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Abstract
Curcumin is a natural compound derived from the spice, turmeric, that has been extensively reported for its efficacy in 
controlling or treatment of several inflammatory diseases. There is a growing body of literature that recognizes the anti-
inflammatory effects of curcumin in the immune system. On the other hand, the role of inflammatory signaling pathways has 
been highlighted in the pathogenesis of several inflammatory diseases, and signaling molecules involved in these pathways 
are considered as valuable targets for new treatment approaches. We aimed to provide a comprehensive overview of the 
modulatory effects of curcumin on inflammatory signaling pathways which leads to inhibition of inflammation in different 
types of immune cells and animal models. In this comprehensive review, we elaborate on how curcumin can effectively inhibit 
multiple signaling molecules involved in inflammation including NF-κB, JAKs/STATs, MAPKs, β-catenin, and Notch-1.
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MAPK	� Mitogen-activated protein kinase
IBD	� Inflammatory bowel disease
RA	� Rheumatoid arthritis
SLE	� Systemic lupus erythematosus
MS	� Multiple sclerosis
T1DM	� Type 1 diabetes mellitus
IκB	� Inhibitors of NF-κB
IKK	� IκB kinase
BMECs	� Brain microvascular endothelial cells
HUVECs	� Human umbilical vein endothelial cells
ICAM-1	� Intercellular adhesion molecule 1
VCAM-1	� Vascular cell adhesion molecule 1
MCP-1	� Monocyte chemoattractant protein-1
PPARγ	� Peroxisome proliferator-activated receptor 

gamma
iNOS	� Inducible nitric oxide synthase
COX-2	� Cyclooxygenase-2
SHP2	� Src homology 2 domain-containing protein 

tyrosine phosphatase
OSM	� Oncostatin M
MMP	� Matrix metalloproteinase
EAE	� Experimental allergic encephalomyelitis
RORγt	� RAR-related orphan receptor gamma
TGF-β	� Transforming growth factor β
SOCS	� Suppressor of cytokine signaling
PIAS	� Protein inhibitor of activated STAT​
ERK	� Extracellular receptor-activated kinase
JNK	� C-Jun N-terminal kinase
PGE2	� Prostaglandin E2
MPO	� Myeloperoxidase
CMF	� Colonic myofibroblasts
ROS	� Reactive oxygen species
BBB	� Blood–brain barrier
FLS	� Fibroblast-like synoviocyte
LDH	� Lactate dehydrogenase
OGD	� Oxygen–glucose deprivation
GSK3	� Glycogen synthase kinase 3
GATA3	� Transcription factor GATA binding protein 3
TAK1	� Transforming growth factor (TGF)-activated 

kinase 1
PMA	� Phorbol 12-myristate 13-acetate
DLN	� Draining lymph node
CRP	� C-reactive protein
VEGF	� Vascular endothelial growth factor

Inflammation and inflammatory signaling 
pathways

Inflammation is one of the major types of immune responses. 
It has an important role in both innate and adaptive immunity 
and has a crucial role in the defense against many harmful 
stimuli, of both endogenous and exogenous origin (Bianchi 

2007; Grivennikov et al. 2010). During the inflammatory 
process, several immune cells (such as leucocytes) and 
plasma proteins (such as cytokines, complement proteins) 
are brought into the site of infection or damage in tissues and 
subsequently activated (Dinarello 2000). These blood-derived 
components of the immune system mediate inflammation to 
eliminate invading pathogens (such as bacteria, viruses, and 
fungi) and also promote tissue repair (Medzhitov 2008, 2010). 
The immune system has evolved to recognize the molecular 
structures of both foreign and endogenous molecules [such 
as lipopolysaccharide (LPS), heat shock proteins (HSPs)] 
by receptors expressed by cells of the immune system such 
as macrophages, dendritic cells (DCs), endothelial cells, B 
cells, and T cells (Bianchi 2007; Mohammadi et al. 2018b; 
Takeuchi and Akira 2010). As a consequence of binding of 
these receptors to their ligands, intracellular signal transduc-
tion pathways are activated to initiate and promote inflam-
matory responses in immune cells against the above-men-
tioned agents (Gordon 2002; Mohammadi et al. 2018b; Palm 
and Medzhitov 2009). During the inflammatory response, 
several inflammatory mediators such as pro-inflammatory 
cytokines and chemokines are produced by immune cells 
(Dinarello 2000; Keyel 2014; Mohammadi et al. 2018b). The 
most important pro-inflammatory cytokines in the immune 
responses are tumor necrosis factor-α (TNF-α), interleukin-1β 
(IL-1β), IL-6, IL-12, interferon-γ (IFN-γ), and IL-8 (Dinarello 
2000; Mohammadi et al. 2018b). In addition, the interaction 
of the aforementioned cytokines with their receptors on the 
surface of immune cells also activates inflammatory signaling 
cascades in a positive feedback loop. The three main signaling 
pathways that mediate the inflammatory response in immune 
cells include nuclear factor-κB (NF-κB) signaling pathway, 
Janus kinase/signal transducer and activator of transcription 
(JAK/STAT) signaling pathway, and mitogen-activated pro-
tein kinase (MAPK) signaling pathway (Kyriakis and Avruch 
1996; Lawrence 2009; O’shea et al. 2013). Inflammation is 
a protective biological response of the host immune system 
and is carefully controlled by several mechanisms (Hanada 
and Yoshimura 2002; MacDonald et al. 2011; Medzhitov 
2008). However, failure in these mechanisms which tightly 
regulate inflammatory signaling pathways leads to unabated 
inflammation and generation of immune-mediated inflam-
matory diseases such as inflammatory bowel disease (IBD), 
rheumatoid arthritis (RA), systemic lupus erythematosus 
(SLE), atherosclerosis, and multiple sclerosis (MS) (Abou-
Raya and Abou-Raya 2006; Barnes and Karin 1997; Brydges 
and Kastner 2006; Martinon and Tschopp 2004). Therefore, 
modulation of these signaling molecules in the inflammatory 
signaling pathways can effectively induce anti-inflammatory 
effects and could potentially be a valuable approach for the 
management of inflammatory diseases.

One of the natural compounds that have shown poten-
tial anti-inflammatory properties and promise in the 
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management or control of several inflammatory diseases is 
curcumin. Herein, we provide a comprehensive overview 
of the modulatory effects of curcumin on the inflammatory 
signaling pathways which leads to inhibition of inflamma-
tion in different types of immune cells and animal models.

Curcumin and its immunomodulatory effects

Curcumin is a natural compound derived from Curcuma longa 
L. (also called turmeric, a member of Zingiberaceae family) 
that is being used extensively for the management of several 
diseases. Research supports the critical roles played by cur-
cumin and its analogs such as antibacterial, antiviral, anti-
fungal, antioxidant, anti-inflammatory, hepatoprotective and 
anti-tumor activities (Aggarwal et al. 2009; Jalili-Nik et al. 
2018; Mohammadi et al. 2018a, 2017; Momtazi and Saheb-
kar 2016; Momtazi et al. 2016; Panahi et al. 2016b, 2017a, b; 
Sahebkar 2013; Teymouri et al. 2017). In addition, it is well 
established that curcumin is considered to be a safe natural 
compound (Aggarwal et al. 2009; Jurenka 2009). In recent 
years, there has been an increasing interest in using curcumin 
as an immunomodulatory agent in the immune system. The 
immunomodulatory effect of curcumin arises from its interac-
tion with a wide range of immune cells such as macrophages, 
DCs, B, and T cells (Abdollahi et al. 2018; Gao et al. 2004). 
The anti-inflammatory properties of curcumin have been 
demonstrated in the human and animal models of several 
inflammatory disorders such as RA, SLE, MS, type 1 diabe-
tes mellitus (T1DM), atherosclerosis, metabolic syndrome, 
periodontal disease, colitis and Alzheimer’s disease (Abdol-
lahi et al. 2018; Momtazi-Borojeni et al. 2017; Sahebkar 
et al. 2016; Soltani et al. 2019). Interestingly, recent evidence 
suggests that curcumin can reduce the pro-inflammatory 
cytokines such as IFN-γ, TNF-α, IL-1 and IL-8 via interac-
tion with several signaling and transcription molecules such as 
NF-κB, JAKs/STASs, MAPKs and β-catenin (Gonzales and 
Orlando 2008; Han et al. 2002; Momtazi-Borojeni et al. 2017; 
Soetikno et al. 2011; Yang et al. 2017; Zhao et al. 2016). In 
this narrative review, we demonstrate that curcumin interacts 
with various signaling molecules in the inflammatory signal-
ing pathways, thereby acting as an anti-inflammatory agent.

Effect of curcumin on the NF‑κB signaling 
pathway

NF-κB was first identified in the B cells as a nuclear protein 
that binds specifically to kappa enhancer motif sequences in 
the NF-kB target genes (Sen and Baltimore 1986). This mas-
ter transcription factor plays an essential role in the induc-
ible expression of many genes associated with the inflamma-
tory responses in the immune system including antimicrobial 

peptides, chemokines and cytokines (Sha et al. 1995; Xiao and 
Ghosh 2005). NF-κB proteins are located in the cytoplasm 
of the cells and repressed by their inhibitory proteins that are 
known as the inhibitors of NF-κB (IκBs) (Sen and Baltimore 
1986). In response to various stimuli, the IκB becomes phos-
phorylated by an active IκB kinase (IKK), which results in the 
dissociation of IκB from NF-κB (Xiao and Ghosh 2005). Sub-
sequently, NF-κB is released, translocated to the nucleus and 
bind their DNA binding sites to regulate the transcription of a 
large number of genes (Sha et al. 1995; Xiao and Ghosh 2005).

There is increasing evidence that the mode of action of cur-
cumin involves modulating the NF-κB pathway, which may 
be considered as one of the key targets of curcumin (Fig. 1) 
(Jin et al. 2007; Kunnumakkara et al. 2007; Liu et al. 2017; 
Shakibaei et al. 2007; Suresh et al. 2018; Yekollu et al. 2011). 
The NF-κB network could be modulated at two stages: the 
inhibition of the NF-κB activation process, and by direct inhi-
bition of NF-κB. In this regard, Brennan et al. reported that 
curcumin could inhibit NF-κB activation by inhibiting the 
degradation of IκB-α and reacting with the NF-kB itself in 
TNF-activated Jurkat T lymphoma cells (Brennan and O’Neill 
1998). Curcumin may also interfere with the binding activ-
ity of NF-κB to the κB site in the IL-12p40 promoter, which 
significantly inhibits IL-12 production in LPS-activated mac-
rophages (Kang et al. 1999b, c). In addition, curcumin treat-
ment inhibited the NF-kB activation induced by oxygen–glu-
cose deprivation in injured brain microvascular endothelial 
cells (BMECs) (Dong et al. 2014). Kim et al. reported that 
curcumin negatively regulates the production of pro-inflam-
matory cytokines (IL-1, IL-6, and TNF-α) from maturing 
DCs (Kim et al. 2005). In addition, the curcumin-treated 
DCs manifested an impaired induction of TH1 responses and 
a normal cell-mediated immune response (Kim et al. 2005). 
This indicates that the inhibitory effect of curcumin on DCs 
maturation, at least in part, could be derived from its actions 
on the NF-κB activation as a potential target (Kim et al. 2005).

Further studies suggest that curcumin inhibits NF-κB 
signaling pathway by promoting the expression of IκB-α 
in activated human macrophages by influenza virus infec-
tion (Xu and Liu 2017). In addition, curcumin derivative 
BDMC33-treated macrophages showed an interrupted deg-
radation of IκB, resulting in attenuation of NF-κB nuclear 
translocation (Lee et al. 2012). As a consequence of this 
event, the production of several pro-inflammatory media-
tors including NO, TNF-α, and IL-1β was suppressed by 
curcumin (Lee et al. 2012). Kumar and colleagues studied 
the effects of curcumin on the adhesion of monocytes to 
human umbilical vein endothelial cells (HUVECs) (Kumar 
et al. 1998). They demonstrated that the anti-inflammatory 
activity of curcumin may be due, in part, to the inhibi-
tion of leukocyte recruitment (Kumar et al. 1998). Cur-
cumin blocked the TNF-induced adhesion of monocytes 
to HUVECs by inhibiting the expression of adhesion 
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molecules and TNF-mediated activation of NF-κB (Kumar 
et al. 1998). Cho et al. reported that curcumin has an inhibi-
tory effect on the expression of IL-1β and IL-6 expression 
induced in TNF-α-treated HaCaT cells (Cho et al. 2007). 
They suggested that curcumin exerts its anti-inflammatory 
and growth inhibitory effects by negative regulation of the 
NF-κB pathway (Cho et al. 2007). Bisdemethoxycurcumin, 
the active component of turmeric, suppresses the production 
of inflammatory cytokines including TNF-α, IL-8, and IL-6 
by inhibiting the NF-κB activation and IκB degradation in 
pharmacologically induced inflammation in the human mast 
cells (Kong et al. 2018).

Pan et al. reported that a new synthetic curcumin analog 
(C66) decreased high glucose-induced over-expressions of 

intercellular adhesion molecule 1 (ICAM-1) or CD54 (an 
important ligand for β2 integrins), vascular cell adhesion 
molecule 1 (VCAM-1), and monocyte chemoattractant pro-
tein-1 (MCP-1). It also reduced renal macrophage infiltration 
and injury by suppressing NF-κB activation in diabetic mice 
(Pan et al. 2013).

Curcumin decreases the NF-κB activation in TCR-stim-
ulated non-obese diabetic lymphocytes (Castro et al. 2014). 
Moreover, Soetikno et al. observed that the administration 
of curcumin protects against the development of diabetic 
nephropathy (Soetikno et al. 2011). Diabetic nephropathy 
is a major complication of diabetes and can be considered 
as an inflammatory disease (Gross et  al. 2005). Mono-
cytes/macrophages as the main source of pro-inflammatory 

Fig. 1   A schematic view of curcumin’s modulatory effects on NF-κB, 
JAK/STAT, and MAPKs pathway. Curcumin suppresses activation 
and phosphorylation of JAKs and STATs proteins. Moreover, cur-
cumin via both direct interactions with NF-κB and IκB suppresses 
activation of NF-κB. Finally, curcumin inhibits MAPK signaling 
pathway via its interaction with three main members of this pathway 
including JNK, p38, and ERK. As a result of curcumin’s modulatory 

functions, the pro-inflammatory process including infiltration of leu-
kocyte into the site of inflammation, activation, maturation, and also 
the production of pro-inflammatory mediators by innate immune 
cells strongly was inhibited. On the other hand, curcumin suppresses 
acquired immune responses by its inhibitory effects on the activation, 
differentiation, and cytokine production of T cells
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mediators including TNF-α, IL-1β, and MCP-1 and are the 
key inflammatory cells involved in the pathogenesis of the 
diabetic nephropathy (Duran-Salgado and Rubio-Guerra 
2014; Moreno et al. 2018). Macrophages infiltrating into the 
glomerulus are implicated in the development of glomerular 
injury (Duran-Salgado and Rubio-Guerra 2014). It has been 
indicated that curcumin could reduce macrophage infiltra-
tion by suppressing the activation of the NF-κB pathway in 
diabetic rat models (Soetikno et al. 2011). In accordance 
with this finding, Ghosh et al. demonstrated that curcumin 
treatment improves renal function in animal models with 
chronic renal failure by antagonizing the effect of TNF-α in 
peroxisome proliferator-activated receptor gamma (PPARγ) 
(Ghosh et al. 2009). It also blocked transactivation of NF-κB 
(Ghosh et al. 2009).

Effect of curcumin on JAK/STAT signaling 
pathway

The JAK/STAT signaling pathway is one of the most impor-
tant pathways that regulate inflammation in immune cells by 
transducing the signal of types 1 and 2 cytokine receptors 
in response to various pro-inflammatory cytokines (Leon-
ard and O’Shea 1998; O’shea et al. 2013). This pathway 
includes the four known Janus kinases (JAK1-3 and TYK2), 
which are associated with the aforementioned receptors, and 
seven STATs (STAT1-4, 5a, 5b, and 6) (Leonard and O’Shea 
1998; O’shea et al. 2013).

In innate immunity, these intracellular molecules medi-
ate signaling cascades induced by type I and type II inter-
feron (i.e., IFN-α/β and IFN-γ). They can effectively induce 
the activation, maturation, and function of DCs and mac-
rophages (Schindler et al. 2007). In acquired immunity, JAK/
STAT signaling regulates the activation and differentiation 
of different subtype of T cells including TH1 (JAK2, TYK2, 
STAT1, and STAT4), TH2 (JAK1, JAK3, and STAT6), 
and TH17 (STAT3) from naïve CD4+ T cells (Leonard 
and O’Shea 1998; O’shea et al. 2013; Tamiya et al. 2011). 
Despite the physiologic roles played by JAK/STAT sign-
aling, this pathway is also involved in the pathogenesis of 
several inflammatory diseases such as RA, IBD, MS, T1DM, 
SLE, and periodontitis, hence could be considered as a valu-
able target for the regulation of inflammation (Coskun et al. 
2013; Haftcheshmeh et al. 2018; O’shea and Plenge 2012; 
O’Shea et al. 2015; STAT and EGF 2005).

The inhibitory action of curcumin on JAK/STAT signal-
ing pathway has been confirmed in a study conducted by 
Kim et al. where it was shown that curcumin suppresses 
phosphorylation of JAK1, JAK2, and their downstream mol-
ecules such as STAT1 and STAT3 in IFN-γ, gangliosides, or 
LPS-activated microglial cells. As a result, the expression 
of several pro-inflammatory mediators including inducible 

nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-
2), MCP-1 and ICAM-1 were impaired in activated micro-
glial cells (Kim et al. 2003). In this regard, the activation of 
Src homology 2 domain-containing protein tyrosine phos-
phatases (SHP)-2, a key negative regulator of JAK activ-
ity is one of the several molecular mechanisms by which 
curcumin mediates the suppression of JAK activation (Kim 
et al. 2003). Oncostatin M (OSM) is an important member 
of IL-6 cytokine superfamily that is involved in the patho-
genesis of several inflammatory diseases, such as RA, by 
inducing several matrix metalloproteinases (MMPs). In line 
with previous findings, it has been reported that curcumin 
treatment suppressed the OSM-induced phosphorylation and 
DNA binding activity of STAT1 (but not JAK1, JAK2, and 
JAK3) in bovine and human primary articular chondrocyte 
(Li et al. 2001). By its inhibitory action on STAT1, cur-
cumin suppresses the OSM-induced production of MMP1, 
MMP3, and MMP13 in chondrocytes (Li et  al. 2001). 
Another in vitro study assessing the mechanisms underly-
ing curcumin-regulated JAK/STAT signaling showed that 
curcumin potently inhibits the expression of LPS-induced 
IL-6, TNF-α, and COX-2 in macrophage cell line RAW264.7 
via its modulatory effect on suppressor of cytokine signaling 
(SOCS)1 and SOCS3 (Guimarães et al. 2013). SOCS pro-
teins negatively regulate the overactivation of the JAK/STAT 
signaling in responses to inflammatory cytokines through 
interaction with both JAKs and STATs (Endo et al. 1997; 
Starr et al. 1997). This evidence provides a novel molecular 
mechanism by which curcumin regulates the JAK–STAT-
mediated inflammatory responses in macrophages. Another 
in vitro study suggested that curcumin reduced the expres-
sion of several inflammatory mediators including ICAM-1, 
MCP-1, and IL-8 at both mRNA and protein levels by sup-
pressing the STAT3-phosphorylation in TNF-α-stimulated 
HUVECs (Kim et al. 2007).

In experimental allergic encephalomyelitis (EAE), char-
acterized by the predominance of autoreactive TH1 and TH17 
cell responses, curcumin blocks the IL-12-induced phospho-
rylation of JAK2, TYK2, and their downstream molecules, 
i.e., STAT3 and SATA4 in T cells (Natarajan and Bright 
2002). Curcumin also inhibits the production of IL-12 by 
macrophages and DCs (Kang et al. 1999a, b; Natarajan and 
Bright 2002). With regard to the essential role of IL-12 in 
the differentiation of TH1 cells (Zhu et al. 2010), curcumin 
can strongly suppress the proliferation and differentiation of 
autoreactive TH1 cells in several autoimmune diseases such 
as MS via inhibition of IL-12 production and its signaling 
cascade. Similar to effects on TH1 cells, curcumin also effec-
tively suppresses proliferation and differentiation of auto-
reactive TH17 cells, another important subtype of T CD4+ 
cells involved in the pathogenesis of EAE (Xie et al. 2009). 
This is mediated by both suppressing IL-6, IL-21, and IL-17 
production, and by inhibiting STAT3-phosphorylation and 
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RAR-related orphan receptor gamma (RORγt) activation in 
response to the aforementioned cytokines (Xie et al. 2009). 
It is interesting to note that IL-6 and IL-21 are required for 
the differentiation of TH17 cells from naïve CD4+ T cells by 
activating STAT3 signaling and its downstream transcrip-
tion factor of RORγt (Wei et al. 2007; Zhou et al. 2007). 
Curcumin treatment attenuated CNS inflammation, demy-
elination, and severity of clinical paralysis in animal mod-
els of EAE owing to its modulatory effects on JAK/STAT 
signaling (Natarajan and Bright 2002; Xie et al. 2009). 
This evidence is further supported by other studies which 
showed curcumin could exert its beneficial anti-inflam-
matory effects in an animal model of colitis and intestinal 
inflammation by inhibiting the phosphorylation of JAK2, 
STAT3, and STAT6 (Liu et al. 2013; Zhang et al. 2016; 
Zhao et al. 2016). This is followed by downregulated protein 
expression of TNF-α, IL-1β, IFN-γ, IL-23, and IL-12p70 
and upregulated expression of anti-inflammatory cytokines 
including IL-4, IL-10, and IL-13 and transforming growth 
factor β (TGF-β) (Liu et al. 2013; Zhang et al. 2016; Zhao 
et al. 2016). In addition, curcumin also inhibits the activa-
tion of CD4+CD7− T cells by downregulation of the STAT-3 
signaling pathway (Haftcheshmeh et al. 2019; Zhang et al. 
2010a). CD4+CD7− T cells are a distinct subset of CD4+ 
T cells which produce TH2-like cytokine profiles including 
IL-4 and IL-10. They are involved in the pathogenesis of 
several inflammatory skin diseases (Haftcheshmeh et al. 
2019).

DCs are key cells crucial for the initiation of pro-inflam-
matory responses in autoimmune and inflammatory diseases 
such as colitis and are one of the main targets of curcumin 
(Blanco et al. 2008; Hart et al. 2005). It has been docu-
mented that curcumin suppresses activation and maturation 
of DCs in colitis mice by targeting JAK/STAT signaling and 
also by upregulation of three important negative regulators 
of this pathway including SOCS 1 and 3 and protein inhibi-
tor of activated STAT3 (PIAS3) (Zhang et al. 2016; Zhao 
et al. 2016).

Taken together, this growing evidence provides a better 
understanding of the mechanism of anti-inflammatory action 
for curcumin via modulating of JAK/STAT inflammatory 
signaling.

Effect of curcumin on MAPKs signaling 
pathway

MAPKs are a group of serine-threonine protein kinases that 
contribute to gene induction, proliferation, cellular differ-
entiation, and inflammatory responses (Dong et al. 2002). 
There are three main groups of MAPKs which include extra-
cellular receptor-activated kinase (ERK), P38, and C-Jun 
N-terminal kinase (JNK) (Seger and Krebs 1995). MAPKs 

play major roles in the production of pro-inflammatory 
cytokines and can be considered as valuable targets for the 
treatment of inflammatory diseases (Dong et al. 2002; John-
son and Lapadat 2002).

To study the effect of curcumin on inflammation related 
to MAPKs signaling pathway, Morgana et al. investigated its 
effects on LPS-stimulated raw 264.7 murine macrophages 
and found that curcumin remarkably reduced prostaglandin 
E2 (PGE2) level and the expression of TNF-α and IL-6 by 
inhibiting phosphorylation and activation of p38 MAPK 
(Guimarães et al. 2013). In addition, another in vitro study 
indicated that pretreatment of murine microglia cell line 
N9 with curcumin and demethoxycurcumin (DMC) could 
reduce LPS-induced phosphorylation of p38, JNK, and 
ERK1/2 MAPKs pathways, resulting in inhibition of the 
production of ROS by microglial cells (Zhang et al. 2010b). 
Consistent with previous studies, Kim et al. demonstrated 
that pretreatment of immature DCs cells with curcumin 
suppressed the LPS-induced maturation function of DCs by 
inhibiting phosphorylation of all three main MAPKs (JNK, 
p38, and ERK) (Kim et  al. 2005). Moreover, curcumin 
effectively inhibited COX-2 expressions (both in mRNA 
and protein levels) in UVB-irradiated HaCaT cells by an 
inhibitory action on activation of p38 MAPK and JNK (Cho 
et al. 2005).

RA is a chronic inflammatory disease characterized by 
the infiltration of several immune cells such as macrophage, 
DCs, and T and B lymphocytes in the inflamed joints to 
produce pro-inflammatory cytokines including IL-1β, IL-6, 
TNF-α, IFN-γ, IL-17, and IL-12 (Firestein and McInnes 
2017). In response to these pro-inflammatory cytokines, 
resident synovial fibroblast cells also produce large amounts 
of IL-6, IL-8, COX-2, and MMPs which result in the pro-
gressive joint destruction, deformity, and disability (Huber 
et al. 2006; Meinecke et al. 2005). Treatment of human 
synovial fibroblast cell line MH7A and fibroblast-like syn-
oviocytes (FLS) of RA patients with curcumin decreased 
PMA or IL-1β-induced phosphorylation of ERK1/2, but not 
p38, which led to reduced expression of IL-6 (Kloesch et al. 
2013).

Dry eye disorder is a common inflammatory eye disease 
where hyperosmosis followed by the inflammation of the 
ocular surface is involved (Stevenson et al. 2012). In addi-
tion, high expression of pro-inflammatory cytokines such 
as IL-1β and IL-6 has been observed in patients with dry 
eye disorder (Brignole et al. 2000; Calonge et al. 2010). In 
a study by Min Chen et al., pretreatment of hyperosmotic-
stimulated human corneal epithelial cells with curcumin 
prevented an increase in the IL-1β, IL-6, and TNF-α produc-
tion. Interestingly, p38 inhibitor (SB 203580), but not JNK 
inhibitor (600125), has been able to completely inhibit the 
IL-1β production, suggesting that the potential anti-inflam-
matory effects of curcumin are mediated by its suppressive 
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effect on the p38 pathway. Importantly, p38 inhibitor also 
reduced the activation of NF-κB, which proves that activa-
tion of NF-κB occurs after the activation of p38 (Chen et al. 
2010). These findings provide evidence that curcumin is able 
to suppress NF-κB signaling cascade both through its direct 
interaction with NF-κB and by inhibition of its upstream 
activator (i.e., p38 MAPK).

After brain ischemia, brain microvascular endothelial 
cells (BMECs), the principal cells in the blood–brain bar-
rier (BBB), can cause inflammation by producing several 
inflammatory cytokines such as IL-1β (Stanimirovic and 
Satoh 2000). Hence, preventing inflammatory processes in 
BMECs can potentially reduce brain damage. In a study by 
Zhan et al., curcumin was able to significantly reduce the 
lactate dehydrogenase (LDH) release and IL-1β production 
in oxygen–glucose deprivation (OGD)-stimulated BMECs 
via inhibition of p38 and JNK phosphorylation. In line with 
the Min Chen et al. study, P38 inhibitor (SB203580) sup-
presses activation of NF-κB, suggesting that curcumin can 
potentially inhibit these two pathways simultaneously (Dong 
et al. 2014).

In an animal model of colitis, curcumin treatment effec-
tively reduced both myeloperoxidase (MPO) activity and 
production of TNF-α, COX-2 and iNOS by suppressing 
p38 phosphorylation. Moreover, the production of anti-
inflammatory cytokine IL-10 was upregulated (Camacho-
Barquero et al. 2007). These findings are in accordance with 
a recent study suggesting that treatment with curcumin of 
IBD patients with positive colonic mucosal biopsies and 
colonic myofibroblasts (CMF) resulted in reduced p38 phos-
phorylation, which was followed by a decrease in the IL-1β 
and MMP-3 production (Epstein et al. 2010b).

Asthma is a long-term chronic inflammatory disease char-
acterized by the production of pro-inflammatory cytokines 
such as TNF-α and IL-1β in the airways (Barnes 2008; Bous-
quet et al. 2000). MAPKs are one of the important factors in 
the production of these pro-inflammatory proteins; hence, 
inhibiting this pathway can be a valuable treatment option 
for this disease (Duan and Wong 2006). In this regard, in a 
study by Singh et al., in an animal model of chronic asthma, 
intranasal curcumin was able to inhibit all of the three main 
pathways of MAPKs (p38, JNK, and ERK) (Chauhan et al. 
2018). As a result, the levels of nitrite, COX-2, and reactive 
oxygen species (ROS) were significantly reduced (Chauhan 
et al. 2018).

Other targets of curcumin

Curcumin has also shown immunomodulatory effects on dif-
ferent signaling molecules in the immune cells. Yang et al. 
demonstrated that treatment with curcumin downregulated 
the expression of glycogen synthase kinase 3 (GSK-3), a 

negative regulator of Wnt/β-catenin signaling pathway, and 
upregulated the expression of β-catenin, a chief downstream 
transcription factor of the canonical Wnt signaling pathway, 
in LPS-stimulated BMDC (Yang et al. 2017). As a result, 
Wnt/β-catenin signaling was activated in curcumin-treated 
BMDC that led to the inhibition of DCs activation and matu-
ration (Yang et al. 2017). In addition, in a mouse model 
of allergic asthma, administration of curcumin for 9 days 
attenuated asthma symptoms and inflammatory responses in 
the airway by activating the Wnt/β-catenin signaling path-
way, especially in DCs (Yang et al. 2017).

While investigating the further molecular targets of 
curcumin and its anti-inflammatory effects, Cheong et al. 
found that treatment of mouse model of acute asthma with 
curcumin (200 mg/kg) decreased both mRNA and protein 
levels of Notch 1 receptor and its downstream transcription 
factor GATA binding protein 3 (GATA3), a master regula-
tor of TH2 cell differentiation, in lung tissues (Chong et al. 
2014). Notch 1–GATA3 signaling pathway plays a crucial 
role in the pathogenesis of allergic asthma by promoting 
the differentiation of TH2 cells (Fang et al. 2007; Guo et al. 
2009; Hozumi et al. 2008; Park 2010). Therefore, curcumin 
attenuated the allergic airway inflammation by inhibiting 
the Notch 1–GATA3 signaling pathway and subsequent 
suppression of TH2 cells differentiation (Chong et al. 2014; 
Osborne and Minter 2007). Recently, another in vivo study 
has shown that curcumin can also inhibit the phosphoryla-
tion of transforming growth factor (TGF)-activated kinase 1 
(TAK1) in inflamed spinal cord cells which suppresses the 
production of pro-inflammatory cytokines, including TNF-
α, IL-1β, and IL-6 in a mouse model of acute spinal injury 
(Zhang et al. 2017). TAK1 is one of the MAPKKK family 
members and a major upstream modulator for the activation 
of NF-κB and P38 in microglial cells (Landström 2010). 
Therefore, curcumin can effectively suppress activation of 
these important pro-inflammatory transcription factors not 
only through direct interaction on NF-κB, P38, but also 
through their upstream molecules, especially TAK1.

Anti‑inflammatory effects of curcumin 
in clinical trials

Over the past decade, a large number of clinical studies have 
investigated the anti-inflammatory effects of curcumin in 
several diseases. In a randomized clinical trial conducted by 
Alizadeh et al., administration of 80 mg curcumin nanomi-
celle daily for 10 weeks significantly reduced the plasma 
levels of inflammatory mediators including TNF-α and 
C-reactive protein (CRP) in infertile men (Alizadeh et al. 
2018). Another randomized clinical trial evaluating the anti-
inflammatory effects of curcumin supplementation found 
that oral administration of 500 mg turmeric (containing 
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Table 1   Anti-inflammatory effects of curcumin in recently completed clinical trials

Population size (N) Type of disease Dose of turmeric, 
curcumin, or curcumi-
noids

Duration of 
intervention

Findings References

60 Infertility 80 mg/day 10 weeks Reduced plasma level of 
TNF-α and CRP

Alizadeh et al. (2018)

40 Type 2 diabetic nephropa-
thy

66.3 mg/day 2 months Decreased plasma and 
urinary level of IL-8

Khajehdehi et al. (2011)

117 Metabolic syndrome 1 g/day 8 weeks Reduced plasma level 
of TNF-α, IL-6, and 
MCP-1

Panahi et al. (2016a)

40 Knee osteoarthritis 1500 mg/day 6 weeks Reduced plasma level of 
IL-4 and IL-6

Rahimnia et al. (2015)

50 Osteoarthritis 200 mg/day 3 months Reduced plasma level of 
CRP

Belcaro et al. (2010b)

100 Osteoarthritis 200 mg/day 8 months Plasma level of IL-1β, 
IL-6, sCD40-L, 
sVCAM-1, and ESR

Belcaro et al. (2010a)

30 Obesity 1 g/day 4 weeks Reduced plasma level of 
IL-1β, IL-4, and VEGF

Ganjali et al. (2014)

89 Sulfur mustard intoxica-
tion

1.5 g/day 4 weeks Reduced plasma level 
of TNF-α, IL-8, IL-6, 
MCP-1, and hs-CRP

Panahi et al. (2015)

96 Sulfur mustard-induced 
cutaneous complications

1 g/day 4 weeks Reduced plasma level of 
IL-8 and hs-CRP

Panahi et al. (2012)

80 Solid tumors 180 mg/day 8 weeks Reduced plasma level 
of TNF-α, IL-8, IL-6, 
MCP-1, and hs-CRP

Panahi et al. (2014)

16 Chronic kidney disease 1.648 g/day 8 weeks Reduced plasma level of 
CRP

Moreillon et al. (2013)

16 Chronic kidney disease 1.648 g/day 8 weeks Attenuated the increase 
in the plasma level of 
PGE2

Shelmadine et al. (2017)

67 Type 2 diabetes mellitus. 1500 mg/day 8 weeks Reduced plasma level of 
TNF-α and IL-6

Usharani et al. (2008)

237 Type 2 diabetes mellitus. 1500 mg/day 9 months Increased plasma level of 
adiponectin

Chuengsamarn et al. (2012)

71 Hemodialysis 66.3 mg/day 12 weeks Reduced plasma level 
of TNF-α, IL-6, and 
hs-CRP

Samadian et al. (2017)

72 Migraine 80 mg/day 2 months Reduced plasma level of 
ICAM-1

Soveyd et al. (2018)

80 Migraine 80 mg/day 2 months Reduced plasma level of 
IL-6 and hs-CRP

Abdolahi et al. (2018)

74 Migraine 80 mg/day 2 months Reduced plasma level of 
TNF-α

Abdolahi et al. (2017)

74 Migraine 80 mg/day 2 months Reduced plasma level of 
COX-2/iNOS

Abdolahi et al. (2019)

5 Crohn’s disease 1.08 g/day
1.44 g/day

1 month
2 months

Reduced plasma level of 
CRP and ESR

Holt et al. (2005)

5 Ulcerative proctitis 1.1 g/day
1.65 g/day

1 month
2 months

Reduced plasma level of 
CRP and ESR

Holt et al. (2005)

Ex vivo Inflammatory bowel 
disease

5–50 µM 0.5–24 h Reduced plasma level of 
IL-1 and MMP-3

Increased plasma level of 
IL-10

Epstein et al. (2010a)
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Table 2   A brief overview of the molecular targets of curcumin and its anti-inflammatory effects; (−) and (+) signs show the negative and posi-
tive effects of curcumin on its target molecules, respectively

Type of study Cells/animal models Biologic effects Targets References

In vitro TNF-α or IL-1β-stimulated 
Jurkat and thymoma cells

Inhibit NF-κB activation by 
interfering with IκBα degra-
dation

NF-κB (−)
IκB (+)

Brennan and O’Neill (1998)

Reacting with p50 in the 
NF-κB complex

In vitro LPS-stimulated splenic mac-
rophages

Inhibit interleukin-12 produc-
tion

NF-κB (−)
NF-κB binding to the κB site (−)

Kang et al. (1999b)

In vitro OGD-treated BMECs Reduce LDH release NF-κB p65 (−)
p-IκB (−)
p38 (−)
JNK (−)

Dong et al. (2014)
Decrease IL-1β production

In vitro LPS-stimulated BMDCs Inhibit expression of co-
stimulatory molecules 
including CD80, CD86, and 
MHC class II

NF-κB p65 (−)
p38 (−)
ERK (−)
JNK (−)

Kim et al. (2005)

Induce the immature state of 
DCs with high endocytic 
capacity

Inhibit the capacity of DC to 
induce TH1 responses

Inhibit production of IL-12, 
IL-1β, IL-6, and TNF-α

In vitro IFN-γ/LPS-stimulated mac-
rophage

Inhibit secretion of NO, TNF-
α, and IL-1β

NF-κB (−)
JNK (−)
ERK (−)

Lee et al. (2012)

In vitro TNF-α-stimulated HUVECs Inhibit cell surface expression 
of ICAM-1, VCAM-1, and 
ELAM-1

NF-κB (−) Kumar et al. (1998)

Blocked their adhesion to 
monocytes

In vitro TNF-α-treated HaCaT cells Inhibit expression of IL-1β, 
IL-6, and TNF-α

NF-κB (−)
p38 (−)
ERK (−)
JNK (−)

Cho et al. (2007)

In vitro PMA and calcium ionophore 
A23187-treated human mast 
cells

Suppress production of TNF-
α, IL-8, and IL-6

NF-κB (−)
IκB (+)
p38 (−)
JNK (−)

Kong et al. (2018)

In vivo Renal epithelial NRK-52E 
cells

Inhibit high glucose-induced 
over-expressions of ICAM-
1, VCAM-1, and MCP-1

NF-κB (−)
JNK (−)

Pan et al. (2013)

Reduce renal macrophage 
infiltration

Ex vivo Splenocytes in an animal 
model of diabetes

Inhibit pancreatic leucocyte 
infiltration

NF-κB p65 (−) Castro et al. (2014)

Impair proliferation and 
IFN-γ production

In vitro M-stimulated BDC2·5-sple-
nocytes

Decrease proliferation of 
CD4+ T lymphocytes

LPS and IFN-γ-stimulated 
DCs

Inhibit expression of co-stim-
ulatory molecules including 
CD80, CD86, CD40, and 
MHC class II

Reduce production of IL-
12p70, IL-6, and TNF-α

Inhibit NO release
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Table 2   (continued)

Type of study Cells/animal models Biologic effects Targets References

In vivo An animal model of diabetes Decrease TNF-α, IL-1β, 
ICAM-1, and MCP-1 pro-
tein expression

Reduce macrophage infiltra-
tion

NF-κB (−)
IκBα (+)

Soetikno et al. (2011)

In vivo Animal models with chronic 
renal failure

Antagonize effect of TNF-α 
in PPARγ

NF-κB (−) Ghosh et al. (2009)

In vitro DLN cells Decrease proliferation
Reduce mRNA expression of 

IL-17, TGF-β, IL-6, IL-21, 
and RORγt

STAT3 (−) Xie et al. (2009)
Jurkat T cells

In vivo Spinal cord cells of an animal 
model of EAE

Reduce mRNA expression of 
IL-17, TGF-β, IL-6, IL-21, 
and RORγt

In vitro Spleen cells in animal model 
of EAE

Decrease proliferation and 
IL-12-induced responses

JAK2 (−)
TYK2 (−)
STAT3 (−)
STAT4 (−)

Natarajan and Bright (2002)

Decrease IL-12 and IFN-γ 
production

Peritoneal macrophage cells 
of an animal model of EAE

Decrease IL-12 production

Mouse microglial cell line Decrease IL-12 production
In vitro TNF-α-stimulated HUVECs Reduce the expression of 

ICAM1, MCP1, and IL-8
NF-κB (−)
p38 (−)
JNK (−)
STAT3 (−)

Kim et al. (2007)

In vitro Gangliosides, IFN-γ, or LPS-
stimulated rat microglia 
cells

Suppress induction of COX-2 
and iNOS

JAK1 (−)
JAK2 (−)
STAT1 (−)
STAT3 (−)
SHP-2 (+)

Kim et al. (2003)

Gangliosides, IFN-γ, or 
LPS-stimulated murine BV2 
microglial cells

In vitro LPS-stimulated RAW 264.7 
murine macrophage

Inhibit expression of IL-6, 
TNF-α, and COX-2

NF-ҡB (−)
SOCS1 (+)
SOCS3 (+)
p38 (−)

Guimarães et al. (2013)

In vitro OSM-stimulated bovine and 
human chondrocytes

Reduce expression of MMP-
1, MMP-3, and MMP-13

STAT1 (−)
JNK (−)

Li et al. (2001)

In vivo Colonic tissue cells of an 
animal model of colitis

Reduce expression of TNF-α 
and IL-1β

STAT3 (−) Liu et al. (2013)

Inhibit activity of MPO
In vivo Colonic tissue cells of an 

animal model of colitis
Inhibit activity of MPO STAT1 (−)

SOCS1 (+)
Zhang et al. (2016)

Reduce production of TNF-α 
and IFN-γ

Increase production of IL-10, 
IL-13, and TGF-β

Inhibit expression of iNOS
In vivo Peyer’s patches lymphocytes 

of an animal model of 
colitis

Decrease the total number 
of DCs

JAK2 (−)
STAT3 (−)
STAT6 (−)
SOCS1 (+)
SOCS3 (+)
PIAS3 (+)

Zhao et al. (2016)

Reduce expression of co-
stimulatory molecules on 
DCs including MHCII, 
CD40, CD83, CD273, and 
CD282

In vitro Human corneal epithelial 
cells

Reduce mRNA expression of 
IL-6, TNF-α, and IL-1β

NF-ҡB p65 (−)
p38 (−)
JNK (−)

Chen et al. (2010)
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22.1 mg the active ingredient curcumin) for 2 months sig-
nificantly reduced the serum levels of IL-8, but not TNF-α, 
in patients with type 2 diabetic nephropathy (Khajehdehi 
et al. 2011). The anti-inflammatory effects of curcumin were 
further supported by a randomized clinical trial conducted 
by Panahi et al., which found that curcumin treatment (1 g/
day) effectively reduced the serum levels of TNF-α, IL-6, 
and MCP-1 in patients with metabolic syndrome (Panahi 
et al. 2016a). In addition, a decrease in the plasma levels of 
IL-4 and IL-6 was observed after treatment of patients with 
knee osteoarthritis with pure curcuminoids (1500 mg/day) 
for 6 weeks (Rahimnia et al. 2015). Another clinical study 
found that oral administration of curcuminoids (comprising 
curcumin, demethoxycurcumin, and bisdemethoxycurcumin) 
at a daily dose of 1 g for 4 weeks significantly reduced the 
serum concentration of IL-1β, IL-4, and vascular endothe-
lial growth factor (VEGF), but not TNF-α, IL-6, IL-8, IFN-
γ, and MCP-1 in obese individuals (Ganjali et al. 2014). 
Moreover, by reducing TNF-α, IL-8, IL-6, MCP-1, and hs-
CRP, curcumin effectively mediated its anti-inflammatory 
effects in sulfur mustard-intoxicated patients with chronic 

pulmonary or cutaneous complications. This disease is 
characterized by the overproduction of several pro-inflam-
matory cytokines (Panahi et al. 2012, 2015). In line with 
the findings of previous studies, anti-inflammatory effects 
of curcumin were also reported in a clinical study where it 
has been shown that administration of curcumin (180 mg/
day) for 8 weeks resulted in a reduction of serum levels of 
pro-inflammatory mediators including TNF-α, IL-8, IL-6, 
MCP-1, and hs-CRP in patients with solid tumors. As a con-
sequence, systemic inflammation in these patients was sup-
pressed by curcumin supplementation (Panahi et al. 2014). 
All of the studies reviewed here have demonstrated the anti-
inflammatory effects of curcumin in several diseases by its 
modulatory effects on inflammatory signaling pathway as 
the main targets of curcumin. Table 1 summarizes the anti-
inflammatory effects of curcumin in recently completed 
clinical trials.

Table 2   (continued)

Type of study Cells/animal models Biologic effects Targets References

In vivo Colonic tissue cells of an 
animal model of colitis

Inhibit activity of MPO p38 (−) Camacho-Barquero et al. 
(2007)Reduce production of TNF-α

Increase production of IL-10
Reduce expression of COX-2 

and iNOS
Ex vivo Mucosal biopsies and myofi-

broblasts of IBD patient
Decrease IL-1β and MMP-3 

production
p38 (−) Epstein et al. (2010b)

Increase production of IL-10
In vivo Animal model of Chronic 

asthma
Reduce levels of nitrate 

COX-2 and ROS.
NF-ҡB (−)
p38 (−)
ERK (−)
JNK (−)

Chauhan et al. (2018)

In vitro LPS-stimulated murine 
microglia cell line N9

Inhibit production of ROS p38 (−)
ERK (−)
JNK (−)

Zhang et al. (2010b)

In vitro MH7A cells and RA-FLS Reduce expression of IL-6 NF-κB (−)
ERK (−)

Kloesch et al. (2013)

In vitro DCs Inhibit maturation and func-
tion of BMDCs.

GSK-3 (−)
β-catenin (+)

Yang et al. (2017)

Reduce the ability of DCs to 
induce T cells responses

In vivo Lung tissues of a mouse 
model of asthma

Reduce production of IL-4 
and increase production of 
IFN-γ

In vivo Lung tissues of a mouse 
model of asthma

Inhibit differentiation of TH2 
cells

Notch 1 receptor (−)
Notch 2 receptor (−)
GATA3 (−)

Chong et al. (2014)

In vivo Spinal cord cells of a mouse 
model of acute spinal cord 
injury

Inhibit production of pro-
inflammatory cytokines, 
including TNF-α, IL-1β, 
IL-6, and NO

TAK (−) Zhang et al. (2017)
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Concluding remarks

There is growing evidence that curcumin, through interac-
tion with a diverse set of cellular and molecular targets, has 
an anti-inflammatory role and therefore can be considered as 
a valuable natural compound for managing various inflam-
matory diseases. Curcumin can inhibit the inflammatory 
process in different types of immune cells and animal mod-
els (Table 2, Fig. 1). Curcumin has been found to suppress 
several inflammatory cascades in immune cells which result 
in (1) inhibition of activation, maturation, and cytokine pro-
duction of two important cells of innate immunity, i.e., mac-
rophages and DCs, and (2) inhibition of activation, prolifera-
tion, maturation, and cytokine production of T cell subsets 
such as TH1, TH2, and TH17. Interestingly, curcumin as a 
pleiotropic molecule can simultaneously target multiple 
signaling molecules such as NF-κB, JAKs/STATs, MAPKs 
and Wnt/β catenin, suggesting its potential as a signaling 
molecule-targeted therapeutic agent for inflammatory and 
immune-related diseases.
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