINR the RS achieves in the first

hop. Hence, the optimized SINR γ̄2
i is constrained by γ̄1

r(i) ≥ γ̄2
i ≥ γ. If a user is

served only by a BS, then γ̄1
r(i) = ∞ and there will be no constraint like in (6.11). The

constraint γ̄1
r(i) ≥ γ̄2

i ≥ γ for RSs in the second hop results in:

• A reduced transmit power at the RSs.

• Due to the reduced transmit power a reduced interference to other links is pos-
sible.

However, the problem (6.12) is non-convex and difficult to solve. Therefore, this
chapter regards a different approach which can be solved via the uplink downlink
duality introduced in Section 4.3.4.1:

γD(δ) = max
Ω2

k ,γ
γ (6.13)

s.t.
γ̄2

i

δi
≥ γ ∀i ∈ Uk

(ω2
s )

Hω2
s ≤ Ps ∀s ∈ B2

k ∪Rk.

Here δ = [δ1, . . . , δM] is a parameter vector which scales the SINRs of the problem
(6.13). The objective function is now the balancing of ratios γ̄2

i /δi. To constrain the
SINR of the second hop to the SINR of the first hop the parameter δi is given by

γ̄2
i

δi
= γ̄1

r(i) ⇔ δi =
γ̄2

i

γ̄1
r(i)

. (6.14)

A low complexity solution for the MBP with general power constraints is proposed in
Section 4.3.4.1. It is based on the duality of an inner problem, which corresponds to a
MBP with a weighted sum power constraint:

f D(δ, µ) = max
Ω

min
i∈Uk

γ̄2
i

δi
(6.15)

s.t.
∑

s∈B2
k∪Rk

(ω2
s )

HMsω
2
s ≤ P. (6.16)

The weighting factor Ms = µsI concatenated in vector µ = [µ1, . . . , µM] has to be deter-
mined to fulfill the per-antenna array power constraints. In Section 4.3.4.1, an update
of the matrices Ms is presented so that the per-station power constraints are met. The
total power of the inner problem is given by P = µTp̂, with p̂ = [P1, . . . , PM]T. With
the UL (receive) beamforming vectors of a station serving user i given by vi and the
UL powers λ = [λ1, . . . , λM], the dual UL SINR of the antenna array serving user i is
given by

γ̄2,U
i =

λiv
H
i Rs(i),ivi

vH
s (Mi +

∑

l∈Uk
l 6=s

λlRs(i),l)vi
. (6.17)
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Note: The beamforming problem is formulated for a unicast transmission. Hence,
there is one beamforming vector per-station and user pair. Therefore, the sets Uk and
Sk denote the same set of indexes.

As in Section 4.3.4.1, the inner problem (6.15), (6.16), can be solved with the dual
UL problem

f U(δ, µ) = max
λ,V

min
i∈S

γ̄2,U
i

δi
(6.18)

s.t. λT · 1 ≤ P λi ≥ 0, ||vi|| = 0, ∀ i ∈ Sk, (6.19)

which achieves the same SINR as the DL problem with less complexity. As presented
in Section 4.3.4.1, considering an outer minimization over µ, the per-antenna array
power constraints are met if a balanced SINR exists or if the network is interference
coupled. The results are the optimized transmit beamforming vectors which achieve
a balanced SINR with per-antenna array power constraints. The problems (6.10) and
(6.11) are solved by the algorithm presented in Section 4.4. Strong duality for the UL
and DL problem is proven by Proposition 6.

To determine the vector δ, the SINRs γ̄1
r(i) and γ̄2

i are required. The SINRs are

computed by solving the problems (6.10) and (6.11). With γ̄1
r(i) and γ̄2

i , the vector δ

can be computed according to

δi =







γ̄2
i

γ̄1
r(i)

if γ̄1
r(i) ≤ γ̄2

i and i is served by a RS

1 otherwise.
(6.20)

With δ the problem (6.13) is solved and the result is an SINR γ̄2
i which is limited to

the SINR γ̄1
r(i) of the first hop in the corresponding link. Algorithm 11 presents the

data flow.

Algorithm 11 Max–min beamforming

Solve (6.10) → γ̄1
r(i) and Ω

1
k

Solve (6.11) → γ̄2
i

With γ̄1
r(i) and γ̄2

i compute δ according to (6.20)

With δ solve (6.13) → Ω
2
k

return Ω
1
k and Ω

2
k

6.3.1 Numerical Results

Table 6.2 depicts the main simulation parameters. The Winner II channel model
[97, 98] creates the required channels. The rooftop-to-rooftop connection between
a BS and a RS corresponds to the stationary B5a scenario of the Winner II model.
These channels are line-of-sight and have a very flat fading. Consequently, a high and
constant SNR can be achieved in the first hop. All scenarios have the same power
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Table 6.2: Simulation parameters

Number of users per user drop 60

Number of user drops 40

Number of antenna array elements at BS 4

Number of antenna array elements at RS 4

Number of antenna array elements at MS 1

BS height 32 m

RS height 20 m

MS height 1.5 m

Antenna spacing half wavelength

BS-RS channel B5a (Winner II)

BS-MS channel C1 (Winner II)

RS-MS channel C1 (Winner II)

constaints Pi = 4 at all BSs and RSs and the same thermal noise of σ2 = 10−17 at each
user or relay. For the antenna arrays the simplified 2D model is generated. Hence,
only a pattern over the azimuth angle is generated. Single polarized linear arrays
with a 120◦ sectorization are used at the BSs and RSs. The users are equipped with
the default single polarized, istopic antenna arrays of the Winner model. The users
are randomly distributed in the multicell network, but with a distance larger than 50
meters away form the BSs. The long-term statistics are generated based on averag-
ing over 50 channel frames per link. Each channel is assumed to be frequency flat.
The geometry factor of the generated model is depicted in Figure 8.2. This section
compares three approaches:

• A1: No RSs (Case 1), only max–min beamforming at the BSs.

• A2: BSs and RSs with consideration of the backhaul. The problem (6.13) is
solved with a priory computation of the δ according to (6.20).

• A3: BSs and RSs without consideration of the SINR of the first hop (backhaul).

Figure 6.4 depicts the CDF of the individual achievable rates based on instantaneous
CSI per second hop of the different algorithms A1-A3. All algorithms using RSs (A2-
A4) outperform the conventional network (A1) without RSs. A2 reduces the transmit
power of the second hop so that the mean SINR in both hops is equal. Therefore, a
reduced instantaneous achievable rate in the second hop is the result. On the other
hand, A3 still achieves a higher rate than in the conventional case without RSs while
it requires 20% less transmit power (see Figure 6.6). Figure 6.11 depicts the CDF of the
transmitted power of all RSs and BSs in every slot. As it can be observed the power
constraints are mostly satisfied. The small violation is caused due to the low accuracy
of the applied algorithm and due to the seldomly occurred decoupled scenarios.
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Figure 6.4: CDF of the individual per user achievable rate per 2nd hop.
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Figure 6.5: Sum rates of all algorithms.

The individual achievable rate is not an adequate measure to compare the per-
formance in a network. Therefore, Figure 6.5 depicts the sum rates of all algorithms
in percentage compared to the conventional network A1 (in percentage). Algorithms
A2 and A3 outperform A1. Algorithm A2 has a slightly lower achievable sum rate
compared to A3 since long-term CSI is used for the computation of the beamformer.
Due to the usage of long-term CSI there is still a rate missmatch in some cases. If
instantaneous CSI would be available, this rate mismatch could be completely elimi-
nated.

Figure 6.6 shows the sum powers of all algorithms in percentage compared to A1.
As expected, A2 with the consideration of the first hop, has the lowest sum power and
saves approximately 20% of the total power compared to A1, while it has a higher sum
rate.
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Figure 6.6: Sum power of all algorithms.
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Figure 6.7: Sum rates of all algorithms, σ2 = 10−17.

Finally, Figures 6.7 and 6.8 depict the sum rates for different power constraints at
the RSs. Figure 6.7 shows the sum rate of scheme A2 (no consideration of the back-
haul) in a predominantly interference limited scenario. The performance degradation
due to stricter power constraints at the RSs is smaller compared to the predominantly
noise limited scenario in Figure 6.8. Hence, a noise limited scenario is more sensi-
tive concerning very strict power constraints. Also here, it is possible that the power
constraints are slightly violated in case a balanced SINR is not given.

6.4 Scheduling and Assignment Problem

The results presented in this section are based on the published paper [46]. In the pre-
vious section the beamforming problem is presented. The RSs and BSs are assigned to
users based on local long-term CSI. Besides the beamforming, a smart assignment of
stations (RSs or BSs) to MSs is promising to improve the performance of the network.
Unnecessary assignments of RSs to MSs should be avoided to increase the system
achievable rate.
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Figure 6.8: Sum rates of all algorithms, σ2 = 10−16.

Another concept is the avoidance of active links that are very close together. For
example, it should be avoided that a BS-MS link disturbs a different BS-RS link if a
MS is very close to the BS-RS link. The main idea of this algorithm can be simplified
as a search of the necessary links to maximize the sum rate of the proposed SINR-fair
network. This section optimizes the beam scheduling, user scheduling, and assign-
ment based on the long-term CSI. The concept is based on the previously proposed
ideas of Chapter 5 without RSs. The user scheduling and the assignment of stations
is defined by the matrix S ∈ NN×K. Each element in S with index c, k is given by the
tuple (i, s)

[S]c,k =







(i, s) if user i in cell c is served

by station s in hop 2 of slot k

0 if cell c contains no user.

(6.21)

Here, K denotes the number of optimized scheduling slots. It is desired to maximize
the overall rate of the network by a smart assignment of stations to MSs and a smart
user scheduling. A useful optimization criterion is the mean sum rate (see Section
5.3.2):

R(S) =
K∑

k=1

∑

i∈[S]:,k

Ri([S]:,k) (6.22)

where

Ri([S]:,k) =

{

log(1 + γ̄1
i ([S]:,k) + log(1 + γ̄2

i ([S]:,k) user i is served by a BS

min{log(1 + γ̄1
ri
([S]:,k), log(1 + γ̄2

i ([S]:,k)} user i is served by a RS
(6.23)

is the mean rate of a user i which is served in slot k. Two cases have to be distinguished
here: A MS can either receive two information symbols in the two hops by a BS or
it can receive one information symbol through two hops over a RS. The resulting
mean rate for the computation of the cost function is given in (6.23). The second
case of Eq. (6.23) is motivated by the instantaneous rate in the case of a two hop
transmission [167]. Note that the considered rates here are rate functions based on
the mean SINR. Consequently, they are only approximations of the actual rates [93]
but this approximation gives a good measure of the overall mean link quality in the
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two hops. Due to max–min beamforming, the mean SINR of the two hops can be
different. In each hop different links are active, e.g., in the first hop users and RSs are
served by BSs and in the second hop users are served by RSs and BSs. Consequently,
the mean interference power varies over two hops and influences the instantaneous
rates. The final rate is determined by the rate achieved in each hop. Therefore, this
thesis takes into account the overall end-to-end mean rate. The set W denotes the set
of all beamforming matrices Ωk with k = 1, . . . , K. Using (6.22) as a cost function the
optimization problem can be stated as:

max
S

R(S) (6.24)

For the computation of the rate of each slot, the two beamforming problems have to
be optimized to maximize the weakest SINRs. Thus, for each scheduling assignment
[S]:,k the beamforming weights Ωk are determined by the problems (6.10) and (6.11).
Finding this optimal scheduling matrix maximizing the sum rate, and fulfilling the
temporal fairness constraint is NP-hard. More details are given in Chapter 5. Section
5.5.2 proposes several heuristic to optimize the beam scheduling problem. A promis-
ing algorithm presented in Section 5.5.2, useful for the application in the case of RSs,
is the Greedy algorithm due to its low complexity. Furthermore, this algorithm shows
a good sum rate performance and achieves ORRS fairness according to Definition 43.

In this chapter, the greedy approach of Section 5.5.2.4 is slightly modified. The
greedy approach is based on a slot-by-slot iteration. In each slot k, the sum rate is
maximized individually. For each slot k in the first step the greedy approach starts
with a (strongest) user in a given cell c. For this user the best station considering the
balanced mean SINR is selected. Then the algorithm continues in the next cell and
selects the user which enables the largest overall sum rate

Rk([S]:,k) =
∑

i∈[S]:,k

Ri([S]:,k) (6.25)

for the slot k. Additionally, a search over all possible stations in this cell c has to be
performed for this user. The user in combination with the best station will be selected.
The algorithm continues with the next adjacent cell (c := c + 1) and repeats the last
step until all N cells are visited. Then the same procedure is performed in the next
slot until all K slots are optimized. To guarantee a temporal fairness among the users,
each user is scheduled equally often. Therefore, a set Uc,0 containing all active users
of cell c is used.

6.4.1 Numerical Results

In Table 6.2, the main simulation parameters are summarized. The channels are cre-
ated based the same setting as in Section 6.3.1. The results are based on the instanta-
neous rates, e.g., (6.4). Three cases are compared in this section:

• No RSs, only max–min beamforming with random Round-Robin scheduling
(RRS).



6.5. Summary 119

Algorithm 12 Greedy user selection and station assignment

Initialization: Compute Uc,0 ∀ c = 1, . . . , N
for k = 1 to K do
Uc = Uc,0 ∀ c
start in c = 1, find the strongest user imax and the station smax serving this user
based on the long-term link quality
[S]1,k = (imax, smax).
Update: U1 := F(U1,U1,0, imax)
for c = 2 to N do

search a user ibest ∈ Uc of cell c with a station sbest which serves this user
maximizing the sum rate (6.25). For the computation of the sum rate the beam-
forming vectors are optimized based on max–min beamforming.
[S]c,k = (ibest, sbest)
Update: Uc := F(Uc,Uc,0, ibest)

end for
end for
return S,W

• Max–min beamforming with RSs and random RRS. A station (RS or BS) is as-
signed to the user based on the best mean local link quality.

• Max–min beamforming with the proposed greedy scheduling (GS).

In Fig. 6.9, the cumulative distribution function (CDF) of the individual achievable
rate per hop is depicted. The additional usage of RSs results in an improved per link
achievable rate. But in this figure, the multiplexing loss is not visible. In case of a RS
serving a user, the transmission of a symbol requires two hops, therefore, in Fig. 6.10
the sum rate of all scheduled users per hop is depicted. Regarding the sum rate, the
usage of RSs improves the rate only marginally in the case of random RRS. On the
other hand, the presented low complexity GS is able to outperform the conventional
case without RS by more than 25%. The question arises, whether these RSs are useful
at all to improve the sum rate of a multicell network. This question is answered in
Fig. 6.13 which shows the amount of used RS links. In the case of RRS with a local
(per-cell) assignment based on the mean link quality, the RSs are selected in 28% of
the cases. Using the GS this amount is reduced to 12%. That means only in a few
cases (e.g. cell edge users, or strongly shadowed users), the usage of RSs can increase
the system performance in the sense of a maximized achievable sum rate. Only in
cases where a RS is useful, the RS is used for the improvement of the achievable rate
of the scheduled user.

6.5 Summary

This chapter proposes a multicell network with half duplex decode-and-forward RSs.
The results can be summarized as follows:
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Figure 6.9: CDF of the individual per user achievable rate per 2nd hop.
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Figure 6.10: Sum power of all algorithms.

• This chapter shows an improvement of max–min beamforming with relays. The
beamforming problem is then separated in two hops which can be solved in-
dependently. The presented max–min fair algorithms with one-way relays are
based on long-term CSI and they are able to achieve a higher sum rate compared
to a max–min fair system without relays.

• A consideration of the backhaul for the optimization of the beamforming vectors
in the second hop reduces the transmitted power of the relays in the second
hop. In the case of instantaneous CSI no performance loss will occur. In the
case of long-term CSI a small performance loss is visible due to the fading of the
channels and the resulting rate mismatch.
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Figure 6.12: Sum rates of all algorithms.

• In an SINR fair system, relays are useful in some cases to improve the overall
achievable sum rate. An optimized beam scheduling and an optimized assign-
ment of relay stations or base stations to users results in an amount of 12% of
relay links in the regarded scenario. Those users can be shadowed and located
in the cell edge region where the transmission via a relay is helpful to increase
the achievable sum rate of a fair system. In a max–min fair system strongly
shadowed user decrease the SINR of all jointly active users. Consequently, a
very low sum rate for all users in the system is the result in this case. An avoid-
ance of these shadowed links (channels) can result in a gain for all users in the
system and, therefore, also in an increased sum rate.

Several future extensions are possible:

• In addition to the local assignment based on local long-term CSI, a global as-
signment and joint optimization of the beamforming weights can be achieved
with the CoMP optimization presented in Section 4.6.3. The best transmitting
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Figure 6.13: Amount of RSs used to serve users in the network.

station of a cell can derived with a consideration of the second hop interference.
The max–min beamforming algorithm optimizing the beamforming weights and
assignment can be solved efficiently. However, an open issue is here the con-
sideration of the end-to-end rates. The end-to-end sum rate could be a better
objective function instead of the max–min fairness. However, this problem is
again NP-hard.

• In the presented system, the users are assumed to be strongly shadowed from
the BSs. Hence, in the first hop, the BS only transmits to the relay and the
relay decodes and forwards the signal to the user in the second hop. In sce-
narios where the users are not strongly shadowed from the BSs, a multicast
transmission from the BS to the RS and the user can result in an additional
temporal diversity gain. The beamforming problem in the first hop must then
be replaced by a multicast beamforming problem. Further details concerning
multicast beamforming are presented in Chapter 7.

• The one-way half duplex relay system has a capacity loss due to the trans-
mission over two hops where the relay is not able to jointly transmit and re-
ceive. A promising extension is the usage of two-way relays where the source
and the destination transmit jointly to the relay in the first hop. The relay
combines the two signals and broadcasts them in the second hop. Hence up-
link and downlink are combined. A reduced capacity loss can be the result.
Recently, attracts a novel approach the interest of many scientists. The arti-
cles [14,25,67,78,127,131,146,152,154,155] present optimization methods for the
bi-directional relay channel precoding problem. In this scenario two sets of users
exchange information via a two-way relay and the precoding vectors at the relay
are optimized such that the worst SINR among all user pairs is maximized. A
replacement of one user set by a base station or multiple base stations leads to
a scenario similar to the scenario as presented in this chapter. In a future work,
a joint optimization of base station beamforming vectors and two-way relay sta-
tion beamforming vectors can improve the fairness among the users with less
degradation of the sum rate performance.



Chapter 7

Theory of the Multicell Multicast
Beamforming Problem

The content presented in this Chapter is published in the publications [35, 43]. This
chapter considers only a multicast downlink transmission.

7.1 Introduction

Regard a multicell network with multiple BSs with the capability of multicast beam-
forming. Figure 7.1 depicts the network. Each BS serves multiple users, each equipped
with one antenna. In one time slot, a BS transmits the same content to all users in-
side the cell which corresponds to the multicast scenario. If only one user per cell is
scheduled, a unicast transmission is possible as well. The optimization of the beam-
forming vectors is based on available long-term CSI in the form of Hermitian positive
semidefinite Toeplitz matrices.

If a frequency reuse-1 is used to increase the spectral efficiency, interference among
the different BSs or cells reduces the fairness of the network. The optimization of the
beamforming weights to cover all users inside a cell based on long-term CSI results in
an adaptation of the sector pattern1 based on the available spatial correlation informa-
tion. An improved fairness among the users can be the result. This long-term sector
pattern adaptation results in low fluctuations of the beamforming weights and, there-
fore, low fluctuations of the instantaneous SINR are the consequence. A low variation
of the beamforming weights will result in a measured instantaneous SINR at the MS
that is close to the actual instantaneous SINR. Techniques like channel-aware schedul-
ing or adaptive modulation and coding can profit from an accurate knowledge of the
instantaneous SINR.

A global adaptation of the sector pattern can be achieved by closed loop multi-
cast max–min beamforming based on the available CSI of all links in the considered
network. A practically relevant approach is the use of long-term CSI in the form of
estimated spatial correlation matrices due to their longer stationarity intervals. More
details concerning the sector pattern adaptation approach are presented in Chapter 8.

7.1.1 Related Work

The multicast MBP and multicast beamforming in general have been investigated in
the last 15 years. As cited in [89], the first work regarding multicast beamforming

1 Sector pattern is ideally hexagonal if the users are uniformly distributed.
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Figure 7.1: Scenario: The lobes show the multicast groups.

is [106]. The author proposed a maximization of the average received signal power.
This approach is unfair and does not satisfy a quality-of-service constraint.

In 2004 Sidropoulos et al. [133] proposed the multicast power minimization prob-
lem (PMP) defined by a minimization of the total transmit power given a minimal
signal-to-noise ratio (SNR). The authors further introduce the generalization of PMP
called multicast MBP defined by the maximization of the minimum SNR given a to-
tal power budget. These so-called single group mulitcast beamforming problems are
proven to be NP-hard in general by the same authors in [134]. The work [89] extends
the work [134] to the case of multiple multicast groups with interference among dif-
ferent groups in a single cell. The authors propose a semidefinite relaxation technique
to find sub-optimal solutions.

Although these problems are non-convex in general, quasi-convex or convex equiv-
alent forms for special instances may exist. In 2007, Karipidis et al. [89] derived an
equivalent convex form for the PMP and an equivalent quasi-convex form of the MBP
if the BS uses ULAs and far-field LOS propagation conditions are given. The channel
vector is then given by a Vandermonde vector. In this case, the PMP can be expressed
by an equivalent convex problem with optimization variables given by finite auto-
correlation sequences (FASs). A spectral factorization of these FASs can recover the
equivalent beamforming vectors. Furthermore, the authors prove in their article the
tightness of the semidefinite relaxation in this case.

Similar to the equivalent convex form of the PMP, an equivalent quasi-convex form
of the MBP can be derived [89]. The equivalent quasi-convex form of the multicast
MBP is only derived for the special instance of LOS channels with instantaneous CSI
and using ULAs with a sum power constraint [89]. An open question is whether there
are some cases where the multicast MBP becomes quasi-convex for long-term CSI and
more general power constraints. Table 7.1 gives an overview of all related problems.
The last line is the contribution of this chapter. A broader overview of the related
work of the last 10 years is presented in Tables 7.2 and 7.3.
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Table 7.1: Overview of some related multicast MBPs.

Power constr. CSI Convexity

sum power long-term non-convex

per-antenna long-term non-convex

sum power LOS inst. CSI, ULA quasi-convex

per array long-term, ULA quasi-convex

Table 7.2: Overview of the regarded scenarios in the related work since 2002.

Year Author Problem Power constr. CSI Scenario

2002 Lopez [106] Max SNR - inst. single group

2004 Sun et al. [140] MBP sum power inst. single group

2004 Sidropoulos et al. [133] PMP/MBP sum power inst. single group

2005 Karipidis et al. [87] PMP - inst. mult. groups

2006 Sidropoulos et al. [134] PMP/MBP sum power inst. single group

2006 Karipidis et al. [88] PMP - far field mult. groups

2007 Karipidis et al. [89] MBP sum power far field mult. groups

2008 Karipidis et al. [90] MBP sum power inst. mult. groups

2008 Chang et al. [24] MBP sum power inst. mult. groups

2008 Jordan et al. [82, 83] MBP sum power long-term mult. cells

2009 Silva et al. [136] MBP sum power inst mult. groups

2010 Dartmann et al. [38] MBP per-BS long-term. mult. cells

7.1.2 Contributions

In multicell networks, instead of instantaneous CSI, the use of long-term CSI in the
form of higher rank (larger than one) spatial correlation matrices is more realistic.
Therefore, this chapter regards the multicast MBP based on long-term CSI with per-
antenna array power constraints.

• This chapter proves the existence of a rank-1 solution of the relaxed semidef-
inite feasibility check problem of the MBP with per-antenna array power con-
straints in the case of long-term CSI in the form of Hermitian positive semidefi-
nite Toeplitz matrices.

• Furthermore, this chapter presents the equivalent quasi-convex form for the
multicast MBP for long-term CSI in the form of Hermitian positive semidefinite
Toeplitz matrices and per-antenna array power constraints. This quasi-convex
form uses FASs as optimization variables and the optimal beamforming vectors
are recovered by spectral factorization.
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Table 7.3: Overview of the presented solutions of related work since 2002.

Year Author Problem Power constr. CSI Theory, Solution

2002 Lopez [106] Max SNR - inst. convex opt.

2004 Sun et al. [140] MBP sum power inst. seq. quadr. progr.

2004 Sidropoulos et al. [133] PMP/MBP sum power inst. SDP relaxation

2005 Karipidis et al. [87] PMP - inst. SDP relaxation

2006 Sidropoulos et al. [134] PMP/MBP sum power inst. NP-hardness proof

2006 Karipidis et al. [88] PMP - far field equiv. convex form

2007 Karipidis et al. [89] MBP sum power far field equiv. convex form

2008 Karipidis et al. [90] MBP sum power inst. SDP relaxation

2008 Chang et al. [24] MBP sum power inst. approx. bounds

2008 Jordan et al. [82, 83] MBP sum power inst. SDP relaxation

2009 Silva et al. [136] MBP sum power inst duality (with gap)

2011 Dartmann et al. [34] MBP sum power long-term duality (with gap)

2012 Dartmann et al. [35] MBP per-BS Toeplitz equiv. quasi-convex

2012 Dartmann et al. [43] MBP per-BS long-term duality (with gap)

• The equivalent quasi-convex form can be solved with a simple bisection based
algorithm with linear convergence. Besides this standard solution, this chap-
ter proposes an algorithm with super-linear convergence based on a so-called
parametric program of the equivalent quasi-convex fractional program of the
MBP.

• In addition to methods based on convex solvers, this chapter proposes a new
approach based on uplink–downlink duality. The result is an iterative solution
based on a linear fractional program and simple mathematical operations.

7.2 System Model for the Multicast Downlink

Transmission

A multiuser multicell network is considered with a set S = {1, . . . , N} of N cooperat-
ing BSs equipped with NA antennas each, serving a set U of M users, each equipped
with a single antenna. A group of users is served by one BS c(i), i.e., N ≤ M. The
signal ri received by a user i is given by

ri = hH
c(i),iωc(i)sc(i) +

∑

c∈S , c 6=c(i)

hH
c,iωcsc + ni, (7.1)

where hc,i ∈ CNA×1 is the channel vector from BS c to the ith user. The transmit
beamforming vector at BS c is ωc = [ωc(0), . . . , ωc(NA − 1)]T ∈ CNA×1, sc is the
information signal transmitted by cth BS with E{|sc|2} = 1 and ni ∼ CN (0, σ2

i ) is the
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complex additive Gaussian noise with E{ni} = 0 and variance E{|ni|2} = σ2
i . With

the assumption E{|sc|2} = 1 and E{scs∗k} = 0 if c 6= k, the instantaneous DL SINR of
user i is:

γD
i =

|hH
c(i),iωc(i)|2

∑

c∈S
c 6=c(i)

|hH
c,iωc|2 + σ2

i

. (7.2)

Long-term CSI is often used in a multicell optimization due to its longer stationary
interval and, therefore, reduced required CSI feedback rate. The assumption of this
long-term CSI results in the mean SINR:

γD
i (Ω) =

ωH
c(i)Rc(i),iωc(i)

∑

c∈S
c 6=c(i)

ωH
c Rc,iωc + 1

. (7.3)

Here, an additional expectation over the channel realizations H is made. The result is
the spatial correlation matrix normalized to the noise power given by

Rc,i =
1

σ2
i

EH{hc,ih
H
c,i}. (7.4)

Note that the spatial correlation matrices (7.4) are normalized by the noise power.
Considering a ULA with NA antenna elements and an antenna spacing d of half the
wave length at the BS, the spatial correlation matrix is given by a Toeplitz matrix and
can be decomposed as in Chapter 2 [1]:

Rc,i =
1

σ2
i

A(θc,i)Pc,iA(θc,i)
H. (7.5)

Chapter 2 presents more details concerning long-term CSI in the case of ULAs.
Power constraints: This chapter investigates two different power constraints that

are given by convex cones.

• In the case of a sum power constraint, the total power of the entire network is
limited by P and can be expressed by the following convex cone:

P = {ωc ∈ C
NA×1 :

∑

c∈S
ωH

c ωc ≤ P}. (7.6)

This constraint is reasonable if only one BS and multiple multicasting groups
are regarded. However, in a multicell scenario a sum power constraint is not a
practically relevant assumption.

• The per-BS antenna array power constraints are practically more relevant. In
this case, each antenna array c of a BS will be subject to a total power budget
Pc. The convex cone of beamforming vectors satisfying the per-BS antenna array
power constraints is given by

P = {ωc ∈ C
NA×1 : ωH

c ωc ≤ Pc, ∀c ∈ S}. (7.7)
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7.3 Optimization Problem

To achieve fairness, it is desired to improve the worst SINR of the currently scheduled
users. Therefore, the MBP can be stated as

Definition 54. Let Ω = [ω1, . . . , ωN ] be the beamforming matrix and let M > N, the
multicast MBP is defined by

γD
M = max

Ω

min
i∈U

γD
i (7.8)

s.t. ωc ∈ P ∀c ∈ S .

A balanced SINR can be the result. The problem can be simplified by using an
additional slack variable γ:

γD
M = max

Ω,γ
γ (7.9)

s.t. γD
i ≥ γ ∀i ∈ U ,

ωc ∈ P ∀c ∈ S .

7.3.1 Equivalent Quasi-Convex Forms

The problem (7.8) is non-convex in general because of the non-convex objective func-
tion:

f (Ω) = min
i∈U

ωH
c(i)Rc(i),iωc(i)

∑

c∈S
c 6=c(i)

ωH
c Rc,iωc + 1

. (7.10)

However, this problem can be relaxed to a quasi-convex problem. It is desired to
maximize (7.10); hence, the objective function must have an equivalent quasi-concave
form to prove that the MBP has an equivalent quasi-convex form.

The non-convex optimization problem (7.8) can always be relaxed to a quasi-
convex problem with a semidefinite problem as a feasibility check problem. With
semidefinite matrices Xc = ωcωH

c and X = [X1, . . . , XN ], the DL SINR is given by

γD̃
i (X) =

Tr{Xc(i)Rc(i),i}
∑

c∈S ,c 6=c(i) Tr{XcRc,i}+ 1
. (7.11)

Removing the non-convex rank-1 constraint rank(Xc) = 1 ∀c ∈ S , the MBP (7.8) with
per-antenna array power constraints can be relaxed to

γD̃ = max
X

min
i∈U

γD̃
i (X) (7.12)

s.t. Tr{Xc} ≤ Pc, Xc � 0 ∀c ∈ S .

This problem is quasi-convex due to its quasi-concave objective function and can be
solved by convex feasibility check problems in the form of semidefinite programs
(SDPs) [15]. A bisection algorithm can iterate arbitrarily tightly to the value of the
global optimum. This solution is a standard method of solving the MBP and is used
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as a reference in this thesis. For a fixed γ, the upper level sets of the objective function
are given by

Sγ = {X ∈ P : f̃ (X) = min
i∈U

γD̃
i (X) > γ}. (7.13)

Proposition 17. The upper level set (7.13) is convex.

Proof. The point-wise minimum of a quasi-concave function is quasi-concave. Fur-
thermore, the constraint

− 1

γ
Tr{Xc(i)Rc(i),i}+

∑

c∈S ,c 6=c(i)

Tr{XcRc,i}+ 1 ≤ 0 (7.14)

is convex for a fixed γ and Xc � 0 ∀c ∈ S .

The unicast MBP with a sum power constraint
∑

c∈S Tr{Xc} = P has solution
matrices which are proven to have all rank-1 and, therefore, the solution is optimal [9].
This proof does not hold in the multicast case.

If long-term CSI in the form of Hermitian positive semidefinite Toeplitz matrices
is available, simulation results show that for such a scenario, the solutions of the
semidefinite relaxation often yields matrices Xc ∀c ∈ S having rank-1. Thus, the
solution may be optimal in some cases and a rank-1 solution may exist. Using the
Riesz-Fejer theorem [142], this observation can be formally proven.

Theorem 9. A non-negative real valued trigonometric polynomial

X(ejφ) =
n−1∑

k=−n+1

x(k)e−jkφ (7.15)

with the FAS x(−n + 1), . . . , x(0), . . . , x(n− 1) can be expressed in the form

X(ejφ) = |W(ejφ)|2 (7.16)

for some polynomial W(ejφ) =
∑n−1

k=0 w(k)e−jkφ.

Proof. A short outline of the proof is presented in Appendix A.6.

Proposition 18. In the case of long-term CSI in the form of matrices Rc,i given by (7.5) and
with (2.6), there exists a solution for the MBP (7.12) with all matrices Xc ∀c ∈ S having
rank-1.

Proof. As in [89], an optimal solution Xc of the SDP is assumed. In general, this
solution has rank ρc = rank(Xc) larger than one. Thus Xc can be decomposed to
Xc =

∑ρc

r=1 ω̂c,rω̂H
c,r. Next it is shown that a rank-1 solution Ψc = ωcωH

c can achieve
the optimum. The signal power received at user i from BS array c is given by

Tr(XcRc,i) = Tr(

ρc∑

r=1

ω̂c,rω̂H
c,rRc,i) (7.17)
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=

ρc∑

r=1

Tr(ω̂c,rω̂H
c,rRc,i).

Using the decomposition of positive semidefinite Toeplitz matrices according to (7.5)
and with (2.6), the received signal can be simplified to

Tr(XcRc,i) =

ρc∑

r=1

Tr(ω̂c,rω̂H
c,r

NP∑

p=1

qc,i,pa(θc,i,p)a(θc,i,p)
H)

=

NP∑

p=1

ρc∑

r=1

Tr(ω̂c,rω̂H
c,rqc,i,pa(θc,i,p)a(θc,i,p)

H)

=

NP∑

p=1

qc,i,p

ρc∑

r=1

Tr(a(θc,i,p)
Hω̂c,rω̂H

c,ra(θc,i,p))

=

NP∑

p=1

qc,i,p

ρc∑

r=1

|a(θc,i,p)
Hω̂c,r|2. (7.18)

As in [89], the nonnegative complex trigonometric polynomial

ρc∑

r=1

|a(θc,i,p)
Hω̂c,r|2 ≥ 0 (7.19)

is positive for any value of θc,i,p ∈ [0, 2π). With the help of the Riesz-Féjer theorem
(Theorem 9), we can find a vector ωc which does not depend on θc,i,p such that for all
θc,i,p [89]

ρc∑

r=1

|a(θc,i,p)
Hω̂c,r|2 = |a(θc,i,p)

Hωc|2 (7.20)

holds. Inserting this in (7.18) results in

Tr(XcRc,i) =

NP∑

p=1

qc,i,p|a(θc,i,p)
Hωc|2

=

NP∑

p=1

qc,i,p Tr(ωcωH
c a(θc,i,p)a(θc,i,p)

H)

= Tr(ωcωH
c

NP∑

p=1

qc,i,pa(θc,i,p)a(θc,i,p)
H)

= Tr(ωcωH
c Rc,i).
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The last part of the proof follows [89, Eq. (5)], where it is shown that the same
feasible set is obtained by matrices having rank-1. Thus, an equivalent rank 1 positive
semidefinite matrix Xc = ωcωH

c exists, which results in the same receive power at
the user i, consequently, the convex feasibility check problem of the MBP (7.12) has a
solution X with all matrices Xc ∀c ∈ S having rank-1.

The multicast beamforming problem (7.12) has a solution where all matrices Xc ∀c ∈
S have rank-1. However, problem (7.12) is not guaranteed to always yield solutions
with rank-1. There are cases where the feasibility check problem of (7.12) has higher
rank solutions. The work of [89] describes the same observation for Vandermonde
channels where also a rank-1 solution exists but the proposed semidefinite relaxation
does not consistently yield rank-1 solutions.

The next part of this section proposes an equivalent quasi-convex form of the
MBP (7.8). The derived solution yields quasi-optimal beamforming vectors based
on an equivalent quasi-convex formulation of the original problem with FASs. The
technique of convex optimization with FASs [4] to derive an equivalent quasi-convex
form of the MBP as in [89] is extended in this paper to higher rank correlation matrices
according to (7.5). These matrices are Toeplitz matrices:

[Rc,i]k,l =[

NP∑

p=1

qc,i,pa(θc,i,p)a(θc,i,p)
H]k,l

=

NP∑

p=1

qc,i,p[a(θc,i,p)a(θc,i,p)
H]k,l

=

NP∑

p=1

qc,i,pej2πd(k−l) sin(θc,i,p). (7.21)

With (7.21) and m = k − l, the coefficients of the Hermitian positive semidefinite
Toeplitz matrix are given by

rc,i(m) =

NP∑

p=1

qc,i,pej 2πdm sin(θc,i,p) ∀m = 0, . . . , NA − 1. (7.22)

With this definition, the spatial correlation matrix can be equivalently expressed by

Rc,i =










rc,i(0) rc,i(1) . . . rc,i(NA − 1)

rc,i(−1) rc,i(0)
. . .

...
...

. . . . . . rc,i(1)

rc,i(−NA + 1) rc,i(−1) rc,i(0)










(7.23)

The idea of convex optimization with FASs is based on the following definition:

Definition 55. Ẽk ∈ {0, 1}n×n denotes the matrix which has zero entries except on the kth
subdiagonal where it has only ones, k ∈ {−n + 1, . . . , 1, 0, 1, . . . , n− 1}.
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Definition 56. Ek denotes the kth power of the matrix E which has zero entries except on the
1st lower subdiagonal where it has only ones.

Using this technique of convex optimization with FASs presented in Section 3.2.2,
the non-convex original problem (7.8) can be expressed as a quasi-convex problem,
where the optimization variables (beamforming vectors) are converted to FASs. The
reformulation leads to additional convex constraints. The optimal beamforming vec-
tors can be obtained by spectral factorization techniques, e.g. [158]. The following
proposition claims the original problem has an equivalent quasi-convex form.

Proposition 19. In the case of long-term CSI in the form of matrices Rc,i given by (7.23),
and variables in the form of xc = [xc(0), . . . , xc(NA − 1)]T, xc(k) ∈ C, and semidefinite
matrices Uc ∈ CNA×NA , Uc � 0 stored in U = [U1, . . . , UN ], and the vectors rc,i =
[rc,i(0), . . . , rc,i(NA − 1)] ∀c ∈ S , ∀i ∈ U , the equivalent quasi-convex form of the original
problem (7.8) is given by

max
γ,x,U

γ (7.24)

s.t.
Re{rc(i),i ĨNA

xc(i)}
∑

c∈S
c 6=c(i)

Re{rc,i ĨNA
xc}+ 1

≥ γ ∀i ∈ U

xc(0) ≤ Pc ∀c ∈ S (7.25)

xc(k) = Tr{EkUc}, Uc � 0 ∀c ∈ S ∀k = 0, . . . , NA − 1. (7.26)

Proof. The objective function (7.10) can be proven to have an equivalent quasi-concave
form if the upper level sets of the objective function are convex. Observe that (7.23)
can be rewritten as [103]

Rc,i =

NA−1
∑

k=−NA+1

rc,i(k)Ẽk. (7.27)

With Definition 55 and n = NA, the signal power received at a user i by the ULA c is
given by

ωH
c Rc,iωc = ωH

c (

NA−1
∑

k=−NA+1

rc,i(k)Ẽk)ωc

=

NA−1
∑

k=−NA+1

rc,i(k)ω
H
c Ẽkωc

=

NA−1
∑

k=−NA+1

rc,i(k)xc(k). (7.28)

With Definition 55 we have

xc(k) = ωH
c Ẽkωc = Tr{ẼkωcωH

c } (7.29)
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which is an FAS [4], (7.28) is a linear function over xc(k) with the coefficients rc,i(k).
It is evident that the coefficients of (7.27) and xc(k) are conjugate symmetric

rc,i(−k) = rc,i(k)
∗

xc(−k) = xc(k)
∗.

Therefore, (7.28) can be rewritten as in [89] as

ωH
c Rc,iωc = xc(0)rc,i(0) +

NA−1
∑

k=1

xc(k)rc,i(k) + xc(−k)rc,i(−k)

= xc(0)rc,i(0) +

NA−1
∑

k=1

xc(k)rc,i(k) + xc(k)
∗rc,i(k)

∗

= xc(0)rc,i(0) + 2

NA−1
∑

k=1

Re{xc(k)rc,i(k)}. (7.30)

Using the following matrix as in [89]

ĨNA
=

[

1 01×NA−1

0NA−1×1 2INA−1

]

∈ N
NA×NA (7.31)

and the finite autocorrelation vector xc = [xc(0), . . . , xc(NA − 1)]T and the vector
rc,i = [rc,i(0), . . . , rc,i(NA − 1)], the received power (7.30) can be simplified to

ωH
c Rc,iωc = Re{rc,i ĨNA

xc}. (7.32)

In addition to the received power, also the per-BS antenna array power constraints can
be rewritten with the use of FASs {xc(k)}:

ωH
c ωc = ωH

c E0ωc = xc(0). (7.33)

With x = [x1, x2, . . . , xN ] and the set of positive semidefinite auxiliary matrices {Uc, ∀l ∈
S}, with Uc ∈ CNA×NA , the set

P = {x : xc(k) = Tr{EkUc}, xc(0) ≤ Pc, Uc � 0 ∀c ∈ S ∀k = 0, . . . , NA − 1} (7.34)

is convex. Due to Lemma 3 the constraint xc(k) = Tr{EkUc} describes the same set as
(7.29). Due to convexity of P , the upper level sets

Sγ,i = {x ∈ P :
Re{rc(i),i ĨNA

xc}
∑

c∈S
c 6=c(i)

Re{rc,i ĨNA
xc}+ 1

≥ γ} (7.35)

are also convex. The constraints (7.26) are convex constraints [4]. For a fixed γ, the
final problem (7.24)-(7.26) is equivalent to (7.8) and is an SDP [89], which is known
to be convex. Hence, the original problem (7.8) has an equivalent quasi-convex form
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in the case of long-term CSI in the form of Hermitian positive semidefinite Toeplitz
matrices.

The Toeplitz property of long-term CSI in the case of a ULA offers, therefore, low
complexity and near-optimal solutions for the multicast beamforming problem.

7.4 Spectral Factorization

Problem (7.24)-(7.26) is a quasi-convex problem. Consequently, the optimal autocorre-
lation sequence can be computed efficiently. The question remains: How to obtain the
beamforming weights ωc from the FASs xc ∀c ∈ S? Let n be n = NA, the polynomial

of the FAS xc for a c ∈ S is given by Xc(z) =
∑NA−1

k=−NA+1 xc(k)z−k. As in the proof of

Theorem 9 presented in Appendix A.6, the polynomial Xc(z) can be factorized by its
roots:

Xc(z) = Wc(z) · W̃c(z)

Let A be a constant factor, as presented in Appendix A.6, the spectral factor of X(z)
is the polynomial

Wc(z) =
√

A

NA−1
∏

k=1

(1− z−1zk) =

NA−1
∑

n=0

ωc(k)z
−k.

This polynomial yields the desired coefficients (beamforming weights) ωc(k) of the
spectral factor. In [158], more efficient methods based on the fast Fourier transform
(FFT) are presented which are also used in [89] and in this thesis.

7.5 Solution Based on Fractional Programming

In the previous section, a quasi-convex form of the multicast MBP is derived. This
quasi-convex form can be solved with a simple bisection based algorithm. These
algorithms have a linear convergence behavior. The quasi-convex form of the MBP
can be also seen as a so-called generalized fractional program (see Section 3.3.3).
For these quasi-convex optimization problems a super-linear converging algorithm is
feasible. Such an algorithm is introduced in Section 3.3.3.

If long-term CSI in the form of Hermitian positive semidefinite Toeplitz matri-
ces is available, the equivalent quasi-convex form of the multicast MBP is given in
Proposition 19. This quasi-convex form can be expressed as a quasi-convex fractional
program (3.36) as defined in Definition 25.

Proposition 20. The parametric program of the equivalent quasi-convex form (7.24)-(7.26) of
the multicast MBP (7.9) is given by

F(γ) = min
x∈X

max
i∈I
{−Re{rc(i),i ĨNA

xc(i)} − γ(
∑

c∈S
c 6=c(i)

Re{rc,i ĨNA
xc}+ 1)} (7.36)



7.5. Solution Based on Fractional Programming 135

Proof. The objective function of (7.9) can be equivalently rewritten to:

f (x) = min
i∈U

Re{rc(i),i ĨNA
xc(i)}

∑

c∈S
c 6=c(i)

Re{rc,i ĨNA
xc}+ 1

= −max
i∈U

−Re{rc(i),i ĨNA
xc(i)}

∑

c∈S
c 6=c(i)

Re{rc,i ĨNA
xc}+ 1

. (7.37)

Hence, with the convex set

X = {x : xc(k) = Tr{EkUc}, xc(0) ≤ Pc, Uc � 0 ∀c ∈ S ∀k = 0, . . . , NA − 1},
(7.38)

the optimization problem (7.24)-(7.26) can be expressed as a quasi-convex generalized
fractional program

γ̄ = −min
x∈X

max
i∈U

−Re{rc(i),i ĨNA
xc(i)}

∑

c∈S
c 6=c(i)

Re{rc,i ĨNA
xc}+ 1

(7.39)

with the negative affine functions fi(x) = −Re{rc(i),i ĨNA
xc(i)} and the positive affine

functions di(x) =
∑

c∈S
c 6=c(i)

Re{rc,i ĨNA
xc}+ 1. With Definitions 25 and 26 the parametric

program (7.36) results.

In [28, 29], the authors propose a root finding algorithm for the parametric pro-
gram (3.37) with a faster convergence than the conventional bisection method.

7.5.1 Algorithm

The optimal FAS for the quasi-convex fractional program (7.39) can be found by a
bisection method. A bisection method has a linear convergence and requires an inter-
val containing the optimal value. In [30], the authors propose a faster algorithm with
super-linear convergence to solve a quasi-convex fractional program. The algorithm
exploits results of Proposition 1 which gives connections among the quasi-convex
fractional program and its parametric program (7.36). According to Proposition 1, if
the parametric program (7.36) results in F(γ) = 0, the optimal SINR is found. The
conditions (ii) and (iv) of Proposition 1 imply the following theorem proving the con-
vergence of Algorithm 13:

Theorem 10. [30] Assume X is compact. If F(γk) = 0, then γk = −γ̄ and xk is the optimal
solution.

As it can be observed from the numerical results, the root finding algorithm (Alg.
13) always iterates to F(γ) ≈ 0. If the domain is compact we can formally prove the
optimality.

Proposition 21. The set P is compact.
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Proof. We have to show that X is closed and bounded. The set has a lower bound
because of Uc � 0 ∀c ∈ S . Furthermore, it has an upper bound:

|xc(k)| = |Tr{EkUc}|
≤ |Tr{Uc}| = |Tr{E0Uc}| = xc(0) ≤ Pc.

For a given n ∈ {−NA + 1, . . . , NA − 1}. the first inequality holds due to

∑

i,j∈{0,...,NA−1}
j−i=n

|[Uc]i,j| ≤
∑

i∈{0,...,NA−1}
|[Uc]i,i| (7.40)

if Uc is a Hermitian positive semidefinite matrix. The sum of absolute value of each
sub-diagonal is always smaller or equal than the sum of the main diagonal. This
can be proved by |[Uc]i,j|2 ≤ [Uc]i,i[Uc]j,j [70, Page 398]. Consequently, |[Uc]i,j| ≤
√

[Uc]i,i[Uc]j,j ≤ 1
2([Uc]i,i + [Uc]j,j). For a given n ∈ {−NA + 1, . . . , NA − 1}, the left

side of (7.40) can be bounded by

∑

i,j∈{0,...,NA−1}
j−i=n

|[Uc]i,j| ≤
1

2

∑

i,j∈{0,...,NA−1}
j−i=n

[Uc]i,i + [Uc]j,j. (7.41)

The right side of (7.41) is obviously smaller than the right side of (7.40). Consequently
X is bounded. Furthermore, X is closed because all bounds can be satisfied with
equality.

Under the special condition that the functions di(x) ∀i ∈ U fulfill the Lipschitz
condition, the convergence is even super-linear instead of only linear [29]. The nu-
merical results, presented in the next section, show this fast convergence as well. The
outline of the algorithm is presented in Alg. 13.

Algorithm 13 Root finding algorithm (Dinkelbach algorithm):

Let x1 ∈ X and γ1 = maxi∈U
fi(x

1)
di(x1)

and k = 1

repeat

Determine the optimal solution xk of F(γk) = minx∈X maxi∈U{ fi(x)−γkdi(x)
di(xk)

}
Let γk+1 = maxi∈U

fi(x
k)

di(xk)
and set k = k + 1

until |F(γk)| > ǫ
return xk

7.5.2 Numerical Results

Table 7.4 presents the main simulation parameters of the simulated multicell network
presented in Fig. 7.1. Two algorithms are compared in this section:
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Table 7.4: Simulation parameters.

Number of user drops 4000

Number of users per user drop 15

Number of BSs drop 3

Number of users per group drop 5

Transmit antenna arrays ULA

Number of antenna array elements at BS 4

Number of antenna array elements at MS 1

Intersite distance 500 m

Antenna spacing half wavelength

Path loss exponent 3.76

Available CSI long-term CSI

Power angular density Laplacian 15◦ [83]

Power constraint per-BS antenna array power constraint

• A1: Conventional bisection method to solve problem (7.12). The beamforming
vectors are calculated based on the largest eigenvalue of and the corresponding
eigenvector of solution of the SDP.

• A2: Root finding algorithm Alg. 13 with parametric program (7.36).

As in Section 4.5, the pathloss gain is (r/1000)−3.76, where r is the distance in meters.
For all BSs the same normalized power constraints are given and all users have the
same thermal noise level σ2. The users are randomly distributed in the multicell
network, but with a distance larger than 50 meters away form the BSs. The largest
possible SNR in this model is at a distance of 50 meters in the direction of the antenna
broadside. It is given by SNR = 38.92dB assuming a single antenna element at the
BS.

For the generation of the statistics, in total 4000 user drops are randomly gener-
ated. In each user drop, the long-term CSI in the form of Hermitian positive semidef-
inite Toeplitz matrices is generated based on the location of the users and BSs. Each
BS belongs to a cell and each cell is a multicast group consisting of five users. For
each user drop, programs A1 and A2 are optimized for a setting of M = 15 users and
N = 3 BSs. Each user group contains 5 users.

Figure 7.7 shows the CDF of the SINR for a precision2 of ǫ = 10−5. Comparing
both CDFs, the new algorithm A2 outperforms the conventional SDP based bisection
A1 especially for the weakest users. The new algorithm A2 achieves a higher mini-
mum SINR. Figure 7.8 shows the CDF of the transmit power. Both algorithms fulfill
the per-antenna array power constraints.

2 The term precision means the accuracy of the algorithm, hence the absolute difference to the optimal
solution.
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Figure 7.2: CDF of the SINR of the new algorithm based on the Dinkelbach iteration pre-
sented in Section 7.5 (red, dotted) and the conventional SDP based bisection based method
for the problem (7.12) (black, solid).

Figure 7.9 presents the CDF of the number of iterations algorithms A1 and A2
required for the given precision ǫ = 10−5. As it can be observed from this figure,
A2 requires less iterations than A1 due to its super-linear convergence in multiple
cases (95%). However, in a few cases (5%), the new algorithm converges slowly. In
these cases the algorithm aborts after 45 iterations and takes the solution of the last
iteration.

Finally, Figure 7.5 shows the value of F(γk) of the parametric program. As it can
be observed from this figure, the solution of the parametric program is nearly opti-
mal and in more than 95% percent of the simulation runs smaller than the precision
interval of ǫ = 10−5.
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Figure 7.3: CDF of the transmit power of the new algorithm based on the Dinkelbach iteration
presented in Section 7.5 (red, dotted) and the conventional SDP based bisection based method
for the problem (7.12) (black, solid).
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Figure 7.4: CDF of the number of iterations for a precision ǫ.

7.6 Uplink–Downlink Duality

Instead of the SDP based on a semidefinite relaxation of the previous section, this
section presents a low complexity approach based on Lagrangian duality theory. The
concept, presented in this section, can be applied to arbitrary long-term CSI. Remem-
ber, the optimal method presented in the previous section require long-term CSI in
the form of Hermitian positive semidefinite Toeplitz matrices. The approach based on
the uplink-downlink duality delivers also suboptimal solutions if the matrices do not
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Figure 7.5: CDF of the solution of the parametric program.

have a Toeplitz structure, which is given if, e.g., the arrays are not ULAs. The idea for
this framework is similar to the unicast scenario presented in Chapter 4.

The original multicast MBP is non-convex, therefore, the dual problem delivers
only an upper bound of the MBP. The PMP is equivalent to the MBP if the SINR
constraint of the PMP is equal to the balanced SINR of the MBP [134]. In [134] it was
proven that the duality gap of the dual problem of the PMP is as tight as the gap of
the SDP to the optimal problem. The optimization of the dual variables of the dual
problem results in a further SDP [134].

In this section, the uplink–downlink relation is derived based on the Lagrangian
dual problem of the original problem. The procedure is similar to the procedure
presented in Section 4.3.4. Instead of an SDP, the uplink–downlink based approach of
this section is based on a inner loop with an eigenvalue decomposition and an outer
loop with a linear fractional program which has less complexity compared to an SDP.
At this point it is helpful to give a short overview of the procedure:

• Proposition 22 gives the Lagrangian dual problem of the multicast MBP with a
sum power constraint. This dual problem is only an upper bound. Strong du-
ality does not hold in general due to the non-convexity of the original multicast
MBP.

• Similar to Section 4.3.4, Proposition 23 presents the surrogate dual function of
the MBP with per-antenna array power constraints (7.9). The result is a combi-
nation of the multiple power constraints to a single weighted sum power con-
straint.

• Finally, Proposition 24 presents the surrogate dual problem of the original mul-
ticast MBP 7.9 with general power constraints. This dual problem is only an
upper bound, strong duality is not proven in this thesis.
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Similar to Section 4.3.4, the UL–DL based solution requires a virtual UL SINR.

Definition 57. Uplink SINR (multicast): With the uplink receive beamforming vectors of a
BS given by vc, with ||vc|| = 1, ∀c ∈ S , with the UL power λi ∀i ∈ U , with some matrices
Mc � 0 ∀c ∈ S , and with the sets Uc of users served by BS arrays with index c, the dual UL
unicast SINR is defined by

γU
c (µ, λ, vc) =

vH
c (
∑

i∈Uc
λiRc,i)vc

vH
c (Mc +

∑

j/∈Uc
λjRc,j)vc

. (7.42)

In what follows, the matrix V ∈ V with

V = {V ∈ C
NA×M : ||[V]:,c|| = 1, [V]:,c ∈ C

NA×1, ∀c ∈ S}

is the matrix of all UL receive beamforming vectors of all BS arrays
V = [v1, . . . , vN ]. Similar to the unicast MBP, the multicast MBP can be defined by a
weighted sum power constraint:

Definition 58. With the vector λ = [λ1, . . . , λM], the multicast MBP with a weighted sum
power constraint is defined by

f D
M(µ) = max

Ω

min
i∈U

γD
i (Ω) (7.43)

s.t.
∑

i∈S
ωH

c Mcωc ≤ P. (7.44)

The Lagrangian dual problem leads to the upper bound of the original multicast
MBP (7.43), (7.44):

Proposition 22. With the new dual variables λ = [λ1, . . . , λM] and V = [v1, . . . , vN ], the
upper bound of the non-convex MBP (7.43), (7.44) is given by

f U
M(µ) = min

λ
max
γ,V

γ (7.45)

s.t. γ ≥ γU
c (µ, λ, vc), (7.46)

∑

i∈U
λi ≤ P λi ≥ 0, ∀ i ∈ U

∀ c ∈ S

Proof. The proof is presented in Appendix A.5.

The constraint (7.46) is an upper bound of the optimal balanced SINR γ. In the
case of Nc = |Uc| = 1 ∀c ∈ S , strong duality is satisfied (see Proposition 4). In this
case, the reversal of the SINR constraints and the reversal of the minimization as a
maximization over λis do not affect the optimal solution. However, this is not given
in general, in the case of |Uc| > 1 ∀c ∈ S , a balanced SINR cannot be achieved. Then
(7.45), (7.46) will be an upper bound and strong duality is not satisfied. Only weak
duality is given in this case:

f U
M(µ) > fD(µ) (7.47)
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The dual UL problem of the multicast MBP with general power constraints can be
derived based on the surrogate duality theory similar to Proposition 3.

Proposition 23. With the diagonal matrices Pc =
Pc
NA

INA
in the case of per-BS array power

constraints, the upper bound of the surrogate dual function of the multicast DL MBP (7.9)
with general (per-antenna or per-antenna array) power constraints is given by

sU
M(µ) = min

λ
max
γ,V

γ (7.48)

s.t. γ ≥ γU
c (µ, λ, vc),

∑

i∈U
λi ≤

∑

c∈S
Tr{McPc}

λi ≥ 0, ∀ i ∈ U , Mc � 0, ∀ c ∈ S .

for a µ ≥ 0 and µ 6= 0.

Proof. The proof is a straightforward extension of the proof of Proposition 3. The
surrogate dual function

sD
M(µ) = max

Ω

min
i∈U

γD
i (Ω) (7.49)

s.t. pΣ(µ, Ω) ≤ 0. (7.50)

Mc � 0 ∀ c ∈ S .

is an upper bound of the original multicast MBP (7.9), The multiple power constraints
of (7.9) in the case of per-BS antenna array power constraints can be combined to a
single power constraint as follows:

pΣ(µ, Ω) =
∑

c∈S
µc(ω

H
c ωc − Pc) ≤ 0 ⇔

∑

c∈S
ωH

c Mcωc ≤
∑

c∈S
Tr{McPc}.

and using the upper bound of Proposition (22), the upper bound (7.48) is the result.

The upper bound (7.48) is tight if |Uc| = 1 ∀c ∈ S . Finally, with the surrogate
function (7.48), the surrogate dual problem is given by the following proposition:

Proposition 24. The upper bound of the multicast MBP (7.9) with per-antenna array power
constraints is:

γU
M = min

µ,λ
max
γ,V

γ (7.51)

s.t. γ ≥ γU
c (µ, λ, vc),

∑

i∈U
λi ≤

∑

c∈S
Tr{McPc}

λi ≥ 0, ∀ i ∈ U , Mc � 0, ∀ c ∈ S .

Proof. Due to sD
M(µ) ≤ sU

M(µ) also minµ sD
M(µ) ≤ minµ sU

M(µ) holds and due to γD ≤
minµ sD

M(µ) also γD ≤ minµ sU
M(µ) = γU

M holds.
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7.6.1 Iterative Algorithm

Section 7.6 derives a new framework for UL–DL duality. In the unicast case, presented
in Chapter 4, this framework offers a simple iterative algorithm which has a lower
complexity compared to conventional convex solver based solutions. This section
presents a similar approach for the multicast case. The works [135, 136] present a
similar concept, however the authors only regard the sum power constraint multicast
MBP and they do not propose a dual problem. The authors heuristically extend the
well known solution of Schubert and Boche [128] for the unicast case.

This section presents an extended algorithm, which finds sub-optimal solutions
for the multicast MBP with practically relevant per-base station power constraints
based on the virtual dual uplink problem (7.51). The solution consists of three parts:

1. The problem (7.51) consists of an inner problem which corresponds to a weighted
sum power constrained MBP. The solution of the inner problem depends on vec-
tor µ. For a given vector µ, Algorithm 14 determines the normalized beamform-
ing vectors ||vc|| = 1 ∀c ∈ S .

2. Based on the normalized beamforming vectors given by the matrix V and for a
given vector µ, a subsequent algorithm (Algorithm 15) calculates the DL beam-
forming vectors Ω. The inner problem of (7.51) delivers an upper bound of the
SINR but not the actual SINR γ. Therefore, the actual SINR for a given matrix
V and a vector µ must be determined to calculate the DL power p which is
required for the DL beamforming matrix Ω.

3. Finally, an outer algorithm (Algorithm 16), updates µ.

This concept shows, that the multicast MBP with general power constrains can be
decomposed to simpler subproblems. E.g., for a given set of normalized receive
beamforming vectors ||vc|| = 1 ∀c ∈ S , the optimization of the of the DL power
is quasi-convex p.

7.6.1.1 Inner Loop

Firstly, this section regards the multicast MBP (7.43) with a sum power constraint.
The optimal solution of the dual problem (7.45) delivers an upper bound of the pri-
mal problem (7.43). Figure 7.6 illustrates the UL–DL relation based on the previous
derivation of the Lagrangian duality. In the UL case (a), a BS c using the UL beam
pattern vc, receives UL signals from its users with the UL power λi, with i ∈ Uc.
however, the BS c also receives interference from users of other cells, e.g., cell k. In
the DL case (b), a user receives the useful signal transmitted from the BS c over the
beam pattern ωc =

√
pcvc, where pc denotes the DL power transmitted by BS c. On

the other hand, the user receives interference from adjacent BSs, e.g., BS k. Based on
this investigation the following computation of the beam pattern is made. Regarding
the upper bound (7.46) of the UL SINR

γU
c (µ, λ, vc) =

∑

i∈Uc

vH
c λiRc,ivc

vH
c (Mc +

∑

j/∈Uc
λjRc,j)vc

, (7.52)
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Figure 7.6: UL–DL relation for the derived upper bound given in Proposition 22 and
the Definition of the multicast MBP given in Definition 58. In the UL presentation
(a), each user i transmits with a UL power λi while the BS c receives via a receive
beamforming vector vc. In the DL presentation (b), a BS c transmits a DL signal
weighted by a beamforming vector vc with power pc.

the UL signal received at a BS consists of Uc links of different MSs served by this BS c.
Strong duality between UL and DL is not given in general for multicast beamforming.
However, a simple heuristic offers good results. The maximization of UL SINR has to
be done by an independent optimization of the beamformer for each user, otherwise
only the strongest users will get high DL SINR. Thus, a smarter computation of the
UL beamforming vectors vc is needed. The heuristic for the beamforming vector is
given by the linear hull

span(vc,1, . . . , vc,Nc) = {λ1vc,1 + . . . + λNc vc,Nc | λ1, . . . , λNc ∈ K}, (7.53)
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spanned by the Uc UL beamforming vectors of the Uc users over the field K of the UL
powers. A vector of this vector space is then given by

vc =
∑

i∈Uc

λivc,i, (7.54)

where in each link the optimal beamforming vector vc,i is computed by

vc,i = arg max
vc,i

vH
c,iλiRc,ivc,i

vH
c,i(Mc +

∑

j/∈Uc
λjRc,j)vc,i

. (7.55)

For fixed beamforming vectors vc, the UL powers λi are then given by

λi =
vH

c (Mc +
∑

j/∈Uc
λjRc,j)vc

vH
c Rc,ivc

. (7.56)

Consequently, weak links are weighted stronger than strong links in Eq. (7.54). As
in [19, 57, 157], if the total transmit power PΣ =

∑

i∈U λi has not reached the power
budget P =

∑

c∈S Tr{McPc}, every UL power can be scaled by P/PΣ. In Algorithm
14, the complete outline for the UL beam pattern optimization is listed. The UL
powers are initialized with λi = 1 ∀i and the initial beamforming vectors are given by
vc = [1, 0, 0, 0]T, ∀c.

Algorithm 14 UL vector iteration for the multicast MBP

repeat
for c = 1 to Nc do

for i = 1 to M do

λ̃i =
vH

c (I+
∑

j/∈Uc
λjRc,j)vc

vH
c Rc,ivc

vc,i = arg maxvc,i

vH
c,iλiRc,ivc,i

vH
c,i(I+

∑
j/∈Uc

λjRc,j)vc,i

end for
vc =

∑

i∈Uc
λ̃ivc,i

λi = βλ̃i, ∀i ∈ U , with β =
∑

c∈S Tr{McPc}∑
i∈U λ̃i

end for
until convergence
return V

7.6.1.2 Downlink Power Computation

After Algorithm 14 has converged, the computation of the uplink power and the
beam pattern is finished. However, the DL power is not determined. In contrast to
the unicast case, the DL power can not be computed by solving a linear system of
equations [57] by using the uplink SINR because it is an upper bound. The actual
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uplink SINR γU
c (µ, λ, vc) is unknown. Furthermore, in the multicast case, the uplink

SINR is not balanced.
The correct uplink SINR has to be correctly determined afterwards based on the

given uplink power vector λ and the determined uplink beamformers stored in V.
The DL beamforming weights are given by ωc =

√
pcvc. The authors of [135, 136]

present a solution based on a generalized eigenvalue decomposition where the upper
bound of the uplink SINR is required. This solution can be improved by a better
estimation of the actual DL SINR.

It is desired to improve the worst DL SINR of all users with the per-antenna
array power constraint given by Pc. With the domain of the feasible DL power
P = {p ∈ RN

+ |pc ≤ Pc ∀c ∈ S}, this can be defined as:

γ̄ = max
p∈P

min
i∈U

pc(i)gc(i),i
∑

c 6=c(i) pcgc,i + 1
(7.57)

with gc,i = vH
c Rc,ivc. The problem (7.57) can be equivalently rewritten as

γ̄ = −min
p∈P

max
i∈U

−pc(i)gc(i),i
∑

c 6=c(i) pcgc,i + 1
(7.58)

The problem (7.58) is a linear fractional program [28, 29]. Let fi(p) = −pc(i)gc(i),i

and di(p) =
∑

c 6=c(i) pcgc,i + 1, ∀i ∈ U be linear functions over p, it can be solved with
the help of the parametric program [28, 29]

F(γ) = min
p∈P

max
i∈U

{ fi(p)− γ di(p)} (7.59)

In [28, 29], the authors propose a root finding algorithm for the parametric pro-
gram (7.59) with a faster convergence than the conventional bisection method. Algo-
rithm 15 shows the root finding algorithm to solve (7.58).

Algorithm 15 Root finding algorithm:

Let p1 ∈ U and γ1 = maxi∈U
fi(p

1)
di(p1)

and k = 1

repeat
Determine the optimal solution pk of

F(γk) = minp∈X maxi∈I{ fi(p)−γkdi(p)
di(pk)

}
Let γk+1 = maxi∈U

fi(p
k)

di(pk)
and set k = k + 1

until |F(γk)| > ǫ
return pk

Theorem 11. If F(γk) = 0, then γk = −γ̄ and pk is the optimal solution.

Proof. In [30, Theorem 2.1], the authors present the proof for a quasi-convex frac-
tional program with non-negative functions di over a compact domain. The functions
fi(p) = −pc(i)gc(i),i and di(p) =

∑

c 6=c(i) pcgc,i + 1 ∀i ∈ U are linear function, hence
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the fractional program (7.58) is quasi-linear and, therefore, also quasi-convex. Fur-
thermore, the functions gi(p) are non-negative. Finally, P is closed and bounded,
consequently it is compact. Therefore, all conditions for [30, Theorem 2.1] are satis-
fied.

7.6.1.3 Outer Loop

With the knowledge of the optimal DL beamforming vectors ωc =
√

pcvc, the matrices
Mc can be determined similar to the unicast case presented in Section 4.4.2 The final
algorithm is listed in Alg. 16.

Algorithm 16 Outer loop: DL power and iterations over µ

Initialize µ = 1
repeat

Inner loop (Algorithm 14) → V
Solve the fractional program (7.58) → Ω

Update the µ vector according to (4.49)
until Convergence
return Ω

7.6.2 Numerical Results

The numerical results are made for the scenario presented in Fig. 7.1 and are based
on the same setting as presented in Section 7.5.2.

Three algorithms are compared in this section for a precision of ǫ = 10−5:

• A1: Conventional bisection method to solve problem (7.12). The beamforming
vectors are calculated based on the largest eigenvalue of and the correponding
eigenvector of solution of the SDP.

• A2: Root finding algorithm Algorithm 13 with parametric program (7.36).

• A3: The iterative solution given by Algorithms 14-16.

Figure 7.7 depicts the CDF of the SINR. The new algorithm Alg. 16 outperforms the
conventional solution for low and very high SINR. Hence, the weakest and strongest
users profit from the new solution.

Figure 7.8 shows the CDF of the transmit power. Both algorithms fulfill the per-
antenna array power constraints. The new Algorithm A2 uses higher transmit power
in several user drops.

Figure 7.9 presents the CDF of the iterations for both algorithms. In 15% of the
drops the new algorithm A2 requires less iterations than the conventional bisection
based SDP A1. In several drops the number of iterations of the new algorithm is larger
than 45. Hence, in some scenarios the new algorithm has a very slow convergence.
The algorithm aborts after 45 iterations and takes the solution of the last iteration.

Although the new algorithm (Alg. 16) needs more iterations, than the convex
solver based approaches, it has less complexity. As already shown in Section 4.4.3, the
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Figure 7.7: CDF of the SINR of the new algorithm based on Algorithm 16 (blue, dashed), the
new root finding Algorithm 13, the conventional SDP based bisection based method for the
problem (7.12) (black, solid). The red dotted curve denotes the CDF of Algorithm 13.

iterative solution requires much less computational effort to find a solution with sim-
ilar or even better performance than convex solver based approaches. In the multicast
case, the iterative approach must determine the correct DL SINR by a linear fractional
program. Such a program requires an iteration over linear programs. Hence, in the
outer loop multiple linear programs must be solved instead of a single linear system
of equations (4.47). However, this approach has less complexity than an SDP which is
solved in the outer loop of conventional bisection based methods.

7.7 Summary

• This chapter investigates the multicast max–min beamforming problem with
per-antenna array power constraints. The max–min beamforming problem can
be solved with a convex feasibility check problem in the form of a semidefinite
program. This chapter proves the existence of a rank-1 solution if long-term CSI
in the form of positive semidefinite Hermitian Toeplitz matrices is available.

• Besides the semidefinite program, this chapter proposes an equivalent problem
based on convex programming with finite autocorrelation sequences. The re-
sulting equivalent problem is a quasi-convex fractional program which can be
solved by a root finding algorithm. The convergence of the root finding algo-
rithm is super-linear, consequently, it is faster than a bisection algorithm. The
new solution achieves a higher and better balanced SINR than the conventional
bisection based solution.

• Besides approaches based on convex solvers, this section proposes a new uplink–
downlink duality based method. The new framework has similarities with the
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Figure 7.8: CDF of the transmit power of the new algorithm based on Algorithm 16 (blue,
dashed), the new root finding Algorithm 13, the conventional SDP based bisection based
method for the problem (7.12) (black, solid). The red dotted curve denotes the CDF of Algo-
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Figure 7.9: CDF of the number of iterations for a precision ǫ of the transmit power of the
new algorithm based on Algorithm 16 (blue, dashed), the new root finding Algorithm 13, the
conventional SDP based bisection based method for the problem (7.12) (black, solid). The red
dotted curve denotes the CDF of Algorithm 13.

unicast case. It is also based on simple mathematical operations and requires
only a linear program instead of a semidefinite program. The uplink–downlink
based solution achieves a higher SINR than the conventional bisection based
solution. However, in some cases the convergence is slow, but a break after 45
iterations results in an improved minimal SINR compared to the conventional
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bisection based method. Future research regarding the convergence is required
to improve on this result.



Chapter 8

Application: Interference Mitigation
with Sector Pattern Adaptation (SPA)

The content presented in this chapter is in part published in the publications [38, 44,
45]. This chapter considers both, a multicast and a unicast downlink transmission.

The previous chapter presents the theoretical background of multicast beamform-
ing as a technique to optimize the SINR of multicast groups. Chapter 7 derives an
equivalent quasi-convex form of the multicast MBP and presents different algorithms
to solve the MBP. In a multicast transmission multiple users jointly receive the same
content. Hence, a BS transmits the same symbol by using one beamforming vector to
all users inside the multicast group.

A famous example for a multicast transmission is digital audio broadcasting
(DAB) [49] and digital video broadcasting (DVB) [50]. In addition to these well
known examples, multiple wireless physical layer technologies require a multicast
transmission. An upcoming technology is two-way relaying [65, 118, 166], where in
the so-called broadcast hop a relay transmits a signal jointly to the users and the BS
array.

8.1 Adaption of the Sector Pattern Based on Long-Term

Multicast Beamforming

Multicast beamforming also has a useful application in networks with a unicast trans-
mission. The following section proposes a simple scheme for interference mitigation
in multicell networks based on max–min multicast beamforming. In wireless net-
works, a fast variation of the beamforming weights will result in a measured SINR at
the user that is not very close to the actual SINR.

Techniques such as channel aware scheduling (CAS) or adaptive modulation and
coding (AMC) require an accurate knowledge of the SINR. Consequently, a higher
feedback rate is required if the SINR fluctuates rapidly. A lower variance of the SINR
can be achieved by slower adaptation of the beamforming weights.

However, beamforming can be used to mitigate interference in multicell networks.
A practically relevant solution which can be combined with CAS would be a slow
adaptation of the sector pattern. In multicell networks with a frequency reuse-1, cell
edge users suffer from the largest interference and their distance to the serving BS is
maximal. Consequently the SINR is often much lower compared to users in the cell
center. With multicast beamforming, a beamforming vector can cover all users inside
a cell jointly. If the optimization of this beamforming vector is based on long-term
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Figure 8.1: Scenario: Triangles denote BSs, asterisks with the numbers denote users with
their index. Yellow cells are cooperative. Lobes denote the multicast groups.

CSI in form of spatial correlation matrices, this adaptation of the beams can also be
seen as an adaptation of the sector pattern according to user positions.

Figure 8.1 depicts an example of SPA. The yellow cells form a cooperative net-
work of 9 cooperative BS arrays. Without cooperation, the sector pattern is formed
according to this hexagonal grid. Applying long-term multicast max–min beamform-
ing, the adapted sector pattern denoted by the lobes will be the result. Hence, the BSs
arrays form, based on the spatial correlation knowledge of all users, beam lobes in
the direction of the user cluster. Areas without users are not covered which results in
a reduced intercell interference. Max–min beamforming results in a fair distribution
of the SINR among the users in the cooperative network because it maximizes the
minimum SINR, hence, it maximizes the SINR of the weakest users.

The sector pattern, optimized based on the available spatial correlation knowl-
edge, is constant during the stationarity interval of the available long-term CSI [76].
Each user inside a user group can be scheduled based on the instantaneous local
channel quality information (CQI).
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8.2 Combination of SPA and Multiuser Scheduling

Various multiuser scheduling schemes have been proposed in the last 10 years. A
famous work regarding multiuser scheduling is [153]. The best known multiuser
scheduling schemes are

1. Round-Robin Scheduling (RRS)

2. Opportunistic Round-Robin Scheduling (ORRS)

3. Proportional Fair Scheduling (PFS)

4. Maximum SINR Scheduling

Among all of these scheduling schemes, a trade-off between fairness and performance
exists. These schemes (1-4) are sorted by fairness and performance with the Round-
Robin scheme being the fairest scheme with the lowest sum rate and maximum SINR
scheduling being the most unfair scheme with the best sum rate performance.

This section presents a straightforward combination of the sector pattern adap-
tation based on multicast beamforming and these CAS schemes. Each cell forms a
multicast group where the sector pattern is adapted based on max–min multicast
beamforming according to Definition 54. Each BS antenna array, forming the sector
pattern, is subject to a per antenna array power constraint. Therefore, each sector can
have different power constraints. Such a network configuration is called heteroge-
neous.

Inside each cell all users belong to the same multicast group and are jointly cov-
ered by the adapted sector pattern. A user belonging to this multicast group can be
scheduled by the four scheduling schemes. The procedure can be summarized as
follows:

• The sector pattern is optimized based on the available spatial correlation knowl-
edge by multicast max–min beamforming.

• During each local stationarity interval [76], the sector pattern of all cells belong-
ing to the cooperative network is constant, hence, a low fluctuation of the SINR
is the result.

• During each local stationary interval [76], the users inside a cell are scheduled
based on local instantaneous CQI information and no intercell synchronization
is required.

8.2.1 Opportunistic Round-Robin Scheduling (ORRS)

Let i∗(k) denote the user scheduled in time slot k and let γ̂i(k) be the instantaneous
SINR of user i in time slot k. Furthermore, let U (k) be the set of indices of users
who have not been scheduled for ∆ ∈ N+ time slots. The opportunistic Round-Robin
scheduling scheme, introduced in [6], schedules a user according to the following
rule:

i∗(k) = argmaxi∈U (k) γ̂i(k). (8.1)
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Let Nc be the number of users in cell c, the maximum inter-access time is 2∆(Nc − 1)
[6]. For ∆ = 1 the standard ORR algorithm is the result. This scheme can be simply
extended to CAS combined with SPA. Remember, the number of non-scheduled users
belonging to the multicast group of a given cell c is Uc.

i∗(k) = argmaxi∈Uc
γ̂i(k) (8.2)

Let Uc,0 denote the number of active users belonging to the multicast group cell c.
After a user i∗ is scheduled, the set Uc is updated according to Definition 49:

Uc := F(Uc,Uc,0, i∗) (8.3)

Let ∆ = 1, the maximum inter-access time is 2(Nc − 1). The ORR scheduling
scheme is the fairest scheme after Round-Robin scheduling.

8.2.2 Proportional Fair Scheduling

Another well known fair scheme with a higher sum rate performance is called PFS
[153]. This scheme gives higher scheduling priorities to users with a currently high
achievable rate. However, this current achievable rate is considered relative to their
past rates. This relative weighting results in a fair distribution of the resources. A
user i∗(k) is scheduled in cell c in time slot k according to the following rule:

i∗(k) = argmaxi∈Uc

Ri(k)

R̄i(k)
(8.4)

where Ri(k) = log(1 + γi(k)) is the instantaneous achievable rate a user can achieve
under the current channel conditions1. The rate R̄i(k) is the rate a user had in the
past:

R̄i(k) = (1− α)R̄i(k) + αRi(k) (8.5)

where α = 1/T is the parameter for PFS and determines the delay among to consec-
utive transmissions to a user.

8.2.3 Maximum SINR Scheduling

Maximum SINR scheduling has the highest sum rate performance of all presented
schemes. This scheme always schedules the user with the best current channel condi-
tions. Hence, an unfair distribution of the resources can be the consequence. A user
i∗(k) is scheduled in slot k according to the rule

i∗(k) = argmaxi∈Uc,0
γ̂i(k). (8.6)

Note, this scheme has similarities to the ORRS scheme, the only difference is the set
Uc,0 which is not updated as in the ORRS scheme. Consequently, the same user can
be always scheduled if he has the best channel conditions.

1 In practice one would use the requested throughput of user i instead of the achievable rate.
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8.3 Evaluation of SPA and Fast Beam Scheduling in a

Joint Scenario

This section evaluates the different applications of the beamforming technologies of
Chapter 4 and 7 along with scheduling (beam-scheduling/CAS) techniques presented
in Chapters 5 and 8.

The numerical results are based on a scenario created by the Winner II model [97].
Table 6.2 presents the setting of the scenario. The setting is the same as in Section 6.3.1.
However, this section does not use relays, therefore, the scenario corresponds to Fig.
4.1. The results are not intended to present the realistic system performance, however,
these results illustrate the performance differences among the proposed algorithms
presented in this chapter. The scenario is interference dominated. User are scheduled
to a base station if they are located inside the associated cell. One third of the cells
contains 2, 3 and 4 users respectively. Consequently, a reduced multiuser diversity
compared to Chapter 5 is given.

All beamforming optimizations are based on global long-term CSI in the form
of spatial correlation matrices. The Statistics are generated based on averaging over
the channel vectors. The CAS schemes require local instantaneous CQI. A frequency
reuse one factor is used. Furthermore, the scenario is interference limited. This section
evaluates the SINR performance of the following algorithms:

• Multicast beamforming based sector pattern adaptation with Round-Robin schedul-
ing (SPA RRS)

• Multicast beamforming based sector pattern adaptation with opportunistic Round-
Robin scheduling (SPA ORRS) according to Section 8.2.1

• Multicast beamforming based sector pattern adaptation with proportional fair
scheduling (SPA PFS) according to Section 8.2.2

• Unicast beamforming based fast beam-scheduling with Round-Robin schedul-
ing (FBS RRS)

• Unicast beamforming based fast beam-scheduling with dimension-wise sum
rate maximization (FBS DWS sum-rate) according to Section 5.5.2.2

• Without any coordination (beamforming, scheduling) and reuse-1, which can be
seen as the geometry factor [147] of the 40 user drops.

Figure 8.2 depicts the CDF of the mean SINR of the 40 user drops. The blue dotted
curve shows the CDF of the geographical factor due to the considered scenario which
is this case frequency reuse one and no beamforming, power control and scheduling.
Therefore, the intercell interference is high. Figure 8.3 compares the instantaneous
SINR of the SPA and FBS algorithms. SPA with ORRS offers a gain of 1dB. Relaxing
a bit the fairness, with PFS, a gain of 4-5 dB is possible. The FBS approach slightly
out-performs SPA with PFS. FBS with DWS achieves an approximately 2-3 dB higher
SINR for the majority of the users. However, SPA with PFS achieves a higher SINR
for the weakest 5% of the users compared to the FBS with DWS.
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Figure 8.2: CDF of the individual per user mean SINR of the algorithms.

Finally, Figure 8.4 compares the relative sum rate (relative to SPA RRS) of the
different CAS with FBS algorithms. As expected FBS with optimized scheduling offers
the largest gain of more than 50%. With SPA and PFS a gain of more than 25% is
feasible.

8.3.1 Discussion

Comparing SPA with CAS and FBS there is a trade-off between SINR performance,
synchronization effort, temporal fairness, complexity, and backhaul effort.

8.3.1.1 SINR performance

FBS shows the best overall SINR performance. The better SINR performance is due
to unicast beamforming. The whole transmit power of a BS is transmitted only to the
scheduled user. The optimization is based on global available long-term CSI.

If SPA is used, the beam lobe of a BS covers all users inside a cell. Hence, transmit
power is wasted in the direction of the not scheduled users. As a result SPA shows a
lower SINR performance. An additional application of CAS techniques increases the
sum rate of the system. A combination of SPA with PFS requires local knowledge of
the instantaneous CQI. If this knowledge is perfectly known, the weakest users can
achieve a higher SINR than the best FBS scheme.
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CAS) and FBS algorithms.
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Figure 8.4: Sumrate relative to SPA RRS of the different FBS and SPA algorithms.

8.3.1.2 Synchronization Effort

FBS requires a fast beam switching and a synchronization of the beams and beam
scheduling decisions. SPA requires only one beamforming optimization which is
valid as long as the statistics of the channel are unchanged. Due to the low fluctua-
tions of the beams, the estimated instantaneous CSI is close to the actual SINR and
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CAS techniques can be combined with SPA. However, then each BSs requires local
instantaneous CQI.

8.3.1.3 Temporal Fairness

In addition to synchronization effort and SINR performance, temporal fairness is an-
other important design criterion:

• The maximum inter-access time or maximum delay of SPA with ORRS is given
by 2(Nc − 1).

• Let K be the length of the scheduling matrix (5.1), the maximum inter-access
time of FBS with DWS is given by (Nc − 1)K/Nc. The parameter K is defined in
(5.17) as the lowest common multiple of all numbers of users in all cells.

If all cells have the same number of users and K = 2Nc, both approaches have the
same maximum delay. The exact determination of the maximum inter-access times
for PFS is not so straightforward. In [79], the interscheduling time is numerically
evaluated. PFS usually shows significantly higher maximum inter-access times than
ORRS.

8.3.1.4 Complexity

A further issue is complexity. FBS with DWS requires multiple beamforming opti-
mizations to calculate the cost matrix for the scheduling optimization. Hence, a fast
processor is required at a central unit if a centralized coordination is used or at each
BS if a distributed coordination is realized. SPA requires only one beamforming op-
timization where a local optimum can be achieved by a low complexity algorithm
(see Section 7.6.1). CAS on the other hand requires an accurate knowledge of the
instantaneous CQI, while FBS only requires long-term CSI.

8.3.1.5 Backhaul

The backhaul effort is identical for both algorithms. CAS and FBS require long-term
CSI of all coordinated links of the considered network which can be estimated during
the local stationary interval [76]. A future work can be an evaluation in a scenario
where stationarity is not given. Therefore, also new system level simulations and
channel models are required. Based on this evaluations, a realistic estimation of the
backhaul overhead can be performed and further extension of the algorithms to non-
stationary scenarios can be developed.



Chapter 9

Conclusions

The scope of this thesis was a development of a theoretical and algorithmic framework
for intercell interference mitigation in multicell networks with unicast and multicast
beamforming.

One key issue in multicell scenarios is the development of low complexity algo-
rithms. In multicell networks, channel state information changes rapidly; therefore,
a fast update of the beamforming weights is required. The theory of the unicast
max–min beamforming problem in a single base station broadcast scenario with a
single sum power constraint is well understood. The unicast max–min beamforming
problem is non-convex in general. However, given a sum power constraint, a dual
problem, which can be solved efficiently, exists. This dual problem can be solved by
a low complexity algorithm based on fixed point iterations. Regarding the questions
stated in Section 1.1. One question was: Can the duality for the unicast max–min
beamforming problem in the single base station broadcast scenario be extended to a
multicell scenario with multiple power constraints?

This thesis gives the answer to this question in Chapter 4. Based on the surrogate
duality framework, the multiple power constraints are combined to a single weighted
sum power constraint. The result is a virtual dual uplink max–min beamforming
problem with an inner problem given by a weighted sum power constraint. This
inner problem can be solved based on the given theory already developed for the
broadcast scenario. The variables weighting the multiple power constraints in the
weighted sum power constraints are optimized in an outer optimization. It should
be highlighted that a formal proof for strong duality is presented. Consequently, the
original non-convex max–min beamforming problem can be efficiently solved by its
dual problem.

Based on this finding, Chapter 4 presents a fast converging low complexity algo-
rithm which finds near optimal solutions for the weighting variables. In addition to
the extension to multicell scenarios, this thesis presents also an improved solution for
the inner loop. The literature mostly investigates the broadcast channel. The usage
of instantaneous CSI is reasonable in this scenario. An advantage of this scenario
is the closed form solution for the beamforming vectors if the dual uplink power is
known. In multicell scenarios long-term CSI in the form of higher rank spatial corre-
lation matrices is practically more relevant. The beamforming vectors are then given
by an eigenvalue problem. Chapter 4 derives a simple low complexity algorithm to
compute the beamformers iteratively. The algorithm has a significantly lower com-
plexity than the conventional semidefinite relaxation based approach while it finds
better solutions in several cases.

In addition to the duality theory another question of Chapter 4 regards the solu-
tion of the unicast max–min beamforming problem with general power constraints.
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In the sum power constrained case, a balanced SINR can always be achieved. This is
not given in multicell scenarios if users are decoupled from the network. Two cases
are identified in Section 4.6.2 and an analytical proof is presented as well.

Another question regards the assignment of distributed antenna arrays to users
along with beamforming. The question was: Does there exists a solution which
jointly finds the optimal beamformers and the optimal assignment of antenna arrays
to users? Remarkably, both problems can be solved jointly by a simple concatenation
of the beamforming vectors of all jointly serving arrays.

As already illustrated in the introduction, a problem of max–min fairness is a de-
creased sum rate performance in some cases. One reason is interference due to beam
collisions. The question arises whether such a situation can be avoided and if there
exists a low complexity method maximizing the sum rate in a max–min fair system
by a smart beam scheduling. Chapter 5 gives a simple mathematical formulation of
the problem and proves its NP-hardness by proving a close relationship to the mul-
tidimensional assignment problem. An optimal solution can only be obtained in the
2-cell case. However, multiple low complex methods achieving good solutions are
proposed. The presented algorithms find local optimal solutions with a fair schedul-
ing which means that each users inside a cell is scheduled equally often. In addition
to the maximized sum rate, the beam scheduling algorithms should also consider the
delays between two consecutive transmission to a user.1 Although this problem is
also proved to be NP-hart, “good“ local optimal solution can be found by a simple
greedy approach.

Another reason for an impairment of the sum rate in max–min fair systems are
strongly shadowed users. If a shadowed user is served with multiple other users and
their SINR is balanced by max–min beamforming, a low SINR for all users can be the
result. An avoidance of scheduling shadowed users could be an approach. Another
option would be a weighting of these users to avoid a negative effect on the SINR for
all other jointly scheduled users. However, then again an unfair system is the result.
Chapter 6 proposes another approach: Relays can be used as cheap base stations to
increase the coverage, especially, in not covered regions. Users which are originally
shadowed by, e.g., high buildings can have a much better link to a closely located
relay. These relays must be mounted on the roof-top of buildings to achieve a high
SINR in the backhaul link. These shadowed users could have much better channel
conditions to their serving relay. Consequently, SINR balancing among the active
links will result in higher SINR compared to the situation without relays. However,
practically relevant half duplex relays have a capacity loss because this type of relay
cannot jointly receive and transmit. Consequently, two time slots are required. This
so-called half-duplex loss is considered in the presented simple greedy algorithm.
Users are only served by relays if the total (end-to-end) sum rate gains from this
transmission. A finding was that the sum rate of the system can gain from half duplex
relays if fairness among the users is desired. A system using relays can achieve a 20%
higher sum rate than a system without relays if fairness is desired.

In a addition to this simple sum rate maximizing algorithm for max–min fair
systems, a power saving approach for half duplex decode and forward relays was

1 This delay is also-called inter-scheduling time
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presented. If half duplex relays are used, the SINR of the two hops is decoupled.2

Consequently, the SINR in the two hops can be balanced independently. If the SINR
of relayed links of the second hop is larger than the SINR in the first hop, power (and
therefore also energy) will be wasted. Due to the decode and forward transmission,
the final rate is determined by the minimum SINR of both hops. Consequently, the
SINR of the second hop can be limited to the SINR achieved in the first hop. The
result is a reduced transmit power in the second hop. This idea is realized by a
simple iterative algorithm which achieves in the presented scenario a 20% reduction
of the transmit power at the expense of a small reduction of the sum rate.

The second part of the thesis considers multicast beamforming. Multicast beam-
forming has several applications in future wireless networks. The general form of
the max–min multicast beamforming problem is NP-hard. The question arises: Are
there sub-problems which can be solved efficiently? Chapter 7 presents an equivalent
quasi-convex form if long-term CSI in the form of Hermitian positive semidefinite
Toeplitz matrices is used, which is a reasonable assumption if uniform linear arrays
are used at the base stations. Furthermore, Chapter 7 presents an algorithm with
superlinear convergence solving the equivalent convex form. The solution found by
this new algorithm even finds higher balanced SINRs than the conventional semidef-
inite relaxation based solution. Consequently uniform linear arrays offer allow to
implement efficient an near-optimal algorithms for the multicast problem.

Another question arises in this context: Does there exists a dual problem which
can be solved efficiently? In the unicast case, duality offers an efficient solution which
finds near optimal solutions. Chapter 7 shows that, similar to the unicast scenario,
also in the multicast scenario a dual solution exists. However, strong duality is not
given then. Based on the derived duality, Chapter 7 presents a new iterative solution
for the multicast max–min beamforming problem with per-antenna array power con-
straints that finds better solutions than the conventional semidefinite relaxation based
method. The derived duality has a broader scope because it holds for general CSI and
is not limited to long-term CSI in the form of Hermitian positive semidefinite Toeplitz
matrices.

In addition to broadcast applications, multicast beamforming is also useful in a
unicast scenario. Max–min multicast beamforming offers a simple method to adapt
the sector pattern based on long-term spatial correlation information. Chapter 8
presents this scheme. Due to the slow fluctuations of the beams, a low fluctuation
of the SINR is possible. Hence, this scheme can be combined with channel aware
scheduling schemes which offers an additional gain.

In Chapter 6, one-way relays are used for an improvement of the worst SINR
among multiple users. This type of relays has the disadvantage of a capacity loss
due to the one-way transmission. Our recent work [48] presents, therefore, a max–
min fair precoding optimization for the bi-directional relay channel which overcomes
this capacity loss. This optimization problem is closely related to the multicast beam-
forming problem and non-convex. A novel closed form of the upper bound of the
max–min fair SINR was presented and based on this upper bound a novel low com-
plexity algorithm is derived. Due to the combination of uplink and downlink, the
capacity loss is avoided. Consequently, the presented optimization for the max–min

2 The transmission of the first hop does not cause interference in the second hop.
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fair bi-directional relay channel is a promising approach for future heterogeneous
multicell systems, where, small base station can be implemented as bi-directional re-
lay stations. An addition to the optimization of the relay station (small base station)
precoding matrices, also the base station (serving base station) precoding matrices
can be optimized to achieve a max–min fair SINR among the served users. The devel-
opment of an alternating optimization for optimization of both precoding matrices is,
therefore, promising for a future research.

This thesis investigates several technologies for a network-wide interference mit-
igation. The proposed algorithms can be applied centralized, at a central unit, or
distributed at each base station. However, all algorithms require global knowledge
of the long-term statistics of all links. An extension to isolated optimizations with
instantaneous CSI of only a few links is a promising extension for future research.
This thesis presents globally optimal approaches for an optimization based on global
CSI knowledge. Future isolated or competitive approaches can be compared with the
theory of a centralized optimization presented in this thesis.

Algorithms proposed in this thesis are derived with the assumption of base sta-
tions with small antenna arrays consisting of 4 to 8 antennas which is a reasonable
assumption with present technology. However, progress in antenna technologies, in
particular if higher carrier frequencies are used, can result in antenna arrays with a
very large number of antennas. New effects are feasible in these so-called massive
MISO systems [111]. Several studies investigate massive MISO only in a broadcast
scenario or without cooperation [111]. In future networks, the cell size will shrink.
Consequently, multiple small base stations transmit to a large number of users. In
these scenarios, effects of massive MISO in combination with cooperative interference
mitigation techniques, presented in this thesis, can offer new algorithms with very
high spectral efficiency and less synchronization effort.
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Appendix

A.1 Proof of Proposition 4

Proof. Let ωi =
√

pivi with ‖vi‖ = 1 ∀i ∈ U and introducing additional implicit
constraints pi ≥ 0 ∀i ∈ U with dual variables ξi ≥ 0 ∀i ∈ U composed to the vector ξ.
It is shown that the Lagrangian dual problem of (4.25) is (4.27). For fixed matrices Mi

and the Lagrange multipliers α and λ = [λ1, . . . , λM], the Lagrangian of the problem
(4.25) is given by:

L(γ, p, V, λ, α, ξ) = γ− α

(
∑

i∈U
piv

H
i Mivi − P

)

+
∑

i∈U
ξi pi (A.1)

−
∑

i∈U
λi



piv
H
i (
−Ri,i

γ
)vi +

∑

l∈U ,l 6=i

plv
H
l Rl,ivl + 1



 .

This Lagrangian can be rephrased as:

L(γ, p, V, λ, α, ξ) = γ + αP−
∑

i∈U
λi (A.2)

+
∑

i∈U
piv

H
i




λi

γ
Ri,i − αMi −

∑

l∈U ,l 6=i

λlRi,l + ξi



 vi.

With this Lagrangian, the dual function of this problem is:

l(α, λ, ξ) = sup
γ,V∈V ,p

L(γ, p, V, α, λ, ξ).

As in [159], since ∂L(γ, p, V, λ, µ, ξ)/∂pi = 0 at the optimum implies that

vH
i [

λi

γ
Ri,i − αMi −

∑

l∈U ,l 6=i

λlRi,l]vi ≤ 0,

which implies the constraint of the dual function. Hence, the Lagrangian dual prob-
lem can be stated as:

γL
I = min

α,λ
max

γ,V∈V
γ + αP−

∑

i∈U
λi (A.3)
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s.t. vH
i [

λi

γ
Ri,i − αMi −

∑

l∈U ,l 6=i

λlRi,l]vi ≤ 0,

α ≥ 0, λi ≥ 0, ∀ i ∈ U .

With the assumption that the SINR is balanced and if strong duality holds, and with
µi,a ≥ 0 ∀i ∈ U , for a fixed µ, the same equivalent reformulations as in [57] can be
made and the problem is finally given by:

γL
I = min

α
max

λ,γ,V∈V
γ (A.4)

s.t. γ ≤ λiv
H
i Ri,ivi

vH
i (αMi +

∑

l∈U
l 6=i

λlRi,l)vi
,

∑

i∈U
λi ≤ P, 0 ≤ α ≤ 1

λi ≥ 0, ∀ i ∈ U .

Regarding the objective function of (A.4), the optimal value of the dual variable α is
α∗ = 1 (upper bound) because it is aimed to maximize γ. Thus, the dual UL problem
(4.27) is the result. We can restrict λ to λ > 0 otherwise λ = 0 results in γL

I = 0
which can not be an optimal solution. Furthermore, we can also restrict µ to µ ≥ 0
and µ 6= 0.

The proof of strong duality is an extension of [128, Lemma 2]. With ωi =
√

pivi

the definition of the DL SINR in this thesis can be adapted to the definition in [128]:

γD
i =

piv
H
i Ri,ivi

∑

l∈U
l 6=i

plv
H
l Rl,ivl + 1

. (A.5)

With
∑

i∈U
ωH

i Miωi =
∑

i∈U
piv

H
i Mivi

=
∑

i∈U
pi Tr{vH

i Mivi}

=
∑

i∈U
pi Tr{Miviv

H
i },

the MBP with a weighted sum power is then equivalently given by:

γD = γL
I = max

V∈V ,p
min
i∈U

γD
i (A.6)

s.t.
∑

i∈U
pi Tr{Miviv

H
i } = P. (A.7)
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It has to be shown that for the same sum power the same SINR feasible region is the
result. As in [128] with D = diag( 1

vH
1 R1,1v1

, . . . , 1
vH

MRM,MvM
) and p = [p1, . . . , pM] and

λ = [λ1, . . . , λM]

[Ψ]i,k =

{

vH
k Rk,ivk k 6= i

0 k = i,
(A.8)

and d(V, µ) = [Tr{M1v1vH
1 }, . . . , Tr{MMvMvH

M}]T and for a balanced DL SINR γD =
γ the following set of equations for fixed V and Mi is the result:

1

γ
p = DΨp + D · 1

⇔(
1

γ
D−1 −Ψ)p = 1

⇔p = (
1

γ
D−1 −Ψ)−11. (A.9)

We assume all Rk,i are positive definite. Hence, all links are interference coupled (see
Section 4.6.2). The same holds for the balanced UL SINR γL

I = γ

1

γ
λ = DΨ

Tλ + D · d(V, µ)

⇔(
1

γ
D−1 −Ψ

T)λ = d(V, µ)

⇔λ = (
1

γ
D−1 −Ψ

T)−1d(V, µ). (A.10)

In [12] and [10], the authors show that the spectral radius indicates the feasibility of
the SINR constraints. Note, ρ(γDΨ) < 1, because the MBP is always feasible (4.25).
The question is now whether for both problems (4.25) and (4.27), in the weighted sum
power case the same sum power for the feasible SINR γ will be the result. With (A.10),
the UL power of the UL MBP is given by:

λT · 1 = [(
1

γ
D−1 −Ψ

T)−1d(V, µ)]T1 (A.11)

= dT(V, µ)[(
1

γ
D−1 −Ψ

T)−1]T1

= dT(V, µ)[(
1

γ
D−1 −Ψ

T)T]−11

= dT(V, µ) (
1

γ
D−1 −Ψ)−11

︸ ︷︷ ︸

=p

= dT(V, µ)p.

Note in case of per BS power constraints we have d(V, µ) = µ. The last line is the
weighted sum power constraint (A.7) of the DL MBP. Thus, the UL and DL MBP
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achieve the same SINR with the same total transmit power. Therefore, both problems
have the same balanced SINR.

A.2 Derivation of the Lagrangian Dual Problem in

Proposition 8

Proof. Let ωi =
√

pivi with ‖vi‖ = 1 ∀i ∈ U and introducing additional implicit
constraints pi ≥ 0 ∀i ∈ U with dual variables ξi ≥ 0 ∀i ∈ U composed to the vector ξ.
The Lagrangian of the primal problem (4.15) is given by

L(γ, p, V, λ, µ, ξ) = γ +
∑

i∈U
Tr{MiPi} −

∑

i∈U
λi

+
∑

i∈U
piv

H
i [

λi

γ
Ri,i −Mi −

∑

l∈U ,l 6=i

λlRi,l + ξi]vi.

The dual function of this problem is:

l(λ, µ, ξ) = sup
γ,p,V∈V

L(γ, p, V, λ, µ, ξ).

As in [159], since ∂L(γ, p, V, λ, µ, ξ)/∂pi = 0 at the optimum implies that

vH
i [

λi

γ
Ri,i −Mi −

∑

l∈U ,l 6=i

λlRi,l]vi ≤ 0,

from which the constraint of the dual function follows. Hence, the Lagrangian dual
problem can be stated as:

γL = min
λ,µ

max
γ,V∈V

γ +
∑

i∈U
Tr{MiPi} −

∑

i∈U
λi

s.t. vH
i [Mi +

∑

l∈U
l 6=i

λlRi,l]vi ≥
λi

γ
vH

i Ri,ivi,

Mi < 0, λi ≥ 0, ∀ i ∈ U .

With the definition of the new optimization variable χ and the additional constraint
χ ≥∑i∈U λi, the problem can be rephrased to

γL = max
χ

min
λ,µ

max
γ,V∈V

γ +
∑

i∈U
Tr{MiPi} − χ (A.12)

s.t. vH
i [Mi +

∑

l∈U
l 6=i

λlRi,l]vi ≥
λi

γ
vH

i Ri,ivi,

χ ≥
∑

i∈U
λi,
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Mi < 0, λi ≥ 0, ∀ i ∈ U .

As in [159], using the additional variable substitutions χ = χ
′
P, Mi = M

′
iχ
′
, where

P =
∑

i∈U Tr{M
′
iPi} and λi = λ

′
iχ
′

and considering χ
′

as the dual variable for the

minimization over µ
′
, the following simplification of the problem (A.12) is given by:

γL = min
λ
′

,µ
′

max
γ,V∈V

γ (A.13)

s.t. vH
i [M

′
i +
∑

l∈U
l 6=i

λ
′
lRi,l]vi ≥

λ
′
i

γ
vH

i Ri,ivi,

∑

i∈U
λ
′
i ≤

∑

i∈U
Tr{M

′
iPi},

M
′
i < 0 , λ

′
i ≥ 0, ∀ i ∈ U .

With the substitutions λi = λ
′
i and Mi = M

′
i and rearranging the first constraint in

(A.13) [159], it can be rewritten as

γ ≥ λiv
H
i Ri,ivi

vH
i (Mi +

∑

l∈U
l 6=i

λlRi,l)vi
. (A.14)

With the assumption of a balanced SINR among all users, the first constraint is met
with equality if the Mis and V are fixed [163]. Therefore, the reversal of the SINR
constraints and the reversal of the minimization as a maximization over λi do not
affect the optimal solution [163].

γL = min
µ

max
λ,γ,V∈V

γ (A.15)

s.t. γ ≤ γU
i (µ, λ, vi)

Mi < 0, λi ≥ 0, ∀ i ∈ U ,
∑

i∈U
λi ≤

∑

i∈U
Tr{MiPi}.

Replacing γ with the right hand side of the first constraints in (A.15), the optimization
problem is formulated as in (4.42).

A.3 Proof of Lemma 5

Proof. The proof is straightforward. First of all the minimum of two continuous func-
tions f1(x), f2(x) is continuous,

min( f1(x), f2(x)) =
1

2
( f1(x) + f2(x)− | f1(x)− f2(x) |), (A.16)
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because the sum, difference, and absolute value of continuous functions are continu-
ous. Hence, (4.20) can be proven to be continuous by a recursive definition

f (Ω) = min{γ1(Ω), min{γ2(Ω), . . . min{γN−1(Ω), γN(Ω)}}. (A.17)

The second part is to prove that each γi(Ω) is continuous. The γi(Ω) are obviously
continuous. Because

∑

l∈U
l 6=i

ωH
l Rl,iωl + 1 > 0, therefore, γi(Ω) has no definition gaps.

Furthermore, the nominator and the denominator are polynomial functions and con-
tinuous. The fraction of two continuous functions is also continuous.

A.4 Complexity Analysis

As in [57], the complexity of the inner loop can be summarized as follows:

• The complexity of the matrix Σi (4.43) is in the order of O(NN2
A) [57].

• The computation of the inverse matrix Σ
−1
i is in the order of O(N3

A).

• The matrix-matrix multiplication of the symmetric matrix Σ
−1
i Ri,i has a com-

plexity in the order of O(N3
A).

• The matrix-vector multiplication Σ
−1
i Ri,ivi has a complexity in the order of

O(N2
A).

• The normalization step ‖vi‖ = 1 has a low complexity compared to the other
steps, therefore, it is ignored.

• The eigenvalue computation (4.46) consists of two vector-matrix-vector products.
The complexity is in the order of O(N2

A).

Consequently, the order total complexity of all these operations can be upper bounded
by O(NN3

A + NN2
A). These steps are made for each of the N users, hence, the order

total complexity is O(N2N3
A + N2N2

A). The downlink power computation has the
following complexity:

• The computation of the matrix D−1 has a complexity in the order of O(NN2
A)

and the computation of G has a complexity in the order of O(N2N2
A) [57].

• The product 1
γ D−1 has a complexity in the order of O(N).

• The matrix subtraction 1
γ D−1 −Ψ has a complexity in the order of O(N2).

• The matrix-vector product ( 1
γ D−1−Ψ)p has a complexity in the order ofO(N2).

In total, the order downlink power computation can be upper bounded by O(2N2N2
A)

flops. The complexity of the µ-SC method can be summarized as follows:

• The vector times a matrix times a vector-vector product in (4.49) has a complexity
in the order of O(NN2

A).
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• The computation normalization factor ζ has a complexity in the order of O(N +
NNA). The normalization of the real valued matrices in (4.49) has a complexity
in the order of O(NNA).

Thus, the scaling step (4.49) can be upper bounded by O(N2N2
A). These two steps (DL

power computation and the scaling step) can be jointly upper bounded by O(N3N2
A).

Assuming the inner loop needs KI iterations, the order of the total complexity for one
outer iteration is now given by O(KI N2(N3

A + N2
A) + N2N2

A). Assuming the outer
loop needs KO iterations, the the order of total complexity is then given by

O(KOKI N2(N3
A + N2

A) + KON2N2
A).

The SDP (4.17) requires interior point methods for solving it. The complexity of a fast
interior point method [69] can be approximated by O(n3.5 log(1/ǫ)), where n is the
total variable size [109]. In [90], the authors estimate the order of the complexity of the
convex solver based feasibility check problem toO(log(1/ǫ)

√
NNA(N3N6

A + N2N2
A)).

Assuming there are KO outer iterations needed by the bisection algorithm, the total
complexity is in the order of O(KO log(1/ǫ)

√
NNA(N3N6

A + N2N2
A)).

A.5 Proof of Proposition 22

Let ωc =
√

pcvc with ‖vc‖ = 1 ∀c ∈ S and introducing additional implicit constraints
pc ≥ 0 ∀c ∈ S with dual variables ξc ≥ 0 ∀c ∈ S composed to the vector ξ. The
Lagrangian of The Lagrangian of the primal problem (7.8) is formed with the knowl-
edge that the DL SINR γ is positive and with the non-negative Lagrange multipliers
λ = [λ1, . . . , λM] and β:

L(γ, V, p, λ, β, ξ) = γ− β(
∑

c∈S
pcvH

c Mcvc − P) +
∑

c∈S
ξc pc (A.18)

−
∑

i∈U
λi(−

pc(i)v
H
c(i)Rc(i),ivc(i)

γ
+
∑

c 6=c(i)

pcvH
c Rc,ivc + 1).

This Lagrangian can be converted to:

L(γ, V, p, λ, β, ξ) = γ− β(
∑

c∈S
pcvH

c Mcvc − P) +
∑

c∈S
ξc pc (A.19)

+
∑

i∈U

λi pc(i)v
H
c(i)Rc(i),ivc(i)

γ
−
∑

c 6=c(i)

λi pcvH
c Rc,ivc

︸ ︷︷ ︸

Ψ

−
∑

i∈U
λi.

With

ac(i),i =
λi pc(i)v

H
c(i)Rc(i),ivc(i)

γ
, (A.20)
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bc,i = −λi pcvH
c Rc,ivc, (A.21)

the function Ψ is defined by:

Ψ =
∑

i∈U
ac(i),i +

∑

c 6=c(i)

bc,i (A.22)

This function can be rearranged as follows:

Ψ =
∑

c∈S

∑

i∈Uc

ac,i +
∑

j/∈Uc

bc,j, (A.23)

where Uc denotes the set of active users in cell c. With the definition of the set Uc of
user served by BS c, the function Ψ can be rearranged to:

Ψ =
∑

c∈S

∑

i∈Uc

λi pcvH
c Rc,ivc

γ
−
∑

j/∈Uc

λj pcvH
c Rc,jvc. (A.24)

With the rearranged Ψ, the Lagrangian is given by:

L(γ, V, p, λ, β, ξ) = γ− β(
∑

c∈S
pcvH

c Mcvc − P) +
∑

c∈S
ξc pc (A.25)

+
∑

c∈S

∑

i∈Uc

λi pcvH
c Rc,ivc

γ
−
∑

j/∈Uc

λj pcvH
c Rc,jvc −

∑

i∈U
λi

and rearranged as follows:

L(γ, V, p, λ, β, ξ) = γ + βP−
∑

i∈U
λi − β

∑

c∈S
pcvH

c Mcvc +
∑

c∈S
ξc pc (A.26)

+
∑

c∈S

∑

i∈Uc

λi pcvH
c Rc,ivc

γ
−
∑

j/∈Uc

λj pcvH
c Rc,jvc.

Now, there is a summation over c and a summation over fixed vc and the beamforming
vectors can be removed from the inner sums as follows:

L(γ, V, p, λ, β, ξ) = γ + βP−
∑

i∈U
λi (A.27)

+
∑

c∈S
pcvH

c (−βMc +
∑

i∈Uc

λiRc,i

γ
−
∑

j/∈Uc

λjRc,j + ξc)vc.

The dual function of this problem is:

l(λ, β, ξ) = sup
γ,V,p

L(γ, V, p, λ, β). (A.28)
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As in [159], since ∂L(γ, p, V, λ, β, ξ)/∂pc = 0 at the optimum implies that

vH
c (−βMc +

∑

i∈Uc

λiRc,i

γ
−
∑

j/∈Uc

λjRc,j)vc ≤ 0 (A.29)

which further implies the constraints of the dual function. Hence, the Lagrangian
dual problem can be stated as:

γL
M = min

λ,β
max

γ,V∈V
γ + βP−

∑

i∈U
λi (A.30)

s.t. vH
c (−βMc +

∑

i∈Uc

λiRc,i

γ
−
∑

j/∈Uc

λjRc,j)vc ≤ 0,

β ≥ 0, λi ≥ 0, ∀ i ∈ U .

With the same mathematical reformulations as in Proof A.1, the problem can be sim-
plified to:

γL
M = min

λ,β
max

γ,V∈V
γ (A.31)

s.t. γ ≥ vH
c (
∑

i∈Uc
λiRc,i)vc

vH
c (βMc +

∑

j/∈Uc
λjRc,j)vc

,

λi ≥ 0, ∀ i ∈ U ,
∑

i∈U
λi ≤ P, 0 ≤ β ≤ 1.

Similar to [57], the optimal value of the dual variable β can be obtained by investigat-
ing the objective function of (A.31). The objective over β is the minimization over γ
with regard to β. Therefore the optimal β should reach its upper bound, i.e., β = 1.

A.6 Proof of Theorem 9

Proof. This is a short outline of the proof presented in [119]. The technique is based on
a factorization of the polynomial X(z) based on its roots. The non-negative trigono-

metric polynomial X(z) =
∑n−1

k=−n+1 x(k)z−k is real valued. Hence, x(−k) = x∗(k)
and, therefore, X∗(z) = X( 1

z∗ ) holds. If X∗(zk) = 0, then also X( 1
z∗k
) = X∗(zk) = 0

holds. The polynomial P(z) = zn−1 X(z) is of degree 2(n− 1) and can be factorized
as follows:

P(z) = A
n−1∏

k=1

(z− zk)
n−1∏

k=1

(z z∗k − 1)
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where A is a constant. The original polynomial is then

X(z) = z−(n−1)P(z) = A
n−1∏

k=1

(1− z−1zk)
n−1∏

k=1

(z z∗k − 1).

The equation X(ejφ) = |W(ejφ)|2 is satisfied due to

|1− ejφzk| = |ejφ − zk|

and

|ejφz∗k − 1| = |z∗k − e−jφ| = |ejφ − zk|.
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List of Symbols

a antenna index of an antenna array of a BS
array

Bt
k set of active BSs in hop t of slot k

b(r(i)) index or a BS serving RS r(i) serving user i

Bi set of BSs serving user i

c cell or BS array index

c(i) BS array c(i) serving user i

ǫ precision of an iterative algorithm

G N-partite graph

hH
c,i MISO channel vector

hH
l,i channel vector between BS array serving

user l and user i

i user index

K number of slots in the regarded scheduling
interval

k index of the slot (Chapters 6, 5, otherwise
general index (integer value))

LCM lowest common multiple

l(µ) Lagrangian dual function

M number of users

Mi diagonal matrix with dual variables for user
i

µ dual variables

N number of BS antenna arrays

NA number of antenna elements at each BS ar-
ray
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NB number of BS arrays

Nc number of users in cell c

ni additive noise

NR number of RSs

nr(i) noise vector the RS r(i) serving user i re-
ceives

NS number of stations (BSs and RSs)

Ω beamforming matrix consisting of all beam-
forming vectors

Ωk beamforming matrix consisting of all beam-
forming vectors in slot k

Ω
t
k set of beamforming vectors in hop t of slot

k

ωl beamforming vector from BS array serving
user l

ωt
s beamforming vector of station s in hop t

P sum power constraint

Pi diagonal matrix with power constraints on
its main diagonal

Pl per-BS antenna array power constraint of
the array serving user l

Pl,a per-antenna power constraint of antenna a
at the array serving user l

P convex domain given by power constraints

Rc,i spatial correlation matrix

R̂c,i normalized spatial correlation matrix

r(i) index or a RS serving user i

Rk set of active RSs in slot k

sD(µ) surrogate dual function of the MBP in the
DL domain

S set of BSs

σ2
i noise variance

S t
k set of active stations (RSs and BSs) in hop t

of slot k
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S scheduling matrix containing the assign-
ments of users to BS arrays and slots

s(µ) surrogate dual function

sU(µ) surrogate dual function of the MBP in the
UL domain

t index of the hop

U set of users

Uc set of currently active users distributed in
cell c

Uc,0 initial set of active users distributed in cell c

Uk set of active users in slot k

W cost matrix of assignment problems

W set of all beamforming matrices Ωk, ∀k =
1, . . . , K
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List of Abbreviations

AMC adaptive modulation and coding

BS base station

BTSP bottleneck traveling salesman problem

CAS channel aware scheduling

CDF cumulative distribution function

CDP column-wise delay optimization problem

CoMP cooperative multipoint

CQI channel quality information

CSI instantaneous channel state information

DAB digital audio broadcasting

DL downlink

DVB digital video broadcasting

FAS finite autocorrelation sequence

FDD frequency division duplex

FDMA frequency division multiple access

FFT fast Fourier transformation

GPS global positioning system

GS greedy scheduling

GSM Global System for Mobile Communications

HC Hamiltonian cycle

LOS line of sight

LP linear program

LSAP linear sum assignment problem

LTE Long-Term Evolution

MAP multidimensional assignment problem

MB max–min beamforming

MBP max–min beamforming problem
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MISO multiple input single output

MRC maximum ratio combining

MS mobile station

NLOS non-LOS

OFDM orthogonal frequency division multiplexing

ORRS opportunistic Round Robin scheduling

PFS proportional fair scheduling

PMP power minimization problem

QCQP quadratically constrained quadratic pro-
gram

QFS quasi fair scheduling

QoS quality-of-service

RRS random Round-Robin scheduling

RS relay station

SDP semidefinite program

SDR semidefinite relaxation

SINR signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

SOCP second order cone problem

SPA sector pattern adaptation

TDD time division duplex

TSP traveling salesman problem

UL uplink

ULA uniform linear array

UMTS Universal Mobile Telecommunications Sys-
tem



Index

AMC, 151
amplify-and-forward relay, 106
assignment problem, 74
axial multi-dimensional assignment prob-

lem, 74

backhaul, 158
balanced SINR, 40, 41, 61
beamforming vector, 37
beamscheduling problem, 69, 73, 74
bisection algorithm, 20
bottleneck traveling salesman problem, 98
BS, 1
BTSP, 98

CAS, 151
CDF, 119
CDP, 97
channel aware scheduling, 151
channel vector, 37
CoMP, 35, 61
complex–real isomorphism, 13
complexity, 54, 90, 158
concave function, 14
convex function, 15
convex optimization problem, 14
coupled network, 60
CQI, 152
CSI, 4

DAB, 5
decode-and-forward relay, 106
decoupled network, 60
dimension-wise max–min optimization, 87
dimension-wise sum rate maximization,

84
Dinkelbach algorithm, 27, 136
DL, 38
downlink SINR, 37, 58

DVB, 5

eigenproblem, 51

FAS, 18
FDD, 11
FDMA, 2
feasibility check problem, 20, 35, 43
FFT, 134
finite autocorrelation sequences, 18, 131
fractional programming, 25, 134
frequency reuse-1 factor, 31
frequency reuse-1, 9

generalized fractional programming, 26
GPS, 105
greedy algorithm, 88, 118
GS, 119
GSM, 1

Hamiltonian cycle, 98
Hermitian positive semidefinite, 16
heterogeneous networks, 3
heuristic, 82

inner loop, 50, 143
instantaneous CSI, 37
intercell interference, 1
interference, 31
interference coupled network, 41
interference coupling, 59
interference decoupled network, 41
interference decoupled networks, 61
isomorphism, 14
iterative algorithm, 50, 143

Lagrange duality, 16
Lagrangian, 17
Lagrangian dual function, 17
Lagrangian dual problem, 17, 18, 46, 49

178
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linear bottleneck assignment problem, 78
linear program, 16
linear sum assignment problem, 76
long-term CSI, 11, 37
LOS, 105
lower level set, 19
LP, 16
LTE, 2

max–min beamforming, 31
max–min beamforming problem, 31
maximization problem, 15
maximum SINR scheduling, 154
MB, 31
MBP, 31, 39
mean SINR, 37
MISO, 9
MISO-OFDM, 10
MRC, 110
MS, 104
multi-dimensional assignment problem, 74
multicast, 3
multicast beamforming, 123
multicast max–min beamforming, 128

neighborhood, 83
NLOS, 105
non-convex, 31
non-convex minimization problem, 19
non-convex optimization, 19

OFDM, 10
opportunistic Round-Robin scheduling, 153
ORRS, 82
orthogonal beamforming, 2
outer loop, 52, 147

parametric program, 26
pareto optimality, 41
per-antenna power constraints, 39
per-BS anteanna array power constraints,

127
per-BS antenna array power constraints,

38
PFS, 153
PMP, 33
power constraints, 38, 127
power minimization problem, 33

proportional fair scheduling, 153, 154

QCQP, 28
QFS, 82
QoS, 3
quadratically constrained quadratic pro-

gram, 28
quasi-convex, 32, 42
quasi-convex function, 19
quasi-convex maximization problem, 20
quasi-convex minimization problem, 20
quasi-convex optimization, 19, 129

relay, 103
Riesz-Fejer theorem, 129
Round-Robin scheduling, 153
RRS, 118
RS, 104

scheduling and assignment problem, 116
scheduling fairness, 81
scheduling matrix, 71
SDP, 16
SDR, 28
second order cone problem, 16
sector pattern adaptation, 123, 151
semi-orthogonal beamforming, 2
semidefinite relaxation, 28, 40
simulated annealing, 84
SINR, 1
SNR, 124
SOCP, 16
SPA, 152
spatial correlation matrix, 11
spatial diversity, 61
spectral efficiency, 1, 9
spectral factorization, 134
strong duality, 18, 24, 46, 47
subgradient projection method, 52
sum power constraint, 38, 127
surrogate dual function, 46
surrogate duality, 21, 44, 142
synchronized phase, 62

TDD, 11
temporal fairness, 82, 158
Toeplitz matrix, 12
traveling salesman problem, 98



180 INDEX

TSP, 98

UL, 38
ULA, 12
UMTS, 1
unicast, 3
unicast beamforming, 37
unicast MBP, 32
uplink SINR, 38, 141
uplink–downlink duality, 43, 139
upper level set, 19

weak duality, 17, 18
weighted sum power constraint, 44
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