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Kurzfassung
Die Arbeit behandelt die Ertüchtigung des unstrukturierten, adaptiven, Finite-Volumen-

Lösungsverfahrens QUADFLOW für Str̈omungen kompressibler Fluide. Der bestehende Löser

ist ein integriertes Werkzeug mit multiskalenbasierter Gitteradaption und B-Spline-Techniken

zur Erzeugung von Viereck- bzw. Hexaedernetzen. Weil die Gitteradaption ḧangende Knoten

einbringen kann, ist die Datenstruktur zelloberflächenorientiert. F̈ur die Flussdiskretisierung

sind Upwind-Methoden und für die Zeitdiskretisierung eine explizite sowie impliziteFor-

mulierungen in Kombination mit Newton-Linearisierung undKrylov-Unterraum Methode

eingebaut. In der Dissertation wird ein Vorkonditionierernach der Formulierung von Weiss

und Smith zur Simulation reibungsfreier und reibender Strömungen kleiner Machzahl um Pro-

file in Reise- und Hochauftriebskonfiguration eingebaut. DieErgebnisse offenbaren das Erzie-

len Machzahl-unabḧangiger Werte f̈ur Auftriebs- und Widerstandskoeffizienten (d’Alembert-

Paradoxon) und treffen sehr gut Resultate der Literatur. DerWandabstand für die Turbulenz-

modellierung wird bei Auftreten sehr gestreckter, verfeinerter Zellen und ḧangender Knoten

mittels Vektoralgebra abgeschätzt, um adaptionsbedingt gestörte Wandreibungsverteilungen zu

vermeiden. Weiters wird dargestellt, dass ein ”Detached-Eddy-Ansatz” auf Basis des Spalart-

Allmaras Turbulenzmodells sich zusammen mit der Gitteradaption als effektiv erweist und

sich bei Hochauftriebskonfigurationen sehr gut zur Erfassung massiver Str̈omungsabl̈osung

eignet. Mittels zeitlicher R̈uckwärtsdifferenzen wird eine geometrisch konservative, implizite

Diskretisierung zweiter Ordnung formuliert, eingebaut und durch Simulation instation̈arer, rei-

bungsfreier Str̈omung um ein nickendes NACA0012 Profil validiert. Die Methodeerweist sich

dem vorher verwendeten Mittelpunktsschemaüberlegen, indem es größere Zeitschrittweiten

und CFL-Zahlen erlaubt. Die nichtlineare Multigrid-Methode, basierend auf ”Full Approxi-

mation Storage” mit V-Zyklus, wird implementiert, um die Konvergenz des zeitlich expliziten

Verfahrens bei der L̈osung reibungsfreier Strömungsprobleme zu beschleunigen. Die Gitter-

vergr̈oberung fußt auf einer hierarchischen Strategie, die feineren Zellen, die zu identischen

Elternzellen auf gleicher Verfeinerungsstufe gehören, zu einer Folge von Grobgittern zusam-

menzufassen. Der Restriktionsoperator basiert auf dem Volumengewicht, die Prolongation er-

folgt mittels des Upwind-Schemas. Alle Implementierungenin das L̈osungsverfahren werden

an verf̈ugbaren experimentellen und numerischen Resultaten ausführlich validiert. Es werden

vollturbulente Str̈omungen bei unterschiedlichen Anström-Mach- und -Reynoldszahlen berech-

net und mit Daten aus im Auftrag des SFB 401 durchgeführten KRG-Experimenten verglichen,

darunter Tests, in denen starke Stoß-Grenzschicht-Interaktionen und Buffet beobachtet wurden,

was numerisch an drei Gitterauflösungen studiert wird. Daraus folgt, dass eine angemessene

Gitteraufl̈osung in Str̈omungsrichtung f̈ur eine genaue Wiedergabe des Stoß-Buffet vital ist.

Das Ende der Arbeit enthält Erweiterungen des adaptiven Strömungsl̈osers f̈ur die dreidimen-

sionale Str̈omungssimulation und auch erste Ergebnisse aus Berechnungen mit der vorhandenen

Computerausstattung.
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Abstract

The work deals with enhancing the capabilities of the unstructured adaptive Finite Volume flow

solver QUADFLOW for compressible fluid flow. The solver exists as an integrated tool with

multiscale based grid adaptation and B-spline based quadrilateral/hexahedral multi-block grid

generation modules. Due to hanging nodes introduced through grid adaptation, data structure

is cell face based. Upwind methods are implemented for flux discretisation in combination

with explicit time integration as well as implicit temporaldiscretisation using Newton lineari-

sation and Krylov subspace method. In the thesis, a preconditioner based on the formulation

of Weiss and Smith is implemented for simulating inviscid and viscous flows at low Mach

number over airfoils in cruise as well as high lift configurations. The results demonstrate the

achievement of Mach number independent lift and drag coefficients (D’Alembert’s paradox)

and have an excellent agreement with results available in the literature. The wall distance for

the turbulence modelling in the presence of highly stretched, refined cells and hanging nodes

close to the wall is correctly estimated using vector algebra. With this formulation, the wriggles

in the skin friction distribution due to grid adaptation areavoided. Detached Eddy formula-

tion based on the Spalart-Allmaras turbulence model is shown to be effective together with the

grid adaptation and demonstrated to have excellent stall capturing characteristics for high lift

configurations. A second order accurate, geometrically conservative implicit scheme, based on

Backward Difference discretisation is formulated, implemented and validated to simulate the

unsteady inviscid flow over the pitching NACA0012 profile. Themethod shows an advantage

over the existing Mid-point scheme allowing relatively higher time steps and higher global CFL

numbers during the simulation. The non-linear multigrid method based on the Full Approxima-

tion Storage scheme with V-cycle is implemented to improve the convergence behaviour of the

explicit scheme in solving inviscid flow problems. The coarsening is based on the hierarchical

agglomeration strategy to combine the fine cells belonging to the identical parent cell at the

same level to generate a series of coarse grid levels. The restriction operator is based on the vol-

ume weightiness and the prolongation operation is carried out using the upwind scheme. The

implementations in the solver are extensively validated using results from available experiments

and numerical solutions existing in the literature. Fully turbulent flow computations at differ-

ent free stream Mach numbers and Reynolds numbers are carriedout and compared with data

obtained from the KRG experiments conducted in Goettingen onbehalf of SFB 401, including

some tests where strong shock-boundary layer interaction with buffet was observed. These are

studied at three different grid resolutions. It is concluded that the adequate resolution of the

grid cells along the stream-wise direction is vital in accurately resolving the flow physics in

shock buffet. Furthermore, code extensions are carried outto offer the capability to the adaptive

solver for simulating three-dimensional flow and some first computations are performed with

the available computational power.
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Nomenclature

α Angle of attack

∆t Timestep

Q̇ Heat generation per unit volume
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1 Introduction

The incremental evolution in the technology of today’s transport aircraft over the last decade has

led to the belief that the discipline of aeronautics is gradually entering into maturity. Today’s

aeronautics is characterised by analysis and design tools that are relatively mature and based on

the current understanding of the physics of the flight. Current tools, combined with significant

empiricism and experience, have been successful in developing concepts and designing new

vehicle systems [1].

Gradually, the aeronautics is entering into a phase, where the expectation is to bring improve-

ment in the multidisciplinary simulations to decrease the aerodynamic design time, reduce the

development cycle time for aircrafts [2], optimise the aerodynamic shape, simulate off-design

flow configurations associated with the complex flow fields, and design innovative aerodynamic

configurations to push the flight envelop.

Computational Fluid Dynamics has already achieved the status of a valid, reliable and cost ef-

fective tool in aeronautics to aid the process of simulation, analysis, understanding and control

of the flow phenomena. The applicability of the CFD has furtherbeen pushed by the recent

growth in the availability of the computational resources in the form of increase in the process-

ing power and development in the memory architecture. In addition to that, improvement in the

numerical techniques has augmented the progress of CFD in a direction to cater to the current

expectations from the aeronautical research and technology.

To date, enormous challenges are imposed on the CFD methods from the perspective of solu-

tion accuracy, robustness of the scheme to widen the applicabilities, improvement in the com-

putational speed for simulating the flow field over complex aerodynamic configurations. The

stringent requirement of solution accuracy can be demonstrated from the fact that a unit drag

count (∆Cd = 10−4) is equivalent to four passengers for a large transport aircraft [3].

Hence, the development of a state-of-the art CFD tool comprising of numerical components,

based upon valid theoretical frameworks, and has the ability to address the issues related to the

accuracy, robustness and speed in resolving the flow field is crucial. The current work, carried

out in the above motivation contributes significantly to theresearch and applications of the CFD.

Quadflow
The work described in this thesis is carried out in the context of development and application of

a CFD tool (Quadflow) with the above mentioned objectives to improve computational speed,

accuracy and robustness of the flow solver. Quadflow is a CFD software package developed

by a group within the Collaborative Research Center project (SFB 401), ”Flow Modulation and

Fluid-Structure Interaction at Airplane Wings” sponsoredby the Deutsche Forschungsgemein-

schaft. The Quadflow code is in the developing stage with an existing framework set upon by

the earlier work [4–7].
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The core of the Quadflow code is based upon the concept of grid adaptation, where the mesh

resolution is controlled on the basis of multiscale analysis [6] of the intermediate flow solution

in order to improve the accuracy of the final numerical solution. The grid generation process

and the numerical schemes in the flow solver are designed to aid in achieving this objective.

The flow solver, grid generation and grid adaptation modulesare tightly integrated to form the

CFD software package,Quadflow.

Flow solver: The flow solver is based on a cell-centered finite volume scheme, with face based

data structure to effectively deal with regions of the computational domain containing hanging

nodes. The detailed description of the available numericalschemes and their applicability is

provided in Chapter-2.

Grid generation: The conceptual framework of the grid generation module in Quadflow is

designed to address the following numerical aspects.:

• Appropriate approximation of the curvilinear surface in the physical domain.

• Hierarchical representation of the cells necessary for thegrid adaptation constraining the

child cells to be exactly overlapped by the parent cell.

The first criterion is linked to the geometrical modelling ofthe structural configuration and

achieved through the representation of the mesh lines usingB-spline curves [8, 9]. The con-

trol points on the curvilinear B-splines are relocated to model the geometrical boundaries with

boundary conforming curves. The disassociation of the required number of points for accurate

resolution of the surface (CAD modelling) from the number of required grid points to efficiently

resolve the flow field (Numerical modelling) is the essentialfeature of the grid generation mod-

ule.

The satisfaction of the second criterion is essential in supporting the concept of grid adaptation.

The computational domain is discretised in two dimensions with a multiblock structured grid

of quadrilateral (hexahedral in 3D) cells. The cells are arranged in a hierarchical structure with

block, level and index information, which is unique to the adaptive solver, Quadflow.

X ( )u,v

v

u

(1,1)

(0,0)

y

x

Figure 1: Parametric mapping during grid generation
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Fig. 1 shows theparametric transformationof the physical domain into the logical space for

generation of nested hierarchical cells suitable for adaptation.

Adaptation: The solver employs a wavelet based adaptive technique [6], utilising a quadtree

data structure to detect highly active regions embedded in the flow domain to eventually refine

or even coarsen the grid in the less active regions, resulting in a change in the grid topology. It is

achieved bymultiscale decompositionof the solution variables at the cell centers of a particular

grid levelQL into a sequence of cell averages (QL−1) and the detail coefficients (dL−1) for lower

levels recursively, till the coarsest grid level is achieved (shown in Fig. 2) . The method of

QL QL−1

dL−1

. . .

. . .

Q1

d1

Q0

d0
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Figure 2: Pyramid scheme of multiscale transformation

transformation for generating the coefficients depend onlyon the geometry of the cells rather

than the cell averages. The amount of variation in the detailcoefficients of four child cells

belonging to a parent cell (in 2D) is considered as the criterion for grid refinement. A threshold

parameter is chosen to control the intensity of refinement inthe computational domain. The

grid refinement is isotropic in nature. In two dimensional flow simulation, four consecutive

child cells at a higher level are created as a result of the refinement of a parent cell. During

the coarsening operation, the four cells are coalesced together to form a single cell at one level

lower than the original child cells. The level of the cell remains unchanged if it stays unaffected

during the process of grid adaptation. The resulting modification of the grid cells due to grid

adaptation is constrained to a specific block. The cross transfer of the cells from one block to

another is prevented during adaptation.

The applications considered in the course of the work is primarily for resolving the external flow

field over the lifting structures used in the transport aircraft. One of the active research areas

that has huge impact on the economics, performance and safety of the transport aircraft is the

efficient design of the high-lift configuration during take off and landing phases [10]. The task

is challenging because of the complexity of the flow; involving a mixture of localised subsonic

and supersonic regions and the interaction of the boundary layer with the wake of the preceeding

components. The enormity of the task can be realised from thenumber of research programs

being conducted in the past and are currently running; e.g. HIRENASD [11], AST/IWD [2],

EUROLIFT [12], MEGAFLOW [13]. Several studies have been conducted on flow simula-

tion, analysis and design of the high lift configuration, e.g. Aerodynamic Shape Optimisation

(ASO) of the high-lift configuration with viscous adjoint method [14], delaying separation on

the flap surface by periodic injection of air [15], numericalmodelling of transition [16] and
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many others [17–19].

An efficient and reliable prediction of the flow field over the high-lift configuration is crucial

and critical because of its primary importance on the aircraft design. Though, several previous

studies [13, 47] are able to accurately predict the variation of the lift coefficient with angle of

attack in the linear region; the solution accuracy is observed to be deteriorated near the stall and

in the post stall region. Accurate resolution of the flow fieldover the high-lift configuration in

both design and off-design conditions with improved turbulence modelling and grid adaptation

has been given a high priority in the work.

A low Mach number preconditioner is implemented to improve the convergence behaviour of

the predominant low Mach number regions in the flow field over ahigh-lift configuration. Im-

plementation of the low Mach number preconditioner in Quadflow helps in unifying the simu-

lation methods for compressible and incompressible flow fields.

Quadflow is intended to be used as a highly accurate and robusttool for aeroelastic analysis

involving fluid-structure interaction. This involves the challenges of designing a numerical

scheme to

• use higher order discretisation in time for improved temporal resolution,

• satisfy thegeometric conservation lawin the presence of dynamic mesh movement,

• be robust in order to increase the simulation timestep for reducing the computational time,

• be able to efficiently utilise the concept of grid adaptivityfor improved spatial resolution

of the flow field.

A second order time accurate and geometrically conserved implicit backward difference scheme

has been formulated, implemented and tested in the adaptiveflow solver Quadflow to enhance

the speed and robustness for simulating unsteady problems with the mesh movement.

Computation is performed over a transonic airfoil (SFB profile) to understand the significantly

complex and challenging aerodynamic phenomenon of ”shock buffet”, caused by the interac-

tion between the boundary layer and the shock closing the transonic domain, resulting in the

non-harmonic periodic oscillation of the shock along the profile. The numerically predicted so-

lution is compared with the experimentally available data.The following aspects of the physical

phenomena are analysed.

• flow configuration triggering the onset of the shock buffet,

• shock traversing distance on the surface of the airfoil,

• frequency of the shock oscillation,

• temporal variation of the static pressure coefficients on the airfoil surface.
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The application of turbulence modelling using DES method isdemonstrated in accurate captur-

ing of the stalling angle of the high-lift configuration. A Full Approximation Storage (FAS),

geometric Multigrid method is implemented to enhance the convergence acceleration of the ex-

plicit time integration scheme. The component of the implicit time integration scheme, e.g. the

method to compute the Jacobian matrix is enhanced. Further work is carried out to extend the

applicabilities of Quadflow for simulating three-dimensional flow fields.

Huge amount of data available from the experiments conducted at the Kryo-Rohrwindkanal

Göttingen (KRG) [22, 23] provides an opportunity to validate the numerical simulation and

demonstrate the accuracy of the numerical schemes implemented in Quadflow. Additionally,

available numerical and experimental results in the existing literature are used for validation.

The contents of the thesis are organised in the following way. The formulation of the numerical

schemes used in modelling and their implementation in Quadflow is described in Chapter-2.

The approach to the flow modelling determined by analysing the physical mechanisms in the

flow field and the basis of the derivation of numerical formulations are explained in the chapter.

The numerical schemes to simulate turbulent flow, low Mach number flow and unsteady flow

fields in the presence of mesh movement are elucidated. Chapter-3 illustrates the application

of the schemes in simulating flow over different configurations. The results are analysed and

the numerical schemes are validated by comparing with the experimentally available data or

with the pre-existing reliable numerical solutions. The benefits of the methods in accelerating

convergence and improving the accuracy of the flow solution are assessed. Finally, the con-

cluding chapter outlines the inferences drawn on the basis of the present work and provides

recommendations on the possible future progress of the work.
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2 Numerical Modelling and Implementation

The fundamental behaviour of a physical problem can be mathematically modelled under a

certain set of assumptions to give rise to a set of equations,termed asgoverning equations.

The assumptions are considered either in order to reduce thecomplexity of the mathematical

modelling or to address a problem where the physical effect is considered to be insignificantly

influencing the solution. The type and nature of the governing equations determine the charac-

teristics of the physical problem. The equations along withthe initial and boundary conditions

provide the condition ofwellposednessto the problem, where the solution is known to exist.

The possibility of expressing the governing equation in different forms (weak/strong) leads

to distinct formulations (FVM/FDM/FEM) which can be solvedwith the adoption of various

strategies available in the existing literature [24]. Numerical discretisation of the governing

Physical 
problem 

Governing Numerical
scheme

Mathematical 
modelling

Numerical
modelling

Solution
procedure

Solutionequations

Figure 3: Steps of modelling the physical problem leading tosolution

equation with the help of Taylor series expansion leads to the creation of a numerical model

of the problem. Stability, convergence and accuracy of the numerical scheme depends on the

discretisation process. Iterative schemes are employed tosolve the numerical models to achieve

the required solution to the problem.

The effort to numerically model the governing equation for the problems related to the aero-

dynamics of the airfoil and wing structures is described in the current section dealing with the

aspect of numerical modelling.

2.1 Governing equations

Laws of continuum mechanics provide the mathematical basisto explain the dynamics of a sys-

tem comprising of a continuous distribution of particles inthe sense of continuum mechanics.

Navier-Stokes equations, consisting of conservation of mass, momentum and energy, are used

as the governing equations to mathematically model and physically explain the flow field under

the assumption of continuity in the medium. Out of all possible forms, the weak integral form

is suitable to deal with the discontinuities in the flow field.In a single phase aerodynamic flow

field, the spatial discontinuities appear in the form of jumps of the flow variables arising out of

non-linearity in the governing equations under a certain set of boundary conditions.

The integral form of Navier-Stokes equations in Finite Volume formulation is,
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d
dt

Z

Ω(t)
QdΩ =

I

∂Ω(t)
F ·nds+

Z

Ω(t)
FbdΩ. (1)

Splitting the flux into convective and viscous terms yields

∂
∂t

Z

Ω(t)
QdΩ+

I

∂Ω(t)
Fc ·nds=

I

∂Ω(t)
Fv ·nds+

Z

Ω(t)
FbdΩ. (2)

Q =









ρ
ρV

ρE









, Fc =









ρV
′

ρV
′ ⊗V

′

ρV
′
E′









, Fv =









0

σ

σ ·V −q









, Fb =









0

ρ fb

ρ fb ·V −ρQ̇









,

whereQ is the conservative vector representing the state variables. Fc and Fv represent the

contribution of the convective and diffusive fluxes throughthe control surfaces into the control

volume, respectively.ρ fb is the body force per unit volume experienced by the fluid in the

control volume.

E is the total internal energy of the fluid and defined asE = e+ V2

2 . It includes the internal

energy of the fluid by virtue of its molecular motion in the form of temperature and the dynamic

head, resulted from the velocity stream. The internal energy (e) of a calorically perfect gas is a

function of temperature and is expressed ase= cvT, Wherecv is the specific heat of the fluid at

constant volume.

σ is the surface traction tensor experienced by the fluid at thecontrol surfaces. From Stokes’

law, in matrix notation,σ = −pI + τ . p is the static pressure experienced by the fluid andτ is

the Deviatoric stress tensor. The constitutive relation for Newtonian fluids correlates the stress

and strain tensor through the dynamic viscosity (µ) , giving rise to

τ = µ(∇V +∇VT)+λI∇ ·V (3)

λ represents the bulk viscosity and accounts for the component of stress due to the compressible

strain. Enforcement of equality between the thermodynamicpressure with the hydrodynamic

pressure leads to the satisfaction ofτi j δi j = 0, giving rise to the conditionλ = −2
3µ. Dynamic

viscosity (µ) is a property of the fluid which depends on the absolute temperature. Its variation

in the computational domain is modelled using Sutherland’slaw, µ = µre f(
T

Tre f
)

3
2

Tre f+C
T+C . The

reference value of the dynamic viscosity (µre f ) is obtained using the reference temperature (Tre f )

(explained in the section 2.2 dealing with non-dimensionalisation of the governing equations)

and the preset reference Reynolds number. Sutherland’s temperature (C) is a constant, set to

110.4K.

V
′
in Eqn. (2) represents the instantaneous velocity components, comprising of the mean value

and the fluctuating part. Temporal average of the dyadic product of the instantaneous quantity

gives rise to the Reynolds stress tensor as explained in the turbulence modelling section 2.3 in

the later part of this thesis.
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The heat flux vector (q), depends upon the temperature gradients of the flow and is modelled

by the Fourier’s law,q = −k∇T. k is the thermal conductivity of the fluid and is related to

the dynamic viscosity of the fluid through Prandtl’s number.Thus,k =
µCp
Pr , whereCp is the

specific heat of the gas at constant pressure.Q̇ is the volumetric heat supply to the unit mass of

fluid in the control volume. In the present work, air is modelled as a thermally perfect working

fluid with constant values of the specific heats (Cp,Cv). The state equation,p = ρRT is used in

addition to the governing equations to establish the closure in relation among the flow variables

under the assumption of the ideal gas condition.

2.2 Non-dimensionalisation of the governing equation

The conservative variables exist in different orders of magnitude when expressed in physical

units. They are non-dimensionalised in order to avoid significant round-off errors cropping up

during numerical iterative processes. In this work we consider two-dimensional time-dependent

flow.

For operational convenience during non-dimensionalisation, the governing equations are ex-

pressed in conservative Finite Difference form. The continuity equation becomes

∂ρ
∂t

+
(∂ρu)

∂x
+

(∂ρv)
∂y

= 0.

Substituting the dimensioned flow variables as the product of non-dimensional and reference

quantities,

⇒ ∂(ρ̂ρre f)

∂(t̂tre f)
+

∂(ρ̂ρre f ûure f)

(x̂xre f)
+

∂(ρ̂ρre f v̂ure f)

(ŷxre f)
= 0,

where,

ρ̂ = ρ
ρre f

, û = u
ure f

, v̂ = v
ure f

, t̂ = t
tre f

,

x̂ = x
xre f

, ŷ = y
xre f

, p̂ = p
pre f

, Ê = E
Ere f

.

Reference quantities are set based on the free stream values of the flow variables. Thus,ρre f =

ρ∞, ure f = c∞, wherec∞ is the sonic speed based on the free stream variables.xre f is set to the

chord length of the airfoil and reference time,tre f = xre f/ure f .

Reference values, being constant, can be taken outside of thepartial derivative terms. Thus,

⇒ ρre f

tre f

ρ̂
t̂

+
(ρre fure f)

xre f

∂(ρ̂û)

∂x̂
+

(ρre fure f)

xre f

∂(ρ̂v̂)
∂ŷ

= 0,

Cancelling the reference terms, we have the non-dimensionalform of the continuity equation

⇒ ∂ρ̂
∂t̂

+
∂(ρ̂û)

∂x̂
+

∂(ρ̂v̂)
∂ŷ

= 0. (4)
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Momentum equation along the x-direction in the absence of the body force can be written as

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
+

∂(ρuv)
∂y

+
∂(τxx)

∂x
+

∂(τxy)

∂y
= 0.

The reference value of the pressure (pre f ) is set in order to achieve a unit Euler number. Hence,

pre f=ρre fu2
re f . andTre f = u2

re f

Introducing the reference variables and rearranging the terms, the dimensional form of the

momentum equation gives rise to

⇒ ∂(ρ̂û)

∂t̂
+

∂(ρ̂û2 + p̂)

∂x̂
+

∂(ρ̂ûv̂)
∂ŷ

+
1

Rere f
(
∂τ̂xx

∂x̂
+

∂τ̂xy

∂ŷ
) = 0. (5)

where the reference Reynolds number,Rere f =
µre f

xre f ρre f ure f
.

µre f is obtained using the Reynolds number, which is pre-set during each computation to model

the physical flow in external aerodynamics. In all the computations through out this work, the

Reynolds number is based on the chord length of the airfoil.

Energy equation, in the absence of any external work due to the body force and internal heat

generation, can be expressed as

∂(ρE)

∂t
+

∂(ρuH)

∂x
+

∂(ρvH)

∂y
− ∂(uτxx+vτxy)

∂x
− ∂(uτxy+vτyy)

∂y
+

∂(qx)

∂x
+

∂(qy)

∂y
= 0,

where

τxx = 2µ∂u
∂x −

2
3µ(∂u

∂x + ∂v
∂y), τxy = ∂v

∂x + ∂u
∂y .

qx = k∂T
∂x , qy = k∂T

∂y .

Substituting the heat flux vector and shear stress tensor in the energy equation and introducing

reference values,

(ρre fEre f)

tre f

∂(ρ̂Ê)

∂t
+

ρre fure fEre f

xre f

∂(ρ̂ûĤ)

∂x
+

ρre fure fEre f

xre f

∂(ρ̂v̂Ĥ)

∂y

−
u2

re fµre f

x2
re f

∂(ûτ̂xx+ v̂τ̂xy

∂x
)−

u2
re fµre f

x2
re f

∂(ûτ̂xy+ v̂τ̂yy

∂y
)

+
kre fTre f

x2
re f

∂(q̂x)

∂x
+

kre fTre f

x2
re f

∂(q̂y)

∂y
= 0,

Dimensionally,[Ere f ] = [Tre f ]

Prandtl number,Pr =
µCp

k
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Grouping the reference values with Reference Reynolds numberand Prandtl number,

⇒ ∂(ρ̂Ê)

∂t̂
+

∂(ρ̂ûĤ)

∂x̂
+

∂(ρ̂v̂Ĥ)

∂ŷ
− 1

Rere f
(
∂(ûτ̂xx+ v̂τ̂xy)

∂x̂
+

∂(ûτ̂xy+ v̂τ̂yy)

∂ŷ
− µ̂

Pr
(
∂q̂x

∂x̂
+

∂q̂y

∂ŷ
)) = 0.

(6)

Laminar Prandtl number has been set to 0.72.

The above derived non-dimensional form of the governing equation is used in numerical mod-

elling as described in the subsequent chapters. The hat symbols used to denote the non-

dimensional flow variables are dropped in the rest of the thesis for the sake of simplicity.

2.3 Turbulence Modelling

2.3.1 Physical nature of turbulence

Turbulence is a deterministic chaos [26] generated due to the fluctuation of the flow quantities,

varying spatially as well as temporally over the average values and can be mathematically mod-

elled [27]. These fluctuating components are physically interpreted as the spectrum of length

scales cascading energy from the core region of the flow [28] to the viscous boundary wall to

be dissipated as heat energy through friction.

2.3.2 Numerical modelling of turbulence

Broadly, the spectrum of the scales in a turbulent flow field, ranging from the smallest as deter-

mined by the Kolmogorov scale [29] to the largest as detectedby the boundary layer thickness

can be classified into three different regimes associated with different length scales. The flow in

the core region interacts with the equivalent sized and comparatively larger length scale (inte-

gral scale [26]) to channelise energy into the inertial range, which contains eddies with moderate

scale size. Kolmogorov’s universal law of equilibrium is obeyed in this regime and the length

scale is uniquely determined by the molecular viscosity andthe rate of energy dissipation. The

energy from the inertial range is cascaded into the eddy structures with the smallest scale size

(dissipation scale [26]) and the flow phenomena is governed by molecular dissipation.

In the range of larger length scale, the eddies are anisotropic and governed by the orientation

of the mean flow. They are dominant in the part of the flow domainaway from the solid wall

due to their interaction with the mean flow to extract energy for transferring to smaller eddies.

They are physically present in the form of large separation bubbles or wakes in the flow field.

The energy is dissipated near the viscous solid wall. Hence,the energy is channelised through

the spectrum of the eddies away from the wall to the region of the solid wall. The small scale

eddies near the wall responsible for converting the flow energy to heat as a result of friction due

to the molecular viscosity are isotropic as the diffusion phenomenon has no preferred direction.
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Figure 4: Numerical modelling of the turbulent flow

Depending upon the required computational effort and numerical resolution of the eddies, mod-

elling of the turbulent flow can be broadly classified into three different categories.

In the Direct Numerical Simulation (DNS), the whole spectrum of the turbulent scale is resolved

by the grid. The grid needs to be finely refined in order to capture the smallest length scale in

the dissipation range.. Hence, the number of points in everydirection, 1
λ = Re

3
4 . The num-

ber of points in the grid becomes,Np = Re
9
4 . for a three-dimensional computational domain.

The number of grid points increases significantly with the increase in the Reynolds numbers.

The computational expense associated with the DNS model becomes the constraint due to the

grid size requirements, as the external aerodynamical flowsdeal with relatively high Reynolds

number.

In the Large Eddy Simulation (LES), spatial averaging is used in the form of a grid filter to cap-

ture the components of the solution with larger length scalein comparison to the grid size, and

the smaller length scales are explicitly modelled using Sub-grid Scale Modelling (SGS). Grid

near the solid boundary has to be isotropically refined to capture all the length scales. Though

the requirement of the number of grid points is comparatively lesser than the requirement in

using DNS model, still it is prohibitively high for large scale industrial applications.

In Reynolds Averaged Navier-Stokes equation (RANS), all the turbulent scales are meant to

be captured through numerical modelling. Ideally, the gridis designed to capture the variation
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in the mean flow component rather than any turbulent length scales. As the variation in the

mean flow quantities are significant along the normal direction near the wall, high aspect ratio

cells are used to capture the boundary layer. The technique to model the eddy viscosity from

the mean flow components is the prime factor determining the accuracy and the computational

expense of the RANS model.

2.3.3 Reynolds stress modelling through LEVM

The instantaneous component of a conservative quantity canbe expressed as the sum of the

average quantity and the fluctuating part.

Q(x, t) =
1
∆t

Z t+∆t

t
(Q̄(x, t)+q(x, t))dt

When the time scale of fluctuation is very small compared to thecomputational timestep, the

fluctuating part is averaged out to null and only the mean component is captured. During this

method of Reynolds averaging, the linear terms in the governing equations (Eqn. 1) contribute

to the numerical solution through the averaged quantities,but the non-linear terms have an

additional component, expressed as the product of the two fluctuating flow quantities. Such a

term present in the momentum equation is called theReynolds stress tensorand in the energy

equation, due to the scalar form is termed as theReynolds flux vector.

Boussinesq hypothesis is used to linearly correlate the Reynolds stress tensor with the mean

flow quantities during turbulence modelling through the introduction of Eddy viscosity. This

process is called as the Linear Eddy Viscosity Modelling (LEVM).

−ρV
′ ⊗V

′
= µt(∇V +(∇V)T)− 2

3
I(∇ ·V)− 2

3
I(ρk). (7)

k is the turbulent kinetic energy.

The product of the fluctuating components present in the transportation of the total internal

energy in Eqn. (2) is modelled

−ρV
′
E′

= kt∇E,

where,kt =
µt

Prt
, Prt is the turbulent Prandtl number and the value is set to 0.90 for all the

computation.

µt is the eddy viscosity and quantifies the turbulence in the flowfield. Unlike dynamic viscosity,

which is a fluid property, eddy viscosity is a flow property anddepends on the flow field. This

unknown eddy viscosity is obtained by solving the turbulentflow quantities.

2.3.4 Detached Eddy Simulation

When the time scale of certain turbulent eddies becomes larger than the unsteady timestep used

in the numerical simulation, a part of the fluctuating component related to the low frequency
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end of the solution is captured along with the mean flow quantities through grid resolution.

This causes the dual inclusion of the fluctuating term as the component is modelled through the

turbulent equations using LEVM. This leads to a modelling error during numerical evaluation,

specifically for unsteady flow simulation with RANS, where therestriction in the numerical

timestep makes it comparable to the time scale of certain eddies. As large spatial scale of the

turbulent eddies are associated with larger time scale of fluctuation, the problem is encountered

due to the presence of massively separated flow in the computational domain.

This drawback of RANS in imposing a limitation for accuratelyresolving and modelling the

turbulent scales in the region of massive separation has also been reported by Frankeet al [30].

In order to enhance the applicability of RANS Simulation, Rung[15, 31] suggests the ratio

between the grid resolved timescale (Tm) and modelled turbulent timescale (Tt) should satisfy

the condition based on the Reynolds number and the Stanton number. Tm
Tt

≈ γRe
1
5

St , whereγ =

[1,10] in the boundary layer;γ = [0.1,1] in the free shear layer. The results obtained with a

modified k-ω model [32] on a high-lift configuration has shown improvement compared to the

standard model [15]. In contrary, LES, being a spatially averaged model and able to distinguish

the grid filtered component of the solution from the numerically modelled part, does not suffer

from this drawback [38]. Inspite of this advantage, the applicability of the LES is restricted due

to the requirement of prohibitively high grid resolution inthe near wall region.

RANS

RANS modified with SGS

Figure 5: Numerical models used in the computational domainfor Zonal DES

Hence, using RANS for the boundary layer simulation and LES inthe region far-away from

the wall as suggested by Spalart [27], one can effectively blend the strengths of both the mod-

els. A boundary in the computational domain in percentage ofthe chord length separating the

RANS region from the LES region is prescribed a priori, thus making it equivalent to the Zonal

DES [34]. The effect of the dimension of the specified boundary to separate the two regions on

the accuracy of the solution is discussed in the result section 3.1.3.

Several researchers have successfully tried to utilise thebenefit of RANS and Large Eddy Sim-

ulation (LES) by effectively combining them to create a series of hybrid models for the kinds
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of flow dominated by separation [35–41] and unsteadiness [42]. These successful studies con-

ducted in the recent years by various researchers for using the DES in simulating unsteady and

massively separated flows affirms the decision to use the model.

2.3.5 Spalart-Allmaras model and modification for DES

Flow is assumed to be fully turbulent without undergoing anytransition for all the computations

demonstrated in this work. Turbulence in the computationaldomain is modelled with one-

equation Spalart-Allmaras model [43] which solves a transport equation of an intermediate

variable(̄ν).

Dν̄
Dt

=
1
σ

(∇ · ((ν+ ν̄)∇ν̄+cb2(∇(ν̄))2))+cb1S̄ν̄−cw1 fw(
ν̄
d
)2, (8)

where the terms on the right hand side of the equation model the contributions from the diffu-

sion, production and destruction phenomena. .

S̄= S+
ν̄

(κd)2 fv2 , where the scalar quantity S derived from the shear strain rate tensor

S=
√

((
∂w
∂y

− ∂v
∂z

)2 +(
∂u
∂z

− ∂w
∂x

)2 +(
∂u
∂y

− ∂v
∂x

)2).

fv1 and fv2 are defined as,

fv1 =
χ3

χ3 +c3
v1

,χ =
ν̄
ν

,

fv2 = 1− χ
1+χ fv1

,

Auxiliary functions are defined as,fw = g(
1+c6

w3

g6 +c6
w3

)
1
6 , g = r +cw2(r6− r), r = ν̄

S̄κ2d2

The closure constants arecb1 = 0.1355,σ = 2
3, cb2 = 0.622,κ = 0.41, cw2 = 0.3, cw3 = 0.3 ,

cν1 = 0.3, cw1 = cb1
κ2 + 1+cb2

σ .

After solving the transport equation numerically, the turbulent viscosity is obtained by using,

νt = ν̄ fv1.

For DES, the wall distance is modified as suggested by Spalart[35],

d =

{

Unchanged if dw < Kw×C;

0.65×max(∆x,∆y) if dw ≥ 0.1×C .

where dw is the actual distance of the cell center from the wall.∆x and ∆y are the grid

dimensions in the Cartesian coordinate directions. The effectiveness of the model in the

modification of the wall distance is based on the required presence of the uni-directionally

stretched near wall grid cells, which prevents any wall distance being modified near the wall

region. This restriction exactly fits to the requirement of high Reynolds number turbulent

flow simulation, where the grid near the boundary layer is stretched in the flow direction to
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capture the high gradients of mean flow quantities along the normal direction to the wall.

Away from the solid boundary, the largest dimension of the grid cell becomes smaller than

the actually estimated wall distance and the wall distance undergoes modification. This

modification results in increasing the dissipation as the destruction term present in the original

S-A model is increased. In the outer region, away from the solid wall, the model with DES

modification is proved to be reduced to Smagorinsky LES model[35]. In order to prohibit the

SGS modification from entering into the RANS zone, grids with right kind of variation in the

coordinate directions have to be specifically designed [33].

To ensure the effectiveness of LES at a relatively larger distance from the wall, the dimen-

sional characteristic of the grid needs to be controlled by the flow which is usually comprised

of relatively larger and isotropic scales. In order to satisfy the imposed condition on the grid

generation, the initial grid used is relatively stretched near the wall but dimensionally isotropic

away from the wall. As Quadflow uses adaptivity, the grid is automatically refined in those

regions detected by the activity in the flow field but still maintaining their aspect ratios. In the

outer region, away from the solid wall, the adapted grid maintains its isotropic nature after the

grid adaptation and able to capture the high energy isotropic turbulent scales which are dimen-

sionally similar and interacting with the mean flow. Adaptation decreases the wall distance of

the grid cells in the vicinity of the boundary and improves the grid quality in improved cap-

turing of the flow variation. Hence, the grid adaptation is naturally complementary to the DES

modelling for improving the accuracy of the numerical simulation.

2.3.6 Wall distance computation

Computations have been performed using Spalart-Allmaras’ one equation RANS model and its

variant, modified DES model to effectively capture the turbulent scales. The specification of

number of cells and the stretching ratio control the grid resolution in the boundary layer. The

approach is similar to the Low Reynolds number modelling, where the grid cells near the solid

wall are refined to capture the turbulent flow field rather thanany utilisation of explicit models

in the form ofwall function[44].

The wall distance keeps on decreasing with every successivegrid adaptation and the improved

resolution of the boundary layer flow enhances the accuracy of the solution. Hence, the method

to compute the wall distance becomes critical as the normal distance from the cell center to the

wall becomes smaller with each grid adaptation level. Special care is taken, as explained below,

in order to compute the wall distance in the presence of highly stretched adapted grid near the

wall.

~r is the position vector of a point on the solid boundary from the center of the cell whose

wall distance needs to be computed. The estimated wall distance, expressed in the form of the

magnitude of the~r needs to be minimised to ensure the proximity of the cell fromthe obtained
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Figure 6: Vectorial estimation of the wall distance

location of the solid wall. Vectorially it is expressed as

~r =~r1 +σ~r2, (9)

where~r1,~r2 are the position vectors of the nodes andσ is the free parameter needs to be opti-

mised for obtaining the minimum distance.

|~r| is minimum when

σ =
−(~r1.~r2)

(~r2.~r2)
(10)

The extension of the method to determine the wall distance for three-dimensional computation

is similar.

2.4 Time integration scheme

The development of the flow field during computation is a two step process, namelyreconstruc-

tion andevolution. The reconstruction process determines the spatial accuracy of the scheme

and is detailed in the section 2.6. The current section describes the numerical schemes used for

the temporal evolution of the flow field.

Backward-Euler and its modification to a two step time integration scheme suggested by Batten

and Leschziner [45] have been used for steady state flow simulations. The above mentioned im-

plicit schemes are theoretically unconditionally stable and allow considerably large CFL num-

bers to be used during computations, thus reducing the simulation time. These schemes are first

order accurate in time and rapid numerical convergence is achieved with the use of local time-

stepping. Despite the limitation imposed by the CFL condition, explicit time integration scheme

based on the Runge-Kutta method is implemented. The scheme has the advantage of reduced

requirement of the memory space over the implicit scheme during computation. The construc-

tion and storage of the Jacobian matrix in the implicit formulation requires a huge Random

Access Memory (RAM) space and proves to be a bottleneck especially in three-dimensional

flow simulation, where the number of cells in the computational domain increases significantly
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as a result of grid adaptation. Multigrid method has been implemented in the explicit time

integration scheme to improve the convergence behaviour.

A time integration scheme based on the second order backwarddifference discretisation is nu-

merically formulated using the control volume approach. The scheme is utilised in simulating

unsteady flow field arising out of the movement of the rigid body in the presence of grid adap-

tation. The scheme is shown to be accurate and demonstrated to be more robust compared to a

previously implemented unsteady time integration scheme using the mid-point method [25].

2.4.1 Scheme for steady flow simulation

Preconditioned Navier-Stokes equations for the stationary grid can be written as

Γc

Z

Ω(t)

∂Q
∂t

dΩ+
Z

∂Ω(t)
[Fc−Fv] ·ndA= 0

whereΓc is the preconditioning matrix defined for the conservative variables.

Fc and Fv represent the inviscid and viscous flux vectors respectively. In implicit form, the

residual is to be evaluated at the(n+1)th timestep. Thus,

Γc

Z

Ω(t)

∂Q
∂t

dΩ+Res(Qn+1) = 0

The above equation after Newton linearisation (further explained in the section 2.9) and

numerical discretisation gives

Γc
∆Qn

i

∆t
Ωi +

∂
∂Q

(Res(Qn))∆Qn +Res(Qn) = 0

After rearrangement of the terms,

[Γc
I

∆t
Ω+

∂
∂Q

Res(Qn)]∆Qn = −Res(Qn)

∆Qn = −J−1Res(Qn) (11)

where

J = [Γc
I

∆t
Ω+

∂
∂Q

Res(Qn)]

Eqn. (11) represents the implicit numerical formulation ofthe Navier-Stokes equations, which

is solved using theBackward-Eulertime integration process.B1(Qn,∆t) is a single iteration

step in Eqn. (11) and the formulation is symbolically represented as shown in Eqn. (12).

∆Qn = B1(Q
n,∆t)) (12)

Jacobian matrix arising out of the linearisation process can be numerically or analytically con-

structed (explained in section 2.8) and is used to build the preconditioning matrix required for
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solving the system of linear equations. A two step time integration scheme (B2), originally

developed by Batten and Leschziner [45], as a modification to the Backward Euler scheme has

been implemented. A provisional solution is derived in the predictor step which is numerically

equivalent to the Backward-Euler scheme with reduced timestep. The predicted solution is cor-

rected to obtain the final solution at the second stage of the time integration process. The pos-

sibility of using higher CFL numbers in the B2 scheme for identical computational problems

demonstrates a higher degree of robustness of the scheme compared to the Backward-Euler

scheme.

δQ = B1(Qn,
δt
2

),Q = Qn +δQ (13)

δQ = B1(Q,δt),Q
n+1

= Q+
δQ
2

(14)

The scheme is observed to suppress the chattering induced bythe limiter and results in improv-

ing the convergence behaviour without affecting the solution accuracy.

2.4.2 Moving grid formulation

One of the prime objectives of the Quadflow solver is to use it as a CFD tool in aeroelastic appli-

cations. The section outlines the derivation of the numerical formulation to address Arbitrary-

Lagrangian-Eulerian problems (ALE) on the foundation of the first principle of differentiation

considering the movement of the solid body in the computational domain. The movement of

the solid wall enforces a deformation in the computational domain and the control volume of

the grid cells undergoes a change with time. The change in thecontrol volume of the grid cells

can be expressed as the velocity of the nodes constituting the control cell, as explained in [7].

The numerical scheme is modified to take into account the nodal velocities when dealing with

the problem involving the rigid body movement. The physicalsignificance of various terms

arising out of the derivation is also explained. Let,f is a conservative quantity transported into

the control volume due to the relative motion between the fluid and the control surfaces.

Using the first principle of the differentiation,

d
dt

(
Z

Ω(t)
f (r, t)dΩ) = lim

∆t→0

R

Ω(t+∆t) f (r +∆r, t +∆t)dΩ− R

Ω(t) f (r, t)dΩ
∆t

the substantial derivative takes both the spatial and temporal changes of the conservative quan-

tity into account.

Using Taylors series expansion and neglecting the higher order terms,

= lim
∆t→0

R

Ω(t)( f (r, t)+∇ f ·∆r + ∂ f (r ,t)
∂t ∆t)dΩ− R

Ω(t) f (r, t)dΩ
∆t

= lim
∆t→0

1
∆t

Z

Ω(t)
∇ f ·∆rdΩ+

Z

Ω(t)

∂ f (r, t)
∂t

dΩ]
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=
Z

Ω(t)
∇ f ·VdΩ+

Z

Ω(t)

∂ f (r, t)
∂t

dΩ

=
Z

Ω(t)
∇( fV)dΩ−

Z

Ω(t)
f ∇(V)dΩ+

Z

Ω(t)

∂
∂t

f (r, t)dΩ

Using Reynolds transport theorem,
Z

Ω(t)
∇( fV)dΩ =

I

∂Ω(t)
fV ·nds

From the conservation of the control volume,

∇(V)dΩ = − ∂
∂t

(dΩ).

The negative sign appears as the velocity of the incoming fluid responsible for increasing the

control volume is directionally opposite to the normal of the control surface.

d
dt

(
Z

Ω(t)
f (r, t)dΩ) =

I

∂Ω(t)
fV ·nds+

Z

Ω(t)
f

∂
∂t

(dΩ)+
Z

Ω(t)

∂
∂t

f (r, t)dΩ

Thus the final equation takes the form,

d
dt

(
Z

Ω(t)
f (r, t)dΩ) =

I

∂Ω(t)
fV ·nds−

I

∂Ω(t)
fVg ·nds+

Z

Ω(t)

∂
∂t

f (r, t)dΩ (15)

2.4.3 Scheme for unsteady flow simulation

2.4.3.1 Backward Difference Scheme Euler equation, in the implicit conservative form

can be expressed as

∂
∂t

Z

Ω(t)
QdΩ+Resk+1 = 0. (16)

Ω(t) is a small segment in the computational domain enclosed by the surface∂Ω(t), represent-

ing the single control volume in the following derivation.

Applying chain rule [83] in Eqn. (16)

Z

Ω(t)

∂Q
∂t

dΩ+
Z

Ω(t)
Q

∂
∂t

(dΩ)+Resk+1 = 0. (17)

Using Beam-Warming second order temporal discretisation for the time derivative terms

Z

Ω(t)
(
3Qk+1−4Qn +Qn−1

2△t
)dΩ+

Z

Ω(t)
Q(

3dΩn+1−4dΩn +dΩn−1

2△t
)+Resk+1 = 0 (18)

Wheren−1, n andn+1 represent the physical timesteps andk denotes the index for Newton

iteration.

19



Linearisation of the residual gives,

Resk+1 = Resk +
∂

∂Q
(Resk)△Qk

=
I

∂Ωtn+1

Fc(Q
k) ·nn+1ds+

∂
∂Q

(Resk)△Qk.

Substituting the linearised residual and rearranging the terms in the Eqn. (18)

Z

Ω(t)
(
(3Qk+1−3Qk)+(3Qk−3Qn)− (Qn−Qn−1)

2△t
)dΩ

+
Z

Ω(t)
Q(

(3dΩn+1−3dΩn)− (dΩn−dΩn−1)

2△t
)

+
I

∂Ωtn+1

Fc(Q
k) ·nn+1ds+

∂
∂Q

(Resk)△Qk = 0. (19)

Rearranging the terms and using the notation ”△” for forward difference,

Z

Ω(t)

3
2
△Qk

△t
dΩ+

Z

Ω(t)

3
2△t

(Qk−Qn)dΩ−
Z

Ω(t)

1
2△t

(Qn−Qn−1)dΩ

+
Z

Ω(t)
Q

3
2
△(dΩn)

△t
−

Z

Ω(t)
Q

1
2
△(dΩn−1)

△t

+
I

∂Ωtn+1

Fc(Q
k) ·nn+1ds+

∂
∂Q

(Resk)△Qk = 0. (20)

The vector of conservative variables can be taken outside ofthe volume integral as it represents

the solution vector at the cell center of the control volume and can be held as a constant inside

the cell. The proposition is based on the satisfaction ofconservativity conditionof the Finite

Volume method.

3
2△t

Ωn+1△Qk +(
3

2△t
QkΩn+1− 4

2△t
QnΩn +

Qn−1Ωn−1

2△t
)

+
Z

Ω(t)
Q

3
2
△(dΩn)

△t
−

Z

Ω(t)
Q

1
2
△(dΩn−1)

△t

+
I

∂Ωtn+1

Fc(Q
k) ·nn+1ds+

∂
∂Q

(Resk)△Qk = 0. (21)

The change in the control volume can be expressed in the term of grid velocities of the control

surfaces, using Eqn. (24). Hence, the Eqn. (21) becomes,

3
2△t

Ωn+1△Qk +(
3

2△t
QkΩn+1− 4

2△t
QnΩn +

Qn−1Ωn−1

2△t
)

−3
2

I

∂Ωtn+1

QkVgn ·nn+1ds+
1
2

I

∂Ωtn

Qn− 1
2Vgn−1 ·nnds

+
I

∂Ωtn+1

Fc(Q
k) ·nn+1ds+

∂
∂Q

(Resk)△Qk = 0. (22)
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Vgn−1 andVgn are the grid velocities computed for the existing Mid-pointscheme using the

method described by Lamby [7] and correspond to(n−1)th andnth timesteps, respectively.

Rearranging the terms,

[I
3Ωn+1

2△t
+

∂
∂Q

(Resk)]△Qk +(
3

2△t
QkΩk− 4

2△t
QnΩn +

1
2△t

Qn−1Ωn−1)

+
I

∂Ωtn+1

(Fc(Q
k)− 3

2
QkVgn) ·nn+1ds+

I

∂Ωtn

1
2

Qn− 1
2Vgn−1 ·nnds= 0

Substituting
3
2
Vg = Vm

g for convenience,

[I
3Ωn+1

2△t
+

∂
∂Q

(Resk)]△Qk

= −
I

∂Ωtn+1

(Fc(Q
k)−QkVm

gn
) ·nn+1ds− 1

2

I

∂Ωtn

Qn− 1
2Vgn−1 ·nnds

−(
3

2△t
QkΩk− 4

2△t
QnΩn +

1
2△t

Qn−1Ωn−1) (23)

Vgn is the component of the grid velocity along the normal direction to the face, which is

computed during the grid deformation at the beginning of every timestep. Assuming the grid

velocity is constant in a time interval, the variation of thecontrol volume in two dimensions

will be quadratic with respect to time. Thus a single Gauss point in the temporal direction at

the mid point of the time interval is sufficient to relate the grid velocity with the change in the

control volume using the numerical integration given by Eqn. (24). Expressing numerically,
Z

Ω(t)

△dΩn

△t
=

ns

∑
i=1

Vgni
·n(n+ 1

2)i
dsi, (24)

where△dΩn is the change in a small segment of a single control volume enclosed by∂Ωt
n+ 1

2
and

Vgni
is the grid velocity corresponding to the surfacei. ns is the number of surfaces enclosing

the control volume.

In three-dimensional computation, two Gaussian quadrature points with appropriate weightage

is needed for the numerical integration of Eqn. (24) for resolving the cubical variation in the

control volume with respect to time.

Eqn. (23) is valid for the complete computational domain undergoing a change in the control

volume due to the movement of a rigid body inside the domain and also, in the presence of grid

adaptation.

The subsequent section proves the derived numerical schemesatisfying theGeometric Conser-

vation Law.

2.4.3.2 Proof of satisfaction of Geometric Conservation Law A valid unsteady time in-

tegration scheme has to necessarily satisfy the geometric conservation law in order to be a
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”cell-volume-preserving finite-volume scheme” [56] for solving the Arbitrary Lagrangian Eu-

lerian (ALE) problems. It eliminates numerical oscillations and preserves physical conservation

laws for solutions on moving meshes.

The geometric conservation law states that the uniform flow field remains unchanged in the

presence of movement of the boundaries of the computationaldomain. In this subsection, the

invariance of the uniform flow field in the computational domain with deforming boundaries is

shown to be satisfied by the currently derived scheme.

Discretisation with Implicit Backward Difference scheme gives

[I
3Ωn+1

2△t
+

∂
∂Q

(Resk)]△Qk = R, (25)

where

R = −
I

∂Ωtn+1

(Fc(Q
k)−Qk(

3
2
)Vgn) ·nn+1ds− 1

2

I

∂Ωtn

Qn− 1
2Vgn−1 ·nnds

−(
3

2△t
QkΩn+1− 4

2△t
QnΩn +

1
2△t

Qn−1Ωn−1). (26)

For a uniform flow field

R∞ = −Fc(Q∞)
I

∂Ωtn+1

nn+1ds+Q∞
3
2

I

∂Ωtn+1

Vgn ·nn+1ds

−1
2

Q∞

I

∂Ωtn

Vgn−1 ·nnds− (
3

2△t
Q∞Ωn+1− 4

2△t
Q∞Ωn +

1
2△t

Q∞Ωn−1). (27)

After rearranging the terms

⇒ R∞ =
3
2

Q∞
Ωn+1−Ωn

△t
− 1

2
Q∞(

Ωn+1−Ωn

△t
)

−(
3

2△t
Q∞Ωn+1− 4

2△t
Q∞Ωn +

1
2△t

Q∞Ωn−1). (28)

⇒ R∞ = 0.

2.4.3.3 Implementation The integral term,
I

∂Ωtn

Qn− 1
2Vgn−1 ·nndspresent in the Eqn. (26)

is resulted from the Beam-Warming discretisation of controlvolume which is essential for the

satisfaction of the GCL.

Numerically
I

∂Ωtn

Qn− 1
2Vgn−1 ·nnds= Qn− 1

2
(Ωn−Ωn−1)

△t
, whereQn− 1

2 = (Qn+Qn−1

2 )

For unsteady simulation in the absence of the grid movement,the term is reduced to null.
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The above derived formulation of the backward difference scheme can be implemented without

any further complexity for the flow problems with moving boundaries without grid adaptation.

But as Quadflow is conceptually based on the grid adaptation technique, certain specific mod-

ifications are essential for the sake of implementation. Thecomplexity arises because of the

requirement of the information at the(n−1)th time level. These quantities appear as the terms,
Qn−1Ωn−1

2△t
and

I

∂Ωtn

Qn− 1
2Vgn−1 ·nndsin the Eqn. (23). The cells in the domain undergo refine-

ment or coarsening during grid adaptation resulting in the change of the grid topology between

the time levelstn−1 and tn+1. Hence, the cells at the timetn−1 are no longer present in the

domain attn+1. Thus, the connectivity between the cells in the domainga
n−1 is established with

the cells belonging to the domain atgn+1 in order to obtain the quantities at(n−1)th in Eqn.

(23).

Thekth andnth terms in Eqn. (23) depend on the grid and flow variables corresponding to the

time tn+1 andtn respectively and hence, are directly available.

Searching algorithm

The grid topology undergoes a change during adaptation. Thecells in the past grid domain

corresponding to the cells in the present grid domain is searched using the method described

in the section, as illustrated in the schematic diagram Fig.7. The rectangular block represents

R S C

L0   L1 L2  L3  L4

L0   L1   L2     L3

B1 B2

Number of Adaptation<Max grid refinement
Number of Adaptation>=Max grid refinement

L0    L1   L2    L3

B1 B2

L0  L1 L2   L3 L4

L4

R S C

gn

gn
a

Figure 7: Possible forms of modification in the control volume due to grid adaptation

the storage of the cells in block and level wise manner denoted as ”B” and ” L” respectively.

All the cells belonging to the first block are stored in the segment of the array marked by the

line ”B1”. Inside the block, the cells are categorised according to the level information and

stored in the segments as shown by dotted lines,L0, L1, . . .Ln, representing the grid levels. The

cells subjected to the refinement process (the operation is denoted as ”R” in Fig. 7) undergo a

unit increase in their level and during coarsening, the level of the cells is decreased by a unit

(denoted as ”C” in Fig. 7). The level information remains unchanged if the cell is subjected to

neither refinement nor coarsening. The magnitude of jump in the grid level of the cells during a
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single adaptation process is always restricted to unit. In addition to that, the adaptation criterion

also restricts the difference between the level of the cell with all the surrounding neighbours to

unit in order to prevent a drastic variation in the cell size in the regions of grid adaptation.

The grid adaptation can raise two distinct possibilities. If the prescribed maximum level of

refinement has already been reached then the maximum number of levels in which cells can

possibly stay remain same in the next adaptation, though cells can undergo alteration of their

levels in the domain. This has been shown in the right side of Fig. 7. Otherwise, cells with one

level higher values will be created after adaptation as represented in the left hand side of Fig. 7.

Interblock cell transfer is avoided during grid adaptationand newly generated cells are always

confined to the same block as their parent cell. Thus, the search is more efficient in the block-

wise manner.

Cells at any level in a particular block belonging to the recent grid domain can correspond to the

cells either in the same level or in one successive level or inone predecessive level of the same

block in the previous grid domain depending upon whether thecell remains unchanged or coars-

ened or refined, respectively. The association between themcan be found out by comparing the

level and index information which is specific to an individual cell.

There are three different and distinct possibilities of transformation, a cell can undergo during

grid adaptation, as considered below by two different possible cases.

Procedure for coarsened and unmodified cells

The schematic diagram in Fig. 8 shows the sequence of operations, the control volume cells

are subjected to during the refinement process of grid adaptation. The grid represented as

ga
n−1 undergoes deformation at timetn−1 and a new grid (gn) with modified control volumes is

obtained. The grid topology remains unchanged during the operation. The grid velocityVgn−1

at tn−1 is estimated.

At time tn, the grid (gn) is subjected to the coarsening process of adaptation, where four control

volumes are agglomerated to create a single cell in the domain represented byga
n. The grid

topology changes during the operation, but the volume remains unmodified. The grid velocity

Vgn at tn is estimated from the change in the control volume, during the deformation of the grid

from ga
n to gn+1. Newton iterations represent the further sequence of operations fromtn to tn+1,

where the system of linearised equations is solved and the solution is updated. ”p” represents

a cell in the domaingn+1 at tn with control volumeΩp. Its corresponding cells inga
n−1 are

indexed as ”l ” with control volumeΩl . If the cell is either coarsened or remains unchanged,

then by the definition of conservativity,

(QpΩp)n−1 =
m

∑
l=1

Qn−1
l Ωn−1

l ;m=

{

1 if unmodified;

4 if coarsened.
(29)

Similarly
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Figure 8: Sequence of operations in a single unsteady ALE simulation timestep during grid

coarsening

(
I

∂Ωtn

Qn− 1
2Vgn−1 ·nnds)n−1 =

m

∑
l=1

Q
n− 1

2
l (

Ωn
l −Ωn−1

l

△t
);m=

{

1 if unmodified;

4 if coarsened.
(30)

Procedure for the refined cells

The cells undergoing refinement during grid adaptation is differently treated. Fig. 9 schemati-

cally represents the sequence of operations, the grid goes through during simulation.

The coarse cell in the gridga
n−1 is divided into four cells (referred to asq in gn) during the

process of grid refinement at timetn. Ωp′ is the control volume to be calculated for the fictitious

cells (p
′
) at tn−1 in the grid domainga

n−1, corresponding to the cell (q) in the domainga
n with

the control volumeΩq. Those fictitious cells in the domainga
n−1 are represented by dotted lines

in Fig. 9.

The difference betweenΩp′ andΩq is arisen due to the change in control volume because of

the deformation at timetn−1. Considering△Ωp′ is the change in control volume during grid

deformation,
4

∑
p′=1

Ωp′ +
4

∑
p′=1

△Ωp′ =
4

∑
q=1

Ωq. (31)

So for each cellp
′

Ωp′ +△Ωp′ = Ωq (32)

Due to the presence of a single coarse cell attn−1, the change in control volume can be assumed

to be proportional to the original control volume. Hence,△Ωp′ ∝ Ωp′
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Figure 9: Sequence of operations in a single unsteady ALE simulation timestep during grid

refinement

⇒△Ωp′ = KΩp′ , (33)

where K is the proportionality constant.

Substituting Eqn. (33) in Eqn. (31),

4

∑
p′=1

Ωp′ +
4

∑
p′=1

KΩp′ =
4

∑
q=1

Ωq, (34)

⇒ (1+K) =
∑4

q=1Ωq

∑4
p′=1

Ωp′
=

∑4
q=1Ωq

Ωl
. (35)

Substituting Eqn. (33) in Eqn. (32),

Ωp′ =
Ωq

1+K
=

Ωq

∑4
q=1Ωq

Ωl ,

(QpΩp)n−1 = Qn−1
l Ωp′ . (36)

Similarly,

(
I

∂Ωtn

Qn− 1
2Vgn−1 ·nnds)n−1 = Q

n− 1
2

l

△Ωp′

△t
= (Q

n− 1
2

l
△Ωl

△t
)(

Ωq

∑4
q=1Ωq

). (37)

2.4.4 Explicit time integration scheme

A fully explicit, three stage, Runge-Kutta time stepping scheme is implemented in Quadflow,

which forms the smoother to the Multigrid algorithm (section 2.10). The explicit scheme is
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comparatively slower than the implicit time integration scheme, as a result of the enforcement

of the CFL condition, which limits the allowable local timestep. Nevertheless, the characteristic

of the scheme in utilising very low Random Memory during the computations (helpful in three-

dimensional simulations) has motivated us in improving itsconvergence behaviour through

Multigrid method.

The Explicit time integration scheme for the Navier-Stokesequations can be represented as

∂
∂t

Z

Ω(t)
QdΩ+Res(Qn) = 0 (38)

Using three stage Runge-Kutta discretisation,

Q1 = Qn−α1∆tRes(Qn),

Q2 = Qn−α2∆tRes(Q1),

Q3 = Qn−α3∆tRes(Q2),

Qn+1 = Q3

Q1,Q2,Q3 are the intermediate conservative vectors during the Runge-Kutta multistage process.

α1,α2,α3 are the stage coefficients with values set to 0.1918, 0.4929,1.0, respectively.

2.4.5 Timestep computation

The timestep for every cell in the computational domain in simulating the steady flow field is

estimated from a prescribed value of the CFL number. Most of the simulations conducted in the

course of this work utilise implicit time integration schemes. The implicit schemes are theoret-

ically unconditionally stable; albeit their numerical formulations and the components such as,

the method of Jacobian computation, linear equation solverand the type of preconditioner used

in the scheme determine the actual numerical stability. Hence, a CFL number much larger than

the unit is used during the temporal evolution of the solution. Local time-stepping is used to ac-

celerate the convergence of the steady flow computations. The Eqn. (39) explains the estimation

of the timestep from an imposed CFL number, which is the minimum between the estimated

convective timestep and viscous timestep.

∆t = min(∆tc,∆tv) (39)

The convective timestep is calculated using,

∆tc = CFL
Ω

∑n
i=1λmax

i ∆Ωi
,

where ”i” is the index, representing the surrounding faces with surface area (∆Ωi) of the control

volume (Ω). λmax
i is the maximum eigenvalue of the characteristics corresponding to the flow
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field at the control face. In case of preconditioned computations, modified eigenvalues are used.

The viscous timestep is given by,

∆tv = 0.25×CFL
Ω2

∑n
i=1( µl

Prl
+ µt

Prt
)i∆Ωi

.

The CFL number is set to a small value at the beginning of the computation; the usual value

being set 1.0. This small value aids in attaining numerical stability during the development of

the flow solution at the initial phase of the computation. Thevalue of CFL number is gradually

increased in a geometric progression to reach the maximum prescribed value. The maximum

CFL number depends on the physical nature of the flow and the quality of grids used in the

simulation, e.g. the maximum CFL number for simulating inviscid flow is set approximately to

105 where as for the turbulent flow simulation the value is fixed at50.

Unsteady flow simulation requires a single global timestep to be prescribed for all the cells

in the domain during which the solution is evolved simultaneously, exhibiting a variation of

the CFL number in the domain. Maximum CFL number achieved during the computation is

estimated and is used to compare the numerical stability of different time integration schemes.

2.4.6 Dual time-stepping

The concept of dual time-stepping is used for unsteady flow simulation at low Mach number in

the presence of grid movement. The governing equation is modified to include the precondi-

tioned term.
∂
∂t

Z

Ω(t)
QdΩ+Γp

Z

Ω(t)

∂
∂τ

QdΩ+Res(Qk+1) = 0. (40)

The outer time-loop (∆t) is solved in a time accurate manner with a specified global timestep

using Backward difference scheme. The inner time-loop (∆τ) is solved using the steady Implicit

backward Euler scheme with local time-stepping.

Expanding the middle term in Eqn. (40) by using the chain rule,

Γp
∂
∂τ

Z

Ω(t)
QdΩ = Γp

Z

Ω(t)

∂Q
∂τ

dΩ+Γp

Z

Ω(t)
Q

∂
∂τ

(dΩ).

As the steady flow solution is required at the inner time-loop, the termΓp
R

Ω(t) Q ∂
∂τ(dΩ) can be

neglected. Thus,

Γp

Z

Ω(t)

∂Q
∂τ

dΩ =
Γp

∆τ
Ω(Qk+1

i −Qn
i )

=
Γp

∆τ
Ω(Qk+1

i −Qn
i )

=
Γp

∆τ
Ω(Qk+1

i −Qk
i )+

Γp

∆τ
Ω(Qk

i −Qn
i )

=
Γp

∆τ
Ω∆Qk

i +
Γp

∆τ
Ω(Qk

i −Qn
i ).
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Substituting the expanded term in the Backward difference scheme,

[I(
3Ωn+1

2△t
+Γp

Ωk

∆τ
)+

∂
∂Q

(Resk)]△Qk

= −
I

∂Ωtn+1

(F(Qk)−QkVm
gn

) ·nn+1ds− 1
2

I

∂Ωtn

Qn− 1
2Vgn−1 ·nnds

+(
Γp

∆τ
(ΩnQk−ΩnQn))− (

3
2△t

QkΩk− 4
2△t

QnΩn +
1

2△t
Qn−1Ωn−1). (41)

The linearised system of equations inside the inner time loop is solved by a Krylov subspace

method. ILU(2) Preconditioned Generalised Minimal Residual (GMRES) method is used for

the purpose.

2.5 Low Mach number preconditioning

Mathematically, Navier-Stokes equations solved with the time marching iterative method are

hyperbolic in nature with a distinct set of characteristic variables. These characteristic variables

are the eigenvectors of the Jacobian matrix, moving at certain characteristic speeds. The dispar-

ity in the speeds of propagation, detected by the differencein the eigenvalues is the cause of the

stiffness in the numerical scheme.
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Figure 10: Variation of condition number with Mach number

Condition number defined as the ratio between the largest and smallest eigenvalues, quantita-

tively represents the numerical stiffness of the system. Dependency of condition number on

Mach number is shown in the Fig. 10. Larger magnitude of the condition number signifies
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the inhibition of convergence and deterioration of the solution accuracy observed during flow

computations in the low Mach number region.

Traditionally, pressure based methods are used to simulatethe flow field at lower Mach num-

bers. Many variants of these pressure based methods (SIMPLE, SIMPLEC, PISO) [57] on

collocated grid structure are used to establish pressure-velocity coupling in order to achieve a

divergence free velocity distribution in the computational domain. Conversely, density based

methods are used to solve the flow field in the compressible flowregime. Numerical schemes

based on the density based formulation suffer from the drawback to deal with the numerical

stiffness in the low Mach number regime because of the disparity in the characteristic speeds.

Initial work was carried out by Chorin [58] in the form of addition of an artificial compress-

ibility term to the pressure equation for effective Mach number dependent scaling to extend the

validity of the formulation to the incompressible flow domain. The foundation established by

Chorin and its subsequent extension by Turkel, Weiss and Smith [59–61] led to the development

and maturity of thepreconditioning approachin the framework of the density based method for

flow simulation in relatively lower Mach number.

A preconditioning matrix is multiplied with the temporal part of the Jacobian Matrix which

modifies the eigenvalues to decrease the condition number favourably, resulting in the faster

convergence and improved solution accuracy. Multiplication of the preconditioner to the Jaco-

bian matrix modifies the formulation at the governing equation level. As the temporal part of

the equation is modified, the accuracy of the steady state flowfield is not affected when the iter-

ative process achieves adequate convergence level throughlocal time-stepping. The process of

flux evaluation and timestep computation need to be modified consistently to take into account

the effect of the change in the eigenvalue structure of the system. Modified eigenvalues are used

to determine the left and right propagating waves in the HLLCscheme [62] as explained in the

evaluation of inviscid flux formulation in section 2.6.1.

ΓP is the preconditioning matrix defined for the set of primitive variables,W [61]

Γp =

























{Θ+(1/RT)} 0 0 0 −ρ/T 0

{Θ+(1/RT)}u ρ 0 0 −ρu/T 0

{Θ+(1/RT)}v 0 ρ 0 −ρv/T 0

{Θ+(1/RT)}w 0 0 ρ −ρw/T 0

{Θ+(1/RT)}H −1 ρu ρv ρw ρ(cp−H/T) 0

{Θ+(1/RT)}ν̄ 0 0 0 −ρν̄/T ρ

























Multiplication of the transformation matrix transfers thepreconditioning matrix to be applied

to a set of conservative variables, which is denoted asΓc.

Γc = Γp
∂W
∂Q

.

Θ is the preconditioning parameter, which depends on the reference speed and local sonic
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speed [61],

Θ =
1

U2
r
− 1

a2 , Ur = Mr ∗a .

Preconditioning modifies the eigen system of the numerical equation. Modified eigenvalues are

λ(Γ−1
c

∂Fc

∂Q
) =

1
2
(1+M2

r )vn±
a
2

√

(1−M2
r )

2M2
n +4M2

r ,vn (42)

The value of the reference Mach number (Mr ) controls the effectiveness of the preconditioning

matrix. The regional variation ofMr in the computational domain provides a local nature to

the preconditioning. In order to avoid the reference Mach number being very small near the

stagnation regions, a cutoff value forMr is specified, depending on the free stream Mach number

M∞ and local cell Reynolds number. The preconditioning is switched off in order to retrieve the

original formulation by setting the reference Mach number to unit, when the local normal Mach

number (Mn) reaches above 0.5.

Combining the ideas of Darmofal [63] and Weiss [60],Mr can be defined as

Mr =















ε if Mn ≤ ε;
√

(
2.0M2

n
1−2.0M2

n
) if Mn ∈ (ε,0.5);

1 if Mn ≥ 0.5 .

There,ε = max(εinviscid,εviscous),

εinviscid = KM∞ ,εviscous=
Ur
ν

, U =local fluid speed.

In our work,K ∈ [0.5,0.85]. Usually a higher value ofK adds robustness to the scheme and is

preferred for the turbulent flow simulation.

εviscousis the local cell Reynolds number, depending upon the characteristic length of the cells

and has to be taken into account during laminar as well as turbulent flow simulation. The

characteristic length is defined by

r =
∆x∆y

√

(∆x)2 +(∆y)2
,

where∆x and∆y are the maximum and minimum dimensions of the cell.

2.6 Flux discretisation

2.6.1 Evaluation of inviscid fluxes

In the literature, there are two distinct approaches used tocompute the cell interface flux in the

Finite Volume Discretisation method. One of the earlier methods pioneered by Jameson [64],

uses the artificial viscosity as a stabiliser to the second order central differencing scheme. The

fourth order dissipation term preventing the odd-even decoupling in the numerical scheme is

not sufficient enough to inhibit the oscillation in solutionin the vicinity of the shock. Hence,

an additional second order artificial viscosity term controlled by a numerical switch depending

upon the local pressure variation in the computational domain is used.
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The second approach is to use the upwind method by taking intoaccount the propagation of the

waves in the computational domain. This approach is again subdivided into two groups. Flux

difference splitting schemes, initially formulated by Godunov to solve the Riemann problem,

computes the flux explicitly through the use of wave speeds obtained by solving an eigenvalue

problem. Flux-vector splitting methods, numerically splits the interface flux on the basis of the

flow speed or Mach number. A Flux-vector splitting techniqueproposed by Van Leer [65] is

used, which numerically splits the interface flux on the basis of the interface Mach number.

In the current work, the upwind method designed by Harten, Lax, Van-Leer and later extended

to capture the contact discontinuities (HLLC) is chosen for numerical discretisation of the con-

vective flux to achieve improved accuracy in the spatial resolution as a result of low numerical

viscosity. Achieving a smaller numerical viscosity, whichbrings stability of the scheme is

crucial in accurate resolution of the features present in the viscous flow field. The Riemann

problem based on the projection of the state vectors on both sides of the face from the corre-

sponding cell centered data is solved at the interface for computing the numerical flux. Data

projected on the face is rotated in the normal direction using the unit surface normals for solving

the one-dimensional Riemann problem.

Intercell flux (Fhllc
l ,r ) at the face shared between two control volumes is computed using the

expression,

Fhllc
l ,r =







































Fl , if sl > 0;

F∗l = Fl +sl (Q∗
l −Ql ), if sl ≤ 0≤ s∗;

F∗r = Fr +sr(Q∗
r −Qr), if s∗ ≤ 0≤ sr ;

Fr , if sr < 0;

(43)

where,Fl andFr are the flux vectors, depending upon the left and right state vectors respectively.

The blending of these two flux vectors is controlled by the wave speeds (sl , sr ,s∗), which depend

on the state variables. The wave speeds are determined by theRoe averaged value of the left

and right state vectors as expressed below,

sl = min[(û− â−Vm
gn

),(ul −al )]

Sr = min[(û+ â−Vm
gn

),(ur +ar)]

s∗ =
pr − pl +ρl ul (sl −ul )−ρrur(sr −ur)

ρl (sl −ul )−ρr(sr −ur)

where Roe averaged velocity, total enthalpy and sonic speed are defined as

û =
√ρl ul +

√ρrur√ρl +
√ρr

, Ĥ =
√ρl Hl +

√ρrHr√ρl +
√ρr

, â = [(γ−1)[Ĥ − 1
2û2]

1
2 .
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The intermediate state vector due to the jump over the contact discontinuity is

Q∗
k = (ρk)(

sk−uk

sk−s∗
)



















1

s∗

vk

wk
Ek
ρk

+(s∗−uk)[s∗ + pk
ρk(sk−uk)

]



















,

wherek is the index used to represent either left or right state vectors.

For low Mach number preconditioning, the wave speeds are modified in order to take into

account the modification of the eigenvalues due to the preconditioning.

Flux is evaluated at the interface using Flux Vector Splitting, originally suggested by Van Leer

and later modified by Anderson [66] for simulating inviscid ALE problems. The formulation

used is described below.

F
′
c ·n =



















f±mass

f±mass

[

nx
(−Vn±2a)

γ

]

+u

f±mass

[

ny
(−Vn±2a)

γ

]

+v

fenergy



















. (44)

F
′
c is the flux vector with the modification for the grid velocity,and

f±mass= ±ρa
4

(Mn±1)2,

f±energy= fmass

([−(γ−1)V2
n±2(γ−1)Vna+2a2

γ2−1

]

+
u2 +v2

2
+

Vgn(−Vn±2a)

γ

)

.

The interface velocity normal to the face is given by

Vn = V ·n−Vm
gn

,

Mn = Vn/a .

u andv are components of the velocity along the Cartesian coordinate directions,a is the sonic

speed.Vm
gn

is the modified normal component of the grid velocity, explained in the derivation

of the BDF scheme in the section 2.4.2.

2.6.1.1 Reconstruction Improvement in the spatial resolution of the solution through the

process ofreconstructionis initially proposed by Van Leer in his seminal paper on Monotonic

Upstream-centered Scheme for Conservation Laws (MUSCL). Thestate variables at both sides

of the face, used for solving the approximate Riemann problemare reconstructed from the cell

centered state vectors utilising the available gradient information at the cell center. Gradient is

calculated by creating an approximate linear surface by using the data at the cell center along

with the information from the neighbouring cells present inthe stencil. Direct neighbours shar-

ing the faces and cross neighbours at the corner of the cells are used to construct the stencil.
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A multi-dimensional first order accurate Taylor series expansion is considered to project the

primitive variables from the cell center to all the neighbouring cells in the stencil.

Q(r) = Q(r i)+φi∇Qi · (r − r i) (45)

The number of equations is determined by the number of neighbouring cells and the number of

unknowns in the equation depends on the dimensionality of the problem. Hence, the method

results in an over-determined system, which is solved by theleast-squares method [72].

The process of linear reconstruction aids in achieving second order spatial discretisation and

automatically satisfies the conservation of the solution variables in the control volume due

to the linearity. The extension of the process of reconstruction to three-dimensional flow

simulation is straight forward.

The accuracy of the gradients, calculated with the above reconstruction procedure is deterio-

rated in the presence of highly stretched grid used for the turbulent flow simulation. Several

alternatives have been developed, such as Weighted Least Square [67], to address the problem.

For computations involving viscous fluid flow, the Green-Gauss method [72] is employed to

evaluate the gradients. It relies on creating a closed volume surrounding the cell under consid-

eration to include the surrounding cells during the processof creating the stencil.

2.6.1.2 Limiter In certain circumstances, the reconstruction process may cause the numeri-

cal scheme to violate the non-linear stability condition bygenerating local extremas beyond the

solution data in the neighbourhood cells. The phenomenon creates overshoots and undershoots

of the solution, specifically in the high gradient regions, e.g. in the localities around the shock.

In order to avoid the generation of unphysical extrema during the reconstruction process, mono-

tonicity is enforced by the application of a limiter to satisfy Total Variation Diminishing (TVD)

condition [74]. A limiter designed by Venkatakrishnan [75], which avoids self-flipping in the

smooth flow region, but prevents numerical oscillation in the high gradient region to achieve a

better convergence behaviour, is employed, as described below.

φi is the limiter in Eqn. (45).

For every cell i,

φi = min(φi,g),g = 1,2. . .N. N is the number of neighbour cells sharing faces with celli.

φi,g =



















Q+2

i,g +2Q+
i,gQ−

i,g + εl

Q+2

i,g +Q+
i,gQ−

i,g +2Q−2

i,g + εl

, if Q−
i,g 6= 0;

1 , if Q−
i,g = 0;

(46)
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with

Q−
i,g = Qg−Qi,

Q+
i,g =







Qmax
i −Qi, if Q−

i,g > 0

Qmin
i −Qi, if Q−

i,g < 0

Qmax
i andQmin

i are the maximum and minimum values of the conservative variable among the

cells in the stencil.

Qmax
i = maxj=1,...,N

{

Qi ,Q j
}

,

Qmin
i = minj=1,...,N

{

Qi,Q j
}

.

Qg denote the unlimited reconstructed cell centered values ofQi at the face centers. The

parameterεl is typically set to 10−4.

2.6.2 Computation of the viscous fluxes

Viscous flux at the faces surrounding the control volume is obtained using the gradient correc-

tion method suggested by Weisset al.[73], which uses compact stencil involving all neighbour-

ing cells. The averaged gradient at the face between the cellcenters for a variable ”w” can be

corrected as:

∇w
′
lr = ∇wlr +

1
|rr − r l |2

(δwlr − (∇wlr .(rr − r l ))(rr − r l )), (47)

where,rr , r l are the position vectors of the left and right cells, respectively. δwlr is the difference

in the magnitude of the primitive variables between the leftand right cells sharing the face, and

∇wlr represents the uncorrected averaged gradient between the left and right cells.

∇wlr =
∇wl +∇wr

2

In order to obtain the gradients at the cell center, a system of two equations which are formed

from the data available at the cell centers and nodes are solved. Data at the nodes are obtained

by the inverse distance averaging of the cell-centered datasurrounding the corresponding node

as elucidated in the Fig. 11.

wn1 = dn1

n1

∑
i=1

wi

di

wn2 = dn2

n2

∑
i=1

wi

di

wn1 andwn2 are the interpolated primitive variables at nodesn1 andn2, respectively using the

available neighbourhood cell center solution variables.n1 andn2 are the number of neighbours
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Figure 11: Cell to node interpolation and formulation of a two-equation system for gradient

computation

surrounding the nodesn1 andn2, respectively. di , is the distance of the node from theith

neighbouring cell. Applying the formula,
∂w
∂x

∆x+
∂w
∂y

∆y = ∆w, in two available directions and

solving the generated two system of equations,

∂w
∂x

=
(wrl yn21−wn21yrl )

D
, (48)

∂w
∂y

=
(wn21xrl −wrl yn21)

D
, (49)

whereD = xrl yn21−yrl xn21,

wrl = wr −wl ,

xn21 = xn2−xn1, yn21 = yn2−yn1 and,

xrl = xr −xl , yrl = yr −yl .

(xn1,yn1) and (xn2,yn2) are the coordinates of the two nodes under consideration.(xl ,yl ),

(xr ,yr) are the coordinate pairs of the left and right cells, respectively.

2.7 Imposition of the boundary condition

For wellposedness of the problem, governing equations are associated with the initial condition

of the flow variables in the computational domain as well as the boundary conditions specified

on the boundaries of the domain. The computational domain can’t extend infinitely and needs

the flow variables to be specified on the boundaries for the closure. Effective boundary con-

dition can be helpful in reducing the size of the computational domain and helps in accurate

transmission of the waves associated with the flow without undergoing any artificial reflection.
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2.7.1 Conditions for the inlet and exit boundaries

2.7.1.1 Boundary condition for the supersonic flow In case of supersonic flow governed

by the Euler equations, all the characteristic have positive components in flow direction which

is assumed to be from the left to the right direction of the computational domain. So, if the flow

is entering into the domain then all the variables are obtained from the free stream condition. If

the outflow boundary is turned out to be supersonic, then all the variables are obtained from the

interior of the computational domain.

2.7.1.2 Characteristic method for subsonic condition When the flow field is governed by

the Euler equations, not all the characteristic direction vectors have positive components in the

flow direction. The solution variables are determined by theRiemann invariants propagating

along characteristics moving at the characteristic speeds. Away from the highly active regions,

near the boundary, these characteristic lines intersect each other to uniquely determine the flow

variables. In the absence of any strong shock, under the isentropic flow condition, the method

of characteristics can be used to specify the boundary conditions as described below.

At the inflow boundary face, the right running characteristic variable coming from the free

stream condition intersect with the left running characteristic variable coming from the interior

of the domain to detect the left side state variables of the boundary face as denoted as (L) in the

Fig. 12.

L Rfree stream
C+ −C

Figure 12: Spatial component of the characteristics at the inflow boundary

C+ characteristic coming from the free stream and responsiblefor propagating the positive

Riemann invariant,

u∞ +
2a∞
γ−1

= uL +
2aL

γ−1
C− characteristic coming from the computational domain and responsible for propagating the

negative Riemann invariant

uR−
2aR

γ−1
= uL −

2aL

γ−1
Using the above two equations, the unknown left side state variables of the boundary face is

calculated.

uL =
uR+u∞

2
+

2
γ−1

(a∞ −aR)

aL = (γ−1)
u∞ −uR

2
+(aR+a∞)
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The other components of the velocities,

vL = v∞, wL = w∞

The treatment of the outflow boundary is similar except that the directions of the characteristics

have changed their role with respect to interior and far stream.

On theC+ characteristic,uR+
2aR

γ−1
= uL +

2aL

γ−1

On theC− characteristic,u∞ − 2a∞
γ−1

= uL −
2aL

γ−1

free streamLR CC+ −

Figure 13: Spatial components of the characteristics at theoutflow boundary

From these two equations we have,

uL =
uR+u∞

2
+

2
γ−1

(aR−a∞)

aL = (γ−1)
uR−u∞

2
+(aR+a∞)

The other components of the velocities,vL = vR, wL = wR

Temperature at the boundary is obtained using the above obtained sonic speed.

TL = 1
γRa2

L

Co characteristic represent the material wave moving with thefluid. Assuming isentropic con-

dition on the characteristic, we have

ρL = (
TL

TR
)

1
γ−1 ρR

Pressure is computed using the ideal gas equation,PL = ρLRTL.

2.7.1.3 Extrapolation method for subsonic boundary condition Viscous flow is associ-

ated with long free shear layers, specifically in the presence of large scale flow separation,

which may extend to the boundary of the computational domain. The flow in the shear layer

is dominated by viscosity and assumption of isentropic flow condition becomes invalid in that

region. Hence, an extrapolation type boundary condition isused in dealing with the viscous

flow simulation.

Free stream Mach number, temperature and the angle of attackare specified from the external

condition and the pressure is interpolated from the interior of the computational domain, at

the inlet boundary. At the outflow boundaries, density and velocity are interpolated from the

interior domain and the free stream static pressure is prescribed.
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2.7.1.4 Flow angle specification in 3D Two angles are specified to uniquely define the free

stream velocity field at the inlet boundary for three-dimensional flow simulation. The angle

specified with Z-axis (θ) is used to project the flow velocity on X-Y plane, which is further

divided into sub-components along X and Y axis by specifyingthe angle with X-axis(α).

X

Z Y

Alpha

Theta

Figure 14: Specification of inlet flow angles for three-dimensional flow simulation

2.7.2 Vortex correction for the lifting bodies

Vortex correction [85] is used at the far–field boundaries inorder to improve the imposition of

the boundary condition for the flow field generated due to the lifting bodies. The flow variables

at the far–field boundary are specified by a solution according to the full potential flow theory.

The corrected velocity components are prescribed by

u = |V∞|cosα+VΓsinθ ,

v = |V∞|sinα−VΓcosθ .

The vortex induced velocity magnitudeVΓ is given by,

VΓ =
Γ

2πr

√

1−M2
∞

(1−M2
∞sin2(θ−α))

(50)

where the circulationΓ of the vortex is determined by,Γ = 0.5cre f |V∞|CL.

cre f denotes the chord length andCL is the lift coefficient. r, θ are the radius and the polar

angle measured from the quarter–chord location to the individual boundary face at the far–field

boundary, respectively.α is the angle of attack.

2.7.3 Boundary condition on the viscous wall

Normal component of the velocity is set to zero for the inviscid flow computation, but the

tangential velocity components are non-zero. No-slip wallboundary condition is imposed on
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the solid wall for viscous flow simulation. Heat flux term in the energy equation is set to zero

under the assumption of adiabatic boundary condition on thesolid wall. Total internal energy

is set according to the specified wall temperature for the isothermal wall boundary condition.

Eddy viscosity is set to zero on the solid wall, when solving the turbulent flow equation.

2.8 Evaluation of Jacobian

The linearisation process of the residual in the implicit formulation of the Navier-Stokes equa-

tions results in the creation of the Jacobian matrix, which along with the residual forms the

system of linear equations. The section explains the formulation of the Jacobian matrix, which

is comprised of inviscid and viscous fluxes contributing to the residual.

2.8.1 Inviscid Jacobian

Inviscid Jacobian is computed analytically from the approximate Riemann solver using Auto-

matic Differentiation tool, ADIFOR [78]. The subroutine for the approximate Riemann solver

to compute the inviscid fluxes is given as the input to the tool, and the chain rule of differential

calculus is used to automatically generate the Jacobian matrix as the output routine. The analyt-

ical method of computing the Jacobian is more stable and allows high CFL number to be used

in the computation compared to the Jacobian calculated numerically. Referring to the Eqn. (11)

in section 2.4.1,

∆Qn = −J−1Res(Qn)

Where the Jacobian ”J” is defined as

J = [Γc
I

∆t
Ω+

∂
∂Q

Res(Qn)]

The residual is defined as

Res(Qn) =
I

Ωt

F(Ql ,Qr).nds=
N

∑
r=1

Fn(Ql ,Qr)∆Sr

”r” is the index of N number of neighbouring cells surrounding the cell under consideration

(represented as the index ”l”).Ql ,Qr are the conservative variables at the centers of the left and

right cells sharing the face, having the surface area represented as∆Sr . The interface flux is

computed using the approximate Riemann solver (HLLC) given byEqn. (43).

The Jacobian matrix is

∂
∂Q

(Res(Qn)) =
N

∑
r=1

∂
∂Ql

(Fn(Ql ,Qr)∆Sr)I +
N

∑
r=1

∂
∂Qr

(Fn(Ql ,Qr))∆Sr (51)

The first term in the right hand side of Eqn. (51) represents the self contribution of the inviscid

fluxes and is placed as the diagonal terms in the Jacobian matrix. The second term represents
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the contribution of the inviscid fluxes from the surroundingneighbour cells and are located as

the off-diagonal term in the Jacobian matrix. Addition of the self contributing terms in the

diagonal position provides the diagonal dominant nature tothe Jacobian matrix.

2.8.2 Viscous Jacobian

The method of computing the Jacobian matrix contributed from the viscous flux is described

below. Inclusion of the Jacobian matrix contributed from the viscous flux provides robustness

to the numerical scheme in using comparatively larger CFL numbers during the temporal evo-

lution.

Viscous flux at the face center is a function of the primitive variables and their corrected gra-

dients computed using the Eqn. (47). As the Jacobian matrix signifies the dependency of the

flux with respect to the cell-centered conservative variables, an analytical method based on the

chain rule of differential calculus is employed.

Jv =
∂Fv

∂Q
=

∂Fv

∂wv

∂wv

∂w
∂w
∂Q

. (52)

wv is a function of the gradients of the primitive variables at the face centers.Fv,w,Q represent

the diffusive flux, primitive state variables and the conservative state vector, respectively.
∂Fv

∂wv
represents the dependency of the viscous flux terms on the gradients of the primitive vari-

ables.
∂w
∂Q

is the transformation matrix relating the primitive variables to the conservative vari-

ables.

wv can be expressed,

wv = f unc(
∂w
∂x

,
∂w
∂y

)

Using Eqn. (48), for the left state

∂
∂w

(
∂w
∂x

) =
−yn21−yrl (

dn2
d2

− dn1
d1

)

D

where,

dn1 =
1

∑n1

i=1
1
di

,

dn2 =
1

∑n2

i=1
1
di

di is the distance of the node from the cell center.n1 andn2 are the numbers of the neighbour

cells surrounding the nodes n1 and n2, as shown in the Fig. 11.

2.9 Linear equation solver and local time-stepping

Implicit approach with inexact Newton iteration method hasbeen employed to solve the

non-linear equation. It is given by,
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      Discretised equation

          Timestepping

       Newton iteration

Jacobian construction,
Preconditioner computation,
Residual evaluation

if

Newton iteration
  is converged?

yes

No

If

simulation steps are 
             over?

Solution
achievedNo Yes

Krylov subspace (KSP) iteration

Figure 15: Sequence of iterative loops for unsteady flow simulation

‖F(Qk)+A(Qk)△Qk‖ ≤ ηk‖F(Qk)‖,

whereηk is fixed to 10−4 .

k is the index of Newton iteration. At the beginning of each Newton iteration the non-linear

equation is linearised and solved by a system of linear equations solver. In this work, restarted

GMRES with ILU(2) preconditioner [77] has been used.

2.10 Non-linear Full Approximation Storage Multigrid scheme

In order to improve the convergence behaviour of the explicit time integration scheme in Quad-

flow, a Full Approximation Storage non-linear V-cycle Multigrid method [68, 69] is imple-

mented. Multigrid method is based on the principle of capturing the components of the solution
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attributed to a particular spatial frequency with the equivalent grid size. Solution from a well

posed initial-boundary value problem results in the superposition of the spectral components

with the wavelengths ranging from the size of the computational domain to the lowest being the

Kolmogorov scale [29]. Solution components from the largerwavelengths are quickly captured

by the comparatively coarser grid, whereas the high frequency components are better captured

with the finer grids. So, instead of employing the finest grid to capture all the components of

the solution which results in increasing the cost of computation, Multigrid uses smoothing iter-

ations with the exchange of information on a sequence of gridlevels. Iterations over the coarser

grids with reduced number of cells provides benefit in the form of computational expenses, and

faster convergence is achieved due to the improved capturing of the solution. The solution ac-

curacy remains undeteriorated as the level of convergence on the finest grid level is used as the

criterion to stop the simulation process.

We have implemented the algorithm to perform the sequentialoperations over the grid levels

obtained through the grid coarsening strategy, described below.

2.10.1 Grid coarsening algorithm

A grid coarsening strategy is developed which functions forboth the structured as well as the

adapted grids. The concept is particularly advantageous with the grid adaptation, as the level

and neighbourhood information of the cells are available through the multilevel indices set up

during the grid adaptation. The four neighbouring cells belonging to the same quadrangle at

the finest level of the currently available adapted grid are identified and combined together to

generate the coarser level grid. No cells belonging to the different levels are grouped together

during the process in order to avoid the complexity. This process of coarsening is carried out

till the coarsest level (grid level with the level index=0) is achieved. So during any phase of

computation, the number of available coarse grid sets is onemore than the number of grid

adaptation level. To trade-off the cost of computation for coarsening and to achieve the benefit

in convergence from the Multigrid algorithm, the number of coarse grid sequences is restricted

to four levels.

2.10.2 V-cycle

V-cycle is employed with the computation starting from the finest level gradually moving to-

wards the coarsest grid level. The solution and residual from the finer level are restricted to

the next coarser grid level after a pre-determined number ofsmoothing iterations. The gov-

erning equation at the new coarse level is modified to take into account the computed relative

truncation error during the smoothing iterations. The process is continued till the coarsest level

is achieved. The correction term at the coarser level is computed and prolonged to the next

finer level. No smoothing iterations are carried out after the prolongation step. Certain number
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Figure 16: Hierarchy of coarse grids in adaptive Multigrid computation

of Multigrid cycles are conducted till the convergence level at the finest level has achieved a

pre-set value.

2.10.3 FAS algorithm

Volume weightage averaging is used during the restriction process to transfer the solution and

residual from the finer grid to the next coarser grid level.

Qn
k = Ik

k+1(Q
n
k+1) =

1
Ωk

∑
f inecells

Qn
k+1Ωk+1, (53)

Resnk = Ik
k+1(Resnk+1) = ∑

f inecells

Resnk+1. (54)

The identity information of the finer cells constituting thecoarser cells obtained during the grid

coarsening process is used during averaging.

The governing equations on the coarser grid levels are modified with therelative truncation

error
Z

Ω(t)

∂Qn
k

∂t
dΩ+R(Qn

k)− τk = 0. (55)
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Figure 17: V-cycle employed for Multigrid algorithm

Therelative truncation erroris defined as

τk = Res(Qn
k)−Resnk − Ik

k+1(τk+1) (56)

Upwind prolongation [70] is used for transferring the correction from the coarser to next fine

level grid in order to improve the stability and convergencebehaviour of the Multigrid method.

∂
∂t

∆Qn
k+1 +∇F(Qn

k+1 +∆Qn
k+1)−∇F(Qn

k+1) = 0 (57)

The correction term used to update the solution on the finer grid level is defined by

Qn+1
k+1 = Qn

k+1 +∆Q̃
n
k+1. (58)
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3 Results and Discussion

3.1 Simulation of the flow field over SFB profile in cruise configuration

3.1.1 European Transonic Wind-tunnel (ETW) Experiment

In the framework of the High Reynolds Number Aero-StructuralDynamics project (HIRE-

NASD), an experimental set up has been configured to conduct aeroelastic wind tunnel testing

over a supercritical wing with the flow parameters in the realistic flight regime corresponding

to the cruise condition [11,20,21].

The objectives of this experiment are to understand;

• the transonic flow field about aeroelastic equilibrium configuration of the elastic wing

model,

• aero-structural dynamic processes during vibration excitation,

• aerodynamic damping mechanisms,

• unsteady interaction between shock and boundary layer,

• unsteady flow separation leading to the onset of shock buffet.

Geometrically, the elastic wing model is created by staggering of the BAC 3-11/RES/30/21

cruise flight profile. The pressure surface of the profile at the root is relatively thicker to achieve

15% of the chord length. The profile is gradually tapered in the first wing section along the

span direction and conforms with the two-dimensional profile in the rest part of the wing. The

maximum thickness is 11% of the chord length [11].

High Reynolds number flow condition is achieved in the European Transonic Wind tunnel un-

der cryogenic conditions. The flow parameters affecting theaeroelastic behaviour such as Mach

number, Reynolds number and dynamic pressure can be varied independently. The detailed ge-

ometrical shape and size of the wing model with its material characteristics, the wind tunnel

experimental set up, dynamical qualifying of the model, flowconditions set during the experi-

ments and the data acquisitions process are explained in Ballmannet al. [11]. Before the tests

with the described wing model, pre-tests were performed with an airfoil in the KRG cryogenic

tunnel at DLR Goettingen.

The experimental data of the surface static pressure distribution recorded in these pre-tests in

the mid-section of the model from the sensors and the aerodynamic coefficients (CL,Cd) over

the profile are used to validate the results from the computational simulations described in the

subsequent subsections. The computational model used for the simulation is two-dimensional.
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3.1.2 Validation with the KRG experimental data

Case 39:M∞ = 0.749 α = +1.0◦ Re= 20.17Million

Computational domain and grid

The computation is performed at the flow condition corresponding to the configuration No. 39

of the KRG experiment. The free stream Mach number, angle of attack are set toM∞ = 0.749

andα = +1.0◦, respectively. The Reynolds number based on the chord lengthis 20.17Million.

The computational domain is discretised with a relatively coarse grid using ”C” topology which

comprised twelve blocks. The domain is extended to 20 chord lengths away along the leading

and trailing edges of the profile to reduce the effect of the wake at the boundary for possible

improvement in the imposition of the boundary condition. The upper and lower wind tunnel

walls are not numerically modelled and free stream boundarycondition with auto-detection is

imposed at the corresponding computational boundaries. The domain is initially discretised

with a number of 3452 quadrilateral cells. The initial grid is unstructured due to the presence

of non-matching grid points between the grid blocks at the block interfaces. The presence of

hanging nodes at the initial level grid and their subsequentgeneration during grid adaptation

can be efficiently dealt with the solver, Quadflow.

3.1.2.1 Computational set up The flow is assumed to be fully turbulent, without tripping

point for transition being specified. Turbulence is modelled using the original one equation

Spalart-Allmaras model, as previously described in the numerical modelling section 2.3.2. Im-

position of the characteristic boundary condition is foundto be ineffective in achieving a desired

level of convergence due to the presence of wakes reaching the boundary, generated during vis-

cous flow simulation. Hence, extrapolation type boundary condition as described in section 2.7

is imposed. A transonic flow field with the presence of a strongshock and boundary layer is

expected in the computational domain. Flow variables are reconstructed using the Green-Gauss

method to achieve a second order spatial accuracy for improved resolution of the flow features.

The limiter designed by Venkatakrishnan [75] described in the numerical modelling section is

used to satisfy the Total-Variation-Diminishing (TVD) condition during numerical simulation.

The limiter is frozen after the residual is dropped to three orders from the initial level in order

to prevent its flipping for achieving a converged solution. Convective flux discretisation is car-

ried out using the upwind HLLC scheme. Viscous flux is estimated using the central scheme

with corrected gradient as outlined in the subsection 2.6.2. Implicit time integration scheme

(B2) formulated by Batten & Leschziner [45] is used for temporal discretisation. The Jacobian

matrix originated during the linearisation process is computed using the analytical scheme, as

described in the subsection 2.8. First order reconstruction is used to evaluate the convective

fluxes during the formulation of the Jacobian matrix. The maximum CFL number to be evolved

in the computational domain during the simulation is limited to 50, with the initial value set to

47



1. The CFL number is geometrically progressed with a factor of1.2. Higher CFL number at

the initial phase is observed to be creating numerical instability in the computation. A single

Newton iteration is applied within the timestep during the linearisation of the non-linear sys-

tem of equations arisen from the implicit formulation. The resulting system of linear equations

is solved by applying preconditioned restarted GMRES methodby providing for Quadflow an

interface to an external mathematical library (PETSC) [77].Preconditioning matrix is formed

from the Jacobian matrix using Incomplete Lower-Upper (ILU(2)) technique with second level

of filling. Maximum number of search vectors for the KSP iteration is limited to 20 with 2

levels of restart. The targeted convergence level of the residual for the linear iteration is set

to 10−4. The convergence is always achieved within the prescribed GMRES steps in all the

computations described in the subsequent section.

Seven levels of grid adaptation are carried out in order to obtain the fully converged mesh-

independent solution. The criterion is set such that the adaptation is activated, when the residual

in density reaches five orders decrease with respect to the initial value.

The computations are performed in the High Performance Sun Cluster of the Rechenzentrum,

RWTH, Aachen.

3.1.2.2 Solutions Figs. 18 a) and b) show the convergence behaviour and the variation of

number of cells in the domain of adaptation. Seven levels of grid adaptation are performed with

grid being adapted after every successive drop of residual to a prescribed value at the current

grid level. The indicator to monitor the convergence behaviour is computed at every iteration
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Figure 18: Convergence behaviour, variation of cell number in the computational domain

based on the root mean square value of the density residual ofthe control volume cells in the

computational domain. Solution at the intermediate grid level is obtained after five levels fall

of the initial residual, which is set as the required intermediate convergence level in the form

of input parameter to the adaptation module. The final solution is converged sufficiently on the
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finest grid level.

A monotonous decrease in the residual is achieved during thecomputation. The residual jumps

back to a relatively large value after every grid adaptation, as it is reinitialised and keeps on

decreasing when the flow solution is gradually developed at the current grid level. Approx-

imately 2700 iterations are required to obtain the final converged solution for the case under

consideration, as shown in Fig. 18 a).

Fig. 18 b) shows the variation of the number of cells in the computational domain due to the

grid adaptation during the simulation. The number varies significantly as the flow develops

during the initial phase of computation and gradually achieves convergence at the final phase of

the simulation. The grid at the initial level has 74 cells on the airfoil profile. Cells in the high

activity regions of the computational domain are refined andthe final level grid has 2621 cells

on the profile.

The utilisation of grid adaptation method drives the computation in achieving a grid independent

solution, as observed with minimal increase in the number ofcells achieved during the final

stage.
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Figure 19:y+ variation

Fig. 19 shows the gradual reduction ofy+

at different grid levels as the flow solution

is developed. The value ofy+ at the ini-

tial grid level with the coarse mesh remains

close to ten and gradually decreases with

adaptation before reaching a value below

unit along the profile at the finest grid level.

Lift and drag coefficients obtained from the computation arecompared with the experimentally

obtained data [23]. Lack of pressure sensors at the leading edge of the airfoil prevents an accu-

Method CL Cd

Exp. 0.4412 0.0090

Comp. 0.4858 0.0097

Table 1: Surface integral parameters

rate capture of the peak in the surface pressure distribution during the experiment [11]. Hence,

some deviation in the computationally predicted value withthe experimental data is observed.
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Part of the observed variation can be attributed to the difference in the results from a two-

dimensional computational model and neglecting the modelling of the upper and lower wind

tunnel walls. The drag coefficient estimated from the computation is closer to the experimental
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Figure 20: Convergence ofCL, Cd during simulation

value within 1% variation.

Evolution of the lift coefficient (CL) and drag coefficient(Cd) with iteration are shown in the

Fig. 20 a) and b), respectively. The integral aerodynamic coefficients undergo significant change

during the initial phase before achieving steady convergedvalues at the final stage of the com-

putation.

The finest grid level and the corresponding surfacey+ distribution are shown in the Figs. 21

a) and b), respectively. Achievement of profiley+ value below unit is required to accurately

capture the flow field as low reynolds number model approach isused for resolving the boundary

layer flow.
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Grid is adapted in the regions containing the flow features with large scale spatial variation.

These high-activity regions include the stagnation regioncloser to the leading edge, the bound-

ary layer, the shock on the suction surface and the viscous wake behind the trailing edge. The

localities of the flow features generated due to different mechanisms (inviscid phenomenon,

e.g. shock and viscous flow feature, e.g. boundary layer) areaccurately detected by the adap-

tation module. This shows the effectiveness and reliability of the multiscale algorithm based

on the wavelet analysis, used as the basis of adaptation criterion for properly detecting the flow

features in the domain and adapting the grid subsequently.
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Figure 22:Cp distribution and Mach number contours in the computationaldomain with the

finest level grid

Fig. 22 compares the variation of surface static pressure coefficient along the profile with the

experimental data [23]. Sensor data points obtained duringthe experiment are in excellent

agreement with the computational result. Variation of Machnumber in the computational do-

main in the finest level adapted grid is shown in the Fig. 22.

Computations are performed in a similar manner to resolve theflow field generated under dif-

ferent flow conditions and are compared with the experimental data.
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Consistent results are obtained throughout the computations as shown in the above figures. The

computational results obtained using adaptive numerical simulation are in excellent agreement

with the experimental data. The results shown in this section validate the application of adopted

numerical modelling techniques implemented in the flow solver, Quadflow for simulating the

flow field over the airfoil profile in cruise configuration.

3.1.3 Simulation of the flow field with Zonal DES

3.1.3.1 Convergence acceleration with Zonal DESComputational results shown in the

subsection 3.1.2 are obtained with the turbulent flow structures modelled using the one equa-

tion originl Spalart-Allmaras model. The accuracy of the modelling schemes and their imple-

mentation in Quadflow is demonstrated through validation with the experimental data. Further

computations carried out using the DES model in order to compare with the original S-A sim-

ulations are described in the current section. The implementation detail of the DES model is

outlined in the numerical modelling section 2.3.4 of this thesis.

Simulations are carried out using the original S-A model andthe DES model corresponding to

the flow configuration of the Experiment No. 20 of the KRG experimental set up. The free

stream Mach number, angle of attack and the Reynolds number ofthe flow are set to 0.682,

+0.0◦ and 8.2 Million, respectively. The set of input parameters such asconvergence level,

number of grid adaptation and the initial grid are kept identical in both the cases. Converged

solutions corresponding to the finest grid level are obtained in both the computations. The

number of iterations required to achieve the correspondinglevel of adaptation, number of cells

in the computational domains and converged integral aerodynamic coefficients obtained during

the computations are shown in the tables 2 and 3.
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It is observed from the numerical experiment that the DES model significantly improves the

convergence acceleration as compared to the RANS simulation, for an identical set of input

parameters.

Adaptation modifies the number of cells in the computationaldomain depending on the solution

in the flow field. A small difference in the solution obtained using DES and S-A RANS formu-

lations causes a different evolution of cell numbers. Hence, instead of comparing the number of

iterations for determining the efficiency of computations,a parameter calledworkunitis defined,

which provides a rough estimate of the amount of total computational work required during the

simulations. It is defined by aggregating the multiplication of the number of cells in the domain

with the number of iterations required during every adaptation.

workunit= 1
n+1 ∑i=n

i=0Cell[i] ∗ (itn[i + 1]− itn[i] + 1), where itn[0]=1 ..., n= number of adapta-

tions

Case 20:M∞ = 0.682 α = +0.0◦ Re= 8.2Million

Experimental Result:CL = 0.2377,Cd = 0.0076 [23]

Adap. Itn. Cell CL Cd

1 140 3452 2.854112e-01 1.367596e-02

3 672 26000 2.962130e-01 7.543762e-03

5 1504 75848 2.943549e-01 8.331507e-03

8 3177 147188 2.852171e-01 8.294309e-03

Table 2: Original SA model, Workunit=33263511.8750

Adap. Itn. Cell CL Cd

1 119 3452 2.851499e-01 1.371125e-02

3 490 26039 2.942121e-01 7.535204e-03

5 903 72800 2.924266e-01 8.277477e-03

8 1487 135785 2.863193e-01 8.274408e-03

Table 3: DES model, workunit=13156495.500, 2.5 times faster

For the case shown above, the workunit required for RANS simulation is 2.5 times higher

compared to the DES simulation. Similarly, for all other computations carried out (not shown

in the thesis) during the comparison, it is observed that computational expense for the RANS

simulation as expressed in the work units is at least a factorof 1.8 times higher than the DES

simulation.

Another point worth noting that, the variation between aerodynamic coefficients obtained from

a fully converged finally adapted mesh with RANS and DES simulations are insignificant, as

the flow field is steady and the boundary layer remains attached to the airfoil surface.
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3.1.3.2 Effect of zonal dimension parameter of DES on convergence and solution accu-

racy The formulation of Zonal DES as outlined in the numerical modelling section of the

thesis (section 2.3.5), contains a free parameter (Kw) expressed as the percentage of the chord

length to separate the regions of the domain where RANS modelling remains active from the

localities modelled with the modified RANS. Any cell with a wall distance larger than the limit

set by the free parameter has its wall distance modified according to the maximum size of the

grid in the coordinate directions and becomes part of the domain modelled with modified RANS

model. The cell staying inside the defined boundary close to the surface stays unmodified and

the turbulence is modelled with the original RANS formulation.

In the absence of such a boundary demarcated to separate the above mentioned two regions,

the modified wall distance (max(∆x,∆y)) becomes smaller with every grid adaptation, as the

dimension of the cells decreases due to the refinement. The dependency of the wall distance

solely on the grid size would lead to an under-estimation of the wall distance in the presence

of highly refined cells in the boundary layer close to the surface. The stretched cells with high

aspect ratio in the vicinity of the surface wall prevents theoccurrence of the above phenomenon

to a certain extent. As the aspect ratio of the cells decreases when moving away from the wall,

there is a possibility of the modified RANS model entering intothe boundary layer close to the

surface wall. The situation creates an erroneous model withthe wall distance of the cells very

close to the surface is reduced significantly, creating an increase in the destruction term of the

RANS model. In this scenario, the eddy viscosity becomes too small (due to the increase in the

destruction term in RANS modelling) and the numerically predicted aerodynamic coefficients

become small. Hence, the turbulence modelling is neither RANS nor LES, as the grids in

the localities close to the surface are not originally designed for the Sub-Grid-Scale modelling.

Therefore, in order to avoid the modified RANS model entering into the boundary layer domain,

it is necessary to demarcate the boundary in order to separate the two regions.

The current section is devoted to study the effects of the size of the specified boundary on the

computational convergence and solution accuracy.

Experiment No. 43 from the KRG experimental set up is considered as a case study for the in-

vestigation. Simulations are carried out with the flow parameters corresponding to experiment

No. 43. Case 43:M∞ = 0.700 α = +2.0◦ Re= 20.29Million

Experimental Result:CL = 0.5136,Cd = 0.0080 [23]

Three different values of the zonal boundary specification parameter (expressed as the percent-

age of the chord length) are considered in the numerical testing, as shown in the table 5. The

cells in the computational domain out of the presecribed distance from the airfoil surface are

treated for the wall distance modification. Any cells withinthe imposed boundary near to the

airfoil surface are considered as part of the boundary domain and kept unmodified.

Computation carried out using original S-A RANS model with similar computational parame-

ters are obtained for comparison. Fig.23 shows the comparison of the convergence behaviour
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Figure 23: Effect of zonal boundary parameter in DES model onthe convergence

Dim. Itn Cell CL Cd

20% 1937 128621 0.5928 8.407e-03

10% 1989 129941 0.5925 8.394e-03

5% 2050 129824 0.5920 8.388e-03

Table 4: DES model with varying boundary zone specification parameter

achieved using modified formulations with the original S-A model. It is observed that the num-

ber of iterations required to obtain a final converged solution with the modified formulations are

smaller than the original formulation.

Itn Cell CL Cd

3136 138266 5.929e-01 8.427e-03

Table 5: Original SA model

The number of iterations required to obtain a fully converged solution at the finest level grid is

not significantly affected by the length of the demarcation domain. The number of iterations

required to obtain the converged solution, number of cells in the final level grid and converged

aerodynamic coefficients obtained at the finest level are shown in the table 5. The boundary

zone dimension has very minor effect on the solution accuracy and convergence behaviour.
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3.1.4 Aerodynamic characteristics of the SFB profile in cruise condition

Several computations have been performed with 3 different Mach numbers, 6 different angles

of attack and 4 different Reynolds numbers for studying the aerodynamic characteristics of the

SFB 401 airfoil.

Free stream Mach number is chosen among the range,M∞ ∈ [0.65,0.70,0.75] in steps of 0.05,

Angle of attack is chosen from the set,α ∈ [−1.0◦,−0.50◦,0.0◦,1.0◦,2.0◦,2.5◦,3.0◦],

Reynolds number,Re∈ [4.0×106,12.0×106,20.0×106,30.0×106].

Numerical simulation is performed over the initial grid using the computational parameters

identical to the cases discussed in the previous subsection. Spalart-Allmaras turbulence model

with modification for DES is used to model the effect of turbulence.

3.1.4.1 Effect of flow parameters on the maximum Mach number in the computational

domain Table 6 shows the maximum Mach number achieved in the computational domain

during the computations. This gives an idea of the strength of the shock in the computational

domain.

α/Mach 0.65 0.70 0.75

4.0×106 30.0×106 4.0×106 30.0×106 4.0×106 30.0×106

-1.0 1.08 1.095 1.292 1.329 1.386 1.409

+1.0 0.912 0.926 0.993 1.008 1.263 1.268

+2.0 1.144 1.174 1.213 1.229 1.319 1.353

+2.5 1.240 1.260 1.278 1.295 1.342 1.381

Table 6: Maximum Mach number in the computational domain

Maximum Mach number in the domain increases with the increase in the free stream Mach

number (M∞). At a particularM∞, inertial force becomes dominant with the increase in the

Reynolds number and the local Mach number in the computational domain is increased. At a

specific Mach number and Reynolds number, with positive increase in the angle of attack, the

flow gets accelerated on the suction surface of the profile anda supersonic region is created.

The maximum Mach number achieved on the suction surface increases with the increment in

the angle of attack. The termination of the supersonic region on the suction surface is exhibited

in the form of a shock in the flow field and the shock strength increases with the increase in

the angle of attack. The surface profile curvature on the pressure surface near the leading edge

creates a mild shock to appear on the pressure surface near the leading edge at negative angle

of attack of the free stream flow.

Study of dependency of the lift coefficient(CL) on α with variation in M∞ at a specific Reynolds

number

CL shows an expected linear trend withα in the lower range of the angle of attack. The increase

57



α in degree
-2 -1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

C L

0.65
0.70
0.75

(a)

a)Re= 4.0×106

α in degree
-2 -1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

C L

0.65
0.70
0.75

(b)

b) Re= 12.0×106

α in degree
-2 -1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

C L

0.65
0.70
0.75

(c)

c) Re= 30.0×106

Figure 24: Dependency of the lift coefficient(CL) on angle of attack (α) at different free stream

Mach numbers(M∞) and a specific Reynolds number

in the inertial force in the flow field as a result of increase intheM∞ and Reynolds number at

a particular angle of attack creates a positive shift in theCL. The influence of the free stream

Mach number on the lift coefficient is predominant compared to the effect of the Reynolds

number. The flow separation and associated decrease in the lift coefficient is observed at a

higherα. The loss of lift at the inception of the stall is observed at alargerM∞. Corresponding

computations are characterised with non-convergence of the flow field and periodic fluctuation

of theCL. Mean value of the lift coefficient is observed to be reduced.

Study of drag polar with variation in M∞ at a specific Reynolds numberAs expected, higher
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Figure 25: Drag polar

M∞ causes simultaneous increase inCL andCd. The variation ofCL with Cd is in agreement with
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the usual trend. The rapid increase inCd at a relatively highM∞ is due to the flow separation

associated with the inception of stall causing an increase in the wave drag.

Study of dependency of Lifting efficiency (Le) on α with variation in M∞ at a specific Reynolds

number
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Figure 26: Dependency of the Lifting efficiency onα at differentM∞ and a specific Reynolds

number

Lifting efficiency(Le) is defined as the ratio betweenCL andCd. In the region of relatively

smallerα, Le is higher with highM∞. Increase inα causes rapid increase inCd compared to

CL at a higherM∞. This causesLe undergoing a drastic reduction at a relatively higher angleof

attack.
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The inertial effect of the flow field increases with the rise inthe Reynolds number. Hence,CL

increases with increase in Reynolds number, albeit to an insignificant amount. The effect of

Reynolds number on the lift coefficient is negligibly small, except at higher angle of attack.

Study of Drag polar with variation of Reynolds number at a specific M∞
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Figure 28: Drag polar with variation of Reynolds number at a specificM∞

Decrease in the Reynolds number increases the viscous effectfor any flow configuration with a

specific lift coefficient. The increase in the viscous drag causes an overall increase in the drag

coefficient. Hence, decrease in the Reynolds number is associated with the increase in the total

drag coefficient for anyM∞.

Study of dependency of Le on α with variation in Reynolds number at a specific M∞
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Figure 29: Dependency ofLe on α with variation in Reynolds number at a specific

Higher Reynolds number increases the dominance of the inertial force in the flow field over
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the viscous force. Inertial force contributes positively to the lift coefficient. Drag coefficient

undergoes a reduction due to the decrease in the viscous effect. Both the factors complement

each other at a higher Reynolds number in increasing the lifting efficiency. Hence, for a flow

configuration with specificM∞, increasing the Reynolds number has a positive effect on lifting

efficiency(Le).

The trend is reversed at a higher angle of attack. Separationof the flow field at a higher angle of

attack results in reducingCL and increasingCd. The combined effects is observed as the sudden

downward fall of the curve at the higher angles of attack. Theearly departure of the curve at a

relatively higherM∞ shows the early onset of flow separation.

Study of dependency of skin friction coefficient (Cf ) on Reynolds number with variation ofα at
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Figure 30: Dependency of skin friction coefficient (Cf ) on Reynolds number with variation of

α at a specificM∞

Increase in the Reynolds number results in the decrease in theprofile drag and the trend is

clearly observed. The curves show an expected closeness to the hyperbolic trend.
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3.2 Simulation of the flow field over three element airfoils in high lift con-

figuration

3.2.1 Adaptive flow simulation

This section describes the numerical simulation of the flow over multi-element high-lift pro-

file BAC3-11/RES/30/21, which is defined as the reference configuration in the Collaborative

Research Center (SFB401) for high lift investigations. It comprises a leading edge slat, the

main airfoil and a single slotted flap with geometrical dimensions as described in the report by

Moir [71]. The slat and flap are deflected at 25◦ and 20◦ respectively and the configuration is

used to provide lift in the low speed operating regime of the aircraft during take-off and landing.

The criticality in designing the configuration and complicated flow field have instigated numer-

ous researchers [18, 47–49] to accurately predict the flow features for improved understanding

of the physical phenomena. The five ideas envisaged by A.M.O.Smith [46] to characterise the

flow physics over the high-lift configuration are

• The slat effect

• The circulation effect

• The dumping effect (Attaining higher discharge velocity atthe trailng edge of the forward

element)

• Off-the-surface pressure recovery

• The fresh boundary layer effect

Fluid at low freestream Mach number undergoes a rapid acceleration over the highly deflected

slat to create a localised supersonic region at the suction surface thus producing a mixture of

subsonic and supersonic regions in the computational domain. Significant variation of Mach

number creates a large range of condition number in the computational domain affecting the

stiffness of the numerical scheme. The wake generated from the preceeding element interacts

with the boundary layer and wake of the successive elements to create a complex flow field. This

mutual interaction of the wake and boundary layer depends onthe angle of attack of the flow.

Thus, accurate simulation and prediction of the flow over this configuration poses a significant

computational challenge. Additionally, the current studyuses grid adaptation during flow sim-

ulation. The initial H-grid shown in Fig. 31 is comprised of 61 blocks with 16740 quadrilateral

cells. The initial level coarse grid has 408 cells located onthe surface of the airfoil elements

with a maximum y+ of 30. The grid is extended to 25 chord lengths along the upstream and

downstream directions in order to reduce the effect of the wakes at the boundaries for improved

imposition of the boundary conditions. The freestream Machnumber (M∞) and Reynolds num-

ber based on the chord length are set to 0.197 and 3.52 Million, respectively. Computations
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Figure 31: Initial grid in the computational domain for the high-lift configuration

X

Y

0 2 4

-2

0

2

Figure 32: Final level grid,α = 4.01◦

X

Y

0 2 4 6

0

2

4

Figure 33: Final level grid,α = 20.18◦
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are carried out with turbulence modelled using original Spalart-Allmaras and Detached Eddy

Simulation models. Computatiopnal domain is refined and coarsened during grid adaptation
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Figure 34: Convergence of simulation:α = 4.01◦

depending upon the developed flow field. Figs. 32 and 33 shows the final level adapted grid in

the computational domain at two different angles of attack.Though, the initial level grids for

both the computations are identical, the difference in the development of the boundary layer and

wake region due to the variation in the angle of attack creates a conspicuous difference in the

final level grids. Grid adaptation is carried out during the iterative process when the residual in

density falls five order below the initial value. Six levels of adaptation is carried out to obtain the

final converged solution. The grid refinement control parameter (MSTε) is set to 10−3 in order

to prevent a rapid increase in the number of cells in the computational domain. Convergence

of the density residuum, variation of the total number of cells in the computational domain due

to the grid adaptation, evolution of the lift and drag coefficients are shown in the Figs. 34 a),

b), c) and d). Fig. 35 shows the comparison of the experimentally obtained surface pressure

distribution on the airfoil with the computationally obtained value during adaptive simulation,

correspond to the angle of attack,α = 4.01◦. The computational data are in excellent agreement
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Figure 35: SurfaceCp distribution on the finest grid level:α = 4.01◦

with the experimental value on the slat, main element and flapairfoil surfaces. Figs. 36 a) and

a) Details of adapted final level grid
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Figure 36: Adapted grid and flow field over the high-lift configuration atα = 4.01◦

b) show the final level adapted grid and the variation of the Mach number in the computational

domain atα = 4.01◦. The grid is highly refined in the boundary layer and in the free shear re-

gions along the wakes of the airfoil elements. Maximum Mach number achieved in the domain

is 0.46.

An additional computation is performed at the angle of attack α = 20.18◦. The residual is

adequately converged to obtain the fully converged steady state solution. The convergence
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Figure 37: History of computation: Convergence, cell numbers and aerodynamic Coefficients

behaviour of the computation is shown in Figs. 37 a), b), c) and d). A rapid change in the

number of cells in the computational domain is observed during initial levels of grid adaptation,

as the solution gradually develops creating a significant change in the flow field. During the

later phase of computation, the total number of the cells in the domain varies slowly as the

solution becomes settled. Number of cells in the computational domain at the finest grid level

is approximately 180000 with 1900 cells on the airfoil surface. Refinement of the cells in the

boundary layer during adaptation reduces the y+ distribution on the airfoil surface and at the

finest level a variation below unit is achieved. Exact numberof the cells in the domain depends

on the angle of attack of the flow which eventually regulates the flow field.

Excellent agreement of the surface static pressure coefficient with the experimental data are

observed as shown in the Fig. 38.
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Figure 38: SurfaceCp distribution on the finest grid level:α = 20.18◦

Figs. 39 a) and b) show the final level grid and the variation ofthe Mach number in the com-

putational domain, respectively. At the angle of attack,α = 20.18◦, the flow undergoes a rapid

acceleration along the suction surface of the slat and a small patch of supersonic region is cre-

ated. This can be prominently distinguished by the presenceof a large and slender peak on the

a) Details of adapted final level grid
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Figure 39: Adapted grid and flow field over the high-lift configuration atα = 20.18◦

surface pressure distribution (Fig. 38) at the leading edge. Maximum Mach number of slightly

above unit is achieved in the domain.
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3.2.2 Accurate capturing of the inception of stall for high-lift configuration

The investigation of the lifting characteristic of the high-lift configuration with varying angle

of attack is carried out in this section. The ability of the DES model to accurately predict the

stall over the RANS modelling is demonstrated. Computations are performed on an identical

initial grid with a set of input parameters as previously described in the section 3.2.1. Simu-

lations are carried out using both S-A RANS models at angles ranging from 0◦−30◦ in steps

of 2◦ with steady Backward Euler time integration scheme. The gridis refined successively

during adaptation depending on the developed flow field whichis eventually determined by the

angle of attack. As expected, the lift coefficient increaseslinearly (as shown in Fig. 49 a))
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Figure 40: Stall inception angle, computation with the S-A turbulence model using steady time

integration scheme in Quadflow

with the increase in the angle of attack till the stall phenomenon is encountered. The com-

putation at this point is characterised by the non-convergence of the residual as shown in the

Fig. 41. Numerically converged flow solution is obtained forthe input parameter, corresponding

to the angles of attack below 25◦ (see fig. 40). Any subsequent increase in the angle of attack

as shown in Figs. 41 a), exhibits an oscillatory behaviour ofthe residual with no converged

solution. The non-convergence of the flow field is also illustrated by the corresponding lift co-

efficients, which (Fig. 41 b)) fluctuate about a mean value. Similar computations are performed

over the configuration with identical set of input parameters and initial grid using turbulence

modelling using DES model. The trend of the computational results is similar to the previously
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Figure 41: Numerical prediction of the stalling angle with S–A RANS model

Computations performed with steady time integration scheme

obtained solution using S-A model, but the fluctuation of theresidual is encountered earlier at

an angle of attack,α = 23◦, as shown in the Fig. 42. Corresponding lift coefficients showed

fluctuation about a mean value during non-convergence and converged steady solutions are not

achieved. Simulations are carried out with DES modelling intime accurate manner to confirm
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Figure 42: Numerical prediction of the stalling angle with DES model

Computations performed with steady time integration scheme

the unsteadiness, to understand its cause and to resolve unsteady flow features in the domain.

Backward difference method described in the numerical modelling section is used as the time

integration scheme. The angle of attack for the computationis set to 23◦. The criterion for grid
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Figure 43: Unsteady flow simulation with DES model atα = 23◦

adaptation is modified to activate the mesh refinement as a function of number of unsteady steps

during the time integration process. Figs. 43 a) and b) show the periodic fluctuation ofCL and
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Figure 44: Variation of lift coefficient

the residual atα = 23◦, obtained using unsteady simulation with DES modelling. Itis observed

that the temporal variation of the lift coefficient after certain initial phase of computation is pe-

riodic with a time period of approximately 0.14 seconds. Fig. 44 shows the variation of the lift

co-efficient with physical time for a single time period of oscillation, extracted at the final stage

of the computation. Figs. 45 a), b), c) and d) show the instantaneous Mach number distributions

in the domain at a specific time forα = 23◦ during the single time period of oscillation. The
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Figure 45: Instantaneous Mach number distribution in the flow field showing vortex shedding

captured with DES atα = 23◦

figures show the instantaneous Mach number variation in the flow field as the vortical structures

passes through build-up phase, coalition and shedding fromthe suction surface of the airfoil el-

ements. Att = 0.545, the vortices shed from the main element and from the flap in the vicinity

of the airfoil are observed to be coming close to each other. The flow field is marked by large

scale but partially separated vortices at the suction surfaces of the main element and the flap.

The formation of these structures is associated with the loss of lift and is observed by the dip

in the value ofCL corresponding to the timet = 0.545. When moving further away from the

airfoil, these vortices merged together to give rise to a single and dominant vortical structure at

t = 0.573.

The flow field at timet = 0.6035, is characterised by moving of the vortical structuresaway from

the suction surface of the main element, corresponding to the achievement of the maximum lift

in theCL t curve. Flow field att = 0.6402 shows the inception of the vortex near the surfaces

of the main element and the flap. The vortices gradually grow during the rest of the time period
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until their sizes are large enough to come physically in contact with each other which leads to

merging as observed att = 0.545.

The above described sequence of events is repetitive over the time period and the vortices going

through the continuous process of formation, merging and shedding give rise to a nearly periodic

behaviour to the flow field. At the angle of attack 24◦, the flow field exhibits comparatively
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Figure 46: Unsteady flow simulation using DES model atα = 24◦

larger unsteadiness and a final converged solution is not achieved. The fluctuation of the residual

and the lift coefficient are shown in the Fig. 46 The lift coefficient (CL) goes through a periodic
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Figure 47: Variation of the fit coefficient during the last cycle using DES model atα = 24◦

oscillation of time-periodT = 0.03, corresponding to a frequency of about 33 Hz. Fig. 47
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shows fluctuation of the lift coefficient at the final stage of the computation corresponding to

the last cycle of oscillation. The flow field occurred at different time is shown by the variation

of Mach number in the computational domain in Figs. 48 a) and b). The wake behind the main

element and the flap are completely merged together in the vicinity of the solid surface. Vortex

shedding is highly conspicuous and the phenomenon is similar to the wake generated behind

a bluff body. Lift and drag coefficients are evaluated from the converged solutions obtained
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Figure 48: Instantaneous Mach number distribution in the flow field showing vortex shedding

captured with DES atα = 24◦

with above mentioned computations for both the DES and S-A RANS modelling. Pre-stall

computations in both the modellings yield converged aerodynamic coefficients. Time averaged

values of the fluctuating aerodynamic coefficients are used for stall and post-stall conditions.

Figs. 49 a) and b) compare the variation of aerodynamic coefficients at different angles of

attack obtained using DES and S-A RANS modelling with the experimental data [71]. The

results obtained using S-A RANS and DES modelling have an excellent agreement with the

experimental data in the pre-stall region. The stalling angle obtained using S-A RANS model

tends to over-predict the experimental data. The solution obtained using the DES computation

agrees well. Similar trend of the variation ofCL with α and over-prediction of the stalling angle

compared to the experimental data has been observed by otherresearchers [47] with S-A RANS

model on this configuration. Numerically estimated time averaged aerodynamic coefficients

obtained using unsteady time-stepping scheme with DES model are close to the experimental

data.

The over-prediction in the stall margin using the RANS model is as a result of inaccuracy in

modelling the turbulent flow in the regions dominated by large vortical structures associated
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Figure 49: Accurate capturing of stall with DES model in comparison to S–A RANS model

with massive flow separation. The modelling inaccuracy stems from the overestimation of the

eddy viscosity, is as a result of the dual inclusion during its explicit modelling from the mean

components and partial inclusion of the fluctuating components in the mean flow components

through grid resolution. Modification of the wall distance in the DES model according to the

grid cell size increases the destruction term of the turbulence modelling to prevent an overes-

timation of the turbulent viscosity, as explained in the numerical modelling sections (sections

2.3.4 and 2.3.5). The modification is effective in the regions away from the airfoil, where the

flow field is dominated by the large scale vortical structuresarising due to the large scale sep-

aration. Hence, DES model is obviously superior to the original Spalart-Allmaras turbulence

model in capturing the separated flow phenomena.
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3.3 Low Mach number preconditioning

The section describes the application of the Low Mach numberpreconditioning technique, as

described in the numerical modelling section of the thesis (Section 2.5) on the cruise as well as

on the high lift configurations. The application of the method is demonstrated on the inviscid,

laminar and turbulent flow regimes. The method is shown to function accurately in domains

having predominant low Mach number regions with localised supersonic flow. Testcases with

analytically or experimentally available aerodynamic data are chosen to validate the modelling

and application of the method. Improvement in the accuracy of the simulated flow field at a

relatively lower Mach number is observed. Convergence behaviour is shown to be improving

with increase in the low Mach number region in the computational domain.

3.3.1 Inviscid flow simulation

3.3.1.1 Flow over 4% bump Inviscid simulation using preconditioning technique is carried

out in the computational domain containing a bump with a maximum thickness, 4% of its length.

Free stream Mach number of the flow is set to 0.001. The simulation is carried out without grid
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a) Unpreconditioned solution b) Preconditioned solution

Figure 50: Steady flow field with Mach number variation over the bump atM∞ = 0.001

adaptation. The computational domain comprises three blocks with 40 cells along the flow

direction and 25 cells along the cross flow direction. Inviscid wall boundary condition with

zero normal velocity of the flow is imposed on the bump surface. Extrapolation type boundary

condition is applied at the inflow and outflow boundaries. Implicit time integration scheme is

used for temporal evolution of the solution. HLLC scheme with modified eigenvalues is used to

evaluate the convective fluxes for the preconditioned scheme. Original HLLC scheme is used

in the flux computation for the unpreconditioned scheme. Thecomparison of the Mach number
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variation in the computational domain between the solutions obtained using unpreconditioned

and preconditioned formulations is shown in the Fig. 50.

The convergence is achieved faster with the use of preconditioner compared to the unprecondi-

tioned scheme. It is observed that the preconditioning improves the smoothness of the solution.

The resulting Mach number variation in the computational domain is observed to be symmetric

over the bump. In contrast, the solution obtained without preconditioning is observed to be

associated with glitches in the Mach number contour plot in the domain. The pressure recovery

associated with low Mach number flow forces a symmetric solution over the bump configura-

tion, which is accurately captured using the preconditioned computation.

3.3.1.2 Flow over NACA0012 profile Flow is simulated over NACA0012 profile at

freestream Mach numbers 0.001 and 0.01, with angle of attack2◦. Eight levels of grid adap-

tation is conducted to obtain a converged final flow solution.The multiscale control parameter

for the grid adaptation has been set to a lower value, as the spatial variation of the flow solu-

tion is relatively smaller in magnitude. Number of iterations required to achieve corresponding

Adap Timestep Cell number CL Cd

1 37 400 0.206865 0.0334168

3 125 6352 0.23376 0.00195

5 236 26368 0.24083 0.000082

7 340 36514 0.241049 0.000037

9 572 39076 0.241040 0.000033

Table 7: Inviscid flow simulation over NACA0012 profile with preconditioning, M∞ =

0.001,α = 2◦

levels of grid adaptation, number of cells in the computational domain and the aerodynamic

coefficients are given in the table 7 and table 8.

Adap Timestep Cell number CL Cd

1 35 400 0.205542 0.033456

3 116 6400 0.222238 0.003940

5 219 44332 0.238695 0.000202

7 336 84274 0.241133 2.17E10−6

9 431 94960 0.241266 −1.5E10−8

Table 8: Inviscid flow simulation over NACA0012 profile with preconditioning,M∞ = 0.01,α =

2◦

The converged lift coefficients obtained from the computation is observed to be independent of

the Mach number. The drag coefficient decreases with each grid adaptation till a value close to
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zero is obtained. The computational results satisfy the D’Alembert’s paradox. Comparison of

CL Cd

0.241 0.0

Table 9: Aerodynamic coefficients over NACA0012 profile, panel method (Turkel)

the aerodynamic coefficients are in excellent agreement with the computational results obtained

by Turkel (Table 9).

3.3.1.3 Flow over SFB profile Similar computations are performed on the SFB profile with

eight levels of grid adaptation. The free stream Mach numbers of the flow are set to 0.001 and

0.01. The aerodynamic coefficients achieved at the intermediate grid levels, variation in the

Adap Timestep Cell CL Cd

1 35 400 0.18972 0.02401

4 165 16948 0.237111 0.001009

7 332 74794 0.235498 −4.9E10−6

9 448 91339 0.235381 −4.9E10−6

Table 10: Preconditioned simulation over SFB profile,M∞ = 0.001,α = 0◦

number of cells in the computational domain and the requiredtimestep to achieve the conver-

gence level for both the cases are tabulated in Table 10 and Table 11. The trend of the solutions

obtained in the computations is similar to the previous computation over NACA0012 profile.

The aerodynamic coefficients are observed to be independentof the free stream Mach number.

The drag coefficient is observed to be approaching to zero. The flow field at low Mach number

is characterised by the pressure recovery. The pressure drag for a blunt body of any shape is zero

as a result of the pressure recovery. The viscous drag attributed to the skin friction on the sur-

face is numerically absent as a result of inviscid flow modelling. Thus, a zero drag is achieved

satisfying D’Alembert’s paradox. The Mach number independent lift coefficient is converged to

Adap Timestep Cell CL Cd

1 35 400 0.189753 0.024048

4 164 22180 0.237133 0.0010183

7 331 150559 0.235532 −6.7E10−6

8 388 148318 0.235537 −6.9E10−6

Table 11: Preconditioned simulation over SFB profile,M∞ = 0.01,α = 0◦

0.235 and the drag coefficient becomes negligibly small in the converged solution at the finest

grid level. It is worth pointing out that the drag coefficientpredicted by the computation at
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CL Cd

0.235 1.0E10−6

Table 12: Mach number independent aerodynamic coefficients

the initial level of grid with 400 cells is 0.02. The improvedresolution of the computational

domain through grid adaptation causes the downward shift ofthe drag coefficient, reaching the

value close to zero at the finest level. The adaptation criterion based on the multiscale analysis

is proved to be efficiently functioning in the presence of lowMach number flow field.

3.3.2 Laminar flow simulation

Numerical validation and computational efficiency of the preconditioning technique in the lam-

inar flow region is illustrated in this subsection. Flow is simulated over NACA0012 profile at

Adap Timestep Cell CL Cf Cd

1 57 400 0.09398 0.011962 0.10715

3 252 3151 0.047207 0.042036 0.06712

5 517 11407 0.047126 0.047846 0.07188

7 1084 13231 0.047478 0.049467 0.07355

Table 13: Laminar flow simulation over NACA0012 profile with preconditioning,M∞ =

0.001,α = 1◦,Re= 2500

the Reynolds number of 2500 and 1◦ angle of attack. Two freestream Mach numbers, 0.001

and 0.01 are chosen for the computations. The initial level grid, discretising the computational

domain is coarse and contains 600 cells. Extrapolation typeboundary condition is imposed at

the inflow and outflow boundaries. No-slip, adiabatic boundary condition is imposed on the

cells on the airfoil surface.

Adap Timestep Cell CL Cf Cd

1 53 400 0.09398 0.011962 0.10715

3 183 3151 0.04715 0.042036 0.06712

5 315 11419 0.04708 0.0478423 0.07188

7 459 13231 0.04747 0.049467 0.073549

Table 14: Laminar flow simulation over NACA0012 profile with preconditioning,M∞ =

0.01,α = 1◦,Re= 2500

The CFL number of the computation is geometrically increasedwith a factor of 1.05 from an

initial value set to 0.8, till the maximum value of 500 is reached in the domain. Preconditioned

HLLC scheme, described in the numerical modelling section is used to compute the convective
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fluxes. Six levels of grid adaptation is carried out to obtainthe final converged flow solution.

The boundary layer is the most active region in the computational domain owing to a small

freestream Mach number. The cells in the boundary layer are observed to be refined with

successive level of grid adaptation and the flow features areadequately resolved at the finest

grid level.

The tables 13, 14 show the number of iterations required to achieve the intermediate levels of

grid adaptation, number of cells in the computational domain and the resulted aerodynamic

coefficients achieved during the computations.

CL Cd

0.0474 0.0734

Table 15: Mach number independent aerodynamic coefficients

The aerodynamic coefficients are observed to be independentof free stream Mach number.

Comparison of the integral surface parameters predicted by Quadflow with the numerically

obtained solution by Turkel [59] (table 15) show an excellent agreement.

3.3.3 Turbulent flow simulation

Computation is performed over RAE2822 profile at the freestream Mach number,M∞ = 0.01,

angle of attack,α = 1.89◦ and Reynolds number,Re= 5.7×106. Spalart-Allmaras turbulence

model is used in the computation. The initial grid has 400 cells and the final solution is obtained
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Figure 51: Adapted grid and turbulent flow solution over RAE2822 atM∞ = 0.01

after three levels of grid adaptation with the computational domain comprising of 14899 cells.
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Surface distribution ofy+ below unit is achieved in the finest grid level.

Fig. 51 shows the final level adapted grid and corresponding Mach number variation in the

computational domain. As expected, relatively low value offree stream Mach number restricts

the grid adaptation within the boundary layer. No significant addition of number of cells outside

the boundary layer is observed. The refinement of the cells inthe boundary layer resulted in

achieving a surface distribution ofy+ below unit.
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Figure 52: Gradual evolution of the surface flow coefficientswith grid adaptation

Fig. 52 shows a gradual improvement in the static pressure and skin friction distribution on the

profile with every successive level of grid adaptation. The static surface distribution on the final

level grid is plotted and compared with the computationallypredicted data by Turkel [59].

The flow in the current simulation is assumed to be fully turbulent, whereas in the computation

performed by Turkel the flow is tripped to be turbulent after traversing 11% of the chord length

from the leading edge. The transition is considered to be profoundly affecting the estimation of

surface skin friction coefficient. Hence, the result from the current simulation is not compared

with the variation of wall skin friction coefficient data predicted by Turkel.

3.3.4 Simulation over the high-lift configuration with low Mach number preconditioning

Relatively low freestream flow speed creates a predominant low Mach number region in the

computational domain of the high lift configuration. Hence,the preconditioning technique is

used to accelerate the convergence speed of the simulation.Flow computations are performed

at freestream Mach number,M∞ = 0.197,, angle of attack,α = 0.0◦, and the Reynolds number

based on the chord length,Re= 3.52Miliion . Identical initial grid and set of input parameters
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are used in both the simulations with six levels of grid adaptation. Flux is computed using

HLLC [62] scheme for the unpreconditioned method. Modified HLLC scheme is used for flux

computation during the preconditioned simulation. Cut off parameter (K) is chosen to be 0.80.

Iteration

R
e
s
(D

e
n

s
it
y
)

0 1000 2000 3000 4000 5000
10-6

10-5

10-4

10-3

10-2

10-1

100

Unprecond.

Precond.

a) Residual history

Iteration
0 1000 2000 3000 4000 5000

1

1.2

1.4

1.6

1.8

Unprecond.

Precond.

CL

b) Evolution of lift coefficient

Figure 53: Convergence acceleration with preconditioning at α = 0◦

Fig. 53 compares the convergence behaviour and the solutions obtained using a preconditioned

scheme with the result from an unpreconditioned computation. The preconditioned computation

is observed to be converging 1.7 times faster compared to theunpreconditioned method. The lift

coefficient is rapidly converged to the desired value with the use of preconditioner in comparison

to the unpreconditioned simulation.

Similar comparative study between the preconditioned and unpreconditioned schemes has been

carried out on the high-lift configuration at the angle of attack, α = 20◦. The fluid stream at

the high angle of attack undergoes a rapid acceleration overthe suction surface of the slat and

creates a small localised supersonic zone. It is interesting to use and assess the benefit of the

preconditioning technique which is effectively designed for the low Mach number regions in a

computation with the flow achieving supersonic speed. The Cutoff parameter (K) is chosen to

be 0.80.

Fig. 54 compares the convergence behaviour and the variation of the lift coefficients with iter-

ations obtained using the preconditioned scheme with an unpreconditioned simulation. In the

presence of preconditioner, the convergence is shown to be 1.6 times faster than the unprecon-

ditioned scheme. It is important to note, the factor of improvement in convergence obtained at

a lower angle of attack is higher compared to the higher angleof attack. The reasons being; i)

the preconditioner stays effective in larger regions of thecomputational domain for the config-
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Figure 54: Convergence acceleration with preconditioning at α = 20◦

uration having lower angle of attack, ii) the presence of relatively low Mach number atα = 0.0,

providing an improved modification of the condition number compared to the higher angle of

attack.

Maximum Mach number achieved in the computational domain with α = 0.0◦ is 0.46, compared

to the maximum Mach number of 1.02 achieved withα = 20.0◦.

3.3.5 Effect of cut-off Mach number on convergence and solution accuracy

The preconditioning matrix, used to modify the eigenvaluesof the Jacobian matrix depends on

the preconditioning parameter, which is a function of the Reference Mach number (Mre f ). The

local nature of the preconditioner depends onMre f , which varies with the local normal Mach

number in the computational domain. Local Mach number in thestagnation region of the com-

putational domain becomes insignificantly small. Hence, inorder to prevent theMre f to become

too small, a cutoff limit based on the freestream Mach numberM∞ and a cut-off parameter (K)

is prescribed. The effect of the cutoff parameter (K) on the solution field and the convergence

is studied in this section. The range of the cutoff parameterlies between zero and unit. Two

preconditioned simulations are carried out atM∞ = 0.197,α = +0.0◦,Re= 3.52Million over

the high-lift configuration with 6 levels of grid adaptationusing two different cut-off values

(K = 0.75,K = 0.80). Similar computations are performed atα = +20.0◦. Comparison of the

convergence behaviour and the aerodynamic coefficients obtained from the computations are

shown in the Fig. 55. Table 16 compares the converged aerodynamic coefficients at the final

grid level from the computations with two different cutoff parameters. No significant differ-
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Figure 55: Dependency of the convergence behaviour on the cut-off parameter used in low

Mach number preconditioning

Cutoff CL Cd

0.70 1.522423e+00 3.216249e-02

0.80 1.522665e+00 3.217980e-02

Table 16: Dependency of the aerodynamic coefficients on the cut-off parameter,α = +0.0◦

ence either in the convergence pattern or in the magnitude ofthe aerodynamic coefficients is

observed due to the choice of cut-off parameter. Atα = +20.0◦, the cut-off parameter plays

a role owing to the presence of small patch of supersonic region on the upper surface of the

slat. Slight increase in the value improves the robustness and accelerates convergence. Flow

field remains unaffected by the choice of the cutoff parameter as shown by the comparison of

aerodynamic coefficients in the table 17.

Cutoff CL Cd

0.75 4.001844e+00 7.138033e-02

0.80 4.002207e+00 7.139914e-02

Table 17: Dependency of the aerodynamic coefficients on the cut-off parameter,α = +20.0◦
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3.3.6 Detached Eddy Simulation over high-lift configurationwith low Mach number pre-

conditioning

Numerical experiments are conducted to asses the convergence efficiency and solution accu-

racy of the DES in presence of low Mach preconditioner for simulating flow over the high

lift configuration. Four different numerical models, i.e. S-A original model, S-A model with

preconditioning, Detached Eddy Simulation and DES with preconditioning are used for com-

putations using identical initial grid and set of input parameters. The flow condition is set to

M∞ = 0.197,α = +0.0◦,Re= 3.52Million. 6 levels of grid adaptation is carried out as shown

in the Fig. 56.
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Figure 56: Convergence acceleration using DES model with preconditioning atα = 0◦

Figure 56 b) shows the evolution of the lift coefficient (CL) with iteration obtained during com-

putations.

Model Itn CL Cd

SA original 5198 1.512109e+00 3.523598e-02

SA+Precond. 3301 1.522423e+00 3.216249e-02

DES 1827 1.501575e+00 3.597372e-02

DES+Precond. 1376 1.522106e+00 3.208049e-02

Table 18: Comparison of aerodynamic coefficients obtained using different computational mod-

els

The data in the table 18 shows the number of iterations required to reach the intermediate level

of grid adaptation and corresponding aerodynamic coefficients achieved with the use of differ-
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ent computational models. The combination of DES with preconditioning is observed to be

approximately 4 times faster than the original S-A RANS formulation. The drag coefficients at

the final level grid predicted by the preconditioned computations differs by approximately 10%

compared to the unpreconditioned simulation. The difference in the solutions is because of the

modification of the flux formulation in the low Mach number regions where the preconditioning

is activated. The flux formulation is modified to a lower levelof numerical dissipation in the

regions to improve the solution accuracy.
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3.4 Unsteady computations in the presence of grid movement

Inviscid numerical computations on a standard testcase of sinusoidally pitching NACA0012

airfoil about its quarter chord point are carried out with grid adaptation to validate and assess

the computational efficiency of the Backward Difference Scheme. The numerical formulation

of the scheme and its satisfaction of the geometric conservation law, essential for the moving

grid applications are described in the numerical modellingsection 2.4.

The temporal variation of the aerodynamic coefficients obtained by the BDF scheme are com-

pared with the available experimental data [86]. The robustness of the scheme is compared with

the previously available unsteady time integration scheme(Mid-point scheme) [25].

The pitching motion of the airfoil is described by Eqns. (59). The mean angle of attack and

the amplitude of oscillation are set to 0.016◦ and 2.51◦ respectively. Reduced frequency of the

computation,κ = ωc/|V∞| = 0.1628. The freestream Mach number and the static temperature

of the fluid are 0.755 and 285K respectively. Considering the above set of flow parameters, the

time-period of oscillation becomes 0.151 sec for the airfoil of unit chord length.

Initially, the computation is performed using steady time integration scheme to obtain a con-

verged solution to be used as a restart flow field for the unsteady simulation. The use of the

converged flow field at the beginning of the unsteady computation helps in reducing the initial

instability and allows utilising relatively larger globaltimestep. The initial C-grid has 400 cells

in the computational domain. Characteristic boundary conditions described in the numerical

modelling section is imposed at the boundaries interfacingwith the freestream. Inviscid slip

wall boundary condition is imposed on the airfoil surface.

The movement of the airfoil surface boundary during the oscillation and corresponding spatial

relocation of the internal nodes in the computational domain is explained in [7].

α = α0 +αmsin(ωt)

α0 = 0.016◦,αm = 2.51◦ (59)

The solution is evolved identically in the entire computational domain, through the global

timestep, set as an input parameter. The grid adaptation is carried out after every timestep.

Several Newton iterations are carried out in a single timestep till the non-linear equation arisen

during the discretisation process has converged to the order of 10−4. The system of linear equa-

tion inside each Newton step is solved with preconditioned restarted GMRES method. Incom-

plete Lower Upper (ILU(2)) preconditioner computed from ananalytically derived Jacobian

matrix is used.

Number of steps required to complete the cycle of oscillation varies depending on the global

timestep.
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3.4.1 Study of accuracy of the scheme

The number of grid adaptation level is set to five. The flow fieldin the domain is advanced

at 1.5×10−4 second during each step. The maximum CFL number achieved in the domain is

approximately 395.

Scheme Adaptation level Timestep Max CFL

BDF 5 1.5×10−4 395
Computational parameters

The movement of the airfoil, as a rigid body undergoes a rapidvariation of velocity and accel-

eration during the pitching motion. The angular displacement of the airfoil modifies the angle

of attack with relative to the free stream flow. The flow field around the rigid body is observed

α=2.02

α= 0.99
.

o

o

Figure 57: Adapted grid and Mach number distribution in the computational domain during

nose-up movement

to undergo significant modification due to the kinematics [50] which is reflected in the variation

of the shock location in the domain, as shown in the Fig. 57 andFig. 58. Fig. 57 shows the

instantaneous adapted grids and Mach number distribution in the computational domain during
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Figure 58: Adapted grid and Mach number distribution in the computational domain during

nose-down movement

pitching up movement phase of the oscillation at the angle ofattack 0.99◦ and 2.02◦. A mild

shock is observed on the pressure surface of the profile atα = 0.99◦. The strength of the shock

is gradually reduced during nose-up movement. The process culminates in the disappearance

of the shock on the lower surface and development of a week shock on the suction surface at

the peak angle of attack.

Fig. 58 shows the adapted grids and Mach number distributionin the computational domain

during pitching down phase of the oscillation. During downstroke the shock on the upper sur-

face of the profile is gradually increased in strength to reach the maximum. Then its strength

undergoes a gradual reduction and a shock on the lower surface starts developing.

The fluctuation of the shock between suction and pressure surfaces of the profile creates the

topological variation in grid clustering through adaptation as shown in the Figs. 57 and Fig. 58.

Figs. 59 a) and b) shows the variation in the number of cells inthe domain with physical time

due to grid adaptation. The periodic pattern of fluctuation in the number demonstrates the

periodicity of the solution.
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Figure 59: Periodic variation of cell number in the computational domain

The pitching motion results in the temporal variation of thevorticity of the flow around the

airfoil. Hence, the aerodynamic coefficients undergoes a periodic change with time as shown in

the Fig. 60. The flow solution attends a periodic steady stateafter experiencing the transience

through the initial three quarter of the time period.
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Figure 60: Accuracy of Implicit BDF scheme for sinusoidally pitching NACA0012 airfoil

It is observed that the flow pattern experienced by the airfoil at the mean position depends on the

orientation of the airfoil movement. This change in the flow field is observed in the difference

of the aerodynamic coefficients, which take the form of hysteresis curves. The velocity of the

rigid body plays a significant role in determining the surrounding flow structure, even though

the flow incidence angle remains identical. At the extreme end positions of the motion, the

velocity becomes zero and the flow field is governed by the angles of attack.

The plotted lift and moment hysteresis curves are compared with the experimental data [86].
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3.4.2 Comparison with the midpoint scheme

The computational parameters, e.g. levels of grid adaptation, global timestep used in the simu-

lation and the corresponding maximum CFL number achieved in the domain are shown in the

Table 19. Three sets of computations are performed with different number of grid adaptation

and global timesteps. Increasing the number of adaptation level decreases the smallest size of

the cell in the computational domain. Thus, the maximum CFL number in the domain is in-

Scheme Adaptation level Timestep Max CFL

BDF & midpoint 4 2.0×10−4 230

BDF & midpoint 4 5.0×10−4 560

BDF & midpoint 5 2.0×10−4 500

Table 19: Cases simulated for assessing robustness of the numerical scheme

creased by an approximate factor of two with every successive level of adaptation. Increase in

the global timestep acts as a scaling factor in increasing the CFL number. Computations are per-
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Figure 61: Comparison of the effect of timestep on convergence for the schemes with a 4 level

adapted grid

formed using the currently implemented backward difference scheme and with the pre-existing

Mid-point scheme for comparison.

Simulations carried out with 4 levels of grid refinement and the global timestep of 2×10−4,

are used as the base for assessing the solution accuracy of the recent scheme with respect to
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the pre-existing method. Maximum CFL number achieved in the domain is approximately 230.

Fig. 61 a) compares the temporal variation of the lift coefficient using the above mentioned

schemes. Excellent aggrement in the form of superimposition of the curves verifies the validity

of the recently implemented BDF scheme. In the next computation, the global timestep is in-

creased keeping the grid refinement level fixed. The Mid-point scheme is diverged at the global

timestep of 6×10−4 in comparison to the backward difference scheme, which is observed to

be functional with the same set of input parameters. Hence, aglobal timestep of 5×10−4 is

chosen for both the schemes in order to draw comparison between the solutions. A maximum

CFL number of approximately 560 is achieved in the domain. Fig. 61 b) compares the variation

of the lift coefficients with the physical time obtained fromboth the computational models. The

solution from either of the schemes is periodic in time and matches to a certain degree of toler-

ance. The solution from the model using the Mid-point schemehas appeared to be oscillatory in

nature with wriggles in the initial phase of the computation. The duration of computational time

required for the simulation to pass through the initial transience in order to achieve the periodic

steady state of the solution is larger for the Mid-point scheme compared to the BDF method.

The stability of the BDF scheme is demonstrated in the comparison of the lift coefficient curves

between the schemes at close-up view in the trough. The solution obtained using the Mid-point

scheme exhibits the presence of conspicuous wriggles compared to the smoothness in the so-

lution with BDF. The improvement in the numerical stability of the time integration scheme

in Quadflow with the use of recently implemented BDF scheme is beneficial in resolving the

flow field at a higher CFL number due to larger global timestep. Eventually, the improvement

is manifested in achieving a smaller unsteady simulation time. Finally, the global timestep of

2.0×10−4 and 5 levels of grid adaptation are chosen for the numerical experiment. The chosen

timestep is identical to the first simulation, but the numberof grid adaptation level is increased.

It results in the creation of smaller sized cells and consequently, increases the maximum CFL

number achieved in the computational domain. Maximum CFL number of 500 is achieved in

the computations. The solution from the Mid-point scheme iscompared with the computational

result from the backward difference scheme using the identical set of input parameters. Fig. 62

shows the comparison of the lift coefficients using both the schemes. Similar to the observation

with the previous computational test, the deterioration inthe evolution of the lift coefficients is

observed in using the Mid-point scheme. In this case 30% gainof the CPU time is observed in

using BDF scheme over the Midpoint method.

Considering observations from both the numerical experiments, it is inferred that the Backward

difference scheme has a higher numerical stability compared to the Mid-point scheme and thus,

beneficial to the computations in using higher CFL number. Therequired increase in the CFL

number of the computation can either be due to the increase inthe global timestep or as a

result of higher level of grid adaptation, which decreases the grid size. The increase in the

global timestep helps in reducing the simulation time and the grid adaptation improves the
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Figure 62: Comparison of the robustness in the schemes for 5 level adapted grid, Global

timestep 2×10−4

solution accuracy. Simulations with BDF scheme are able to achieve higher value for both

the parameters, which provides benefit to the computations.It is observed that, the solution

obtained by using the BDF scheme is in excellent agreement with the Mid-point scheme at a

lower CFL number in the computational domain.
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3.5 Accelerating convergence of explicit time integration scheme with

Multigrid technique

3.5.1 Testing of grid coarsening algorithm

Grid coarsening algorithm described in the numerical modelling section 2.10 is implemented in

Quadflow and tested on both the adaptive mesh with hanging nodes and multi-block structured

mesh without hanging nodes. A multiblock structured grid, generated using the commerical

mesh generation tool ICEM comprising of 512 and 64 cells in thecircumferential and cross-

stream directions, respectively is considered. The boundary of the computational domain lies

approximately at a distance of 20 chord lengths from the airfoil. The grid has no hanging nodes

in the computational domain.
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Figure 63: Hierarchy of coarse grids generated from an original grid with ”C” block topology

In order to maintain the consistency of the grid coarsening algorithm, the cells at the initial

grid level is assigned with the tags containing the information on their block, level and indices.

These information are used during coarsening procedure to detect the cells belonging to the

quadruple in the same block and coalesced to generate the coarse mesh. In the absence of gid

adaptation, the cells in the finest grid level is assigned with a specific level information, which

is decreased during every successive generation of the coarse grid level. Four levels of coarse

grids are created from the finest level grid, as shown in the Fig. 63.
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3.5.2 Multigrid cycle

The ”V” cycle Multigrid algorithm described in section 2.10, is used to quantify the conver-

gence acceleration achieved for an adptive inviscid flow simulation over the SFB profile. The

freestream Mach number and angle of attack are set toM∞ = 0.85,α = 0◦.

A sequence of coarse meshes is generated (not shown here) using the adapted grid available at

the beginning of the computation after every adaptation as the finest grid level. The number of

coarse mesh levels increases with the increase in the grid adaptation level in the computation.

Explicit time integration scheme is used to temporally evolve the steady flow field, with the

CFL number being fixed at 0.8. Three pre-smoothing iterationsare carried out at every grid level

before the residual and the conservative solution vector, being restricted to the next coarser level.

The restriction of the solution and residual is carried out using volume weightage technique

to ensure the conservation of the flow variables in the control volume. One post-smoothing
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Figure 64: Convergence acceleration of the explicit time integration scheme with Multigrid

method

iteration is carried out on every coarse grid levels as the algorithm moves towards the finest

grid level. The correction of the solution variables on the coarse grid is prolongated using an

upwind method, as described in the section 2.10.3, to the next finer grid level for updating

the solution. Fig. 64 compares the surface pressure distribution obtained using the Multigrid

simulation with the solution from the computation performed at the finest grid level. Multigrid

accelerates the convergence by approximately a factor of seven compared with the simulation

on the finest grid level without any significant change in the accuracy. Memory requirement

during the computations with explicit time integration scheme is much less compared to the

implicit time integration scheme.
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3.6 Numerical simulation of the shock buffet phenomenon

Shock buffet is an aerodynamic phenomenon characterised byself-sustained shock oscillation

over the surface of the profile as a result of the mutual interaction between the shock and the

boundary layer. The phenomenon has been observed with different airfoils and wings in the

transonic regime [34,53]. The phenomenon has recently got asignificant attention as exhibited

by the number of researches conducted during past few years [34,52,53,55].

Understanding of the physical mechanism governing the phenomenon and its accurate numeri-

cal simulation is essential as,

• The large scale variation of the lift coefficient associatedwith the shock buffet imposes

a limit on the cruising speed of the aircraft. Hence, limiting the intensity of the shock

buffet is essential during the design of the wings.

• The wing is subjected to a periodic fluctuation of the aerodynamic load during the oscil-

lation of the shock, which may trigger aeroelastic vibration.

a) Grid A: Coarse grid b) Grid B: Moderately refined grid
Figure 65: Coarser grids used for the computation of shock buffet phenomenon observed in the

transonic flow about the BAC3-11 airfoil in KRG G̈ottingen

In the current study, unsteady numerical simulation without grid adaptation has been performed

over a super-critical airfoil using the BDF scheme to investigate the shock buffet phenomenon.

The part of the numerical scheme (Eqn. (23) in section 2.4.3.1) accounting for the moving grid

simulation is switched off, as the airfoil in the computational domain is stationary.

The critical parameters of the shock buffet flow field namely,

• the onset of the buffet phenomenon
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Figure 66: Grid C: Finest grid used for the computation of shock buffet phenomenon

• the time-period of shock oscillation

• the temporal fluctuation of the static pressure coefficient

on the surface of the airfoil are studied during the numerical experiment.

The profile under study is the BAC 3-11/RES/30/21 profile in itscruise configuration with the

maximum thickness 11% of the chord length. The chord length of the airfoil used for the

simulation is 0.12meter. The inlet flow parameters of the computation correspond to the shock

buffet case observed in the experiment conducted at KRG and reported in [11, 23]. The free

stream Mach number, angle of attack and the Reynolds number ofthe computation are set to

M∞ = 0.75,α = 4◦,Re= 4.2× 106, respectively. This specific flow condition is used in the

simulation as the experimental data can be used for verification in the accuracy.

It is observed by Soda [53,54] that, the computational parameters such as the turbulence model,

spatial discretisation scheme and the order of time discretisation in the numerical simulation

play important roles in the resolution of the shock buffet. On the basis of the numerical ex-

periments conducted by Soda [53], it is reported that the upwind scheme with one equation

turbulence model has the ability to predict the onset of shock buffet over a thick airfoil. Ni-

etzsche [55] has been successful in numerical modelling of the shock buffet using the finite

volume URANS solver, DLR-TAU code.

In the current study, the second order spatial discretisation is achieved through reconstruction
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using Green-Gauss method and the convective flux is computedusing HLLC [62] scheme. The

computation is performed assuming the flow to be fully turbulent. Flow is simulated with

Unsteady RANS using one equation Spalart-Allmaras model. Second order accurate backward

differencing is used for temporal resolution. The effect ofgrid resolution, particularly in the

flow stream direction, on accuracy of simulating the shock buffet has been addressed.

The computational domain is discretised with a C-grid comprising three blocks. Grids with

three different spatial resolutions are considered for numerical analysis. Grid ”A” shown in the

Fig. 65 is relatively coarse for simulating the shock buffet. The block surrounding the airfoil is

comprised of 256 cells along the airfoil surface and 32 cellsalong the normal direction to the

solid surface. The complete domain is constituted of 12288 cells. The grid is clustered near the

wall along the normal direction to achieve ay+ below unit.

Grid ”B” is moderately refined with 512 cells covering the entire surface of the airfoil and

constitutes of 32 cells spanning in the cross direction fromthe airfoil surface to the boundary

of the block encompassing the airfoil. Grid ”B” is created with insertion of additional cells

along the chord-wise direction on the airfoil profile in Grid”A”. The number of cells along the

cross-stream direction is kept identical with the grid ”A”.The improved clustering along the

chord-wise direction in grid ”B” helps in achieving an improved resolution of the flow in the

streamline direction. A surface distribution value ofy+ closer to unit is observed with the grid

”A”. Hence, the number of cells in the cross-stream direction is expected to be sufficient for the

accurate resolution of the boundary layer and is kept identical in grid ”B” with the grid ”A.

The improved grid resolution as a result of the anisotropic grid refinement aids in an improved

capturing the flow field without unnecessarily increasing the computational time. Improving

computational efficiency of the simulation is essential as the flow computation needs to be

carried out with an unsteady time integration scheme in a time accurate manner. Total number

of cells in the computational domain of grid ”B” is 20480.

Grid ”C” is created with further addition of the cells on the airfoil surface along the chord-wise

direction. The grid has the finest resolution with 640 cells along the chord-wise direction and

32 cells along the normal direction. The complete domain is comprised of 24576 cells. The

boundaries of the computational domain is 24 chord lengths away from the leading and trailing

edge of the airfoil, which allows the strength of the wake originated at the trailing edge of the

airfoil to be reduced during reaching the boundaries. Extrapolation type boundary condition

(section 2.7.1.3) is applied for closure. The global timestep for unsteady simulation is set to

1.0×10−6.

Initially, the computations are performed with the backward-Euler steady time integration

scheme without consideration for temporal accuracy. It is observed that the computation with

Grid ”A” resulted in a converged solution with a decrease in 5order of the residual level com-

pared to the initial value, as shown in Fig. 67a). A convergedlift coefficient corresponding to

the final solution is achieved, shown in Fig. 67b).
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Figure 67: Steady solution computed on the grid ”A”

The flow field is initialised with the previously obtained steady solution and computation is

performed in a time accurate manner using Backward Difference scheme. Jacobian is obtained

using analytical formulation (section 2.8) and the number of Newton steps are set to achieve a

convergence of 10−4 during the inner iterations.
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Figure 68: Unsteady solution computed on the grid ”A”

The linear system of equations arisen during the linearisation process is solved using precon-

ditioned restarted GMRES. Incomplete Lower Upper (ILU(2)) method is applied to create the

preconditioning matrix for the linear equation solver. Theglobal timestep is set to 1.0×10−6,
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which is comparatively smaller than the expected time period of the shock buffet. The residual

is observed to be oscillating periodically Fig. 68 (a). Unsteady computation shows a conspicu-

ous oscillation of the lift coefficient with a gradual growthin the amplitude before achieving a

periodic steady state as shown in the Fig. 68 (b).
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Figure 69:Cp distribution, Unsteady solution computed on the grid ”A”

The analysis of the flow field explains the reason of the periodic fluctuation, which can be

attributed to the movement of the shock on the suction surface of the airfoil. The movement

of the shock creates the variation of static pressure coefficient on the surface of the airfoil as

shown in the Fig. 69. The distance traversed by the shock predicted by the numerical simulation

is smaller than observed in the experimental data. The estimated shock oscillating frequency

(144 Hz) is found to be larger than the experimental value (125 Hz).

Computation is performed using steady time integration scheme on the relatively refined grid

”B”. The residual is observed to be fluctuating and a convergedsolution is not obtained. The

variation of the residual and the lift coefficient with timestep are plotted as shown in the Fig. 70.

Hence, the further computation has been performed in the time accurate manner to resolve the

unsteady flow field. Temporal variation of the residual and the lift coefficient from the unsteady

computation are shown in the Fig. 71 a) and b).
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Figure 70: Steady solution computed on the grid ”B”

The lift coefficient goes through the initial transience (similar to the observation with grid ”B”)

to achieve a periodic steady state. Variation of the static pressure on the upper surface of the

profile as a result of the shock movement is shown in Fig. 72.
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Figure 71: Unsteady solution computed on the grid ”B”

The traversing distance of the oscillating shock is visiblylarger than the value estimated with

computation on grid ”A”. This improvement can be attributedto the improved accuracy in the

resolution of the flow along the chord-wise direction.

The frequency of the shock movement is estimated to be 140, which is closer to the experimental
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Figure 72:Cp distribution, Unsteady solution computed on the grid ”B”

value (125) compared to the previously estimated frequencywith grid ”A”.

The near wall grid cells with large aspect ratio, used in the turbulent flow simulation are usually

designed to capture the boundary layer. Therefore traditionally, grid clustering along the normal

direction for achieving the righty+ distribution on the surface and the number of grid cells inside

the boundary layer are the factors usually targeted during the grid generation process.

As accurate resolution of the shock buffet needs simultaneous improved capturing of the shock,

moving along the airfoil profile and the viscous boundary layer, present normal to the surface

profile; the grid design criterion has to be modified to provide a better clustering in both the

directions. The improvement in the numerical prediction ofthe shock oscillating frequency

achieved using grid ”B” is as a result of increased grid resolution in the chord-wise direction to

capture the flow phenomenon of the shock movement, demonstrates the proposition.

Further computation is performed with a highly refined grid ”C”. Similar to the previous compu-

tation, convergence to the steady state can’t be achieved with a steady time integration scheme.

The low Reynolds number model used in the simulation necessitates achieving a value ofy+

below unit in order to resolve the boundary layer flow structures. Fig. 73 a) shows the distribu-

tion of y+ on the suction and pressure surfaces of the airfoil. The refinement of the cells along

the cross-stream direction helps in achieving the maximum value ofy+ below unit along the

surfaces.
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Figure 73: Unsteady solution computed on the grid ”C”

Unsteady simulation is conducted in order to capture the time accurate flow features. Periodic

fluctuation of the residual and the lift coefficient obtainedfrom the time accurate computation

are shown in the Fig. 74 a) and b).
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Figure 74: Unsteady flow parameters computed on the grid ”C”

An instantaneous Mach number distribution in the computational domain is shown in the Fig. 73

b). The flow physics leading to the onset of the shock buffet isexplained by Deck [34]. The

flow is accelerated over the suction surface of the airfoil tocreate a patch of supersonic region

in the computational domain which is termined by the creation of a shock. The fluid across the

shock undergoes compression and a high pressure region is developed in the downstream of the

shock.
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Figure 75: Unsteady solution computed on grid ”C”

A small scale flow separation is occurred when the the fluid overcomes the adverse pressure gra-

dient created as a result of decreasing thickness of the airfoil. The presence of the supersonic

region on the suction surface of the profile is terminated with the shock and a small separation

bubble trailing the shock is observed in Fig. 73b). The flow parameters, e.g. the free stream

Mach number and the angle of attack, leading to the creation of the separation bubble through

controlling the acceleration of the fluid on the suction surface determines the onset of the buffet

phenomenon. The thickness of the profile and its variation towards the trailing edge are the criti-

cal geometrical parameters in detecting the onset. As the phenomenon involves viscous-inviscid

interaction, the Reynolds number plays an important role in determining the buffet onset. The

pressure signal transmitted from the fluctuating wake in thepresence of the separation bubble

along the upstream direction causes the oscillation of the shock. The frequency of oscillation

and the distance traversed by the shock during periodic fluctuation, computed using grid ”C”

are close to the values obtained using grid B, confirms the gridindependence of the numerical

simulation.

Temporal variation of the surface pressure coefficient for apoint situated at 46% of the chord

length is compared with the experimentally obtained value as shown in Fig. 75a). The excel-

lent agreement ofCp between the computational values with the experimental data confirms the

accurate numerical capturing of the shock intensity in the shock buffet phenomenon. Fig. 75b)

shows the spatial variation of surface pressure coefficientalong the profile due to shock oscilla-

tion.
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3.7 Computational simulation of the flow field over 3D configurations

The computational results described in this section demonstrates the applicability of Quadflow

in three-dimensional flow simulations.

3.7.1 Inviscid flow over the swept bump

A bump with thickness, 4% of the chord length is present in theX-Y plane of the computational

domain. The starting and end locations of the bump in the X-Y plane is gradually varied in the

Z direction to achieve a three-dimensional configuration, inclined at angle of 34◦ with the Z

axis.
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Figure 76: Convergence behaviour of the 3D computation over the inclined channel

The free stream Mach number of the flow and the angle of attack (α as referenced in the Fig.14)

are prescribed as 0.85 and 0◦ respectively. The angle in the azimuthal direction (θ in the Fig.14)

is set to 87◦.

The computational domain is spread three chord lengths along the upstream and five chord

lengths in the downstream directions from the end points of the bump. The initial grid level has

1000 cells in the domain. Following computational techniques and parameters are used for the

simulation. Seven levels of grid adaptation is carried out,with every time the grid undergoing

adaptation when the intermediate residual is decreased by five orders of magnitude relative to

the initial residual. Ten order fall in the residual is achieved in the final adapted grid level to

obtain the converged solution. Characteristic boundary conditions imposed at the inflow and

outflow boundaries are observed to be effective in transmission of the characteristics through

the computational domain with reduced size. The inviscid slip wall boundary condition on the

bump surface is achieved by setting the normal velocity of the flow to zero.
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Second order reconstruction, using the least square methodis employed for spatial discretisa-

tion. Approximate Riemann solver with HLLC scheme is used forthe computation of con-

vective fluxes. First order temporal resolution is achievedusing the Backward Euler scheme.

Local time-stepping with maximum CFL number of 105 is used to accelerate the convergence

for obtaining the final steady flow solution. The CFL number at the start of the computation

is set to 0.8 and increased at the geometric progression witha factor of 1.1. A single New-

ton iteration step is used and the Jacobian matrix is formed analytically. The system of linear

equations is solved using preconditioned restarted GMRES. Incomplete Lower Upper (ILU(2))

preconditioner, built from the Jacobian matrix is used. Fig. 76, shows the convergence plot and

the variation of number of cells in the computational domain, obtained during the computations.

Approximately 600 timesteps are required for the computation. The number of cells in the do-

main is gradually increased with successive adaptation to achieve 100,000 cells at the final grid

level. The growth rate of the number of cells in the domain is relatively higher, as one cell is

refined isotropically to create 8 cells during grid adaptation.

Fig. 77 shows the initial grid used and the final grid achievedafter adaptation. The initial grid

is coarse, and becomes mainly adapted at the leading and trailing lines of the bump.

Fig. 78 shows the variation of density at the initial and finalgrids. The flow is accelerated over

the bump and a localised supersonic region is created, whichis terminated with the presence of

a strong shock. The localities around the shock line is refined during successive levels of grid

adaptation and well captured.

3.7.2 Three dimensional turbulent flow simulation over the flat plate

Three dimensional turbulent flow with grid adaptation is simulated over the flat plate to demon-

strate the capability of Quadflow. The computational domainis discretised with the grid com-

prising three blocks. The flow is entering into the computational domain at the free stream Mach

number,M∞=0.2 and the Reynolds number is set to 3.52×106. Computation is conducted con-

sidering the flow to be fully turbulent. Inviscid boundary condition is imposed on the plate

belonging to the first block. The grid lines at the junction between the first an second blocks

are clustered along the streamline direction to ensure the capturing of the boundary layer at the

leading edge of the flat plate. The portion of the flat plate in the second block is imposed with

the viscous boundary condition. The part of the flat plate in the third block is set with inviscid

boundary condition in order to decrease the influence of the wake at the exit boundary. The

inflow and outflow boundaries are dealt with extrapolation type boundary conditions. The first,

second and third blocks have 20, 40 and 10 cells respectivelyalong the streamline directions at

the first grid level, with clustering imposed at the interface of the block boundaries. Each block

has 10 cells, stretched logarithmically to resolve the boundary layer in the direction normal to

the wall. The flow in the cross-stream direction is resolved with 10 cells, uniformly spaced in
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Figure 79: Three-dimensional viscous simulation over the flat plate

the computational domain. The initial level grid has 7000 cells. Three levels of grid adapta-

tion is used. The computation is restricted by the number of cells evolved as a result of grid

adaptation. The final level grid has approximately 270,000 cells in the computational domain.

The final level adapted grid and the variation of Mach number in the computational domain is

shown in the Fig. 79.
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4 Conclusion

In the course of the work, numerical schemes are formulated,implemented and tested to demon-

strate the improvement in accuracy, speed and robustness ofthe adaptive solver Quadflow.

Turbulent flow solutions over the airfoil profile in cruise condition show an excellent agreement

with the data obtained from the cryogenic KRG wind tunnel experiments, conducted at DLR,

Göttingen by order of SFB401. The surface static pressure distribution over the profile coincides

with the experimental data. The absence of the pressure sensors at the suction peak of the profile

and the three-dimensional nature of the flow in the experiment causes a minor deviation in the

numerically obtained aerodynamic coefficients from the experimental data.

Detached Eddy Simulation (DES) has been implemented to model the turbulence in the flow

field and rigorously tested for the cruise as well as the high-lift configurations in the adaptive

solver Quadflow. Grid independent results have been achieved in simulating the steady flow

fields. The results predicted by DES are observed to be as accurate as the numerical prediction

using S-A RANS model for simulating steady flow on the cruise configuration. The compar-

ison of thework-unitsneeded for simulations with DES model shows higher computational

efficiency than using the S-A RANS model.

Surface static pressure distribution for the flow over high-lift configuration is in close agreement

with the experimental data. The variation of the lift coefficient shows a linear trend at moderate

angles of attack. The angle of attack initiating a large scale flow separation associated with

the inception is accurately captured using the DES model, whereas the flow simulation with

the S-A turbulence model shows a similar trend as observed bythe earlier researchers, i.e.

overprediction of the stall angle. Unsteady flow simulationcarried out with the DES model

shows a periodic variation of the lift coefficient explaining the periodic nature of the flow field.

The computational domain is observed with a sequence of change in the flow field as a result of

formation of a small separation bubble on the suction surface of the main element, its growth

and merger with the separation region at the flap; eventuallyleading to vortex shedding. The

repetitive pattern of these flow phenomena gives a time varying nature to the flow field in a

periodically steady manner.

Low Mach number preconditioning with DES effectively reduces the computational time in

simulating the flow field over the high-lift configuration. The presence of large region of low

Mach number flow in the computational domain of the high-liftconfiguration is the crucial fac-

tor in improving the computational speed. The preconditioner is shown to function effectively

in the domain comprising a mixture of subsonic and supersonic regions, as occurred to the flow

field over the high-lift configuration at a high angle of attack. Preconditioner is shown to be

improving the solution accuracy and convergence behaviourof the computation in simulating

the flow field at low free stream Mach number.

Implicit backward difference scheme has been formulated and successfully implemented in the
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solver for simulating unsteady flow along moving solid surfaces like in aeroelasticity. The

derived scheme is shown to satisfy the Geometric Conservation Law, essential for solving Arbi-

trary Lagrangian Eulerian (ALE) problems. The main purposeof the scheme is to allow using

as large global timesteps as limited by the flow physics rather than by the numerical stability

of the scheme, thus reducing the simulation time. Computations are conducted to simulate the

flowfield over an oscillating NACA0012 airfoil to test and validate the accuracy of the newly

proposed scheme in the presence of grid adaptation. Despiteimplicit schemes are theoretically

considered to be unconditionally stable; their formulations and the numerical components such

as, the method of Jacobian computation, linear equation solver, type of preconditioner used in

the scheme determine the actual stability. Hence, for the purpose of practical flow simulation,

the allowable maximum CFL number corresponding to the globaltimestep is limited. The BDF

scheme is shown to be robust enough to function correctly in the presence of larger maximum

CFL number in the domain compared to the Mid-point scheme existing already in Quadflow,

before. The maximum CFL number in the domain is increased due to the decrease in the cell

size as a result of grid adaptation or due to increase in the global timestep. The robustness of

the current scheme associated with the improved numerical stability is desirable in reducing the

simulation time for adaptive flow simulation.

The physical problem of ”shock buffet”, involving the interaction of the shock with the bound-

ary layer, is computed and compared with the experimentallyavailable data. The dependency

of the solution accuracy on grid resolution along the direction of shock traverse is studied.

The solution is shown to be significantly improved from the coarse mesh to a fine mesh by

anisotropically refining the grid cells on the airfoil profile in the chord-wise direction. The

solution obtained using the finest grid shows an insignificant change from the previously used

moderately refined grid, thus establishing the achievementin the grid convergence of the final

solution. The distance traversed by the shock on the airfoilsurface computed using the finest

grid is close to the experimental value, albeit the speed of the shock is overestimated. The

computationally estimated frequency of shock oscillation(144 Hz) is close to the experimental

data (125 Hz). Nevertheless, the temporal variation of the surface static pressure coefficient at

a location (46% of the chord length) on the airfoil surface shows an excellent agreement with

the experimental data. Quadflow can accurately predict the onset of the shock buffet. Com-

parison with the experimental data shows, the intensity of the shock strength corresponding to

the temporal variation in the amplitude of the surface static pressure coefficient is accurately

estimated. The shock traversing distance is in agreement with the experiment. The overestima-

tion of the shock speed resulted in a moderate discrepancy ofthe shock oscillating frequency

between the numerical simulation and the experimental data. The possible improvement in the

solution accuracy may lie in improving the numerical order of accuracy in spatial and temporal

resolution.

Simulation of the flow field corresponding to three-dimensional configurations demonstrate the
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extended capability of the Quadflow.
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