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Chapter 1

Introduction

1.1 Models of Ordered Random Variables
Models of ordered random variables play an important role in many statistical applications. In in-
surance mathematics, different models of record values are helpful to describe largest claims to an
insurance company, whereas, in reliability theory, the models of common order statistics and sequen-
tial order statistics are of particular interest in modeling so called k-out-of-n systems. As a particular
technical structure, a k-out-of-n system consists of n components of the same kind and fails if n−k+1
or more components of the system fail. If, additionally, the failure of a component may influence the
lifetime of the remaining ones, the system is called a sequential k-out-of-n system and, otherwise,
the denotation common k-out-of-n system is used. As an example for a sequential 3-out-of-4 system,
imagine an air plane with four turbines where the failure of more than one turbine leads to the failure
of the system. Upon failure of the first turbine, increased stress is put on the remaining three turbines.
(Common) order statistics and sequential order statistics, respectively, model the corresponding sys-
tems, or, more precisely, the lifetime of the systems and their components, where the latter have been
introduced by Kamps (1995a,b) in terms of a triangular scheme of independent random variables. De-
noting by F−1 the quantile function of the distribution function F , i.e., F−1(y) = inf{x : F (x) ≥ y},
y ∈ (0, 1), and F−1(0) = limy↘0 F−1(y), F−1(1) = limy↗1 F−1(y), this definition is as follows (cf.
Cramer & Kamps (2003)).

Definition 1.1.1 (Sequential order statistics)
Let (Y

(i)
j )1≤i≤n,1≤j≤n−i+1 be independent random variables with Y

(i)
j ∼ Fi, 1 ≤ i ≤ n, 1 ≤ j ≤

n− i + 1, where F1, ..., Fn are distribution functions with F−1
1 (1) ≤ ... ≤ F−1

n (1).
Let

X
(1)
j = Y

(1)
j , 1 ≤ j ≤ n, and X(1)

∗ = min{X(1)
1 , ..., X(1)

n },

and for 2 ≤ i ≤ n

X
(i)
j = F−1

i {Fi(Y
(i)
j )[1− Fi(X

(i−1)
∗ )] + Fi(X

(i−1)
∗ )}, 1 ≤ j ≤ n− i + 1,

and
X(i)
∗ = min{X(i)

j , 1 ≤ j ≤ n− i + 1}.

5



6 1.1. Models of Ordered Random Variables

Then the random variables X
(1)
∗ , ..., X

(n)
∗ are called sequential order statistics (SOSs) based on

F1, ..., Fn.

For more details as well as the extended model along with distribution theory and a variety of prop-
erties, we refer to Cramer & Kamps (2001b, 2003) and Kamps (1995a,b). In Cramer & Kamps
(2003), an alternative definition of SOSs is given, which coincides with Def. 1.1.1 provided that the
distribution functions F1, . . . , Fn are continuous.

Definition 1.1.2 (Sequential order statistics)
Let F1, ..., Fn be distribution functions with F−1

1 (1) ≤ ... ≤ F−1
n (1), and let V1, ..., Vn be independent

random variables with Vi ∼ Beta(n− i + 1, 1), 1 ≤ i ≤ n.
Then the random variables

X(i)
∗ = F−1

i (X(i)) with X(i) = 1− ViF̄i(X
(i−1)
∗ ), 1 ≤ i ≤ n, X(0)

∗ = −∞,

where F̄i = 1− Fi, 1 ≤ i ≤ n, are called sequential order statistics (SOSs) based on F1, ..., Fn.

If F1, . . . , Fn are absolutely continuous distribution functions with corresponding density functions
f1, . . . , fn, the joint density of the first r SOSs is given by

fX
(1)
∗ ,...,X

(r)
∗ (x1, . . . , xr) =

n!

(n− r)!

r∏
i=1

[(
1− Fi(xi)

1− Fi(xi−1)

)n−i
fi(xi)

1− Fi(xi−1)

]
(1.1.1)

on the cone x1 < · · · < xr, where 1 ≤ r ≤ n and x0 = −∞ (e.g., in Kamps (1995b), p. 29).

Throughout this doctoral thesis, we will restrict ourselves to a particular choice of the distribution
functions F1, . . . , Fn and consider SOSs with conditional proportional hazard rates which result from
the general sequential model by setting

Fj = 1− (1− F )αj , 1 ≤ j ≤ n,

where F is an absolutely continuous baseline distribution function with corresponding density func-
tion f and α1, ..., αn are positive parameters. By doing so, the failure rate of Fj is given by
αjf/(1 − F ) and, thus, proportional to the failure rate of the baseline distribution. In that sense, the
components of a sequential (n − r + 1)-out-of-n system with conditional proportional hazard rates
start operating at hazard rate α1f/(1−F ) and, upon failure of the j th component, 1 ≤ j ≤ r− 1, the
hazard rate of the remaining components is supposed to change from αjf/(1−F ) to αj+1f/(1−F ).
The rth SOS describes the lifetime of the system.
In the above situation, the joint density of the first r SOSs X

(1)
∗ , . . . , X

(r)
∗ with conditional propor-

tional hazard rates is given by

fX
(1)
∗ ,...,X

(r)
∗

α (x1, . . . , xr) = n!
(n−r)!

(
r∏

j=1

αj

) (
r−1∏
j=1

(1− F (xj))
mj f(xj)

)

× (1− F (xr))
αr(n−r+1)−1 f(xr) (1.1.2)
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on the cone F−1(0) < x1 < · · · < xr < F−1(1), with 1 ≤ r ≤ n, and
mj = (n − j + 1) αj − (n − j) αj+1 − 1, 1 ≤ j ≤ r − 1 (cf. Kamps (1995a,b) and
Cramer & Kamps (2001b)). The index α denotes the vector (α1, . . . , αr)

′ of model parameters. E.g.,
the particular case α1 = · · · = αr = 1 corresponds to common order statistics (OSs) based on the
distribution function F . For another approach to the stochastic modeling of reliability systems with
conditional proportional hazard rates by using stochastic intensities, we refer to Hollander & Peña
(1995) and, for related results concerning statistical inference on the respective model parameters, to
Kim & Kvam (2004).

In the distribution theoretical sense, the model of SOSs with conditional proportional hazard rates
coincides with the model of generalized order statistics that has been introduced by Kamps (1995a,b)
to embed different models of ordered random variables within an enlarged parametric model in terms
of the joint density of the respective random variables.

Definition 1.1.3 (Generalized order statistics)
Let n ∈ N, γ1, . . . , γn > 0 be positive model parameters, and let F be an absolutely continuous
distribution function with corresponding density function f . Then the ordered random variables
X

(1)
∗ , . . . , X

(n)
∗ are called generalized order statistics (gOSs), if their joint density function is given by

fX
(1)
∗ ,...,X

(n)
∗

α (x1, . . . , xn) =

(
n∏

j=1

γj

) (
n−1∏
j=1

(1− F (xj))
γj−γj+1−1 f(xj)

)

× (1− F (xn))γn−1 f(xn) (1.1.3)

on the cone F−1(0) < x1 < · · · < xn < F−1(1).

At different choices of the model parameter γ1, . . . , γn, well-known models of ordered random
variables are included in the model of gOSs in the distribution theoretical sense. E.g., by setting
γj = n − j + 1, 1 ≤ j ≤ n, we obtain the joint density of common OSs based on F , which are
extensively investigated in David & Nagaraja (2003), or, by defining γj = 1, 1 ≤ j ≤ n, (1.1.3) is the
joint density of the first n record values based on the sequence (Xi)i∈N of independent and identically
distributed (iid) random variables with distribution function F . In case of other choices of the γ’s, the
models of kth record values, progressive typ-II censoring and other models are included as well (cf.
Kamps (1995a,b)).
With r = n in (1.1.2), the joint density of all SOSs with conditional proportional hazard rates results
from the model of gOSs by setting in (1.1.3) γj = (n−j+1)αj , 1 ≤ j ≤ n, and vice versa, by setting
αj = γj/(n−j+1), 1 ≤ j ≤ n. Hence, in the distribution theoretical sense, both models are the same.

Meanwhile, there are many articles dealing with theory and application of SOSs and gOSs (for
structural results see, e.g., Belzunce et al. (2008), Bieniek (2008), Burkschat (2009) and Cramer
(2006)). Inferential issues have also been addressed. In Cramer & Kamps (1996, 2001b), maximum
likelihood estimators are presented along with useful properties, and several short-cut tests are
proposed. More recent results may be found in Balakrishnan et al. (2008), Beutner & Kamps (2009)
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and Burkschat (2010). For a nonparametric approach, see Beutner (2008, 2010).

In this doctoral thesis, we point out that the joint density of the first r SOSs with conditional pro-
portional hazard rates, or, equivalently, of the first r gOSs, forms a multivariate exponential family
in the model parameters. This structural finding opens the wide and extensively examined field of
exponential families to models of ordered random variables. As a consequence, simplified proofs of
former results in literature, in particular of those related to inferential issues, can be given, and new
useful properties can be shown as well.
Throughout the thesis, aiming at statistical inference for model parameters, we focus on SOSs to in-
troduce the structure under consideration and to motivate needs for statistical methods. However, the
derived results are also true for the model of gOSs, and, hence, may be applied when dealing with,
e.g., Pfeifer’s record model.

1.2 Summary
The outline of this work is as follows.

In Chapter 2, the concept ’exponential family’ and related notions are formally defined. Based on
an underlying exponential family structure, well-known theorems and properties in literature are
presented and rearranged for application to models of ordered random variables, in particular, to the
model of SOSs with conditional proportional hazard rates. All these results are stated mathematically
sound which takes a few pages to explain.

In Chapter 3, we introduce the model of SOSs with conditional proportional hazard rates and its
motivation. Throughout the whole chapter, the underlying baseline distribution is assumed to be
known. By this assumption, after a little algebra, the exponential family structure of the joint density
of SOSs with conditional proportional hazard rates is obvious, and, as a consequence, the results of
Chapter 2 are applicable. In Section 3.1, basic properties of this exponential family are shown. The
distributions of statistics which are of great importance for inferential issues are derived. Based on
the structural insight, minimal sufficiency and completeness of these statistics are readily obtained,
where, in general, both properties are hard to see. The computation of the Fisher information matrix,
which is also closely connected to inferential statistics, is much simplified as well. Moreover, it turns
out that the exponential family structure is preserved by considering the joint density of iid vectors of
SOSs with conditional proportional hazard rates. For the most part, this section can be regarded as a
preliminary work which enables us to inference on the model parameters in Sections 3.2 and 3.3.
In Section 3.2, the model parameters are estimated based on a sample of s iid vectors of SOSs with
conditional proportional hazard rates. Maximum likelihood estimators for single model parameters
and vectors of them are easily obtained. In the first case, uniformly minimum variance unbiased
estimators are derived as well. Subsequently, useful properties of these estimators and the respective
sequences of estimators, when s tends to infinity, are shown, e.g., consistency and (asymptotic)
efficiency. Finally, maximum likelihood estimation is considered by assuming that the model
parameters are simply ordered.
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In Section 3.3, statistical tests on the model parameters are discussed based on a sample of s iid
vectors of SOSs with conditional proportional hazard rates. Based on the underlying exponential
family structure, uniformly most powerful unbiased tests for a variety of hypotheses concerning
single model parameters are established. These tests are useful, e.g., in the context of model checking
where the prior information that all other model parameters equal some pre-fixed value is given.
In situations where such an information is not available and, hence, more than one parameter is
on test, we propose different multivariate tests for model checking, i.e. the likelihood ratio test,
Wald’s (modified) test and Rao’s score test. For different multivariate test problems with either
a simple or composite null hypothesis, which can be interpreted as model tests, we compute the
corresponding test statistics, where we, once again, benefit from the underlying exponential family
structure. In each case, the asymptotic distributions of the test statistics under the null hypothesis are
derived. Moreover, we compare the multivariate tests in terms of well-known asymptotic optimality
properties, e.g., by considering the asymptotic relative efficiency of the tests in the sense of Bahadur.
At the end of the chapter, for different test problems related to simply ordered model parameters, the
asymptotic distribution of the likelihood ratio test statistic under the null hypothesis is discussed.

In Chapter 4, we generalize and extend the findings from Chapter 3. Section 4.1 is concerned with
the case of s independent but not necessarily identically distributed (inid) vectors of SOSs with
conditional proportional hazard rates based on a known underlying distribution. The section is
similarly structured as Chapter 3 and contains respective generalizations of many statements that
have already been shown for the iid case. At this, results and proofs are presented more briefly than
in Chapter 3.
In Subsection 4.2, we consider the case where SOSs with conditional proportional hazard rates
are based on a partially unknown baseline distribution, where the uncertainty of the underlying
distribution is captured within an unknown rate parameter. As we will see, this situation is covered
by the results of Chapter 3.

In Chapter 5, the theoretical results of Section 3.3 are illustrated by means of a simulation study,
where, in Subsection 5.1, univariate statistical tests on single model parameters and, in Subsection
5.2, multivariate model tests are examined and compared in terms of their power functions.

Finally, in Chapter 6, the impact and the main contributions of this work are discussed.
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Chapter 2

Exponential Families

In this chapter, an introduction into the extensive and almost exhaustively examined field of exponen-
tial families and their properties is presented (see, e.g., Barndorff-Nielsen (1978), Lehmann & Casella
(1998), Lehmann & Romano (2005), Shao (2003) and Witting (1985)). At this, our main objectives
are

• to define and explain related notations and concepts, and

• to prepare the tool ’exponential family’ for application to models of ordered random variables,
in particular, to SOSs with conditional proportional hazard rates.

Thus, in the following, well-known results from the literature are rearranged and extended to result
in a concise account of exponential families and their properties. For this, the chapter is divided into
three sections.
In Section 2.1, the term exponential family and furhter related terminology are formally defined.
Throughout Chapter 2, the notation introduced in this section, which is mainly oriented to the by Wit-
ting (1985), will not change. In what follows, the reader gets an insight into the nature of exponential
families and detects that an underlying exponential family structure brings along many pleasant prop-
erties considered either from a stochastical or a statistical point of view. As two examples, moments
of certain random variables can easily be obtained, and inferential issues are considerably simplified
using the fact that complete sufficient statistics are near at hand.
Section 2.2 and Section 2.3 are concerned with inferential statistical statements that result from an
underlying exponential family structure. At this, in Section 2.2, point estimators of (unknown) pa-
rameters and their properties are established, whereas Section 2.3 deals with statistical tests on the
respective parameters. Having said that the exponential family structure simplifies many problems
and procedures related to statistical inference, e.g. the derivation of maximum likelihood estimators,
it also enables us to address optimality properties to estimators and statistical tests as well.

11



12 2.1. Fundamentals

2.1 Fundamentals

2.1.1 Definitions and Representations
We begin with a formal definition of an exponential family.

Definition 2.1.1 (Exponential family)
Let (X, B) be a measurable space, Θ 6= ∅ a set of parameters and P = {Pϑ : ϑ ∈ Θ} a family
of probability measures on (X, B). If there exist a σ-finite measure µ on (X, B) that dominates P

and, moreover, an integer k ∈ N, real-valued functions C, ζ1, ..., ζk on Θ and real-valued B − B1-
measurable functions h, T1, ..., Tk on (X, B), where h ≥ 0, in such a way that a µ-density of Pϑ,
ϑ ∈ Θ, is given by

dPϑ

dµ
(x) = C(ϑ) exp

{
k∑

j=1

ζj(ϑ)Tj(x)

}
h(x), x ∈ X, (2.1.1)

then P is called a k-parametrical (or k-parameter) exponential family in ζ1, ..., ζk and T1, ..., Tk.

At first glance, it is quite evident that the integer k and the functions ζ1, ..., ζk as well as T1, ..., Tk are
not uniquely determined. We will revert to that point in Subsection 2.1.2. Obviously, the expression
on the right-hand side of (2.1.1) is divided into three terms. C(ϑ) depends on the parameter ϑ but
not on x, whereas the function h of x is independent from the value of ϑ. The expression in the
exponent is the standard scalar product of a k-dimensional function ζ of ϑ and a B− Bk-measurable
k-dimensional function T of x, and, thus, depends on both variables. We state the role of C(ϑ)
explicitly in the following remark.

Remark 2.1.2
C(ϑ) in the right-hand side of (2.1.1) is a normalizing constant and does not depend on x, i.e.

0 < C(ϑ) =

[∫
exp

{
k∑

j=1

ζj(ϑ)Tj(x)

}
h(x)dµ(x)

]−1

< ∞, ϑ ∈ Θ. (2.1.2)

With regard to Rem. 2.1.2, the mapping

κ : Θ → R : ϑ 7→ − ln(C(ϑ)), (2.1.3)

is well-defined. Hence, (2.1.1) can be rewritten as

dPϑ

dµ
(x) = exp

{
k∑

j=1

ζj(ϑ)Tj(x)− κ(ϑ)

}
h(x), x ∈ X. (2.1.4)

For a short notation, we set ζ = (ζ1, ..., ζk)
′ and T = (T1, ..., Tk)

′, where v′ denotes the transpose of
the vector v. Then, (2.1.1) and (2.1.4), respectively, can be written as

dPϑ

dµ
(x) = C(ϑ) exp {ζ(ϑ)′T (x)}h(x), x ∈ X, (2.1.5)
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and
dPϑ

dµ
(x) = exp {ζ(ϑ)′T (x)− κ(ϑ)}h(x), x ∈ X, (2.1.6)

respectively.
Many well-known distribution families form exponential families. If µ denotes Lebesgue measure,
e.g., the class N (µ, σ2) of normal distributions with mean µ ∈ R and variance σ2 > 0, the class
Γ(β, α) of gamma distributions with shape parameter β > 0 and scale parameter α > 0 and the
family Beta(α, β) of beta distributions with shape parameters α, β > 0 form exponential families
in the respective parameters and statistics. Moreover, if µ is assumed to be the counting measure on
N0, it is easily seen that, e.g., the family po(λ) of poisson distributions with parameter λ > 0, the
geometrical distributions geo(p) with parameter p ∈ (0, 1) and, for fixed n ∈ N, the binomial dis-
tributions bin(n, p) with parameter p ∈ (0, 1) admit µ-densities according to the above exponential
family structure.
Typical examples for distribution families that do not form exponential families are the uniform distri-
butions U(0, b) on (0, b) with parameter b > 0 and the family of (right- or left-) truncated exponential
distributions Exp(η, ρ) with location parameter η ∈ R and scale parameter ρ > 0. The reason why
these distribution families do not satisfy a representation of type (2.1.1) lies in the fact that the respec-
tive probability measures do not have the same support as it is always the case in exponential families.
This insight is an immediate consequence of the following.
The function h is B − B1-measurable and nonnegative, and, moreover, does not depend on the pa-
rameter ϑ. Hence, another representation of the exponential family P can be stated according to the
hereafter lemma.

Lemma 2.1.3
Let P be an exponential family in ζ1, . . . , ζk and T1, . . . , Tk according to Def. 2.1.1 and let ν = hµ
be the measure on (X, B) with µ-density h. Then, the following assertions hold true:

(i) ν is σ-finite.

(ii) ν and Pϑ are equivalent measures for every ϑ ∈ Θ, i.e. ν dominates Pϑ and vice versa for every
ϑ ∈ Θ.

(iii) A ν-density of Pϑ, ϑ ∈ Θ, is given by

dPϑ

dν
(x) = C(ϑ) exp

{
k∑

j=1

ζj(ϑ)Tj(x)

}
, x ∈ X. (2.1.7)

Proof. According to Def. 2.1.1, h is real-valued and, thus, (i) follows from Bauer (1990), Thm.
17.11., p. 118. For a proof of (ii) see Witting (1985), pp. 143/144. Moreover, µ dominates ν and,
hence, application of (ii) and Cor. 1.134 in Witting (1985), p. 132, yield statement (iii). �

Remark 2.1.4
La. 2.1.3 (ii) implies that Pϑ and Pϑ̃ are equivalent measures for arbitrary ϑ, ϑ̃ ∈ Θ. In particular, all
of the probability measures Pϑ, ϑ ∈ Θ, have the same support.
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In the following, if some property holds Pϑ-almost sure (µ-almost everywhere), we write [Pϑ] or Pϑ-
a.s. ([µ] or µ-a.e.). Additionally, for later use, we introduce the notation [P] = [Pϑ] for some arbitrary
ϑ ∈ Θ, which is well-defined by notice of Rem. 2.1.4.
Finally, we end Subsection 2.1.1 by mentioning that the structure of an exponential family is preserved
by consideration of the family of distributions of T .

Lemma 2.1.5
Let P be an exponential family in ζ1, . . . , ζk and T1, . . . , Tk according to Def. 2.1.1 and La. 2.1.3, and
let PT = {P T

ϑ : ϑ ∈ Θ} be the family of the corresponding distributions of T on (Rk, Bk). Then,
PT forms a k-parametrical exponential family in ζ1, ..., ζk and the projections p1, . . . , pk (pj(t) = tj ,
t = (t1, . . . , tk)

′ ∈ Rk, 1 ≤ j ≤ k), and a νT -density of P T
ϑ , ϑ ∈ Θ, is given by

dP T
ϑ

dνT
(t) = C(ϑ) exp

{
k∑

j=1

ζj(ϑ)tj

}
, t = (t1, ..., tk)

′ ∈ Rk. (2.1.8)

Proof. In Witting (1985), Thm. 1.160, p. 149. �

Remark 2.1.6
νT is a σ-finite measure on (Rk, Bk) which can be seen as follows. For an arbitrary ϑ ∈ Θ, the

function l(t) = C(ϑ) exp
{∑k

j=1 ζj(ϑ)tj

}
, t ∈ Rk, is νT -integrable and satisfies 0 < l < ∞. Then,

application of La. 17.6, p. 112, in Bauer (1990), yields the assertion.

2.1.2 Strict Parametrization and Minimal Representation
In view of further work and an easier handling of exponential families, a representation of the form
(2.1.1) is desired where the integer k is minimum.

Definition 2.1.7 (Strict parametrization; full rank)
Let P be an exponential family according to Def. 2.1.1.

(i) P is called a strictly k-parametrical exponential family if the integer k is minimal in the fol-
lowing sense: If P satisfies another representation

dPϑ

dµ̃
(x) = C̃(ϑ) exp


k̃∑

j=1

ζ̃j(ϑ)T̃j(x)

 h̃(x), x ∈ X, [µ̃] (2.1.9)

with a σ-finite measure µ̃ on (X, B), an integer k̃ and real-valued functions C̃, ζ̃1, ..., ζ̃k̃ on Θ
and real-valued B−B1-measurable functions h̃, T̃1, ..., T̃k̃ on (X, B), where h̃ ≥ 0, then follows
k̃ ≥ k.

(ii) If P is strictly k-parametrical and the interior int(Θ) of Θ is not empty, P is said to be of full
rank.
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In literature, it is often said that if P is strictly k-parametrical with densities according to (2.1.1),
the exponential family is given by its minimal representation. However, as mentioned before, this
representation is not uniquely determined, but the minimal integer k is. For this reason, we use a
terminology where this integer is not omitted.
In order to give a characterization of the above property of an exponential family, we introduce another
terminology.

Definition 2.1.8 (Affine independence)
(i) Let M 6= ∅ be an arbitrary set, k ∈ N and ζ1, ..., ζk real-valued functions on M . ζ1, ..., ζk are

called affinely independent if the following property holds true:
If a0, a1, . . . , ak ∈ R are real numbers satisfying

a0 +
k∑

j=1

ajζj(x) = 0, ∀x ∈ M,

then a0 = a1 = ... = ak = 0.

(ii) Let (X, B) be a measurable space, k ∈ N and T1, ..., Tk real-valued B − B1-measurable func-
tions on (X, B). Furthermore, let Q be a measure on (X, B). T1, ..., Tk are called Q-affinely
independent if the mappings T111Nc , ..., Tk11Nc are affinely independent for all N ∈ B with
Q(N) = 0, where, here and in the following, 11A denotes the indicator function of a measurable
set A.
Moreover, given a set M 6= ∅ of measures on (X, B), T1, ..., Tk are called M-affinely indepen-
dent if T1, ..., Tk are Q-affinely independent for every measure Q ∈ M in the sense above.

Now, we cite a well-known useful theorem.

Theorem 2.1.9
Let P be an exponential family in ζ1, . . . , ζk and T1, . . . , Tk according to Def. 2.1.1. Then, the
following statements hold true:

(i) P is strictly k-parametrical if and only if ζ1, ...ζk are affinely independent and T1, ..., Tk are
P-affinely independent.

(ii) T1, ..., Tk are P-affinely independent if and only if there exists a ϑ ∈ Θ such that Covϑ(T ) is
positive definite. In the latter case, we briefly write Covϑ(T ) > 0.

Proof. In Witting (1985), Thm. 1.153, p. 145. For a proof of the first statement, see also Barndorff-
Nielsen (1978), Cor. 8.1., p. 113. �

We have mentioned before that the minimal representation of an exponential family is not unique.
E.g., multiplicative scalars or additive constants can easily be added to the ζ’s and the T ’s. In fact, no
other transformations lead to further minimal representations of P as the following theorem shows.

Theorem 2.1.10
Let P be a strictly k-parametrical exponential family in ζ1, . . . , ζk and T1, . . . , Tk according to Def.
2.1.1 and Def. 2.1.7. Then, the following statements hold true:
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(i) If P is a k̃-parametrical exponential family in ζ̃1, ..., ζ̃k̃ and T̃1, ..., T̃k̃ in virtue of (2.1.9), then
follows k̃ ≥ k, and there exist two constant matrices A,B ∈ Rk×k̃ of rank k and two constant
vectors a, b ∈ Rk with

ζ = Aζ̃ + a and T = BT̃ + b [P],

where ζ̃ = (ζ̃1, ..., ζ̃k̃)
′ and T̃ = (T̃1, ..., T̃k̃)

′.

(ii) ζ is uniquely and T [P]-uniquely determined up to not degenerated affine transformations (in
the sense of (i) with k̃ = k).

Proof. A proof of statement (i) can be found in Barndorff-Nielsen (1978), La. 8.1, p. 112. For a
proof of the second statement consult Witting (1985), Cor. 1.154, p. 146. �

2.1.3 Natural Parameter Space and Regularity Properties

In Subsection 2.1.1, Rem. 2.1.2, we mentioned that C(ϑ) in (2.1.1) is just a normalizing constant.
Hence, we can think about an extension of Θ and P in a natural way.

Definition 2.1.11 (Natural parameter space; natural extension)
Let P be an exponential family according to Def. 2.1.1. We define

Θ∗ = {ζ = (ζ1, ..., ζk)
′ ∈ Rk : 0 <

∫
exp

{
k∑

j=1

ζjTj(x)

}
h(x)dµ(x) < ∞},

and for ζ ∈ Θ∗

C∗(ζ) =

[∫
exp

{
k∑

j=1

ζjTj(x)

}
h(x)dµ(x)

]−1

,

f ∗ζ (x) = C∗(ζ) exp

{
k∑

j=1

ζjTj(x)

}
h(x), x ∈ X, (2.1.10)

and P ∗
ζ = f ∗ζ µ.

Then, Θ∗ is called the natural parameter space of P and P∗ = {P ∗
ζ : ζ ∈ Θ∗} the natural extension

of P.

Remark 2.1.12
Obviously, ζ(Θ) ⊆ Θ∗ and P ⊆ P∗.

Working with the natural parameter space Θ∗ and the natural parameters ζ1, ..., ζk of an exponential
family brings along a variety of pleasant regularity properties which play an important role, e.g., in
statistical inference. In Def. 2.1.1, no further assumptions on the functions ζ1, ..., ζk are stated and,
thus, they are possibly not differentiable at some points of the interior int(Θ) of Θ. If the natural
representation (2.1.10) of the exponential family is used, this problem vanishes, and it turns out that
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C∗ and f ∗ζ (considered as a function of ζ) are infinitely often differentiable with respect to ζ ∈
int(Θ∗). In fact, this regularity property is even true for every function β(ζ) = Eζ[ϕ] with some P∗-
integrable function ϕ on (X, B), where the derivatives of β can be obtained by differentiating under
the integral sign. As a consequence, moments of the statistics T1, ..., Tk can readily be computed.
To see all this, firstly, we are concerned with the properties of the natural parameter space itself.

Theorem 2.1.13
Let P be an exponential family in ζ1, . . . , ζk and T1, . . . , Tk according to Def. 2.1.1. With the deno-
tations of Def. 2.1.11, the following statements hold true:

(i) Θ∗ is a convex subset of Rk and κ∗ : Θ∗ → R : ζ 7→ − ln(C∗(ζ)) a convex function on Θ∗.

(ii) If P is strictly k-parametrical, then the interior of Θ∗ is not empty, and κ∗ is even strictly convex
on Θ∗.

Proof. A proof of the first part of (i) can be found in Lehmann & Romano (2005), La. 2.7.1, p. 48.
The second part of assertion (i) follows from Thm. 7.1., p. 103, in Barndorff-Nielsen (1978) by
consideration of the Laplace transform of νT . For statement (ii) see Witting (1985), Thm. 1.161, p.
150. �

Statement (i) of Thm. 2.1.13 is true, whether P is strictly k-parametrical or not. In the first case, Θ∗

is a convex subset of Rk containing a non-empty interior. In the latter case, Θ∗ may lie in a linear
subspace of Rk with dimension k̃ < k ( if the ζ’s in (2.1.1) satisfy a linear constraint), and the natural
parameters ζ1, . . . , ζk might be unidentifiable ( if the T ’s in (2.1.1) satisfy a linear constraint), i.e., the
mapping ζ 7→ Pζ , ζ ∈ Θ∗, might not be injective (see Lehmann & Casella (1998), p. 24).
However, by means of an appropriate reduction of the number of involved parameters, it is always
possible to obtain a strictly parametrical representation of an exponential family which can subse-
quently be written in the form (2.1.10) in virtue of a reparametrization of the parameters. Hence,
from now on, we will many a time assume that P is strictly k-parametrical and given by its natural
representation, where, additionally, the parameter space Θ is assumed to be the natural parameter
space Θ∗. Moreover, as it is often done in literature, we will assume that Θ(= Θ∗) is open as it is the
case in most applications (Lehmann & Casella (1998), p. 24). Summarizing, we have the assumptions
that P = {Pζ = fζµ : ζ ∈ Θ}, Θ = Θ∗ ⊆ Rk open, forms a strictly k-parametrical exponential fam-
ily in the natural parameters ζ1, . . . , ζk, more precisely, in the projections p1, . . . , pk with pj(ζ) = ζj

for 1 ≤ j ≤ k, and statistics T1, . . . , Tk which is of full rank, where for ζ ∈ Θ

fζ(x) = C(ζ) exp

{
k∑

j=1

ζjTj(x)

}
h(x) = exp

{
k∑

j=1

ζjTj(x)− κ(ζ)

}
h(x), x ∈ X, (2.1.11)

and κ(ζ) = − ln(C(ζ)). In what follows, we will frequently refer to situation (2.1.11).
Now, as an immediate consequence of the dominated convergence theorem, we obtain the following
regularity properties.
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Lemma 2.1.14
Let P be a strictly k-parametrical exponential family according to (2.1.11), and let ϕ : (X, B) →
(R1, B1) be Pζ-integrable for all ζ ∈ Θ. Then, the mapping

β̃ : Θ → R : ζ 7→
∫

ϕ(x) exp

{
k∑

j=1

ζjTj(x)

}
h(x)dµ(x) (2.1.12)

is continuous and has derivatives of all orders with respect to ζ1, ..., ζk which can be obtained by
differentiating under the integral sign, i.e.,

∇l1
1 ...∇lk

k β̃(ζ) =

∫
ϕ(x)T l1

1 (x)...T lk
k (x) exp

{
k∑

j=1

ζjTj(x)

}
h(x)dµ(x), ζ ∈ Θ. (2.1.13)

Proof. See Witting (1985), Cor. 1.163, p. 152, and Lehmann & Casella (1998), Thm. 5.8, p. 27. �

As a consequence of La. 2.1.14, regularity properties of C and κ follow as well as a variety of
equations concerning the relationship between the derivatives of these functions and the moments of
the statistic T . For example, if we set ϕ ≡ 1 in (2.1.12), we obtain that 1/C and, thus, C and κ are
infinitely often differentiable in ζ ∈ Θ. Then, (2.1.13) yields that, e.g., ∇1(1/C)(ζ) = Eζ[T1]/C(ζ)
and, hence, Eζ[T1] = −∇1(ln(C))(ζ) = ∇1κ(ζ).
This and more results are presented in the following theorem of Witting (1985).

Theorem 2.1.15
Let P be a strictly k-parametrical exponential family according to (2.1.11). Then, we obtain the
following statements:

(i) For every ζ ∈ Θ, the statistic T = (T1, ..., Tk)
′ has finite moments of any order with respect to

Pζ , and the functions C, κ and ζ̃ 7→ Eζ̃[T
l1
1 ...T lk

k ], ζ̃ ∈ Θ, are infinitely often differentiable in
ζ and fulfill

∇κ(ζ) = Eζ[T ], (2.1.14)

Hκ(ζ) = Covζ(T ) (2.1.15)

and Eζ[T
l1
1 ...T lk

k ] = C(ζ)∇l1
1 ...∇lk

k

∫
exp

{
k∑

j=1

ζjTj(x)

}
h(x)dµ(x).

At this, Hκ(ζ) = [∇i∇jκ(ζ)]1≤i,j≤k denotes the Hessian matrix of κ at ζ ∈ Θ.

(ii) Let ϕ : (X, B) → (R1, B1) be Pζ-integrable for all ζ ∈ Θ. Then, the mapping

βϕ : Θ → R : ζ 7→ Eζ[ϕ]

is infinitely often differentiable and fulfils

∇βϕ(ζ) = Eζ[ϕT ]− Eζ[ϕ]Eζ[T ] = Covζ(ϕ, T ).
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Proof. In Witting (1985), Thm. 1.164, pp. 152/153. �

In the context of situation (2.1.11), we additionally introduce the mapping

π : Θ → π(Θ) : ζ 7→ Eζ[T ], (2.1.16)

which will be helpful in the following section, in particular, with regard to maximum likelihood
estimation. Obviously, π(ζ) = ∇κ(ζ) and, thus, π is continuously differentiable with Jacobian
matrix Dπ(ζ) = Hκ(ζ) = Covζ(T ) > 0, ζ ∈ Θ (cf. Thm. 2.1.15 (i) and Thm. 2.1.9). Moreover,
π is bijective (cf. Witting (1985), Thm. 1.170, p. 157), and, hence, π possess a continuously
differentiable inverse function on π(Θ) which will be denoted by π−1.

Finally, for a better understanding, we illustrate the findings of this subsection by means of an exam-
ple.

Example 2.1.16
The class of binomial distributions P = {bin(1, p) : p ∈ (0, 1)} forms a one-parameter exponential
family, where a density of bin(1, p), p ∈ (0, 1), with respect to the counting measure ε is given by

fp(x) = px(1− p)1−x11{0,1}(x) = exp

{
ln

(
p

1− p

)
x− (− ln(1− p))

}
11{0,1}(x).

The reparametrization ζ = ln
(

p
1−p

)
, p ∈ (0, 1), implies p = 1

1+e−ζ and, thus,

− ln(1− p) = − ln

(
1− 1

1 + e−ζ

)
= ln(1 + e−ζ) + ζ.

Setting κ∗(ζ) = ln(1 + e−ζ) + ζ , ζ ∈ R, the natural representation of P is given by the ε-densities

f ∗ζ (x) = exp{ζx− κ∗(ζ)}11{0,1}(x), ζ ∈ R.

Here, the natural parameter space Θ∗ equals R, and the natural extension of P is P∗ = {f ∗ζ ε : ζ ∈ R}
and coincides with P. As a consequence, π(ζ) = d

dζ
κ∗(ζ) = 1

1+e−ζ and π(R) = (0, 1).

2.1.4 Moment Generating Function
In this subsection, we briefly draw attention to a helpful result related to the moment generating
function in the context of exponential families.

Definition 2.1.17 (Moment generating function)
Let X = (X1, ..., Xk)

′ be a random vector on the probability space (Ω, A, P ). The moment generating
function of X , respectively PX , is defined as

mX : Rk → R : t = (t1, ..., tk)
′ 7→ E[exp{t′X}].
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Now, we obtain the following lemma.

Lemma 2.1.18
Let P be a k-parametrical exponential family according to (2.1.11), not necessarily strictly k-
parametrical, and let ζ ∈ Θ. Moreover, let V ⊆ Rk be an open neighbourhood of 0 ∈ Rk with
the property that ζ + V = {ζ + v : v ∈ V } ⊆ Θ. Then,

mT (t) =
C(ζ)

C(ζ + t)
, t ∈ V, (2.1.17)

where integration is with respect to Pζ .

Proof. In the Appendix. �

Obviously, remembering the one-to-one-correspondence of distribution and moment generating func-
tion, this result might be of use in order to derive the distribution of the vector T of statistics which
plays a prominent role in statistical inference, as the following subsection makes clear.

2.1.5 Sufficiency, Minimal Sufficiency and Completeness
For the considered family of distributions, the concepts of (minimal) sufficiency and completeness
of statistics are fundamental for inferential issues. It is well-known that, in case of an underlying
exponential family structure, respective statistics can readily be found.

Theorem 2.1.19
Let P be a k-parametrical exponential family in ζ1, . . . , ζk and T1, . . . , Tk according to Def. 2.1.1.
Then, the following statements are true:

(i) The statistic T is sufficient for P.

(ii) If the interior of ζ(Θ) is not empty, then T is complete for P.

Proof. Statement (i) can be directly obtained from the factorization criterion (cf., e.g., Lehmann &
Romano (2005), Cor. 2.6.1, p. 46, or Witting (1985), Thm. 3.19, pp. 344/345). From Thm. 3.39, p.
356 in Witting (1985), we obtain that T is complete for P if the interior of ζ(Θ) is not empty. �

We state our findings explicitly for situation (2.1.11).

Lemma 2.1.20
Let P be a strictly k-parametrical exponential family according to (2.1.11). Then T is sufficient
and complete for P and, moreover, minimal sufficient for P, i.e., for every sufficient statistic T̃ :
(X, B) → (Z, C) for P, there exists a measurable function h : (Z, C) → (Rk, Bk) with T = h◦T̃ [P].

Proof. By assumption, P is of full rank and, hence, the results are obvious from Thm. 2.1.19, where
minimal sufficiency is obtained from Lehmann & Casella (1998), Cor. 6.16, p. 39. �
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2.1.6 Score Statistic and Fisher Information Matrix
In mathematical statistics, the terminologies score statistic and Fisher information matrix are closely
linked to the quality or, more precisely, to the efficiency and asymptotic efficiency of estimators, as
we will see in Section 2.2. For the moment, we focus on the introduction of the Fisher information
matrix and its representation related to the statistic T if an underlying exponential family structure is
assumed. In general, the definition is as follows.

Definition 2.1.21 (Score function; Fisher information matrix)
Let µ be a σ-finite measure and P = {Pζ = fζµ : ζ ∈ Θ ⊆ Rk} be a family of probability measures
on a measurable space (X, B). Moreover, let ζ ∈ int(Θ). If all appearing derivatives and integrals
with respect to ζ, respectively Pζ , exist, then, the function U ζ = ∇ζ[ln(fζ)] on (X, B), is called the
score function and

If (ζ) = Eζ[U ζU
′
ζ] (2.1.18)

the Fisher information matrix of P at ζ.

If X is a random element (random variable or vector) on some probability space with values in (X, B)
and distribution Pζ , U ζ(X) = ∇ζ[ln(fζ(X))] is also termed the score statistic of X at ζ.
The exponential family structure allows easy representations of U ζ and If (ζ) in terms of moments
of the statistics T1, . . . , Tk in the following way.

Theorem 2.1.22
Let P be a strictly k-parametrical exponential family according to (2.1.11) and let ζ ∈ Θ. Then, the
following equations are true:

U ζ = T − Eζ[T ],

If (ζ) = Covζ(T ).

Proof. Plugging in the density fζ given by (2.1.11), Thm. 2.1.15 (i) leads to U ζ = T − ∇κ(ζ) =
T − Eζ[T ]. Evidently, Eζ[U ζ] = 0 and, thus, If (ζ) = Covζ(U ζ) = Covζ(T ). �

Thm. 2.1.22 in combination with Thm. 2.1.9 implies that, in situation (2.1.11), the Fisher information
matrix If (ζ) is positive definite for all ζ ∈ Θ. Moreover, we obtain from Thm. 2.1.15 (i), that all
entries of If (ζ) are finite, i.e., we have for all ζ ∈ Θ

If (ζ) > 0, [If (ζ)]i,j < ∞, 1 ≤ i, j ≤ k. (2.1.19)

The Fisher information matrix clearly depends on the parametrization of P. We point out how to
compute the new Fisher information matrix based on the actual one if the parameters are regularly
transformed. Subsequently, we give an example for such a regular transformation.

Lemma 2.1.23
Let P be a strictly k-parametrical exponential family according to (2.1.11) and let h : Θ → Γ ⊆ Rk

be a continuously differentiable and bijective function with |Dh(ζ)| 6= 0, i.e. the determinant of
the Jacobian matrix of h is not zero, for all ζ ∈ Θ. We define another representation P̃ = {P̃γ =
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Ph−1(γ) : γ ∈ Γ} of P and let Ĩf (γ) denote the corresponding Fisher information matrix at γ ∈ Γ.
Then, h−1 : Γ → Θ is continuously differentiable with Dh−1(γ) = Dh(h

−1(γ))−1, γ ∈ Γ, and

Ĩf (γ) = Dh−1(γ)′If (h
−1(γ))Dh−1(γ), γ ∈ Γ.

Proof. In Witting (1985), Thm. 1.167, p. 156. �

Notice, that under the assumptions of La. 2.1.23, (2.1.19) yields that If (ζ), ζ ∈ Θ, and, for this
reason, Ĩf (γ), γ ∈ Γ, are invertible with

Ĩf (γ)−1 = Dh−1(γ)−1If (h
−1(γ))−1(Dh−1(γ)−1)′

= Dh(h
−1(γ))If (h

−1(γ))−1(Dh(h
−1(γ)))′. (2.1.20)

Example 2.1.24 (Mean value parametrization)
Let P be a strictly k-parametrical exponential family according to (2.1.11) and remember that π :
Θ → π(Θ) : ζ 7→ Eζ[T ] is bijective and continuously differentiable on Θ with Dπ(ζ) = Hκ(ζ) =
Covζ(T ) > 0, ζ ∈ Θ (cf. (2.1.15) and (2.1.16)). Thus, π fulfils the conditions of La. 2.1.23, and we
obtain for γ ∈ Γ = π(Θ)

Dπ−1(γ) = Dπ(π−1(γ))−1 = Covπ−1(γ)(T )−1,

and, hence, by application of Thm. 2.1.22,

Ĩf (γ) = Covπ−1(γ)(T )−1Covπ−1(γ)(T )Covπ−1(γ)(T )−1 = Covπ−1(γ)(T )−1.

2.1.7 Product Measures
In this subsection, aiming at statistical inference in Sections 2.2 and 2.3, we continue by considering
product probability spaces and measures respectively.

Lemma 2.1.25
(i) Let Θi 6= ∅, 1 ≤ i ≤ s, be parameter sets, and let Pi = {Pϑi;i = fϑi;i µi : ϑi ∈ Θi} be

an exponential family on (Xi, Bi) according to Def. 2.1.1, 1 ≤ i ≤ s. Then, the family of
product probability measures {⊗s

i=1Pϑi;i =
∏s

i=1 fϑi;i ⊗s
i=1 µi : ϑi ∈ Θi, 1 ≤ i ≤ s} forms an

exponential family on the product space (×s
i=1Xi,⊗s

i=1Bi).

(ii) Let P = {Pϑ = fϑµ : ϑ ∈ Θ} be a k-parametrical exponential family in ζ1, . . . , ζk and
T1, . . . , Tk according to Def. 2.1.1. Then, a µ(s) = (⊗s

i=1µ)-density of P
(s)
ϑ = ⊗s

i=1Pϑ is given
by

f
(s)
ϑ (x̃(s)) = C(ϑ)s exp

{
k∑

j=1

ζj(ϑ)T
(s)
j (x̃(s))

}(
s∏

i=1

h(x(i))

)

= C(ϑ)s exp
{

ζ(ϑ)′T (s)(x̃(s))
}( s∏

i=1

h(x(i))

)
, x̃(s) = (x(1), . . . , x(s)) ∈ ×s

i=1X,
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where T (s) = (T
(s)
1 , ..., T

(s)
k )′ and

T
(s)
j (x̃(s)) =

s∑
i=1

Tj(x
(i)), x̃(s) = (x(1), . . . , x(s)) ∈ ×s

i=1X, 1 ≤ j ≤ k. (2.1.21)

Hence, P(s) = {P (s)
ϑ = f

(s)
ϑ µ(s) : ϑ ∈ Θ} forms a k-parametrical exponential family in

ζ1, . . . , ζk and T
(s)
1 , . . . , T

(s)
k on the product space (X1×s = ×s

i=1X, Bs = ⊗s
i=1B).

Moreover, if P is strictly k-parametrical, then P(s) is strictly k-parametrical, too.

Proof. In Witting (1985), Thm. 1.157, p. 148. �

Obviously, the exponential family structure is preserved by considering the respective product prob-
ability measures. As an immediate consequence, using the same denotations as in La. 2.1.25, we
obtain the following important statements.

Theorem 2.1.26
Let P = {Pϑ = fϑµ : ϑ ∈ Θ} be a k-parametrical exponential family in ζ1, . . . , ζk and T1, . . . , Tk

according to Def. 2.1.1. Then, the following assertions are true:

(i) T (s) is sufficient for P(s).

(ii) If int(ζ(Θ)) 6= ∅, then T (s) is sufficient and complete for P(s).

Proof. The assertions follow directly by application of La. 2.1.25 (ii) and Thm. 2.1.19. �

Once again, we separately propose the properties for situation (2.1.11).

Lemma 2.1.27
Let P be a strictly k-parametrical exponential family according to (2.1.11). Then, T (s) is minimal
sufficient and complete for P(s).

Proof. By assumption, P is of type (2.1.11), and so is P(s) by application of La. 2.1.25 (ii). The
assertion then follows from La. 2.1.20. �

We end this subsection by stating the score statistic and the Fisher information matrix of the family
P(s) of product probability measures, when situation (2.1.11) holds.

Lemma 2.1.28
Let P be a strictly k-parametrical exponential family according to (2.1.11). Then, the score function
U

(s)
ζ = ∇ζ[ln(f

(s)
ζ )] on (X1×s, Bs) and the Fisher information matrix I

(s)
f (ζ) = Eζ[U

(s)
ζ (U

(s)
ζ )′] of

P(s) at ζ are given by the equations

U
(s)
ζ = T (s) − Eζ[T

(s)],

I
(s)
f (ζ) = Covζ(T

(s)).
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Proof. Again, by assumption and La. 2.1.25, P(s) is of type (2.1.11) and, hence, Thm. 2.1.22 yields
the assertion. �

If X(1), . . . , X(s) are iid random elements (on the same probability space) with values in (X, B),
where X(i) has distribution Pζ , i = 1, . . . , s, U

(s)
ζ (X̃

(s)
) = ∇ζ[ln(f

(s)
ζ (X̃

(s)
))] is also termed the

score statistic of X̃
(s)

= (X(1), . . . , X(s)) at ζ.
From the definition of the Fisher information matrix and Thm. 2.1.22, it is easily seen that

I
(s)
f (ζ) = s If (ζ) = sCovζ(T ), ζ ∈ Θ. (2.1.22)

2.1.8 Kullback-Leibler Distance
Preliminary for Section 2.3, we introduce a useful measure of the ’distance’ of two distributions. As it
is often done in parametrical statistics, we formally define the distance on Θ×Θ, where a parameter
is identified with the corresponding density and distribution (in virtue of a bijective mapping).

Definition 2.1.29 (Kullback-Leibler distance)
Let µ be a σ-finite measure and P = {fϑµ : ϑ ∈ Θ}, Θ ⊆ Rk, be a parametric family of probability
measures on a measurable space (X, B), where the densities fϑ, ϑ ∈ Θ, are assumed to have the
same support. Then, for ϑ(1), ϑ(2) ∈ Θ,

dKL(ϑ(1), ϑ(2)) = Eϑ(1)

[
ln

(
fϑ(1)

fϑ(2)

)]
=

∫
ln

(
fϑ(1)(x)

fϑ(2)(x)

)
fϑ(1)(x)dµ(x)

is called the Kullback-Leibler distance of ϑ(1) and ϑ(2). Here, by convention, 0
0

= 1.

Obviously, from Jensen’s inequality (e.g., in Billingsley (1995), p. 276), we obtain that
dKL(ϑ(1), ϑ(2)) ≥ 0, ϑ(1), ϑ(2) ∈ Θ. However, it should be noted that dKL is not symmetric in
general, as it is usually the case for distance measures.
Once more, the exponential family structure simplifies calculations and leads to an easy and manage-
able representation.

Lemma 2.1.30
Let P be a strictly k-parametrical exponential family according to (2.1.11). Then, for ζ(1), ζ(2) ∈ Θ,

dKL(ζ(1), ζ(2)) = κ(ζ(2))− κ(ζ(1)) + (ζ(1) − ζ(2))′π(ζ(1)).

Proof. In the Appendix. �

Finally, we remark on some regularity properties of dKL.

Remark 2.1.31
Related to situation (2.1.11), it follows from La. 2.1.30 that, for fixed ζ(1) ∈ Θ, the Hessian matrix of
the mapping dKL(ζ(1), •) coincides with the Hessian matrix of κ and, thus, dKL(ζ(1), •) is a strictly
convex function on Θ (cf. Kallenberg (1978), La. 2.2.2, p. 15).
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2.2 Point Estimation
In this section, we are concerned with the derivation of point estimators and their properties, when
the underlying class of distributions forms an exponential family. Throughout Sections 2.2 and 2.3, if
not otherwise specified, we consider the following sample situation.
Let Θ ⊆ Rk be a parameter space, (Ω, A) a measurable space and P = {Pζ : ζ ∈ Θ} be a family
of probability measures on (Ω, A). Let X denote a random element on (Ω, A) with values in a mea-
surable space (X, B). The set of corresponding distributions PX = {PX

ζ : ζ ∈ Θ} of X is assumed
to form a strictly k-parametrical exponential family in the natural parameters ζ1, . . . , ζk and statistics
T1, . . . , Tk on (X, B) according to Def. 2.1.1, where a µ-density fX

ζ of PX
ζ , ζ ∈ Θ, is given by the

right-hand side of (2.1.11). For simplicity, let Θ coincide with the natural parameter space of PX ,
which is, moreover, assumed to be open.
Motivated by asymptotic theory, we assume to have an infinite number of iid replicates X(1), X(2), . . .

of X (on (Ω, A)) with corresponding observations x(1), x(2), . . . . For s ∈ N, we define X̃
(s)

=
(X(1), . . . , X(s)) and x̃(s) = (x(1), . . . , x(s)), respectively. Then, for every s ∈ N, the class of prob-
ability measures PX̃

(s)

= {P X̃
(s)

ζ = ⊗s
i=1P

X(i)

ζ : ζ ∈ Θ} on the product space (X1×s, Bs) forms
a strictly k-parametrical exponential family in ζ1, . . . , ζk and statistics T

(s)
1 , . . . , T

(s)
k , as defined in

(2.1.21) (cf. La. 2.1.25 (ii)), and a µ(s)-density of P X̃
(s)

ζ , ζ ∈ Θ, is given by

f
(s)
ζ (x̃(s)) = exp

{
k∑

j=1

ζjT
(s)
j (x̃(s))− sκ(ζ)

}
s∏

i=1

h(x(i)), x̃(s) ∈ X1×s. (2.2.1)

Now, suppose that the true parameter ζ ∈ Θ and, thus, the true distribution PX
ζ of X , is unknown.

Then, using well-known results concerning exponential families, convenient estimators of the param-
eter vector can readily be found along with many useful properties, which will be the subject of the
following subsections.

2.2.1 Maximum Likelihood Estimation
The well-known procedure of maximum likelihood estimation is much simplified in the context of
exponential families.

Lemma 2.2.1
If 1

s
T (s)(x̃(s)) ∈ π(Θ) with π as in (2.1.16),

π−1

(
1

s
T (s)(x̃(s))

)
is the unique solution of the likelihood equation∇ζ(ln(f

(s)
ζ (x̃(s)))) = 0 and maximizes the likelihood

function based on the observations x(1), . . . , x(s), s ∈ N.

Proof. In the Appendix. �
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Inspecting the proof of La. 2.2.1, a solution of the likelihood equation does not exist if the condition
1
s
T (s)(x̃(s)) ∈ π(Θ) is not fulfilled. In that case, since Θ is assumed to be open, the likelihood

function has no maximum in Θ and, hence, the maximum likelihood estimate of ζ in Θ based on the
observations x(1), . . . , x(s) does not exist. We give an example.

Example 2.2.2
Suppose that in the situation of Ex. 2.1.16 ζ is unknown, and let X(1), ..., X(s) iid∼ f ∗ζ with correspond-
ing observations x(1), . . . , x(s). If x(1) = · · · = x(s) = 0 or x(1) = · · · = x(s) = 1, 1

s

∑s
i=1 x(i) equals 0

or 1, and both values are not in the range of π. Hence, in these cases, a maximum likelihood estimate
of ζ ∈ R based on the observations x(1), . . . , x(s) does not exist.

Hence, even if an exponential family structure with densities given by the natural representation is
assumed, maximum likelihood estimates based on a given sample of s observations may not exist.
However, roughly speaking, the larger the sample size s is, the more likely a solution of the likelihood
equation exists, as the following theorem shows.

Theorem 2.2.3
If Pζ(

1
s
T (s)(X̃

(s)
) ∈ π(Θ)) = 1 for all ζ ∈ Θ, then

ζ∗(s) = π−1

(
1

s
T (s)(X̃

(s)
)

)
is the unique maximum likelihood estimator (MLE) of ζ ∈ Θ based on s independent observations
of X . Moreover, for all ζ ∈ Θ,

lim
s→∞

Pζ

(
1

s
T (s)(X̃

(s)
) ∈ π(Θ)

)
= 1,

and, thus, the MLE ζ∗(s) of ζ based on s independent observations exists in Θ with Pζ-probability
tending to 1 if the sample size s tends to infinity.

Proof. In the Appendix. �

In terms of Ex. 2.2.2, the probability of non-existence of the MLE of ζ in Θ∗ = R based on s

independent observations equals
(

1
1+e−ζ

)s

+
(

e−ζ

1+e−ζ

)s

if ζ ∈ R is the true parameter, which clearly
converges to 0 if s tends to infinity.

Theorem 2.2.4
Let g : Θ → Γ ⊆ Rk be a bijective mapping, P̃X

γ = PX
g−1(γ), γ ∈ Γ, and P̃X = {P̃X

γ : γ ∈ Γ} be
another parametrization of PX . Then, based on s independent replicates X(1), . . . , X(s) of X , ζ∗(s) is
the MLE of ζ in Θ if and only if γ∗(s) = g(ζ∗(s)) is the MLE of γ = g(ζ) in Γ.

Proof. In Witting (1985), Thm. 1.31, pp. 32/33. �
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2.2.2 Estimation under Simple Order Restriction
In this subsection, the focus is on estimation of parameter vectors under the simple order restriction
on its components. For this, let us assume the following sample situation differing from the one
introduced at the beginning of Section 2.2.
Let P̃ = {f̃ϑµ : ϑ ∈ Θ} be a one-parameter exponential family on (R1, B1), where Θ is an open
interval of the real line (not necessarily finite), and the µ-densities f̃ϑ are given by

f̃ϑ(x) = eζ(ϑ)T (x)−κ(ϑ)h(x), x ∈ R.

We assume to have k independent samples from the exponential family, where the j th sample has size
nj , 1 ≤ j ≤ k, and the random variables in every sample are iid. More precisely, let Xi;j , 1 ≤ i ≤ nj ,
1 ≤ j ≤ k, be independent, where, for fixed j ∈ {1, . . . , k}, Xi;j ∼ f̃ϑj

, 1 ≤ i ≤ nj , for some
(unknown) ϑj ∈ Θ. All random variables are formally defined on the same measurable space (Ω, A)
with corresponding family P = {Pϑ : ϑ = (ϑ1, . . . , ϑk)

′ ∈ Θk} of probability measures on (Ω, A).
Now, the aim is to estimate the parameters ϑ1, . . . , ϑk where, e.g., based on some prior experiment,
the simple ordering ϑ1 ≤ · · · ≤ ϑk of the parameters is assumed. Related results can be found in the
books of Barlow et al. (1972) and Robertson et al. (1988), and are cited in what follows.

Definition 2.2.5 (Isotonic function)
A real-valued function g : I → R on a finite set I is called isotonic on I if i ≤ j implies g(i) ≤ g(j)
for i, j ∈ I .

In the above sample situation, let I = {1, . . . , k}. If the MLE ϑ̂ = (ϑ̂1, . . . ϑ̂k)
′ of ϑ = (ϑ1, . . . , ϑk)

′

exists, it can be identified with the (random) mapping r on I defined by r(j) = ϑ̂j , 1 ≤ j ≤ k.

Definition 2.2.6 (Isotonic regression)
Let g : I → R be a real-valued and w : I → R+ be a positive function on a finite set I . An isotonic
function g∗ on I is called an isotonic regression of g with weights w if and only if∑

i∈I

(g(i)− g∗(i))2w(i) ≤
∑
i∈I

(g(i)− h(i))2w(i)

for every isotonic function h on I .

According to that definition, we denote the isotonic regression of the MLE ϑ̂ ≡ (r(1), . . . , r(k))′ of ϑ
by r∗ = (r∗(1), . . . , r∗(k))′. The following lemma gives a formula to calculate the isotonic regression
of a function.

Lemma 2.2.7
In the situation of Def. 2.2.6 the isotonic regression g∗ of g with repect to the weights w is given by

g∗(i) = max
{U∈U: i∈U}

min
{L∈L: i∈L}

Av(L ∩ U),

where for A ⊆ I

Av(A) =

∑
i∈A w(i)g(i)∑

i∈A w(i)
,

and U and L are the upper sets and lower sets of I . At this, U ⊆ I is called an upper set if i ∈ U and
i ≤ j implies j ∈ U , and L ⊆ I is a lower set of I if i ∈ L and j ≤ i implies j ∈ L, respectively.
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Proof. E.g., in Robertson et al. (1988), Thm. 1.4.4, p. 23 or Barlow et al. (1972), Thm. 2.8, p. 80. �

By choosing I = {1, . . . , k}, the upper and lower sets of I are given by {m, . . . , k}, m ∈ I , and
{1, . . . ,m}, m ∈ I , respectively. The intersection of an upper and a lower set is then either empty or
equals {j, . . . ,m} for some 1 ≤ j ≤ m ≤ k.
Now, in the context of the initial sample situation of this subsection, the following theorem holds true.

Theorem 2.2.8
If the unrestricted MLE ϑ̂ = (ϑ̂1, ..., ϑ̂k)

′ of ϑ = (ϑ1, ..., ϑk)
′ exists and if ζ and κ have continuous

second derivatives on Θ with the properties that ζ ′(ϑ) > 0 and κ′(ϑ) = ϑζ ′(ϑ), ϑ ∈ Θ, then the
restricted MLE of ϑ, subject to the constraint that the estimator be isotonic on I = {1, . . . , k}, is
given by the isotonic regression of ϑ̂ with weights w(j) = nj , 1 ≤ j ≤ k.

Proof. In Robertson et al. (1988), Thm. 1.5.2, p. 34. �

Hence, the MLE ϑ̃j of ϑj , 1 ≤ j ≤ k, under the simple order restriction ϑ1 ≤ · · · ≤ ϑk is given by

ϑ̃j = max
1≤µ≤j

min
j≤ν≤k

∑ν
l=µ nlϑ̂l∑ν
l=µ nl

.

In particular, in case of equal sample sizes n1 = · · · = nk, we obtain

ϑ̃j = max
1≤µ≤j

min
j≤ν≤k

1

ν − µ + 1

ν∑
l=µ

ϑ̂l.

2.2.3 Efficiency of Estimators

The concept of efficiency of an estimator is connected to the multivariate Rao-Cramér inequality (see,
e.g., Shao (2003), p. 169 or Witting (1985), Thm. 2.133, p. 317), which is applicable here by noticing
that in exponential families the order of integration and differentiation can be interchanged (cf. La.
2.1.14). According to the sample situation introduced at the beginning of Section 2.2, the inequality
is as follows.
Let g : Θ → Rl be an l-dimensional differentiable function of the parameter ζ with Jacobian ma-
trix Dg(ζ) ∈ Rl×k evaluated at ζ ∈ Θ. Then, for every unbiased estimator ĝ(s) of g based on s
independent observations, we obtain

Covζ(ĝ
(s)) ≥ Dg(ζ)I

(s)
f (ζ)−1Dg(ζ)′

= Dg(ζ)Covζ(T
(s))−1Dg(ζ)′, (2.2.2)

for ζ ∈ Θ in the sense of the Löwner ordering, i.e. A ≥ B if and only if A − B ≥ 0 (A − B is a
positive semidefinite matrix).
In particular, by choosing g as identity on Θ, the covariance matrix of every unbiased estimator ζ̂

(s)
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of ζ based on s independent observations can be bounded from below:

Covζ(ζ̂
(s)

) ≥ I
(s)
f (ζ)−1 = Covζ(T

(s))−1

=
1

s
Covζ(T )−1, ζ ∈ Θ.

Thus, for every unbiased estimator ζ̂
(s)
j of ζj based on s independent observations, its variance is

bounded by

V arζ(ζ̂
(s)
j ) ≥ [Covζ(T )−1]j,j

s
, 1 ≤ j ≤ k, ζ ∈ Θ.

The multivariate Rao-Cramér inequality provides a lower bound for the covariance matrix of an unbi-
ased estimator. Hence, estimators whose covariance matrices attain that lower bound are of particular
interest.

Definition 2.2.9 (Efficiency)
In the above situation, ĝ(s) is called an efficient estimator of g(ζ) based on s independent observations
if ĝ(s) is unbiased for g(ζ) and its covariance matrix attains the lower bound of the Rao-Cramér

inequality (2.2.2). In particular, ζ̂
(s)

is called an efficient estimator of ζ based on s indenpendent
observations if ζ̂

(s)
is unbiased for ζ and Covζ(ζ̂

(s)) = Covζ(T
(s))−1, ζ ∈ Θ.

As an example for an efficient estimator, notice the following lemma.

Lemma 2.2.10
1
s
T (s)(X̃

(s)
) is an efficient estimator of π(ζ) = Eζ[T ] based on s independent observations.

Proof. In the Appendix. �

In the actual context of a finite sample size, the MLE of ζ may turn out to be non-efficient or even
biased. However, from an asymptotical and, thus, theoretical point of view, the efficiency of the
estimator can be shown as we will point out in Subsection 2.2.5.

2.2.4 (Strong) Consistency of Estimators
In the following subsections, we continue by deriving asymptotic properties of sequences of estima-
tors. At first, (strong) consistency of a sequence of estimators is the property that an estimator of an
unknown parameter gets ’closer’ to the parameter when the sample size increases.

Definition 2.2.11 ((Strong) consistency)
A sequence ζ̂ = {ζ̂

(s)
}s∈N of estimators of ζ ∈ Θ is called consistent if ζ̂

(s) Pζ−→ ζ, i.e., if ζ̂
(s)

converges in Pζ-probability towards ζ as s tends to infinity, for every ζ ∈ Θ. If the convergence is
even Pζ-a.s., ζ̂ is called strongly consistent.

Evidently, strong consistency implies consistency. Assuming an underlying exponential family struc-
ture, strong consistency of the sequence of MLEs is easily seen, provided that the sequence exists.
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Lemma 2.2.12
If the sequence ζ∗ = {ζ∗(s)}s∈N of the MLEs of ζ exists, it is strongly consistent. Moreover, in that
case, using the denotations of Thm. 2.2.4, the sequence of MLEs {g(ζ∗(s))}s∈N of g(ζ) is strongly
consistent for estimating g(ζ), provided g is continuous on Θ.

Proof. Let ζ ∈ Θ be the true parameter vector. From an insight into the proof of Thm. 2.2.3,
s−1T (s)(X̃

(s)
) → π(ζ), Pζ − a.s.. π−1 is a continuous mapping on π(Θ) and, thus, ζ∗(s) =

π−1(s−1T (s)(X̃
(s)

)) → π−1(π(ζ)) = ζ, Pζ-a.s., since a.s. convergence is preserved under con-
tinuous mappings (e.g., in Shao (2003), Thm. 1.10 (i), p. 59). Hence, strong consistency of ζ∗ is
proven. The statement for the sequence {g(ζ∗(s))}s∈N is then obvious by application of Thm. 1.10 (i)
in Shao (2003), p. 59, once again. �

2.2.5 Asymptotic Efficiency of Estimators
Similarly to the concept of efficiency of estimators in case of finite sample sizes, a respective ter-
minology can be introduced for the asymptotic approach as well. For a better understanding of the
definition and results of this subsection, we give a short heuristics (cf. Lehmann & Casella (1998),
pp. 437 ff.).
Let δ̂ = {δ̂(s)}s∈N be a sequence of unbiased estimators of a real-valued parameter δ ∈ D, where
δ̂(s) is based on s independent replicates X(1), . . . , X(s) of a random element X with values in (X, B)
having µ-density fX

δ , where µ is a σ-finite measure on (X, B). We will assume that
√

s(δ̂(s) − δ) has
an asymptotic normal distribution with mean zero and variance v(δ), i.e.

√
s(δ̂(s) − δ)

D−→ N (0, v(δ)), (2.2.3)

where v : D → R+ maps the parameter δ onto the variance v(δ) of the corresponding asymptotic
distribution. If the respective regularity conditions are fulfilled, the Rao-Cramér inequality yields

V arδ(δ̂
(s)) ≥ I

(s)
f (δ)−1 =

If (δ)
−1

s
, ∀s ∈ N, (2.2.4)

where If (δ) denotes the Fisher information of PX = {fX
δ µ : δ ∈ D}, and I

(s)
f (δ) the Fisher infor-

mation of the corresponding product probability measures at δ ∈ D.
Obviously, (2.2.4) is equivalent to

V arδ(
√

s(δ̂(s) − δ)) ≥ If (δ)
−1, ∀s ∈ N.

Let us additionally assume that, for every δ ∈ D, the actual variances V arδ(
√

s(δ̂(s) − δ)) converge
to the asymptotic variance v(δ) if the sample size s tends to infinity. Then,

v(δ) = lim
s→∞

V arδ(
√

s(δ̂(s) − δ)) ≥ If (δ)
−1, (2.2.5)

and, hence, the asymptotic variance is bounded from below by the inverse of the Fisher information of
PX . Clearly, a sequence of estimators of δ is the more attractive, the smaller the values v(δ), δ ∈ D,
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are, and, thus, if equality holds in (2.2.5), the sequence of estimators can be considered as ’efficient’
from an asymptotical point of view.
In view of the assumptions made in the above heuristics, the following points should be noted:

• Estimators of interest, e.g. MLEs, usually fulfill condition (2.2.3), and, thus, the assumption of
asymptotic normality with mean zero of competing sequences of estimators is not that restric-
tive (for another approach see Wolfowitz (1965)).

• In general, the limit of the actual variances and the asymptotic variance do not have to coincide.
However, the motivation of asymptotic distribution theory is to replace the actual distribution
by the possibly more manageable asymptotic one if the number of observations is sufficiently
large. Hence, it seems to be reasonable to assume that the variances of the (normalized) es-
timators converge to that of the asymptotic distribution. Additionally, one might also assume
this convergence to be uniform with respect to δ ∈ D, since the true value of the parameter is
unknown.

• Finally, we remark on the fact that the Rao-Cramér inequality holds for unbiased estimators
only. Asymptotic normality with mean zero according to (2.2.3) implies consistency of the
sequence of estimators but not necessarily unbiasedness of any estimator δ̂(s), s ∈ N.

If certain regularity conditions are fulfilled, in particular, if an underlying exponential family structure
is assumed, Bahadur (1964) has shown that for every sequence δ̂ = {δ̂(s)}s∈N of not necessarily
unbiased estimators of δ ∈ D satisfying (2.2.3) the inequality

v(δ) ≥ If (δ)
−1, (2.2.6)

holds λ1-a.e. on D. The values of δ which violate inequality (2.2.6) are called points of supereffi-
ciency. A point of superefficiency might bring along some unpleasant properties related to the risk
functions of the estimators evaluated at sequences of parameters converging to that point (Lehmann
& Casella (1998), pp. 441/442; see also the Hodges example, e.g., in Lehmann & Casella (1998),
Ex.s 2.5 and 2.7, pp. 440 ff.) and, thus, it seems to be advisable to restrict the class of admissible
sequences of estimators to those fulfilling (2.2.6) for all δ ∈ D.
If the set of probability measures forms a one-parameter exponential family according to (2.1.11)
where k = 1 and ζ1 is replaced by δ, δ 7→ If (δ)

−1 is a continuous function on Θ and, thus, e.g., the
restriction of the set of sequences of estimators satisfying (2.2.3) to those satisfying (2.2.3), where v
is a continuous function of δ, ensures that (2.2.6) holds everywhere on Θ.
The preceding result can be extended to the multiparameter case (see Bahadur (1964)). In the situation
discussed above, let Θ ⊆ Rk, k ≥ 1. If similar regularity conditions are assumed, we obtain that for
every sequence of estimators δ̂ = {δ̂(s)}s∈N of δ = (δ1, . . . , δk)

′ ∈ Θ, satisfying

√
s(δ̂

(s) − δ)
D−→ Nk(0,Σ(δ)), (2.2.7)

the inequality
Σ(δ) ≥ If (δ)−1
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holds λk-a.e. on Θ, where If denotes the Fisher information matrix of PX = {fX
δ µ : δ ∈ Θ} and

≥ is the Löwner ordering. Here and in the following, Nk(a,B) denotes the k-dimensional normal
distribution with mean a and covariance matrix B.
Having elucidated the theoretical background, we define asymptotic efficiency of a sequence of esti-
mators as follows.

Definition 2.2.13 (Asymptotic efficiency)
A sequence ζ̂ = {ζ̂

(s)
}s∈N of estimators of ζ ∈ Θ is said to be asymptotically efficient if, for every

ζ ∈ Θ,
√

s(ζ̂
(s)
− ζ)

D−→ Nk(0, If (ζ)−1), i.e. if
√

s(ζ̂
(s)
− ζ) has a k-dimensional asymptotic

normal distribution with mean zero and covariance matrix If (ζ)−1, where If (ζ) denotes the Fisher
information matrix of PX at ζ ∈ Θ.

Remark 2.2.14
As mentioned before, asymptotic normality implies consistency. For this, let {ζ̂

(s)
}s∈N fulfill condi-

tion (2.2.7) with δ replaced by ζ. Then

ζ̂
(s)
− ζ =

1√
s︸︷︷︸

s→∞
−→0

·
√

s(ζ̂
(s)
− ζ)︸ ︷︷ ︸

D−→Nk(0,Σ(ζ))

,

and the multivariate version of Slutsky’s theorem (cf., e.g., Sen & Singer (1993), Thm. 3.4.3, p.
130) yields that ζ̂

(s)
− ζ

D−→ 0. Applying Thm. 1.8 (vii) in Shao (2003), p. 51, we obtain that

ζ̂
(s)
− ζ

Pζ−→ 0 and, hence, the assertion is shown.

Now, according to the sample situation introduced at the beginning of Section 2.2, the following
lemma is true.

Lemma 2.2.15
If the sequence ζ∗ = {ζ∗(s)}s∈N of the MLEs of ζ exists, it is asymptotically efficient. Moreover,
in that case, if in Thm. 2.2.4 g is continuously differentiable with |Dg(ζ)| 6= 0 ∀ζ ∈ Θ, then the
sequence {γ∗(s)}s∈N, γ∗(s) = g(ζ∗(s)), s ∈ N, is asymptotically efficient for estimating γ = g(ζ), i.e.

√
s(γ∗(s) − γ)

D−→ Nk(0, Ĩf (γ)−1),

where Ĩf (γ) denotes the Fisher information matrix of P̃X at γ ∈ Γ.

Proof. In the Appendix. �

Finally, we mention that, within the class of all asymptotically efficient sequences of estimators of
ζ ∈ Θ, a certain subset, i.e. the set of sequences {ζ̂

(s)
}s∈N that fulfill

√
s(ζ̂

(s)
− ζ)− 1√

s
If (ζ)−1U

(s)
ζ (X̃

(s)
)

Pζ−→ 0, ∀ζ ∈ Θ,

are termed best asymptotic normal estimators (BAN estimators). If the sequence ζ∗ of MLEs of
ζ ∈ Θ exists, it is a BAN estimator of ζ, which can easily be seen by application of the multivariate
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mean value theorem (in the Appendix: Proof ∆1). Several authors (see below) have shown that BAN
estimators can be considered as asymptotically optimal estimators from another point of view, when
comparisons of competing estimators are made based on Pitman’s measure of closeness. At this, an
estimator δ̂ of a real-valued parameter δ ∈ D is said to be a Pitman closer estimator than δ̃ if

Pδ(|δ̂ − δ| < |δ̃ − δ|) ≥ 0.5 ∀δ ∈ D, (2.2.8)

with a strict inequality sign for at least one δ ∈ D. δ̂ is termed a Pitman closest estimator within the
class D if δ̂ is Pitman closer than every other estimator in D. These concepts can both be extended
to the multivariate case, where the absolute value | • | is replaced by some norm on Rk, e.g., the
Mahalanobis norm involving the inverse of the Fisher information matrix (see, e.g., Rencher (1998),
pp. 22/23), and, moreover, respective definitions of Pitman’s measure of closeness related to asymp-
totic theory and sequences of estimators have been made. For a comprehensive treatment of Pitman’s
measure of closeness, we refer to Keating et al. (1993), where asymptotic optimality in Pitmans’s
sense is considered in Thm. 6.1.8, pp. 176/177, for the univariate case. For a respective result in a
multivariate framework, see Sen (1986).
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2.3 Statistical Tests
Having derived point estimators and their (asymptotic) properties in Section 2.2, we are now con-
cerned with statistical tests on the model parameters ζ1, . . . , ζk. Throughout this section, if not other-
wise specified, we assume the same sample situation and denotations as in the beginning of Section
2.2. Based on the underlying exponential family structure, optimal univariate and multivariate tests
are obtained, and, in particular, tests under order restrictions are established.

2.3.1 Uniformly Most Powerful Unbiased Tests
It is well-known that, based on an underlying multivariate exponential family structure, uniformly
most powerful unbiased (UMPU) one- and two-sided tests on a single parameter ζj , 1 ≤ j ≤ k, can
be established. We consider the five following test problems involving ζ1. Regarding the structure of
f

(s)
ζ , respective modifications of the statements of this subsection are also valid for every other choice

of ζj , 2 ≤ j ≤ k.

(I) H0 : ζ1 ≤ ζ0 ↔ H1 : ζ1 > ζ0,

(II) H0 : ζ1 ≥ ζ0 ↔ H1 : ζ1 < ζ0,

(III) H0 : ζ1 = ζ0 ↔ H1 : ζ1 6= ζ0,

(IV) H0 : ζ
(1)
0 ≤ ζ1 ≤ ζ

(2)
0 ↔ H1 : ζ1 < ζ

(1)
0 or ζ1 > ζ

(2)
0 ,

(V) H0 : ζ1 ≤ ζ
(1)
0 or ζ1 ≥ ζ

(2)
0 ↔ H1 : ζ

(1)
0 < ζ1 < ζ

(2)
0 ,

where ζ0, ζ
(1)
0 , ζ

(2)
0 ∈ Θ̃ = {ζ1 ∈ R : (ζ1, . . . , ζk)

′ ∈ Θ} with ζ
(1)
0 < ζ

(2)
0 .

(I)-(III) are the typical one- and two-sided test problems, whereas (IV) and (V), corresponding to the
question whether the true parameter lies in a given interval or not, do not as frequently appear in
literature. The latter tests are known as tests of equivalence and a survey on that topic can be found
in Wellek (2003).
As a general result concerning multivariate exponential families, in all of the cases (I)-(V), UMPU
level-α tests can be established, where a level-α test ϕ is called unbiased if its power is bounded from
below by α, i.e., Eζ[ϕ] ≥ α, if the alternative is true.
For the sake of brevity, all theorems of this subsection are given for a single observation (s = 1). From
La. 2.1.25, it is obvious that respective assertions are true if we consider a sample of size s > 1 and
replace T1 by T

(s)
1 , T by T (s) and so on. Moreover, throughout the subsection, for a better reading,

PX
ζ is replaced by Pζ .

Introducing, additionally, the statistic T̃ = (T2, . . . , Tk)
′ with corresponding observation t̃ =

(t2, . . . , tk)
′, the theorems are as follows.

Theorem 2.3.1
For the one-sided test problem (I), ϕ∗ = Ψ∗ ◦ (T1, T̃ ) defined by

Ψ∗(t1, t̃) = 11(c(t̃),∞)(t1) + γ(t̃)11{c(t̃)}(t1),
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where c, γ : (Rk−1, Bk−1) → (R1, B1) with 0 ≤ γ ≤ 1 solve the equations

P
T1|T̃=t̃
ζ0,• ((c(t̃),∞)) + γ(t̃)P

T1|T̃=t̃
ζ0,• ({c(t̃)}) = α, t̃ ∈ Rk−1,

is a UMPU level-α test.

Proof. In Witting (1985), Thm. 3.60, p. 376, or Shao (2003), Thm. 6.4 (i), pp. 406/407. �

At this, since the conditional distribution of T1 given T̃ = t̃ only depends on ζ0 if ζ = (ζ0, ζ2, . . . , ζk)
′

is true (cf., e.g., Lehmann & Romano (2005), La. 2.7.2, p. 48), we omit ζ2, . . . , ζk and use, for short,
the expression P

T1|T̃=t̃
ζ0,• .

Theorem 2.3.2
For the one-sided test problem (II), ϕ∗ = Ψ∗ ◦ (T1, T̃ ) defined by

Ψ∗(t1, t̃) = 11(−∞,c(t̃))(t1) + γ(t̃)11{c(t̃)}(t1), (2.3.1)

where c, γ : (Rk−1, Bk−1) → (R1, B1) with 0 ≤ γ ≤ 1 solve the equations

P
T1|T̃=t̃
ζ0,• (−∞, c(t̃)) + γ(t̃)P

T1|T̃=t̃
ζ0,• ({c(t̃)}) = α, t̃ ∈ Rk−1, (2.3.2)

is a UMPU level-α test.

Proof. In the Appendix. �

We proceed by considering the two-sided test problems (III)-(V).

Theorem 2.3.3
For the two-sided test problem (III), ϕ∗ = Ψ∗ ◦ (T1, T̃ ) defined by

Ψ∗(t1, t̃) = 11(−∞,c1(t̃))(t1) + 11(c2(t̃),∞)(t1) +
2∑

i=1

γi(t̃)11{ci(t̃)}(t1), (2.3.3)

where c1, c2, γ1, γ2 : (Rk−1, Bk−1) → (R1, B1) with 0 ≤ γ1, γ2 ≤ 1 solve the equations∫
Ψ∗(t1, t̃)dP

T1|T̃=t̃
ζ0,• (t1) = α

and
∫

t1 Ψ∗(t1, t̃)dP
T1|T̃=t̃
ζ0,• (t1) = α

∫
t1 dP

T1|T̃=t̃
ζ0,• (t1), t̃ ∈ Rk−1,

is a UMPU level-α test.

Proof. In Witting (1985), Thm. 3.62, pp. 377/378, or Shao (2003), Thm. 6.4 (iv), pp. 406/407. �
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Theorem 2.3.4
For the two-sided test problem (IV), ϕ∗ = Ψ∗ ◦ (T1, T̃ ) with Ψ∗ as defined in (2.3.3), where
c1, c2, γ1, γ2 : (Rk−1, Bk−1) → (R1, B1) with 0 ≤ γ1, γ2 ≤ 1 solve the equations∫

Ψ∗(t1, t̃)dP
T1|T̃=t̃

ζ
(1)
0 ,•

(t1) =

∫
Ψ∗(t1, t̃)dP

T1|T̃=t̃

ζ
(2)
0 ,•

(t1) = α, t̃ ∈ Rk−1, (2.3.4)

is a UMPU level-α test.

Proof. In Shao (2003), Thm. 6.4, pp. 406/407. �

Theorem 2.3.5
For the two-sided test problem (V), ϕ∗ = Ψ∗ ◦ (T1, T̃ ) defined by

Ψ∗(t1, t̃) = 11(c1(t̃),c2(t̃))(t1) +
2∑

i=1

γi(t̃)11{ci(t̃)}(t1),

where c1, c2, γ1, γ2 : (Rk−1, Bk−1) → (R1, B1) with 0 ≤ γ1, γ2 ≤ 1 solve the equations (2.3.4), is a
UMPU level-α test.

Proof. In Shao (2003), Thm. 6.4, pp. 406/407. �

Finally, we remark on an important additional result.

Remark 2.3.6
If k = 1, i.e. if P is a one-parameter exponential family, the (unconditional) UMPU tests of Thm.s
2.3.1, 2.3.2 and 2.3.5 are even uniformly most powerful (UMP) tests (see, e.g., in Shao (2003), Thm.
6.2, p. 399, and Thm. 6.3, pp. 401/402).

2.3.2 Likelihood Ratio Test

In the preceding subsection, based on the fact that the conditional distribution of T1 given
(T2, . . . , Tk)

′ = (t2, . . . , tk)
′ forms a one-parameter exponential family in ζ1 and the identity (see,

e.g., Lehmann & Romano (2005), La. 2.7.2 (ii), p. 48), and, thus, has monotone likelihood ratio,
UMPU tests on the single parameter ζ1 have been established. However, in case of testing hypotheses
involving more than one of the ζ’s, mathematical difficulties arise due to the fact that the likelihood
ratio then depends on at least two parameters. Usually, in that case, UMPU tests for the considered
test problems do not exist. Hence, there is need for other procedures that lead to reasonable tests and
test statistics, respectively.
Meanwhile, many multivariate test principles have been developed, and properties of the related tests
and test statistics, in particular concerning asymptotic distribution theory, have been examined as well.
Among them, the probably best-known is the likelihood ratio test that was introduced in Neyman &
Pearson (1928).
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Definition 2.3.7 (Likelihood ratio test)
Let Θ0 ⊂ Θ and Θ1 = Θ \ Θ0. We consider the test problem H0 : ζ ∈ Θ0 against H1 : ζ ∈ Θ1. If

the MLE of ζ in Θ and the restricted MLE of ζ in Θ0 based on X̃
(s)

= (X(1), . . . , X(s)) both exist,
the level-α likelihood ratio test (LR test) is defined as

ϕ
(s)
LR(x̃(s)) = 11(ds(α),∞)(T

(s)
LR(x̃(s))) + δs(α)11{ds(α)}(T

(s)
LR(x̃(s))), x̃(s) ∈ X1×s,

where

T
(s)
LR(x̃(s)) = −s−1 ln

(
supζ(0)∈Θ0

∏s
i=1 fζ(0)(x(i))

supζ∈Θ

∏s
i=1 fζ(x(i))

)
, x̃(s) ∈ X1×s, (2.3.5)

and the constants ds(α) and δs(α) are such that

sup
ζ(0)∈Θ0

Eζ(0) [ϕ
(s)
LR] = α.

At first glance, the LR test seems to be a ’reasonable’ test. The smaller the ’probability’
∏s

i=1 fζ(x
(i))

of observing x̃(s) is if ζ ∈ Θ0 is assumed, the larger is the value of the test statistic T
(s)
LR(x̃(s)) and,

thus, the more likely H0 will be rejected. Indeed, this intuition is right, as we will see below, where
several useful properties of the LR test are stated.
Without further mentioning, we will assume throughout this section that both, the sequence of MLEs
and the sequence of restricted MLEs, exist. Applying Thm. 2.2.3, the test statistic T

(s)
LR of the LR test

can be rewritten in the following way.

Lemma 2.3.8
T

(s)
LR(X̃

(s)
) is the (random) Kullback-Leibler distance of the MLE ζ∗(s) of ζ based on X(1), . . . , X(s)

and Θ0, i.e.,
T

(s)
LR(X̃

(s)
) = dKL(ζ∗(s), Θ0),

where dKL(ζ, Θ0) = infζ(0)∈Θ0
dKL(ζ, ζ(0)) for ζ ∈ Θ.

Proof. In the Appendix. �

Hence, for X̃
(s)

= (X(1), . . . , X(s)),

ϕ
(s)
LR(X̃

(s)
) = 11(ds(α),∞)(dKL(ζ∗(s), Θ0)) + δs(α)11{ds(α)}(dKL(ζ∗(s), Θ0)). (2.3.6)

In many applications, the case of a simple null hypothesis, i.e. Θ0 = {ζ(0)} for some ζ(0) ∈ Θ, is of
particular interest. The corresponding test problem is

H0 : ζ = ζ(0) ↔ H1 : ζ ∈ Θ \ {ζ(0)} (2.3.7)

and (2.3.6) simplifies to

ϕ
(s)
LR(X̃

(s)
) = 11(ds(α),∞)(dKL(ζ∗(s), ζ(0))) + δs(α)11{ds(α)}(dKL(ζ∗(s), ζ(0))). (2.3.8)
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In a finite sample set-up, properties of the LR test are difficult to derive since the distribution of
T

(s)
LR can usually not be computed analytically. As a consequence, critical values of the LR test are

frequently obtained numerically or are replaced by the critical values of the asymptotic distribution if
the sample size is sufficiently large. For the latter case, notice the following well-known theorem.

Theorem 2.3.9
Let ζ(0) ∈ Θ be fixed and consider the test problem (2.3.7) with a simple null hypothesis. Then, the
following assertions hold true:

(i) 2sT
(s)
LR(X̃

(s)
) is asymptotically χ2(k)-distributed if H0 is true, where χ2(k) denotes the chi-

square distribution with k degrees of freedom.

(ii) The sequence {ϕ̃(s)
LR}s∈N of tests defined by ϕ̃

(s)
LR(x̃(s)) = 11(χ2

1−α(k),∞)(2sT
(s)
LR(x̃(s))), s ∈ N, has

asymptotic level α and is consistent, i.e., if the alternative is true, Eζ[ϕ̃
(s)
LR] → 1 as s tends to

infinity. At this, χ2
1−α(k) denotes the (1− α)-quantile of the χ2(k) distribution.

Proof. E.g., in Wilks (1962), pp. 408-419. A proof of the first result can also be found in Serfling
(1980), pp. 155/156, Sen & Singer (1993), Thm. 5.6.1, p. 236, and the Appendix. �

Thm. 2.3.9 can be extended to the case where under the null hypothesis only m, 1 ≤ m ≤ k − 1,
of the ζ’s are assumed to equal pre-fixed values and no restrictions are imposed on the remaining
parameters. Then, the theorem remains true replacing the number k of degrees of freedom by m (e.g.,
in Wilks (1962), pp. 419-422).
Another interesting question in practise is whether all ζ’s are equal, i.e. ζ1 = · · · = ζk. The case,
where the null hypothesis is given by ζ1 = · · · = ζr = ζ(0) for some fixed real number ζ(0) is covered
in Thm. 2.3.9 by setting ζ(0) = (ζ(0), . . . , ζ(0))′. However, if there is no pre-fixed value the parameters
are compared with, i.e. if H0 : ζ1 = · · · = ζr, some more investigations are necessary (see, e.g., Sen
& Singer (1993), pp. 239 ff.).
Let q ≤ k and h : Θ ⊆ Rk → Rq a vector-valued function with existing Jacobian matrix Dh(ζ) ∈
Rq×k of rank q at every ζ ∈ Θ. We consider the test problem

H0 : h(ζ) = 0 ↔ H1 : h(ζ) 6= 0, (2.3.9)

and define Θ0 = {ζ ∈ Θ : h(ζ) = 0}. Furthermore, let g : Γ ⊆ Rk−q → Θ0 be bijective with
existing Jacobian matrix Dg(γ) ∈ Rk×k−q of rank k − q at γ ∈ Γ. Then, (2.3.9) is equivalent to

H0 : ζ ∈ g(Γ) ↔ H1 : ζ /∈ g(Γ). (2.3.10)

We illustrate the relationship of h and g by means of an example.

Example 2.3.10
Let Θ = Rk

+, q = k − 1 and h : Rk
+ → Rk−1 defined by h(ζ) = (ζ2 − ζ1, . . . , ζk − ζk−1)

′, ζ ∈ Rk
+.

Then, H0 : ζ1 = · · · = ζk, Θ0 = {ζ ∈ Rk
+ : ζ1 = · · · = ζk} and a corresponding function

g : Γ = R+ → Θ0 is given by g(ζ) = (ζ, . . . , ζ)′, ζ > 0.
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Now, the following theorem holds true.

Theorem 2.3.11
Let test problem (2.3.9) or (2.3.10), respectively, be given. Then, 2sT

(s)
LR(X̃

(s)
) is asymptotically

χ2(q)-distributed if H0 is true.

Proof. In Serfling (1980), pp. 156-160 (cf. Sen & Singer (1993), Thm. 5.6.3, p. 240). �

2.3.3 Wald’s Test and Rao’s Score Test
Related to test problems concerning several parameters, the LR test is one of the best-known tests in
multivariate statistics, and it is frequently used in applications. In fact, as we will see in Subsections
2.3.6 and 2.3.7, if the sample size is sufficiently large, the usage of the LR test is encouraged by certain
asymptotic optimality properties provided that the set of underlying distributions forms an exponential
family. However, we shall introduce at least two other well-known test statistics as alternatives to
the LR test statistic, i.e. Wald’s statistic introduced in Wald (1943) and Rao’s score statistic first
mentioned in Rao (1948). In literature, there are many articles dealing with properties of the LR test,
Wald’s test and Rao’s score test, and comparisons have been drawn between these three tests as well.
For a survey containing many references on that topic, we refer to Rao (2005).
For test problem (2.3.7) with a simple null hypothesis, we define Wald’s statistic and Rao’s score
statistic as follows (cf. Sen & Singer (1993), pp. 235/236).

• Wald’s statistic TW = {T (s)
W (X̃

(s)
)}s∈N:

T
(s)
W (X̃

(s)
) = (ζ∗(s) − ζ(0))′I

(s)
f (ζ∗(s))(ζ∗(s) − ζ(0)) (2.3.11)

= s(ζ∗(s) − ζ(0))′If (ζ
∗(s))(ζ∗(s) − ζ(0)), (2.3.12)

provided that the MLE ζ∗(s) of ζ based on a sample of size s exists, and

• Rao’s score statistic TR = {T (s)
R (X̃

(s)
)}s∈N:

T
(s)
R (X̃

(s)
) = (U

(s)

ζ(0)(X̃
(s)

))′I
(s)
f (ζ(0))−1U

(s)

ζ(0)(X̃
(s)

) (2.3.13)

= s−1(U
(s)

ζ(0)(X̃
(s)

))′If (ζ
(0))−1U

(s)

ζ(0)(X̃
(s)

), (2.3.14)

where U
(s)

ζ(0)(X̃
(s)

) denotes the score statistic of X̃
(s)

at ζ(0).

If in the above definition (2.3.11) of Wald’s statistic, If (ζ
∗(s)) is replaced by If (ζ

(0)), we will refer to

Wald’s modified statistic TW̃ = {T (s)

W̃
(X̃

(s)
)}s∈N (cf. Sen & Singer (1993), p. 235).

In general, in the context of a finite sample size s, neither the LR test, nor Wald’s test or Rao’s score
test dominates the other ones uniformly in terms of their power functions. Moreover, as it is the case
for the LR test, the analytical derivation of the distributions of the test statistics T

(s)
W and T

(s)
R under

H0 is difficult or almost impossible. Again, criticical values of the tests are empirically obtained
from simulations or from the respective quantiles of the asymptotic distributions if the sample size is
sufficiently large.
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Theorem 2.3.12
In case of test problem (2.3.7), T

(s)
W (X̃

(s)
) and T

(s)
R (X̃

(s)
) are asymptotically χ2(k)-distributed if H0

is true.

Proof. E.g., in Serfling (1980), pp. 155/156, or in Sen & Singer (1993), Thm. 5.6.1, p. 236. �

Additionally, we define Wald’s statistic and Rao’s score statistic in case of test problem (2.3.9) and
(2.3.10), respectively, where the null hypothesis is composite (cf. Sen & Singer (1993), pp. 239/240).

• Wald’s statistic TW = {T (s)
W (X̃

(s)
)}s∈N:

T
(s)
W (X̃

(s)
) = sh(ζ∗(s))′Ĩ(ζ∗(s))−1h(ζ∗(s)), (2.3.15)

provided that the MLE ζ∗(s) of ζ based on a sample of size s exists, where

Ĩ(ζ) = Dh(ζ)If (ζ)−1Dh(ζ)′, (2.3.16)

and Dh(ζ) denotes the Jacobian matrix of h at ζ ∈ Θ,

• Rao’s score statistic TR = {T (s)
R (X̃

(s)
)}s∈N:

T
(s)
R (X̃

(s)
) = s−1(U

(s)

ζ̃
(s)(X̃

(s)
))′If (ζ̃

(s)
)−1U

(s)

ζ̃
(s)(X̃

(s)
), (2.3.17)

where U
(s)

ζ̃
(s)(X̃

(s)
) denotes the score statistic of X̃

(s)
at ζ̃

(s)
and ζ̃

(s)
is the MLE of ζ based on

a sample of size s under the restriction h(ζ) = 0 (under Θ0).

As in the case of a simple null hypothesis, the asymptotic distribution of the LR test statistic, Wald’s
statistic and Rao’s score statistic is the same if H0 is true.

Theorem 2.3.13
In case of test problem (2.3.9) and (2.3.10), respectively, T

(s)
W (X̃

(s)
) and T

(s)
R (X̃

(s)
) are asymptoti-

cally χ2(q)-distributed if H0 is true.

Proof. E.g., in Serfling (1980), pp. 156-160, or in Sen & Singer (1993), Thm. 5.6.3., p. 240. �

2.3.4 Tests under Simple Order Restriction
For a simple null hypothesis and different composite null hypotheses, we have already proposed mul-
tivariate test statistics and discussed their asymptotic behaviour. However, in applications, questions
may arise concerning the simple ordering of the unknown parameters. The corresponding test prob-
lems are not considered in this section so far and are subject matter of what follows.
We consider the same sample situation as in Subsection 2.2.2, where nj is replaced by n

(s)
j , 1 ≤ j ≤ k,

and s =
∑k

j=1 n
(s)
j denotes the total number of observations. Then, for s ∈ N, k independent sam-

ples from the exponential family P̃ are assumed, where the j th sample has size n
(s)
j , 1 ≤ j ≤ k,
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and the random variables Xi;j
iid∼ f̃ϑj

, 1 ≤ i ≤ n
(s)
j , in each sample are iid. Additionally, let

X̃
(s)

= (X1;1, . . . , Xn
(s)
1 ;1

, . . . , X1;k, . . . , Xn
(s)
k ;k

), s ∈ N.
Introducing the parameter sets

Θ= = {ϑ = (ϑ1, . . . , ϑk)
′ ∈ Θk : ϑ1 = · · · = ϑk}

and
Θ≤ = {ϑ = (ϑ1, . . . , ϑk)

′ ∈ Θk : ϑ1 ≤ · · · ≤ ϑk},

we consider the test problems

H0 : ϑ ∈ Θ= ↔ H1 : ϑ ∈ Θ≤ \Θ= (2.3.18)

and
H0 : ϑ ∈ Θ≤ ↔ H1 : ϑ ∈ Θ \Θ≤. (2.3.19)

Then, Robertson et al. (1988) derived the following asymptotic properties of the sequence of LR tests.

Theorem 2.3.14
Let ζ and κ have continuous second derivatives on Θ with the properties that ζ ′(ϑ) > 0 and κ′(ϑ) =

ϑζ ′(ϑ), ϑ ∈ Θ, and let
n

(s)
j

s
→ aj ∈ (0, 1), as s tends to infinity, 1 ≤ j ≤ k.

(i) Related to test problem (2.3.18), for every ϑ ∈ Θ= and c ∈ R, we have

lim
s→∞

Pϑ(2sT
(s)
LR(X̃

(s)
) ≥ c) =

k∑
j=1

|Sj
k|

k!
P (χ2(j − 1) ≥ c).

(ii) Related to test problem (2.3.19), for every ϑ ∈ Θ≤, η ∈ Θ= and c ∈ R, we have

lim
s→∞

Pϑ(2sT
(s)
LR(X̃

(s)
) ≥ c) ≤ lim

s→∞
Pη(2sT

(s)
LR(X̃

(s)
) ≥ c)

=
k∑

j=1

|Sj
k|

k!
P (χ2(k − j) ≥ c).

At this, Sj
k are the Stirling numbers of the first kind (cf. Abramowitz & Stegun (1965), p. 824), and

χ2(0) = 0.

Proof. In Robertson et al. (1988), Thm. 4.1.1, p. 164, in combination with Cor. B, p. 82. �

2.3.5 (Asymptotic) Relative Efficiency of Tests

Different approaches have been proposed in order to compare tests and test statistics in the multivari-
ate case, i.e. in situations where more than a single parameter is on test. Most of them are connected
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to the concept of relative efficiency of test sequences. We will explain this terminology in some more
detail (see Nikitin (1995), pp. 1 ff.).
We assume the sample situation in the beginning of Section 2.2 with X ∈ Bk and B = X ∩ Bk,
and consider an infinite number of iid random vectors X(1), X(2), . . . with values in (X, B) hav-
ing distribution PX

ζ for some ζ ∈ Θ. Additionally, w.l.o.g., let T = idX, (otherwise switch to the
exponential family PT ), and, for simplicity, let X be an open convex set in Rk and all appearing
random vectors and statistics be continuously distributed. We are interested in testing H0 : ζ ∈ Θ0

against H1 : ζ ∈ Θ1 = Θ \ Θ0. Let ϕ = {ϕ(s)}s∈N be a sequence of tests with corresponding
sequence of test statistics V = {V (s)}s∈N, where V (s) = V (s)(X(1), . . . ,X(s)), s ∈ N, only depends
on X(1), . . . ,X(s). For large values of V (s), say, larger than a real number c, H0 will be rejected.
Then, the level of the test ϕ(s) is given by

sup
ζ0∈Θ0

Pζ0
(V (s) > c)

and its power function is given by

β(ζ(1)) = Pζ(1)(V (s) > c), ζ(1) ∈ Θ1.

Now, for every s ∈ N, β ∈ (0, 1) and ζ ∈ Θ1 let cs = cs(β, ζ(1)), s ∈ N, be a real number with the
property that

Pζ(1)(V (s) > cs) = β.

cs can be chosen as the (1 − β)-quantile of the distribution P V (s)

ζ(1) . By doing this, ϕ(s) with level

αs(β, ζ(1)) = supζ0∈Θ0
Pζ0

(V (s) > cs) has power β at ζ(1). Now, define for every level α ∈ (0, 1)

Nϕ(α, β, ζ(1)) = inf{s ∈ N : αm(β, ζ(1)) ≤ α ∀m ≥ s},

which is the minimal number of observations such that ϕ(m), m ≥ Nϕ(α, β, ζ(1)), has level α (and
power β at ζ(1)). Clearly, a test is the more attractive, the smaller this number is.

Definition 2.3.15 (Relative efficiency)
With the assumptions and denotations above, let ϕ and ϕ̃ be two competing test sequences. The
relative efficiency of ϕ̃ with respect to ϕ is defined as

eϕ̃,ϕ(α, β, ζ(1)) =
Nϕ(α, β, ζ(1))

Nϕ̃(α, β, ζ(1))
. (2.3.20)

Depending on whether this ratio is larger or smaller than 1, test ϕ̃ or ϕ, respectively, might be pre-
ferred, because less observations are needed to perform as well as the other test in the above sense.
However, given two sequences of tests, the calculation of the corresponding relative efficiency, which
depends on three arguments, is difficult, and, for this reason, one continues by considering limiting
values of eϕ̃,ϕ(α, β, ζ(1)), hoping that the resulting calculations might be easier (Nikitin (1995), p. 2).
In order to do this, three possibilities are near at hand:

(a) Decrease the level, i.e. send α to zero (vanishing levels).
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(b) Increase the power, i.e. send β to one.

(c) Move the alternative to the null hypothesis, i.e. send ζ(1) to ζ0 ∈ ∂Θ0 in some topology
(contiguous alternatives).

Most of the approaches in literature that have been made in order to define a concept of asymptotic
relative efficiency (ARE) of test sequences can be matched to one or a combination of two of the
rudiments (a)-(c). At this, the best-known concepts named after the researchers who have developed
them are Bahadur ARE (a), Hodges-Lehmann ARE (b) and Pitman ARE (c). Two essential approaches
implying more than one of points (a)-(c) are Chernoff ARE and Kallenberg ARE, where the latter is
also termed Intermediate ARE.
An exhaustive treatment of all of the contributions to the different types of ARE would exceed the
scope of this work. However, in case of an underlying exponential family structure, it turns out that
the LR test is asymptotically optimal in the sense of Bahadur and Kallenberg, and, for this reason, we
will discuss these two concepts in some more detail. A survey on the topic of ARE in the parametric
and nonparametric case, as well as many references concerning the different types of ARE can be
found in Nikitin (1995) (see also Serfling (1980), Ch. 10).

2.3.6 Bahadur Asymptotic Relative Efficiency
The approach of Bahadur to define asymptotic efficiency of test sequences is related to the concept
of the exact slope which built the fundament of the stochastic comparison of test sequences in the
original definition of Bahadur ARE (e.g., in Bahadur (1971), p. 26). With the assumptions and
denotations of Subsection 2.3.5, we define for s ∈ N the random variable

Ls(ω) = sup
ζ0∈Θ0

Pζ0
(V (s) > V (s)(ω)), ω ∈ Ω,

which is called the (random) p-value of the test ϕ(s). For fixed ω ∈ Ω, Ls(ω) is the level, i.e. the error
probability of the first kind, of test ϕ(s) with critical value V (s)(ω). Hence, it is desirable that Ls(ω),
ω ∈ Ω, tends to zero as fast as possible if the sample size s becomes large. Typically, if H0 is true, Ls

is asymptotically uniformly distributed over (0, 1), and if ζ(1) ∈ Θ1 obtains, Ls → 0 Pζ(1)-a.s. with
an exponential rate depending on ζ(1), i.e.

lim
s→∞

ln Ls

s
= −1

2
cϕ(ζ(1)), Pζ(1)-a.s., (2.3.21)

where cϕ(ζ(1)) > 0 is a positive constant depending on ζ(1) (Bahadur (1971), p. 26). In that case, i.e.
if the limit exists, cϕ(ζ(1)) is called the (strong) Bahadur exact slope of ϕ at ζ(1), and, since (2.3.21)
implies that for fixed β ∈ (0, 1) and for every ζ(1) ∈ Θ1

Nϕ(α, β, ζ(1)) ∼
−2 ln(α)

cϕ(ζ(1))
, as α ↘ 0,
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(e.g., in Nikitin (1995), Thm. 1.2.1, pp. 5/6), where f ∼ g means asymptotic equivalence of f and g,
we define and rewrite the Bahadur ARE of ϕ̃ with respect to ϕ in the following way:

eB
ϕ̃,ϕ(β, ζ(1)) = lim

α↘0

Nϕ(α, β, ζ(1))

Nϕ̃(α, β, ζ(1))
=

cϕ̃(ζ(1))

cϕ(ζ(1))
, ζ(1) ∈ Θ1.

Usually, the ratio of the slopes does not depend on the choice of β (Nikitin (1995), p. 3). Now, if
eB

ϕ̃,ϕ(β, ζ(1)) > 1, ϕ̃ performs better than ϕ in the ’Bahadur sense’, and vice versa. With the aim of
defining an optimal test in the ’Bahadur sense’, we give a result of Raghavachari (1970), i.e., for every
sequence ϕ = {ϕ(s)}s∈N of tests holds

lim inf
s→∞

ln Ls

s
≥ −dKL(ζ(1), Θ0), Pζ(1)-a.s.,

for ζ(1) ∈ Θ1, where dKL(ζ(1), Θ0) denotes the Kullback-Leibler distance of ζ(1) and Θ0 (cf. Sub-
section 2.1.8). This inequality implies that if the exact Bahadur slope of a test ϕ = {ϕ(s)}s∈N at
ζ(1) ∈ Θ1 exists, it is bounded from above:

cϕ(ζ(1)) ≤ 2dKL(ζ(1), Θ0). (2.3.22)

Hence, if in (2.3.22) equality holds true for some test sequence ϕ̃ = {ϕ̃(s)}s∈N, it follows that
cϕ(ζ(1)) ≤ cϕ̃(ζ(1)) and, thus, eB

ϕ̃,ϕ(β, ζ(1)) ≥ 1 for every sequence ϕ = {ϕ(s)}s∈N of tests with
existing Bahadur exact slope cϕ(ζ(1)) at ζ(1).

Definition 2.3.16 (Bahadur asymptotic optimality)
Let ϕ̃ = {ϕ̃(s)}s∈N be a sequence of tests satisfying (2.3.21) with cϕ̃(ζ(1)) = 2dKL(ζ(1), Θ0) at some
ζ(1) ∈ Θ1. Then, ϕ̃ is said to be asymptotically optimal in the sense of Bahadur at ζ(1).

The class of sequences of tests with equality in (2.3.22), for every ζ(1) ∈ Θ1, is small (Nikitin (1995),
p. 9). If the underlying class of probability measures forms an exponential family according to the
assumptions of Subsection 2.3.5, Kim (1997) proved the following formula related to the case of a
simple null hypothesis.

Theorem 2.3.17
For the test problem H0 : ζ = ζ(0) against H1 : ζ ∈ Θ1 = Θ\{ζ(0)}, let ϕ = {ϕ(s)}s∈N be a sequence
of tests with ϕ(s)(x̃(s)) = 11(cs,∞)(V

(s)(x̃(s))), s ∈ N. For s ∈ N, we assume that the test statistic V (s)

depends upon x̃(s) = (x(1), . . . ,x(s)) only through x̃(s) = 1
s

∑s
i=1 x(i), i.e. V (s)(x̃(s)) = W (x̃(s)) for

some test statistic W on (X, B). Moreover, let the following conditions be fulfilled:

(i) For every s ∈ N, the set {x ∈ X : W (x) ≤ cs} is convex in X (or, equivalently, the acceptance
region {x̃(s) ∈ X1×s : V (s)(x̃(s)) ≤ cs} of ϕ(s) is convex in X1×s).

(ii) W is minimized at π(ζ(0)).

(iii) W is strictly increasing on rays from π(ζ(0)), i.e. for every x ∈ X, the mapping ρ 7→
W (π(ζ(0)) + ρ(x− π(ζ(0)))) is strictly increasing in ρ ∈ (0, 1).
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(iv) W is continuously differentiable on X.

Then, the exact slope cϕ(ζ) of ϕ at ζ ∈ Θ1 exists and equals

2 inf{dKL(ζ̃, ζ(0)) : W (π(ζ̃)) = W (π(ζ)), ζ̃ ∈ Θ1}

Proof. In Kim (1997), Thm. 3.1. �

Notice that, from a theorem of Mathes & Truax (1967), the class of all sequences of tests with property
(i) of Thm. 2.3.17 is essentially complete, i.e., for every arbitrary test Ψ, there exists a test Ψ̃ that
satisfies (i) with Eζ(0)(Ψ̃) ≤ Eζ(0)(Ψ) and Eζ(Ψ̃) ≥ Eζ(Ψ) for all ζ ∈ Θ1 (Ψ̃ has uniformly not
greater error probabilities than Ψ).
In the above context of a simple null hypothesis, from representation (2.3.8) in Subsection 2.3.2, the
LR test statistic is given by dKL(π−1(x̃(s)), ζ(0)). Hence, by setting W (•) = dKL(π−1(•), ζ(0)), (ii)
is obvious, and, by application of La. 2.1.30 and some simple analysis, it can be shown that (iii) and
(iv) hold for the sequence of LR tests, too. Finally, Birnbaum (1955) has shown that condition (i)
is true for the sequence of LR tests. Hence, the sequence of LR test fulfils the conditions of Thm.
2.3.17, and it follows that cϕLR

(ζ(1)) = 2dKL(ζ(1), ζ(0)), ζ(1) ∈ Θ1, and, thus, the sequence of LR
test is asymptotically optimal in the sense of Bahadur. Moreover, for every other sequence of tests
satisfying the conditions of Thm. 2.3.17 for some statistic W̃ on (X, B), its Bahadur exact slope at
ζ(1) is given by

inf{cϕLR
(ζ̃) : W̃ (π(ζ̃)) = W̃ (π(ζ(1))), ζ̃ ∈ Θ1},

and thus equals cϕLR
(ζ(1)) if and only if cϕLR

(ζ̃) is constant on {ζ̃ ∈ Θ1 : W̃ (π(ζ̃)) = W̃ (π(ζ(1)))}
(cf. Kim (1997)).

When a sequence of tests turns out to be asymptotically optimal in the sense of Bahadur, the related
concept of Bahadur deficiency provides more information about the performance of the test (Kallen-
berg (1978), p. 3).

Definition 2.3.18
Let the test sequence ϕ̃ = {ϕ̃(s)}s∈N be asymptotically optimal in the sense of Bahadur at ζ(1) ∈ Θ1,
and let

N+(α, β, ζ(1)) = inf
ϕ

Nϕ(α, β, ζ(1)), 0 < α < 1, 0 < β < 1,

where the infimum is taken over all tests ϕ satisfying the assumptions in the beginning of Subsection
2.3.5. If for all 0 < β < 1

lim
α↘0

Nϕ̃(α, β, ζ(1))−N+(α, β, ζ(1))

g(N+(α, β, ζ(1)))
≤ a(β, ζ(1)) (2.3.23)

for some constant a(β, ζ(1)) > 0, we say that ϕ̃ is deficient in the sense of Bahadur at ζ(1) of order
O(g(N+(α, β, ζ(1)))) as α ↘ 0, where g : R+ → R is an increasing function.
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Obviously, the smaller the order of deficiency is, the faster the sample size Nϕ̃(α, β, ζ(1)) needed to
ensure that ϕ̃ has power β at ζ(1) tends to the purely theoretically optimal (minimal) sample size.
Assuming the sample situation of Subsection 2.3.5, Kallenberg (1978) proved the following theorem
in the context of an underlying exponential family structure.

Theorem 2.3.19
Let for A ⊆ Θ and ε ≥ 0

Uε(A) = {ζ ∈ Θ : dKL(ζ, A) ≤ ε}

and
ι(A) = sup{ε ≥ 0 : ∃K ⊆ Θ compact with Uε(A) ⊆ K}.

Then, the following assertions hold true:

(i) Let Θ0 ⊆ K ⊆ Θ, K compact. Then, for every ζ(1) ∈ int(Θ1) with dKL(ζ(1), Θ0) < ι(Θ0), the
sequence of LR tests is deficient in the sense of Bahadur at ζ(1) of order O(ln(N+(α, β, ζ(1))))
as α ↘ 0.

(ii) Let Θ1 ⊆ K ⊆ Θ, K compact. Then, for every ζ(1) ∈ Θ1 with dKL(ζ(1), Θ0) > 0, the sequence
of LR tests is deficient in the sense of Bahadur at ζ(1) of order O(ln(N+(α, β, ζ(1)))) as α ↘ 0.

Proof. In Kallenberg (1978), Thm.s 5.3.2, p. 111, and 5.3.3, p. 121. �

2.3.7 Intermediate Asymptotic Relative Efficiency
Just pointing out the basic idea and a result of Kallenberg (1983), we will briefly introduce into another
approach to asymptotic efficiency of tests, i.e. the concept of Intermediate or Kallenberg ARE, that
combines the rudiments vanishing levels and moving alternatives, and, hence, can be considered a
mixture of the approaches of Bahadur and Pitman.
We assume the same sample situation as in Subsection 2.3.5 and consider the test problem H0 : ζ ∈
Θ0 against H1 : ζ ∈ Θ1 = Θ \ Θ0. Let {ϕ(s)

α }s∈N,0<α<1 be a family of tests, where ϕ
(s)
α has level-α

and depends only on X(1), . . . ,X(s). Let {αs}s∈N be a sequence of levels that vanishes, but not too
exponentially fast, i.e.

lim
s→∞

αs = 0 = lim
s→∞

ln(αs)

s
,

and let {ζ̃(s)}s∈N ⊆ Θ1 be a sequence of alternatives that converges (not too fast) to Θ0 in the sense
that

lim
s→∞

H(ζ̃
(s)

, Θ0) = 0, lim
s→∞

s H(ζ̃
(s)

, Θ0)
2 = ∞,

where, for ζ, ζ̃ ∈ Θ, H(ζ, ζ̃) =
(

1
2

∫
(
√

fX
ζ −

√
fX

ζ̃
)2dµ

) 1
2

denotes the Hellinger distance of ζ and

ζ̃, and H(ζ, Θ0) = infζ0∈Θ0 H(ζ, ζ0). Moreover, we assume that

0 < lim inf
s→∞

E
ζ̃
(s) [ϕ(s)

αs
] ≤ lim sup

s→∞
E

ζ̃
(s) [ϕ(s)

αs
] < 1.
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In particular, if the limit of the power of ϕ
(s)
αs at ζ̃

(s)
exists as s tends to infinity, it lies in the open

interval (0, 1).
Let {Ψ(s)

α }s∈N,0<α<1 be another family of tests with the above properties. We define the integer

mϕ,Ψ(s) = inf{m ∈ N : E
ζ̃
(s) [Ψ(m̃)

αs
] ≥ E

ζ̃
(s) [ϕ(s)

αs
] ∀m̃ ≥ m},

which is the minimal sample size mϕ,Ψ(s) such that, for fixed s ∈ N, Ψ
(m̃)
αs has power not less than

ϕ
(s)
αs at ζ̃

(s)
for all m̃ ≥ mϕ,Ψ(s). Then, the strong asymptotic i-efficiency (or Intermediate ARE, or

Kallenberg ARE) of ϕ with respect to Ψ is defined as

eK
ϕ,Ψ = lim

s→∞

mϕ,Ψ(s)

s
,

provided that the limit exists and does not depend on the choice of the sequences {αs}s∈N and
{ζ̃(s)}s∈N (see Kallenberg (1983)). Similar to the approach of Bahadur to ARE, the Intermediate
ARE is defined as the limit of the ratios of minimal sample sizes needed to attain a certain power,
when the sequence {ϕ(s)

αs }s∈N, respectively {Ψ(s)
αs }s∈N, is used. The main difference between both

approaches lies in the fact that the alternative, where powers are evaluated at, is fixed in the Bahadur
case.

Definition 2.3.20 (Strong i-efficiency)
A family of tests ϕ = {ϕ(s)

α }s∈N,0<α<1 is called strongly i-efficient if eK
ϕ,Ψ ≥ 1 for every family

Ψ = {Ψ(s)
α }s∈N,0<α<1 of tests, for that this limit exists.

Related to the case that the underlying set of distributions forms a multivariate exponential family, we
cite a result of Kallenberg (1983).

Theorem 2.3.21
Let Θ0 ⊆ K ⊆ Θ for some compact subset K of Θ. Then, the sequence of LR tests is strongly
i-efficient.

Proof. In Kallenberg (1983), Thm. 3.1. �
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Chapter 3

SOSs with Known Baseline Distribution

Throughout this chapter, we consider SOSs with conditional proportional hazard rates which result
from the general sequential model (cf. Def.s 1.1.1 and 1.1.2) by setting

Fj = 1− (1− F )αj , 1 ≤ j ≤ n, (3.0.1)

where F is an absolutely continuous baseline distribution function with corresponding density func-
tion f and α1, ..., αn are positive parameters. The hazard rate of Fj is then proportional to the hazard
rate of F and given by αjf/(1−F ). When the model is used to describe a sequential (n−r+1)-out-
of-n system, the interpretation is as follows. All components of the system start operating at hazard
rate α1f/(1 − F ). Then, upon occurrence of the first failure of a component, the hazard rate is sup-
posed to change from α1f/(1 − F ) to α2f/(1 − F ), and the system continues to work with n − 1
remaining operative components. Upon failure of the second component, the failure rate is supposed
to change from α2f/(1 − F ) to α3f/(1 − F ), and so on. Finally, the rth SOS is the lifetime of the
system.
In the above situation, the joint density of the first r SOSs X

(1)
∗ , . . . , X

(r)
∗ is given by

fX
(1)
∗ ,...,X

(r)
∗

α (x1, . . . , xr) = n!
(n−r)!

(
r∏

j=1

αj

) (
r−1∏
j=1

(1− F (xj))
mj f(xj)

)

× (1− F (xr))
αr(n−r+1)−1 f(xr) (3.0.2)

on the cone F−1(0) < x1 < · · · < xr < F−1(1), with 1 ≤ r ≤ n, and mj = (n − j + 1) αj −
(n− j) αj+1 − 1, 1 ≤ j ≤ r − 1 (cf. Kamps (1995a,b) and Cramer & Kamps (2001b)). The index
α denotes the vector (α1, . . . , αr)

′ of model parameters. Notice that, in the distribution theoretical
sense, common OSs based on F are included in the model of SOSs with conditional proportional
hazard rates by setting α1 = · · · = αr = 1.
In this chapter, we show that the joint distribution of SOSs with conditional proportional hazard
rates forms a multivariate exponential family in the model parameters, when the baseline distribution
function F is assumed to be known. As a consequence, the application of the results of Chapter 2
leads to much simplified proofs of former results in literature, and also enables us to state new useful
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properties, in particular concerning statistical inference on the model parameters. To name only two,
MLEs of the model parameters can easily be obtained, where asymptotic efficiency of the estimators
can be shown, and UMPU one- and two-sided tests on the model parameters α1, ..., αr are derived
as well as interval hypotheses are examined. These particular findings have already been published
(Bedbur et al. (2010), Bedbur (2010)).

3.1 SOSs as Exponential Family in Model Parameters

Upon introducing the statistics

T1(x1, . . . , xr) = n ln (1− F (x1)),

Tj(x1, . . . , xr) = (n− j + 1) ln

(
1− F (xj)

1− F (xj−1)

)
, 2 ≤ j ≤ r, (3.1.1)

where F−1(0) < x1 < · · · < xr < F−1(1), the joint density of the first r SOSs X
(1)
∗ , . . . , X

(r)
∗ with

conditional proportional hazard rates (see (3.0.2)) can be rewritten as

fX
(1)
∗ ,...,X

(r)
∗

α (x1, . . . , xr) =
n!

(n− r)!

(
r∏

j=1

αj

)(
r−1∏
j=1

(1− F (xj))
mj f(xj)

)

× (1− F (xr))
αr(n−r+1)−1 f(xr)

=
n!

(n− r)!

(
r∏

j=1

αj

)(
r−1∏
j=1

(1− F (xj))
(n−j+1)αj−(n−j)αj+1−1 f(xj)

)

× (1− F (xr))
αr(n−r+1)−1 f(xr)

=

(
r∏

j=1

αj

)(
r−1∏
j=1

(1− F (xj))
(n−j+1)αj−(n−j)αj+1

)

× (1− F (xr))
αr(n−r+1)

(
n!

(n− r)!

r∏
j=1

f(xj)

1− F (xj)

)

=

(
r∏

j=1

αj

)
exp

{(
r−1∑
j=1

((n− j + 1)αj − (n− j)αj+1) ln(1− F (xj))

)

+ αr(n− r + 1) ln(1− F (xr))

} (
n!

(n− r)!

r∏
j=1

f(xj)

1− F (xj)

)
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=

(
r∏

j=1

αj

)
exp

{(
r−1∑
j=1

(n− j + 1)αj ln(1− F (xj))

)

−

(
r∑

j=2

(n− j + 1)αj ln(1− F (xj−1))

)

+ αr(n− r + 1) ln(1− F (xr))

} (
n!

(n− r)!

r∏
j=1

f(xj)

1− F (xj)

)

=

(
r∏

j=1

αj

)
exp

{
nα1 ln(1− F (x1)) +

r∑
j=2

(n− j + 1)αj ln

(
1− F (xj)

1− F (xj−1)

)}

×

(
n!

(n− r)!

r∏
j=1

f(xj)

1− F (xj)

)

=

(
r∏

j=1

αj

)
exp

{
r∑

j=1

αj Tj (x1, . . . , xr)

}(
n!

(n− r)!

r∏
j=1

f(xj)

1− F (xj)

)
.

3.1.1 First Results
For fixed r ∈ {1, ..., n}, let X = (X

(1)
∗ , . . . , X

(r)
∗ )′ denote the column vector of the first r SOSs with

conditional proportional hazard rates. X takes on values in the measurable space (Rr
<, Rr

< ∩ Br),
where Rr

< = {x = (x1, ..., xr)
′ ∈ Rr : F−1(0) < x1 < · · · < xr < F−1(1)} denotes the (truncated)

cone of increasing real numbers and Rr
< ∩ Br the Borel sets of Rr

<. Let PX = {PX
α = fX

α λr|Rr
<

:
α = (α1, ..., αr)

′ ∈ Rr
+}, where λr denotes Lebesgue measure on (Rr, Br) and ·|B the restriction of a

measure to a measurable subset B ∈ Br. The densities fX
α are given by

fX
α (x) = C(α) exp

{
r∑

j=1

αjTj(x)

}
h(x), x = (x1, ..., xr)

′ ∈ Rr
<, λr|Rr

<
-a.e., (3.1.2)

with C(α) =
∏r

j=1 αj , statistics Tj , 1 ≤ j ≤ r, as in (3.1.1), and

h(x) =
n!

(n− r)!

r∏
j=1

f(xj)

1− F (xj)
, x = (x1, ..., xr)

′ ∈ Rr
< . (3.1.3)

Then PX forms a r-parametrical exponential family in the model parameters α1, ..., αr and statistics
T1, ..., Tr. Here, the natural parameter space Θ∗ of the exponential family is given by Rr

+, which can
be seen as follows. Clearly, Rr

+ ⊆ Θ∗, and α /∈ Θ∗ if the components of α are nonnegative and (at
least) one component equals zero. Suppose, there exists α ∈ Θ∗ having some negative component.
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Then, since Θ∗ is a convex subset of Rr (cf. Thm. 2.1.13), there exists α̃ ∈ Θ∗ on the line between α
and (1, . . . , 1)′ with nonnegative components and at least one component equal to zero, which forms
a contradiction. Thus, Θ∗ = Rr

+ is shown. Moreover, the density of PX
α is given in the canonical

form (cf. Def. 2.1.11).

Defining the measure ν = hλr|Rr
<

, we obtain another representation of PX , i.e. PX
α has a ν-density

C(α) exp

{
r∑

j=1

αjTj(x)

}
, x = (x1, ..., xr)

′ ∈ Rr
<,

and, moreover, the distribution family PT = {P T
α : α ∈ Rr

+} on (Rr, Br) forms a r-parametrical
exponential family in α1, . . . , αr and the projections p1, . . . , pr, where P T

α has a νT -density

gT
α(t) = C(α)eα′t, t = (t1, . . . , tr)

′ ∈ Rr
−. (3.1.4)

It is well-known that the statistics −T1(X), . . . ,−Tr(X) are jointly independent random variables,
and −Tj(X) ∼ Exp (α−1

j ), 1 ≤ j ≤ r, has an exponential distribution with scale parameter α−1
j ,

i.e. a λ1-density of −Tj(X) is given by f−Tj(X)(x) = αj exp{−αjx}11(0,∞)(x) (cf. Kamps (1995b),
p. 81, and Cramer & Kamps (1996)). Once having observed the exponential family structure of PX ,
this result can also be obtained by deriving the moment generating function of−T = (−T1, ...,−Tr)

′,
where the expectation is computed with respect to PX

α . For this, let α ∈ Rr
+ be fixed and let U =

(−δ, δ)r, where δ = min{α1, . . . , αr}/2 > 0. Then, for t = (t1, ..., tr)
′ ∈ U , application of La.

2.1.18 yields

m−T (t) = mT (−t) =
C(α)

C(α− t)
=

r∏
j=1

αj

αj − tj
, (3.1.5)

and, hence, the assertion is established. Moreover, it can be shown that νT = (hλr|Rr
<
)T = 11Rr

−
λr.

For brevity, we state our findings in what follows only for the family PX of distributions. Clearly,
respective results are also true by considering the exponential family PT .

Lemma 3.1.1
In the above situation, we find:

(i) PX is strictly r-parametrical and of full rank.

(ii) T = (T1, . . . , Tr)
′ is a minimal sufficient and complete statistic for PX .

Proof. (i). By application of Thm. 2.1.9 (i), PX is strictly r-parametrical if and only if (the pro-
jections) pj(α) = αj , j ∈ {1, . . . , r}, are affinely independent and T1, ..., Tr are PX-affinely in-
dependent. The first condition is obvious. For the latter, it is sufficient to show that T1, ..., Tr are
PX

α -affinely independent for an arbitrary fixed α ∈ Rr
+ (cf. Rem 2.1.4). Setting T = (T1, ..., Tr)

′,
this assertion immediately follows from Thm. 2.1.9 (ii) since

Covα(T ) = diag

(
1

α2
1

, ...,
1

α2
r

)
> 0.
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Here and in the following, diag(d1, . . . , dr) denotes a diagonal matrix with diagonal elements
d1, . . . , dr.
(ii). The assertion follows immediately by application of (i) and La. 2.1.20. �

Using the denotations of Chapter 2, we obtain

κ : Rr
+ → R : α 7→ − ln[C(α)] = −

r∑
j=1

ln(αj) (3.1.6)

(cf. (2.1.3)), and

dPX
α

dν
(x) = eα′T (x)−κ(α), x ∈ Rr

<, ν-a.e.,

where ν = hλr|Rr
+

. Moreover, the mapping

π : Rr
+ → π(Rr

+) : α 7→ Eα[T ] = −
(

1

α1

, . . . ,
1

αr

)′
, (3.1.7)

where π(Rr
+) = Rr

−, is bijective with inverse function

π−1 : Rr
− → Rr

+ : t 7→ −
(

1

t1
, . . . ,

1

tr

)′
. (3.1.8)

Both functions, κ and π, are infinitely often differentiable with respect to α (cf. Thm. 2.1.15), and,
in particular, are connected by the relation π(α) = ∇κ(α) (see (2.1.14) and (2.1.16)). In virtue of
(2.1.15), the Hessian matrix of κ is

Hκ(α) = Covα(T ) = diag

(
1

α2
1

, . . . ,
1

α2
r

)
.

Moreover, by application of Thm. 2.1.22, the score function of PX is given by

Uα =

(
T1 +

1

α1

, . . . , Tr +
1

αr

)′
, (3.1.9)

and the Fisher information matrix of PX equals

If (α) = Covα(T ) = diag

(
1

α2
1

, . . . ,
1

α2
r

)
(3.1.10)

at α ∈ Rr
+.
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3.1.2 Product Measures
Aiming at statistical inference with SOSs given by (3.1.2), we continue by considering the family of
corresponding product probability measures.
We will assume to have s iid vectors X(1), . . . ,X(s) of SOSs and corresponding vectors x(1), . . . ,x(s)

of observations with X(i) ∼ fX
α , 1 ≤ i ≤ s. Let PX̃

(s)

= {P X̃
(s)

α = ⊗s
i=1P

X(i)

α : α ∈ Rr
+} denote

the family of the respective product probability measures. Defining the product measure ν(s) =
⊗s

i=1ν, a joint ν(s)-density of X(1), ...,X(s) is given by

f (s)
α (x̃(s)) = C(α)seα′T (s)(x̃(s))

= eα′T (s)(x̃(s))−sκ(α), x̃(s) = (x(1), . . . ,x(s)) ∈ (Rr
<)1×s, (3.1.11)

where T (s) = (T
(s)
1 , ..., T

(s)
r )′ and

T
(s)
j (x̃(s)) =

s∑
i=1

Tj(x
(i)), x̃(s) = (x(1), ...,x(s)) ∈ (Rr

<)1×s, 1 ≤ j ≤ r.

Hence, PX̃
(s)

forms a r-parametrical exponential family in the model parameters α1, ..., αr and statis-
tics T

(s)
1 , ..., T

(s)
r (cf. La. 2.1.25). As above, for fixed α ∈ Rr

+, δ = min{α1, . . . , αr}/2 > 0, and
U = (−δ, δ)r, the moment generating function of −T (s) at t ∈ U , where the expectation is computed
with respect to P X̃

(s)

α , can be derived according to

m−T (s)(t) = mT (s)(−t) =

(
C(α)

C(α− t)

)s

=
r∏

j=1

(
αj

αj − tj

)s

,

and, hence, T (s)
1 (X̃

(s)
), . . . , T

(s)
r (X̃

(s)
) are jointly independent random variables, where−T

(s)
j (X̃

(s)
)

has a gamma distribution with scale parameter α−1
j and shape parameter s, i.e.,

−T
(s)
j (X̃

(s)
) =

s∑
i=1

−Tj(X
(i)) ∼ Γ(s, α−1

j ), 1 ≤ j ≤ r,

and a λ1-density of −T
(s)
j (X̃

(s)
) is given by

f−T
(s)
j (X̃

(s)
)(x) =

αs
j

(s− 1)!
xs−1e−αjx11(0,∞)(x).

In La. 3.1.2, we summarize our findings for the class PX̃
(s)

of distributions.

Lemma 3.1.2
In the above situation, we obtain:

(i) PX̃
(s)

is strictly r-parametrical and of full rank.
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(ii) The statistic T (s) = (T
(s)
1 , ..., T

(s)
r )′ is minimal sufficient and complete for PX̃

(s)

.

Proof. Since

Covα(T (s)) = diag

(
s

α2
1

, ...,
s

α2
r

)
> 0,

the assertions are obvious by the same arguments as in the proof of La. 3.1.1 (see also La. 2.1.25). �

The score function of PX̃
(s)

and the score statistic of X̃
(s)

are given by

U (s)
α =

(
T

(s)
1 +

s

α1

, . . . , T (s)
r +

s

αr

)′
,

U (s)
α (X̃

(s)
) =

(
T

(s)
1 (X̃

(s)
) +

s

α1

, . . . , T (s)
r (X̃

(s)
) +

s

αr

)′
, (3.1.12)

and the Fisher information matrix of PX̃
(s)

equals

I
(s)
f (α) = Covα(T (s)) = diag

(
s

α2
1

, . . . ,
s

α2
r

)
at α ∈ Rr

+.

3.1.3 The Univariate and the General Model
It is worth mentioning some univariate and more general results. Suppose, for some j ∈ {1, . . . , r},
α1, . . . , αj−1, αj+1, . . . , αr are considered as fixed nuisance parameters. Then, by setting

h̃(x) =

 r∏
l=1
l 6=j

αl

 exp


r∑

l=1
l 6=j

αlTl(x)

h(x), x = (x1, ..., xr)
′ ∈ Rr

<, (3.1.13)

with h as in (3.1.3), (3.1.2) can be rewritten as

fX
α (x) = αje

αjTj(x)h̃(x), x = (x1, ..., xr)
′ ∈ Rr

<, λr|Rr
<

-a.e..

Hence, PX
j = {PX

α : αj > 0} forms a one-parameter exponential family in αj and Tj , and the
findings of Chapter 2 can be applied to the univariate case, too. In particular, by setting ν̃ = h̃λr|Rr

<
,

ν̃(s) = ⊗s
i=1ν̃ and κ̃(α) = − ln(α), α > 0, a joint ν̃(s)-density of X(1), ...,X(s) is given by

f (s)
α (x̃(s)) = αs

je
αjT

(s)
j (x̃(s))

= eαjT
(s)
j (x̃(s))−sκ̃(αj), x̃(s) = (x(1), . . . ,x(s)) ∈ (Rr

<)1×s, (3.1.14)

(cf. (3.1.11)). PX̃
(s)

j = {P X̃
(s)

α : αj > 0} forms a one-parameter exponential family in αj and T
(s)
j .

For the sake of brevity, we state the following results directly for the family of product measures.
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Lemma 3.1.3
In the above situation, T

(s)
j is a minimal sufficient and complete statistic for PX̃

(s)

j .

Proof. Application of La. 2.1.20 yields the assertion (k = 1). �

In the univariate case, independent of j, the functions κ and π (cf. (2.1.3) and (2.1.16)) are given by
κ̃(α) = − ln(α) and π̃(α) = −α−1, α > 0. It should be noted that π(α) = (π̃(α1), . . . , π̃(αr))

′ with
the mapping π from the multivariate case (see (3.1.7)). Moreover, the Fisher information of PX

j is
given by Ĩf (α) = α−2 at α > 0.

Finally, we point out the following important remark, which, once again, demonstrates the favourable
and useful structure of the densities considered.

Remark 3.1.4
As we have shown in this subsection, PX can be considered as a one-parameter exponential family in
αj and Tj if the remaining parameters are assumed to be fixed nuisance parameters. All arguments and
conclusions mentioned above remain valid in the following genzeralized set-up. Let I ⊆ {1, . . . , r}
be an index set with the interpretation that αj is a fixed nuisance parameter if and only if j /∈ I . Then,
PX forms a strictly |I|-parametrical exponential family in the model parameters αj and statistics Tj ,

j ∈ I , and by introducing h̃I(x) =
(∏

j /∈I αj

)
exp{

∑
j /∈I αjTj(x)}h(x), fX

α can be written as

fX
α (x) =

(∏
j∈I

αj

)
exp

{∑
j∈I

αjTj(x)

}
h̃I(x), x = (x1, ..., xr)

′ ∈ Rr
<, λr|Rr

<
-a.e..

The cases |I| = 1 and |I| = r corresponding to the situations, where a single parameter or all
parameters are of interest, are included in this set-up. For the sake of brevity and a simplified notation,
we shall state subsequent results only for these two particular cases. If 1 < |I| < r, respective
statements can similarly be shown.
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3.2 Estimation of Model Parameters
In practical applications, one is interested in estimating the model parameters α1, . . . , αr based on
a sample of size s of independent SOSs. In Cramer & Kamps (1996), the MLEs α∗1, . . . , α

∗
r of

α1, . . . , αr have been calculated directly and some useful properties have been shown. Based on
differently structured samples, MLEs are presented in Cramer & Kamps (2001b).
Once having observed the exponential family structure of SOSs with conditional proportional hazard
rates, these and further results are immediate consequences, where, in particular, efficiency notions
can easily be addressed. This is subject matter of Subsections 3.2.1 and 3.2.2.
If SOSs are used to describe sequential systems, the prior information that the α’s are simply ordered
can be taken into account. This particular case is discussed in Subsection 3.2.3.

3.2.1 MLEs and UMVUEs
Theorem 3.2.1
Let sample situation (3.1.11) be given and let X̃

(s)
= (X(1), ...,X(s)). Then, the following statements

hold true:

(i) The unique MLE of α based on the independent observations X(1), ...,X(s) of X is given by

α∗(s) =

(
− s

T
(s)
1 (X̃

(s)
)
, . . . ,− s

T
(s)
r (X̃

(s)
)

)′
.

Moreover, if g : Rr
+ → Γ is a bijective function, g(α∗(s)) is the MLE of g(α) based on s

independent observations of X .

(ii) The unique MLE of αj based on the independent observations X(1), ...,X(s) of X is given by

α
∗(s)
j = − s

T
(s)
j (X̃

(s)
)
, 1 ≤ j ≤ r.

α
∗(s)
1 , ..., α

∗(s)
r are jointly independent, and α

∗(s)
j is inverted gamma distributed with shape pa-

rameter s and scale parameter sαj , 1 ≤ j ≤ r, i.e. α
∗(s)
j has a λ1-density

fα
∗(s)
j (x) =

(sαj)
s

(s− 1)!

(
1

x

)s+1

e−sαjx−1

11(0,∞)(x). (3.2.1)

Moreover, if g : R+ → Γ is a bijective function, g(α
∗(s)
j ) is the MLE of g(αj) based on s

independent observations of X .

Proof. (i). In virtue of (3.1.8) and Pα(1
s
T (s)(X̃

(s)
) ∈ Rr

−) = 1, it follows from Thm. 2.2.3 that the
unique MLE of α based on the independent observations X(1), . . . ,X(s) is given by

α∗(s) = π−1

(
1

s
T (s)(X̃

(s)
)

)
=

(
− s

T
(s)
1 (X̃

(s)
)
, . . . ,− s

T
(s)
r (X̃

(s)
)

)′
.
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The respective result for g is then obvious from Thm. 2.2.4.
(ii). Similarly to the proof of (i), the MLE of αj based on the independent observations
X(1), . . . ,X(s) can be derived by noticing of the results of Subsection 3.1.3. In the given situation,
the vector of the MLEs of the α’s coincides with the MLE of α. T

(s)
1 (X̃

(s)
), ..., T

(s)
r (X̃

(s)
) are

jointly independent and so are the MLEs α
∗(s)
1 , ..., α

∗(s)
r . With −s−1T

(s)
j (X̃

(s)
) ∼ Γ(s, (sαj)

−1) for
1 ≤ j ≤ r, the distribution of α

∗(s)
j is obvious. The result for g follows again by application of Thm.

2.2.4. �

Subsequently, we state some moments of the MLEs which can also be found in Cramer & Kamps
(1996).

Lemma 3.2.2
In the above situation, we find:

(i) Eα[α
∗(s)
j ] = s

s−1
αj , s > 1, Eα[(α

∗(s)
j )k] = (s−k−1)!

(s−1)!
(sαj)

k, 2 ≤ k ≤ s− 1, s > 2.

(ii) V arα(α
∗(s)
j ) = s2

(s−1)2(s−2)
α2

j , s > 2.

(iii) MSEα(α
∗(s)
j ) = s+2

(s−1)(s−2)
α2

j , 1 ≤ j ≤ r, s > 2.

Proof. By means of (3.2.1), (i) can readily be computed. Then, (ii) and (iii) follow by (i) and
some easy algebra (for the mean and the variance of the inverted gamma distribution see also Kotz &
Johnson (1983), p. 259). �

Theorem 3.2.3
Let sample situation (3.1.11) be given and let X̃

(s)
= (X(1), ...,X(s)). Then, for s > 1, the uni-

formly minimum variance unbiased estimator (UMVUE) of αj based on the independent observations
X(1), ...,X(s) of X is given by

α
∗∗(s)
j = − s− 1

T
(s)
j (X̃(s))

, 1 ≤ j ≤ r.

Proof. The statement is obvious from La. 3.1.3 in combination with the Lehmann-Scheffé theorem
(cf., e.g., Shao (2003), Thm. 3.1, p. 162) and La. 3.2.2 (i). �

If we compare the mean squared error of the MLE and UMVUE of αj based on s > 1 independent
observations, we obtain

V arα(α
∗∗(s)
j ) < MSEα(α

∗(s)
j ) ⇔

α2
j

s− 2
<

s + 2

(s− 1)(s− 2)
α2

j ⇔ −1 < 2.

Hence, from that point of view, the UMVUE performs better than the MLE as an estimator of αj . We
will demonstrate that, by another approach, the MLE turns out to be the more attractive choice.
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Lemma 3.2.4
In the above situation, for 1 ≤ j ≤ r and s > 1, α

∗(s)
j is a Pitman closer estimator of αj than α

∗∗(s)
j in

the sense of (2.2.8).

Proof. For later use, we first prove assertion

(∗) For every a ∈ R holds: |a| < |a + 1| ⇔ a > −1

2
.

Thereto:

’⇐’ Let a > −1
2
. Then −a < 1

2
and a + 1

2
> 0. Thus,

|a| = max{−a, a} < max

{
1

2
, a +

1

2

}
<

1

2
+ a +

1

2
= a + 1 = |a + 1|.

’⇒’ Let a ≤ −1
2
. Then a < 0 and a + 1

2
≤ 0. Thus,

|a| = −a = −
(

a +
1

2

)
+

1

2
=

∣∣∣∣a +
1

2

∣∣∣∣+ 1

2
≥
∣∣∣∣a +

1

2
+

1

2

∣∣∣∣ = |a + 1|.

Hence, assertion (∗) is shown.

Now, let α ∈ Rr
+ be the true parameter, and let s > 1 and j ∈ {1, . . . , r} be fixed. We define

the random variable Ys = −αjT
(s)
j (X̃

(s)
) and, thus, by application of Thm. 3.2.1 and Thm. 3.2.3,

α
∗(s)
j =

sαj

Ys
and α

∗∗(s)
j =

(s−1)αj

Ys
, where Ys ∼ Γ(s, 1). Then,

Pα(|α∗(s)j − αj| < |α∗∗(s)j − αj|) = Pα

(∣∣∣∣sαj

Ys

− αj

∣∣∣∣ < ∣∣∣∣(s− 1)αj

Ys

− αj

∣∣∣∣)
= P (|Ys − s| < |Ys − s + 1|)

= P

(
Ys > s− 1

2

)
,

where the last equation results by application of (∗) (a = Ys(ω)−s). The median ms of the distribution
Γ(s, 1) fullfils the inequality ms > s− 1

3
(cf. Chen & Rubin (1986) and Choi (1994)). Hence,

Pα(|α∗(s)j − αj| < |α∗∗(s)j − αj|) = P

(
Ys > s− 1

2

)
> P (Ys > ms) = 0.5.

�

Interpreting the above result in terms of absolute frequencies, we find in more than a half of all cases
where both estimators are used to obtain an estimate of αj based on s independent observations
that the MLE is closer to αj than the UMVUE in terms of the absolute value. The following table
contains the probabilities P

(
Ys > s− 1

2

)
for s ∈ {2, . . . , 5, 10, 20, 50, 100, 1000}.
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s 2 3 4 5 10 20 50 100 1000
P
(
Ys > s− 1

2

)
0.558 0.544 0.537 0.532 0.522 0.515 0.509 0.507 0.502

Applying the multivariate Rao-Cramér inequality (cf. Subsection 2.2.3), the covariance matrix of
every unbiased estimator α̂(s) of α based on s independent observations fulfils

Covα(α̂(s)) ≥ I(s)
f (α)−1 = diag

(
α2

1

s
, ...,

α2
r

s

)
, α ∈ Rr

+,

in the sense of the Löwner ordering. This inequality implies that for every unbiased estimator α̂j
(s)

of αj based on s independent observations, its variance is bounded from below by

V arα(α̂
(s)
j ) ≥

α2
j

s
, α ∈ Rr

+, 1 ≤ j ≤ r.

Hence, for s > 2, since V arα(α
∗∗(s)
j ) > α2

j/s, 1 ≤ j ≤ r, an efficient estimator of αj and, thus, of α
does not exist.
We extend the multivariate result to the more general case, where g : Rr

+ → Rl is an l-dimensional
differentiable function of α with Jacobian matrix Dg(α) ∈ Rl×r evaluated at α ∈ Rr

+. Then, for
every unbiased estimator ĝ(s) of g based on s independent observations, we obtain

Covα(ĝ(s)) ≥ Dg(α)I(s)
f (α)−1Dg(α)′

= Dg(α)diag

(
α2

1

s
, . . . ,

α2
r

s

)
Dg(α)′,

for α ∈ Rr
+ in the sense of the Löwner ordering.

We end this subsection by pointing out that the reciprocal values of the α’s can be estimated efficiently.

Lemma 3.2.5
In the above situation, we find:

(i) −s−1T (s)(X̃
(s)

) is an efficient estimator of (α−1
1 , . . . , α−1

r )′, i.e. −s−1T (s)(X̃
(s)

) has uniformly
minimal covariance matrix in the sense of the Löwner ordering among all unbiased estimators
of (α−1

1 , . . . , α−1
r )′ based on s independent observations. The lower bound of the Rao-Cramér

inequality is attained at diag(s−1α−2
1 , . . . , s−1α−2

r ).

(ii) −s−1Tj(X̃
(s)

) is an efficient estimator and, thus, the UMVUE of α−1
j , 1 ≤ j ≤ r, i.e. it has

minimal variance among all unbiased estimators of α−1
j based on s independent observations.

The lower bound of the Rao-Cramér inequality is attained at s−1α−2
j .

Proof. Both assertions are obvious from La. 2.2.10. �
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3.2.2 Asymptotic Properties

As a useful property, strong consistency of the sequences of MLEs and UMVUEs can readily be seen.

Theorem 3.2.6
In the above situation, we find:

(i) The sequence of MLEs {α∗(s)}s∈N and the sequence {α∗∗(s)}s∈N, α∗∗(s) = (α
∗∗(s)
1 , ..., α

∗∗(s)
r )′,

s ∈ N, of UMVUEs are strongly consistent for estimating α. Moreover, if g in Thm. 3.2.1
(i) is continuous, the sequences {g(α∗(s))}s∈N and {g(α∗∗(s))}s∈N are strongly consistent for
estimating g(α).

(ii) The sequence of MLEs {α∗(s)j }s∈N and the sequence of UMVUEs {α∗∗(s)j }s∈N of αj are strongly
consistent for estimating αj , 1 ≤ j ≤ r. Moreover, if g in Thm. 3.2.1 (ii) is continuous,
the sequences {g(α

∗(s)
j )}s∈N and {g(α

∗∗(s)
j )}s∈N are strongly consistent for estimating g(αj),

1 ≤ j ≤ r.

Proof. Application of La. 2.2.12 yields strong consistency of {α∗(s)}s∈N. The respective result for
the other sequences, in particular, for the univariate conclusions, are then evident. �

Moreover, asymptotic efficiency is easily addressed.

Theorem 3.2.7
In the above situation, we find:

(i) The sequence {α∗(s)}s∈N of MLEs and the sequence {α∗∗(s)}s∈N of UMVUEs are asymptoti-
cally efficient for estimating α, i.e., we have

√
s(α∗(s) −α)

D−→ Nr(0,diag(α2
1, ..., α

2
r)),

√
s(α∗∗(s) −α)

D−→ Nr(0,diag(α2
1, ..., α

2
r)) .

Moreover, if in Thm. 3.2.1 (i) g is continuously differentiable with |Dg(α)| 6= 0 ∀α ∈ Rr
+,

then the sequences {g(α∗(s))}s∈N and {g(α∗∗(s))}s∈N are asymptotically efficient for estimating
g(α), i.e., e.g.,

√
s(g(α∗(s))− g(α))

D−→ Nr(0,Dg(α)diag(α2
1, ..., α

2
r)Dg(α)′).

(ii) The sequences of estimators {α∗(s)j }s∈N and {α∗∗(s)j }s∈N for estimating αj , 1 ≤ j ≤ r, are
asymptotically efficient for estimating αj , i.e.,

√
s(α

∗(s)
j − αj)

D−→ N (0, α2
j ),

√
s(α

∗∗(s)
j − αj)

D−→ N (0, α2
j ) .



62 3.2. Estimation of Model Parameters

Moreover, if in Thm. 3.2.1 (ii) g is continuously differentiable with g′(αj) 6= 0 ∀αj ∈ R+,
then the sequences {g(α

∗(s)
j )}s∈N and {g(α

∗∗(s)
j )}s∈N are asymptotically efficient for estimating

g(αj), i.e., e.g.,

√
s(g(α

∗(s)
j )− g(αj))

D−→ N (0, (g′(αj))
2
α2

j ).

Proof. Both assertions follow by application of La. 2.2.15 and the multivariate version of Slutsky’s
theorem (cf., e.g., Sen & Singer (1993), Thm. 3.4.3, p. 130). �

In particular, sequences of the estimators presented in La. 3.2.5 are strongly consistent (and asymp-
totically efficient) for estimating the respective reciprocals of the α’s.
When the model of SOSs with conditional proportional hazard rates is used to describe (possibly se-
quential) systems, aiming at detecting increasing load put on remaining components, several choices
of g are near at hand, e.g.,

g1(α) = (α1, α2 − α1, . . . , αr − αr−1)
′,

g2(α) =

(
α1,

α2

α1

, . . . ,
αr

αr−1

)′
, or

g3(α) =

(
α1,

α2

α1

, . . . ,
αr

α1

)′
, α = (α1, . . . , αr)

′ ∈ Rr
+.

3.2.3 Estimation under Simple Order Restriction
When the model of SOSs with conditional proportional hazard rates is used to describe and anal-
yse sequential systems, the additional assumption that the α’s are arranged in ascending order of
magnitude can be made. In that context, the simple order restriction α1 ≤ · · · ≤ αr on the model
parameters is naturally justified in order to model increasing stress on remaining components upon
failure of some component of the system. Hence, the prior information of ordered model parameters
should be taken into account when these parameters are estimated. In Balakrishnan et al. (2008),
MLEs of the model parameters under simple order restriction have been established. Making use of
the exponential family structure, this result can also be obtained from Thm. 2.2.8 as we will show.

Theorem 3.2.8
The MLE of α under the simple order restriction α1 ≤ · · · ≤ αr based on X̃

(s)
= (X(1), . . . ,X(s))

is uniquely determined and given by α
∗(s)
≤ with components

(α
∗(s)
≤ )j = min

j≤µ≤r
max
1≤ν≤j

− s(µ− ν + 1)∑µ
l=ν T

(s)
l (X̃

(s)
)
, 1 ≤ j ≤ r.

Proof. Let x̃(s) = (x(1), . . . ,x(s)) be a realization of X̃
(s)

= (X(1), . . . ,X(s)). We have seen that
the log likelihood function based on x̃(s) is strictly concave on Rr

+ (see, e.g., the proof of La. 2.2.1 in
the Appendix), and, thus, in particular, on the convex subset Θ≤ = {α ∈ Rr

+ : α1 ≤ · · · ≤ αr} of
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Rr
+. Hence, if the restricted MLE of α based on x̃(s) in Θ≤ exists, it is uniquely determined.

Moreover, we have already shown, that the random variables Tj(X
(i)), 1 ≤ j ≤ r, 1 ≤ i ≤ s, are

independent, and −Tj(X
(1)), . . . ,−Tj(X

(s)) have an exponential distribution with scale parameter
α−1

j > 0, 1 ≤ j ≤ r. Hence, by reparametrization of the model parameters via α̃j = α−1
r−j+1,

1 ≤ j ≤ r, for fixed 1 ≤ j ≤ r, the transformed observations ti;j = Tj(x
(i)), 1 ≤ i ≤ s, are

realizations of s iid random variables having λ1-density f̃α̃r−j+1
, where

f̃α̃(t) = eζ(α̃)(−t)−κ(α̃)11(−∞,0)(t)

with ζ(α̃) = −α̃−1 and κ(α̃) = ln(α̃), α̃ > 0. Obviously, ζ ′(α̃) = α̃−2 > 0 and κ′(α̃) = α̃−1 =
α̃ ζ ′(α̃). Now, a joint density of all rs random variables is given by

f̃
(rs)
α̃ (t̃

(rs)
) =

r∏
j=1

s∏
i=1

f̃α̃r−j+1
(ti;j), t̃

(rs)
= (t1;1, . . . , ts;1, . . . , t1;r, . . . , ts;r),

where α̃ = (α̃1, . . . , α̃r)
′. Notice, that f̃

(rs)
α̃ (t̃

(rs)
)
∏s

i=1 h(x(i)) = f
(s)
α (x̃(s)). It is easily shown that

the (unrestricted) MLE of α̃ based on t̃
(rs)

exists and is given by (−s−1t
(s)
r , . . . ,−s−1t

(s)
1 )′, where

t
(s)
j =

∑s
i=1 ti;j , 1 ≤ j ≤ r. Hence, the assumptions from Thm. 2.2.8 are fulfilled, and we obtain

that α̃
∗(rs)
≤ is the MLE of α̃ based on t̃

(rs)
with respect to the constraint α̃1 ≤ · · · ≤ α̃r, where the

components of α̃
∗(rs)
≤ are given by

(α̃
∗(rs)
≤ )j = max

1≤µ≤j
min

j≤ν≤r
− 1

s(ν − µ + 1)

ν∑
l=µ

t
(s)
r−l+1, 1 ≤ j ≤ r.

The mapping g : Θ≤ → Θ≤ : α 7→ α̃ is bijective, and it follows

f̃
(rs)

α̃
∗(rs)
≤

(t̃
(rs)

) ≥ f̃
(rs)
α̃ (t̃

(rs)
) ∀α̃ ∈ Θ≤

⇔ f
(s)

g−1(α̃
∗(rs)
≤ )

(x̃(s)) ≥ f
(s)

g−1(α̃)(x̃
(s)) ∀α̃ ∈ Θ≤

⇔ f
(s)

g−1(α̃
∗(rs)
≤ )

(x̃(s)) ≥ f (s)
α (x̃(s)) ∀α ∈ Θ≤.

Hence, with regard to the first part of the proof, α
∗(s)
≤ = g−1(α̃

∗(rs)
≤ ) is the unique MLE of α under

the simple order restriction α1 ≤ · · · ≤ αr based on the observation x̃(s), where the components of
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α
∗(s)
≤ are given by

(α
∗(s)
≤ )j = ((α̃

∗(rs)
≤ )r−j+1)

−1

=

(
max

1≤µ≤r−j+1
min

r−j+1≤ν≤r
− 1

s(ν − µ + 1)

ν∑
l=µ

T
(s)
r−l+1(x̃

(s))

)−1

=

(
max
j≤µ≤r

min
1≤ν≤j

− 1

s(µ− ν + 1)

µ∑
l=ν

T
(s)
l (x̃(s))

)−1

= min
j≤µ≤r

max
1≤ν≤j

− s(µ− ν + 1)∑µ
l=ν T

(s)
l (x̃(s))

, 1 ≤ j ≤ r.

�

By noticing that −
∑µ

l=ν s−1T
(s)
l (X̃

(s)
) →

∑µ
l=ν α−1

l Pα-a.s. for 1 ≤ ν ≤ µ ≤ r, it follows that
α
∗(s)
≤ → α Pα-a.s. for α ∈ Θ≤, i.e. strong consistency of the sequence {α∗(s)

≤ }s∈N for estimating α
provided that α1 ≤ · · · ≤ αr.
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3.3 Statistical Tests on Model Parameters
In this section, we focus on univariate and multivariate statistical tests on the model parameters
α1, . . . , αr. Throughout, if not otherwise specified, we consider sampling situation (3.1.11) with
x(1), ...,x(s) being realizations of s independent random vectors X(1), . . . ,X(s) having density fX

α .
In Subsections 3.3.1 and 3.3.2, UMPU level-α tests on single parameters are established, where a
level-α test ϕ is called unbiased if its power is bounded from below by α, i.e., Eα[ϕ] ≥ α, if the
alternative is true. On the one hand, these tests can directly be interpreted in terms of the hazard rate
αjf/(1 − F ) of the remaining components of the system upon occurrence of the (j − 1)th failure of
some component. On the other hand, they can also be used for model checking in the following sense.
Consider, e.g., a (possibly sequential) 3-out-of-4 system and the null hypothesis H0 : α2 = 1, which
is tested against the alternative H1 : α2 6= 1, where, based on some prior information, α1 = 1 is
assumed. If the alternative is accepted on the basis of some experiment, the assumption of a common
3-out-of-4 system can no longer be maintained, and the system is supposed to be of the more general
sequential type. Hence, in that case, the model of SOSs is more appropriate (than the model of OSs)
for describing and analysing the structure of the system.
In Subsections 3.3.3 and 3.3.4, model tests are proposed for the case, where no prior information on
the model parameters is available. For simple and composite null hypotheses, the test statistics of
the LR test, Wald’s test and Rao’s score test are presented, and asymptotic properties of the tests are
derived. In case of a simple null hypothesis, asymptotic optimality of the sequence of LR tests is
obtained (Bahadur sense, Kallenberg sense).
In Subsection 3.3.5, multivariate tests are discussed, where some of the α’s are considered as fixed
nuisance parameters.
Finally, in Subsection 3.3.6, in the context of test problems with hypotheses on the simple ordering
of the model parameters, the asymptotic distribution of the LR test statistic under the null hypothesis
is considered.

3.3.1 One-sided Test Problems
We consider the two following one-sided test problems concerning α1. Notice that all statements of
this subsection are also valid for every other choice of αj , 2 ≤ j ≤ r. We will go into that point in
Rem. 3.3.10.

(I) H0 : α1 ≤ α0 ↔ H1 : α1 > α0,

(II) H0 : α1 ≥ α0 ↔ H1 : α1 < α0,

where α0 is a positive constant. Throughout this subsection, for a short notation and a better reading,
P X̃

(s)

α is replaced by Pα.

Theorem 3.3.1
For α ∈ (0, 1), α0 ∈ R+, and the test problem H0 : α1 ≤ α0 ↔ H1 : α1 > α0,

ϕ∗ : (Rr
<)1×s → [0, 1] : x̃(s) 7→ 11„

−χ2
α(2s)

2α0
,∞
«(T

(s)
1 (x̃(s)))
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is a UMPU level-α test based on s independent observations of X , where χ2
α(2s) denotes the α-

quantile of the χ2-distribution with 2s degrees of freedom.

Proof. Let V = (T
(s)
2 , . . . , T

(s)
r )′. Applying Thm 2.3.1, a UMPU level-α test is given by ϕ∗ =

Ψ∗ ◦ (T
(s)
1 , V ), Ψ∗(u, v) = 11(c(v),∞)(u) + γ(v)11{c(v)}(u), where c, γ : (Rr−1, Br−1) → (R1, B1),

0 ≤ γ ≤ 1, fulfill

P
T

(s)
1 |(T (s)

2 ,...,T
(s)
r )′=v

α0,• ((c(v),∞)) + γ(v)P
T

(s)
1 |(T (s)

2 ,...,T
(s)
r )′=v

α0,• ({c(v)}) !
= α.

Since the conditional distribution of T
(s)
1 given (T

(s)
2 , . . . , T

(s)
r )′ = v only depends on α0 if

α = (α0, α2, . . . , αr)
′ is true (cf., e.g., Lehmann & Romano (2005), La. 2.7.2, p. 48), we omit

α2, . . . , αr and use the expression P
T

(s)
1 |(T (s)

2 ,...,T
(s)
r )=v

α0,• .
T

(s)
1 , ...., T

(s)
r are jointly independent and−T

(s)
1 ∼ Γ(s, α−1

0 ) is, in particular, continuously distributed
if α1 = α0 is true. Thus, the problem simplifies to finding the constant (function) c ≡ c(v), v ∈ Rr−1,
with α

!
= Pα0,•(T

(s)
1 > c).

Since −2α0T
(s)
1 ∼ χ2(2s), the proof is completed. �

Analogously, we obtain for test problem (II) the following theorem.

Theorem 3.3.2
For α ∈ (0, 1), α0 ∈ R+, and the test problem H0 : α1 ≥ α0 ↔ H1 : α1 < α0,

ϕ∗ : (Rr
<)1×s → [0, 1] : x̃(s) 7→ 11„

−∞,−
χ2
1−α

(2s)

2α0

«(T
(s)
1 (x̃(s)))

is a UMPU level-α test based on s independent observations of X , where χ2
1−α(2s) denotes the

(1− α)-quantile of the χ2-distribution with 2s degrees of freedom.

Proof. Applying Thm. 2.3.2, the assertion can be shown by the same arguments as in the proof of
Thm. 3.3.1. �

3.3.2 Two-sided Test Problems
We continue by considering the three following two-sided test problems concerning α1. As in Sub-
section 3.3.1, all statements of this section are also valid for every other choice of αj , 2 ≤ j ≤ r, and,

again, P X̃
(s)

α is replaced by Pα.

(III) H0 : α1 = α0 ↔ H1 : α1 6= α0,

(IV) H0 : α
(1)
0 ≤ α1 ≤ α

(2)
0 ↔ H1 : α1 < α

(1)
0 or α1 > α

(2)
0 ,

(V) H0 : α1 ≤ α
(1)
0 or α1 ≥ α

(2)
0 ↔ H1 : α

(1)
0 < α1 < α

(2)
0 ,
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where α
(1)
0 and α

(2)
0 are positive constants with α

(1)
0 < α

(2)
0 .

In the following, Fa,n denotes the distribution function of the Erlang distribution Γ(n, a−1) with shape
parameter n ∈ N and scale parameter a−1 > 0, i.e.

Fa,n(x) = 1− e−ax

n−1∑
j=0

(ax)j

j!
, x > 0,

with corresponding density function

fa,n(x) =
an

(n− 1)!
xn−1e−ax11(0,∞)(x).

For every a > 0 and n ∈ N, Fa,n is strictly increasing on (0,∞). Hence, its quantile func-
tion F−1

a,n coincides with its continuously differentiable inverse function on (0, 1), and F−1
a,n(0) =

limx↘0 F−1
a,n(x) = 0, F−1

a,n(1) = limx↗1 F−1
a,n(x) = ∞. Moreover, Fa,n(x) is strictly increasing in a for

fixed n ∈ N and x > 0 and strictly decreasing in n for fixed a > 0 and x > 0.
For α ∈ (0, 1), α0 ∈ R+, and s ∈ N, we introduce the mapping

τ (α,α0,s) : (0, α) → {(c, d) ∈ R1×2
− : Fα0,s(−c)− Fα0,s(−d) = 1− α} :

β 7→ (τ
(α,α0,s)
1 (β), τ

(α,α0,s)
2 (β)) = (−F−1

α0,s(1− α + β),−F−1
α0,s(β)). (3.3.1)

Corollary 3.3.3
For every α ∈ (0, 1), α0 ∈ R+ and s ∈ N, τ (α,α0,s) is well-defined and bijective.

Proof. Let α ∈ (0, 1), α0 ∈ Rr
+ and s ∈ N be fixed. For brevity, let τ = τ (α,α0,s) and F = Fα0,s.

Then, for every β ∈ (0, α), it follows that τ1(β), τ2(β) < 0 and

F (−τ1(β))− F (−τ2(β)) = F (−(−F−1(1− α + β)))− F (−(−F−1(β)))

= 1− α + β − β = 1− α

and, thus, τ is well-defined.
Let τ(β1) = τ(β2) for some β1, β2 ∈ (0, α). Then,

β1 = F (−(−F−1(β1))) = F (−τ2(β1)) = F (−τ2(β2)) = F (−(−F−1(β2))) = β2

yields that τ is injective.
For (c, d) ∈ R1×2

− with F (−c)−F (−d) = 1−α, set β0 = F (−d). Since d < 0, it follows that β0 > 0
and

β0 = F (−c)− (1− α) < 1− (1− α) = α.

We conclude that β0 ∈ (0, α). Moreover,

τ(β0) = (τ1(β0), τ2(β0)) = (−F−1(1− α + β0),−F−1(β0))

= (−F−1(1− α + F (−c)− (1− α)),−F−1(F (−d))) = (c, d).

Hence, τ is surjective and the proof completed. �

With these denotations, we turn towards the two-sided test problem (III).
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Theorem 3.3.4
For α ∈ (0, 1), α0 ∈ R+, and the test problem H0 : α1 = α0 ↔ H1 : α1 6= α0,

ϕ∗ : (Rr
<)1×s → [0, 1] : x̃(s) 7→ 1− 11“

τ
(α,α0,s)
1 (β∗),τ

(α,α0,s)
2 (β∗)

”(T (s)
1 (x̃(s)))

is a UMPU level-α test based on s independent observations of X , where β∗ is the unique solution of
the equation

Fα0,s+1(F
−1
α0,s(1− α + β))− Fα0,s+1(F

−1
α0,s(β))

!
= 1− α (3.3.2)

with respect to β ∈ (0, α).

We state some remarks and, subsequently, prove the theorem.

Remark 3.3.5
It is easily shown that there exists exactly one solution of (3.3.2). For fixed α ∈ (0, 1), α0 ∈ R+ and
s ∈ N, we define the mapping

g(β) = Fα0,s+1(F
−1
α0,s(1− α + β))− Fα0,s+1(F

−1
α0,s(β)), β ∈ (0, α).

Then,

lim
β↘0

g(β) = Fα0,s+1(F
−1
α0,s(1− α)) < Fα0,s(F

−1
α0,s(1− α)) = 1− α,

lim
β↗α

g(β) = 1− Fα0,s+1(F
−1
α0,s(α)) > 1− Fα0,s(F

−1
α0,s(α)) = 1− α.

Obviously, g is differentiable and

g′(β) > 0 ⇔
fα0,s+1(F

−1
α0,s(1− α + β))

fα0,s(F−1
α0,s(1− α + β))

−
fα0,s+1(F

−1
α0,s(β))

fα0,s(F−1
α0,s(β))

> 0

⇔
fα0,s+1(F

−1
α0,s(1− α + β))

fα0,s+1(F−1
α0,s(β))

>
fα0,s(F

−1
α0,s(1− α + β))

fα0,s(F−1
α0,s(β))

⇔
F−1

α0,s(1− α + β)

F−1
α0,s(β)

> 1 ⇔ 1− α > 0.

Hence, applying the intermediate value theorem, there exists one and only one solution of g(β) =
1− α.
Moreover, the expression on the left-hand side of (3.3.2) and, hence, its solution β∗ do not depend
on the value of α0. For this, note that for y > 0 and s ∈ N Fα0,s(y) = F1,s(α0y) and, therewith, for
u ∈ (0, 1), F1,s(α0F

−1
α0,s(u)) = u and α0F

−1
α0,s(u) = F−1

1,s (u) hold. Then,

Fα0,s+1(F
−1
α0,s(u)) = F1,s+1(α0F

−1
α0,s(u)) = F1,s+1(F

−1
1,s (u)),

regardless of the value of α0.
Thus, w.l.o.g., α0 = 1 can be assumed. Then, for every choice of α ∈ (0, 1) and s ∈ N, β∗ can be
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obtained numerically, e.g, with Newton’s procedure. For that, note that the mapping N (α,s) defined
by

N (α,s)(β) = F1,s+1(F
−1
1,s (1− α + β))− F1,s+1(F

−1
1,s (β))− (1− α), β ∈ (0, α), (3.3.3)

is differentiable with respect to β and its derivative is given by

d

dβ
N (α,s)(β) =

1

s

(
F−1

1,s (1− α + β)− F−1
1,s (β)

)
, β ∈ (0, α).

In the following, we provide a proof of Thm. 3.3.4.

Proof of Thm. 3.3.4 Let V = (T
(s)
2 , . . . , T

(s)
r )′. Applying Thm. 2.3.3, a UMPU level-α test is given

by ϕ∗ = Ψ∗ ◦ (T
(s)
1 , V ), Ψ∗(u, v) = 1− 11[c1(v),c2(v)](u)+

∑2
i=1 γi(v)11{ci(v)}(u), where c1, c2, γ1, γ2 :

(Rr−1, Br−1) → (R1, B1), 0 ≤ γ1, γ2 ≤ 1, are such that∫
Ψ∗(u, v)dP

T
(s)
1 |(T (s)

2 ,...,T
(s)
r )′=v

α0,• (u)
!
= α

and
∫

u Ψ∗(u, v)dP
T

(s)
1 |(T (s)

2 ,...,T
(s)
r )′=v

α0,• (u)
!
= α

∫
u dP

T
(s)
1 |(T (s)

2 ,...,T
(s)
r )′=v

α0,• (u).

T
(s)
1 , ...., T

(s)
r are jointly independent and−T

(s)
1 ∼ Γ(s, α−1

0 ) is, in particular, continuously distributed
if α1 = α0 is true. Thus, the problem left is to find the constants, respectively constant functions,
c1 ≡ c1(v) and c2 ≡ c2(v), v ∈ Rr−1, with

c2∫
c1

dP
T

(s)
1

α0,• (u)
!
= 1− α and

c2∫
c1

u dP
T

(s)
1

α0,• (u)
!
= −s(1− α)

α0

.

Since

−α0

s

c2∫
c1

u dP
T

(s)
1

α0,• (u) = −α0

s

c2∫
c1

αs
0

(s− 1)!
u(−u)s−1eα0u11(−∞,0)(u)du

=

c2∫
c1

αs+1
0

s!
(−u)seα0u11(−∞,0)(u)du,

we have to solve simultaneously

1− α
!
= P (−c2 < Γ(s, α−1

0 ) < −c1)

and
1− α

!
= P (−c2 < Γ(s + 1, α−1

0 ) < −c1),

or, with the denotations introduced above,

1− α
!
= Fα0,s(−c1)− Fα0,s(−c2) (3.3.4)
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and
1− α

!
= Fα0,s+1(−c1)− Fα0,s+1(−c2). (3.3.5)

W.l.o.g., let c1 < c2 < 0 (otherwise a simultaneous solution of (3.3.4) and (3.3.5) do not exist). Then,
setting (c1, c2) = τ (α,α0,s)(β∗) yields the assertion. �

We now turn to tests with interval hypotheses.

Theorem 3.3.6
For α ∈ (0, 1), α

(1)
0 , α

(2)
0 ∈ R+ with α

(1)
0 < α

(2)
0 , and the test problem H0 : α

(1)
0 ≤ α1 ≤ α

(2)
0 ↔

H1 : α1 < α
(1)
0 or α1 > α

(2)
0 ,

ϕ∗ : (Rr
<)1×s → [0, 1] : x̃(s) 7→ 1− 11 

τ
(α,α

(1)
0

,s)

1 (β∗),τ
(α,α

(1)
0

,s)

2 (β∗)

!(T
(s)
1 (x̃(s)))

is a UMPU level-α test based on s independent observations of X , where β∗ is the unique solution of
the equation

F
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(1− α + β))− F
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(β))
!
= 1− α (3.3.6)

with respect to β ∈ (0, α).

Proof. Let V = (T
(s)
2 , . . . , T

(s)
r )′. Applying Thm. 2.3.4, a UMPU level-α test is given by

ϕ∗ = Ψ∗ ◦ (T
(s)
1 , V ), Ψ∗(u, v) = 1 − 11[c1(v),c2(v)](u) +

∑2
i=1 γi(v)11{ci(v)}(u), where c1, c2, γ1, γ2 :

(Rr−1, Br−1) → (R1, B1), 0 ≤ γ1, γ2 ≤ 1, are such that

α
!
=

∫
Ψ∗(u, v)dP

T
(s)
1 |(T (s)

2 ,...,T
(s)
r )′=v

α
(1)
0 ,•

(u)
!
=

∫
Ψ∗(u, v)dP

T
(s)
1 |(T (s)

2 ,...,T
(s)
r )′=v

α
(2)
0 ,•

(u).

By inspecting the proof of Thm. 3.3.4, the problem remains to finding the constants, respectively
constant functions, c1 ≡ c1(v) and c2 ≡ c2(v), v ∈ Rr−1, with

1− α
!
= P (−c2 < Γ(s, (α

(1)
0 )−1) < −c1)

!
= P (−c2 < Γ(s, (α

(2)
0 )−1) < −c1),

or, with the denotations introduced above,

1− α
!
= F

α
(1)
0 ,s

(−c1)− F
α

(1)
0 ,s

(−c2)
!
= F

α
(2)
0 ,s

(−c1)− F
α

(2)
0 ,s

(−c2).

Again, w.l.o.g., we assume that c1 < c2 < 0. Then, setting (c1, c2) = τ (α,α
(1)
0 ,s)(β∗) yields the

assertion. �

Theorem 3.3.7
For α ∈ (0, 1), α

(1)
0 , α

(2)
0 ∈ R+ with α

(1)
0 < α

(2)
0 , and the test problem H0 : α1 ≤ α

(1)
0 or α1 ≥

α
(2)
0 ↔ H1 : α

(1)
0 < α1 < α

(2)
0 ,

ϕ∗ : (Rr
<)1×s → [0, 1] : x̃(s) 7→ 11 

τ
(1−α,α

(1)
0

,s)

1 (β∗),τ
(1−α,α

(1)
0

,s)

2 (β∗)

!(T
(s)
1 (x̃(s)))
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is a UMPU level-α test based on s independent observations of X , where β∗ is the unique solution of
the equation

F
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(α + β))− F
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(β))
!
= α (3.3.7)

with respect to β ∈ (0, 1− α).

Proof. Applying Thm. 2.3.5, the statement can be shown similarly to the proof of Thm. 3.3.6,
replacing α by 1− α. �

Remark 3.3.8
Again, by means of simple analysis, it can be shown that the solution of (3.3.6) and (3.3.7), respec-
tively, is uniquely determined. For fixed α ∈ (0, 1), α

(1)
0 , α

(2)
0 ∈ Rr

+ with α
(1)
0 < α

(2)
0 and s ∈ N, we

define the mapping

g(β) = F
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(1− α + β))− F
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(β)), β ∈ (0, α).

Then,

lim
β↘0

g(β) = F
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(1− α)) > F
α

(1)
0 ,s

(F−1

α
(1)
0 ,s

(1− α)) = 1− α,

lim
β↗α

g(β) = 1− F
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(α)) < 1− F
α

(1)
0 ,s

(F−1

α
(1)
0 ,s

(α)) = 1− α.

g is differentiable with

g′(β) < 0 ⇔
f

α
(2)
0 ,s

(F−1

α
(1)
0 ,s

(1− α + β))

f
α

(1)
0 ,s

(F−1

α
(1)
0 ,s

(1− α + β))
−

f
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(β))

f
α

(1)
0 ,s

(F−1

α
(1)
0 ,s

(β))
< 0

⇔
f

α
(2)
0 ,s

(F−1

α
(1)
0 ,s

(1− α + β))

f
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(β))
<

f
α

(1)
0 ,s

(F−1

α
(1)
0 ,s

(1− α + β))

f
α

(1)
0 ,s

(F−1

α
(1)
0 ,s

(β))

⇔ exp

{
−α

(2)
0

(
F−1

α
(1)
0 ,s

(1− α + β)− F−1

α
(1)
0 ,s

(β)

)}
< exp

{
−α

(1)
0

(
F−1

α
(1)
0 ,s

(1− α + β)− F−1

α
(1)
0 ,s

(β)

)}
⇔ α

(1)
0 < α

(2)
0 .

Again, it follows from the intermediate value theorem that there exists one and only one β ∈ (0, α)
with g(β) = 1− α.

For fixed α ∈ (0, 1), α
(1)
0 , α

(2)
0 ∈ R+ and s ∈ N, we introduce the mapping Ñ (α,α

(1)
0 ,α

(2)
0 ,s) defined by

Ñ (α,α
(1)
0 ,α

(2)
0 ,s)(β) = F

α
(2)
0 ,s

(F−1

α
(1)
0 ,s

(1− α + β))− F
α

(2)
0 ,s

(F−1

α
(1)
0 ,s

(β))− (1− α)
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for β ∈ (0, α) which is differentiable with respect to β and its derivative is given by

d

dβ
Ñ (α,α

(1)
0 ,α

(2)
0 ,s)(β) =

(
α

(2)
0

α
(1)
0

)s (
exp{(α(1)

0 − α
(2)
0 )F−1

α
(1)
0 ,s

(1− α + β)}

− exp{(α(1)
0 − α

(2)
0 )F−1

α
(1)
0 ,s

(β)}
)

for β ∈ (0, α). Again, Newton’s procedure can be applied to numerically obtain solutions of equation
(3.3.6) and (3.3.7).

We end this section pointing out two important additional results and another application.

Remark 3.3.9
It should be noted that the UMPU level-α tests defined in Thm.s 3.3.1, 3.3.2 and 3.3.7 can even be
considered as UMP level-α tests in the following sense. In general, the conditional distribution of
T1 given (T

(s)
2 , . . . , T

(s)
r ) = (t

(s)
2 , . . . , t

(s)
r ) forms a one-parameter exponential family in α1 and the

identity (see Lehmann & Romano (2005), La. 2.7.2 (ii), p. 48), and, hence, in this situation, in
case of the test problems (I), (II) and (V), UMP tests on α1 can be established from general results
concerning one-parameter exponential families (e.g., in Lehmann & Romano (2005), Shao (2003) or
Witting (1985)). Here, these conditional UMP tests do not depend on the value of (t

(s)
2 , . . . , t

(s)
r ) and

coincide with the UMPU tests derived above.

Remark 3.3.10
As it is seen from the corresponding proofs, Thm.s 3.3.1-3.3.7 remain valid if α1 and T

(s)
1 are replaced

by any other choice of αj and its respective T
(s)
j , 2 ≤ j ≤ r. Hence, a variety of useful tests are near

at hand. For 2 ≤ j ≤ r, the test problem H0 : αj = 1 ↔ H1 : αj 6= 1 is of particular interest and
corresponds to the question, whether, upon failure of the (j−1)th component, the lifetime distribution
of the remaining n − j + 1 components is given by the belonging conditional distribution according
to the baseline distribution function F . Tables 7.1-7.3 of Chapter 7 show solutions β∗ of (3.3.2)
and critical values τ

(α,1,s)
1 (β∗) and τ

(α,1,s)
2 (β∗) of the corresponding UMPU tests (cf. Thm. 3.3.4)

with respect to the sample size s, where α ∈ {0.01, 0.05, 0.1}. The solutions β∗ are obtained with
Newton’s procedure (iteration until |N (α,s)(·)| < 10−15 with N (α,s) as in (3.3.3)).

Finally, the derived tests are also helpful in the context of progressively type-II censored lifetime
experiments. In such an experiment, N units are put on a lifetime test, where the failure times are
described by iid random variables. Upon the first failure of some component, R1 of the surviving units
are randomly chosen and removed from the experiment, and it continues with N −R1 − 1 remaining
units on test. Upon the second failure of some unit, R2 of the surviving units are randomly removed
and so on. After the rth failure, all remaining Rr units are removed from the experiment. Hence, r
failure times are observed,

∑r
i=1 Ri units are progressively censored and the number N of all units

equals r +
∑r

i=1 Ri. For a detailed account of the model of progressive type-II censoring, we refer to
Balakrishnan & Aggarwala (2000).
If the failure time of every unit is distributed according to the baseline distribution function F , the
above model of progressive type-II censoring is contained in the model of SOSs with conditional
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proportional hazard rates in the distribution theoretical sense. More precisely, the joint density of all
r progressively type-II censored order statistics can be obtained by setting on the right-hand side of
(3.0.2) n = r and

αj =
N − j + 1−

∑j−1
i=1 Ri

r − j + 1
= 1 +

∑r
i=j Ri

r − j + 1

for 1 ≤ j ≤ r (cf., e.g., Balakrishnan & Aggarwala (2000), p. 8). Hence, the derived UMPU tests on
the model parameters α1, . . . , αr can be rewritten and interpreted in the sense of progressive type-II
censoring in the following way. We consider a progressively type-II censored lifetime experiment,
where N = r +

∑r
i=1 Ri units have been placed on a lifetime test and r failure times have been

observed. However, suppose that the R’s and, thus, the number N of all involved units are not
available. Moreover, we assume to have s iid observations of that lifetime experiment. For fixed
1 ≤ j ≤ r and m ∈ N0, we consider as an example the two-sided test problem

H0 :
r∑

i=j

Ri = m ↔ H1 :
r∑

i=j

Ri 6= m, (3.3.8)

concerning the question, whether, from the j th failure of some unit to the end of the experiment,
exactly m units have been progressively censored. Obviously, (3.3.8) can be rewritten as

H0 : αj = 1 +
m

r − j + 1
↔ H1 : αj 6= 1 +

m

r − j + 1
. (3.3.9)

In particular, if j = 1, the null hyothesis of (3.3.8) corresponds to the case that the number of all
censored units equals m and, if additionally m = 0 is assumed, test problem (3.3.8) is related to
the question, whether the lifetime test has been censored at all. In the latter case, the respective test
problem (3.3.9) simplifies to H0 : α1 = 1 against H1 : α1 6= 1, and Tables 7.1-7.3 of Chapter 7 show
again critical values for some levels and sample sizes.

3.3.3 Model Tests with Simple Null Hypothesis
In what follows, we are concerned with the question whether for a given system the model of common
OSs based on F is in fact appropriate to describe the lifetime of the system and its components, or
if the model of SOSs might be the more adequate one. The model of common OSs based on F
is included within the model of SOSs with conditional proportional hazard rates in the distribution
theoretical sense by setting α1 = · · · = αr = 1. Hence, we consider the test problem

H0 : α1 = · · · = αr = 1 ↔ H1 : ∃j ∈ {1, . . . , r} : αj 6= 1. (3.3.10)

Concerning these hypotheses, two clarifying remarks should be made.
Firstly, it should be noted that H0 corresponds to the assumption of common OSs based on the
underlying distribution function F . If, based on some experiment, H0 is rejected, the model of
common OSs may not be dropped at all. Suppose that all α’s equal the same positive number α̃.
Then, the considered model coincides with the model of common OSs based on the distribution
function F̃ = 1− (1− F )α̃.
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Secondly, one might argue that the alternative should only consist of parameter vectors with positive
components arranged in ascending order of magnitude, i.e. α1 ≤ · · · ≤ αr, with at least one strict
inequality, which seems to be the more natural alternative by modeling sequential systems and
increasing load on remaining components. Nevertheless, we shall first of all consider the more
general test problem (3.3.10) which can also be used in situations where apriori assumptions on the
model parameters cannot be made.

In order to derive the test statistic of the LR test, we continue by computing the Kullback-Leibler dis-
tance of two vectors α = (α1, . . . , αr)

′, α̃ = (α̃1, ..., α̃r)
′ ∈ Rr

+ of model parameters (cf. Subsection
2.3.2). We obtain, by application of La. 2.1.30 with κ and π as in (3.1.6) and (3.1.7),

dKL(α, α̃) = κ(α̃)− κ(α) + (α− α̃)′π(α)

= −
r∑

j=1

ln(α̃j) +
r∑

j=1

ln(αj)−
r∑

j=1

(αj − α̃j)α
−1
j

=
r∑

j=1

[
α̃j

αj

− ln

(
α̃j

αj

)
− 1

]
.

In particular, by setting α̃ = 1 = (1, . . . , 1)′,

dKL(α,1) =
r∑

j=1

[
1

αj

− ln

(
1

αj

)
− 1

]
.

Regarding La. 2.3.8, plugging in the MLE α∗(s) of α based on s independent observations yields

T
(s)
LR(X̃

(s)
) = dKL(α∗(s),1)

=
r∑

j=1

[
1

α
∗(s)
j

− ln

(
1

α
∗(s)
j

)
− 1

]

=
r∑

j=1

[
−1

s
T

(s)
j (X̃

(s)
)− ln

(
−1

s
T

(s)
j (X̃

(s)
)

)
− 1

]

=
r∑

j=1

[Yj − ln(Yj)− 1],

where Yj = −s−1T
(s)
j (X̃

(s)
), 1 ≤ j ≤ r, are jointly independent random variables with Yj ∼

Γ(s, (sαj)
−1), 1 ≤ j ≤ r.

Hence, by noticing that the test statistic is continuously distributed, the level-α LR test corresponding
to test problem (3.3.10) based on s independent observations x(1), . . . ,x(s) is given by

ϕ
(s)
LR(x̃(s)) = 11(ds(α),∞)

(
r∑

j=1

[
−1

s
T

(s)
j (x̃(s))− ln

(
−1

s
T

(s)
j (x̃(s))

)
− 1

])
, x̃(s) ∈ (Rr

<)1×s,

(3.3.11)
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and the critical value ds(α) is derived from the equation

P

(
r∑

j=1

[Zj − ln(Zj)− 1] ≤ ds(α)

)
= 1− α (3.3.12)

where Z1, . . . , Zr are iid random variables having distribution Γ(s, s−1).
By usage of (3.1.10) and (3.1.12), we calculate the test statistics of Wald’s test and Rao’s score test
(cf. Subsection 2.3.3, representations (2.3.12) and (2.3.14)) and obtain

T
(s)
W (X̃

(s)
) = s(α∗(s) − 1)′If (α

∗(s))(α∗(s) − 1)

= s

r∑
j=1

(
1

α
∗(s)
j

− 1

)2

= s
r∑

j=1

(
1

s
T

(s)
j (X̃

(s)
) + 1

)2

= s
r∑

j=1

(Yj − 1)2 ,

and

T
(s)
R (X̃

(s)
) = s−1U

(s)
1 (X̃

(s)
)′If (1)−1U

(s)
1 (X̃

(s)
)

= s−1

r∑
j=1

(
T

(s)
j (X̃

(s)
) + s

)2

= s
r∑

j=1

(
1

s
T

(s)
j (X̃

(s)
) + 1

)2

= s
r∑

j=1

(Yj − 1)2 ,

with the Y ’s as above. Here, Wald’s statistic and Rao’s score statistic coincide, and the respective
level-α test for test problem (3.3.10) based on s independent observations x(1), . . . ,x(s) is given by

ϕ
(s)
W,R(x̃(s)) = 11(rs(α),∞)

(
s

r∑
j=1

(
1

s
T

(s)
j (x̃(s)) + 1

)2
)

, x̃(s) ∈ (Rr
<)1×s, (3.3.13)

where the critical value rs(α) is obtained from the equation

P

(
s

r∑
j=1

(Zj − 1)2 ≤ rs(α)

)
= 1− α, (3.3.14)
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with the Z’s as defined above.
Wald’s modified test statistic turns out to be

T
(s)

W̃
(X̃

(s)
) = s(α∗(s) − 1)′If (1)(α∗(s) − 1)

= s
r∑

j=1

(
α
∗(s)
j − 1

)2

= s
r∑

j=1

 s

T
(s)
j (X̃

(s)
)

+ 1

2

= s
r∑

j=1

(
1

Yj

− 1

)2

,

with the Y ’s as above. Hence, Wald’s modified level-α test for test problem (3.3.10) based on s
independent observations x(1), . . . ,x(s) is given by

ϕ
(s)

W̃
(x̃(s)) = 11(w̃s(α),∞)

s
r∑

j=1

(
s

T
(s)
j (x̃(s))

+ 1

)2
 , x̃(s) ∈ (Rr

<)1×s, (3.3.15)

where the critical value w̃s(α) is determined by

P

(
s

r∑
j=1

(
1

Zj

− 1

)2

≤ w̃s(α)

)
= 1− α, (3.3.16)

with the Z’s as above.

Although all of the three test statistics have a simple representation and can easily be calculated for
some given vector of observations, an analytical determination of the critical values is in each case
difficult (e.g., for the distribution of the LR test statistic, see Stehlik (2003)). However, by means
of simulations, respective empirical quantiles can readily be obtained. Tables 7.4-7.12 of Chapter 7
show the critical values of the three tests above for different levels and sample sizes.

We go on by deriving asymptotic results related to the test statistics above. Firstly, from Thm.s
2.3.9 and 2.3.12, we obtain that 2sT

(s)
LR(X̃

(s)
) and T

(s)
W,R(X̃

(s)
) are asymptotically χ2(r)-distributed,

i.e. chi-square distributed with r degrees of freedom, if H0 is true. By noticing that T
(s)

W̃
(X̃

(s)
) =

[
√

s(α∗(s)−1)]′
√

s(α∗(s)−1) and
√

s(α∗(s)−1)
D−→ Nr(0, Ir) under H0, this statement is also estab-

lished for Wald’s modified test statistic by using the continuous mapping theorem (e.g., in Billingsley
(1999), Thm. 2.7, p. 21).
In the following, we focus on asymptotic efficiency properties, and, for this, we consider the ex-
ponential family PT of continuous distributions on (Rr

−, Rr
− ∩ Br) with densities given by (3.1.4)

and the corresponding independent observations ti;− = (ti;1, . . . , ti;r)
′, i = 1, . . . , s, obtained by the
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transformation ti;j = Tj(x
(i)), 1 ≤ i ≤ s, 1 ≤ j ≤ r. Moreover, let t̃

(s)
= (t1;−, . . . , ts;−), and

t(s) = (t
(s)
1 , . . . , t

(s)
r )′ with t

(s)
j =

∑s
i=1 ti;j , 1 ≤ j ≤ r.

In general, the sequence of LR tests fulfils the conditions (i)− (iv) of Thm. 2.3.17. However, since a
proof of this assertion is not completely given in Subsection 2.3.6, we briefly show that these condi-
tions hold in the considered case. Here, from representation (3.3.11), the statistic W on (Rr

−, Rr
−∩Br)

is given by

W (t) =
r∑

j=1

[−tj − ln(−tj)− 1] , t = (t1, . . . , tr)
′ ∈ Rr

−.

For every s ∈ N and ds ∈ R, {t ∈ Rr
− : W (t) ≤ ds} is a convex set in Rr

−, since HW (t) =
diag(t−2

1 , . . . , t−2
r ) > 0 and, hence, W is a convex function on Rr

−. Using this fact in combination
with ∇jW (t) = −1 − t−1

j , 1 ≤ j ≤ r, we obtain that W is minimal at π(1) = −1. Hence, (i), (ii)
and (iv) are clear. It is left to show that W strictly increases on rays from −1, as we will demonstrate
in the following.
Let t ∈ Rr

−, tρ = −1 + ρ(t + 1) ∈ Rr
− for ρ ∈ (0, 1), and define the mapping gt(ρ) = W (tρ),

ρ ∈ (0, 1). Then,

gt(ρ) =
r∑

j=1

[−ρ(tj + 1)− ln(1− ρ(tj + 1))], ρ ∈ (0, 1),

and

g′t(ρ) =
r∑

j=1

[
−(tj + 1) +

tj + 1

1− ρ(tj + 1)

]
=

r∑
j=1

ρ(tj + 1)2

−(tρ)j

> 0, ρ ∈ (0, 1).

Application of Thm. 2.3.17 yields that the sequence {ϕ(s)
LR}s∈N is asymptotically optimal in the sense

of Bahadur with exact slope

cϕLR
(α) = 2dKL(α,1) = 2

r∑
j=1

[
α−1

j − ln(α−1
j )− 1

]
, α ∈ Θ1. (3.3.17)

Moreover, it follows from Thm. 2.3.19, (i), since Θ = Rr
+, Uε(Θ0) a compact (proper) subset of Rr

+

for every ε > 0 and, thus, ι(Θ0) = ∞, that, at every α ∈ Θ1, the sequence {ϕ(s)
LR}s∈N of LR tests is

deficient in the sense of Bahadur of order O(ln(N+(α, β, α))) as α ↘ 0. Finally, from Thm. 2.3.21,
the sequence is also strongly i-efficient.

Wald’s test/Rao’s score test satisfies the conditions of Thm. 2.3.17, too, as we will show. From
(3.3.13), using the denotations introduced above, the respective statistic W̃ on (Rr

−, Rr
− ∩ Br) is

W̃ (t) =
r∑

j=1

(tj + 1)2, t = (t1, . . . , tr)
′ ∈ Rr

−.

Here, HW̃ (t) = 2Ir > 0 and ∇W̃ (t) = 2(t + 1), and, hence, (i), (ii) and (iv) are shown. For
t ∈ Rr

− and ρ ∈ (0, 1), let tρ be defined as above. Then, W̃ (tρ) = ρ2(t + 1)′(t + 1) strictly increases
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in ρ ∈ (0, 1). Hence, application of Thm. 2.3.17 yields that the exact Bahadur slope of Wald’s
test/Rao’s score test at α ∈ Θ1 is given by

cϕW,R
(α) = inf

{
cϕLR

(α̃) :
r∑

j=1

(α̃−1
j − 1)2 =

r∑
j=1

(α−1
j − 1)2, α̃ ∈ Θ1

}
.

It is not difficult to see that, for r > 1, cϕLR
(α) > cϕW,R

(α) for every α ∈ Θ1. Let α ∈ Θ1 be
arbitrary, and M2 =

∑r
j=1(α

−1
j −1)2 > 0. For φ ∈ (0, π/2), let α̃φ = ((M cos(φ)+1)−1, (M sin(φ)+

1)−1, 1, . . . , 1)′ ∈ Θ1. Then,
∑r

j=1((α̃
φ
j )−1− 1)2 = M2 for all φ ∈ (0, π/2). Moreover, we define the

mapping vα̃(φ) = cϕLR
(α̃φ)/2, φ ∈ (0, π/2). Then,

vα̃(φ) =
r∑

j=1

((α̃φ
j )−1 − ln((α̃φ

j )−1)− 1)

= M cos(φ)− ln(M cos(φ) + 1) + M sin(φ)− ln(M sin(φ) + 1),

and the derivative of vα̃ is given by

v′α̃(φ) = −M sin(φ) +
M sin(φ)

M cos(φ) + 1
+ M cos(φ)− M cos(φ)

M sin(φ) + 1

= M2 sin(φ) cos(φ)

(
1

M sin(φ) + 1
− 1

M cos(φ) + 1

)
.

Hence, since v′α̃(φ) = 0 if and only if φ = π/4, we conclude that vα̃ is not constant on (0, π/2) and,
thus, cϕW,R

(α) < cϕLR
(α), α ∈ Θ1.

We summarize our findings in the following theorem.

Theorem 3.3.11
For test problem (3.3.10) with a simple null hypothesis, the following assertions hold true:

(i) Wald’s test and Rao’s score test based on s independent observations x(1), . . . ,x(s) coincide
and are given in virtue of (3.3.13) and (3.3.14).

(ii) Wald’s modified test based on s independent observations x(1), . . . ,x(s) is represented by
(3.3.15) and (3.3.16).

(iii) The LR test based on s independent observations x(1), . . . ,x(s) is obtained from (3.3.11) and
(3.3.12).

(iv) If H0 is true, 2sT
(s)
LR(X̃

(s)
), T

(s)
W,R(X̃

(s)
) and T

(s)

W̃
(X̃

(s)
) are each asymptotically χ2(r)-

distributed. Moreover, the sequence {ϕ̃(s)
LR}s∈N of tests defined by ϕ̃

(s)
LR(x̃(s)) =

11(χ2
1−α(r),∞)(2sT

(s)
LR(x̃(s))), s ∈ N, has asymptotic level α and is consistent.

(v) The sequence of LR tests is asymptotically optimal and deficient in the sense of Bahadur of
order O(ln(N+(α, β, α))) as α ↘ 0 at every α ∈ Θ1. Its exact slope is given by (3.3.17) and
satisfies cϕLR

(α) > cϕW,R
(α), α ∈ Θ1, in case of r > 1. Moreover, the sequence of LR tests is

strongly i-efficient.
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3.3.4 Model Tests with Composite Null Hypothesis

In Subsection 3.3.3, we have discussed the question whether a given system is of the common type,
and the observed data can be considered as realizations of common OSs based on the underlying
distribution function F . Now, suppose a system which is described by the model of SOSs with
conditional proportional hazard rates based on F , where all of the model parameters equal α̃ 6= 1.
Then, the system can be considered as a common system and be modelled by common OSs based on
the distribution function F̃ = 1 − (1 − F )α̃. Hence, if, based on some experiment, one of the tests
of Subsection 3.3.3 rejects the null hypothesis, this does not give evidence for a sequential system
with some change in load, but it ensures (with respect to the level) that common OSs based on F are
inappropriate to model the lifetime of the system and its components.
In this section, we replace the simple null hypothesis (3.3.10) by Θ0 = Θ= = {α ∈ Rr

+ : α1 = · · · =
αr} and discuss the test problem

H0 : α ∈ Θ= ↔ H1 : α ∈ Θ1 = Rr
+ \Θ=. (3.3.18)

We illustrate the usage of test problem (3.3.18) by means of an example. Suppose we have data from
some possibly sequential (n − r + 1)-out-of-n system, where, based on some prior experiment, Fj

is assumed to be the distribution function of the exponential distribution Exp(α−1
j ) with unknown

scale parameter α−1
j > 0, 1 ≤ j ≤ r. Defining the baseline distribution as the standard exponential

distribution, we obtain Fj = 1 − (1 − F )αj , 1 ≤ j ≤ r. Then, if the null hypothesis is rejected
based on some experiment and test statistic, this gives evidence against the assumption that the
observed data can be described by common OSs based on any exponential distribution Exp(λ),
λ > 0. In that case, a rejection of the null hypothesis can be interpreted as a change of load on
remaining components, and, thus, the model of SOSs is supposed to better fit the data than the model
of common OSs.

As in Subsection 3.3.3, we determine respective test statistics for test problem (3.3.18). At first,
from La. 2.3.8, the LR test statistic based on X̃

(s)
= (X(1), . . . ,X(s)) is given by T

(s)
LR(X̃

(s)
) =

dKL(α∗(s), Θ0) = infα(0)∈Θ0
dKL(α∗(s), α(0)). For δ > 0, let δ = (δ, . . . , δ)′ ∈ Rr

+ and define

g(δ) = dKL(α∗(s), δ)

=
r∑

j=1

[
δ

α
∗(s)
j

− ln

(
δ

α
∗(s)
j

)
− 1

]
.

Then, the derivative of g is given by

g′(δ) =
r∑

j=1

[
1

α
∗(s)
j

− 1

δ

]

= r

[(
1

r

r∑
j=1

1

α
∗(s)
j

)
− 1

δ

]
.
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Hence, setting α∗(s)= =

(
1
r

∑r
j=1

1

α
∗(s)
j

)−1

, g is strictly decreasing (increasing) on (0, α∗(s)= )

((α∗(s)= ,∞)) and, thus, has a global minimal value at α∗(s)= . We obtain

dKL(α∗(s), Θ0) = dKL(α∗(s), α∗(s)
= )

=
r∑

j=1

[
α∗(s)=

α
∗(s)
j

− ln

(
α∗(s)=

α
∗(s)
j

)
− 1

]

= −
r∑

j=1

ln

(
α∗(s)=

α
∗(s)
j

)

= −
r∑

j=1

ln

 T
(s)
j (X̃

(s)
)

r−1
∑r

k=1 T
(s)
k (X̃

(s)
)


= −

r∑
j=1

ln

(
Ỹj

r−1
∑r

k=1 Ỹk

)
,

where Ỹ1, . . . , Ỹr are jointly independent random variables with Ỹj = −T
(s)
j (X̃

(s)
) ∼ Γ(s, α−1

j ). If

H0 is true, Ỹ1, . . . , Ỹr
iid∼ Γ(s, α−1

= ) for some (unknown) α= > 0. Then, Bj =
ỸjPr

k=1 Ỹk
has a beta

distribution Beta(s, (r− 1)s) with shape parameters s and (r− 1)s, and, in particular, its distribution
does not depend on the value of α=. Hence, the level-α LR test for test problem (3.3.18) based on s
independent observations x(1), . . . ,x(s) is represented by

ϕ
(s)
LR(x̃(s)) = 11(ds(α),∞)

(
−

r∑
j=1

ln

(
T

(s)
j (x̃(s))

r−1
∑r

k=1 T
(s)
k (x̃(s))

))
, x̃(s) ∈ (Rr

<)1×s, (3.3.19)

where ds(α) is obtained from the equation

P

(
−

r∑
j=1

ln

(
Z̃j

r−1
∑r

k=1 Z̃k

)
≤ ds(α)

)
= 1− α, (3.3.20)

where Z̃j
iid∼ Γ(s, 1).

We continue by deriving Rao’s score statistic for test problem (3.3.18) according to (2.3.17), and, for
this, we define the mapping h : Rr

+ → Rr−1 : α = (α1, . . . , αr)
′ 7→ (α2 − α1, . . . , αr − αr−1)

′.
Then, (3.3.18) is equivalent to test problem

H0 : h(α) = 0 ↔ H1 : h(α) 6= 0. (3.3.21)

From d
dδ

ln(f
(s)
δ ) =

∑r
j=1 T

(s)
j + srδ−1 = rs(δ−1 − r−1

∑r
j=1(−s−1Tj)), δ > 0, it is easily seen that

α∗(s)
= is the MLE of α in Θ=, i.e. under the restriction that h(α) = 0 and, thus, all α’s are equal.
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Hence, by notice of (3.1.10) and (3.1.12), Rao’s score statistic based on X̃
(s)

= (X(1), . . . ,X(s)) is
as follows:

T
(s)
R (X̃

(s)
) = s−1(U

(s)

α
∗(s)
=

(X̃
(s)

))′If (α
∗(s)
= )−1U

(s)

α
∗(s)
=

(X̃
(s)

)

= s−1(α∗(s)= )2

r∑
j=1

(
T

(s)
j (X̃

(s)
) +

s

α
∗(s)
=

)2

= s(α∗(s)= )2

r∑
j=1

(
1

s
T

(s)
j (X̃

(s)
) +

1

α
∗(s)
=

)2

= s

r∑
j=1

(
α∗(s)=

α
∗(s)
j

− 1

)2

= s
r∑

j=1

 T
(s)
j (X̃

(s)
)

r−1
∑r

k=1 T
(s)
k (X̃

(s)
)
− 1

2

= s
r∑

j=1

(
Ỹj

r−1
∑r

k=1 Ỹk

− 1

)2

,

with Ỹ1, . . . , Ỹr as above. Thus, based on s independent observations x(1), . . . ,x(s), Rao’s score test
with level α is given by

ϕ
(s)
R (x̃(s)) = 11(rs(α),∞)

s
r∑

j=1

(
T

(s)
j (x̃(s))

r−1
∑r

k=1 T
(s)
k (x̃(s))

− 1

)2
 , x̃(s) ∈ (Rr

<)1×s, (3.3.22)

where the critical value rs(α) is such that

P

s
r∑

j=1

(
Z̃j

r−1
∑r

k=1 Z̃k

− 1

)2

≤ rs(α)

 = 1− α (3.3.23)

with the Z̃’s as above.

Finally, we derive Wald’s test statistic for test problem (3.3.18), respectively (3.3.21), according
to (2.3.15) and (2.3.16). The Jacobian matrix of h at α ∈ Rr

+ is given by Dh(α) = Q =
[Qi,j]1≤i≤r−1,1≤,j≤r with entries Qi,i = −1 and Qi,i+1 = 1 for i = 1, . . . , r − 1, and zero other-
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wise. Hence,

Ĩ(α) = Q diag(α2
1, . . . , α

2
r) Q′

=


−1 1 0 · · · 0

0 −1 1
. . . ...

... . . . . . . . . . 0
0 · · · 0 −1 1

diag(α2
1, . . . , α

2
r)


−1 1 0 · · · 0

0 −1 1
. . . ...

... . . . . . . . . . 0
0 · · · 0 −1 1


′

=


−α2

1 α2
2 0 · · · 0

0 −α2
2 α2

3
. . . . . .

... . . . . . . . . . 0
0 · · · 0 −α2

r−1 α2
r



−1 1 0 · · · 0

0 −1 1
. . . ...

... . . . . . . . . . 0
0 · · · 0 −1 1


′

=



α2
1 + α2

2 −α2
2 0 · · · · · · 0

−α2
2 α2

2 + α2
3 −α2

3
. . . ...

0 −α2
3 α2

3 + α2
4 −α2

4
. . . ...

... . . . . . . . . . . . . 0

... . . . . . . . . . −α2
r−1

0 · · · · · · 0 −α2
r−1 α2

r−1 + α2
r


.

Corollary 3.3.12
For every α ∈ Rr

+, Ĩ(α) is invertible with inverse matrix Ĩ−1(α) = B = [Bi,j]1≤i,j≤r−1, where

Bi,j =
B̃i,j∑r

k=1

∏r
q=1

q 6=k
α2

q

, 1 ≤ i, j ≤ r − 1,

with

B̃i,j =

 i∑
t=1

i∏
p=1

p6=t

α2
p

( j∏
m=i+1

α2
m

) r∑
s=j+1

r∏
l=j+1

l 6=s

α2
l


for i ≤ j and B̃i,j = B̃j,i for i > j. Moreover, with h as defined above,

h(α)′Ĩ(α)−1h(α) = r −

(∑r
j=1 α−1

j

)2

∑r
j=1 α−2

j

. (3.3.24)
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Proof. Let α ∈ Rr
+ be fixed. We show that Ĩ(α) B = Ir−1. Then, since Ĩ(α) and B are symmetric,

it follows that B Ĩ(α) = (Ĩ(α) B)′ = Ir−1.

The case i = j = 1:

(α2
1 + α2

2)B̃1,1 − α2
2B̃2,1 = (α2

1 + α2
2)B̃1,1 − α2

2B̃1,2

= (α2
1 + α2

2)

 r∑
s=2

r∏
l=2
l 6=s

α2
l

− α2
2α

2
2

 r∑
s=3

r∏
l=3
l 6=s

α2
l



= α2
1

 r∑
s=2

r∏
l=2
l 6=s

α2
l

+ α2
2

 r∏
l=2
l 6=2

α2
l

 =

 r∑
s=2

r∏
l=1
l 6=s

α2
l

+

(
r∏

l=2

α2
l

)

=
r∑

s=1

r∏
l=1
l 6=s

α2
l .

The case i = 1, j ∈ {2, . . . , r − 1}:

(α2
1 + α2

2)B̃1,j − α2
2B̃2,j =

[
(α2

1 + α2
2)

(
j∏

m=2

α2
m

)
− α2

2

(
α2

1 + α2
2

)( j∏
m=3

α2
m

)] r∑
s=j+1

r∏
l=j+1

l 6=s

α2
l


= 0.

The case i = j = r − 1:

−α2
r−1B̃r−2,r−1 + (α2

r−1 + α2
r)B̃r−1,r−1 = −α2

r−1

 r−2∑
t=1

r−2∏
p=1

p6=t

α2
p

α2
r−1 + (α2

r−1 + α2
r)

 r−1∑
t=1

r−1∏
p=1

p6=t

α2
p



= α2
r

 r−1∑
t=1

r−1∏
p=1

p6=t

α2
p

+ α2
r−1

 r−1∏
p=1

p6=r−1

α2
p



=

 r−1∑
t=1

r∏
p=1

p6=t

α2
p

+

(
r−1∏
p=1

α2
p

)

=
r∑

t=1

r∏
p=1

p6=t

α2
p.
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The case i = r − 1, j ∈ {1, . . . , r − 2}:

−α2
r−1B̃r−2,j + (α2

r−1 + α2
r)B̃r−1,j

= −α2
r−1B̃j,r−2 + (α2

r−1 + α2
r)B̃j,r−1

=

 j∑
t=1

j∏
p=1

p6=t

α2
p

[−α2
r−1

(
r−2∏

m=j+1

α2
m

)(
α2

r−1 + α2
r

)
+ (α2

r−1 + α2
r)

(
r−1∏

m=j+1

α2
m

)]

= 0.

The case 2 ≤ i = j ≤ r − 2:

−α2
j B̃j−1,j + (α2

j + α2
j+1)B̃j,j − α2

j+1B̃j+1,j

= −α2
j B̃j−1,j + (α2

j + α2
j+1)B̃j,j − α2

j+1B̃j,j+1

= −α2
j

 j−1∑
t=1

j−1∏
p=1

p6=t

α2
p

α2
j

 r∑
s=j+1

r∏
l=j+1

l 6=s

α2
l

+ (α2
j + α2

j+1)

 j∑
t=1

j∏
p=1

p6=t

α2
p


 r∑

s=j+1

r∏
l=j+1

l 6=s

α2
l



−α2
j+1

 j∑
t=1

j∏
p=1

p6=t

α2
p

α2
j+1

 r∑
s=j+2

r∏
l=j+2

l 6=s

α2
l



= α2
j

 j∏
p=1

p6=j

α2
p


 r∑

s=j+1

r∏
l=j+1

l 6=s

α2
l

+ α2
j+1

 j∑
t=1

j∏
p=1

p6=t

α2
p


 r∏

l=j+1

l 6=j+1

α2
l



=

 r∑
s=j+1

r∏
l=1
l 6=s

α2
l

+

 j∑
t=1

r∏
p=1

p6=t

α2
p



=

 r∑
s=1

r∏
l=1
l 6=s

α2
l

 .
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The case i ∈ {2, . . . , r − 2}, j ∈ {1, . . . , i− 1}:

−α2
i B̃i−1,j + (α2

i + α2
i+1)B̃i,j − α2

i+1B̃i+1,j

= −α2
i B̃j,i−1 + (α2

i + α2
i+1)B̃j,i − α2

i+1B̃j,i+1

=

(
i−1∏

m=j+1

α2
m

) j∑
t=1

j∏
p=1

p6=t

α2
p

[− α2
i

 r∑
s=i

r∏
l=i
l 6=s

α2
l



+(α2
i + α2

i+1)α
2
i

 r∑
s=i+1

r∏
l=i+1
l 6=s

α2
l

− α2
i+1α

2
i α

2
i+1

 r∑
s=i+2

r∏
l=i+2
l 6=s

α2
l

]

=

(
i−1∏

m=j+1

α2
m

) j∑
t=1

j∏
p=1

p6=t

α2
p

[− α2
i

 r∏
l=i
l 6=i

α2
l

+ α2
i+1

 r∏
l=i

l 6=i+1

α2
l

]

= 0.

The case i ∈ {2, . . . , r − 2}, j ∈ {i + 1, . . . , r − 1}:

−α2
i B̃i−1,j + (α2

i + α2
i+1)B̃i,j − α2

i+1B̃i+1,j

=

(
j∏

m=i+2

α2
m

) r∑
s=j+1

r∏
l=j+1

l 6=s

α2
l

[− α2
i

 i−1∑
t=1

i−1∏
p=1

p6=t

α2
p

α2
i α

2
i+1

+(α2
i + α2

i+1)

 i∑
t=1

i∏
p=1

p6=t

α2
p

α2
i+1 − α2

i+1

 i+1∑
t=1

i+1∏
p=1

p6=t

α2
p

]

=

(
j∏

m=i+2

α2
m

) r∑
s=j+1

r∏
l=j+1

l 6=s

α2
l

[α2
i α

2
i+1

 i∏
p=1

p6=i

α2
p

− α2
i+1

 i+1∏
p=1

p6=i+1

α2
p

]

= 0.

Hence, the first part of the corollary is shown. Now, let us show representation (3.3.24). Firstly, notice
that (∑r

j=1 α−1
j

)2

∑r
j=1 α−2

j

=

(∑r
j=1 α−1

j

)2

∑r
j=1 α−2

j

· (
∏r

k=1 αk)
2∏r

k=1 α2
k

=

(∑r
j=1

∏r
k=1
k 6=j

αk

)2

∑r
j=1

∏r
k=1
k 6=j

α2
k

.
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Hence, equation (3.3.24) is equivalent to

r−1∑
i=1

r−1∑
j=1

(αi+1 − αi)(αj+1 − αj)B̃i,j = r

r∑
j=1

r∏
k=1
k 6=j

α2
k −

 r∑
j=1

r∏
k=1
k 6=j

αk


2

. (3.3.25)

Regarding the definition of B̃i,j , 1 ≤ i, j ≤ r − 1, we divide both sides of (3.3.25) by
∏r

k=1 α2
k and

obtain the equivalent equation

r−1∑
i=1

(αi+1 − αi)
2

(
i∑

t=1

1

α2
t

)(
r∑

s=i+1

1

α2
s

)

+ 2
r−2∑
i=1

r−1∑
j=i+1

(αi+1 − αi)(αj+1 − αj)

(
i∑

t=1

1

α2
t

)(
r∑

s=j+1

1

α2
s

)

= r

(
r∑

i=1

1

α2
i

)
−

(
r∑

i=1

1

αi

)2

. (3.3.26)

Now,

2
r−2∑
i=1

r−1∑
j=i+1

(αi+1 − αi)(αj+1 − αj)

(
i∑

t=1

1

α2
t

)(
r∑

s=j+1

1

α2
s

)

= 2
r−2∑
i=1

(αi+1 − αi)

(
i∑

t=1

1

α2
t

)(
r−1∑

j=i+1

r∑
s=j+1

(αj+1 − αj)
1

α2
s

)

= 2
r−2∑
i=1

(αi+1 − αi)

(
i∑

t=1

1

α2
t

)(
r∑

s=i+2

1

α2
s

s−1∑
j=i+1

(αj+1 − αj)

)

= 2
r−1∑
i=1

(αi+1 − αi)

(
i∑

t=1

1

α2
t

)(
r∑

s=i+2

αs − αi+1

α2
s

)

= 2
r−1∑
i=1

(αi+1 − αi)

(
i∑

t=1

1

α2
t

)(
r∑

s=i+1

1

αs

− αi+1

r∑
s=i+1

1

α2
s

)

= 2
r−1∑
i=1

(αi+1 − αi)

(
i∑

t=1

1

α2
t

)(
r∑

s=i+1

1

αs

)

+
r−1∑
i=1

(2αiαi+1 − 2α2
i+1)

(
i∑

t=1

1

α2
t

)(
r∑

s=i+1

1

α2
s

)
.
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Thus, by inserting this representation in (3.3.26), what is left to show is

r−1∑
i=1

(α2
i − α2

i+1)

(
i∑

t=1

1

α2
t

)(
r∑

s=i+1

1

α2
s

)
+ 2

r−1∑
i=1

(αi+1 − αi)

(
i∑

t=1

1

α2
t

)(
r∑

s=i+1

1

αs

)

= r

(
r∑

i=1

1

α2
i

)
−

(
r∑

i=1

1

αi

)2

,

or, equivalently, by introducing the notation ci =
∑i

j=1
1

α2
j
, di =

∑r
j=i

1
α2

j
and d̃i =

∑r
j=i

1
αj

, 1 ≤ i ≤
r,

r−1∑
i=1

(α2
i − α2

i+1)cidi+1 + 2
r−1∑
i=1

(αi+1 − αi)cid̃i+1 = rcr − d̃2
1. (3.3.27)

Obviously,

r−1∑
i=1

(α2
i − α2

i+1)cidi+1 =
r−1∑
i=1

α2
i cidi+1 −

r∑
i=2

α2
i ci−1di

=
r−1∑
i=2

α2
i (cidi+1 − ci−1di) + α2

1c1d2 − α2
rcr−1dr

=
r−1∑
i=2

α2
i ((ci−1 + α−2

i )di+1 − ci−1(di+1 + α−2
i )) + d2 − cr−1

=
r−1∑
i=2

(di+1 − ci−1) + d2 − cr−1

=
r−1∑
i=1

di+1 −
r∑

i=2

ci−1

=
r−1∑
i=1

(di+1 − ci). (3.3.28)
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Similarly,

r−1∑
i=1

(αi+1 − αi)cid̃i+1 =
r∑

i=2

αici−1d̃i −
r−1∑
i=1

αicid̃i+1

=
r−1∑
i=2

αi(ci−1d̃i − cid̃i+1) + αrcr−1d̃r − α1c1d̃2

=
r−1∑
i=2

αi(ci−1(d̃i+1 + α−1
i )− (ci−1 + α−2

i )d̃i+1) + cr−1 − α−1
1 d̃2

=
r−1∑
i=2

(ci−1 − α−1
i d̃i+1) + cr−1 − α−1

1 d̃2

=
r∑

i=2

ci−1 −
r−1∑
i=1

α−1
i d̃i+1

=
r−1∑
i=1

(ci − α−1
i d̃i+1). (3.3.29)

Hence, from (3.3.28) and (3.3.29), we conclude that

r−1∑
i=1

(α2
i − α2

i+1)cidi+1 + 2
r−1∑
i=1

(αi+1 − αi)cid̃i+1

=
r−1∑
i=1

(di+1 − ci + 2(ci − α−1
i d̃i+1))

=
r−1∑
i=1

(di+1 + ci − 2α−1
i d̃i+1)

=
r−1∑
i=1

r∑
j=i+1

1

α2
j

+
r−1∑
i=1

i∑
j=1

1

α2
j

− 2
r−1∑
i=1

1

αi

r∑
j=i+1

1

αj

=
r∑

j=2

1

α2
j

j−1∑
i=1

1 +
r−1∑
j=1

1

α2
j

r−1∑
i=j

1− 2
r−1∑
i=1

r∑
j=i+1

1

αi

1

αj

=
r∑

j=2

1

α2
j

(j − 1) +
r−1∑
j=1

1

α2
j

(r − j)−
r−1∑
i=1

r∑
j=1

j 6=i

1

αi

1

αj
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=
r∑

j=1

1

α2
j

(r − 1)−
r−1∑
i=1

r∑
j=1

j 6=i

1

αi

1

αj

= r

r∑
j=1

1

α2
j

−
r∑

i=1

r∑
j=1

1

αi

1

αj

= r
r∑

j=1

1

α2
j

−

(
r∑

i=1

1

αi

)2

= rcr − d̃2
1,

and equation (3.3.27) and, thus, equation (3.3.24) are established. �

Application of Cor. 3.3.12 yields that Wald’s test statistic equals

T
(s)
W (X̃

(s)
) = sh(α∗(s))′Ĩ(α∗(s))−1h(α∗(s)) = s

r −

(∑r
j=1(α

∗(s)
j )−1

)2

∑r
j=1(α

∗(s)
j )−2


= s

r −

(∑r
j=1 T

(s)
j (X̃

(s)
)
)2

∑r
j=1(T

(s)
j (X̃

(s)
))2

 = s

r −

(∑r
j=1 Ỹj

)2

∑r
j=1 Ỹ 2

j


with the random variables Ỹj , 1 ≤ j ≤ r, as in the beginning of this subsection.
As it is the case for the LR test statistic and Rao’s test statistic, if H0 is true and, thus, α1 = · · · =

αr = α= for some (unknown) α= > 0, the distribution of T
(s)
W (X̃

(s)
) does not depend on the value of

α=. Hence, based on s independent observations x(1), . . . ,x(s), Wald’s test with level α is given by

ϕ
(s)
W (x̃(s)) = 11(ws(α),∞)

s

r −

(∑r
j=1 T

(s)
j (x̃(s))

)2

∑r
j=1(T

(s)
j (x̃(s)))2


 , x̃(s) ∈ (Rr

<)1×s, (3.3.30)

where the critical value ws(α) is derived from the equation

P

s

r −

(∑r
j=1 Z̃j

)2

∑r
j=1 Z̃2

j

 ≤ ws(α)

 = 1− α (3.3.31)

with the Z̃’s as they are introduced in the beginning of this subsection.

We summarize our findings in the following theorem, where the asymptotical results are obtained
from Thm.’s 2.3.11 and 2.3.13.
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Theorem 3.3.13
For test problem (3.3.18) with a composite null hypothesis, the following assertions hold true:

(i) Wald’s test based on s independent observations x(1), . . . ,x(s) is given in virtue of (3.3.30) and
(3.3.31).

(ii) Rao’s score test based on s independent observations x(1), . . . ,x(s) is represented by (3.3.22)
and (3.3.23).

(iii) The LR test based on s independent observations x(1), . . . ,x(s) is obtained from (3.3.19) and
(3.3.20).

(iv) If H0 is true, 2sT
(s)
LR(X̃

(s)
), T

(s)
R (X̃

(s)
) and T

(s)
W (X̃

(s)
) are each asymptotically χ2(r − 1)-

distributed.

For small sample sizes and different levels, critical values of the test statistics are contained in Tables
7.13-7.21.

3.3.5 Multivariate Tests with Nuisance Parameters

In this subsection, we briefly discuss the case, where only some of the α’s are of interest and
the remaining ones are considered as fixed (possibly unknown) nuisance parameters. Let I =
{j1, . . . , jq} ⊆ {1, . . . , r}, |I| = q, be an index set with interpretation as in Rem. 3.1.4. Then,
from Subsection 3.1.3, it is obvious that the results of Subsections 3.3.3 and 3.3.4 remain valid with
some minor changes.
We consider the test problems

H0 : αj1 = · · · = αjq = 1 ↔ H1 : ∃j0 ∈ I : αj0 6= 1, (3.3.32)

and
H0 : αj1 = · · · = αjq ↔ H1 : ∃k1, k2 ∈ I : αk1 6= αk2 . (3.3.33)

Lemma 3.3.14
With the above denotations, we obtain the following statements:

(i) For test problem (3.3.32), the assertions of Thm. 3.3.11 are true, where all appearing sums are
taken over the indices in I and the number r of degrees of freedom is replaced by q.

(ii) For test problem (3.3.33), the assertions of Thm. 3.3.13 are true, where all appearing sums are
taken over the indices in I and the number r − 1 of degrees of freedom is replaced by q − 1.

As a consequence of La. 3.3.14, for small sample sizes and different levels, critical values of the tests
can, once again, be obtained from Tables 7.4-7.21 of Chapter 7 replacing r by q = |I|.
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3.3.6 Testing under Simple Order Restriction
Using the theorem of Subsection 2.3.4, for the model of SOSs with conditional proportional hazard
rates, we derive the asymptotic distribution of the LR test statistic for two test problems concerning
the simple ordering of the model parameters α1, . . . , αr. For this, let

Θ= = {α = (α1, . . . , αr)
′ ∈ Rr

+ : α1 = · · · = αr}

and
Θ≤ = {α = (α1, . . . , αr)

′ ∈ Rr
+ : α1 ≤ · · · ≤ αr}.

Now, we are interested in testing

H0 : α ∈ Θ= ↔ H1 : α ∈ Θ≤ \Θ= (3.3.34)

and
H0 : α ∈ Θ≤ ↔ H1 : α ∈ Rr

+ \Θ≤. (3.3.35)

When the model of SOSs with conditional proportional hazard rates is used to describe sequential
systems, test problem (3.3.34) can be used in order to decide whether the system is of common or
sequential type, where the prior information of simply ordered model parameters is taken into account.

Theorem 3.3.15
For the above test problems, the following assertions hold true:

(i) In case of test problem (3.3.34),

lim
s→∞

Pα(2sT
(s)
LR(X̃

(s)
) ≥ c) =

r∑
j=1

|Sj
r |

r!
P (χ2(j − 1) ≥ c) (3.3.36)

for every α ∈ Θ= and c ∈ R.

(ii) In case of test problem (3.3.35),

lim
s→∞

Pα(2sT
(s)
LR(X̃

(s)
) ≥ c) ≤ lim

s→∞
Pη(2sT

(s)
LR(X̃

(s)
) ≥ c) =

r∑
j=1

|Sj
r |

r!
P (χ2(r − j) ≥ c)

for every α ∈ Θ≤, η ∈ Θ= and c ∈ R.

At this, Sj
r are the Stirling numbers of the first kind and χ2(0) = 0.

Proof. (i). Using the same denotations as in the proof of Thm. 3.2.8, we consider the independent
random variables Tj(X

(i)), 1 ≤ i ≤ s, 1 ≤ j ≤ r. Again, we reparametrize the model parameters
via α̃j = α−1

r−j+1, 1 ≤ j ≤ r, and, moreover, define the probability measures P̃α̃ = Pα, α̃ =

(α̃1, . . . , α̃r)
′ ∈ Rr

+. Then, for fixed 1 ≤ j ≤ r, Tj(X
(1)), . . . , Tj(X

(s)) are s iid random variables
having λ1-density f̃α̃r−j+1

. Obviously, (3.3.34) is equivalent to testing H0 : α̃ ∈ Θ= against H1 : α̃ ∈
Θ≤ \ Θ=. Moreover, setting T̃

(rs)
(X̃

(s)
) = (T1(X

(1)), . . . , T1(X
(s)), . . . , Tr(X

(1)), . . . , Tr(X
(s)))
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and denoting the LR test statistic based on T̃
(rs)

(X̃
(s)

) by T̃
(rs)
LR (T̃

(rs)
(X̃

(s)
)), it is easily seen that,

for η ∈ Θ= and c ∈ R,

Pη(2sT
(s)
LR(X̃

(s)
) ≥ c) = Pη

−2 ln

supα∈Θ=
f

(s)
α (X̃

(s)
)

supα∈Θ≤
f

(s)
α (X̃

(s)
)

 ≥ c


= P̃η̃

−2 ln

supα̃∈Θ=
f̃

(rs)
α̃ (T̃

(rs)
(X̃

(s)
))

supα̃∈Θ≤
f̃

(rs)
α̃ (T̃

(rs)
(X̃

(s)
))

 ≥ c


= P̃η̃(2rsT̃

(rs)
LR (T̃

(rs)
(X̃

(s)
)) ≥ c). (3.3.37)

Since η̃ ∈ Θ=, it follows from Thm. 2.3.14 with n
(rs)
1 = · · · = n

(rs)
r = s, s ∈ N, and a1 = · · · =

ar = r−1 ∈ (0, 1), that the probability in (3.3.37) converges to the right-hand side of (3.3.36) as s
tends to infinity.
(ii). Replacing in the proof of (i) Θ= by Θ≤ and Θ≤ by Rr

+, the assertion follows similarly. �



Chapter 4

Generalizations and Extensions

In Chapter 3, we have shown that the joint density of the first r SOSs with conditional proportional
hazard rates forms a multivariate exponential family in the model parameters. Using the fact that this
structure was preserved by considering product probability measures and densities, inferential issues
have been discussed, and optimal estimators and tests have been established based on a sample of s
iid vectors of SOSs with conditional proportional hazard rates, where the underlying distribution was
assumed to be known.
With some minor changes only, most of the results remain true if we consider the less restrictive
case of inid vectors of SOSs. The respective statements are then applicable, e.g., when independent
observations are made from differently structured sequential systems, assuming that the systems have
some of the model parameters in common. This case is discussed in Section 4.1.
In Section 4.2, SOSs with conditional proportional hazard rates are considered based on a parametric
distribution function, which is not completely known.

4.1 INID Vectors of SOSs

4.1.1 Basic Properties

In what follows, we extend fundamental findings of Section 3.1 to the more general case of inid
vectors of SOSs.
We assume to have s independent vectors of SOSs X(1;1), . . . ,X(m1;1), . . . ,X(1;p), . . . ,X(mp;p) with
conditional proportional hazard rates based on a known absolutely continuous baseline distribution
function F with corresponding density function f , where, for fixed i ∈ {1, . . . , p}, X(1;i), . . . ,X(mi;i)

are identically distributed having λri|Rri
<

-density

fX(1;i)

α(i) (x) =

(
ri∏

j=1

αj

)
exp

{
ri∑

j=1

αjTj;i(x)

}(
ni!

(ni − ri)!

ri∏
j=1

f(xj)

1− F (xj)

)
,
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x = (x1, . . . , xri
)′ ∈ Rri

< , with vector α(i) = (α1, . . . , αri
)′ of model parameters and statistics defined

as

T1;i(x) = ni ln(1− F (x1)),

Tj;i(x) = (ni − j + 1) ln

(
1− F (xj)

1− F (xj−1)

)
, 2 ≤ j ≤ ri,

for x = (x1, . . . , xri
)′ ∈ Rri

< . At this, r1, . . . , rp, n1, . . . , np ∈ N are integers satisfying r1 ≥ · · · ≥ rp

and ri ≤ ni, 1 ≤ i ≤ p.
Interpreting the above sample situation in terms of sequential systems, we consider independent
observations from p possibly differently structured systems, where, for 1 ≤ i ≤ p, the ith system
is assumed to be a sequential (ni − ri + 1)-out-of-ni-system with conditional proportional hazard
rates α1f/(1 − F ), . . . , αri

f/(1 − F ). Collectively, s =
∑p

i=1 mi independent observations are
assumed from the systems, where mi observations are made of the failure time of the ith system and
its components, 1 ≤ i ≤ p. By assumption, the systems have one or more of the model parameters
α1, . . . , αr1 in common.

We define the integers wj = |{i ∈ {1, . . . , p} : ri ≥ j}| = max{i ∈ {1, . . . , p} : ri ≥ j}
and cj =

∑wj

i=1 mi for j ∈ {1, . . . , r1}. In the context of sequential systems, wj is the number
of systems, where αj is involved, and cj is the total number of the corresponding observations,
1 ≤ j ≤ r1. For every i ∈ {1, . . . , p}, the family {PX(1;i)

α(i) = fX(1;i)

α(i) λri|Rri
<

: α(i) ∈ Rri
+}

forms a ri-parametrical exponential family in α1, . . . , αri
and statistics T1;i, . . . , Tri;i and, thus, by

setting X̃
(s)

= (X(1;1), . . . ,X(m1;1), . . . ,X(1;p), . . . ,X(mp;p)), r = r1 and α = α(1), we obtain
from La. 2.1.25 that the family of joint distributions PX̃

(s)

mix = {P X̃
(s)

α = f
(s)
α ⊗p

i=1 ⊗
mi
l=1λ

ri|Rri
<
} of

X(1;1), . . . ,X(m1;1), . . . ,X(1;p), . . . ,X(mp;p) forms a r-parametrical exponential family in α1, . . . , αr

and statistics T
(s)
1 , . . . , T

(s)
r with

f (s)
α (x̃(s)) =

p∏
i=1

mi∏
l=1

fX(1;i)

α(i) (x(l;i))

= C(α) exp

{
r∑

j=1

αjT
(s)
j (x̃(s))

}
h(x̃(s)), (4.1.1)

x̃(s) = (x(1;1), . . . ,x(m1;1), . . . ,x(1;p), . . . ,x(mp;p)) ∈ ×p
i=1 ×

mi
l=1 Rri

< , x(l;i) = (x
(l;i)
1 , ..., x

(l;i)
ri ) ∈ Rri

< ,
1 ≤ i ≤ p, 1 ≤ l ≤ mi, where

C(α) =
r∏

j=1

α
cj

j , α = (α1, ..., αr)
′ ∈ Rr

+,
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and

h(x̃(s)) =

p∏
i=1

mi∏
l=1

ni!

(ni − ri)!

ri∏
j=1

f(x
(l;i)
j )

1− F (x
(l;i)
j )

,

T
(s)
1 (x̃(s)) =

w1∑
i=1

mi∑
l=1

ni ln(1− F (x
(l;i)
1 )),

T
(s)
j (x̃(s)) =

wj∑
i=1

mi∑
l=1

(ni − j + 1) ln

(
1− F (x

(l;i)
j )

1− F (x
(l;i)
j−1)

)
, 2 ≤ j ≤ r,

x̃(s) = (x(1;1), . . . ,x(m1;1), . . . ,x(1;p), . . . ,x(mp;p)) ∈ ×p
i=1 ×

mi
l=1 Rri

< , x(l;i) = (x
(l;i)
1 , ..., x

(l;i)
ri ) ∈ Rri

< ,
1 ≤ i ≤ p, 1 ≤ l ≤ mi.
The natural parameter space of PX̃

(s)

mix is given by Rr
+, and the densities are given in the canonical

form.
As in the iid case, we obtain the distribution of −T

(s)
j , 1 ≤ j ≤ r, by deriving the moment generating

function of −T (s) = (−T
(s)
1 , . . . ,−T

(s)
r )′ according to La. 2.1.18, i.e., for fixed α ∈ Rr

+,

m−T (s)(t) = mT (s)(−t) =
C(α)

C(α− t)
=

r∏
j=1

(
αj

αj − tj

)cj

,

for t = (t1, . . . , tr)
′ ∈ (−δ, δ)r, where δ = min{α1, . . . , αr}/2. Hence, −T

(s)
j (X̃

(s)
) ∼

Γ(cj, α
−1
j ) has a gamma distribution with shape parameter cj and scale parameter α−1

j ,

1 ≤ j ≤ r, and T
(s)
1 (X̃

(s)
), . . . , T

(s)
r (X̃

(s)
) are jointly independent, where X̃

(s)
=

(X(1;1), . . . ,X(m1;1), . . . ,X(1;p), . . . ,X(mp;p)). We use this finding to prove the following lemma
related to the class PX̃

(s)

mix of distributions.

Lemma 4.1.1
In the above situation, the following assertions hold true:

(i) PX̃
(s)

mix is strictly r-parametrical.

(ii) T (s) = (T
(s)
1 , . . . , T

(s)
r )′ is minimal sufficient and complete for PX̃

(s)

mix .

(iii) The Fisher information matrix of PX̃
(s)

mix is given by

I
(s)
f (α) = diag

(
c1

α2
1

, ...,
cr

α2
r

)
, α = (α1, . . . , αr)

′ ∈ Rr
+. (4.1.2)

Proof. (i). The result is obvious from Thm. 2.1.9, since

Covα(T (s)) = diag

(
c1

α2
1

, . . . ,
cr

α2
r

)
> 0, α = (α1, . . . , αr)

′ ∈ Rr
+.

(ii). The statement follows from (i) and application of La. 2.1.20.
(iii). From Thm. 2.1.22, we conclude that I

(s)
f (α) = Covα(T (s)), α ∈ Rr

+, and, thus, all assertions
are shown. �
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4.1.2 Estimation
We consider the sample situation of Subsection 4.1.1 and assume that the model parameters α1, . . . , αr

are unknown. Then, the MLEs and UMVUEs of the model parameters can similarly be obtained as
in the iid case.
Firstly, we define the mapping

κ : Rr
+ → R : (α1, . . . , αr)

′ 7→ −
r∑

j=1

cj ln(αj), (4.1.3)

and rewrite the density (4.1.1) in the form

f (s)
α (x̃(s)) = exp

{
r∑

j=1

αjT
(s)
j (x̃(s))− κ(α)

}
h(x̃(s)), x̃(s) ∈ ×p

i=1 ×
mi
l=1 Rri

<. (4.1.4)

By application of Thm. 2.1.15 (i), the Hessian matrix of κ is given by Hκ(α) = Covα(T (s)) > 0
and, moreover, the mapping π : Rr

+ → π(Rr
+) : α 7→ Eα[T (s)] is represented by

π(α) = ∇κ(α) = −
(

c1

α1

, . . . ,
cr

αr

)′
, α ∈ Rr

+, (4.1.5)

where π(Rr
+) = Rr

−. π is continuously differentiable and bijective with inverse function

π−1 : Rr
− → Rr

+ : t 7→ −
(

c1

t1
, . . . ,

cr

tr

)′
. (4.1.6)

Theorem 4.1.2
In the above sample situation, the following statements hold true:

(i) The unique MLE of α based on X̃
(s)

is given by

α∗(s) =

(
− c1

T
(s)
1 (X̃

(s)
)
, . . . ,− cr

T
(s)
r (X̃

(s)
)

)′
.

Moreover, if g : Rr
+ → Γ is a bijective function, g(α∗(s)) is the MLE of g(α) based on X̃

(s)
.

(ii) The unique MLE of αj based on X̃
(s)

is given by

α
∗(s)
j = − cj

T
(s)
j (X̃

(s)
)
, 1 ≤ j ≤ r.

α
∗(s)
1 , ..., α

∗(s)
r are jointly independent, and α

∗(s)
j is inverted gamma distributed with shape pa-

rameter cj and scale parameter cjαj , 1 ≤ j ≤ r. Moreover, if g : R+ → Γ is a bijective

function, g(α
∗(s)
j ) is the MLE of g(αj) based on X̃

(s)
.
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(iii) The UMVUE of αj based on X̃
(s)

is given by

α
∗∗(s)
j = − cj − 1

T
(s)
j (X̃

(s)
)
, 1 ≤ j ≤ r.

Proof. (i). From the preliminaries (4.1.4)-(4.1.6), it is easily seen, that π−1(T (s)(x̃(s))) is the unique
solution of the likelihood equation ls(α) = ∇ ln(f

(s)
α (x̃(s)))

!
= 0 based on the observation x̃(s). Since

ls is strictly concave on Rr
+, the MLE of α is found (and uniquely determined). The remaining part

of the statement follows by application of Thm. 2.2.4 where X̃
(s)

is considered a single observation
with distribution in the exponential family PX̃

(s)

mix .
(ii). The assertion follows by the same arguments as in (i) by treating all other model parameters as
fixed nuisance parameters.
(iii). The statement is obvious from (ii), since T

(s)
j is a sufficient and complete statistic for the

family PX̃
(s)

j;mix = {P X̃
(s)

α : αj > 0} of distributions, 1 ≤ j ≤ r. �

Strong consistency of the sequences of estimators is easily obtained by assuming that, roughly speak-
ing, the number of observations which provide information on the respective model parameters tends
to infinity when the total number s of observations tends to infinity. In the remaining part of this
subsection, the integers mj and cj are replaced by m

(s)
j and c

(s)
j , 1 ≤ j ≤ r, in order to express their

dependence on the sample size.

Theorem 4.1.3
In the above situation, we find:

(i) If c
(s)
r

s→∞−→ ∞, the sequence {α∗(s)}s∈N of MLEs and the sequence {α∗∗(s)}s∈N, α∗∗(s) =

(α
∗∗(s)
1 , ..., α

∗∗(s)
r )′, s ∈ N, of UMVUEs are strongly consistent for estimating α. Moreover, if

g in Thm. 4.1.2 (i) is continuous, the sequences {g(α∗(s))}s∈N and {g(α∗∗(s))}s∈N are strongly
consistent for estimating g(α).

(ii) If c
(s)
j

s→∞−→ ∞, the sequence {α∗(s)j }s∈N of MLEs and the sequence {α∗∗(s)j }s∈N of UMVUEs
of αj are strongly consistent for estimating αj , 1 ≤ j ≤ r. Moreover, if g in Thm. 4.1.2
(ii) is continuous, the sequences {g(α

∗(s)
j )}s∈N and {g(α

∗∗(s)
j )}s∈N are strongly consistent for

estimating g(αj), 1 ≤ j ≤ r.

Proof. All statements are clear by showing strong consistency of {α∗(s)j }s∈N if c
(s)
j

s→∞−→ ∞ is
assumed, 1 ≤ j ≤ r. From (3.1.5) in Subsection 3.1, for fixed j ∈ {1, . . . , r}, −Tj;i(X

(l;i)),
1 ≤ i ≤ wj , 1 ≤ l ≤ m

(s)
i , are

∑wj

i=1 m
(s)
i = c

(s)
j iid random variables having exponential distribution

with scale parameter α−1
j . Hence, from the strong law of large numbers (e.g, in Shao (2003),

Thm. 1.13. (ii), p. 62), we obtain that −(c
(s)
j )−1T

(s)
j (X̃

(s)
)

s→∞−→ α−1
j Pα-a.s., and the respective

convergence of the ratios. �
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The concept of asymptotic efficiency of sequences of estimators introduced in Subsection 2.2.5 (and
discussed in 3.2.2 for the iid case) can be extended to the inid case in the following sense (cf. Lehmann

& Casella (1998), pp. 475/476, and Bahadur (1964), Section 4). Let m
(s)
i

s

s→∞−→ ai > 0, 1 ≤ i ≤ p,
where

∑p
i=1 ai = 1. Then, a sequence {α̂(s)}s∈N of estimators of α is said to be asymptotically

efficient provided that
√

s(α̂(s) −α)
D−→ Nr(0,J(α)−1),

where

J(α) =

p∑
i=1

aiIf ;i(α)

is a convex combination of the Fisher information matrices If ;i(α) of {fX(1;i)

α(i) λri|Rri
<

: α ∈ Rr
+} at

α ∈ Rr
+, 1 ≤ i ≤ p. Here, for technical reasons, the density fX1;i

α(i) , 1 ≤ i ≤ p, is assumed to formally
depend on all model parameters α1, . . . , αr.
Now, in the actual case of inid vectors of SOSs, the following (asymptotic) properties of the (se-
quences of) estimators can be shown.

Theorem 4.1.4
In the above sample situation, we find:

(i) (−T
(s)
1 (X̃

(s)
)/c

(s)
1 , . . . ,−T

(s)
r (X̃

(s)
)/c

(s)
r )′ is an efficient estimator of (α−1

1 , . . . , α−1
r )′ for every

s ∈ N.

(ii) The sequence {α∗(s)}s∈N of MLEs and the sequence {α∗∗(s)}s∈N of UMVUEs are asymptoti-
cally efficient for estimating α, i.e.

√
s (α∗(s) −α)

D−→ Nr(0,J(α)−1),
√

s (α∗∗(s) −α)
D−→ Nr(0,J(α)−1),

where

J(α) =

p∑
i=1

aidiag

(
1

α2
1

, . . . ,
1

α2
ri

, 0, . . . , 0

)
= diag

(∑w1

i=1 ai

α2
1

, . . . ,

∑wr

i=1 ai

α2
r

)
.

Moreover, if in Thm. 4.1.2 (i) g is continuously differentiable with |Dg(α)| 6= 0 ∀α ∈ Rr
+,

then the sequences {g(α∗(s))}s∈N and {g(α∗∗(s))}s∈N are asymptotically efficient for estimating
g(α).

(iii)
√

c
(s)
j (α

∗(s)
j −αj) and

√
c
(s)
j (α

∗∗(s)
j −αj) are asymptotically normal distributed with mean zero

and variance α2
j , 1 ≤ j ≤ r.
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Proof. (i). For every s ∈ N, the estimator is unbiased for estimating (α−1
1 , . . . , α−1

r )′, and its covari-
ance matrix is given by diag(1/(c

(s)
1 α2

1), . . . , 1/(c
(s)
r α2

r)) and, thus, it attains the lower bound of the
Rao-Cramér inequality (with g(α) = (α−1

1 , . . . , α−1
r )′, α ∈ Rr

+).
(ii). For the sequence of MLEs, a proof of the assertion is given in Bradley & Gart (1962). Applying
the multivariate version of Slutsky’s theorem, the respective result is also obtained for the sequence
of UMVUEs. Then, what is left to show follows by the same arguments as in the last part of the proof
of La. 2.2.15 (in the Appendix).
(iii). For 1 ≤ j ≤ r, it follows from (ii) that

√
s(α

∗(s)
j − αj)

D−→ N
(

0,
α2

j∑wj

i=1 ai

)
.

Moreover,
c
(s)
j

s
=
∑wj

i=1
m

(s)
i

s

s→∞−→
∑wj

i=1 ai and with Slutsky’s theorem

√
c
(s)
j (α

∗(s)
j − αj) =

√
c
(s)
j

s

√
s(α

∗(s)
j − αj)

D−→ N (0, α2
j ).

Finally, using Slutsky’s theorem once again, the remaining statement is obtained. �

4.1.3 Testing
The UMPU tests derived in Subsections 3.3.1 and 3.3.2 can be established for the inid case as well.
In the sample situation of Subsections 4.1.1 and 4.1.2, let x̃(s) be an observation of the random vector
X̃

(s)
having ⊗p

i=1 ⊗
mi
l=1 λri|Rri

<
-density given by (4.1.1).

For fixed j ∈ {1, . . . , r}, we consider the five following test problems.

(I) H0 : αj ≤ α0 ↔ H1 : αj > α0,

(II) H0 : αj ≥ α0 ↔ H1 : αj < α0,

(III) H0 : αj = α0 ↔ H1 : αj 6= α0,

(IV) H0 : α
(1)
0 ≤ αj ≤ α

(2)
0 ↔ H1 : αj < α

(1)
0 or αj > α

(2)
0 ,

(V) H0 : αj ≤ α
(1)
0 or αj ≥ α

(2)
0 ↔ H1 : α

(1)
0 < αj < α

(2)
0 ,

where α0, α
(1)
0 and α

(2)
0 are positive constants with α

(1)
0 < α

(2)
0 .

In the iid case, the proofs of Subsections 3.3.1 and 3.3.2 were essentially based on the fact that the
statistics T

(s)
1 (X̃

(s)
), . . . , T

(s)
r (X̃

(s)
) were independent with −T

(s)
j (X̃

(s)
) having a gamma distribu-

tion with shape parameter s and scale parameter α−1
j , 1 ≤ j ≤ r. Regarding the inid case, these

findings remain true if we replace the shape parameter s of the gamma distribution of −T
(s)
j (X̃

(s)
)

by cj , 1 ≤ j ≤ r. Then, respective assertions can similarly be shown. We state our findings but, for
the named reasons, the proofs are omitted.
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Theorem 4.1.5
Let α ∈ (0, 1) and j ∈ {1, . . . , r}. Then, the following assertions hold true:

(i) For test problem (I),

ϕ∗ : ×p
i=1 ×

mi
l=1 Rri

< → [0, 1] : x̃(s) 7→ 11„
−

χ2
α(2cj)

2α0
,∞
«(T

(s)
j (x̃(s)))

is a UMPU level-α test based on x̃(s), where χ2
α(2cj) denotes the α-quantile of the χ2-

distribution with 2cj degrees of freedom.

(ii) For test problem (II),

ϕ∗ : ×p
i=1 ×

mi
l=1 Rri

< → [0, 1] : x̃(s) 7→ 11„
−∞,−

χ2
1−α

(2cj)

2α0

«(T
(s)
j (x̃(s)))

is a UMPU level-α test based on x̃(s), where χ2
1−α(2cj) denotes the (1 − α)-quantile of the

χ2-distribution with 2cj degrees of freedom.

(iii) For test problem (III),

ϕ∗ : ×p
i=1 ×

mi
l=1 Rri

< → [0, 1] : x̃(s) 7→ 1− 11„
τ
(α,α0,cj)

1 (β∗),τ
(α,α0,cj)

2 (β∗)

«(T
(s)
j (x̃(s)))

is a UMPU level-α test based on x̃(s), where β∗ is the unique solution of the equation

Fα0,cj+1(F
−1
α0,cj

(1− α + β))− Fα0,cj+1(F
−1
α0,cj

(β))
!
= 1− α

with respect to β ∈ (0, α), and the mapping τ (α,α0,cj) is given by (3.3.1).

(iv) For test problem (IV),

ϕ∗ : ×p
i=1 ×

mi
l=1 Rri

< → [0, 1] : x̃(s) 7→ 1− 11 
τ
(α,α

(1)
0

,cj)

1 (β∗),τ
(α,α

(1)
0

,cj)

2 (β∗)

!(T
(s)
j (x̃(s)))

is a UMPU level-α test based on x̃(s), where β∗ is the unique solution of the equation

F
α

(2)
0 ,cj

(F−1

α
(1)
0 ,cj

(1− α + β))− F
α

(2)
0 ,cj

(F−1

α
(1)
0 ,cj

(β))
!
= 1− α

with respect to β ∈ (0, α), and τ (α,α
(1)
0 ,cj) is given by (3.3.1).

(v) For test problem (V),

ϕ∗ : ×p
i=1 ×

mi
l=1 Rri

< → [0, 1] : x̃(s) 7→ 11 
τ
(1−α,α

(1)
0

,cj)

1 (β∗),τ
(1−α,α

(1)
0

,cj)

2 (β∗)

!(T
(s)
j (x̃(s)))

is a UMPU level-α test based on x̃(s), where β∗ is the unique solution of the equation

F
α

(2)
0 ,cj

(F−1

α
(1)
0 ,cj

(α + β))− F
α

(2)
0 ,cj

(F−1

α
(1)
0 ,cj

(β))
!
= α

with respect to β ∈ (0, 1− α), and τ (1−α,α
(1)
0 ,cj) is given by (3.3.1).
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We end this subsection by deriving the LR test statistic, Wald’s (modified) statistic and Rao’s score
statistic for the test problem

H0 : α1 = · · · = αr = 1 ↔ H1 : ∃j0 ∈ {1, . . . , r} : αj0 6= 1 (4.1.7)

with a simple null hypothesis. As in the iid case, this test problem tackles the question whether the
data is obtained from OSs based on F or not. When dealing with (possibly sequential) systems, the
null hypothesis coincides with the assumption that all p systems are of common type with underlying
distribution function F .
Firstly, we obtain from La. 2.1.30, (4.1.3) and (4.1.6) that the Kullback-Leibler distance of α, α̃ ∈ Rr

+

equals

dKL(α, α̃) = κ(α̃)− κ(α) + (α− α̃)′π(α)

= −
r∑

j=1

cj ln(α̃j) +
r∑

j=1

cj ln(αj)−
r∑

j=1

(αj − α̃j)
cj

αj

=
r∑

j=1

cj

[
α̃j

αj

− ln

(
α̃j

αj

)
− 1

]
.

In particular, by setting α̃ = 1 = (1, . . . , 1)′,

dKL(α,1) =
r∑

j=1

cj

[
1

αj

− ln

(
1

αj

)
− 1

]
.

According to La. 2.3.8, the test statistic of the LR test based on X̃
(s)

can be derived by plugging in
the MLE α∗(s) of α based on X̃

(s)
(cf. Thm. 4.1.2), i.e.

T
(s)
LR(X̃

(s)
) = dKL(α∗(s),1)

=
r∑

j=1

cj

[
1

α
∗(s)
j

− ln

(
1

α
∗(s)
j

)
− 1

]

=
r∑

j=1

cj

[
− 1

cj

T
(s)
j (X̃

(s)
)− ln

(
− 1

cj

T
(s)
j (X̃

(s)
)

)
− 1

]

=
r∑

j=1

cj[Yj − ln(Yj)− 1],

where Yj = −c−1
j T

(s)
j (X̃

(s)
), 1 ≤ j ≤ r, are jointly independent and Yj ∼ Γ(cj, (cjαj)

−1), 1 ≤ j ≤
r.
Thus, for test problem (4.1.7), the LR test with level α based on the observation x̃(s) is given by

ϕ
(s)
LR(x̃(s)) = 11(ds(α),∞)

(
r∑

j=1

cj

[
− 1

cj

T
(s)
j (x̃(s))− ln

(
− 1

cj

T
(s)
j (x̃(s))

)
− 1

])
, (4.1.8)
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and the critical value ds(α) is derived from the equation

P

(
r∑

j=1

cj[Zj − ln(Zj)− 1] ≤ ds(α)

)
= 1− α, (4.1.9)

where Z1, . . . , Zr are jointly independent random variables with Zj ∼ Γ(cj, c
−1
j ), 1 ≤ j ≤ r.

In virtue of (2.3.11) and (4.1.2), the test statistic of Wald’s test based on x̃(s) is represented by

T
(s)
W (X̃

(s)
) = (α∗(s) − 1)′diag

(
c1

(α
∗(s)
1 )2

, . . . ,
cr

(α
∗(s)
r )2

)
(α∗(s) − 1)

=
r∑

j=1

cj

(
1

α
∗(s)
j

− 1

)2

=
r∑

j=1

cj

(
1

cj

T
(s)
j (X̃

(s)
) + 1

)2

=
r∑

j=1

cj (Yj − 1)2

with the Y ’s as defined above, and, again, it coincides with the test statistic of Rao’s score test given
by (2.3.13), since, by application of Thm. 2.1.22,

T
(s)
R (X̃

(s)
) = (T (s)(X̃

(s)
)− E1(T

(s)))′diag

(
1

c1

, . . . ,
1

cr

)
(T (s)(X̃

(s)
)− E1(T

(s)))

=
r∑

j=1

1

cj

(
T

(s)
j (X̃

(s)
) + cj

)2

=
r∑

j=1

cj

(
1

cj

T
(s)
j (X̃

(s)
) + 1

)2

.

Hence, for test problem (4.1.7), Wald’s test, respectively Rao’s score test with level α based on the
observation x̃(s) is

ϕ
(s)
W,R(x̃(s)) = 11(rs(α),∞)

(
r∑

j=1

cj

(
1

cj

T
(s)
j (x̃(s)) + 1

)2
)

, (4.1.10)

where the critical value rs(α) is such that

P

(
r∑

j=1

cj (Zj − 1)2 ≤ rs(α)

)
= 1− α, (4.1.11)
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with the Z’s as above.
Finally, Wald’s modified test statistic is

T
(s)

W̃
(X̃

(s)
) = (α∗(s) − 1)′I

(s)
f (1)(α∗(s) − 1)

=
r∑

j=1

cj(α
∗(s)
j − 1)2

=
r∑

j=1

cj

(
cj

T
(s)
j (X̃

(s)
)

+ 1

)2

=
r∑

j=1

cj

(
1

Yj

− 1

)2

,

with the Y ’s as above, and, thus, Wald’s modified test with level α based on the observation x̃(s) is
given by

ϕ
(s)

W̃
(x̃(s)) = 11(w̃s(α),∞)

 r∑
j=1

cj

(
cj

T
(s)
j (x̃(s))

+ 1

)2
 , (4.1.12)

where the critical value w̃s(α) is obtained from the equation

P

 r∑
j=1

cj

(
1

Zj

− 1

)2

≤ w̃s(α)

 = 1− α (4.1.13)

with the Z’s as above.

Theorem 4.1.6
For test problem (4.1.7) with a simple null hypothesis, the following assertions hold true:

(i) Wald’s test and Rao’s score test based on the observation x̃(s) coincide and are given in virtue
of (4.1.10) and (4.1.11).

(ii) Wald’s modified test based on the observation x̃(s) is represented by (4.1.12) and (4.1.13).

(iii) The LR test based on the observation x̃(s) is obtained from (4.1.8) and (4.1.9).
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4.2 SOSs with Partially Unknown Baseline Distribution

In this section, we extend the findings of Chapter 3 to the case in which the baseline distribution of
SOSs with conditional proportional hazard rates is partially unknown. For this, we assume that the
underlying distribution function F is of the form

F (t) = 1− e−λg(t−µ), t ≥ µ, (4.2.1)

with location parameter µ ∈ R and rate parameter λ > 0, where the function g : [0,∞) → [0,∞) is
strictly increasing, continuously differentiable on (0,∞) and satisfies g(0) = 0 and limt→∞ g(t) = ∞
(cf. Cramer & Kamps (1996, 2001a)). Throughout this section, g is assumed to be known. Different
well-known distributions are included in this set-up by choosing the respective function g, e.g.,

• two-parameter exponential distribution by setting g(t) = t,

• shifted Weibull distribution by setting g(t) = tβ for some known β > 0, and

• shifted Pareto distribution by setting g(t) = ln(t + 1).

Here, as a consequence of (4.2.1), the distribution function Fj , 1 ≤ j ≤ n, defined by (3.0.1), can be
represented as

Fj(t) = 1− (1− F (t))αj = 1− e−λαjg(t−µ), t ≥ µ.

4.2.1 Known Location Parameter

In the following, we consider the joint density of the first r SOSs with conditional proportional hazard
rates based on a partially unknown distribution function F given by (4.2.1) and model parameters
α1, . . . , αn, where the location parameter µ is assumed to be known, whereas the rate parameter λ
and the model parameter α1, . . . , αn are unknown. Then, the statistics given by (3.1.1) simplify to

T1(x) = n ln(1− F (x1)) = −nλg(x1 − µ),

Tj(x) = (n− j + 1) ln

(
1− F (xj)

1− F (xj−1)

)
= −(n− j + 1)λ(g(xj − µ)− g(xj−1 − µ)), 2 ≤ j ≤ r,

where x = (x1, . . . , xr)
′ ∈ Rr

<. Introducing the parametrization ηj = λαj , 1 ≤ j ≤ n, and the
statistics

H1(x) =
T1(x)

λ
= −ng(x1 − µ),

Hj(x) =
Tj(x)

λ
= −(n− j + 1)(g(xj − µ)− g(xj−1 − µ)), 2 ≤ j ≤ r,
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where x = (x1, . . . , xr)
′ ∈ Rr

<, the densities (3.1.2) can be rewritten as

fX
α (x) =

(
r∏

j=1

αj

)
exp

{
r∑

j=1

αj Tj (x)

}(
n!

(n− r)!

r∏
j=1

f(xj)

1− F (xj)

)

=

(
r∏

j=1

αj

)
exp

{
r∑

j=1

αjλHj(x)

}(
n!

(n− r)!

r∏
j=1

λg′(xj − µ)

)

=

(
r∏

j=1

ηj

)
exp

{
r∑

j=1

ηjHj(x)

}(
n!

(n− r)!

r∏
j=1

g′(xj − µ)

)
.

Obviously, in the considered set-up, the exponential family structure of the densities is preserved,
and, by defining η = (η1, . . . , ηr)

′, H = (H1, . . . , Hr)
′, and

h̃(x) =
n!

(n− r)!

r∏
j=1

g′(xj − µ), x = (x1, . . . , xr)
′ ∈ Rr

<,

P̃X = {P̃X
η = f̃X

η λr|Rr
<

: η ∈ Rr
+} forms a r-parametrical exponential family in η1, . . . , ηr and

H1, . . . , Hr, where

f̃X
η (x) = C(η)eη′H(x)h̃(x), x = (x1, . . . , xr)

′ ∈ Rr
<,

with the same C as introduced in Chapter 3, i.e.

C(η) =
r∏

j=1

ηj, η = (η1, . . . , ηr)
′ ∈ Rr

+.

Hence, replacing αj by ηj and Tj by Hj , 1 ≤ j ≤ r, all mathematical results derived in Chapter 3, in
particular, the inferential statements of Sections 3.2 and 3.3, remain true in the actual case with some
minor changes in interpretation.
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Chapter 5

Simulation Study

5.1 Univariate Tests
To illustrate the theoretical results of Subsection 3.3.2, we consider a 3-out-of-5 system with baseline
distribution function

F (t) = 1− e−1000−1t, t > 0, (5.1.1)

and model parameters α1 = 1, α2, α3 = 2.5, and the two-sided test problems

H0 : α2 = 1 ↔ H1 : α2 6= 1 (5.1.2)

and
H0 : 0.7 ≤ α2 ≤ 1.3 ↔ H1 : α2 < 0.7 or α2 > 1.3, (5.1.3)

where, in the latter case, the alternative is given by the complement of an interval. Figure 5.1 shows
the empirical power functions of the corresponding UMPU tests at α2 ∈ (0, 2) based on 1,000,000
simulated samples of size s = 40, where the level is given by α = 0.05. Throughout this section, in
all figures, the legends are omitted, since the assignments are clear.
Similarly, the alternative may be chosen as an open interval, e.g.,

H0 : α2 ≤ 0.3 or α2 ≥ 1.7 ↔ H1 : 0.3 < α2 < 1.7, (5.1.4)

H0 : α2 ≤ 0.5 or α2 ≥ 1.5 ↔ H1 : 0.5 < α2 < 1.5, (5.1.5)

H0 : α2 ≤ 0.7 or α2 ≥ 1.3 ↔ H1 : 0.7 < α2 < 1.3 (5.1.6)

or
H0 : α2 ≤ 0.9 or α2 ≥ 1.1 ↔ H1 : 0.9 < α2 < 1.1. (5.1.7)

Figure 5.2 shows the empirical power functions of the corresponding UMPU tests at α2 ∈ (0, 2)
based on 1,000,000 simulated samples of size s = 40 (level α = 0.05). Note, that for sufficiently
large intervals, the power of this kind of test is satisfactory and, hence, it can actually be used in
applications.

107
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Figure 5.1: Empirical power functions of the UMPU tests corresponding to the hypotheses (5.1.2)
and (5.1.3) based on 1,000,000 simulated samples of size s = 40, where the level α is given by 0.05.
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Figure 5.2: Empirical power functions of the UMPU tests corresponding to the hypotheses (5.1.4)-
(5.1.7) based on 1,000,000 simulated samples of size s = 40, where the level α is given by 0.05.
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Certainly, it is of some interest to compare the derived UMPU tests with the short-cut tests in Cramer
and Kamps (1996,2001) in terms of the power function. For this, we consider, once again, a 3-out-of-
5 system with the above baseline distribution function F and model parameters α1 = α2 = 1 and α3.
In the test problem

H0 : α3 = 1 ↔ H1 : α3 6= 1, (5.1.8)

the null hypothesis coincides with the assumption of a common 3-out-of-5 system with underlying
baseline distribution function F . For short, let 1 = (1, 1, 1)′.
Using the denotations of Chapter 3, Cramer & Kamps (1996) proposed the following test statistics
and decision rules based on a sample of size s:

(i) Test A: Reject H0 if the ratio

QA(x̃(s)) =
max{T (s)

1 (x̃(s)), T
(s)
2 (x̃(s)), T

(s)
3 (x̃(s))}

min{T (s)
1 (x̃(s)), T

(s)
2 (x̃(s)), T

(s)
3 (x̃(s))}

is too small. The critical value is derived from the equation

P X̃
(s)

1 (QA ≤ c) = 1− 3

(s− 1)!

∞∫
0

(
s−1∑
i=0

zi

i!
(cie−cz − e−z)

)2

zs−1e−zdz.

(ii) Test B: Reject H0 if the ratio

QB(x̃(s)) =
T

(s)
1 (x̃(s))

T
(s)
1 (x̃(s)) + T

(s)
2 (x̃(s)) + T

(s)
3 (x̃(s))

is too small or too large. Here, QB(X̃
(s)

) has a beta distribution with shape parameters s and 2s
if H0 is true and, thus, the critical values are the respective α/2-quantile and (1−α/2)-quantile
from that distribution.

(iii) Test C: Reject H0 if the difference

QC(x̃(s)) = max{T (s)
1 (x̃(s)), T

(s)
2 (x̃(s)), T

(s)
3 (x̃(s))} −min{T (s)

1 (x̃(s)), T
(s)
2 (x̃(s)), T

(s)
3 (x̃(s))}

is too large. The critical value is derived from the equation

P X̃
(s)

1 (QC ≤ c) =
3

(s− 1)!

∞∫
0

(g(z)− g(z + c))2 zs−1e−zdz,

where g(z) = e−z
∑s−1

i=0 zi/i!, z ∈ R.
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(iv) LR test: Reject H0 if

QLR(x̃(s)) = −1

s
ln

 sup
α3=1

f
(s)
α (x̃(s))

sup
α3>0

f
(s)
α (x̃(s))

 = −1

s
T

(s)
3 (x̃(s))− ln

(
−1

s
T

(s)
3 (x̃(s))

)
− 1 (5.1.9)

is too large. The representation on the right-hand side of (5.1.9) results by inserting the maxi-
mum likelihood estimate −s/T

(s)
3 (x̃(s)) of α3 in the denominator. If H0 is true, −T

(s)
3 (X̃

(s)
)/s

has a gamma distribution with shape parameter s and scale parameter s−1 and, thus, the critical
value can, by means of simulations, be computed using the equation

P X̃
(s)

1 (QLR ≤ c) = P (Z − ln(Z)− 1 ≤ c),

where Z ∼ Γ(s, s−1).

In the Figures 5.3-5.5, the empirical power functions of the UMPU test and the short cut tests A, B
and C corresponding to test problem (5.1.8) are compared at α3 ∈ (0, 2) on the basis of 300, 000
simulated samples of size s = 40 (level α = 0.05). For α3 ∈ (0, 1), the power of tests A and C differ
comparatively little from the power of the UMPU test, whereas the power of test B is not satisfying. In
the (certainly more interesting) case of α3 ∈ (1, 2), test B and C perform very poorly in comparison
with the UMPU test, whereas the power of test A behaves again considerably better. Moreover, it
turns out that in the given situation, the power functions of the UMPU and the LR test differ from
each other only marginally. More precisely, the maximum of the difference of both power functions
taken over all values α3 ∈ (0, 2) equals 1.33 · 10−4. Here, these tests might coincide (cf. Shao (2003),
Proposition 6.5., p. 429).

Figure 5.3: Empirical power functions of the UMPU test and short-cut test A corresponding to test
problem (5.1.8) based on 300,000 simulated samples of size s = 40, where the level α is given by
0.05.
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Figure 5.4: Empirical power functions of the UMPU test and short-cut test B corresponding to test
problem (5.1.8) based on 300,000 simulated samples of size s = 40, where the level α is given by
0.05.
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Figure 5.5: Empirical power functions of the UMPU test and short-cut test C corresponding to test
problem (5.1.8) based on 300,000 simulated samples of size s = 40, where the level α is given by
0.05.
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5.2 Multivariate Tests
If in the context of test problem (5.1.8) from Section 5.1 no prior information on α2 is available, the
LR test, Rao’s score test and Wald’s (modified) test can be applied to test the type of the system.
We consider, once again, a 3-out-of-5 system with baseline distribution function F given by (5.1.1)
and model parameters α1 = 1, α2 and α3. The test problem

H0 : α2 = α3 = 1 ↔ H1 : α2 6= 1 or α3 6= 1, (5.2.1)

corresponds to the question whether the system is of the usual or the sequential type, and, hence,
whether the model of common OSs or the more flexible model of SOSs should be preferred to describe
the lifetime of the system and its components.
Based on a sample of size s ∈ {10, 50, 90}, we consider the LR test, Wald’s or, which is the same
here, Rao’s score test, and Wald’s modified test, which are given by

ϕ
(s)
LR(x̃(s)) = 11(ds(α),∞)

(
3∑

j=2

[
−1

s
T

(s)
j (x̃(s))− ln

(
−1

s
T

(s)
j (x̃(s))

)
− 1

])
,

ϕ
(s)
W,R(x̃(s)) = 11(rs(α),∞)

(
s

3∑
j=2

(
1

s
T

(s)
j (x̃(s)) + 1

)2
)

,

ϕ
(s)

W̃
(x̃(s)) = 11(w̃s(α),∞)

s
3∑

j=2

(
s

T
(s)
j (x̃(s))

+ 1

)2


(cf. (3.3.11), (3.3.13) and (3.3.15)). According to (3.3.12), (3.3.14) and (3.3.16) with level α = 0.05,
the corresponding critical values of the tests are each computed empirically by 10,000,000 realizations
of the respective test statistic. We obtain

d̃10 = 6.086159, r10 = 6.05324, w̃10 = 12.85457,

d̃50 = 6.011769, r50 = 5.986285, w̃50 = 7.074217,

d̃90 = 6.006873, r90 = 5.989459, w̃90 = 6.551305,

where d̃s(α) = 2sds(α), s ∈ N. If H0 is true, all three test statistics are asymptotically χ2(2)-
distributed, i.e. exponentially distributed with scale parameter 2, and the respective 0.95-quantile of
the asymptotic distribution is given by χ2

0.95(2) = −2 ln(1− 0.95) = 5.991465.
Figures 5.6-5.8 show the empirical power functions of the LR test, Wald’s test/Rao’s score test and
Wald’s modified test at (α2, α3)

′ in a neighbourhood of (1, 1)′, where the graphics are each based on
200,000 simulated samples of size s = 10, respectively s = 50 and s = 90, and the level is given
by α = 0.05. For fixed α2 ∈ {0.6, 0.8, 1, 1.2, 1.4}, the corresponding cross sections of the empirical
power functions are illustrated in Figures 5.12-5.14. Related power maps can be found in Figures 5.9-
5.11 and show which test is best with respect to a fixed alternative (α2, α3)

′ ∈ {0.6, 0.65, . . . , 1.4}2.
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Figure 5.6: Empirical power functions of the LR test with level α = 0.05 corresponding to test
problem (5.2.1) based on 200,000 simulated samples of size s ∈ {10, 50, 90}.
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Figure 5.7: Empirical power functions of Wald’s test/Rao’s score test with level α = 0.05 correspond-
ing to test problem (5.2.1) based on 200,000 simulated samples of size s ∈ {10, 50, 90}.
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Figure 5.8: Empirical power functions of Wald’s modified test with level α = 0.05 corresponding to
test problem (5.2.1) based on 200,000 simulated samples of size s ∈ {10, 50, 90}.
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Figure 5.9: Power map of the LR test, Wald’s/Rao’s score test and Wald’s modified test corresponding
to test problem (5.2.1) based on 200,000 simulated samples of size s = 10, where the level α is given
by 0.05.
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Figure 5.10: Power map of the LR test, Wald’s/Rao’s score test and Wald’s modified test correspond-
ing to test problem (5.2.1) based on 200,000 simulated samples of size s = 50, where the level α is
given by 0.05.
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Figure 5.11: Power map of the LR test, Wald’s/Rao’s score test and Wald’s modified test correspond-
ing to test problem (5.2.1) based on 200,000 simulated samples of size s = 90, where the level α is
given by 0.05.
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From the cross sections in Figures 5.12-5.14, it is seen that Wald’s/Rao’s score test and Wald’s modi-
fied test are biased if the sample size is small, whereas the LR test seems to be unbiased. Moreover,
the simulation study suggests that, in the considered case, all three tests are consistent and thus, in
particular, asymptotically unbiased. This result might also be true in general (see Rao (2005), p. 10).
From the power maps in Figures 5.9-5.11, we conclude that neither the LR test nor Wald’s/Rao’s
score test or Wald’s modified test uniformly dominates the other ones in terms of power. If α2 and
α3 are both less than 1, Wald’s/Rao’s score test is best, but the test is worst if the α’s are greater than
1. For Wald’s modified test the contrary assertion is true. Hence, in applications where one of these
conditions is supposed to be true, the respective test can be chosen to let the error probabilities of
the second kind at the more likely alternatives be preferably small. Here, α2 and α3 model (possibly
increasing) load on remaining components of a system, where, by assumption, α1 = 1. Thus, in the
actual case, (α2, α3)

′ with both α’s greater than 1 are the alternatives we are interested in, and Wald’s
modified test is adequate. If from the context of the experiment no alternatives are more likely to be
true, the LR test seems to be a proper choice since it performs uniformly well over all alternatives
(see Figures 5.12-5.14). However, it does not have best (but also not worst) power at most alternatives
when the three tests are compared.
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Figure 5.12: Cross sections at α2 ∈ {0.6, 0.8, 1, 1.2, 1.4} of the empirical power functions of the LR
test, Wald’s/Rao’s score test and Wald’s modified test corresponding to test problem (5.2.1) based on
200,000 simulated samples of size s = 10, where the level α is given by 0.05.
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Figure 5.13: Cross sections at α2 ∈ {0.6, 0.8, 1, 1.2, 1.4} of the empirical power functions of the LR
test, Wald’s/Rao’s score test and Wald’s modified test corresponding to test problem (5.2.1) based on
200,000 simulated samples of size s = 50, where the level α is given by 0.05.
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Figure 5.14: Cross sections at α2 ∈ {0.6, 0.8, 1, 1.2, 1.4} of the empirical power functions of the LR
test, Wald’s/Rao’s score test and Wald’s modified test corresponding to test problem (5.2.1) based on
200,000 simulated samples of size s = 90, where the level α is given by 0.05.
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Chapter 6

Conclusion

In this doctoral thesis, we have pointed out the new finding that the joint distribution of gOSs or,
which is of the same structure, of SOSs with conditional proportional hazard rates based on a known
underlying baseline distribution function F , forms a multivariate exponential family in the respective
model parameters.
Using this structural insight, many results in literature, in particular those related to inferential issues,
have readily and briefly been shown in a general and elegant way. This has been demonstrated, e.g.,
by deriving the MLEs of the model parameters.
Moreover, the structural insight has led to a variety of new useful results that have not been ob-
served by now and that might have been hard or almost impossible to derive without recognizing
this structure. Based on well-known results concerning exponential families, optimality properties of
estimators on the one hand and statistical tests on the other hand can be shown. This has been demon-
strated, once again, in the context of maximum likelihood estimation in terms of efficiency notions
and, moreover, in the derivation of UMPU tests on single model parameters.
To sum up, the present thesis has opened the wide and extensively examined field of exponential
families to models of ordered random variables, in particular, to SOSs and their applications (e.g.
sequential k-out-of-n systems). Having said that this work provides many new statements and several
generalizations, it can also be considered the potential basis of further studies. The observed structure
gives rise to extended models with helpful properties which provide an even more flexible modeling.
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Tables
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Solutions of (3.3.2) and critical values of the UMPU test corresponding to the hypotheses H0 : αj =
1 ↔ H1 : αj 6= 1 with respect to the sample size s, where j ∈ {1, . . . , r} is fixed and the level is
given by α ∈ {0.01, 0.05, 0.1}.

Table 7.1: (α = 0.01)
s β∗ τ

(0.01,1,s)
1 (β∗) τ

(0.01,1,s)
2 (β∗)

1 0.008697 -6.643 -0.009
2 0.00798 -8.451 -0.132
3 0.007547 -10.148 -0.393
4 0.007256 -11.766 -0.749
5 0.007046 -13.327 -1.172
6 0.006884 -14.842 -1.646
7 0.006756 -16.321 -2.158
8 0.00665 -17.77 -2.702
9 0.006561 -19.195 -3.272

10 0.006485 -20.598 -3.864
20 0.006064 -33.897 -10.547
30 0.005873 -46.453 -17.983
40 0.005757 -58.617 -25.816
50 0.005678 -70.527 -33.904

Table 7.2: (α = 0.05)
s β∗ τ

(0.05,1,s)
1 (β∗) τ

(0.05,1,s)
2 (β∗)

1 0.041479 -4.765 -0.042
2 0.037717 -6.401 -0.304
3 0.03568 -7.948 -0.713
4 0.034376 -9.43 -1.207
5 0.033453 -10.864 -1.758
6 0.032757 -12.262 -2.35
7 0.032208 -13.632 -2.974
8 0.031761 -14.977 -3.623
9 0.031388 -16.304 -4.292
10 0.03107 -17.613 -4.979
20 0.029325 -30.137 -12.439
30 0.02854 -42.089 -20.482
40 0.028069 -53.739 -28.829
50 0.027747 -65.196 -37.372

Table 7.3: (α = 0.1)
s β∗ τ

(0.1,1,s)
1 (β∗) τ

(0.1,1,s)
2 (β∗)

1 0.080398 -3.932 -0.084
2 0.072964 -5.479 -0.441
3 0.069137 -6.946 -0.937
4 0.066735 -8.355 -1.509
5 0.065053 -9.723 -2.129
6 0.063792 -11.059 -2.785
7 0.062802 -12.371 -3.467
8 0.061998 -13.663 -4.171
9 0.061329 -14.938 -4.893

10 0.06076 -16.199 -5.629
20 0.057648 -28.323 -13.493
30 0.056256 -39.963 -21.849
40 0.055422 -51.349 -30.461
50 0.054852 -62.572 -39.236
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Critical values of the LR test statistic 2sT
(s)
LR for test problem H0 : α1 = · · · = αr = 1 ↔ H1 :

∃j ∈ {1, . . . , r} : αj 6= 1 based on 5,000,000 samples of size s, where the level is given by α ∈
{0.01, 0.05, 0.1}.

Table 7.4: (α = 0.01)
s/r 2 3 4 5
1 10.428 12.853 15.037 17.111
2 9.896 12.198 14.285 16.249
3 9.698 11.924 13.988 15.872
4 9.582 11.787 13.789 15.687
5 9.515 11.715 13.703 15.578
6 9.456 11.638 13.628 15.499
7 9.423 11.612 13.589 15.438
8 9.397 11.597 13.528 15.4
9 9.384 11.536 13.503 15.377

10 9.36 11.513 13.494 15.325
20 9.27 11.436 13.375 15.234
30 9.273 11.406 13.358 15.182
40 9.246 11.403 13.337 15.122
50 9.238 11.378 13.318 15.15

Table 7.5: (α = 0.05)
s/r 2 3 4 5
1 6.841 8.927 10.841 12.653
2 6.463 8.432 10.236 11.934
3 6.314 8.234 9.995 11.669
4 6.227 8.132 9.872 11.524
5 6.186 8.068 9.801 11.438
6 6.155 8.023 9.752 11.379
7 6.136 7.99 9.716 11.331
8 6.109 7.985 9.677 11.29
9 6.105 7.959 9.66 11.282

10 6.081 7.945 9.65 11.25
20 6.043 7.879 9.569 11.163
30 6.028 7.855 9.537 11.138
40 6.016 7.85 9.532 11.117
50 6.016 7.839 9.521 11.111

Table 7.6: (α = 0.1)
s/r 2 3 4 5
1 5.293 7.176 8.931 10.6
2 4.977 6.757 8.404 9.972
3 4.852 6.591 8.201 9.741
4 4.796 6.514 8.103 9.617
5 4.752 6.459 8.033 9.539
6 4.732 6.425 7.992 9.486
7 4.719 6.402 7.961 9.454
8 4.696 6.384 7.944 9.431
9 4.691 6.37 7.924 9.409
10 4.683 6.355 7.903 9.389
20 4.645 6.299 7.845 9.308
30 4.629 6.29 7.821 9.295
40 4.626 6.282 7.809 9.275
50 4.623 6.274 7.809 9.272
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Critical values of Wald’s/Rao’s score statistic T
(s)
W = T

(s)
R for test problem H0 : α1 = · · · = αr =

1 ↔ H1 : ∃j ∈ {1, . . . , r} : αj 6= 1 based on 5,000,000 samples of size s, where the level is given
by α ∈ {0.01, 0.05, 0.1}.

Table 7.7: (α = 0.01)
s/r 2 3 4 5
1 19.378 24.14 28.137 31.645
2 15.749 19.506 22.603 25.381
3 14.144 17.436 20.281 22.858
4 13.221 16.31 18.925 21.39
5 12.612 15.597 18.117 20.393
6 12.15 14.987 17.496 19.673
7 11.812 14.582 17.01 19.153
8 11.519 14.264 16.597 18.734
9 11.313 13.956 16.285 18.419

10 11.126 13.765 16.054 18.119
20 10.209 12.626 14.783 16.762
30 9.858 12.193 14.285 16.214
40 9.669 12.002 14.038 15.917
50 9.574 11.842 13.884 15.78

Table 7.8: (α = 0.05)
s/r 2 3 4 5
1 7.813 10.949 13.696 16.171
2 7.087 9.735 12.104 14.266
3 6.705 9.189 11.375 13.379
4 6.477 8.841 10.941 12.892
5 6.325 8.62 10.661 12.557
6 6.216 8.464 10.466 12.309
7 6.157 8.336 10.298 12.126
8 6.106 8.26 10.196 11.984
9 6.085 8.195 10.111 11.891

10 6.044 8.142 10.027 11.793
20 5.989 7.942 9.733 11.409
30 5.986 7.893 9.629 11.288
40 5.987 7.875 9.603 11.226
50 5.994 7.853 9.565 11.203

Table 7.9: (α = 0.1)
s/r 2 3 4 5
1 4.401 6.772 8.966 11.001
2 4.313 6.475 8.428 10.253
3 4.24 6.299 8.164 9.916
4 4.261 6.211 8.013 9.708
5 4.279 6.166 7.922 9.575
6 4.316 6.144 7.863 9.493
7 4.347 6.129 7.831 9.426
8 4.364 6.141 7.802 9.395
9 4.389 6.139 7.791 9.368

10 4.41 6.144 7.776 9.335
20 4.502 6.184 7.754 9.26
30 4.532 6.205 7.756 9.256
40 4.553 6.214 7.766 9.243
50 4.562 6.225 7.769 9.247
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Critical values of Wald’s modified statistic T
(s)

W̃
for test problem H0 : α1 = · · · = αr = 1 ↔

H1 : ∃j ∈ {1, . . . , r} : αj 6= 1 based on 5,000,000 samples of size s, where the level is given by
α ∈ {0.01, 0.05, 0.1}.

Table 7.10: (α = 0.01)
s/r 2 3 4 5
1 39681 89125.1 159013.2 246122.1
2 678.91 1054.34 1453.87 1852.33
3 190.94 267.61 339.49 407.32
4 101.4 135.47 165.63 193.88
5 68.748 89.852 108.16 125.27
6 52.724 67.753 81.086 92.637
7 43.584 55.627 65.71 74.843
8 37.582 47.489 56.175 63.781
9 33.451 42.008 49.253 55.927
10 30.266 37.916 44.551 50.107
20 18.737 23.133 26.928 30.359
30 15.518 19.127 22.242 25.077
40 13.975 17.198 20.001 22.553
50 13.025 16.069 18.672 21.101

Table 7.11: (α = 0.05)
s/r 2 3 4 5
1 1456.5 3391.4 6145.3 9672.2
2 107.86 180.09 255.42 331.31
3 46.331 70.295 93.698 116.37
4 30.005 44.115 56.862 69.125
5 23.075 32.856 41.975 50.441
6 19.147 26.932 33.988 40.644
7 16.681 23.252 29.244 34.668
8 14.983 20.865 25.923 30.761
9 13.797 18.996 23.64 27.967
10 12.842 17.664 21.946 25.842
20 9.093 12.275 15.127 17.733
30 7.941 10.678 13.126 15.391
40 7.395 9.909 12.163 14.264
50 7.074 9.454 11.597 13.592

Table 7.12: (α = 0.1)
s/r 2 3 4 5
1 333.41 792.45 1452.1 2302.3
2 43.934 77.28 113.33 151.52
3 22.361 36.233 50.028 63.893
4 15.774 24.65 33.13 41.388
5 12.651 19.342 25.638 31.766
6 10.897 16.415 21.561 26.479
7 9.769 14.538 18.968 23.208
8 8.918 13.246 17.223 20.974
9 8.324 12.27 15.924 19.347

10 7.876 11.546 14.922 18.11
20 5.951 8.552 10.957 13.199
30 5.403 7.686 9.782 11.761
40 5.172 7.268 9.216 11.073
50 5.038 7.046 8.898 10.669
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Critical values of the LR test statistic 2sT
(s)
LR for test problem H0 : α1 = · · · = αr ↔ H1 :

∃j, k ∈ {1, . . . , r} : αj 6= αk based on 5,000,000 samples of size s, where the level is given by
α ∈ {0.01, 0.05, 0.1}.

Table 7.13: (α = 0.01)
s/r 2 3 4 5
1 7.821 10.746 13.133 15.343
2 7.357 10.121 12.397 14.477
3 7.146 9.82 12.088 14.105
4 7.014 9.697 11.909 13.917
5 6.956 9.605 11.793 13.783
6 6.903 9.547 11.737 13.722
7 6.874 9.486 11.673 13.652
8 6.827 9.455 11.634 13.603
9 6.812 9.427 11.614 13.57
10 6.789 9.398 11.58 13.533
20 6.718 9.323 11.467 13.413
30 6.694 9.256 11.428 13.369
40 6.685 9.268 11.411 13.342
50 6.665 9.266 11.412 13.336

Table 7.14: (α = 0.05)
s/r 2 3 4 5
1 4.654 7.11 9.183 11.098
2 4.303 6.624 8.581 10.376
3 4.15 6.421 8.335 10.101
4 4.078 6.316 8.205 9.956
5 4.032 6.255 8.139 9.859
6 3.993 6.205 8.088 9.799
7 3.976 6.177 8.037 9.755
8 3.955 6.153 8.023 9.719
9 3.949 6.132 7.991 9.693
10 3.934 6.121 7.969 9.677
20 3.892 6.057 7.897 9.582
30 3.876 6.035 7.872 9.555
40 3.866 6.021 7.862 9.539
50 3.861 6.013 7.847 9.527

Table 7.15: (α = 0.1)
s/r 2 3 4 5
1 3.321 5.514 7.397 9.146
2 3.039 5.098 6.876 8.53
3 2.929 4.938 6.676 8.282
4 2.874 4.854 6.572 8.162
5 2.846 4.809 6.509 8.09
6 2.818 4.77 6.464 8.035
7 2.802 4.751 6.437 8.004
8 2.789 4.732 6.411 7.965
9 2.78 4.718 6.396 7.953
10 2.773 4.704 6.383 7.936
20 2.743 4.659 6.316 7.858
30 2.728 4.643 6.297 7.83
40 2.722 4.632 6.282 7.823
50 2.721 4.622 6.276 7.816
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Critical values of Rao’s score statistic T
(s)
R for test problem H0 : α1 = · · · = αr ↔ H1 :

∃j, k ∈ {1, . . . , r} : αj 6= αk based on 5,000,000 samples of size s, where the level is given by
α ∈ {0.01, 0.05, 0.1}.

Table 7.16: (α = 0.01)
s/r 2 3 4 5
1 1.96 5.011 8.095 11
2 3.364 6.816 9.727 12.359
3 4.176 7.499 10.263 12.717
4 4.671 7.881 10.523 12.926
5 5.012 8.094 10.679 13.021
6 5.249 8.246 10.803 13.065
7 5.432 8.348 10.871 13.106
8 5.558 8.441 10.915 13.125
9 5.671 8.524 10.964 13.146

10 5.756 8.567 11.007 13.161
20 6.184 8.883 11.16 13.213
30 6.334 8.967 11.223 13.244
40 6.413 9.04 11.254 13.237
50 6.448 9.072 11.287 13.255

Table 7.17: (α = 0.05)
s/r 2 3 4 5
1 1.805 3.93 5.872 7.736
2 2.636 4.722 6.626 8.479
3 2.996 5.022 6.954 8.767
4 3.195 5.202 7.121 8.918
5 3.318 5.334 7.246 9.003
6 3.397 5.43 7.322 9.082
7 3.462 5.499 7.377 9.134
8 3.504 5.559 7.432 9.166
9 3.546 5.601 7.466 9.202

10 3.572 5.644 7.494 9.228
20 3.709 5.812 7.651 9.346
30 3.754 5.868 7.703 9.399
40 3.774 5.898 7.731 9.423
50 3.788 5.912 7.747 9.43

Table 7.18: (α = 0.1)
s/r 2 3 4 5
1 1.62 3.218 4.718 6.251
2 2.129 3.698 5.308 6.87
3 2.317 3.924 5.561 7.112
4 2.414 4.08 5.701 7.251
5 2.477 4.177 5.793 7.341
6 2.512 4.246 5.859 7.403
7 2.539 4.301 5.911 7.451
8 2.56 4.335 5.948 7.484
9 2.576 4.365 5.982 7.52
10 2.589 4.386 6.007 7.54
20 2.651 4.498 6.126 7.655
30 2.667 4.535 6.17 7.693
40 2.676 4.553 6.186 7.72
50 2.685 4.558 6.197 7.733
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Critical values of Wald’s statistic T
(s)
W for test problem H0 : α1 = · · · = αr ↔ H1 : ∃j, k ∈

{1, . . . , r} : αj 6= αk based on 5,000,000 samples of size s, where the level is given by α ∈
{0.01, 0.05, 0.1}.

Table 7.19: (α = 0.01)
s/r 2 3 4 5
1 0.99 1.876 2.677 3.437
2 1.827 3.191 4.39 5.528
3 2.462 4.091 5.532 6.882
4 2.949 4.757 6.348 7.852
5 3.339 5.257 6.962 8.562
6 3.652 5.655 7.45 9.101
7 3.913 5.973 7.831 9.535
8 4.125 6.244 8.139 9.882
9 4.313 6.479 8.404 10.174

10 4.47 6.664 8.632 10.419
20 5.356 7.737 9.794 11.671
30 5.73 8.154 10.263 12.17
40 5.937 8.406 10.514 12.415
50 6.057 8.555 10.684 12.588

Table 7.20: (α = 0.05)
s/r 2 3 4 5
1 0.949 1.701 2.379 3.037
2 1.589 2.642 3.624 4.588
3 1.998 3.223 4.403 5.533
4 2.283 3.629 4.928 6.168
5 2.491 3.935 5.319 6.619
6 2.647 4.172 5.61 6.971
7 2.775 4.358 5.839 7.244
8 2.874 4.514 6.031 7.457
9 2.962 4.639 6.183 7.64

10 3.03 4.75 6.311 7.791
20 3.394 5.299 6.983 8.547
30 3.533 5.509 7.239 8.845
40 3.604 5.622 7.375 8.999
50 3.649 5.688 7.458 9.087

Table 7.21: (α = 0.1)
s/r 2 3 4 5
1 0.895 1.552 2.165 2.778
2 1.389 2.288 3.191 4.072
3 1.672 2.733 3.8 4.825
4 1.855 3.045 4.204 5.321
5 1.985 3.267 4.492 5.675
6 2.077 3.435 4.71 5.938
7 2.149 3.57 4.881 6.144
8 2.207 3.672 5.016 6.305
9 2.253 3.757 5.13 6.443
10 2.292 3.826 5.223 6.552
20 2.486 4.185 5.69 7.111
30 2.554 4.317 5.868 7.317
40 2.59 4.387 5.955 7.433
50 2.614 4.424 6.011 7.501
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Appendix

8.1 Proofs of several Theorems of Chapter 2
Proof of La. 2.1.18. Let t ∈ V , then

mT (t) = Eζ[exp{t′T }] =

∫
exp{t′T (x)}fζ(x)dµ(x)

=
C(ζ)

C(ζ + t)

∫
C(ζ + t) exp{(ζ + t)′T (x)}h(x)dµ(x)

=
C(ζ)

C(ζ + t)
.

�

Proof of La. 2.1.30. Let ζ(1), ζ(2) ∈ Θ, then

dKL(ζ(1), ζ(2)) =

∫ (
ln fζ(1)(x)− ln fζ(2)(x)

)
fζ(1)(x)dµ(x)

=

∫ (
(ζ(1) − ζ(2))′T (x)− κ(ζ(1)) + κ(ζ(2))

)
fζ(1)(x)dµ(x)

= κ(ζ(2))− κ(ζ(1)) + (ζ(1) − ζ(2))′
∫

T (x)fζ(1)(x)dµ(x)

= κ(ζ(2))− κ(ζ(1)) + (ζ(1) − ζ(2))′π(ζ(1)).

�

Proof of La. 2.2.1. Denoting by ls the log likelihood function based on the observations x(1), . . . , x(s),
we obtain with (2.2.1)

∇ls(ζ) = ∇
[
ln(f

(s)
ζ (x̃(s)))

]
= T (s)(x̃(s))− s∇κ(ζ)

= s

(
1

s
T (s)(x̃(s))− π(ζ)

)
, ζ ∈ Θ.
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By assumption, 1
s
T (s)(x̃(s)) ∈ π(Θ), and, hence,

π−1

(
1

s
T (s)(x̃(s))

)
is the unique solution of the likelihood equation. Moreover, (2.1.15) and Thm. 2.1.9 yield that the
Hessian matrix of ls equals −sCovζ(T ) which is negative definite for all ζ ∈ Θ. It follows that ls is
a strictly concave function on Θ and, thus, the proof is completed. �

Proof of Thm. 2.2.3. The first part of the statement is an immediate consequence of La. 2.2.1.
Moreover, for fixed ζ ∈ Θ, all moments of T exist (cf. Thm. 2.1.15 (i)), and the strong law of large
numbers (e.g, in Shao (2003), Thm. 1.13. (ii), p. 62) yields

1

s
T (s)(X̃

(s)
) =

1

s

s∑
i=1

T (X(i))
s→∞−→ Eζ[T (X)] = π(ζ) [Pζ],

which implies that 1
s
T (s)(X̃

(s)
) → π(ζ) in Pζ-probability (see, e.g., Shao (2003), Thm. 1.8. (i), p.

51). π(Θ) is as pre-image of Θ of the continuous mapping π−1 an open subset of Rk. Hence, there
exists a positive number δ > 0 with U δ(π(ζ)) = {η ∈ Rk : ||η − π(ζ)|| < δ} ⊆ π(Θ). Clearly,

Pζ

(
1

s
T (s)(X̃

(s)
) ∈ π(Θ)

)
≥ Pζ

(
1

s
T (s)(X̃

(s)
) ∈ U δ(π(ζ))

)
s→∞−→ 1,

and, thus, the assertion is established. �

Proof of La. 2.2.10. Upon choosing g as g(ζ) = Eζ[T ] = π(ζ), ζ ∈ Θ, we obtain, from (2.1.16) and
(2.1.22),

Dg(ζ)I
(s)
f (ζ)−1Dg(ζ)′ = Covζ(T )(sCovζ(T ))−1Covζ(T )

=
1

s
Covζ(T ) = Covζ

(
1

s
T (s)

)
.

Clearly, Eζ[s
−1T (s)] = π(ζ) and this completes the proof. �

Proof of La. 2.2.15. At first, we show the statement for the sequence {ζ∗(s)}s∈N of MLEs of ζ. In
order to apply Thm. 5.1 in Lehmann & Casella (1998), p. 463, we verify the conditions (A)-(D) given,
where ζ(0) ∈ Θ is assumed to be the true parameter vector. The conditions (A0)-(A2) (Lehmann &
Casella (1998), pp. 443/444) are, by assumption and Rem. 2.1.4, obvious.

(A) Since Θ is assumed to be open, there exists an open neighbourhood Uδ(ζ
(0)), δ = δ(ζ(0)) > 0,

of ζ(0) with the property that its closure lies in Θ, i.e. cl(Uδ(ζ
(0))) ⊆ Θ. From Thm. 2.1.15 (i)

follows that C is infinitely often differentiable in ζ ∈ Uδ(ζ
(0)), and so is fX

ζ .
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(B) From Thm. 2.1.22, the first part of the condition is obvious. Moreover, from Thm. 2.1.15 (i)
and Thm. 2.1.22, we obtain, for 1 ≤ i, j ≤ k,

Eζ

[
− d2

dζidζj

ln(fX
ζ )

]
= Eζ

[
− d2

dζidζj

(ζ ′T − κ(ζ) + ln(h))

]
= [Hκ(ζ)]i,j

= Covζ(Ti, Tj)

= [If (ζ)]i,j.

(C) By assumption, PX is strictly k-parametrical, and (2.1.19) is fulfilled for every ζ ∈ Uδ(ζ
(0)).

(D) For 1 ≤ i, j.l ≤ k, the third partial derivatives

d3

dζidζjdζl

ln(fX
ζ ) = − d3

dζidζjdζl

κ(ζ)

do not depend on x. Moreover, κ is infinitely often differentiable and, thus, in particular, for all
ζ ∈ Uδ(ζ

(0)),∣∣∣∣ d3

dζidζjdζl

ln(fX
ζ (x))

∣∣∣∣ ≤ max
ζ∈cl(Uδ(ζ(0)))

∣∣∣∣ d3

dζidζjdζl

κ(ζ)

∣∣∣∣ < ∞, ∀x ∈ X,

where the upper bounds are PX
ζ(0)-integrable considered as constant functions on (X, B).

Now, by application of the theorem, with Pζ(0)-probability tending to 1 as s tends to infinity, there ex-
ists a sequence of solutions of the likelihood equations that is asymptotically efficient. By assumption,
the sequence of MLEs of ζ exists, and it is the unique solution of these equations. Hence, asymptotic
efficiency of {ζ∗(s)}s∈N is shown.
We continue by application of the mean value theorem to the real-valued component functions gj ,
1 ≤ j ≤ k, yields

√
s(γ∗(s) − γ) =

√
s(g(ζ∗(s))− g(ζ)) = Dg[δ

(s)
1 , ..., δ

(s)
k ]
√

s(ζ∗(s) − ζ),

where δ
(s)
1 , ..., δ

(s)
k are points on the line between ζ and ζ∗(s), and Dg[δ

(s)
1 , ..., δ

(s)
k ] is a matrix with

rows ∇gj(δj
(s))′, 1 ≤ j ≤ k. By assumption, all partial derivatives of g are continuous and, hence,

using strong consistency of the sequence {ζ∗(s)}s∈N (cf. La. 2.2.12), we derive Dg[δ
(s)
1 , ..., δ

(s)
k ] →

Dg(ζ) Pζ-a.s.. We have shown that
√

s(ζ∗(s) − ζ)
D→ Nk(0, If (ζ)−1) and, thus, the multivariate

version of Slutsky’s theorem (see, e.g., Sen & Singer (1993), Thm. 3.4.3, p. 130) yields

√
s(γ∗(s) − γ)

D→ Nk(0,Dg(ζ)If (ζ)−1Dg(ζ)′).

From (2.1.20), by setting h = g, the asymptotic covariance matrix is exactly the inverse of the Fisher
information matrix of P̃X at γ ∈ Γ, and this completes the proof. �
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Proof ∆1. From Thm. 2.1.22, Thm. 2.2.3 and the multivariate mean value theorem, it follows that,
for ζ ∈ Θ,

√
s(ζ∗(s) − ζ)− 1√

s
If (ζ)−1U

(s)
ζ (X̃

(s)
)

=
√

s(ζ∗(s) − ζ)− 1√
s
If (ζ)−1

(
T (s)(X̃

(s)
)− Eζ[T

(s)(X̃
(s)

)]
)

=
√

s(ζ∗(s) − ζ)−
√

s If (ζ)−1
(
π(ζ∗(s))− π(ζ)

)
=

(
Ik − If (ζ)−1Dπ

[
δ

(s)
1 , . . . , δ

(s)
k

])√
s(ζ∗(s) − ζ),

where δ
(s)
1 , ..., δ

(s)
k are points on the line between ζ∗(s) and ζ, and Dπ[δ

(s)
1 , ..., δ

(s)
k ] is a matrix

with lines ∇πi(δ
(s)
i )′, 1 ≤ i ≤ k. Since all partial derivatives of π are continuous, strong

consistency of {ζ∗(s)}s∈N implies Dπ[δ
(s)
1 , ..., δ

(s)
k ] → Dπ(ζ) = If (ζ) Pζ-a.s.. Hence, Ik −

If (ζ)−1Dπ

[
δ

(s)
1 , . . . , δ

(s)
k

]
converges to 0 ∈ Rk×k Pζ-a.s., and, in combination with the asymptotic

efficiency of {ζ∗(s)}s∈N (cf. La. 2.2.15), the multivariate version of Slutsky’s theorem (e.g., in Sen &
Singer (1993), Thm. 3.4.3, p. 130) yields

√
s(ζ∗(s) − ζ)− 1√

s
If (ζ)−1U

(s)
ζ (X̃

(s)
)

D−→ 0.

Application of Thm. 1.8 (vii) in Shao (2003), p. 51, leads to

√
s(ζ∗(s) − ζ)− 1√

s
If (ζ)−1U

(s)
ζ (X̃

(s)
)

Pζ−→ 0, ζ ∈ Θ.

�

Proof of Thm. 2.3.2. Set η0 = −ζ0, ηj = −ζj and Sj = −Tj , 1 ≤ j ≤ k. Moreover, define
η = (η1, . . . , ηk)

′, S = (S1, . . . , Sk)
′ and f̃X

η = fX
−η, η ∈ −Θ. Then, P = {P̃X

η = f̃X
η µ : η ∈ −Θ}

forms a strictly k-parametrical exponential family in η1, . . . , ηk and S1, . . . , Sk, and test problem
(II) is equivalent to the test problem H0 : η1 ≤ η0 against H1 : η1 > η0. With the denotations
S̃ = (S2, . . . , Sk)

′ and s̃ = (s2, . . . , sk)
′, application of Thm. 2.3.1 yields that ϕ∗ = Ψ̃∗ ◦ (S1, S̃)

defined by

Ψ̃∗(s1, s̃) = 11(c̃(s̃),∞)(s1) + γ̃(s̃)11{c̃(s̃)}(s1)

is an UMPU level-α test for that test problem, where c̃, γ̃ : (Rk−1, Bk−1) → (R1, B1) with 0 ≤ γ̃ ≤ 1
fulfill

P̃ S1|S̃=s̃
η0,• ((c̃(s̃),∞)) + γ̃(s̃)P̃ S1|S̃=s̃

η0,• ({c̃(s̃)}) = α, s̃ ∈ Rk−1. (8.1.1)

Defining c(t̃) = −c̃(−t̃) and γ(t̃) = γ̃(−t̃), t̃ ∈ Rk−1, condition (8.1.1) is equivalent to con-
dition (2.3.2) and, by setting Ψ∗ as in (2.3.1), it follows that Ψ∗(t1, t̃) = Ψ̃∗(−t1,−t̃) and, thus,
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ϕ∗ = Ψ∗ ◦ (T1, T̃ ), which completes the proof. �

Proof of La. 2.3.8. According to Thm. 2.2.3, the MLE of ζ based on X̃
(s)

is given by ζ∗(s) =

π−1(s−1T (s)(X̃
(s)

)). Plugging in leads to

T
(s)
LR(X̃

(s)
) = −s−1 ln

supζ(0)∈Θ0
exp{(ζ(0))′T (s)(X̃

(s)
)− sκ(ζ(0))}

exp{(ζ∗(s))′T (s)(X̃
(s)

)− sκ(ζ∗(s))}


= ln

(
exp{(ζ∗(s))′π(ζ∗(s))− κ(ζ∗(s))}

exp{supζ(0)∈Θ0
{(ζ(0))′π(ζ∗(s))− κ(ζ(0))}}

)
= inf

ζ(0)∈Θ0

{κ(ζ(0))− κ(ζ∗(s)) + (ζ∗(s) − ζ(0))′π(ζ∗(s))}

= inf
ζ(0)∈Θ0

dKL(ζ∗(s), ζ(0)),

where the last equality follows from La. 2.1.30. �

Proof of Thm. 2.3.9 (i). Let ζ(0) be the true parameter. Since ∇ls(ζ
∗(s)) = 0, s ∈ N, the Taylor

expansion of the second order around ζ∗(s) at the point ζ(0) (see, e.g., Heuser (2000), Thm. 168.1, p.
282) of the log likelihood statistic ls(ζ) = ls(ζ; X̃

(s)
) = ln f

(s)
ζ (X̃

(s)
), s ∈ N, is given by

ls(ζ
(0)) = ls(ζ

∗(s)) +
1

2
(ζ∗(s) − ζ(0))′Hls(ζ̃

(s)
)(ζ∗(s) − ζ(0)),

where {ζ̃(s)}s∈N is a sequence of random vectors with ζ̃
(s)

on the line between ζ(0) and ζ∗(s), s ∈ N.
Then, since −sT

(s)
LR(X̃

(s)
) = ls(ζ

(0))− ls(ζ
∗(s)),

2sT
(s)
LR(X̃

(s)
) =

√
s(ζ∗(s) − ζ(0))′[−s−1Hls(ζ̃

(s)
)]
√

s(ζ∗(s) − ζ(0)).

Moreover, −s−1Hls(ζ) = Hκ(ζ) = If (ζ) > 0, ζ ∈ Θ, and, hence,

2sT
(s)
LR(X̃

(s)
) = ||If (ζ̃

(s)
)

1
2
√

s(ζ∗(s) − ζ(0))||22,

where If (ζ̃
(s)

)
1
2 > 0 is a positive definite matrix satisfying If (ζ̃

(s)
)

1
2 If (ζ̃

(s)
)

1
2 = If (ζ̃

(s)
).

Applying La. 2.2.12 and using the fact that If (•)
1
2 is continuous on Θ, we obtain that If (ζ̃

(s)
)

1
2

s→∞−→
If (ζ

(0))
1
2 Pζ(0)-a.s., and La. 2.2.15 and the multivariate version of Slutsky’s theorem (e.g., in Sen &

Singer (1993), Thm. 3.4.3, p. 130) yield

If (ζ̃
(s)

)
1
2
√

s(ζ∗(s) − ζ(0))
D−→ Nk(0, Ik).

In virtue of the mapping (y1, . . . , yk)
′ 7→

∑k
j=1 y2

j , the assertion then follows from the continuous
mapping theorem (e.g., in Billingsley (1999), Thm. 2.7, p. 21). �
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8.2 Notations and Abbreviations

8.2.1 Mathematical Symbols

N {1, 2, ...}
N0 {0, 1, 2, ...}
R (−∞,∞)
R+ (0,∞)
R− (−∞, 0)

R R ∪ {−∞,∞}
Rn ≡ Rn×1 n-dimensional Euklidean space (column vectors)
Rn

+ {(y1, ..., yn)′ ∈ Rn : yi > 0, i = 1, ..., n}
Rn
− {(y1, ..., yn)′ ∈ Rn : yi < 0, i = 1, ..., n}

Rn
< (truncated) cone of strictly increasing numbers in Rn

Rn×k (n× k)-matrices with real-valued entries
Bn borel sets of Rn

A ∩ Bn borel sets {A ∩B : B ∈ Bn} of A ∈ Bn

λn Lebesgue measure on (Rn, Bn)
λn|A restriction of λn to the measurable space (A, A ∩ Bn), A ∈ Bn

×n
i=1Xi cartesian product of X1, . . . ,Xn

X1×n ≡ ×n
i=1X n-dimensional (row) vectors with entries in X

⊗n
i=1Bi product sigma algebra of B1, . . . ,Bn

Bn product sigma algebra ⊗n
i=1B

⊗n
i=1µi product measure of µ1, . . . , µn

µ(n) product measure ⊗n
i=1µ

X : (Ω, A) → (X, B) X : Ω → X is A-B-measurable
f ≡ a function f identically equals the constant a
[µ], µ-a.e.; [P ], P -a.s. µ-almost everywhere; P -almost sure
P→ convergence in probability
D→ convergence in distribution
µ = hν, h = dµ

dν
µ has a ν-density h

11B indicator function of a measurable set B, i.e.
11B(y) = 1 if y ∈ B and 0 otherwise

int(B) interior of set B
cl(B) closure of set B
In n-dimensional unit matrix
v′; A′ transpose of vector v; transpose of matrix A
|A| determinant of matrix A ∈ Rn×n

A−1 inverse matrix of A ∈ Rn×n

∇if , d
dxi

f partial derivative of f : Rn → R
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∇f gradient of f : Rn → R, i.e. the column vector
(

d
dx1

f, ..., d
dxn

f
)′
∈ Rn

of partial derivatives of f

Hf Hessian matrix of f : Rn → R, i.e. the matrix
{

d2

dxidxj
f
}

1≤i,j≤n
∈ Rn×n

of second partial derivatives of f
Df Jacobian matrix of f = (f1, ..., fm)′ : Rn → Rm, i.e. the matrix{

d
dxj

fi

}
1≤i≤m,1≤j≤n

∈ Rm×n

8.2.2 Abbreviations

OS order statistic
gOS generalized order statistic
SOS sequential order statistic

iid independent and identically distributed
inid independent, not necessarily identically distributed

MLE maximum likelihood estimator
UMVUE uniformly minimum variance unbiased estimator
UMP test uniformly most powerful test
UMPU test uniformly most powerful unbiased test
LR test likelihood ratio test
ARE asymptotic relative efficiency

Def. Definition
Thm. Theorem
La. Lemma
Cor. Corollary
Rem. Remark
Ex. Example

p.; pp. page; pages
ff. and following
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