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Kurzfassung

Die Arbeit behandelt die Hithtigung des unstrukturierten, adaptiven, Finite-Vaam
Losungsverfahrens QUADFLOWI Stttmungen kompressibler Fluide. Der bestehenieel
ist ein integriertes Werkzeug mit multiskalenbasiertett€gadaption und B-Spline-Techniken
zur Erzeugung von Viereck- bzw. Hexaedernetzen. Weil dtee@idaption Angende Knoten
einbringen kann, ist die Datenstruktur zellob&efienorientiert. & die Flussdiskretisierung
sind Upwind-Methoden undif die Zeitdiskretisierung eine explizite sowie impliziker-
mulierungen in Kombination mit Newton-Linearisierung ukaylov-Unterraum Methode
eingebaut. In der Dissertation wird ein Vorkonditionierexch der Formulierung von Weiss
und Smith zur Simulation reibungsfreier und reibendedi®trngen kleiner Machzahl um Pro-
file in Reise- und Hochauftriebskonfiguration eingebaut. Engebnisse offenbaren das Erzie-
len Machzahl-unakimgiger Werte iir Auftriebs- und Widerstandskoeffizienten (d’Alembert-
Paradoxon) und treffen sehr gut Resultate der Literatur. Vileandabstandiir die Turbulenz-
modellierung wird bei Auftreten sehr gestreckter, veréeiar Zellen und &ngender Knoten
mittels Vektoralgebra abgesatzt, um adaptionsbedingt gége Wandreibungsverteilungen zu
vermeiden. Weiters wird dargestellt, dass ein "DetachddyEAnsatz” auf Basis des Spalart-
Allmaras Turbulenzmodells sich zusammen mit der Gitteptida als effektiv erweist und
sich bei Hochauftriebskonfigurationen sehr gut zur Erfagsmassiver Strmungsatiisung
eignet. Mittels zeitlicher Rckwartsdifferenzen wird eine geometrisch konservative, inigl
Diskretisierung zweiter Ordnung formuliert, eingebautl @urch Simulation instatigrer, rei-
bungsfreier Sttmung um ein nickendes NACA0012 Profil validiert. Die Methedeeist sich
dem vorher verwendeten Mittelpunktsscheiigerlegen, indem es @fere Zeitschrittweiten
und CFL-Zahlen erlaubt. Die nichtlineare Multigrid-Mettegdasierend auf "Full Approxi-
mation Storage” mit V-Zyklus, wird implementiert, um die ieergenz des zeitlich expliziten
Verfahrens bei der &sung reibungsfreier StImungsprobleme zu beschleunigen. Die Gitter-
vergberung fuldt auf einer hierarchischen Strategie, die fem&ellen, die zu identischen
Elternzellen auf gleicher Verfeinerungsstufe gedn, zu einer Folge von Grobgittern zusam-
menzufassen. Der Restriktionsoperator basiert auf demmégewicht, die Prolongation er-
folgt mittels des Upwind-Schemas. Alle Implementierungedas Losungsverfahren werden
an verfigbaren experimentellen und numerischen Resultatefitailish validiert. Es werden
vollturbulente Stdmungen bei unterschiedlichen Aristi-Mach- und -Reynoldszahlen berech-
net und mit Daten aus im Auftrag des SFB 401 durchigegkn KRG-Experimenten verglichen,
darunter Tests, in denen starke Stof3-Grenzschicht-kitengn und Buffet beobachtet wurden,
was numerisch an drei Gitterad$lungen studiert wird. Daraus folgt, dass eine angemessene
Gitteraufbsung in Stdbmungsrichtungiir eine genaue Wiedergabe des Stol3-Buffet vital ist.
Das Ende der Arbeit endiit Erweiterungen des adaptiven &@trungsbsers @r die dreidimen-
sionale Stbmungssimulation und auch erste Ergebnisse aus Berechmmigger vorhandenen
Computerausstattung.



Abstract

The work deals with enhancing the capabilities of the ucstimed adaptive Finite Volume flow
solver QUADFLOW for compressible fluid flow. The solver egists an integrated tool with
multiscale based grid adaptation and B-spline based gastehal/hexahedral multi-block grid
generation modules. Due to hanging nodes introduced thrgtig adaptation, data structure
is cell face based. Upwind methods are implemented for flgkrdtisation in combination
with explicit time integration as well as implicit tempordikcretisation using Newton lineari-
sation and Krylov subspace method. In the thesis, a pretondi based on the formulation
of Weiss and Smith is implemented for simulating inviscidl aiiscous flows at low Mach
number over airfoils in cruise as well as high lift configuwas. The results demonstrate the
achievement of Mach number independent lift and drag coefiis (D’Alembert’s paradox)
and have an excellent agreement with results availableeititérature. The wall distance for
the turbulence modelling in the presence of highly stred¢hefined cells and hanging nodes
close to the wall is correctly estimated using vector algel¥ith this formulation, the wriggles
in the skin friction distribution due to grid adaptation awided. Detached Eddy formula-
tion based on the Spalart-Allmaras turbulence model is shtovbe effective together with the
grid adaptation and demonstrated to have excellent stplldag characteristics for high lift
configurations. A second order accurate, geometricallgeative implicit scheme, based on
Backward Difference discretisation is formulated, impleweel and validated to simulate the
unsteady inviscid flow over the pitching NACA0012 profile. Tinethod shows an advantage
over the existing Mid-point scheme allowing relatively Ingg time steps and higher global CFL
numbers during the simulation. The non-linear multigridimoel based on the Full Approxima-
tion Storage scheme with V-cycle is implemented to impréedonvergence behaviour of the
explicit scheme in solving inviscid flow problems. The caanigg is based on the hierarchical
agglomeration strategy to combine the fine cells belonginthé¢ identical parent cell at the
same level to generate a series of coarse grid levels. Ttieties operator is based on the vol-
ume weightiness and the prolongation operation is carngdising the upwind scheme. The
implementations in the solver are extensively validatedgusesults from available experiments
and numerical solutions existing in the literature. Fullybulent flow computations at differ-
ent free stream Mach numbers and Reynolds numbers are caatieshd compared with data
obtained from the KRG experiments conducted in Goettingepetvalf of SFB 401, including
some tests where strong shock-boundary layer interactitnbuffet was observed. These are
studied at three different grid resolutions. It is concldidieat the adequate resolution of the
grid cells along the stream-wise direction is vital in aataly resolving the flow physics in
shock buffet. Furthermore, code extensions are carrietbafter the capability to the adaptive
solver for simulating three-dimensional flow and some fisnhputations are performed with
the available computational power.
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1 Introduction

The incremental evolution in the technology of today’s $aort aircraft over the last decade has
led to the belief that the discipline of aeronautics is gedijuentering into maturity. Today’s
aeronautics is characterised by analysis and design twatlate relatively mature and based on
the current understanding of the physics of the flight. Cunt@ols, combined with significant
empiricism and experience, have been successful in demgl@oncepts and designing new
vehicle systems [1].

Gradually, the aeronautics is entering into a phase, winerexpectation is to bring improve-
ment in the multidisciplinary simulations to decrease temdynamic design time, reduce the
development cycle time for aircrafts [2], optimise the agmamic shape, simulate off-design
flow configurations associated with the complex flow fields| design innovative aerodynamic
configurations to push the flight envelop.

Computational Fluid Dynamics has already achieved thestzta valid, reliable and cost ef-
fective tool in aeronautics to aid the process of simulataralysis, understanding and control
of the flow phenomena. The applicability of the CFD has furtheen pushed by the recent
growth in the availability of the computational resourceshie form of increase in the process-
ing power and development in the memory architecture. hit@tdo that, improvement in the
numerical techniques has augmented the progress of CFD neetidn to cater to the current
expectations from the aeronautical research and techyiolog

To date, enormous challenges are imposed on the CFD metturdstie perspective of solu-
tion accuracy, robustness of the scheme to widen the appiiees, improvement in the com-
putational speed for simulating the flow field over complerodgnamic configurations. The
stringent requirement of solution accuracy can be dematestifrom the fact that a unit drag
count ACq = 10~%) is equivalent to four passengers for a large transpontadirf3].

Hence, the development of a state-of-the art CFD tool commgrisf numerical components,
based upon valid theoretical frameworks, and has the yhiliaddress the issues related to the
accuracy, robustness and speed in resolving the flow fieldisad. The current work, carried
out in the above motivation contributes significantly totégearch and applications of the CFD.

Quadflow

The work described in this thesis is carried out in the cardégevelopment and application of
a CFD tool (Quadflow) with the above mentioned objectives tprowe computational speed,
accuracy and robustness of the flow solver. Quadflow is a CFiwvamd package developed
by a group within the Collaborative Research Center projedd (@), "Flow Modulation and
Fluid-Structure Interaction at Airplane Wings” sponsobsgtthe Deutsche Forschungsgemein-
schaft. The Quadflow code is in the developing stage with &tieg framework set upon by
the earlier work [4-7].



The core of the Quadflow code is based upon the concept of daptation, where the mesh
resolution is controlled on the basis of multiscale anal{8] of the intermediate flow solution
in order to improve the accuracy of the final numerical solutiThe grid generation process
and the numerical schemes in the flow solver are designeditm achieving this objective.
The flow solver, grid generation and grid adaptation modategightly integrated to form the
CFD software packag&uadflow

Flow solver: The flow solver is based on a cell-centered finite volume sehevith face based
data structure to effectively deal with regions of the cotapanal domain containing hanging
nodes. The detailed description of the available numeschémes and their applicability is
provided in Chapter-2.

Grid generation: The conceptual framework of the grid generation module iadow is
designed to address the following numerical aspects.:

e Appropriate approximation of the curvilinear surface ie ffhysical domain.

e Hierarchical representation of the cells necessary fogtltkadaptation constraining the
child cells to be exactly overlapped by the parent cell.

The first criterion is linked to the geometrical modelling tbe structural configuration and
achieved through the representation of the mesh lines Uisigline curves [8,9]. The con-
trol points on the curvilinear B-splines are relocated to eldde geometrical boundaries with
boundary conforming curves. The disassociation of theirequnumber of points for accurate
resolution of the surface (CAD modelling) from the numbereagfuired grid points to efficiently
resolve the flow field (Numerical modelling) is the esserfgature of the grid generation mod-
ule.

The satisfaction of the second criterion is essential ippstng the concept of grid adaptation.
The computational domain is discretised in two dimensiortk & multiblock structured grid
of quadrilateral (hexahedral in 3D) cells. The cells aramged in a hierarchical structure with
block, level and index information, which is unique to theptive solver, Quadflow.

(1,1)

X(u,v)

(010) u

Figure 1: Parametric mapping during grid generation
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Fig. 1 shows thgparametric transformatiorof the physical domain into the logical space for
generation of nested hierarchical cells suitable for satapt.

Adaptation: The solver employs a wavelet based adaptive technique ti6$ing a quadtree
data structure to detect highly active regions embeddédaerfiow domain to eventually refine
or even coarsen the grid in the less active regions, reguttia change in the grid topology. Itis
achieved bynultiscale decompositioof the solution variables at the cell centers of a particular
grid level Q. into a sequence of cell averag€} (1) and the detail coefficientsl( 1) for lower
levels recursively, till the coarsest grid level is ach\{shown in Fig. 2) . The method of

L e QL 14—’- LAY B e Ql e QO

Noas NNy Ny

Figure 2: Pyramid scheme of multiscale transformation

transformation for generating the coefficients depend onlyhe geometry of the cells rather
than the cell averages. The amount of variation in the detalfficients of four child cells
belonging to a parent cell (in 2D) is considered as the @oieior grid refinement. A threshold
parameter is chosen to control the intensity of refinememihéncomputational domain. The
grid refinement is isotropic in nature. In two dimensionalflsimulation, four consecutive
child cells at a higher level are created as a result of theewfent of a parent cell. During
the coarsening operation, the four cells are coalescedheg® form a single cell at one level
lower than the original child cells. The level of the cell r@ims unchanged if it stays unaffected
during the process of grid adaptation. The resulting maatific of the grid cells due to grid
adaptation is constrained to a specific block. The crossfieaf the cells from one block to
another is prevented during adaptation.

The applications considered in the course of the work is ariignfor resolving the external flow
field over the lifting structures used in the transport aifcr One of the active research areas
that has huge impact on the economics, performance ang sdifétte transport aircraft is the
efficient design of the high-lift configuration during taki# and landing phases [10]. The task
is challenging because of the complexity of the flow; invotya mixture of localised subsonic
and supersonic regions and the interaction of the bounegey With the wake of the preceeding
components. The enormity of the task can be realised fronmtingber of research programs
being conducted in the past and are currently running; el®@ENASD [11], AST/IWD [2],
EUROLIFT [12], MEGAFLOW [13]. Several studies have been dacted on flow simula-
tion, analysis and design of the high lift configuration,. eAgrodynamic Shape Optimisation
(ASO) of the high-lift configuration with viscous adjoint thed [14], delaying separation on
the flap surface by periodic injection of air [15], numericabdelling of transition [16] and
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many others [17-19].

An efficient and reliable prediction of the flow field over thiglnlift configuration is crucial
and critical because of its primary importance on the aitc@sign. Though, several previous
studies [13, 47] are able to accurately predict the vamadibthe lift coefficient with angle of
attack in the linear region; the solution accuracy is obsete be deteriorated near the stall and
in the post stall region. Accurate resolution of the flow fieler the high-lift configuration in
both design and off-design conditions with improved tueimgle modelling and grid adaptation
has been given a high priority in the work.

A low Mach number preconditioner is implemented to imprdve tonvergence behaviour of
the predominant low Mach number regions in the flow field oviigh-lift configuration. Im-
plementation of the low Mach number preconditioner in Quadthelps in unifying the simu-
lation methods for compressible and incompressible flowldiel

Quadflow is intended to be used as a highly accurate and rtdmistor aeroelastic analysis
involving fluid-structure interaction. This involves théallenges of designing a numerical
scheme to

e use higher order discretisation in time for improved terapogsolution,
¢ satisfy thegeometric conservation laim the presence of dynamic mesh movement,
e berobustin order to increase the simulation timestep fiweag the computational time,

e be able to efficiently utilise the concept of grid adaptivitly improved spatial resolution
of the flow field.

A second order time accurate and geometrically conservpliditrbackward difference scheme
has been formulated, implemented and tested in the addjavesolver Quadflow to enhance
the speed and robustness for simulating unsteady probléim$he mesh movement.
Computation is performed over a transonic airfoil (SFB pedfib understand the significantly
complex and challenging aerodynamic phenomenon of "shaffiett), caused by the interac-
tion between the boundary layer and the shock closing tmsdrdac domain, resulting in the
non-harmonic periodic oscillation of the shock along thafipg. The numerically predicted so-
lution is compared with the experimentally available ddtae following aspects of the physical
phenomena are analysed.

¢ flow configuration triggering the onset of the shock buffet,

e shock traversing distance on the surface of the airfoil,

e frequency of the shock oscillation,

e temporal variation of the static pressure coefficients erdtifoil surface.
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The application of turbulence modelling using DES methatkisionstrated in accurate captur-
ing of the stalling angle of the high-lift configuration. A IFApproximation Storage (FAS),
geometric Multigrid method is implemented to enhance theemgence acceleration of the ex-
plicit time integration scheme. The component of the imptime integration scheme, e.g. the
method to compute the Jacobian matrix is enhanced. Furtbee ig/carried out to extend the
applicabilities of Quadflow for simulating three-dimensabflow fields.

Huge amount of data available from the experiments conduatéhe Kryo-Rohrwindkanal
Gottingen (KRG) [22, 23] provides an opportunity to validalte thumerical simulation and
demonstrate the accuracy of the numerical schemes imptechén Quadflow. Additionally,
available numerical and experimental results in the exgditerature are used for validation.

The contents of the thesis are organised in the following Wwag formulation of the numerical
schemes used in modelling and their implementation in Qoad# described in Chapter-2.
The approach to the flow modelling determined by analysiegptiysical mechanisms in the
flow field and the basis of the derivation of numerical forntiolas are explained in the chapter.
The numerical schemes to simulate turbulent flow, low Macmimer flow and unsteady flow
fields in the presence of mesh movement are elucidated. GHaphestrates the application
of the schemes in simulating flow over different configunasio The results are analysed and
the numerical schemes are validated by comparing with tperarentally available data or
with the pre-existing reliable numerical solutions. Thedfés of the methods in accelerating
convergence and improving the accuracy of the flow solutienassessed. Finally, the con-
cluding chapter outlines the inferences drawn on the bdsilseopresent work and provides
recommendations on the possible future progress of the.work



2 Numerical Modelling and Implementation

The fundamental behaviour of a physical problem can be maheally modelled under a
certain set of assumptions to give rise to a set of equatiensied asggoverning equations
The assumptions are considered either in order to reduceothelexity of the mathematical
modelling or to address a problem where the physical efseconsidered to be insignificantly
influencing the solution. The type and nature of the goveyreiquations determine the charac-
teristics of the physical problem. The equations along withinitial and boundary conditions
provide the condition ofvellposednest the problem, where the solution is known to exist.
The possibility of expressing the governing equation irfedént forms (weak/strong) leads
to distinct formulations (FVM/FDM/FEM) which can be solvedth the adoption of various
strategies available in the existing literature [24]. Nuiced discretisation of the governing

Mathematical Numerical Solution
modelling modellin rocedure
: P
Physical Governing Numerical Solution
problem equation scheme

Figure 3: Steps of modelling the physical problem leadingdioition

equation with the help of Taylor series expansion leads eoctieation of a numerical model
of the problem. Stability, convergence and accuracy of thmerical scheme depends on the
discretisation process. Iterative schemes are employsal\te the numerical models to achieve
the required solution to the problem.

The effort to numerically model the governing equation fog problems related to the aero-
dynamics of the airfoil and wing structures is describechim¢urrent section dealing with the
aspect of numerical modelling.

2.1 Governing equations

Laws of continuum mechanics provide the mathematical hasigplain the dynamics of a sys-
tem comprising of a continuous distribution of particleghe sense of continuum mechanics.
Navier-Stokes equations, consisting of conservation afsnamomentum and energy, are used
as the governing equations to mathematically model andigdifysexplain the flow field under
the assumption of continuity in the medium. Out of all poksfiorms, the weak integral form
is suitable to deal with the discontinuities in the flow fielid.a single phase aerodynamic flow
field, the spatial discontinuities appear in the form of jenop the flow variables arising out of
non-linearity in the governing equations under a certairoEboundary conditions.

The integral form of Navier-Stokes equations in Finite Voliformulation is,
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E/ QdQ:?{ F.nds+/ FydQ. (1)
dt Jow) Q1) Q)

Splitting the flux into convective and viscous terms yields

3/ QdQ+]{ Fc-nds:f Fv-nds+/ F,dQ. 2)
ot Jaw) 2Q(t) 2Q(t) Q)
p v’ 0 0
Q - pV 9 I:C - le ®V/ ) l:V - o 9 Fb == pfb )
pE pVE' o-V—q pfp-V —pQ

whereQ is the conservative vector representing the state vasalig and F, represent the
contribution of the convective and diffusive fluxes throubl control surfaces into the control
volume, respectively.pf, is the body force per unit volume experienced by the fluid & th
control volume.

E is the total internal energy of the fluid and definedeas- e+ \/72 It includes the internal
energy of the fluid by virtue of its molecular motion in therfoof temperature and the dynamic
head, resulted from the velocity stream. The internal gn@ggof a calorically perfect gas is a
function of temperature and is expresse@ asc, T, Wherec, is the specific heat of the fluid at
constant volume.

o is the surface traction tensor experienced by the fluid attmerol surfaces. From Stokes’
law, in matrix notationg = —pl +1 . pis the static pressure experienced by the fluid arsd
the Deviatoric stress tensor. The constitutive relatiarNewtonian fluids correlates the stress
and strain tensor through the dynamic viscosity, (Qiving rise to

T=pOV+0OVH+ADO-V (3)

A represents the bulk viscosity and accounts for the compariestress due to the compressible
strain. Enforcement of equality between the thermodynaressure with the hydrodynamic
pressure leads to the satisfactionmgdi; = 0, giving rise to the conditioh = —%u. Dynamic
viscosity 1) is a property of the fluid which depends on the absolute teatpee. Its variation

. . . . . g Tre +C

in the computational domain is modelled using Sutherlataiis p = uref(%)z Tf+c . The

reference value of the dynamic viscosity) is obtained using the reference temperatiiyg )

(explained in the section 2.2 dealing with non-dimensisaéion of the governing equations)
and the preset reference Reynolds number. Sutherland’'statape C) is a constant, set to

110.4K.

V' in Eqn. (2) represents the instantaneous velocity compsneomprising of the mean value
and the fluctuating part. Temporal average of the dyadicymodf the instantaneous quantity
gives rise to the Reynolds stress tensor as explained in thelémce modelling section 2.3 in
the later part of this thesis.



The heat flux vectord), depends upon the temperature gradients of the flow and delted

by the Fourier's lawg = —k[OT. k is the thermal conductivity of the fluid and is related to
the dynamic viscosity of the fluid through Prandtl’'s numbé&hus, k = %, whereC,, is the
specific heat of the gas at constant pressQris. the volumetric heat supply to the unit mass of
fluid in the control volume. In the present work, air is moddlas a thermally perfect working
fluid with constant values of the specific hedls,C,). The state equatiom = pRT is used in
addition to the governing equations to establish the csurelation among the flow variables

under the assumption of the ideal gas condition.

2.2 Non-dimensionalisation of the governing equation

The conservative variables exist in different orders of nitagle when expressed in physical
units. They are non-dimensionalised in order to avoid $icamt round-off errors cropping up
during numerical iterative processes. In this work we ad&siwo-dimensional time-dependent
flow.

For operational convenience during non-dimensionabgatihe governing equations are ex-
pressed in conservative Finite Difference form. The cantynequation becomes

90 (9pu) . (9pv)
ot ox ay

Substituting the dimensioned flow variables as the prodfioba-dimensional and reference
guantities,

0(pprer) O(Ppreflther) = O(PPrefVliet)

0(ttret) (X%ef) (YXef) 7
where,
A— P f—-—_U pg_ Vv §f_ t
P= pref’u_ Uref’v Uref’t tref’
g X g—Y aA_ P Eg_ E
X= Xref7y_ Xref7p_ pref’E =

Reference quantities are set based on the free stream vélihesflow variables. ThuQer =
P, Uref = Cwo, Wherec, is the sonic speed based on the free stream variaklgss set to the
chord length of the airfoil and reference tini@; = Xre/Uret-

Reference values, being constant, can be taken outside péathal derivative terms. Thus,

N pref%

(PrefUret) 0(p0) n (PrefUref) 0(PV)
tref

+ 5 =
Xre f aX Xre f ay

=0,

Cancelling the reference terms, we have the non-dimensiomalof the continuity equation

0x oy ' @)



Momentum equation along the x-direction in the absenceebtty force can be written as

d(pu) N d(pu? + p) N d(puv) N 0(Txx) . 0(Txy)

ot 0X oy 0X oy =0

The reference value of the pressupaf) is set in order to achieve a unit Euler number. Hence,

— 2 2
Pref=PrefUres. andTres = Ury;

Introducing the reference variables and rearranging thesethe dimensional form of the
momentum equation gives rise to

d(pa) | APEP+p)  APAY) | 1 Ot Oty
ot tT % T oy "Reelox oy ° ©)
where the reference Reynolds numbge s = m.

Wref IS Obtained using the Reynolds number, which is pre-set g@ath computation to model
the physical flow in external aerodynamics. In all the corapans through out this work, the
Reynolds number is based on the chord length of the airfoil.

Energy equation, in the absence of any external work dueetddidly force and internal heat
generation, can be expressed as

0(pE) i 0(puH) n O(pvH)  O(UTxx+Vixy)  O(UTxy+ VIyy) n 0(9) . o(ay)

ot ox oy ox oy ox oy =0,

where
=2 (u "") T V4 du
H 3“ xt Xy = ax ay *
Ox = kaT qy kaT
Substituting the heat flux vector and shear stress tensbeiarergy equation and introducing
reference values,

(PretEret) a(ﬁé) n PrefUrefEret 0(POaH ) n PrefUrefEref a(ﬁ\ﬂ:l)
0X

tref ot Xref Xre f oy
. r2er¥ef a(afxx+\7rxy) B r2efp-ref a(ﬂfxy—l—\ﬁyy)
Xref 0x Xref ay

krefTref a(CIx) Kref Tref a(dy) .
x 2. oy
Xref X Xref y

Dimensionally,[Eret] = [Tref]
Prandtl numbePr = Tcp



Grouping the reference values with Reference Reynolds nuartzePrandtl number,

>

o

=

£) 0
g &

| ™

GH) 0(pvH) 1 9(0f+VAxy) | O(0fxy+VRy) 1 Od oGy
% 0  Raer R & priox Tay)) "0

D

(6)
Laminar Prandtl number has been set to 0.72.
The above derived non-dimensional form of the governingaéqo is used in numerical mod-
elling as described in the subsequent chapters. The hatadymbked to denote the non-
dimensional flow variables are dropped in the rest of thaghesthe sake of simplicity.

2.3 Turbulence Modelling
2.3.1 Physical nature of turbulence

Turbulence is a deterministic chaos [26] generated dueet@ldlotuation of the flow quantities,
varying spatially as well as temporally over the averagaeshnd can be mathematically mod-
elled [27]. These fluctuating components are physicallgrpreted as the spectrum of length
scales cascading energy from the core region of the flow [28}e viscous boundary wall to
be dissipated as heat energy through friction.

2.3.2 Numerical modelling of turbulence

Broadly, the spectrum of the scales in a turbulent flow fieldghag from the smallest as deter-
mined by the Kolmogorov scale [29] to the largest as deteoyetthe boundary layer thickness
can be classified into three different regimes associatdddifferent length scales. The flow in
the core region interacts with the equivalent sized and eoatpely larger length scale (inte-
gral scale [26]) to channelise energy into the inertial |rghich contains eddies with moderate
scale size. Kolmogorov’s universal law of equilibrium isegld in this regime and the length
scale is uniquely determined by the molecular viscositythedate of energy dissipation. The
energy from the inertial range is cascaded into the eddgtstres with the smallest scale size
(dissipation scale [26]) and the flow phenomena is govergeaddiecular dissipation.

In the range of larger length scale, the eddies are anisotesyal governed by the orientation
of the mean flow. They are dominant in the part of the flow donaaimy from the solid wall
due to their interaction with the mean flow to extract enemytfansferring to smaller eddies.
They are physically present in the form of large separatidobbes or wakes in the flow field.
The energy is dissipated near the viscous solid wall. Hetheegnergy is channelised through
the spectrum of the eddies away from the wall to the regiomefsblid wall. The small scale
eddies near the wall responsible for converting the flowgyntr heat as a result of friction due
to the molecular viscosity are isotropic as the diffusioepdmenon has no preferred direction.

10



Increasing levels of complexity, computational expense, accuracy

Turbulence modelling

Direct Numerical Simulation

RANS modelling Subgrid scale modelling

(LES)

Detached Eddy Simulation
(DES)

Linear Eddy Viscosity Non-finear Eddy Viscosity Reynolds
Modelling Modelling stress model

V2-fmodel  Explicit Non-linear
Algebraic model  One equation Two equation
model model

Constitutive relation

Figure 4: Numerical modelling of the turbulent flow

Depending upon the required computational effort and nigaknesolution of the eddies, mod-
elling of the turbulent flow can be broadly classified intcendifferent categories.

In the Direct Numerical Simulation (DNS), the whole spentrof the turbulent scale is resolved
by the grid. The grid needs to be finely refined in order to aaptiie smallest length scale in
the dissipation range.. Hence, the number of points in edés;ction,% — Rel. The num-
ber of points in the grid becomell, = Rel. for a three-dimensional computational domain.
The number of grid points increases significantly with theréase in the Reynolds numbers.
The computational expense associated with the DNS modehtes the constraint due to the
grid size requirements, as the external aerodynamical ft@aswith relatively high Reynolds
number.

In the Large Eddy Simulation (LES), spatial averaging isdusehe form of a grid filter to cap-
ture the components of the solution with larger length sca®mparison to the grid size, and
the smaller length scales are explicitly modelled using-§ud Scale Modelling (SGS). Grid
near the solid boundary has to be isotropically refined tauwall the length scales. Though
the requirement of the number of grid points is comparatilesser than the requirement in
using DNS model, still it is prohibitively high for large deandustrial applications.

In Reynolds Averaged Navier-Stokes equation (RANS), all thbulent scales are meant to
be captured through numerical modelling. Ideally, the ggidesigned to capture the variation
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in the mean flow component rather than any turbulent lengétesc As the variation in the
mean flow quantities are significant along the normal dioectiear the wall, high aspect ratio
cells are used to capture the boundary layer. The technajoetlel the eddy viscosity from
the mean flow components is the prime factor determining ¢caracy and the computational
expense of the RANS model.

2.3.3 Reynolds stress modelling through LEVM

The instantaneous component of a conservative quantitypeagxpressed as the sum of the
average quantity and the fluctuating part.

Q)= 5 [ (Gt +axt)e

When the time scale of fluctuation is very small compared tactimaputational timestep, the
fluctuating part is averaged out to null and only the mean @rapt is captured. During this
method of Reynolds averaging, the linear terms in the gomgraguations (Egn. 1) contribute
to the numerical solution through the averaged quantities$,the non-linear terms have an
additional component, expressed as the product of the twtufiting flow quantities. Such a
term present in the momentum equation is calledRbgnolds stress tensand in the energy
equation, due to the scalar form is termed asRbgnolds flux vector

Boussinesq hypothesis is used to linearly correlate the Reyrstress tensor with the mean
flow quantities during turbulence modelling through theadtction of Eddy viscosity. This
process is called as the Linear Eddy Viscosity Modelling\{IMB.

—pV'®V':ut(DV+(DV)T)—%I(D-V)—%I(pk). 7)

k is the turbulent kinetic energy.
The product of the fluctuating components present in thespramation of the total internal
energy in Egn. (2) is modelled

~pV'E = kIE,
where, k = % Pr; is the turbulent Prandtl number and the value is set to 0.9@&lfahe
computation.
L is the eddy viscosity and quantifies the turbulence in the field. Unlike dynamic viscosity,
which is a fluid property, eddy viscosity is a flow property atgpends on the flow field. This
unknown eddy viscosity is obtained by solving the turbuféeow quantities.

2.3.4 Detached Eddy Simulation

When the time scale of certain turbulent eddies becomesrlrge the unsteady timestep used
in the numerical simulation, a part of the fluctuating comgratrrelated to the low frequency
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end of the solution is captured along with the mean flow qtiastihrough grid resolution.
This causes the dual inclusion of the fluctuating term aséneponent is modelled through the
turbulent equations using LEVM. This leads to a modellingeduring numerical evaluation,
specifically for unsteady flow simulation with RANS, where tiestriction in the numerical
timestep makes it comparable to the time scale of certairesedds large spatial scale of the
turbulent eddies are associated with larger time scale ciuftion, the problem is encountered
due to the presence of massively separated flow in the cotignabdomain.

This drawback of RANS in imposing a limitation for accuratedsolving and modelling the
turbulent scales in the region of massive separation hasaksn reported by Franlet al [30].

In order to enhance the applicability of RANS Simulation, Ryb§, 31] suggests the ratio
between the grid resolved timescalg,( and modelled turbulent timescal& ) should satisfy
the condition based on the Reynolds number and the Stantobenuﬁﬁ*{t1 ~ y%%, wherey =
[1,10 in the boundary layery = [0.1,1] in the free shear layer. The results obtained with a
modified k<o model [32] on a high-lift configuration has shown improveinesmpared to the
standard model [15]. In contrary, LES, being a spatiallraged model and able to distinguish
the grid filtered component of the solution from the numdlyaamodelled part, does not suffer
from this drawback [38]. Inspite of this advantage, the mayility of the LES is restricted due
to the requirement of prohibitively high grid resolutiontive near wall region.

RANS modified with SGS

Figure 5: Numerical models used in the computational dorfwiZonal DES

Hence, using RANS for the boundary layer simulation and LESéregion far-away from
the wall as suggested by Spalart [27], one can effectivagdthe strengths of both the mod-
els. A boundary in the computational domain in percentagbéethord length separating the
RANS region from the LES region is prescribed a priori, thu&imgit equivalent to the Zonal
DES [34]. The effect of the dimension of the specified boupdasseparate the two regions on
the accuracy of the solution is discussed in the result@e&til. 3.

Several researchers have successfully tried to utilisbenefit of RANS and Large Eddy Sim-
ulation (LES) by effectively combining them to create a egrf hybrid models for the kinds
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of flow dominated by separation [35—-41] and unsteadineds J4fese successful studies con-
ducted in the recent years by various researchers for UsenBES in simulating unsteady and
massively separated flows affirms the decision to use thelmode

2.3.5 Spalart-Allmaras model and modification for DES

Flow is assumed to be fully turbulent without undergoing apsition for all the computations
demonstrated in this work. Turbulence in the computatiatmahain is modelled with one-
equation Spalart-Allmaras model [43] which solves a transpquation of an intermediate
variableg).

Dv 1 — — — v
o = 50 (v + V)V + Cop(0(V))?)) + Cpy SV —cwlfw(a)z, (8)
where the terms on the right hand side of the equation modeatdhtributions from the diffu-

sion, production and destruction phenomena. .

S=S+ @ fv2 , where the scalar quantity S derived from the shear strégteasor

Ju ow Ju ov
_ 7 OW 0V, 0u Ow., 0uU 0V,
N ((dy 62) Jr(62 ax) Hay ax) )

fy1 and fy, are defin_ed as,

(o v
Vl_XB—i—C\g/l’X_V’
fio=1-
v 1+xfu’

. . . —f—C\?\B 1 6 v
Auxiliary functions are defined a:qu:g(ge+C€B)6,g=r+Cm,z(r —1),T = 555

The closure constants atg; = 0.1355,0 = % Cp2 = 0.622,k = 0.41,¢cy2 = 0.3, c3 = 0.3,
cv1=03,ch1 = %Jr%

After solving the transport equation numerically, the tuemt viscosity is obtained by using,
Vt - \val.

For DES, the wall distance is modified as suggested by Sjagrt

q— Unchanged if dyw < Kw xC;
| 0.65x maxAx,Ay) if dy>0.1xC.

where dy, is the actual distance of the cell center from the wallx and Ay are the grid

dimensions in the Cartesian coordinate directions. Thect#ffness of the model in the
modification of the wall distance is based on the requiregqmee of the uni-directionally
stretched near wall grid cells, which prevents any wallatise being modified near the wall
region. This restriction exactly fits to the requirement afrhReynolds number turbulent
flow simulation, where the grid near the boundary layer iststred in the flow direction to
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capture the high gradients of mean flow quantities along tvenal direction to the wall.
Away from the solid boundary, the largest dimension of thie gell becomes smaller than
the actually estimated wall distance and the wall distancdergoes modification. This
modification results in increasing the dissipation as trstrdetion term present in the original
S-A model is increased. In the outer region, away from th&lseéll, the model with DES
modification is proved to be reduced to Smagorinsky LES m[8f| In order to prohibit the
SGS modification from entering into the RANS zone, grids wight kind of variation in the
coordinate directions have to be specifically designed [33]

To ensure the effectiveness of LES at a relatively largetade from the wall, the dimen-
sional characteristic of the grid needs to be controlledhgyflow which is usually comprised
of relatively larger and isotropic scales. In order to $attke imposed condition on the grid
generation, the initial grid used is relatively stretchedmthe wall but dimensionally isotropic
away from the wall. As Quadflow uses adaptivity, the grid isomatically refined in those
regions detected by the activity in the flow field but still maining their aspect ratios. In the
outer region, away from the solid wall, the adapted grid rt@is its isotropic nature after the
grid adaptation and able to capture the high energy isatropbulent scales which are dimen-
sionally similar and interacting with the mean flow. Adamatdecreases the wall distance of
the grid cells in the vicinity of the boundary and improves trid quality in improved cap-
turing of the flow variation. Hence, the grid adaptation itunally complementary to the DES
modelling for improving the accuracy of the numerical siatidn.

2.3.6 Wall distance computation

Computations have been performed using Spalart-Allmarss’eguation RANS model and its
variant, modified DES model to effectively capture the tlebtiscales. The specification of
number of cells and the stretching ratio control the gridbh&son in the boundary layer. The
approach is similar to the Low Reynolds number modelling, hiee grid cells near the solid
wall are refined to capture the turbulent flow field rather thaw utilisation of explicit models
in the form ofwall function[44].

The wall distance keeps on decreasing with every succegstv@daptation and the improved
resolution of the boundary layer flow enhances the accurkityesolution. Hence, the method
to compute the wall distance becomes critical as the normtdrite from the cell center to the
wall becomes smaller with each grid adaptation level. $peaire is taken, as explained below,
in order to compute the wall distance in the presence of higtietched adapted grid near the
wall.

T is the position vector of a point on the solid boundary frora tenter of the cell whose
wall distance needs to be computed. The estimated wallndistaexpressed in the form of the
magnitude of th& needs to be minimised to ensure the proximity of the cell ftbenobtained
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Figure 6: Vectorial estimation of the wall distance

location of the solid wall. Vectorially it is expressed as
r=ri+ O'T’z, (9)

wherery, T, are the position vectors of the nodes ani the free parameter needs to be opti-
mised for obtaining the minimum distance.
IF| is minimum when
_ —(MLT2) (10)
(T2.12)
The extension of the method to determine the wall distancthfee-dimensional computation

is similar.

2.4 Time integration scheme

The development of the flow field during computation is a tvepgirocess, nametgconstruc-
tion andevolution The reconstruction process determines the spatial ancofahe scheme
and is detailed in the section 2.6. The current section descthe numerical schemes used for
the temporal evolution of the flow field.

Backward-Euler and its modification to a two step time intégrescheme suggested by Batten
and Leschziner [45] have been used for steady state flow afiong. The above mentioned im-
plicit schemes are theoretically unconditionally stabid allow considerably large CFL num-
bers to be used during computations, thus reducing the atronltime. These schemes are first
order accurate in time and rapid numerical convergencehieaed with the use of local time-
stepping. Despite the limitation imposed by the CFL conditexplicit time integration scheme
based on the Runge-Kutta method is implemented. The schesribdnadvantage of reduced
requirement of the memory space over the implicit schemmgwomputation. The construc-
tion and storage of the Jacobian matrix in the implicit folation requires a huge Random
Access Memory (RAM) space and proves to be a bottleneck esdlyerri three-dimensional
flow simulation, where the number of cells in the computala@omain increases significantly
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as a result of grid adaptation. Multigrid method has beenlempnted in the explicit time
integration scheme to improve the convergence behaviour.

A time integration scheme based on the second order bacldifegtence discretisation is nu-
merically formulated using the control volume approache §bheme is utilised in simulating
unsteady flow field arising out of the movement of the rigidyodthe presence of grid adap-
tation. The scheme is shown to be accurate and demonsteabednore robust compared to a
previously implemented unsteady time integration schesimggthe mid-point method [25].

2.4.1 Scheme for steady flow simulation

Preconditioned Navier-Stokes equations for the statijogad can be written as

rc/ a—Qd§2+ [Fe—R/J]-ndA=0
Q) ot oQ(t)

whererl ¢ is the preconditioning matrix defined for the conservatiagables.
F. andF, represent the inviscid and viscous flux vectors respegtivll implicit form, the
residual is to be evaluated at tfre+- 1)!" timestep. Thus,

aQ n+1y
rc/Q(t) ~5d0 +RegQ™?) =

The above equation after Newton linearisation (furtherla@red in the section 2.9) and
numerical discretisation gives

0+ (ResQ))AQ + Res Q) =

After rearrangement of the terms,

e

e Q+—Re$Q”)]AQ“ ResQ")

AQ" = —J1RegQ") (11)
where

|9 i
0+ 3gResQ)

Eqgn. (11) represents the implicit numerical formulatiortled Navier-Stokes equations, which

\]:[rc

is solved using th&ackward-Eulertime integration processB; (Q",At) is a single iteration
step in Eqgn. (11) and the formulation is symbolically représd as shown in Eqn. (12).

AQ" = By (Q".A)) (12)

Jacobian matrix arising out of the linearisation processtmnumerically or analytically con-
structed (explained in section 2.8) and is used to build tkegnditioning matrix required for
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solving the system of linear equations. A two step time irgggn scheme (B2), originally
developed by Batten and Leschziner [45], as a modificatiohédiackward Euler scheme has
been implemented. A provisional solution is derived in thedgctor step which is numerically
equivalent to the Backward-Euler scheme with reduced tiepesthe predicted solution is cor-
rected to obtain the final solution at the second stage ofitie integration process. The pos-
sibility of using higher CFL numbers in the B2 scheme for idesitcomputational problems
demonstrates a higher degree of robustness of the schenpaaihto the Backward-Euler
scheme.

5Q-B1Q". 3).0=Q"+5Q (13)

50 =B1(Q,8),Q" " =0+ %Q

The scheme is observed to suppress the chattering indudée bniter and results in improv-

(14)

ing the convergence behaviour without affecting the soiuéiccuracy.

2.4.2 Moving grid formulation

One of the prime objectives of the Quadflow solver is to use & &FD tool in aeroelastic appli-
cations. The section outlines the derivation of the nunaéfarmulation to address Arbitrary-
Lagrangian-Eulerian problems (ALE) on the foundation & finst principle of differentiation
considering the movement of the solid body in the computatidlomain. The movement of
the solid wall enforces a deformation in the computatiorahdin and the control volume of
the grid cells undergoes a change with time. The change iodh&ol volume of the grid cells
can be expressed as the velocity of the nodes constitutengahtrol cell, as explained in [7].
The numerical scheme is modified to take into account theln@diacities when dealing with
the problem involving the rigid body movement. The physighificance of various terms
arising out of the derivation is also explained. LEis a conservative quantity transported into
the control volume due to the relative motion between thel #und the control surfaces.
Using the first principle of the differentiation,

E(/ f(r.0dQ) — fim Jogsar) F(r+Art+A)AQ — [o4) £(r,1)dQ

dt* /o) At—0 At

the substantial derivative takes both the spatial and temhpbanges of the conservative quan-
tity into account.

Using Taylors series expansion and neglecting the higtuarderms,

o Jan (F0 0 - TEDAYAQ — fo F(r,1)dQ
_At—>0 At

.1 of(r,t)
— lim —/ Df~ArdQ+/ Yo
A—0 At Jo(t) ot) ot ]
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:/ Df-VdQ+/ Al

Q(t) o) ot

—/ O(fV)dQ — / fD(V)dQ+/ 9 t(r 1)do
) ot ot

Using Reynolds transport theorem,

/ O(fv)dQ=¢  fV.nds
Q(t) 0Q(t)
From the conservation of the control volume,

O\V)dQ = —%(dQ)

The negative sign appears as the velocity of the incomind flesponsible for increasing the
control volume is directionally opposite to the normal of dontrol surface.

d
Ll trvda :}[ fV - nds/ 9 4o / £(r,t)dQ
i o f002) = 46V ondst )+ [ STy

Thus the final equation takes the form,

d
— f(r,t)dQ :?{ fV-nds—f fVy- nds+/ (r,t)dQ 15
dt(/Q(t) (r,)dQ) 2Q(t) 2Q(t) 9 ) (15)

2.4.3 Scheme for unsteady flow simulation
2.4.3.1 Backward Difference Scheme Euler equation, in the implicit conservative form
can be expressed as
4 +1
g / QdO + Re&1 — 0, (16)
ot Jow)

Q(t) is a small segment in the computational domain enclosedégulfaceQ(t), represent-
ing the single control volume in the following derivation.
Applying chain rule [83] in Eqn. (16)

oQ 9 1
/Q L ardat /Q (t)Qat(dQ)+Re§ 0. (17)

Using Beam-Warming second order temporal discretisatiothiotime derivative terms

)+Re&tl=0 (18)

3 k+1 40" n—1 SdQnJrl —4dQn danl
[ (IR [ o :
Q(t) 2\t 2/t

Wheren— 1, n andn+ 1 represent the physical timesteps &uknotes the index for Newton
iteration.
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Linearisation of the residual gives,

Re&tl — Re§+aTg(Re§)AQ"

= f RQ) st s (Re$AQ

Oty 4

Substituting the linearised residual and rearrangingehag in the Eqn. (18)

/ ( (3Q —3QF) + (3Q*—3Q") —(Q"-Q" 1)
Q(t) 2At

(3dQ"*+1 — 3dQ") — (dQ" — dQ" 1)

o |

)dQ

0Q

Rearranging the terms and using the notatidyi for forward difference,

+?{Q FC(Qk).nn+1ds+—(Re§)AQk (19)

SAQk n n—1
2 At dQ+/ oA\ Q@ —Qdae- / —QTae
3A dQ“ 1A (dQ" 1)
/ % / o2 At
k
+ ?{ th ) Npp1ds+ a—Q(Re§)AQ (20)

The vector of conservative variables can be taken outsitteeofolume integral as it represents
the solution vector at the cell center of the control volumd ean be held as a constant inside
the cell. The proposition is based on the satisfactionasfservativity conditiorof the Finite
Volume method.

i n+1 k kon+l __ 4 non Qn_lQn_l
ont? At (ZAtQ St oA )
3A(dQM 1A dQ” A(dQ™h
@ m e
+ ?{ Fo(QY) - My ads+ — (Re§)AQk:O. (21)
0, 4 0Q

The change in the control volume can be expressed in the tegnidovelocities of the control
surfaces, using Eqn. (24). Hence, the Eqn. (21) becomes,

3 Qn—lQn—l
—Qn+lA k ~
2/t Q- (ZAt 2/t )
3 1 n1
5 Q Vgn ‘Nppads+ > y{ Q" 2Vg, , -Nnds
o, 00,

Qk n+1 4thQn_'_

+ Fe(QY) - npads+ i(Reé)AQ" =0. (22)
aQtn+1 aQ
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Vg, ;. andVy, are the grid velocities computed for the existing Mid-paseheme using the
method described by Lamby [7] and correspondrite 1)I" andnt” timesteps, respectively.
Rearranging the terms,

[| 3Qn+1 + i(Reé)]AQk (_Qka - _QnQn 1 anlanl)
2At  0Q 2/t 2/t
-l-]{ Fc (@ ——Q Vg,)- nn+1d5+% —Q”_’Vgn L -Nhds=0

Lo 3 :
SUbStItUtIﬂgEVg = Vg for convenience,

3Qn+l 0

9 k
155 +0Q(Re§)]AQ
1
:—j{ (Fc(Qk)—QkVS:])'nanS——?{ Q" Vg, , - Mnds
thi1 2 aQtn
_ikk_inn in—ln—l
(ZAtQQ ZAtQQ Jr2AtQ @) (23)

Vg, is the component of the grid velocity along the normal digettto the face, which is
computed during the grid deformation at the beginning ofywenestep. Assuming the grid
velocity is constant in a time interval, the variation of tt@ntrol volume in two dimensions
will be quadratic with respect to time. Thus a single Gausatgo the temporal direction at
the mid point of the time interval is sufficient to relate thedgvelocity with the change in the
control volume using the numerical integration given by H@4). Expressing numerically,

AdQh s
=Y V4 - d 24
~/Q(t) At i; On; ( ) S ) ( )

whereAdQ" is the change in a small segment of a single control volummsed byaQtn+l and

Vg, is the grid velocity corresponding to the surfaces is the number of surfaces eﬁclosing
the control volume.

In three-dimensional computation, two Gaussian quadggiamts with appropriate weightage
Is needed for the numerical integration of Egn. (24) for hdsg the cubical variation in the
control volume with respect to time.

Eqn. (23) is valid for the complete computational domainarmgding a change in the control
volume due to the movement of a rigid body inside the domathadso, in the presence of grid
adaptation.

The subsequent section proves the derived numerical scbatisgy/ing theGeometric Conser-

vation Law

2.4.3.2 Proof of satisfaction of Geometric Conservation Law A valid unsteady time in-
tegration scheme has to necessarily satisfy the geometnisecvation law in order to be a
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"cell-volume-preserving finite-volume scheme” [56] forlgag the Arbitrary Lagrangian Eu-
lerian (ALE) problems. It eliminates numerical oscillatgand preserves physical conservation
laws for solutions on moving meshes.
The geometric conservation law states that the uniform fledd fremains unchanged in the
presence of movement of the boundaries of the computatdorakin. In this subsection, the
invariance of the uniform flow field in the computational domaith deforming boundaries is
shown to be satisfied by the currently derived scheme.
Discretisation with Implicit Backward Difference schemeeasg

3Qn+1 0

155 +OTQ(Re§)]AQk (25)

where

 —f

(F(Q) - > Van) - Mnads— 2 }[ Q”"Vgnl nds

Qtn+1
3 k n+1 n n n— 1 n—-1
TN 2At QT+ 2At Q ) (26)
For a uniform flow field
Roo - —Fc(Qoo)% nn+1ds+ Qoo 2 Vgn . nrH_]_dS
thi1 aQth
1
T A oo V ° ~ AL oo T %) ~ A L oan 1 27
2% égtn o1 Mnds— (ZAtQ ZAtQ +zmQ ) 27

After rearranging the terms

3 Qn+l _Qn 1 Qn+1 —_Qn

4 n-1
_(Z_Atho — Z_AtQ o Q" + Z_AthQ ) (28)

= Ro =0.

2.4.3.3 Implementation The integral termy{ Q" 2Vgn . -hndspresent in the Eqn. (26)

is resulted from the Beam-Warming dlscretlsatlon of contmlime which is essential for the
satisfaction of the GCL.

Numerically
1 (Qn o anl>

Q" 2V, , Mnds= Q" 2

, Where -3 — (="

For unsteady simulation in the absence of the grid moventteaterm is reduced to null.
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The above derived formulation of the backward differendeeste can be implemented without
any further complexity for the flow problems with moving balamnies without grid adaptation.
But as Quadflow is conceptually based on the grid adaptat@mique, certain specific mod-
ifications are essential for the sake of implementation. ddmaplexity arises because of the

requirement of the information at ttfa — 1), time level. These quantities appear as the terms,

anlgnfl
2\t

ment or coarsening during grid adaptation resulting in thenge of the grid topology between

and?{ Q”*%Vgn_1 -npdsin the Eqgn. (23). The cells in the domain undergo refine-
oS

the time levels, 1 andt, 1. Hence, the cells at the timtg 1 are no longer present in the
domain aty 1. Thus, the connectivity between the cells in the donﬁLq is established with
the cells belonging to the domain @i, 1 in order to obtain the quantities at — 1), in Eqn.
(23).

The k, andny, terms in Eqn. (23) depend on the grid and flow variables cpomding to the
timet,.1 andt, respectively and hence, are directly available.

Searching algorithm

The grid topology undergoes a change during adaptation. céhe in the past grid domain
corresponding to the cells in the present grid domain iscéeal using the method described
in the section, as illustrated in the schematic diagram Fig.he rectangular block represents

L0 L1L2 L3 L4 10 L1L2 L3 L4
B1 B2
Rl s |C RIS ¢
B1 B2
- ol
L0 L1 L2 L3 L0 L1 L2 L34

Number of Adaptation<Max grid refinement _ o
Number of Adaptation>=Max grid refineme

Figure 7: Possible forms of modification in the control vokidue to grid adaptation

the storage of the cells in block and level wise manner dehase’B” and ” L” respectively.

All the cells belonging to the first block are stored in theraegt of the array marked by the
line "B1”. Inside the block, the cells are categorised actwdo the level information and

stored in the segments as shown by dotted lihgd,1, .. .Ln, representing the grid levels. The
cells subjected to the refinement process (the operatiosnstdd as "R” in Fig. 7) undergo a
unit increase in their level and during coarsening, thellefi¢he cells is decreased by a unit
(denoted as "C” in Fig. 7). The level information remains wenotped if the cell is subjected to
neither refinement nor coarsening. The magnitude of jumpergtid level of the cells during a
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single adaptation process is always restricted to unitdditen to that, the adaptation criterion
also restricts the difference between the level of the cih all the surrounding neighbours to
unit in order to prevent a drastic variation in the cell siz¢he regions of grid adaptation.

The grid adaptation can raise two distinct possibilitiebthe prescribed maximum level of
refinement has already been reached then the maximum nurhlesels in which cells can
possibly stay remain same in the next adaptation, thoudé cah undergo alteration of their
levels in the domain. This has been shown in the right sidegf# Otherwise, cells with one
level higher values will be created after adaptation asasgmted in the left hand side of Fig. 7.
Interblock cell transfer is avoided during grid adaptatamd newly generated cells are always
confined to the same block as their parent cell. Thus, thelséamore efficient in the block-
wise manner.

Cells at any level in a particular block belonging to the réggid domain can correspond to the
cells either in the same level or in one successive level onepredecessive level of the same
block in the previous grid domain depending upon whethecéleemains unchanged or coars-
ened or refined, respectively. The association between tla@rbe found out by comparing the
level and index information which is specific to an indivitlaall.

There are three different and distinct possibilities oh&farmation, a cell can undergo during
grid adaptation, as considered below by two different fmesiases.

Procedure for coarsened and unmodified cells

The schematic diagram in Fig. 8 shows the sequence of opesatihe control volume cells
are subjected to during the refinement process of grid atiaptaThe grid represented as
g2 _, undergoes deformation at tinte 1 and a new griddy,) with modified control volumes is
obtained. The grid topology remains unchanged during tlegatipn. The grid velocity, ,
att"1is estimated.

At time t,, the grid @) is subjected to the coarsening process of adaptation.esber control
volumes are agglomerated to create a single cell in the dorepresented bgi. The grid
topology changes during the operation, but the volume nesnanmodified. The grid velocity
Vg, att" is estimated from the change in the control volume, duriregoformation of the grid
from g8 to gn.1. Newton iterations represent the further sequence of tipasafromty, to ty 1,
where the system of linearised equations is solved and tb&é®ois updated. p” represents
a cell in the domairgn;1 att" with control volumeQ,. Its corresponding cells ig2_; are
indexed as " with control volumeQ;. If the cell is either coarsened or remains unchanged,
then by the definition of conservativity,

m 1 if unmodified:;
(QpQp)n-1= Y Q1Q Hm= { (29)
=1

4 if coarsened

Similarly
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Newton iteration
1:n—l t” 1:n+1
gn gﬁ gn+1 |

9?1—1 gn Adaptation
(Parent cell volume unchanged)
V Vgn Grid movement

91 Grid movement
(Topology unchanged)

Figure 8: Sequence of operations in a single unsteady ALHlaton timestep during grid
coarsening

Q- 1 if unmodified;
); (30)

m 1
n—1 . n—s
(%thn Q zvgn_l . nndS)n_l B Z]_Ql 2( At

| 4 if coarsened

Procedure for the refined cells

The cells undergoing refinement during grid adaptationfierintly treated. Fig. 9 schemati-
cally represents the sequence of operations, the grid bomsgh during simulation.

The coarse cell in the gridd_, is divided into four cells (referred to agin gn) during the
process of grid refinement at time pr Is the control volume to be calculated for the fictitious
cells (p/) att,_1 in the grid domairg?_,, corresponding to the celt)( in the domaingg with
the control volumeq. Those fictitious cells in the doma@g3_, are represented by dotted lines
in Fig. 9.

The difference betweef ; andQq is arisen due to the change in control volume because of
the deformation at timé,_. ConsideringAQp/ Is the change in control volume during grid
deformation,

4 4 4
> Qp/+pz £Q =S Qq (31)

So for each celp
Q + 240y =0 32)

Due to the presence of a single coarse cd} at, the change in control volume can be assumed
to be proportional to the original control volume. Henﬁpr/ (] Qp,
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Newton iteration

tn—l tn tn+1
| | gﬁ gn+1 |
o q | P
""" p s gn —>] =
g, 9
n-1| “n Adaptation

(Parent cell volume unchanged)
\/gn Grid movement

Vg
"1 Grid movement

(Topology unchanged)

Figure 9: Sequence of operations in a single unsteady ALHlaton timestep during grid
refinement

= AQp/ = KQp/, (33)

where K is the proportionality constant.
Substituting Eqn. (33) in Eqn. (31),

4 4 4
2 Qy+ Z KQy = Z Qq, (34)
p=1 p=1 g=1
4 4
_1Q _1Q
= (1+K) = zflgq :qul 1 (35)
p/:1 p’ |
Substituting Eqgn. (33) in Eqgn. (32),
Q- 2 _ P4 g
P1+K Zgleq
(QpQp)n-1=Q*Q,. (36)
Similarly,
_1AQy _1AQ Q
n_%v -n dS _ = n 2—p oy n 2 l q . 37
(fo, @ HVar s 1= Q10 = (@2 Gag) @D

2.4.4 Explicit time integration scheme

A fully explicit, three stage, Runge-Kutta time steppingestie is implemented in Quadflow,
which forms the smoother to the Multigrid algorithm (senti®.10). The explicit scheme is
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comparatively slower than the implicit time integratiolneme, as a result of the enforcement
of the CFL condition, which limits the allowable local timept Nevertheless, the characteristic
of the scheme in utilising very low Random Memory during thenpatations (helpful in three-
dimensional simulations) has motivated us in improvingcisvergence behaviour through
Multigrid method.

The Explicit time integration scheme for the Navier-Stokgsations can be represented as

9 .
= /Q , QU0 +ResQ) =0 (38)

Using three stage Runge-Kutta discretisation,

Q' = Q"—ajAtRegQ"),

Q* = Q" - axAtRegQY),

Q= Q" - asAtResQ?),
QMl_3

Q! Q?, Q@ are the intermediate conservative vectors during the Ritufer multistage process.
01,02, 03 are the stage coefficients with values set to 0.1918, 0.40Q9respectively.

2.4.5 Timestep computation

The timestep for every cell in the computational domain mugating the steady flow field is
estimated from a prescribed value of the CFL number. Mostesimulations conducted in the
course of this work utilise implicit time integration schesa The implicit schemes are theoret-
ically unconditionally stable; albeit their numerical foulations and the components such as,
the method of Jacobian computation, linear equation salrdithe type of preconditioner used
in the scheme determine the actual numerical stability.ddea CFL number much larger than
the unit is used during the temporal evolution of the sotuticocal time-stepping is used to ac-
celerate the convergence of the steady flow computatiorsEgh. (39) explains the estimation
of the timestep from an imposed CFL number, which is the minmietween the estimated
convective timestep and viscous timestep.

At = min(Atc, Aty) (39)

The convective timestep is calculated using,

Q

M =CFL—s——m=
’ SR

where "i” is the index, representing the surrounding faceh surface areaQ;) of the control
volume Q). A"®is the maximum eigenvalue of the characteristics corredipgrto the flow
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field at the control face. In case of preconditioned compartat modified eigenvalues are used.
The viscous timestep is given by,

QZ
Zinzl (Pin + Prt) AQ'

At, = 0.25x CFL

The CFL number is set to a small value at the beginning of thepcation; the usual value
being set 1.0. This small value aids in attaining numeritabity during the development of
the flow solution at the initial phase of the computation. Vakie of CFL number is gradually
increased in a geometric progression to reach the maximestpbed value. The maximum
CFL number depends on the physical nature of the flow and thigygoégrids used in the

simulation, e.g. the maximum CFL number for simulating ioidslow is set approximately to
10° where as for the turbulent flow simulation the value is fixeBGat

Unsteady flow simulation requires a single global timestejpe prescribed for all the cells
in the domain during which the solution is evolved simult@amy, exhibiting a variation of

the CFL number in the domain. Maximum CFL number achieved duitve computation is

estimated and is used to compare the numerical stabilityffierent time integration schemes.

2.4.6 Dual time-stepping

The concept of dual time-stepping is used for unsteady flowkition at low Mach number in
the presence of grid movement. The governing equation idfreddo include the precondi-
tioned term.

9 d
9 N r/ 9 0da + Reg0+1) — 0. 40
at/gmc.) T o 57200 +ResQY (40)

The outer time-loopAt) is solved in a time accurate manner with a specified globatgiep
using Backward difference scheme. The inner time-ldx) is solved using the steady Implicit
backward Euler scheme with local time-stepping.

Expanding the middle term in Eqgn. (40) by using the chain,rule

rpa/ QdQ = r/ dQ+F/ Q - (da),

As the steady flow solution is required at the inner time-|dbp terml™p, [, Q%(dQ) can be
neglected. Thus,

Quo — Mpoiokii_on
T [ 3399 = moQ Q)

- TRoQt-q))

_ rp ki1 Ip n
= RO -+ ok - Q)
_ Toonoks "Poior_ o

28



Substituting the expanded term in the Backward differenbese,

3Qn+1 Qk 0 ‘
H(SAr o)+ a—Q(Reé)]AQ
= (F@)-QVE) mads- 5§ Qv , s
thi1 2 aQ'[n
HERQQ - Q) - (- QO - QRN QY. (4
AT 2/t 2/t 2/t ’

The linearised system of equations inside the inner timp Iesolved by a Krylov subspace
method. ILU(2) Preconditioned Generalised Minimal Resid@GMRES) method is used for
the purpose.

2.5 Low Mach number preconditioning

Mathematically, Navier-Stokes equations solved with theetmarching iterative method are
hyperbolic in nature with a distinct set of characterisaciables. These characteristic variables
are the eigenvectors of the Jacobian matrix, moving atioestearacteristic speeds. The dispar-
ity in the speeds of propagation, detected by the differeamtee eigenvalues is the cause of the
stiffness in the numerical scheme.

Precond.
— — - Unprecond.

14

12

—_—————
e

10

Condition Number

l L 1.5 L L L L 2
Mach Number

Figure 10: Variation of condition number with Mach number

Condition number defined as the ratio between the largestraatlest eigenvalues, quantita-
tively represents the numerical stiffness of the systempelDdency of condition number on
Mach number is shown in the Fig. 10. Larger magnitude of theditton number signifies
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the inhibition of convergence and deterioration of the B8ofuaccuracy observed during flow
computations in the low Mach number region.

Traditionally, pressure based methods are used to simiatiow field at lower Mach num-
bers. Many variants of these pressure based methods (SIMPIMPPLEC, PISO) [57] on
collocated grid structure are used to establish pressloeity coupling in order to achieve a
divergence free velocity distribution in the computatiodamain. Conversely, density based
methods are used to solve the flow field in the compressibleriégime. Numerical schemes
based on the density based formulation suffer from the daawio deal with the numerical
stiffness in the low Mach number regime because of the digparthe characteristic speeds.
Initial work was carried out by Chorin [58] in the form of addit of an artificial compress-
ibility term to the pressure equation for effective Mach toendependent scaling to extend the
validity of the formulation to the incompressible flow domaiThe foundation established by
Chorin and its subsequent extension by Turkel, Weiss anch$88t61] led to the development
and maturity of thgreconditioning approacin the framework of the density based method for
flow simulation in relatively lower Mach number.

A preconditioning matrix is multiplied with the temporal paf the Jacobian Matrix which
modifies the eigenvalues to decrease the condition numiseurfably, resulting in the faster
convergence and improved solution accuracy. Multiplaratf the preconditioner to the Jaco-
bian matrix modifies the formulation at the governing equratevel. As the temporal part of
the equation is modified, the accuracy of the steady statefiédavs not affected when the iter-
ative process achieves adequate convergence level thiocaghime-stepping. The process of
flux evaluation and timestep computation need to be modifiegistently to take into account
the effect of the change in the eigenvalue structure of teegy. Modified eigenvalues are used
to determine the left and right propagating waves in the HiscGeme [62] as explained in the
evaluation of inviscid flux formulation in section 2.6.1.

I'p is the preconditioning matrix defined for the set of primativariablesyV [61]

[ (@+(/RT)} 0 0 O —p/T O]
{6+ (1/RT)}u p 0 O —pu/T 0

- {(6+(1/RT)}v 0 p O —pyT O
"7 {0+@RTIW 0 0 p  —pw/T O
{6+ (1/RT)}H—-1 pu pv pw p(cp—H/T) O
{(6+(1/RT)IV 0 0 O —pu/T

Multiplication of the transformation matrix transfers theeconditioning matrix to be applied
to a set of conservative variables, which is denoteld.as

© is the preconditioning parameter, which depends on theeefe speed and local sonic
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speed1[61],
:U—"Z—g,ur:Mr*a.
Preconditioning modifies the eigen system of the numerigadgon. Modified eigenvalues are

_,0F, 1 a
I'C 16_(5) = §(1+ MrZ)Vnzl:é

The value of the reference Mach numblsk ] controls the effectiveness of the preconditioning

A( V(1 M2)2MZ + M2, v, (42)

matrix. The regional variation dfA, in the computational domain provides a local nature to
the preconditioning. In order to avoid the reference Macimiber being very small near the
stagnation regions, a cutoff value #d is specified, depending on the free stream Mach number
Mo and local cell Reynolds number. The preconditioning is dvettoff in order to retrieve the
original formulation by setting the reference Mach numbaurtit, when the local normal Mach
number M) reaches above.D.

Combining the ideas of Darmofal [63] and Weiss [6d]}, can be defined as

€ if Mp <&¢;
2 -
M, = ﬂ%) if My, € (£,0.5);
1 if Mp > 0.5.

There g = maX Einviscid: Eviscous»
€inviscid = KMo, Eviscous= Tr U =local fluid speed.
In our work,K € [0.5,0.85]. Usually a higher value df adds robustness to the scheme and is
preferred for the turbulent flow simulation.
EviscouslS the local cell Reynolds number, depending upon the cheniatit length of the cells
and has to be taken into account during laminar as well asfiemb flow simulation. The
characteristic length is defined by
AxAy
(BX)2+ (Ay)?’

whereAx andAy are the maximum and minimum dimensions of the cell.

2.6 Flux discretisation
2.6.1 Evaluation of inviscid fluxes

In the literature, there are two distinct approaches useditapute the cell interface flux in the
Finite Volume Discretisation method. One of the earliermets pioneered by Jameson [64],
uses the artificial viscosity as a stabiliser to the secoddrozentral differencing scheme. The
fourth order dissipation term preventing the odd-even dpling in the numerical scheme is
not sufficient enough to inhibit the oscillation in solutionthe vicinity of the shock. Hence,
an additional second order artificial viscosity term coltby a numerical switch depending
upon the local pressure variation in the computational domsaused.
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The second approach is to use the upwind method by takingatount the propagation of the
waves in the computational domain. This approach is agdidigided into two groups. Flux
difference splitting schemes, initially formulated by Godv to solve the Riemann problem,
computes the flux explicitly through the use of wave speedsiodd by solving an eigenvalue
problem. Flux-vector splitting methods, numerically s&pthe interface flux on the basis of the
flow speed or Mach number. A Flux-vector splitting technigueposed by Van Leer [65] is
used, which numerically splits the interface flux on the gasithe interface Mach number.

In the current work, the upwind method designed by Harter, Man-Leer and later extended
to capture the contact discontinuities (HLLC) is chosen famerical discretisation of the con-
vective flux to achieve improved accuracy in the spatialltégm as a result of low numerical
viscosity. Achieving a smaller numerical viscosity, whibhngs stability of the scheme is
crucial in accurate resolution of the features present énvibcous flow field. The Riemann
problem based on the projection of the state vectors on hadés ®f the face from the corre-
sponding cell centered data is solved at the interface fompeing the numerical flux. Data
projected on the face is rotated in the normal directiongiie unit surface normals for solving
the one-dimensional Riemann problem.

Intercell flux H‘r”c) at the face shared between two control volumes is computed) uhe
expression,

R , if §>0;

hile Fa=R+s(Q/—Q), if §<0<s,;
. (43)

Fo=FR+s(Qf—Q), if ss<0<s;

F , If 5 <0;

\
where,/ andF are the flux vectors, depending upon the left and right sedovs respectively.
The blending of these two flux vectors is controlled by theswspeedsy, s;,s"), which depend
on the state variables. The wave speeds are determined [Rothaveraged value of the left
and right state vectors as expressed below,

s =min[(G—a—-Vg), (u —a)]

S = min[(4+a—Vg), (ur +a)]

g Prptpu(s —uw)—pru(s —u)
Pr(s —u)—pr(s—ur)

where Roe averaged velocity, total enthalpy and sonic speediedined as

~ Py U ++/P, Ur N V/BH+/P Hr A 3 ~211
0= R A=YARRR, a=((y- 1A - 32,
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The intermediate state vector due to the jump over the codisontinuity is

1
Q= (pk)(i LS{I:) Vic :
Wi

E
p_t"‘(S*—Uk)[s*"‘ Sk uk)]

wherek is the index used to represent either left or right stateorsct

For low Mach number preconditioning, the wave speeds areifreddn order to take into
account the modification of the eigenvalues due to the pditoning.

Flux is evaluated at the interface using Flux Vector Spilgfioriginally suggested by Van Leer
and later modified by Anderson [66] for simulating inviscidlEA problems. The formulation
used is described below.

f:l:

mass
f+ (-Vn+2a)
, mass| v

F.-n= o (Vi) . (44)

mass| Ny Y

fenergy

F. is the flux vector with the modification for the grid velocignd

a
fr%ass: i%(Mn + 1)2,

N —(y—=1V2+2(y—1)Vaa+2a2] wW+Vv? Vg, (—Vn+2a)
fenergy= fmass 2_1 + > + y > .
The interface velocity normal to the face is given by
Va=V-.n-Vg,

Mnh=Vp/a.

u andv are components of the velocity along the Cartesian coomlidia¢ctionsa is the sonic
speed.Vg is the modified normal component of the grid velocity, expial in the derivation
of the BDF scheme in the section 2.4.2.

2.6.1.1 Reconstruction Improvement in the spatial resolution of the solution tlgiodhe
process ofeconstructiornis initially proposed by Van Leer in his seminal paper on Mimmic
Upstream-centered Scheme for Conservation Laws (MUSCL)sTdte variables at both sides
of the face, used for solving the approximate Riemann prolalesreconstructed from the cell
centered state vectors utilising the available gradidiorimation at the cell center. Gradient is
calculated by creating an approximate linear surface byguie data at the cell center along
with the information from the neighbouring cells presentha stencil. Direct neighbours shar-
ing the faces and cross neighbours at the corner of the cellssad to construct the stencil.
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A multi-dimensional first order accurate Taylor series egdan is considered to project the
primitive variables from the cell center to all the neighling cells in the stencil.

Q(r) =Q(ri) +@0Qi - (r —ri) (45)

The number of equations is determined by the number of neigiig cells and the number of
unknowns in the equation depends on the dimensionalityeptbblem. Hence, the method
results in an over-determined system, which is solved byethst-squares method [72].

The process of linear reconstruction aids in achieving seéa@yder spatial discretisation and
automatically satisfies the conservation of the solutionates in the control volume due
to the linearity. The extension of the process of reconstincto three-dimensional flow

simulation is straight forward.

The accuracy of the gradients, calculated with the abovensgouction procedure is deterio-
rated in the presence of highly stretched grid used for thautant flow simulation. Several

alternatives have been developed, such as Weighted LeaateS§7], to address the problem.
For computations involving viscous fluid flow, the Green-&amethod [72] is employed to
evaluate the gradients. It relies on creating a closed velsmnrounding the cell under consid-
eration to include the surrounding cells during the procésseating the stencil.

2.6.1.2 Limiter In certain circumstances, the reconstruction process @asecthe numeri-
cal scheme to violate the non-linear stability conditiorgieyerating local extremas beyond the
solution data in the neighbourhood cells. The phenomeneates overshoots and undershoots
of the solution, specifically in the high gradient regiong, eén the localities around the shock.
In order to avoid the generation of unphysical extrema dypitie reconstruction process, mono-
tonicity is enforced by the application of a limiter to s&ti$otal Variation Diminishing (TVD)
condition [74]. A limiter designed by Venkatakrishnan [7®&jhich avoids self-flipping in the
smooth flow region, but prevents numerical oscillation ia ktigh gradient region to achieve a
better convergence behaviour, is employed, as described.be

@ is the limiter in Egn. (45).
For every cell i,
@ =min(@ g),g=1,2...N. N is the number of neighbour cells sharing faces with icell

2 _
Qi—t_g +2Qi—l»_gQiag+sl if Q— 7& 0
Gg=4 Qg+QQy+2Qs+a  ° (46)
1 , if Qy=0;

34



with
Qfg - Qg - Qi7
imax_ Qi7 if Q;g >0

"-Q, i Qg<0

QM andQM" are the maximum and minimum values of the conservative biariamong the

o=
1,9

cells in the stencil.

imax = ma)q:l,...,N {Qi7Qj}’
M = minj—1 N {QiQj}-

Qg denote the unlimited reconstructed cell centered value®dit the face centers. The
parametee; is typically set to 10%.

2.6.2 Computation of the viscous fluxes

Viscous flux at the faces surrounding the control volume tsioled using the gradient correc-
tion method suggested by Westsal. [73], which uses compact stencil involving all neighbour-
ing cells. The averaged gradient at the face between theeatdérs for a variablev’ can be
corrected as:

DW]r = Ow, + ;|2(6W|r — (Owir.(rr = 1)) (re —11)), 47

Ire—r

where 1, are the position vectors of the left and right cells, respelst dw;, is the difference
in the magnitude of the primitive variables between thedeft right cells sharing the face, and
Ow represents the uncorrected averaged gradient betweesfttaad right cells.

Ow + Ow
2
In order to obtain the gradients at the cell center, a systemwamequations which are formed

DW“' ==

from the data available at the cell centers and nodes aredol¥ata at the nodes are obtained
by the inverse distance averaging of the cell-centeredsiataunding the corresponding node
as elucidated in the Fig. 11.

1
W, d 5
ny — Yng a
5 d

2
n WI
an:dn2 E
|

i=
Wy, andwy, are the interpolated primitive variables at nodésandn2, respectively using the
available neighbourhood cell center solution variabiésandn? are the number of neighbours
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Figure 11: Cell to node interpolation and formulation of a t&guation system for gradient
computation

surrounding the nodesl andn2, respectively. d;, is the distance of the node from tig
neighbouring cell. Applying the formula(‘%vquL %’Ay = Aw, in two available directions and
solving the generated two system of equations,

a_VV _ (WH Yn21 - Wn21YrI )

4
aW (anj_xﬂ - WI'| Yn21)
i 4

whereD = X Yny; — Yri Xny,

Wy = Wr — W,

Xnp1 = Xn2 = Xn1, Ynp; = Yn2 — Ym @nd,

X =X =X, Yl =Yr =W

(Xn1,Yn1) and (xn2,yn2) are the coordinates of the two nodes under considerationy;),
(Xr,Yr) are the coordinate pairs of the left and right cells, respelgt

2.7 Imposition of the boundary condition

For wellposedness of the problem, governing equationsss@cated with the initial condition
of the flow variables in the computational domain as well @sltbundary conditions specified
on the boundaries of the domain. The computational domaii eatend infinitely and needs
the flow variables to be specified on the boundaries for theucko Effective boundary con-
dition can be helpful in reducing the size of the computatiaomain and helps in accurate
transmission of the waves associated with the flow withodeuogoing any artificial reflection.
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2.7.1 Conditions for the inlet and exit boundaries

2.7.1.1 Boundary condition for the supersonic flow In case of supersonic flow governed
by the Euler equations, all the characteristic have p@&stmomponents in flow direction which

Is assumed to be from the left to the right direction of the patational domain. So, if the flow

is entering into the domain then all the variables are obthirom the free stream condition. If
the outflow boundary is turned out to be supersonic, themalvVariables are obtained from the
interior of the computational domain.

2.7.1.2 Characteristic method for subsonic condition When the flow field is governed by
the Euler equations, not all the characteristic directiectors have positive components in the
flow direction. The solution variables are determined byRmemann invariants propagating
along characteristics moving at the characteristic spe&day from the highly active regions,
near the boundary, these characteristic lines intersett@her to uniquely determine the flow
variables. In the absence of any strong shock, under th&aagen flow condition, the method
of characteristics can be used to specify the boundary tondias described below.

At the inflow boundary face, the right running charactecistariable coming from the free
stream condition intersect with the left running charastervariable coming from the interior
of the domain to detect the left side state variables of thetary face as denoted as (L) in the
Fig. 12.

¢ ¢

freestream L R

Figure 12: Spatial component of the characteristics atrtfiew boundary

C™ characteristic coming from the free stream and responéisi@ropagating the positive

Riemann invariant,

280 2a;

C~ characteristic coming from the computational domain asgpaoasible for propagating the

negative Riemann invariant

2aR 2a_

UR——— =UuU . — —

R v—1 L v—1
Using the above two equations, the unknown left side statehlas of the boundary face is

calculated.

~ UR+ U 2
u. = > +y_l(aoo aR)

Uw_u
a=(y-1)— R+ (ar+aw)
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The other components of the velocities,

The treatment of the outflow boundary is similar except thatdirections of the characteristics
have changed their role with respect to interior and faastre

L 2 2
On theC™ characteristicur + . u + A
y—1 y—1
- 2 2
On theC~ characteristicye — o u, — A
y—1 y—1
+ -

C
R L fee strean

Figure 13: Spatial components of the characteristics abtit#fow boundary

From these two equations we have,

_ URT Uw 2
U =— y_1(aR A)

U _UQo
aL=(y—1)= 5 +(ar+as)

The other components of the velocitiesy = Vg, W. = WR

Temperature at the boundary is obtained using the aboveebtaonic speed.
_ 152
T|_ - quaL
C° characteristic represent the material wave moving withfltid. Assuming isentropic con-
dition on the characteristic, we have
T|_ 1
_=\y1
TR) PR

Pressure is computed using the ideal gas equa@o#s, pRT, .

pL= (

2.7.1.3 Extrapolation method for subsonic boundary conditon Viscous flow is associ-

ated with long free shear layers, specifically in the preseaviclarge scale flow separation,
which may extend to the boundary of the computational doma@re flow in the shear layer
is dominated by viscosity and assumption of isentropic flowdition becomes invalid in that
region. Hence, an extrapolation type boundary conditiomsisd in dealing with the viscous
flow simulation.

Free stream Mach number, temperature and the angle of atadpecified from the external
condition and the pressure is interpolated from the intesfothe computational domain, at
the inlet boundary. At the outflow boundaries, density arnldcrey are interpolated from the

interior domain and the free stream static pressure is pbest
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2.7.1.4 Flow angle specification in 3D Two angles are specified to uniquely define the free
stream velocity field at the inlet boundary for three-dimenal flow simulation. The angle
specified with Z-axis) is used to project the flow velocity on X-Y plane, which isther
divided into sub-components along X and Y axis by specifyiregangle with X-axis{).

Theta

Figure 14: Specification of inlet flow angles for three-dirsienal flow simulation

2.7.2 \Vortex correction for the lifting bodies

Vortex correction [85] is used at the far—field boundariesrner to improve the imposition of
the boundary condition for the flow field generated due toittiad bodies. The flow variables
at the far—field boundary are specified by a solution accgrttirthe full potential flow theory.
The corrected velocity components are prescribed by

U = |Vo|COA+VrsSind,

V = |[Ve|Sina —Vrcod.

The vortex induced velocity magnitud is given by,

r V1-MZ2 (50)

V= o A—M2Zsie(6—a))

where the circulatiol of the vortex is determined b¥, = 0.5¢Cef |V |CL.

Cref denotes the chord length a@y is the lift coefficient. r, 6 are the radius and the polar
angle measured from the quarter—chord location to theithga boundary face at the far—field
boundary, respectively is the angle of attack.

2.7.3 Boundary condition on the viscous wall

Normal component of the velocity is set to zero for the indsibow computation, but the
tangential velocity components are non-zero. No-slip walindary condition is imposed on
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the solid wall for viscous flow simulation. Heat flux term iretenergy equation is set to zero
under the assumption of adiabatic boundary condition orsditid wall. Total internal energy
Is set according to the specified wall temperature for ththesonal wall boundary condition.
Eddy viscosity is set to zero on the solid wall, when solving turbulent flow equation.

2.8 Evaluation of Jacobian

The linearisation process of the residual in the implicrtrialation of the Navier-Stokes equa-
tions results in the creation of the Jacobian matrix, whilm@ with the residual forms the
system of linear equations. The section explains the faatianl of the Jacobian matrix, which
is comprised of inviscid and viscous fluxes contributingite tesidual.

2.8.1 Inviscid Jacobian

Inviscid Jacobian is computed analytically from the apprate Riemann solver using Auto-
matic Differentiation tool, ADIFOR [78]. The subroutinerfthe approximate Riemann solver
to compute the inviscid fluxes is given as the input to the, taotl the chain rule of differential
calculus is used to automatically generate the Jacobiamxaatthe output routine. The analyt-
ical method of computing the Jacobian is more stable andvallogh CFL number to be used
in the computation compared to the Jacobian calculated ncatlg. Referring to the Eqgn. (11)
in section 2.4.1,

AQ" = —J'RegQ")

Where the Jacobian "J” is defined as

a n
A0+ agResQ]

J:[rc

The residual is defined as
. N
RegQ") = 7% F(Q,Qr).nds= rlezn(Ql ,Qr)AS

r’ is the index of N number of neighbouring cells surrounglithe cell under consideration
(represented as the index "I'QQ, Q; are the conservative variables at the centers of the left and
right cells sharing the face, having the surface area repted a?\S.. The interface flux is
computed using the approximate Riemann solver (HLLC) giveEdpy. (43).

The Jacobian matrix is
6 R $QM) % (Fn(Q1, Qn)AS)I + (Fn( 51
N\, \r ZaQr aner)) ( )

The first term in the right hand side of Eqn. (51) represergss#if contribution of the inviscid
fluxes and is placed as the diagonal terms in the Jacobiaixmatre second term represents
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the contribution of the inviscid fluxes from the surroundimgjghbour cells and are located as
the off-diagonal term in the Jacobian matrix. Addition oé tbelf contributing terms in the
diagonal position provides the diagonal dominant natutbeéalacobian matrix.

2.8.2 Viscous Jacobian

The method of computing the Jacobian matrix contributechftbe viscous flux is described
below. Inclusion of the Jacobian matrix contributed frora thiscous flux provides robustness
to the numerical scheme in using comparatively larger CFLns1during the temporal evo-
lution.
Viscous flux at the face center is a function of the primitiaiables and their corrected gra-
dients computed using the Eqn. (47). As the Jacobian magnifies the dependency of the
flux with respect to the cell-centered conservative vaeigbhn analytical method based on the
chain rule of differential calculus is employed.

_ 0R,  0R, 0w, Ow

¥= 50 = ow, ow 00 2

Wy is a function of the gradients of the primitive variablested face centerds,, w, Q represent

the diffusive flux, primitive state variables and the comaéve state vector, respectively.
R,

owy
ow . . . . — . . .
ables.a— is the transformation matrix relating the primitive vailebto the conservative vari-

represents the dependency of the viscous flux terms on théegta of the primitive vari-

ables.

Wy can be expressed,
ow ow
Wy = funO(&, a—y)

Using Eqn. (48), for the left state

2 o o)
ow " 0X D
where, 1
dn1 = PP
i=1d
1
Ono = nz—i
i=14

d; is the distance of the node from the cell centérandn? are the numbers of the neighbour
cells surrounding the nodes nl1 and n2, as shown in the Fig. 11.

2.9 Linear equation solver and local time-stepping

Implicit approach with inexact Newton iteration method Hseen employed to solve the
non-linear equation. It is given by,
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Discretised equation

Timestepping

Newton iteration

Jacobian construction,
Preconditioner computation,
Residual evaluation

Krylov subspace (KSP) iteration

if
Newton iteration
is converged?

If
simulation steps are

@ Solution
over? Y Ees achieved

Figure 15: Sequence of iterative loops for unsteady flow Etman

[IF (Qx) +A(Q) AQk|l < nikllF(Qw) Il

wherern)y is fixed to 1074 .

k is the index of Newton iteration. At the beginning of each Kawiteration the non-linear
equation is linearised and solved by a system of linear enpgsolver. In this work, restarted
GMRES with ILU(2) preconditioner [77] has been used.

2.10 Non-linear Full Approximation Storage Multigrid scheme

In order to improve the convergence behaviour of the exylitie integration scheme in Quad-
flow, a Full Approximation Storage non-linear V-cycle Mgltid method [68, 69] is imple-
mented. Multigrid method is based on the principle of captuthe components of the solution
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attributed to a particular spatial frequency with the egléwut grid size. Solution from a well
posed initial-boundary value problem results in the supsitn of the spectral components
with the wavelengths ranging from the size of the computatiidomain to the lowest being the
Kolmogorov scale [29]. Solution components from the largavelengths are quickly captured
by the comparatively coarser grid, whereas the high frequeaomponents are better captured
with the finer grids. So, instead of employing the finest goidapture all the components of
the solution which results in increasing the cost of comipaiaMultigrid uses smoothing iter-
ations with the exchange of information on a sequence ofigviels. Iterations over the coarser
grids with reduced number of cells provides benefit in thenfof computational expenses, and
faster convergence is achieved due to the improved cagtofithe solution. The solution ac-
curacy remains undeteriorated as the level of convergemdieeofinest grid level is used as the
criterion to stop the simulation process.

We have implemented the algorithm to perform the sequeopafations over the grid levels
obtained through the grid coarsening strategy, describtmhb

2.10.1 Grid coarsening algorithm

A grid coarsening strategy is developed which functionsbfath the structured as well as the
adapted grids. The concept is particularly advantageotistive grid adaptation, as the level
and neighbourhood information of the cells are availabteuph the multilevel indices set up
during the grid adaptation. The four neighbouring celloohging to the same quadrangle at
the finest level of the currently available adapted grid deniified and combined together to
generate the coarser level grid. No cells belonging to tfferdnt levels are grouped together
during the process in order to avoid the complexity. Thixcpss of coarsening is carried out
till the coarsest level (grid level with the level index=8)achieved. So during any phase of
computation, the number of available coarse grid sets isnomee than the number of grid
adaptation level. To trade-off the cost of computation f@arsening and to achieve the benefit
in convergence from the Multigrid algorithm, the number oérse grid sequences is restricted
to four levels.

2.10.2 V-cycle

V-cycle is employed with the computation starting from thee§t level gradually moving to-

wards the coarsest grid level. The solution and residuah fiiwe finer level are restricted to
the next coarser grid level after a pre-determined numbeanadothing iterations. The gov-

erning equation at the new coarse level is modified to taleantount the computed relative
truncation error during the smoothing iterations. The pesds continued till the coarsest level
Is achieved. The correction term at the coarser level is cbvatband prolonged to the next
finer level. No smoothing iterations are carried out afterpgholongation step. Certain number
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Figure 16: Hierarchy of coarse grids in adaptive Multigradrgoutation

of Multigrid cycles are conducted till the convergence leaethe finest level has achieved a
pre-set value.

2.10.3 FAS algorithm

Volume weightage averaging is used during the restrictimegss to transfer the solution and
residual from the finer grid to the next coarser grid level.

1

Qi =1K1(QRy) = —kf_ > | QR 1Qk+ 1, (53)
Reg = Ili<(+1(Re$+1) = Z Reg, ;- (54)

finecells
The identity information of the finer cells constituting tbearser cells obtained during the grid
coarsening process is used during averaging.
The governing equations on the coarser grid levels are neddfiith therelative truncation
error e
—KdQ +R(Q]) — k= 0. 55
o 3099+ RO~ (55)
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Figure 17: V-cycle employed for Multigrid algorithm

Therelative truncation erroris defined as

T = RegQR) — Re§ — I, 1 (Tky 1) (56)

Upwind prolongation [70] is used for transferring the catren from the coarser to next fine
level grid in order to improve the stability and convergehegaviour of the Multigrid method.

0
S BQR 1+ OF Qg +AQk 1) — OF Q1) = 0 (57)

The correction term used to update the solution on the findiegyel is defined by

Qpl1= Q1 +8QK 1 (58)
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3 Results and Discussion

3.1 Simulation of the flow field over SFB profile in cruise configuration
3.1.1 European Transonic Wind-tunnel (ETW) Experiment

In the framework of the High Reynolds Number Aero-Structudghamics project (HIRE-
NASD), an experimental set up has been configured to cone@ucekstic wind tunnel testing
over a supercritical wing with the flow parameters in theistial flight regime corresponding
to the cruise condition [11, 20, 21].

The objectives of this experiment are to understand,;

¢ the transonic flow field about aeroelastic equilibrium camfégion of the elastic wing
model,

aero-structural dynamic processes during vibration akoit,

aerodynamic damping mechanisms,

unsteady interaction between shock and boundary layer,

unsteady flow separation leading to the onset of shock buffet

Geometrically, the elastic wing model is created by staggeof the BAC 3-11/RES/30/21
cruise flight profile. The pressure surface of the profile attot is relatively thicker to achieve
15% of the chord length. The profile is gradually tapered mfilst wing section along the
span direction and conforms with the two-dimensional peafilthe rest part of the wing. The
maximum thickness is 11% of the chord length [11].

High Reynolds number flow condition is achieved in the EuropBansonic Wind tunnel un-
der cryogenic conditions. The flow parameters affectingagr@elastic behaviour such as Mach
number, Reynolds number and dynamic pressure can be vadependently. The detailed ge-
ometrical shape and size of the wing model with its matetaracteristics, the wind tunnel
experimental set up, dynamical qualifying of the model, fllamditions set during the experi-
ments and the data acquisitions process are explained im&atiet al.[11]. Before the tests
with the described wing model, pre-tests were performed wiit airfoil in the KRG cryogenic
tunnel at DLR Goettingen.

The experimental data of the surface static pressureluisitvn recorded in these pre-tests in
the mid-section of the model from the sensors and the aeawdigncoefficients@_,Cqy) over
the profile are used to validate the results from the comjomialt simulations described in the
subsequent subsections. The computational model usedaefairhulation is two-dimensional.
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3.1.2 Validation with the KRG experimental data

Case 39M,, = 0.749 a=+10° Re= 20.17Million

Computational domain and grid

The computation is performed at the flow condition corresipagnto the configuration No. 39
of the KRG experiment. The free stream Mach number, angletatlaare set tdl, = 0.749
anda = +1.0°, respectively. The Reynolds number based on the chord length17Million.
The computational domain is discretised with a relativelgirse grid using "C” topology which
comprised twelve blocks. The domain is extended to 20 chedths away along the leading
and trailing edges of the profile to reduce the effect of th&enat the boundary for possible
improvement in the imposition of the boundary condition.eTupper and lower wind tunnel
walls are not numerically modelled and free stream boundanglition with auto-detection is
iImposed at the corresponding computational boundarieg dbmain is initially discretised
with a number of 3452 quadrilateral cells. The initial grgdunstructured due to the presence
of non-matching grid points between the grid blocks at tleelblinterfaces. The presence of
hanging nodes at the initial level grid and their subseqgenkeration during grid adaptation
can be efficiently dealt with the solver, Quadflow.

3.1.2.1 Computational set up The flow is assumed to be fully turbulent, without tripping
point for transition being specified. Turbulence is modelesing the original one equation
Spalart-Allmaras model, as previously described in theemical modelling section 2.3.2. Im-
position of the characteristic boundary condition is fotme ineffective in achieving a desired
level of convergence due to the presence of wakes reactergpiimdary, generated during vis-
cous flow simulation. Hence, extrapolation type boundanddion as described in section 2.7
Is imposed. A transonic flow field with the presence of a streingck and boundary layer is
expected in the computational domain. Flow variables arenstructed using the Green-Gauss
method to achieve a second order spatial accuracy for inegrmasolution of the flow features.
The limiter designed by Venkatakrishnan [75] describechariumerical modelling section is
used to satisfy the Total-Variation-Diminishing (TVD) atition during numerical simulation.
The limiter is frozen after the residual is dropped to thregecs from the initial level in order
to prevent its flipping for achieving a converged solutionn@xctive flux discretisation is car-
ried out using the upwind HLLC scheme. Viscous flux is estedaising the central scheme
with corrected gradient as outlined in the subsection 2.@®licit time integration scheme
(B2) formulated by Batten & Leschziner [45] is used for tempdrscretisation. The Jacobian
matrix originated during the linearisation process is catagd using the analytical scheme, as
described in the subsection 2.8. First order reconstmigtiaused to evaluate the convective
fluxes during the formulation of the Jacobian matrix. The mmasn CFL number to be evolved
in the computational domain during the simulation is lirdite 50, with the initial value set to
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1. The CFL number is geometrically progressed with a factdr.Bf Higher CFL number at
the initial phase is observed to be creating numerical loiiain the computation. A single
Newton iteration is applied within the timestep during theeérisation of the non-linear sys-
tem of equations arisen from the implicit formulation. Tlesulting system of linear equations
is solved by applying preconditioned restarted GMRES methoproviding for Quadflow an
interface to an external mathematical library (PETSC) [Pteconditioning matrix is formed
from the Jacobian matrix using Incomplete Lower-Upper (2 technique with second level
of filling. Maximum number of search vectors for the KSP itema is limited to 20 with 2
levels of restart. The targeted convergence level of thielwakfor the linear iteration is set
to 104, The convergence is always achieved within the prescribedRES steps in all the
computations described in the subsequent section.

Seven levels of grid adaptation are carried out in order tainkthe fully converged mesh-
independent solution. The criterion is set such that thetadian is activated, when the residual
in density reaches five orders decrease with respect toitied value.

The computations are performed in the High Performance Sust€lof the Rechenzentrum,
RWTH, Aachen.

3.1.2.2 Solutions Figs. 18 a) and b) show the convergence behaviour and thatieariof

number of cells in the domain of adaptation. Seven levelsidfagplaptation are performed with
grid being adapted after every successive drop of residualdrescribed value at the current
grid level. The indicator to monitor the convergence bebavis computed at every iteration
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Figure 18: Convergence behaviour, variation of cell numbéhé computational domain

based on the root mean square value of the density residtia¢ @ontrol volume cells in the
computational domain. Solution at the intermediate gnietllés obtained after five levels fall
of the initial residual, which is set as the required intedrage convergence level in the form
of input parameter to the adaptation module. The final smius converged sufficiently on the
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finest grid level.

A monotonous decrease in the residual is achieved duringaimputation. The residual jumps
back to a relatively large value after every grid adaptatamit is reinitialised and keeps on
decreasing when the flow solution is gradually developedhatcurrent grid level. Approx-
imately 2700 iterations are required to obtain the final eoged solution for the case under
consideration, as shown in Fig. 18 a).

Fig. 18 b) shows the variation of the number of cells in the potational domain due to the
grid adaptation during the simulation. The number varigaificantly as the flow develops
during the initial phase of computation and gradually agdseconvergence at the final phase of
the simulation. The grid at the initial level has 74 cells ba airfoil profile. Cells in the high
activity regions of the computational domain are refined tedfinal level grid has 2621 cells
on the profile.

The utilisation of grid adaptation method drives the compah in achieving a grid independent
solution, as observed with minimal increase in the numberetis§ achieved during the final
stage.

15¢

First level

L Second level Fig. 19 shows the gradual reduction yof

3=imm Final level

(4th level grid) at different grid levels as the flow solution

is developed. The value of" at the ini-

tial grid level with the coarse mesh remains
close to ten and gradually decreases with
adaptation before reaching a value below

P A S unit along the profile at the finest grid level.

Figure 19:y" variation

Lift and drag coefficients obtained from the computation@mapared with the experimentally
obtained data [23]. Lack of pressure sensors at the leadigg ef the airfoil prevents an accu-

Method | C_ Cq
Exp. 0.4412| 0.0090
Comp. | 0.4858| 0.0097

Table 1: Surface integral parameters

rate capture of the peak in the surface pressure distribdtioing the experiment [11]. Hence,
some deviation in the computationally predicted value \tlhith experimental data is observed.
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Part of the observed variation can be attributed to the reiffee in the results from a two-
dimensional computational model and neglecting the modetf the upper and lower wind
tunnel walls. The drag coefficient estimated from the cormtpon is closer to the experimental
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Figure 20: Convergence &% , C4 during simulation

value within 1% variation.

Evolution of the lift coefficient C_) and drag coefficien@y) with iteration are shown in the
Fig. 20 a) and b), respectively. The integral aerodynamedfaments undergo significant change
during the initial phase before achieving steady converxgéduaes at the final stage of the com-
putation.

The finest grid level and the corresponding surfgcedistribution are shown in the Figs. 21
a) and b), respectively. Achievement of profjfe value below unit is required to accurately
capture the flow field as low reynolds number model approagbed for resolving the boundary
layer flow.
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Grid is adapted in the regions containing the flow featurdb Varge scale spatial variation.
These high-activity regions include the stagnation regioser to the leading edge, the bound-
ary layer, the shock on the suction surface and the viscouis Wehind the trailing edge. The
localities of the flow features generated due to differentmaaisms (inviscid phenomenon,
e.g. shock and viscous flow feature, e.g. boundary layeraeserately detected by the adap-
tation module. This shows the effectiveness and religbiftthe multiscale algorithm based
on the wavelet analysis, used as the basis of adaptati@nignitfor properly detecting the flow
features in the domain and adapting the grid subsequently.
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Figure 22:C,, distribution and Mach number contours in the computatiatwahain with the
finest level grid

Fig. 22 compares the variation of surface static pressugéficent along the profile with the
experimental data [23]. Sensor data points obtained duhagexperiment are in excellent
agreement with the computational result. Variation of Macdmber in the computational do-
main in the finest level adapted grid is shown in the Fig. 22.

Computations are performed in a similar manner to resolvéldlefield generated under dif-
ferent flow conditions and are compared with the experimeiaiza.
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Consistent results are obtained throughout the compusaéisshown in the above figures. The
computational results obtained using adaptive numerinallation are in excellent agreement
with the experimental data. The results shown in this sesi@didate the application of adopted
numerical modelling techniques implemented in the flow eglQuadflow for simulating the
flow field over the airfoil profile in cruise configuration.

3.1.3 Simulation of the flow field with Zonal DES

3.1.3.1 Convergence acceleration with Zonal DES Computational results shown in the
subsection 3.1.2 are obtained with the turbulent flow stmeést modelled using the one equa-
tion originl Spalart-Allmaras model. The accuracy of thedelting schemes and their imple-
mentation in Quadflow is demonstrated through validatioth Wie experimental data. Further
computations carried out using the DES model in order to @mpith the original S-A sim-
ulations are described in the current section. The impleatiem detail of the DES model is
outlined in the numerical modelling section 2.3.4 of thiedis.

Simulations are carried out using the original S-A model #ti@dDES model corresponding to
the flow configuration of the Experiment No. 20 of the KRG expemtal set up. The free
stream Mach number, angle of attack and the Reynolds numbkieedfow are set to 682,
+0.0° and 82 Million, respectively. The set of input parameters suclt@asvergence level,
number of grid adaptation and the initial grid are kept igEitin both the cases. Converged
solutions corresponding to the finest grid level are obthimeboth the computations. The
number of iterations required to achieve the corresponiéwvg of adaptation, number of cells
in the computational domains and converged integral agauyc coefficients obtained during
the computations are shown in the tables 2 and 3.
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It is observed from the numerical experiment that the DES ehsijnificantly improves the
convergence acceleration as compared to the RANS simuldtioan identical set of input
parameters.

Adaptation modifies the number of cells in the computaticloahain depending on the solution
in the flow field. A small difference in the solution obtainesing DES and S-A RANS formu-
lations causes a different evolution of cell numbers. Heimstead of comparing the number of
iterations for determining the efficiency of computaticparameter callegorkunitis defined,
which provides a rough estimate of the amount of total comatpartal work required during the
simulations. It is defined by aggregating the multiplicatad the number of cells in the domain
with the number of iterations required during every adamtat

workunit= Wll si=0Cell[i] * (itn[i + 1] — itn[i] + 1), where itn[0]=1 ..., n= number of adapta-
tions

Case 20M,, = 0.682 a =+0.0° Re= 8.2Million

Experimental ResulC. =0.2377,C4 = 0.0076 [23]

Adap. | Itn. Cell C. Cq

1 140 | 3452 2.854112e-01 1.367596e-02
3 672 | 26000 | 2.962130e-01 7.543762e-03
5 1504 | 75848 | 2.943549e-01 8.331507e-03
8 3177| 147188| 2.852171e-01 8.294309e-03

Table 2: Original SA model, Workunit=33263511.8750

Adap. | Itn. | Cell CL Cq

1 119 | 3452 2.851499e-01 1.371125e-02
3 490 | 26039 | 2.942121e-01 7.535204e-03
5 903 | 72800 | 2.924266e-01 8.277477e-03
8 1487 | 135785| 2.863193e-01 8.274408e-03

Table 3: DES model, workunit=13156495.500, 2.5 times faste

For the case shown above, the workunit required for RANS sitiad is 2.5 times higher
compared to the DES simulation. Similarly, for all other gartations carried out (not shown
in the thesis) during the comparison, it is observed thatpdational expense for the RANS
simulation as expressed in the work units is at least a faft@r8 times higher than the DES
simulation.

Another point worth noting that, the variation between dgramic coefficients obtained from
a fully converged finally adapted mesh with RANS and DES sitmuda are insignificant, as
the flow field is steady and the boundary layer remains atthtththe airfoil surface.
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3.1.3.2 Effect of zonal dimension parameter of DES on convergee and solution accu-
racy The formulation of Zonal DES as outlined in the numerical elbdg section of the
thesis (section 2.3.5), contains a free paramé{g) éxpressed as the percentage of the chord
length to separate the regions of the domain where RANS mgekmains active from the
localities modelled with the modified RANS. Any cell with a Wwdistance larger than the limit
set by the free parameter has its wall distance modified dowpto the maximum size of the
grid in the coordinate directions and becomes part of theaslomodelled with modified RANS
model. The cell staying inside the defined boundary closkdctirface stays unmodified and
the turbulence is modelled with the original RANS formulatio

In the absence of such a boundary demarcated to separatbave mentioned two regions,
the modified wall distance (makg,Ay)) becomes smaller with every grid adaptation, as the
dimension of the cells decreases due to the refinement. Tpendency of the wall distance
solely on the grid size would lead to an under-estimatiorhefwall distance in the presence
of highly refined cells in the boundary layer close to the acef The stretched cells with high
aspect ratio in the vicinity of the surface wall preventsdheurrence of the above phenomenon
to a certain extent. As the aspect ratio of the cells decsaaben moving away from the wall,
there is a possibility of the modified RANS model entering ithie boundary layer close to the
surface wall. The situation creates an erroneous modeltivthvall distance of the cells very
close to the surface is reduced significantly, creating arease in the destruction term of the
RANS model. In this scenario, the eddy viscosity becomesnuadlgdue to the increase in the
destruction term in RANS modelling) and the numerically et aerodynamic coefficients
become small. Hence, the turbulence modelling is neither 8ANr LES, as the grids in
the localities close to the surface are not originally desdyfor the Sub-Grid-Scale modelling.
Therefore, in order to avoid the modified RANS model entenmg the boundary layer domain,
it is necessary to demarcate the boundary in order to sephetwo regions.

The current section is devoted to study the effects of thee gizhe specified boundary on the
computational convergence and solution accuracy.

Experiment No. 43 from the KRG experimental set up is considles a case study for the in-
vestigation. Simulations are carried out with the flow pagters corresponding to experiment
No. 43. Case 43M, = 0.700 o =420 Re= 20.29Muillion

Experimental ResulC. = 0.5136Cy4 = 0.0080 [23]

Three different values of the zonal boundary specificatemameter (expressed as the percent-
age of the chord length) are considered in the numericahtgsas shown in the table 5. The
cells in the computational domain out of the presecribethdie from the airfoil surface are
treated for the wall distance modification. Any cells withive imposed boundary near to the
airfoil surface are considered as part of the boundary do@ad kept unmodified.
Computation carried out using original S-A RANS model with gk@mcomputational parame-
ters are obtained for comparison. Fig.23 shows the congraasthe convergence behaviour
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Figure 23: Effect of zonal boundary parameter in DES modeherconvergence

Dim. Itn Cell CL Cq
20% 1937 128621 0.5928 8.407e-03
10% 1989 129941 0.5925 8.394e-03
5% 2050 129824 0.5920 8.388e-03

Table 4: DES model with varying boundary zone specificatiarameter

achieved using modified formulations with the original S-Adel. It is observed that the num-
ber of iterations required to obtain a final converged sofutvith the modified formulations are
smaller than the original formulation.

Itn Cell CL Cq
3136 138266 5.929e-01 8.427e-03

Table 5: Original SA model

The number of iterations required to obtain a fully convergelution at the finest level grid is
not significantly affected by the length of the demarcatiomdin. The number of iterations
required to obtain the converged solution, number of caeltheé final level grid and converged
aerodynamic coefficients obtained at the finest level arevsho the table 5. The boundary
zone dimension has very minor effect on the solution acguaad convergence behaviour.
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3.1.4 Aerodynamic characteristics of the SFB profile in cruse condition

Several computations have been performed with 3 differestivhumbers, 6 different angles
of attack and 4 different Reynolds numbers for studying thedamamic characteristics of the
SFB 401 airfoil.

Free stream Mach number is chosen among the ravges [0.65,0.70,0.75] in steps of (05,
Angle of attack is chosen from the satec [—-1.0°,—0.50°,0.0°,1.0°,2.0°,2.5°,3.0°],

Reynolds numbeRec [4.0 x 10°,12.0 x 10, 20.0 x 10°,30.0 x 10°].

Numerical simulation is performed over the initial grid ngithe computational parameters
identical to the cases discussed in the previous subse@palart-Allmaras turbulence model
with modification for DES is used to model the effect of tudnde.

3.1.4.1 Effect of flow parameters on the maximum Mach number inhe computational
domain Table 6 shows the maximum Mach number achieved in the cortiuodh domain
during the computations. This gives an idea of the strenfitheoshock in the computational

domain.
a/Mach 0.65 0.70 0.75
4.0x10° | 30.0x10° | 4.0x10° | 30.0x 10° | 4.0x 10° | 30.0 x 1C°
-1.0 1.08 1.095 1.292 1.329 1.386 1.409

+1.0 0.912 0.926 0.993 1.008 1.263 1.268
+2.0 1.144 1.174 1.213 1.229 1.319 1.353
+2.5 1.240 1.260 1.278 1.295 1.342 1.381

Table 6: Maximum Mach number in the computational domain

Maximum Mach number in the domain increases with the in@@aghe free stream Mach
number M.). At a particularM.,, inertial force becomes dominant with the increase in the
Reynolds number and the local Mach number in the computdtéormaain is increased. At a
specific Mach number and Reynolds number, with positive as®en the angle of attack, the
flow gets accelerated on the suction surface of the profileaaspersonic region is created.
The maximum Mach number achieved on the suction surfaceases with the increment in
the angle of attack. The termination of the supersonic regiothe suction surface is exhibited
in the form of a shock in the flow field and the shock strengtmeaases with the increase in
the angle of attack. The surface profile curvature on thespressurface near the leading edge
creates a mild shock to appear on the pressure surface mel@athing edge at negative angle
of attack of the free stream flow.

Study of dependency of the lift coefficien)(Gn a with variation in M, at a specific Reynolds
number

CL shows an expected linear trend withn the lower range of the angle of attack. The increase
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Figure 24: Dependency of the lift coefficie@t() on angle of attackd) at different free stream
Mach numberd{l.,) and a specific Reynolds number

in the inertial force in the flow field as a result of increas¢heM. and Reynolds number at
a particular angle of attack creates a positive shift inGhe The influence of the free stream
Mach number on the lift coefficient is predominant compa@dhe effect of the Reynolds
number. The flow separation and associated decrease irnftticedificient is observed at a
highera. The loss of lift at the inception of the stall is observed krgerM.,. Corresponding
computations are characterised with non-convergenceedtdtv field and periodic fluctuation
of theC,_. Mean value of the lift coefficient is observed to be reduced.

Study of drag polar with variation in M at a specific Reynolds numbeXs expected, higher
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Figure 25: Drag polar

M. causes simultaneous increas€irandCy. The variation ofC_ with Cy is in agreement with
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the usual trend. The rapid increasedgat a relatively highM., is due to the flow separation
associated with the inception of stall causing an increasied wave drag.

Study of dependency of Lifting efficiency)(bn a with variation in M, at a specific Reynolds
number
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Figure 26: Dependency of the Lifting efficiency anat differentM., and a specific Reynolds
number

Lifting efficiency(Le) is defined as the ratio betwe€lh andCy. In the region of relatively
smallera, Le is higher with highM.,. Increase ima causes rapid increase @y compared to
C_ at a higheM.,. This cause&e undergoing a drastic reduction at a relatively higher angle

attack.

Study of dependency of Gn a with variation in Reynolds number at a specifie M
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The inertial effect of the flow field increases with the riséhie Reynolds number. Hendg,
increases with increase in Reynolds number, albeit to agnifsiant amount. The effect of
Reynolds number on the lift coefficient is negligibly smal¢ept at higher angle of attack.
Study of Drag polar with variation of Reynolds number at a speM.,
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igure 28: Drag polar with variation of Reynolds number at ecHjc Mo,

Decrease in the Reynolds number increases the viscous feifegty flow configuration with a
specific lift coefficient. The increase in the viscous dragses an overall increase in the drag
coefficient. Hence, decrease in the Reynolds number is assdavith the increase in the total
drag coefficient for anWle.

Study of dependency of bna with variation in Reynolds number at a specific, M
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Figure 29: Dependency &f ona with variation in Reynolds number at a specific

Higher Reynolds number increases the dominance of the ahéotice in the flow field over
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the viscous force. Inertial force contributes positivadythe lift coefficient. Drag coefficient
undergoes a reduction due to the decrease in the viscows. effeth the factors complement
each other at a higher Reynolds number in increasing theditificiency. Hence, for a flow
configuration with specifid/l., increasing the Reynolds number has a positive effect andift
efficiency(e).

The trend is reversed at a higher angle of attack. Separaititie flow field at a higher angle of
attack results in reducing_and increasin@qy. The combined effects is observed as the sudden
downward fall of the curve at the higher angles of attack. @&ty departure of the curve at a
relatively higherM., shows the early onset of flow separation.

Study of dependency of skin friction coefficient)(@ Reynolds number with variation afat

a specific M,
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Figure 30: Dependency of skin friction coefficie@] on Reynolds number with variation of
a at a specifitMc,

Increase in the Reynolds number results in the decrease iprtfide drag and the trend is
clearly observed. The curves show an expected closendss yperbolic trend.
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3.2 Simulation of the flow field over three element airfoils in high lit con-
figuration

3.2.1 Adaptive flow simulation

This section describes the numerical simulation of the fleer anulti-element high-lift pro-
file BAC3-11/RES/30/21, which is defined as the reference cordign in the Collaborative
Research Center (SFB401) for high lift investigations. It caegs a leading edge slat, the
main airfoil and a single slotted flap with geometrical dirsiens as described in the report by
Moir [71]. The slat and flap are deflected at"2d 20 respectively and the configuration is
used to provide lift in the low speed operating regime of tiheraft during take-off and landing.
The criticality in designing the configuration and complexhflow field have instigated numer-
ous researchers [18,47-49] to accurately predict the flatufes for improved understanding
of the physical phenomena. The five ideas envisaged by A.Bindth [46] to characterise the
flow physics over the high-lift configuration are

e The slat effect

The circulation effect

The dumping effect (Attaining higher discharge velocityhe trailng edge of the forward

element)

Off-the-surface pressure recovery

The fresh boundary layer effect

Fluid at low freestream Mach number undergoes a rapid aetile over the highly deflected
slat to create a localised supersonic region at the suctidace thus producing a mixture of
subsonic and supersonic regions in the computational don&ignificant variation of Mach
number creates a large range of condition number in the ctatiponal domain affecting the
stiffness of the numerical scheme. The wake generated temprieceeding element interacts
with the boundary layer and wake of the successive elementsate a complex flow field. This
mutual interaction of the wake and boundary layer dependb®mangle of attack of the flow.
Thus, accurate simulation and prediction of the flow oves tuinfiguration poses a significant
computational challenge. Additionally, the current studgs grid adaptation during flow sim-
ulation. The initial H-grid shown in Fig. 31 is comprised df Blocks with 16740 quadrilateral
cells. The initial level coarse grid has 408 cells locatedtensurface of the airfoil elements
with a maximum y+ of 30. The grid is extended to 25 chord leagtlong the upstream and
downstream directions in order to reduce the effect of thieewat the boundaries for improved
imposition of the boundary conditions. The freestream Maamber \.,) and Reynolds num-
ber based on the chord length are set tB@ and 352 Million, respectively. Computations
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Figure 33: Final level gridy = 20.18°
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are carried out with turbulence modelled using originalI&paAllmaras and Detached Eddy
Simulation models. Computatiopnal domain is refined andsewead during grid adaptation

. b) Variation of cell number
a) Convergence history _in computational domain
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Figure 34: Convergence of simulatiom:= 4.01°

depending upon the developed flow field. Figs. 32 and 33 shusvBrtal level adapted grid in
the computational domain at two different angles of attabkough, the initial level grids for
both the computations are identical, the difference in theetbpment of the boundary layer and
wake region due to the variation in the angle of attack ceeateonspicuous difference in the
final level grids. Grid adaptation is carried out during ttezative process when the residual in
density falls five order below the initial value. Six levefsadaptation is carried out to obtain the
final converged solution. The grid refinement control patem@IST) is set to 102 in order

to prevent a rapid increase in the number of cells in the cdatiomal domain. Convergence
of the density residuum, variation of the total number ofscel the computational domain due
to the grid adaptation, evolution of the lift and drag coédiits are shown in the Figs. 34 a),
b), ¢) and d). Fig. 35 shows the comparison of the experinigrdahtained surface pressure
distribution on the airfoil with the computationally oltaid value during adaptive simulation,
correspond to the angle of attack= 4.01°. The computational data are in excellent agreement
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Figure 35: Surfac€,, distribution on the finest grid levett = 4.01°

with the experimental value on the slat, main element anddiilidpil surfaces. Figs. 36 a) and

a) Details of adapted final level grid b) Mach number distribution

Figure 36: Adapted grid and flow field over the high-lift configtion ata = 4.01°

b) show the final level adapted grid and the variation of theiaumber in the computational
domain ato = 4.01°. The grid is highly refined in the boundary layer and in the febear re-
gions along the wakes of the airfoil elements. Maximum Magimber achieved in the domain
is 0.46.

An additional computation is performed at the angle of &ttac= 20.18°. The residual is
adequately converged to obtain the fully converged stegate solution. The convergence
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, b) Variation of cell number
a) Convergence history in computational domain
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Figure 37: History of computation: Convergence, cell nuralzerd aerodynamic Coefficients

behaviour of the computation is shown in Figs. 37 a), b), @ dn A rapid change in the

number of cells in the computational domain is observedndunitial levels of grid adaptation,

as the solution gradually develops creating a significaahgk in the flow field. During the

later phase of computation, the total number of the cellqyéxdomain varies slowly as the
solution becomes settled. Number of cells in the computatidomain at the finest grid level
Is approximately 180000 with 1900 cells on the airfoil saga Refinement of the cells in the
boundary layer during adaptation reduces the y+ distbutin the airfoil surface and at the
finest level a variation below unit is achieved. Exact nundjehe cells in the domain depends
on the angle of attack of the flow which eventually regulatesflow field.

Excellent agreement of the surface static pressure caffigvith the experimental data are
observed as shown in the Fig. 38.

66



20r Comparision of Cp distribution

15

Quadflow
= = Experiment

Figure 38: Surfac€p, distribution on the finest grid levett = 20.18

Figs. 39 a) and b) show the final level grid and the variatiothefMach number in the com-
putational domain, respectively. At the angle of attack; 20.18°, the flow undergoes a rapid
acceleration along the suction surface of the slat and d gp@i@h of supersonic region is cre-
ated. This can be prominently distinguished by the presehadarge and slender peak on the

0.2 0.4 0.6 0.8 1 12

a) Details of adapted final level grid b) Mach number distribution

Figure 39: Adapted grid and flow field over the high-lift configtion ata = 20.18°

surface pressure distribution (Fig. 38) at the leading etdpximum Mach number of slightly

above unit is achieved in the domain.
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3.2.2 Accurate capturing of the inception of stall for highiift configuration

The investigation of the lifting characteristic of the hitith configuration with varying angle

of attack is carried out in this section. The ability of the ®Eodel to accurately predict the
stall over the RANS modelling is demonstrated. Computatioasparformed on an identical
initial grid with a set of input parameters as previouslyatdmd in the section 3.2.1. Simu-
lations are carried out using both S-A RANS models at angleging from 0 — 30° in steps

of 2° with steady Backward Euler time integration scheme. The igrigtfined successively
during adaptation depending on the developed flow field wisiglventually determined by the
angle of attack. As expected, the lift coefficient incredse=arly (as shown in Fig. 49 a))
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Figure 40: Stall inception angle, computation with the SaAtilence model using steady time
integration scheme in Quadflow

with the increase in the angle of attack till the stall pheeaon is encountered. The com-
putation at this point is characterised by the non-convergef the residual as shown in the
Fig. 41. Numerically converged flow solution is obtainedtfar input parameter, corresponding
to the angles of attack below 2%see fig. 40). Any subsequent increase in the angle of attack
as shown in Figs. 41 a), exhibits an oscillatory behaviouthefresidual with no converged
solution. The non-convergence of the flow field is also ilatgd by the corresponding lift co-
efficients, which (Fig. 41 b)) fluctuate about a mean valumil&r computations are performed
over the configuration with identical set of input param&t@nd initial grid using turbulence
modelling using DES model. The trend of the computationsiiits is similar to the previously
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Figure 41. Numerical prediction of the stalling angle withASRANS model
Computations performed with steady time integration scheme

obtained solution using S-A model, but the fluctuation ofrisidual is encountered earlier at
an angle of attacky = 23°, as shown in the Fig. 42. Corresponding lift coefficients stww

fluctuation about a mean value during non-convergence ameeoged steady solutions are not
achieved. Simulations are carried out with DES modellingnre accurate manner to confirm
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Figure 42: Numerical prediction of the stalling angle witB® model
Computations performed with steady time integration scheme

the unsteadiness, to understand its cause and to resolieadpglow features in the domain.
Backward difference method described in the numerical niodetection is used as the time
integration scheme. The angle of attack for the computasiset to 23. The criterion for grid
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Figure 43: Unsteady flow simulation with DES modebat 23°

adaptation is modified to activate the mesh refinement ascidumof number of unsteady steps
during the time integration process. Figs. 43 a) and b) sthewperiodic fluctuation o€, and
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Figure 44: Variation of lift coefficient

the residual atr = 23°, obtained using unsteady simulation with DES modellings &tbserved
that the temporal variation of the lift coefficient after ta@n initial phase of computation is pe-
riodic with a time period of approximately D4 seconds. Fig. 44 shows the variation of the lift
co-efficient with physical time for a single time period otdkation, extracted at the final stage
of the computation. Figs. 45 a), b), c) and d) show the inatadus Mach number distributions
in the domain at a specific time for = 23° during the single time period of oscillation. The
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c)t =0.6035 d)t =0.6402
Figure 45: Instantaneous Mach number distribution in the field showing vortex shedding

captured with DES att = 23°

figures show the instantaneous Mach number variation indkefiéld as the vortical structures
passes through build-up phase, coalition and sheddingtfierauction surface of the airfoil el-
ements. At = 0.545, the vortices shed from the main element and from therflépa vicinity

of the airfoil are observed to be coming close to each othee flow field is marked by large
scale but partially separated vortices at the suction sesfaf the main element and the flap.
The formation of these structures is associated with the dddift and is observed by the dip
in the value ofC_ corresponding to the time= 0.545. When moving further away from the
airfoil, these vortices merged together to give rise to glsiand dominant vortical structure at
t =0.573.

The flow field at timea = 0.6035, is characterised by moving of the vortical structaseay from

the suction surface of the main element, correspondingetathievement of the maximum lift

in theCy t curve. Flow field at = 0.6402 shows the inception of the vortex near the surfaces
of the main element and the flap. The vortices gradually grasnd the rest of the time period
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until their sizes are large enough to come physically in @cnivith each other which leads to
merging as observed tat= 0.545.

The above described sequence of events is repetitive avéintk period and the vortices going
through the continuous process of formation, merging arddimg give rise to a nearly periodic
behaviour to the flow field. At the angle of attack°24he flow field exhibits comparatively
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Figure 46: Unsteady flow simulation using DES modet at 24°

larger unsteadiness and a final converged solution is nah\agh The fluctuation of the residual
and the lift coefficient are shown in the Fig. 46 The lift cog#ént () goes through a periodic
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Figure 47: Variation of the fit coefficient during the last l®yasing DES model at = 24°

oscillation of time-periodl = 0.03, corresponding to a frequency of about 33 Hz. Fig. 47
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shows fluctuation of the lift coefficient at the final stage lué tomputation corresponding to
the last cycle of oscillation. The flow field occurred at diffet time is shown by the variation
of Mach number in the computational domain in Figs. 48 a) gnd be wake behind the main
element and the flap are completely merged together in thatyiof the solid surface. Vortex

shedding is highly conspicuous and the phenomenon is sitiltne wake generated behind
a bluff body. Lift and drag coefficients are evaluated frora tonverged solutions obtained

a)t =0.26225 b)t=0.27114
Figure 48: Instantaneous Mach number distribution in the field showing vortex shedding

captured with DES att = 24°

with above mentioned computations for both the DES and S-A BAhbdelling. Pre-stall
computations in both the modellings yield converged aemadyic coefficients. Time averaged
values of the fluctuating aerodynamic coefficients are ugestéll and post-stall conditions.
Figs. 49 a) and b) compare the variation of aerodynamic coefiis at different angles of
attack obtained using DES and S-A RANS modelling with the erpental data [71]. The
results obtained using S-A RANS and DES modelling have anllexteagreement with the
experimental data in the pre-stall region. The stallinglewfptained using S-A RANS model
tends to over-predict the experimental data. The solutiained using the DES computation
agrees well. Similar trend of the variation@f with a and over-prediction of the stalling angle
compared to the experimental data has been observed byretlearchers [47] with S-A RANS
model on this configuration. Numerically estimated timeraged aerodynamic coefficients
obtained using unsteady time-stepping scheme with DES haodeclose to the experimental
data.

The over-prediction in the stall margin using the RANS modeds a result of inaccuracy in
modelling the turbulent flow in the regions dominated by éavgrtical structures associated
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Figure 49: Accurate capturing of stall with DES model in camgon to S—A RANS model

with massive flow separation. The modelling inaccuracy stéom the overestimation of the
eddy viscosity, is as a result of the dual inclusion durisgeixplicit modelling from the mean
components and partial inclusion of the fluctuating comptsén the mean flow components
through grid resolution. Modification of the wall distanecethe DES model according to the
grid cell size increases the destruction term of the turizdemnodelling to prevent an overes-
timation of the turbulent viscosity, as explained in the ewical modelling sections (sections
2.3.4 and 2.3.5). The modification is effective in the regiaway from the airfoil, where the
flow field is dominated by the large scale vortical structwgsing due to the large scale sep-
aration. Hence, DES model is obviously superior to the nabBpalart-Allmaras turbulence
model in capturing the separated flow phenomena.
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3.3 Low Mach number preconditioning

The section describes the application of the Low Mach nurpbeconditioning technique, as
described in the numerical modelling section of the theSection 2.5) on the cruise as well as
on the high lift configurations. The application of the meth® demonstrated on the inviscid,
laminar and turbulent flow regimes. The method is shown tetion accurately in domains
having predominant low Mach number regions with localisegessonic flow. Testcases with
analytically or experimentally available aerodynamicadate chosen to validate the modelling
and application of the method. Improvement in the accurddhe simulated flow field at a
relatively lower Mach number is observed. Convergence hiebais shown to be improving
with increase in the low Mach number region in the computati@lomain.

3.3.1 Inviscid flow simulation

3.3.1.1 Flow over 4% bump Inviscid simulation using preconditioning technique isred
out in the computational domain containing a bump with a mmaxn thickness, 4% of its length.
Free stream Mach number of the flow is set to 0.001. The simul& carried out without grid

a) Unpreconditioned solution b) Preconditioned solution

Figure 50: Steady flow field with Mach number variation over ttump aM. = 0.001

adaptation. The computational domain comprises threekblagth 40 cells along the flow
direction and 25 cells along the cross flow direction. Indseall boundary condition with
zero normal velocity of the flow is imposed on the bump surf&odrapolation type boundary
condition is applied at the inflow and outflow boundaries. ligiptime integration scheme is
used for temporal evolution of the solution. HLLC schemewmitodified eigenvalues is used to
evaluate the convective fluxes for the preconditioned sehedriginal HLLC scheme is used
in the flux computation for the unpreconditioned scheme. ddmeparison of the Mach number
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variation in the computational domain between the solstiolbtained using unpreconditioned
and preconditioned formulations is shown in the Fig. 50.

The convergence is achieved faster with the use of predonditcompared to the unprecondi-
tioned scheme. It is observed that the preconditioning avgs the smoothness of the solution.
The resulting Mach number variation in the computationahdm is observed to be symmetric
over the bump. In contrast, the solution obtained withoetcpnditioning is observed to be
associated with glitches in the Mach number contour plodéndomain. The pressure recovery
associated with low Mach number flow forces a symmetric gmubver the bump configura-
tion, which is accurately captured using the preconditibc@mputation.

3.3.1.2 Flow over NACA0012 profile Flow is simulated over NACAO0012 profile at
freestream Mach numbers 0.001 and 0.01, with angle of agacEight levels of grid adap-
tation is conducted to obtain a converged final flow solutibime multiscale control parameter
for the grid adaptation has been set to a lower value, as tit@abpariation of the flow solu-
tion is relatively smaller in magnitude. Number of iteratsarequired to achieve corresponding

Adap | Timestep| Cell number| C_ Cq

1 37 400 0.206865| 0.0334168

3 125 6352 0.23376 | 0.00195

5 236 26368 0.24083 | 0.000082

7 340 36514 0.241049| 0.000037

9 572 39076 0.241040| 0.000033
Table 7: Inviscid flow simulation over NACA0012 profile with gmonditioning, Me =
0.00La =2°

levels of grid adaptation, number of cells in the computaliadomain and the aerodynamic

coefficients are given in the table 7 and table 8.

Adap | Timestep| Cell number| C_ Cq

1 35 400 0.205542| 0.033456
3 116 6400 0.222238| 0.003940
5 219 44332 0.238695| 0.000202
7 336 84274 0.241133| 2.17E10°©
9 431 94960 0.241266| —1.5E10°8

Table 8: Inviscid flow simulation over NACA0012 profile withgmonditioningM« = 0.01,a =
20

The converged lift coefficients obtained from the compotats observed to be independent of
the Mach number. The drag coefficient decreases with eadladeptation till a value close to
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zero is obtained. The computational results satisfy thel®ifbert's paradox. Comparison of

CL
0.241

Cd
0.0

Table 9: Aerodynamic coefficients over NACA0012 profile, danethod (Turkel)

the aerodynamic coefficients are in excellent agreemenhtthvt computational results obtained
by Turkel (Table 9).

3.3.1.3 Flow over SFB profile Similar computations are performed on the SFB profile with
eight levels of grid adaptation. The free stream Mach nusib&the flow are set t0.001 and
0.01. The aerodynamic coefficients achieved at the internedjad levels, variation in the

Adap | Timestep| Cell CL Cy

1 35 400 0.18972 | 0.02401
4 165 16948| 0.237111| 0.001009
7 332 74794| 0.235498| —4.9E10°©
9 448 91339/ 0.235381 —4.9E10°°

Table 10: Preconditioned simulation over SFB profifg, = 0.00La = 0°

number of cells in the computational domain and the requiredstep to achieve the conver-
gence level for both the cases are tabulated in Table 10 arid Ta. The trend of the solutions
obtained in the computations is similar to the previous catapon over NACA0012 profile.
The aerodynamic coefficients are observed to be indepenflém free stream Mach number.
The drag coefficient is observed to be approaching to zere flotv field at low Mach number
is characterised by the pressure recovery. The pressigéatrablunt body of any shape is zero
as a result of the pressure recovery. The viscous draguwtidhio the skin friction on the sur-
face is numerically absent as a result of inviscid flow madgll Thus, a zero drag is achieved
satisfying D’Alembert’s paradox. The Mach number indepaaridift coefficient is converged to

Adap | Timestep| Cell CL Cq

1 35 400 0.189753| 0.024048
4 164 22180 | 0.237133| 0.0010183
7 331 150559 0.235532| —6.7E10°°
8 388 148318| 0.235537| —6.9E10°°

Table 11: Preconditioned simulation over SFB profiflg, = 0.01,a = 0°

0.235 and the drag coefficient becomes negligibly small in theverged solution at the finest
grid level. It is worth pointing out that the drag coefficigiredicted by the computation at
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CL
0.235

Cq
1.0E10°©

Table 12: Mach number independent aerodynamic coefficients

the initial level of grid with 400 cells is 0.02. The improveesolution of the computational
domain through grid adaptation causes the downward shifteoflrag coefficient, reaching the
value close to zero at the finest level. The adaptation mitdrased on the multiscale analysis
is proved to be efficiently functioning in the presence of lach number flow field.

3.3.2 Laminar flow simulation

Numerical validation and computational efficiency of theqonditioning technique in the lam-
inar flow region is illustrated in this subsection. Flow imsiated over NACA0012 profile at

Adap | Timestep| Cell C. Ct Cq

1 57 400 0.09398 | 0.011962| 0.10715
3 252 3151 | 0.047207| 0.042036| 0.06712
5 517 11407| 0.047126| 0.047846| 0.07188
7 1084 13231| 0.047478| 0.049467| 0.07355

Table 13: Laminar flow simulation over NACA0012 profile withegonditioning, M« =
0.00La = 1°,Re= 2500

the Reynolds number of 2500 and dngle of attack. Two freestream Mach numbers, 0.001
and 0.01 are chosen for the computations. The initial lexid| giscretising the computational
domain is coarse and contains 600 cells. Extrapolation pmdary condition is imposed at
the inflow and outflow boundaries. No-slip, adiabatic boupdandition is imposed on the
cells on the airfoil surface.

Adap | Timestep| Cell CL Ct Cq

1 53 400 | 0.09398| 0.011962 | 0.10715
3 183 3151 | 0.04715| 0.042036 | 0.06712
5 315 11419| 0.04708| 0.0478423 0.07188
7 459 13231| 0.04747| 0.049467 | 0.073549

Table 14: Laminar flow simulation over NACA0012 profile witheponditioning, M« =
0.01,a = 1°,Re= 2500

The CFL number of the computation is geometrically increagigd a factor of 1.05 from an
initial value set to 0.8, till the maximum value of 500 is rbad in the domain. Preconditioned
HLLC scheme, described in the numerical modelling secsarsied to compute the convective
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fluxes. Six levels of grid adaptation is carried out to obthia final converged flow solution.

The boundary layer is the most active region in the compartatidomain owing to a small

freestream Mach number. The cells in the boundary layer bserged to be refined with

successive level of grid adaptation and the flow featureadeguately resolved at the finest
grid level.

The tables 13, 14 show the number of iterations required licege the intermediate levels of
grid adaptation, number of cells in the computational donaid the resulted aerodynamic
coefficients achieved during the computations.

C. Cq
0.0474| 0.0734

Table 15: Mach number independent aerodynamic coefficients

The aerodynamic coefficients are observed to be indeperddnte stream Mach number.
Comparison of the integral surface parameters predicted ugdffow with the numerically
obtained solution by Turkel [59] (table 15) show an excélgreement.

3.3.3 Turbulent flow simulation

Computation is performed over RAE2822 profile at the freestrbach numberM., = 0.01,
angle of attackg = 1.89° and Reynolds numbeRe= 5.7 x 10°. Spalart-Allmaras turbulence
model is used in the computation. The initial grid has 40&@id the final solution is obtained

~ a) Final level adapted grid b) Mach number variation in the domain
Figure 51: Adapted grid and turbulent flow solution over RAE2&tM,, = 0.01

after three levels of grid adaptation with the computatiattemain comprising of 14899 cells.
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Surface distribution o™ below unit is achieved in the finest grid level.

Fig. 51 shows the final level adapted grid and correspondiaghvhumber variation in the

computational domain. As expected, relatively low valuéreé stream Mach number restricts
the grid adaptation within the boundary layer. No signiftatdition of number of cells outside

the boundary layer is observed. The refinement of the cellsarboundary layer resulted in
achieving a surface distribution gf- below unit.
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a) Surface pressure distribution b) Surface skin friction distribution
Figure 52: Gradual evolution of the surface flow coefficiemith grid adaptation

Fig. 52 shows a gradual improvement in the static pressudekin friction distribution on the
profile with every successive level of grid adaptation. Tiadis surface distribution on the final
level grid is plotted and compared with the computationpfigdicted data by Turkel [59].

The flow in the current simulation is assumed to be fully tleht; whereas in the computation
performed by Turkel the flow is tripped to be turbulent aftaxversing 11% of the chord length
from the leading edge. The transition is considered to boprally affecting the estimation of
surface skin friction coefficient. Hence, the result frora turrent simulation is not compared
with the variation of wall skin friction coefficient data mheted by Turkel.

3.3.4 Simulation over the high-lift configuration with low Mach number preconditioning

Relatively low freestream flow speed creates a predominantMach number region in the

computational domain of the high lift configuration. Henttee preconditioning technique is
used to accelerate the convergence speed of the simul&dimn.computations are performed
at freestream Mach numbé,, = 0.197,, angle of attackg = 0.0°, and the Reynolds number
based on the chord lengtRe= 3.52Miliion. Identical initial grid and set of input parameters
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are used in both the simulations with six levels of grid adaph. Flux is computed using
HLLC [62] scheme for the unpreconditioned method. Modifidd B scheme is used for flux
computation during the preconditioned simulation. Cut affgmeter (K) is chosen to bedD.

18
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Figure 53: Convergence acceleration with preconditionirga 0°

Fig. 53 compares the convergence behaviour and the saudlaiained using a preconditioned
scheme with the result from an unpreconditioned computafitie preconditioned computation
is observed to be converging 1.7 times faster compared tneeconditioned method. The lift
coefficientis rapidly converged to the desired value withuke of preconditioner in comparison
to the unpreconditioned simulation.

Similar comparative study between the preconditioned apdaconditioned schemes has been
carried out on the high-lift configuration at the angle obek a = 20°. The fluid stream at
the high angle of attack undergoes a rapid accelerationtbeesuction surface of the slat and
creates a small localised supersonic zone. It is inteiggstiuse and assess the benefit of the
preconditioning technique which is effectively designedthe low Mach number regions in a
computation with the flow achieving supersonic speed. Theo@ytarameter (K) is chosen to
be Q80.

Fig. 54 compares the convergence behaviour and the variatithe lift coefficients with iter-
ations obtained using the preconditioned scheme with aregopditioned simulation. In the
presence of preconditioner, the convergence is shown todonies faster than the unprecon-
ditioned scheme. It is important to note, the factor of in@rent in convergence obtained at
a lower angle of attack is higher compared to the higher amigédtack. The reasons being; i)
the preconditioner stays effective in larger regions ofdbmputational domain for the config-
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Figure 54: Convergence acceleration with preconditiontrig-a 20°

uration having lower angle of attack, ii) the presence ddtre¢ly low Mach number at = 0.0,
providing an improved modification of the condition numbempared to the higher angle of
attack.

Maximum Mach number achieved in the computational domaih avi= 0.0° is 0.46, compared
to the maximum Mach number of 1.02 achieved vaith- 20.0°.

3.3.5 Effect of cut-off Mach number on convergence and solutioaccuracy

The preconditioning matrix, used to modify the eigenvaloithe Jacobian matrix depends on
the preconditioning parameter, which is a function of theeR&fice Mach numbeMe¢). The
local nature of the preconditioner dependshdy s, which varies with the local normal Mach
number in the computational domain. Local Mach number irstagnation region of the com-
putational domain becomes insignificantly small. Hencerder to prevent th®l,e to become
too small, a cutoff limit based on the freestream Mach nunhbhgiand a cut-off parameter (K)
is prescribed. The effect of the cutoff parameter (K) on tletson field and the convergence
is studied in this section. The range of the cutoff paramigsrbetween zero and unit. Two
preconditioned simulations are carried outvat = 0.197,a = +0.0°, Re= 3.52Million over
the high-lift configuration with 6 levels of grid adaptatiaising two different cut-off values
(K =0.75,K = 0.80). Similar computations are performedat +20.0°. Comparison of the
convergence behaviour and the aerodynamic coefficientsnaat from the computations are
shown in the Fig. 55. Table 16 compares the converged aeaodgrcoefficients at the final
grid level from the computations with two different cutofirameters. No significant differ-
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Figure 55: Dependency of the convergence behaviour on theftparameter used in low

Mach number preconditioning

Cutoff | C_ Cq
0.70 1.522423e+00 3.216249e-07
0.80 1.522665e+00 3.217980e-02

Table 16: Dependency of the aerodynamic coefficients onuhkeft parameterg = +0.0°

ence either in the convergence pattern or in the magnitudieecherodynamic coefficients is
observed due to the choice of cut-off parameter.aAt +20.0°, the cut-off parameter plays
a role owing to the presence of small patch of supersonionegn the upper surface of the
slat. Slight increase in the value improves the robustnedsaacelerates convergence. Flow
field remains unaffected by the choice of the cutoff parameteshown by the comparison of
aerodynamic coefficients in the table 17.

Cutoff | C Cq
0.75 | 4.001844e+0Q 7.138033e-02
0.80 | 4.002207e+0Q 7.139914e-02

Table 17: Dependency of the aerodynamic coefficients onuteft parameterp = +20.0°
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3.3.6 Detached Eddy Simulation over high-lift configuratiorwith low Mach number pre-
conditioning

Numerical experiments are conducted to asses the conwergdficiency and solution accu-
racy of the DES in presence of low Mach preconditioner forudating flow over the high
lift configuration. Four different numerical models, i.e-ASoriginal model, S-A model with
preconditioning, Detached Eddy Simulation and DES witrcpnglitioning are used for com-
putations using identical initial grid and set of input paeters. The flow condition is set to
Mo = 0.197,a = +0.0°,Re= 3.52Million. 6 levels of grid adaptation is carried out as siow
in the Fig. 56.

1 Original SA modl ! Original SA model
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Figure 56: Convergence acceleration using DES model wittgmaitioning ato = 0°

Figure 56 b) shows the evolution of the lift coefficie} J with iteration obtained during com-
putations.

Model Itn C. Cq

SA original

5198

1.512109e+0d

3.523598e-07

SA+Precond.

3301

1.522423e+0(

3.216249e-07

DES

1827

1.501575e+00

3.597372e-02

DES+Precond

1376

1.522106e+0(

3.208049e-07

Table 18: Comparison of aerodynamic coefficients obtainedyusfferent computational mod-

els

The data in the table 18 shows the number of iterations reduo reach the intermediate level
of grid adaptation and corresponding aerodynamic coefiisiachieved with the use of differ-
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ent computational models. The combination of DES with pnelttioning is observed to be
approximately 4 times faster than the original S-A RANS folation. The drag coefficients at
the final level grid predicted by the preconditioned compates differs by approximately 10%
compared to the unpreconditioned simulation. The diffeegn the solutions is because of the
modification of the flux formulation in the low Mach number i@gs where the preconditioning
is activated. The flux formulation is modified to a lower lee¢élnumerical dissipation in the
regions to improve the solution accuracy.
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3.4 Unsteady computations in the presence of grid movement

Inviscid numerical computations on a standard testcaseénasaidally pitching NACA0012
airfoil about its quarter chord point are carried out witidgedaptation to validate and assess
the computational efficiency of the Backward Difference $ebe The numerical formulation
of the scheme and its satisfaction of the geometric consenviaw, essential for the moving
grid applications are described in the numerical modekiection 2.4.

The temporal variation of the aerodynamic coefficients ioleth by the BDF scheme are com-
pared with the available experimental data [86]. The ralest of the scheme is compared with
the previously available unsteady time integration sch@évhd-point scheme) [25].

The pitching motion of the airfoil is described by Eqns. (59he mean angle of attack and
the amplitude of oscillation are set tadA6” and 251° respectively. Reduced frequency of the
computationk = wc/|Ve| = 0.1628. The freestream Mach number and the static temperature
of the fluid are 0.755 and 285K respectively. Considering tiwva set of flow parameters, the
time-period of oscillation becomes 0.151 sec for the didgbunit chord length.

Initially, the computation is performed using steady timegration scheme to obtain a con-
verged solution to be used as a restart flow field for the udgteanulation. The use of the
converged flow field at the beginning of the unsteady comjmutdttelps in reducing the initial
instability and allows utilising relatively larger globtinestep. The initial C-grid has 400 cells
in the computational domain. Characteristic boundary dom# described in the numerical
modelling section is imposed at the boundaries interfaaith the freestream. Inviscid slip
wall boundary condition is imposed on the airfoil surface.

The movement of the airfoil surface boundary during thellzdmn and corresponding spatial
relocation of the internal nodes in the computational donmexplained in [7].

O = 0Op+ amsin(wt)

0o =0.016",0y = 2.51° (59)

The solution is evolved identically in the entire compuwiatl domain, through the global
timestep, set as an input parameter. The grid adaptatioariged out after every timestep.
Several Newton iterations are carried out in a single tiegestl the non-linear equation arisen
during the discretisation process has converged to the ofd®*. The system of linear equa-
tion inside each Newton step is solved with preconditiorestarted GMRES method. Incom-
plete Lower Upper (ILU(2)) preconditioner computed from amalytically derived Jacobian
matrix is used.

Number of steps required to complete the cycle of oscillatiaries depending on the global
timestep.
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3.4.1 Study of accuracy of the scheme

The number of grid adaptation level is set to five. The flow fieldhe domain is advanced
at 15 x 1074 second during each step. The maximum CFL number achievee idaimain is

approximately 395.

1
—

Scheme Adaptation level Timestep Max CF

BDF 5 15x10% 395
Computational parameters

The movement of the airfoil, as a rigid body undergoes a ragidtion of velocity and accel-
eration during the pitching motion. The angular displacenud the airfoil modifies the angle
of attack with relative to the free stream flow. The flow fieldwand the rigid body is observed
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Figure 57: Adapted grid and Mach number distribution in tbenputational domain during
nose-up movement

to undergo significant modification due to the kinematicg {@ich is reflected in the variation
of the shock location in the domain, as shown in the Fig. 57Rigd58. Fig. 57 shows the
instantaneous adapted grids and Mach number distributitreicomputational domain during
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Figure 58: Adapted grid and Mach number distribution in tbenputational domain during
nose-down movement

pitching up movement phase of the oscillation at the anglattaick 099° and 202°. A mild
shock is observed on the pressure surface of the profile-a0.99°. The strength of the shock
is gradually reduced during nose-up movement. The proadssr@ates in the disappearance
of the shock on the lower surface and development of a weetkstio the suction surface at
the peak angle of attack.

Fig. 58 shows the adapted grids and Mach number distributidhe computational domain
during pitching down phase of the oscillation. During dowolke the shock on the upper sur-
face of the profile is gradually increased in strength to mehe maximum. Then its strength
undergoes a gradual reduction and a shock on the lower swstfards developing.

The fluctuation of the shock between suction and pressufacas of the profile creates the
topological variation in grid clustering through adaptatas shown in the Figs. 57 and Fig. 58.
Figs. 59 a) and b) shows the variation in the number of celtaseéndomain with physical time
due to grid adaptation. The periodic pattern of fluctuatiorthe number demonstrates the
periodicity of the solution.
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Figure 59: Periodic variation of cell number in the compiotal domain

The pitching motion results in the temporal variation of theeticity of the flow around the
airfoil. Hence, the aerodynamic coefficients undergoegiagie change with time as shown in
the Fig. 60. The flow solution attends a periodic steady stfiex experiencing the transience
through the initial three quarter of the time period.
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Figure 60: Accuracy of Implicit BDF scheme for sinusoidalljching NACA0012 airfoil

It is observed that the flow pattern experienced by the amfdhe mean position depends on the
orientation of the airfoil movement. This change in the flogldiis observed in the difference
of the aerodynamic coefficients, which take the form of hyestis curves. The velocity of the
rigid body plays a significant role in determining the surmdung flow structure, even though
the flow incidence angle remains identical. At the extreme jositions of the motion, the
velocity becomes zero and the flow field is governed by theesngifl attack.

The plotted lift and moment hysteresis curves are compartutiae experimental data [86].
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3.4.2 Comparison with the midpoint scheme

The computational parameters, e.g. levels of grid adaptagiiobal timestep used in the simu-
lation and the corresponding maximum CFL number achieveddrdbmain are shown in the
Table 19. Three sets of computations are performed witlerdifft number of grid adaptation
and global timesteps. Increasing the number of adaptathel tiecreases the smallest size of
the cell in the computational domain. Thus, the maximum CFinlper in the domain is in-

Scheme Adaptation level Timestep Max CFL
BDF & midpoint 4 20x 10°* 230
BDF & midpoint 4 50x 10~% 560
BDF & midpoint 5 20x 104 500

Table 19: Cases simulated for assessing robustness of thericahscheme

creased by an approximate factor of two with every succedsixel of adaptation. Increase in
the global timestep acts as a scaling factor in increase@#L number. Computations are per-
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Figure 61: Comparison of the effect of timestep on convergdorcthe schemes with a 4 level
adapted grid

formed using the currently implemented backward diffeeescheme and with the pre-existing
Mid-point scheme for comparison.

Simulations carried out with 4 levels of grid refinement ahe global timestep of 2 104,
are used as the base for assessing the solution accuraoy ddint scheme with respect to
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the pre-existing method. Maximum CFL number achieved in tirean is approximately 230.
Fig. 61 a) compares the temporal variation of the lift coeffit using the above mentioned
schemes. Excellent aggrement in the form of superimpaositidhe curves verifies the validity
of the recently implemented BDF scheme. In the next compmutathe global timestep is in-
creased keeping the grid refinement level fixed. The Mid{mtheme is diverged at the global
timestep of 6< 10~ in comparison to the backward difference scheme, which seoled to
be functional with the same set of input parameters. Hengiotzal timestep of 5 1074 is
chosen for both the schemes in order to draw comparison battie solutions. A maximum
CFL number of approximately 560 is achieved in the domain. &lgo) compares the variation
of the lift coefficients with the physical time obtained frdrath the computational models. The
solution from either of the schemes is periodic in time andchnes to a certain degree of toler-
ance. The solution from the model using the Mid-point scheaseappeared to be oscillatory in
nature with wriggles in the initial phase of the computatidhe duration of computational time
required for the simulation to pass through the initial si@nce in order to achieve the periodic
steady state of the solution is larger for the Mid-point sochecompared to the BDF method.
The stability of the BDF scheme is demonstrated in the coraparf the lift coefficient curves
between the schemes at close-up view in the trough. The@olibtained using the Mid-point
scheme exhibits the presence of conspicuous wriggles aehpa the smoothness in the so-
lution with BDF. The improvement in the numerical stabiliti/tbe time integration scheme
in Quadflow with the use of recently implemented BDF schemeergehcial in resolving the
flow field at a higher CFL number due to larger global timestegeriually, the improvement
is manifested in achieving a smaller unsteady simulatiow ti Finally, the global timestep of
2.0 x 10~*and 5 levels of grid adaptation are chosen for the numeniqgaément. The chosen
timestep is identical to the first simulation, but the numtfegrid adaptation level is increased.
It results in the creation of smaller sized cells and coneetly increases the maximum CFL
number achieved in the computational domain. Maximum CFL lmemof 500 is achieved in
the computations. The solution from the Mid-point schenmispared with the computational
result from the backward difference scheme using the idalhdet of input parameters. Fig. 62
shows the comparison of the lift coefficients using both ttemes. Similar to the observation
with the previous computational test, the deterioratiothaevolution of the lift coefficients is
observed in using the Mid-point scheme. In this case 30% @fdime CPU time is observed in
using BDF scheme over the Midpoint method.

Considering observations from both the numerical experiméns inferred that the Backward
difference scheme has a higher numerical stability contptaréhe Mid-point scheme and thus,
beneficial to the computations in using higher CFL number. fBogired increase in the CFL
number of the computation can either be due to the increadieeiglobal timestep or as a
result of higher level of grid adaptation, which decreasesdrid size. The increase in the
global timestep helps in reducing the simulation time arel ghd adaptation improves the
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Figure 62: Comparison of the robustness in the schemes foved &elapted grid, Global
timestep 2« 104

solution accuracy. Simulations with BDF scheme are able toese higher value for both
the parameters, which provides benefit to the computatitinis. observed that, the solution
obtained by using the BDF scheme is in excellent agreemehttiv Mid-point scheme at a
lower CFL number in the computational domain.
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3.5 Accelerating convergence of explicit time integration scheme vt
Multigrid technique

3.5.1 Testing of grid coarsening algorithm

Grid coarsening algorithm described in the numerical modgsection 2.10 is implemented in
Quadflow and tested on both the adaptive mesh with hangingsnaxad multi-block structured

mesh without hanging nodes. A multiblock structured grieiherated using the commerical
mesh generation tool ICEM comprising of 512 and 64 cells indiheumferential and cross-

stream directions, respectively is considered. The baynafathe computational domain lies

approximately at a distance of 20 chord lengths from th@#irfhe grid has no hanging nodes
in the computational domain.
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Figure 63: Hierarchy of coarse grids generated from anmaidgjrid with "C” block topology

In order to maintain the consistency of the grid coarseniggrahm, the cells at the initial
grid level is assigned with the tags containing the infoiorabn their block, level and indices.
These information are used during coarsening proceduretectdthe cells belonging to the
guadruple in the same block and coalesced to generate treeaoash. In the absence of gid
adaptation, the cells in the finest grid level is assignetl wispecific level information, which
Is decreased during every successive generation of theecgad level. Four levels of coarse
grids are created from the finest level grid, as shown in tge63.
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3.5.2 Multigrid cycle

The "V” cycle Multigrid algorithm described in section 2,18 used to quantify the conver-

gence acceleration achieved for an adptive inviscid flonutation over the SFB profile. The

freestream Mach number and angle of attack are ddtte- 0.85,a = 0°.

A sequence of coarse meshes is generated (not shown herg tlisiadapted grid available at
the beginning of the computation after every adaptatiomedinhest grid level. The number of

coarse mesh levels increases with the increase in the gajotatibn level in the computation.

Explicit time integration scheme is used to temporally eedhe steady flow field, with the

CFL number being fixed at 0.8. Three pre-smoothing iterattwagarried out at every grid level

before the residual and the conservative solution vectimgrestricted to the next coarser level.
The restriction of the solution and residual is carried osihg volume weightage technique
to ensure the conservation of the flow variables in the conslume. One post-smoothing
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Figure 64: Convergence acceleration of the explicit timegration scheme with Multigrid
method

iteration is carried out on every coarse grid levels as tigerahm moves towards the finest
grid level. The correction of the solution variables on tlarse grid is prolongated using an
upwind method, as described in the section 2.10.3, to thé fireer grid level for updating
the solution. Fig. 64 compares the surface pressure diftiibobtained using the Multigrid
simulation with the solution from the computation perfodra the finest grid level. Multigrid
accelerates the convergence by approximately a factorvehssompared with the simulation
on the finest grid level without any significant change in theusacy. Memory requirement
during the computations with explicit time integration eofe is much less compared to the
implicit time integration scheme.
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3.6 Numerical simulation of the shock buffet phenomenon

Shock buffet is an aerodynamic phenomenon characterissélbgustained shock oscillation
over the surface of the profile as a result of the mutual icteya between the shock and the
boundary layer. The phenomenon has been observed withatiffairfoils and wings in the
transonic regime [34,53]. The phenomenon has recently gigigficant attention as exhibited
by the number of researches conducted during past few y&&rsg, 53, 55].

Understanding of the physical mechanism governing the @inenon and its accurate numeri-
cal simulation is essential as,

e The large scale variation of the lift coefficient associatgéith the shock buffet imposes
a limit on the cruising speed of the aircraft. Hence, lingtithe intensity of the shock
buffet is essential during the design of the wings.

e The wing is subjected to a periodic fluctuation of the aeradyic load during the oscil-
lation of the shock, which may trigger aeroelastic vibnatio
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In the current study, unsteady numerical simulation witlgyid adaptation has been performed
over a super-critical airfoil using the BDF scheme to ingaste the shock buffet phenomenon.
The part of the numerical scheme (Eqgn. (23) in section 23 &&:counting for the moving grid
simulation is switched off, as the airfoil in the computagbdomain is stationary.

The critical parameters of the shock buffet flow field namely,

e the onset of the buffet phenomenon
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Figure 66: Grid C: Finest grid used for the computation of &mdfet phenomenon

¢ the time-period of shock oscillation
¢ the temporal fluctuation of the static pressure coefficient

on the surface of the airfoil are studied during the numésgperiment.

The profile under study is the BAC 3-11/RES/30/21 profile ircisise configuration with the
maximum thickness 11% of the chord length. The chord lendtthe airfoil used for the
simulation is 0.12meter. The inlet flow parameters of the matation correspond to the shock
buffet case observed in the experiment conducted at KRG guitesl in [11, 23]. The free
stream Mach number, angle of attack and the Reynolds numlieeaomputation are set to
M. = 0.75,a0 = 4°,Re= 4.2 x 10°, respectively. This specific flow condition is used in the
simulation as the experimental data can be used for verditat the accuracy.

It is observed by Soda [53,54] that, the computational patara such as the turbulence model,
spatial discretisation scheme and the order of time disatéin in the numerical simulation
play important roles in the resolution of the shock buffetn Be basis of the numerical ex-
periments conducted by Soda [53], it is reported that theinghgcheme with one equation
turbulence model has the ability to predict the onset of khmdfet over a thick airfoil. Ni-
etzsche [55] has been successful in numerical modellingpefshock buffet using the finite
volume URANS solver, DLR-TAU code.

In the current study, the second order spatial discretisasi achieved through reconstruction
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using Green-Gauss method and the convective flux is compsiad HLLC [62] scheme. The
computation is performed assuming the flow to be fully tuebtl Flow is simulated with
Unsteady RANS using one equation Spalart-Allmaras modeloi@korder accurate backward
differencing is used for temporal resolution. The effecgall resolution, particularly in the
flow stream direction, on accuracy of simulating the shodkebtnas been addressed.

The computational domain is discretised with a C-grid cosipg three blocks. Grids with
three different spatial resolutions are considered forevigal analysis. Grid "A” shown in the
Fig. 65 is relatively coarse for simulating the shock buffigte block surrounding the airfoil is
comprised of 256 cells along the airfoil surface and 32 adidsig the normal direction to the
solid surface. The complete domain is constituted of 12288.cThe grid is clustered near the
wall along the normal direction to achieveya below unit.

Grid "B” is moderately refined with 512 cells covering the eatsurface of the airfoil and
constitutes of 32 cells spanning in the cross direction ftbenairfoil surface to the boundary
of the block encompassing the airfoil. Grid "B” is createdwihsertion of additional cells
along the chord-wise direction on the airfoil profile in GtA'. The number of cells along the
cross-stream direction is kept identical with the grid "Arhe improved clustering along the
chord-wise direction in grid "B” helps in achieving an impealresolution of the flow in the
streamline direction. A surface distribution valueydfcloser to unit is observed with the grid
"A”. Hence, the number of cells in the cross-stream diratigoexpected to be sufficient for the
accurate resolution of the boundary layer and is kept idehitn grid "B” with the grid "A.

The improved grid resolution as a result of the anisotropig gefinement aids in an improved
capturing the flow field without unnecessarily increasing tomputational time. Improving
computational efficiency of the simulation is essential las flow computation needs to be
carried out with an unsteady time integration scheme in a tigturate manner. Total number
of cells in the computational domain of grid "B” is 20480.

Grid "C” is created with further addition of the cells on thefail surface along the chord-wise
direction. The grid has the finest resolution with 640 celiigg the chord-wise direction and
32 cells along the normal direction. The complete domairommarised of 24576 cells. The
boundaries of the computational domain is 24 chord lengifaydrom the leading and trailing
edge of the airfoil, which allows the strength of the wakeymrated at the trailing edge of the
airfoil to be reduced during reaching the boundaries. pxtiaion type boundary condition
(section 2.7.1.3) is applied for closure. The global tirapdior unsteady simulation is set to
1.0x 1076,

Initially, the computations are performed with the backiv&uler steady time integration
scheme without consideration for temporal accuracy. Ibiseoved that the computation with
Grid "A” resulted in a converged solution with a decrease order of the residual level com-
pared to the initial value, as shown in Fig. 67a). A convergfédoefficient corresponding to
the final solution is achieved, shown in Fig. 67b).
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Figure 67: Steady solution computed on the grid "A”

The flow field is initialised with the previously obtained atly solution and computation is
performed in a time accurate manner using Backward Differaecbeme. Jacobian is obtained
using analytical formulation (section 2.8) and the numid@d@wnton steps are set to achieve a
convergence of 10 during the inner iterations.

0 0.2 0.8

04 . 06
Physical time
b) Fluctuating lift coefficient

a=4.01°
Figure 68: Unsteady solution computed on the grid "A”

a) Fluctuating residual

The linear system of equations arisen during the lineaoisgirocess is solved using precon-
ditioned restarted GMRES. Incomplete Lower Upper (ILU(2Bthod is applied to create the
preconditioning matrix for the linear equation solver. Tiebal timestep is set to.Qx 107°,
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which is comparatively smaller than the expected time jgeoicthe shock buffet. The residual

is observed to be oscillating periodically Fig. 68 (a). 4&ty computation shows a conspicu-
ous oscillation of the lift coefficient with a gradual growththe amplitude before achieving a
periodic steady state as shown in the Fig. 68 (b).

Predicted variation of, using grid-A

Figure 69:C,, distribution, Unsteady solution computed on the grid "A”

The analysis of the flow field explains the reason of the périfldctuation, which can be
attributed to the movement of the shock on the suction serfddhe airfoil. The movement
of the shock creates the variation of static pressure caition the surface of the airfoil as
shown in the Fig. 69. The distance traversed by the shockqteeldby the numerical simulation
is smaller than observed in the experimental data. The attrshock oscillating frequency
(144 Hz) is found to be larger than the experimental valué (12).

Computation is performed using steady time integration mehen the relatively refined grid
"B”. The residual is observed to be fluctuating and a convesgedtion is not obtained. The
variation of the residual and the lift coefficient with tinbexs are plotted as shown in the Fig. 70.
Hence, the further computation has been performed in the éiccurate manner to resolve the
unsteady flow field. Temporal variation of the residual arellifih coefficient from the unsteady
computation are shown in the Fig. 71 a) and b).

99



Res(Density)

T

5000 .
Iteration

T

| 1 | | |
5000 . 10000 15000
Iteration

T L1 |
10000 15000 0

a) Residual history b) Convergence history for the lift coedfit
Figure 70: Steady solution computed on the grid "B”
The lift coefficient goes through the initial transiencer(gar to the observation with grid "B”)

to achieve a periodic steady state. Variation of the staksgure on the upper surface of the

profile as a result of the shock movement is shown in Fig. 72.
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Figure 71: Unsteady solution computed on the grid "B”

The traversing distance of the oscillating shock is visiblger than the value estimated with
computation on grid "A”. This improvement can be attributedhe improved accuracy in the

resolution of the flow along the chord-wise direction.
The frequency of the shock movement is estimated to be 14i6hwscloser to the experimental
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Figure 72:C,, distribution, Unsteady solution computed on the grid "B”

value (125) compared to the previously estimated frequenitygrid "A”.

The near wall grid cells with large aspect ratio, used in tinbulent flow simulation are usually
designed to capture the boundary layer. Therefore tradiliyy grid clustering along the normal
direction for achieving the right" distribution on the surface and the number of grid cellddasi
the boundary layer are the factors usually targeted duhegtid generation process.

As accurate resolution of the shock buffet needs simultameoproved capturing of the shock,
moving along the airfoil profile and the viscous boundaryelaypresent normal to the surface
profile; the grid design criterion has to be modified to prevalbetter clustering in both the
directions. The improvement in the numerical predictiorthed shock oscillating frequency
achieved using grid "B” is as a result of increased grid retsmhun the chord-wise direction to
capture the flow phenomenon of the shock movement, deméesttee proposition.

Further computation is performed with a highly refined g@.” Similar to the previous compu-
tation, convergence to the steady state can’t be achievbdvgiteady time integration scheme.
The low Reynolds number model used in the simulation needssitichieving a value gf
below unit in order to resolve the boundary layer flow struesu Fig. 73 a) shows the distribu-
tion of y™ on the suction and pressure surfaces of the airfoil. Theaefémt of the cells along
the cross-stream direction helps in achieving the maximatevofy* below unit along the
surfaces.
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Figure 73: Unsteady solution computed on the grid "C”

Unsteady simulation is conducted in order to capture the twturate flow features. Periodic
fluctuation of the residual and the lift coefficient obtairfemm the time accurate computation

are shown in the Fig. 74 a) and b).
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Figure 74: Unsteady flow parameters computed on the grid "C”

An instantaneous Mach number distribution in the compaomtati domain is shown in the Fig. 73
b). The flow physics leading to the onset of the shock buffexjgained by Deck [34]. The
flow is accelerated over the suction surface of the airfodreate a patch of supersonic region
in the computational domain which is termined by the creatiba shock. The fluid across the
shock undergoes compression and a high pressure regioveloged in the downstream of the

shock.
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Figure 75: Unsteady solution computed on grid "C”

A small scale flow separation is occurred when the the fluidemraes the adverse pressure gra-
dient created as a result of decreasing thickness of thalaiffhe presence of the supersonic
region on the suction surface of the profile is terminatedhwWie shock and a small separation
bubble trailing the shock is observed in Fig. 73b). The flowapzeters, e.g. the free stream
Mach number and the angle of attack, leading to the creafitimeoseparation bubble through
controlling the acceleration of the fluid on the suction aoef determines the onset of the buffet
phenomenon. The thickness of the profile and its variatiaatds the trailing edge are the criti-
cal geometrical parameters in detecting the onset. As teg@henon involves viscous-inviscid
interaction, the Reynolds number plays an important rolesteminining the buffet onset. The
pressure signal transmitted from the fluctuating wake inpttesence of the separation bubble
along the upstream direction causes the oscillation of leels The frequency of oscillation
and the distance traversed by the shock during periodicutiticn, computed using grid "C”
are close to the values obtained using grid B, confirms theigdejpendence of the numerical
simulation.

Temporal variation of the surface pressure coefficient fpoiait situated at 46% of the chord
length is compared with the experimentally obtained vakisteown in Fig. 75a). The excel-
lent agreement daE, between the computational values with the experimental cantfirms the
accurate numerical capturing of the shock intensity in tieck buffet phenomenon. Fig. 75b)
shows the spatial variation of surface pressure coeffiailemy the profile due to shock oscilla-
tion.
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3.7 Computational simulation of the flow field over 3D configurations

The computational results described in this section detrates the applicability of Quadflow
in three-dimensional flow simulations.

3.7.1 Inviscid flow over the swept bump

A bump with thickness, 4% of the chord length is present inthé plane of the computational
domain. The starting and end locations of the bump in the Xa¥i@is gradually varied in the
Z direction to achieve a three-dimensional configuratiocjimed at angle of 34with the Z

axis.
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Figure 76: Convergence behaviour of the 3D computation dweeiriclined channel

The free stream Mach number of the flow and the angle of attaels feferenced in the Fig.14)
are prescribed as&b and O respectively. The angle in the azimuthal directiérnthe Fig.14)
Is set to 87.

The computational domain is spread three chord lengthgyaloe upstream and five chord
lengths in the downstream directions from the end pointe@bump. The initial grid level has
1000 cells in the domain. Following computational techegand parameters are used for the
simulation. Seven levels of grid adaptation is carried with) every time the grid undergoing
adaptation when the intermediate residual is decreaseddypifilers of magnitude relative to
the initial residual. Ten order fall in the residual is acieie in the final adapted grid level to
obtain the converged solution. Characteristic boundarylitioms imposed at the inflow and
outflow boundaries are observed to be effective in transomss the characteristics through
the computational domain with reduced size. The invisawhll boundary condition on the
bump surface is achieved by setting the normal velocity efflibw to zero.
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Second order reconstruction, using the least square mettedployed for spatial discretisa-
tion. Approximate Riemann solver with HLLC scheme is usedth@ computation of con-
vective fluxes. First order temporal resolution is achieusthg the Backward Euler scheme.
Local time-stepping with maximum CFL number of’1i8 used to accelerate the convergence
for obtaining the final steady flow solution. The CFL numberhet $tart of the computation
is set to 0.8 and increased at the geometric progressionanfitictor of 1.1. A single New-
ton iteration step is used and the Jacobian matrix is forrmatlytically. The system of linear
equations is solved using preconditioned restarted GMRESmplete Lower Upper (ILU(2))
preconditioner, built from the Jacobian matrix is used.. F&§ shows the convergence plot and
the variation of number of cells in the computational domabtained during the computations.
Approximately 600 timesteps are required for the compomatihe number of cells in the do-
main is gradually increased with successive adaptationtieae 100,000 cells at the final grid
level. The growth rate of the number of cells in the domairelatively higher, as one cell is
refined isotropically to create 8 cells during grid adaptati

Fig. 77 shows the initial grid used and the final grid achiexidr adaptation. The initial grid
is coarse, and becomes mainly adapted at the leading aladgtaies of the bump.

Fig. 78 shows the variation of density at the initial and figiadls. The flow is accelerated over
the bump and a localised supersonic region is created, vihtelnminated with the presence of
a strong shock. The localities around the shock line is rdftheing successive levels of grid
adaptation and well captured.

3.7.2 Three dimensional turbulent flow simulation over the fla plate

Three dimensional turbulent flow with grid adaptation isugiated over the flat plate to demon-
strate the capability of Quadflow. The computational donmiiscretised with the grid com-

prising three blocks. The flow is entering into the compotadi domain at the free stream Mach
numberM=0.2 and the Reynolds number is set t623x 10°. Computation is conducted con-
sidering the flow to be fully turbulent. Inviscid boundarynclition is imposed on the plate
belonging to the first block. The grid lines at the junctionvieen the first an second blocks
are clustered along the streamline direction to ensureaptidong of the boundary layer at the
leading edge of the flat plate. The portion of the flat platehengecond block is imposed with
the viscous boundary condition. The part of the flat platdethird block is set with inviscid

boundary condition in order to decrease the influence of thkevat the exit boundary. The
inflow and outflow boundaries are dealt with extrapolatigeeti»oundary conditions. The first,
second and third blocks have 20, 40 and 10 cells respectiehg the streamline directions at
the first grid level, with clustering imposed at the intedaxt the block boundaries. Each block
has 10 cells, stretched logarithmically to resolve the loauy layer in the direction normal to

the wall. The flow in the cross-stream direction is resolvéith &0 cells, uniformly spaced in
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Figure 79: Three-dimensional viscous simulation over thiedlate

the computational domain. The initial level grid has 7000sceThree levels of grid adapta-
tion is used. The computation is restricted by the numberet$ evolved as a result of grid
adaptation. The final level grid has approximately 270,08l ¢n the computational domain.
The final level adapted grid and the variation of Mach numbhehé computational domain is
shown in the Fig. 79.
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4 Conclusion

In the course of the work, numerical schemes are formulatggdemented and tested to demon-
strate the improvement in accuracy, speed and robustnéiss aflaptive solver Quadflow.
Turbulent flow solutions over the airfoil profile in cruisermhbtion show an excellent agreement
with the data obtained from the cryogenic KRG wind tunnel expents, conducted at DLR,
Gottingen by order of SFB401. The surface static pressuretaibn over the profile coincides
with the experimental data. The absence of the pressurersaatghe suction peak of the profile
and the three-dimensional nature of the flow in the experiroeases a minor deviation in the
numerically obtained aerodynamic coefficients from theeexpental data.

Detached Eddy Simulation (DES) has been implemented to htlbed¢urbulence in the flow
field and rigorously tested for the cruise as well as the Hiftjlconfigurations in the adaptive
solver Quadflow. Grid independent results have been adhigeveimulating the steady flow
fields. The results predicted by DES are observed to be asae@s the numerical prediction
using S-A RANS model for simulating steady flow on the cruisefiguration. The compar-
ison of thework-unitsneeded for simulations with DES model shows higher comjmurtak
efficiency than using the S-A RANS model.

Surface static pressure distribution for the flow over Hi§feconfiguration is in close agreement
with the experimental data. The variation of the lift coe#fit shows a linear trend at moderate
angles of attack. The angle of attack initiating a large esé¢lamw separation associated with
the inception is accurately captured using the DES modegreds the flow simulation with
the S-A turbulence model shows a similar trend as observethéyearlier researchers, i.e.
overprediction of the stall angle. Unsteady flow simulateamried out with the DES model
shows a periodic variation of the lift coefficient explaigithe periodic nature of the flow field.
The computational domain is observed with a sequence ofgehiarthe flow field as a result of
formation of a small separation bubble on the suction sertddhe main element, its growth
and merger with the separation region at the flap; eventlediging to vortex shedding. The
repetitive pattern of these flow phenomena gives a time ngrgature to the flow field in a
periodically steady manner.

Low Mach number preconditioning with DES effectively redacdhe computational time in
simulating the flow field over the high-lift configuration. &lpresence of large region of low
Mach number flow in the computational domain of the highddnhfiguration is the crucial fac-
tor in improving the computational speed. The precondéras shown to function effectively
in the domain comprising a mixture of subsonic and supecs@gions, as occurred to the flow
field over the high-lift configuration at a high angle of akadreconditioner is shown to be
improving the solution accuracy and convergence behawbthie computation in simulating
the flow field at low free stream Mach number.

Implicit backward difference scheme has been formulatedsaiccessfully implemented in the
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solver for simulating unsteady flow along moving solid soe® like in aeroelasticity. The
derived scheme is shown to satisfy the Geometric Consenvasio, essential for solving Arbi-
trary Lagrangian Eulerian (ALE) problems. The main purpofthe scheme is to allow using
as large global timesteps as limited by the flow physics rathen by the numerical stability
of the scheme, thus reducing the simulation time. Computsaiwe conducted to simulate the
flowfield over an oscillating NACAQ0012 airfoil to test and \ddite the accuracy of the newly
proposed scheme in the presence of grid adaptation. Désytieit schemes are theoretically
considered to be unconditionally stable; their formulasiand the numerical components such
as, the method of Jacobian computation, linear equatiaresdlpe of preconditioner used in
the scheme determine the actual stability. Hence, for tipgse of practical flow simulation,
the allowable maximum CFL number corresponding to the glolvastep is limited. The BDF
scheme is shown to be robust enough to function correctlgarptesence of larger maximum
CFL number in the domain compared to the Mid-point schemdiagislready in Quadflow,
before. The maximum CFL number in the domain is increased dtieetdecrease in the cell
size as a result of grid adaptation or due to increase in thigagtimestep. The robustness of
the current scheme associated with the improved numetadailisy is desirable in reducing the
simulation time for adaptive flow simulation.

The physical problem of "shock buffet”, involving the iné&tion of the shock with the bound-
ary layer, is computed and compared with the experimentaifylable data. The dependency
of the solution accuracy on grid resolution along the dicgcbf shock traverse is studied.
The solution is shown to be significantly improved from theurse mesh to a fine mesh by
anisotropically refining the grid cells on the airfoil prefiin the chord-wise direction. The
solution obtained using the finest grid shows an insignifichlange from the previously used
moderately refined grid, thus establishing the achievennethte grid convergence of the final
solution. The distance traversed by the shock on the astoflace computed using the finest
grid is close to the experimental value, albeit the speedh®efshock is overestimated. The
computationally estimated frequency of shock oscillafipdd Hz) is close to the experimental
data (125 Hz). Nevertheless, the temporal variation of thiase static pressure coefficient at
a location (46% of the chord length) on the airfoil surfacevet an excellent agreement with
the experimental data. Quadflow can accurately predict tisetoof the shock buffet. Com-
parison with the experimental data shows, the intensithefshock strength corresponding to
the temporal variation in the amplitude of the surface statessure coefficient is accurately
estimated. The shock traversing distance is in agreeméntia experiment. The overestima-
tion of the shock speed resulted in a moderate discrepanttyeathock oscillating frequency
between the numerical simulation and the experimental ddta possible improvement in the
solution accuracy may lie in improving the numerical ordeaccuracy in spatial and temporal
resolution.

Simulation of the flow field corresponding to three-dimensicconfigurations demonstrate the

109



extended capability of the Quadflow.
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