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Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurde eine neuartige dreidimen-
sionale Navigator k-Raum Trajektorie zur Bewegungsdetektion star-
rer Körper für die Magnetresonanztomographie (MRT) entwickelt:
der Lissajousnavigator. Weiterhin wurde ein quantitativer Vergleich
der Genauigkeit des Lissajousnavigators und des sphärischen Navi-
gators [1] durchgeführt.
Bedingt durch die Slewrate Limitierung der MRT-Hardware kann

der sphärische Navigator nicht die gesamte Kugeloberfläche abtas-
ten. Durch die Nutzung einer auf die Kugeloberfläche projizierten,
zweidimensionalen Lissajousfigur kann der Lissajousnavigator diese
Limitierung überwinden. Die lückenlose Abtastung der Kugeloberflä-
che führt zu einer höheren Genauigkeit der Rotationsmessung und zu
einer höheren Isotropie des systematischen Fehlers der Rotationsmes-
sungen. Mit beiden Navigatortrajektorien wurden Simulationen und
Messungen an Phantomen durchgeführt. Unter identischen Messbe-
dingungen und mit identischer Auswertung ist der mittlere absolute
Fehler der Rotationsmessung des Lissajousnavigators 38% niedriger
(0.3◦) als der des sphärischen Navigators (0.5◦). Im Vergleich zum
sphärischen Navigator wurde der maximale Fehler des Lissajousna-
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Zusammenfassung

vigators um 48% reduziert.
Folglich erreicht der Lissajousnavigator ohne offensichtliche Nach-

teile eine höhere Genauigkeit bei der Rotationsmessung sowie eine
höhere Isotropie des Fehlers als der sphärische Navigator. Demzufol-
ge bietet der Lissajousnavigator zwei entscheidende Vorteile, insbe-
sondere für die hochauflösende anatomische Bildgebung.
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Abstract

A novel three–dimensional navigator k–space trajectory for rigid
body motion detection for Magnetic Resonance Imaging (MRI) —
the Lissajous navigator — was developed and quantitatively com-
pared to the existing spherical navigator trajectory [1].
The spherical navigator cannot sample the complete spherical sur-

face due to slew rate limitations of the scanner hardware. By uti-
lizing a two dimensional Lissajous figure which is projected onto the
spherical surface, the Lissajous navigator overcomes this limitation.
The complete sampling of the sphere consequently leads to rotation
estimates with higher and more isotropic accuracy. Simulations and
phantom measurements were performed for both navigators. Both
simulations and measurements show a significantly higher overall ac-
curacy of the Lissajous navigator and a higher isotropy of the rota-
tion estimates. Measured under identical conditions with identical
postprocessing, the measured mean absolute error of the rotation
estimates for the Lissajous navigator was 38% lower (0.3◦) than for
the spherical navigator (0.5◦). The maximum error of the Lissajous
navigator was reduced by 48% relative to the spherical navigator.
The Lissajous navigator delivers higher accuracy of rotation esti-
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mation and a higher degree of isotropy than the spherical navigator
with no evident drawbacks; these are two decisive advantages, espe-
cially for high–resolution anatomical imaging.
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1 Introduction

1.1 Motion Artefacts in MRI

Subject motion causes severe artefacts in Magnetic Resonance Imag-
ing (MRI). In particular, 3D sequences with long acquisition times
can be severely affected by subject motion. Image blurring, not un-
like that known from photography, contrast loss and ghosting arte-
facts are common motion artefacts observed in MRI. Figures 1.1 and
1.2 show a structural scan acquired with a standard protocol used
in many studies. In Figure 1.1, no motion occurred during the scan,
whilst in Figure 1.2 motion did occur. The motion artefacts in Figure
1.2 render the image unusable for diagnostic and research purposes.

1.2 Existing Methods for Motion Correction

Since motion artefacts are such a prevalent problem in MRI, a num-
ber of strategies for motion correction have been developed. The ex-
isting methods for motion correction can be divided into two groups:
1) retrospective motion correction, where the processing is performed

1
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Figure 1.1: Standard MP–RAGE acquisition without motion. The total acquisition time was 9:38
minutes and the spatial resolution was 1mm isotropic.
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Figure 1.2: Standard MP-RAGE acquisition with motion. The total acquisition time was 9:38 min-
utes and the spatial resolution was 1mm isotropic.
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1 Introduction

after the data acquisition has been completed, and 2) prospective mo-
tion correction, where the data are processed in real–time and the
acquisition process is adapted to the motion parameters on the fly.
Retrospective motion correction is widely used in the field of func-

tional MRI. Inter–scan corrections between successively acquired th-
ree–dimensional volumes are performed in the image domain, either
by a least squares grey–scale matching or more elaborate measures
such as mutual information [2], which are methods included into the
software packages SPM [3], AIR [4, 5] and FSL [6]. A problem more
demanding than inter–scan correction, and the topic of this thesis,
is the correction of intra–scan motion. That is, the correction of
motion occurring during the acquisition of a single volume. One ap-
proach for retrospective motion correction for intra–scan motion is
the Propeller technique [7]. Propeller motion correction is performed
in a reciprocal space referred to as the k–space1. During acquisition,
blades consisting of the inner k–space lines of a Cartesian acquisi-
tion are acquired. Each blade is rotated by some amount around
the centre of k–space leading to an overlapping sampling area be-
tween the blades in the central k–space region. The data from the
overlapping areas are used for retrospective motion correction of in–
plane translation and rotation. Whilst Propeller has been shown to
reduce motion artefacts and improve image quality [8], it utilises a
two–dimensional acquisition and is thus limited to in–plane motions.
One of the first prospective motion correction methods for neuro

MRI was PACE [9], which was developed for the correction of inter–
scan motion. An image co–registration similar to the one imple-

1See Section 3.1 for details on k–space.
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mented in SPM [3] is performed on-line during acquisition of a time–
series of images. The position for the next volume acquisition of
the time–series is then adjusted in real–time to the calculated head
position.
Prospective intra–scan correction has also been performed with

external tracking systems [10, 11, 12]. This approach allows a high
update frequency of motion parameters without leading to an in-
crease in scan–time. However, the mouthpiece necessary for external
tracking reduces subject compliance, especially during long measure-
ments.
A different concept for prospective motion correction not relying

on external hardware for motion tracking is that of three–dimensional
navigator echoes. Three–dimensional navigator echoes are essentially
short MR acquisitions optimised for the detection and estimation of
motion. They can be applied in any MRI scanner without the need
for additional hardware and can be included in a variety of sequences
for intra–scan motion correction. However, additional scan time is re-
quired for the navigator acquisitions. Two such navigators discussed
in more detail in this work are the spherical navigator [1] and the
cloverleaf navigator [13]. In particular, the concept of the cloverleaf
navigator is to apply rapid navigators with short acquisition time,
whose individual motion estimates are relatively noisy. Acceptable
motion correction results are claimed to be achieved by repeating
the navigator acquisition frequently during the sequence [13]. The
spherical navigator is the navigator with the highest published accu-
racy today. It covers the surface of a sphere in k–space with a 3D
helical spiral starting from the equator. However, its k–space tra-

5
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jectory imposes a significant drawback on the navigator. Near the
poles of the sphere, the slew rate of the gradient waveform increases
rapidly beyond the scanner limits. As a consequence, the spherical
navigator cannot sample the complete spherical surface, but leaves
the poles unsampled. The incomplete sampling of the sphere can
have a profound influence on the rotation estimation as rotation es-
timation relies on the registration of magnitude patterns. Errors can
occur when features rotate out of the sampled area. Thus, for ro-
tations perpendicular to the windings of the spiral (cross thread), a
reduced accuracy compared to rotations along the windings has been
reported [1].

1.2.1 Aim of this Work

The use of a navigator for prospective motion correction for high–
resolution images sets high requirements for the design of both the
navigator trajectory and the data–processing scheme. For prospec-
tive use, the motion parameters have to be calculated rapidly to feed
back information to the measurement process in real–time and per-
form the gradient and frequency corrections necessary for acquisition
update. Thus, data processing for prospective motion correction is
a performance critical application. Moreover, recent work [14] indi-
cates that motion tracking with a high accuracy is needed for suc-
cessful motion correction. Thus, not only is the performance of the
data processing critical, but an exact navigator is also needed. In-
creased accuracy of motion estimation likely leads to an increase in
navigator acquisition time, which increases the scan–time overhead

6
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for the motion correction and complicates inclusion thereof into dif-
ferent sequences.
The aim of this work is to set the cornerstone for prospective

navigator–based motion correction by developing a three–dimensional
navigator which allows the extraction of exact motion parameters in
a minimum acquisition time. This is to be done, by addressing the
aforementioned fundamental limitations of the spherical navigator.
Thus, an alternative sampling scheme for the spherical surface is to
be developed. The novel k–space trajectory has to be able to sample
the complete spherical surface whilst staying within the slew rate
limits imposed by the hardware. The working hypothesis of this the-
sis states, that whole–sphere coverage will lead to a higher accuracy
and higher isotropy of the rotation estimates, which is desirable for
neuro–imaging applications.

7
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22 Basics of Magnetic
Resonance Imaging

2.1 The Origin of the MR Signal

The basis for all magnetic resonance images is the Nuclear Mag-
netic Resonance (NMR) effect. In this chapter the physical princi-
ples which lead to the generation of a basic NMR signal (the free
induction decay) will be discussed along with the factors influencing
the shape of the signal.

2.1.1 Spin Polarisation

A static magnetic field has an influence on particles with a magnetic
moment. Magnetic moments are randomly oriented when no field
is present and they occupy a single energy state. When a magnetic
field is present, the single state splits into two states with a slight
difference in energy given by

∆E = γ~B0, (2.1)

9



2 Basics of Magnetic Resonance Imaging

where γ is the gyromagnetic ratio, ~ is Planck’s constant and B0 is
the field strength of the static magnetic field.
Occupation of the two energy states satisfies Boltzmann’s statis-

tics. Thus, for a 1.5 Tesla system the spin population difference is
approximately 5 · 10−6. While this is very low, and is the reason
MRI is referred to as a low sensitivity modality, it still means that
in 1 mm3 of brain tissue an excess of approximately 1014 spins exists
in the lower energy state. This difference leads to distortion of the
distribution of magnetic moments, resulting in a net magnetisation
along the direction of the magnetic field which is used to generate
the nuclear magnetic resonance (NMR) signal.1 By convention we
will assume the static magnetic field to be oriented along the positive
z–axis.

2.1.2 Precession

The static magnetic field leads not only to spin polarisation but also
to spin precession around the axis of the magnetic field in analogy to
a spinning top precessing around the axis of the gravitational force.
The frequency of the precession w0 — the Larmor frequency — is
given by the Larmor equation

ω0 = γB0. (2.2)

It is dependent on the gyromagnetic ratio, γ, of the nucleus and is
proportional to the field strength, B0.

1Increasing spin polarisation and thus increasing signal with larger B0 is one reason for the
trend to high and ultra–high field magnets.
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Figure 2.1: Precession of the spins in the static magnetic field. The net magnetisation is oriented
along the z–axis as the transverse components of the spins are uniformly distributed and
cancel out. Figure adapted from [15].

The phases of the individual precessing spins are uniformly dis-
tributed such that, the transverse components of the magnetic mo-
ments cancel and there is no net magnetisation in the transverse
xy–plane but only along the z–direction. Since only magnetisation
in the transverse plane can be detect by the receiver coil, no NMR
signal is present at this stage. See Figure 2.1 for a pictorial descrip-
tion.

2.1.3 Spin Excitation

The polarised and precessing spin system can be perturbed by trans-
ferring energy to the system, by exposing the spins to a radio fre-
quency (RF) field. Due to their quantum mechanical nature spins

11



2 Basics of Magnetic Resonance Imaging

Figure 2.2: Net magnetisation evolution during RF excitation. The magnetisation is rotated away
from the z–axis into the transverse plane. On the right this is shown in a frame rotating
around the z–axis at the Larmor frequency ω0. On the left the time evolution of the net
magnetisation is shown in the laboratory frame. Figure adapted from [16].

can only absorb energy when the frequency of the external RF field
(also referred to as B1 field) has frequency components at the Larmor
frequency of the spins.

An applied RF field at Larmor frequency tips the net magnetisa-
tion from the longitudinal z–direction into the transverse xy–plane.
Thus, due to the precession there now is a rotating magnetic moment
in the xy–plane. This rotating magnetic moment induces a signal in
the coil around the object. This is the raw NMR signal detected
during an MRI experiment. Figure 2.2 visualises the effect of the
RF excitation in the laboratory frame and in the rotating frame of
reference. The rotating frame is a coordinate system rotating around
the axis of the magnetic field (z–axis) at the Larmor frequency ω0.
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2.1.4 Magnetisation Relaxation

Once the equilibrium state of the magnetisation has been perturbed
by the radio frequency pulse and rotated into the xy–plane, it re-
turns back to its equilibrium state. The longitudinal magnetisation
along the z–direction returns to its initial state by exchanging en-
ergy with the surrounding tissue. The transverse magnetisation in
the xy–plane is irreversibly reduced by spin–spin interactions. The
behaviour of the macroscopic magnetisation (excitation, precession
and relaxation) is described by the phenomenological Bloch equation
[17, 18]:

d ~M

dt
= γ ~M × ~B − Mx~ex +My~ey

T2
− (Mz −M0)~ez

T1
(2.3)

where ~ei are the unit vectors along the three principal axes,Mx,y,z are
the magnetisation values along the respective axes, ~B is the magnetic
field vector, ~M is the magnetisation vector, M0 is the equilibrium
value of the longitudinal magnetisation, T1 is the tissue dependent
longitudinal relaxation time, and T2 is the tissue dependent trans-
verse relaxation time. The tissue dependence of the relaxation times
combined with the timing of the MRI sequence generates the contrast
between different tissues.

T1 Decay

T1–relaxation is described by the third term in equation (2.3). Solv-
ing the Bloch equation for the longitudinal magnetisation component
Mz in a static field ~B = B0~ez directly after a 90◦ radio frequency pulse

13
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(Mz(0) = 0) yields the following solution:

Mz(t) = M0 · (1− e−
t
T1 ). (2.4)

After flipping the net magnetisation away from its equilibrium state
along the z–direction into the xy–plane, the magnetisation returns
back to its equilibrium state along the z–direction by exchanging
energy with the surrounding tissue. This process of longitudinal
relaxation is also known as the spin–lattice interaction2.

T2 Decay

Under the same conditions the solution for the transverse magneti-
sation in its complex notation M+ = Mx + iMy is given by:

Mx(t) + iMy(t) = M+(t) = M+(0)eiω0te−
t
T2 . (2.5)

Transient and random local field fluctuations on an atomic level lead
to a loss in phase coherence between the spins. This spin–spin inter-
action decreases the transverse magnetisation in the xy–plane over
time. The characteristic time constant of the transverse magnetisa-
tion decay is T2. For all tissues T2 is shorter than T1.

2.1.5 Signal Equation

The Bloch equation (2.3) describes the magnetisation behaviour as a
function of time and position, but it does not yet describe the signal

2The term spin–lattice relaxation has historical reasons as NMR experiments were used to gain
information on solid state materials, where the surrounding material of the excited spin is a
crystal lattice.
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S(t) which is induced in the coil during an experiment. To obtain the
measured signal in the coil one has to integrate the transverse mag-
netisation M+ over the whole volume. Symbolically this relationship
is described by the signal equation

S(t) = c
∫

V olume

M+(~r, t)d3r. (2.6)

2.1.6 T ∗2 Decay

In most real imaging scenarios the transverse magnetisation returns
to the equilibrium state faster than the T2 values of the tissues sug-
gest. The additional shortening is due to inhomogeneities of the
static magnetic field which lead to an additional loss of phase coher-
ence between the spins. This additional signal loss is assumed to be
an additional exponential decay with the decay constant T ′2 3. The
effective relaxation time, T ∗2 , combines the effects of inhomogeneity–
induced phase coherence loss (T ′2) and spin–spin interactions (T2) to
give 1

T ∗2
= 1

T2
+ 1

T
′
2
. Thus, by definition T ∗2 ≤ T2. The envelope of the

detected transverse magnetisation experiment is given by

M+(t) = M+(0) · e−
t
T∗2 . (2.7)

Figure 2.3 shows the time evolution of the NMR signal, the so–
called free induction decay (FID), received after RF excitation in
the absence of imaging field gradients.

3The assumption that field inhomogeneities lead to an exponential decay is not satisfied for all
experiments.
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Figure 2.3: Free induction decay: the received NMR signal after RF excitation and in the absence
of imaging field gradients. The observed NMR signal oscillates at the Larmor frequency
ω0. The envelope of the signal is an exponential decay with the decay constant − t
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2.2 Spatial Encoding

In the previous sections we described the response of spins to an ex-
ternal magnetic field and the resulting NMR signal. The described
raw signal — the free induction decay — does not yield any infor-
mation about the location of the spins. For the generation of an
image one needs information on spin location. This information can
be gained by using time–varying gradient fields. The gradient fields
used in imaging are generally spatially linear varying magnetic fields
which are superimposed on the static magnetic field. In an MRI
scanner these fields are generated by electrical gradient coils driven
by powerful amplifiers which enable a rapid switching of the gradi-
ents. Compared to the magnetic field which is on the order of 1.5-3
Tesla for clinical scanners and up to 9.4 Tesla for state–of–the–art
research instruments the magnetic field gradients have relatively low
maximum field strengths usually on the order of 80mT with gradient
strengths of 40-80 mT

m for whole body scanners.
There are three main concepts for spatial encoding of NMR signals;

slice selection, frequency encoding and phase encoding.

2.2.1 Slice Selection

Slice selection is used to only excite spins in a single slice of the
imaged object.4

A magnetic field gradient along one direction is turned on. Let us
assume the gradient G is applied along the z–direction. This leads

4Slice selection is a special case of selective excitation. With tailored RF pulses the selective
excitation of more complex shapes is possible.
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z

Magnetic
Field
Gradient

Figure 2.4: Slice selection: a magnetic field gradient here applied along the z–direction leads to a
varying resonance frequency along this direction. An RF pulse with a narrow frequency
band then selectively excites only the spins in a slice perpendicular to this direction.
Figure adapted from [19, p. 106]

to a linear variation in Larmor frequency along this direction.

ω(z) = γ · (B0 +G · z) (2.8)

Now a narrow bandwidth RF pulse with frequency ω is played out
to excite the spins while the gradient is applied. Only the spins in
a given location along z satisfy the Larmor equation. These are the
only spins absorbing energy and contributing to the measured signal.
See Figure 2.4 for graphical representation.
Since all signals after the slice encoding procedure originate from

a single two–dimensional slice of the object, sequences using slice
encoding are referred to as two–dimensional sequences. Sequences
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which excite the entire image volume with each excitation pulse
and instead apply phase encoding (Section 2.2.3) in two dimensions
are referred to as three–dimensional sequences. Generally, three–
dimensional sequences have higher signal–to–noise ratio than their
two–dimensional counterparts.

2.2.2 Frequency Encoding

Once the spins (either from a slice or from the whole volume) are
excited, the raw MR signal can be read out in the presence of a
gradient along a direction (perpendicular to the slice direction in
two–dimensional imaging). The gradient applied at the time of the
signal readout is a frequency encoding gradient or a readout gradient.
It leads to an instantaneous change in the precession frequency of
the spins along the direction of the gradient. There now is a linear
correspondence between precession frequency and location along the
gradient direction. Combined signals measured from all spins can be
Fourier transformed to obtain the frequency spectrum of the signal
(details in Section 3.1).
Let us examine the following two experiments outlined in Figure

2.5. Two spins are located at separate positions z1 and z2 along the
z–axis. In experiment a) a 90◦ RF pulse is applied which tips the
spins into the xy–plane. Then the combined signal is acquired. Ex-
periment b) is identical to experiment a), except now a linear field
gradient is applied along the z direction during signal acquisition.
Fourier transforming the signal from experiment a) will give us a
frequency spectrum with only one peak, corresponding to the signal
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Figure 2.5: Spatial localisation through frequency encoding: on the top the spatial setup with two
spins at discrete locations along the z direction is shown. In experiment a) (middle) an
RF pulse is applied and the signal is read out in the absence of gradients. Only a single
peak is visible in the frequency spectrum at the resonance frequency ω0 of the static
magnetic field. In experiment b) (bottom) a gradient along the z direction is applied
after the RF pulse during signal acquisition. Now, two peaks half the amplitude of the
peak in experiment a) are visible at frequencies ω1 and ω2. Using the Larmor equation
(Eq. 2.8) the position of the spins along the z direction can be calculated from their
resonance frequencies.
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of both spins. No information on the location of the spins can be
extracted. However, in experiment b), the frequency spectrum fea-
tures two peaks at the frequencies ω1 and ω2 — one for each spin —
which are half the height of the peak in experiment a). By using the
Larmor equation (Eq. 2.8) the exact location of these spins can be
obtained from their resonance frequencies.

2.2.3 Phase Encoding

Phase encoding is used to encode the MR signal in one (2D imag-
ing) or two (3D imaging) directions. For phase encoding a gradient
(orthogonal to the slice and frequency encoding direction) is applied
between the excitation pulse and the signal readout. The gradient
moment varies linearly along the phase encoding direction, which
leads to a linear phase shift of the spins along the phase encoding
direction. This constitutes a pseudo frequency encoding along the
phase encoding direction.
Frequency and phase encoding are theoretically equivalent meth-

ods of spatial localisation. The difference between the two localisa-
tion methods is that the frequency encoding gradient is applied dur-
ing the readout whilst the phase encoding gradient is applied before
the signal readout. Additionally, and maybe the most important dif-
ference in practice is, that phase encoding has to be repeated once for
every datum point acquired in the phase encoding direction whereas
during frequency encoding all data points in readout direction can
be acquired with a single encoding step. Thus, phase encoding in
conventional gradient echo and spin echo methods is the encoding
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technique with the highest influence on the acquisition time. To re-
duce acquisition time it is beneficial to minimise the amount of phase
encoding steps needed.

2.3 Sequences

indexsequence MRI is unique in the field of medical imaging methods
as it has the ability to produce images with a large variety of different
contrasts, each of which carries unique information. The physical
basis for the different contrast is the tissue dependent transverse and
longitudinal relaxation times T1 and T2. The multitude of images
are achieved by changing the, the way and the timing in which the
polarized spins are flipped and the signal is read out — the MRI
sequence. Together with the tissue dependent relaxation mechanisms
alluded to above, many different contrasts can be optimized for the
diagnostic question at hand. In the following sections, the basic MRI
sequences relevant to the work in this thesis are introduced. The
most important parameters for contrast variation in the sequences
described in this section are the echo time, TE, the repetition time,
TR, and the flip angle, α.

2.3.1 Gradient Echo

The most basic sequence is the gradient–recalled echo (GRE or GE)
[20]. An RF–pulse — often referred to as α–pulse — tips the net
magnetisation into the xy–plane in the two–dimensional case during
the presence of a slice selection gradient followed by a slice refocus-
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ing lobe. After excitation, a phase encoding gradient is applied in
a direction orthogonal to the slice selection gradient. After a delay
which assures the echo is refocused at the desired echo time (TE)5

the readout gradient is applied along a direction orthogonal to the
slice selection and the phase encoding gradient. The readout gra-
dient consists of two parts: a dephasing part (the negative lobe in
Figure 2.6) and the actual readout part, during which the signal is
acquired. An elegant way to describe and visualize sequences is a
sequence diagram. A sequence diagram is a schematic representa-
tion of a sequence, where the abscissa is the time axis of a sequence
diagram. Along the ordinate, multiple axes are arranged: one for
each event type of the sequence (RF pulses, gradients, readout, sig-
nal). The sequence diagram of a gradient echo sequence is shown in
Figure 2.6. After the echo readout as shown in Figure 2.6, residual
magnetisation can be removed from the imaging process by applying
additional gradients or modifying the phase of the subsequent RF
pulses. This process is known as spoiling. GRE sequences are dif-
ferentiated depending on the spoiling applied after the readout. The
Fast Low Angle Shot (FLASH) sequence [20] is a spoiled gradient
echo, whereas steady state free precession (SSFP) sequences refocus
the available magnetisation in the transverse plane. This leads to
higher signal–to–noise but may lead to a reduced T1 contrast [21].

5The echo time (TE) is the time between the excitation and the refocusing of the echo.
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Figure 2.6: Sequence diagram of a gradient recalled echo sequence: an RF pulse flips the magneti-
sation into the transverse plane in the presence of a slice–encoding gradient. A gradient
along the phase encoding direction is applied. After a delay required for the proper echo
time (TE) a readout gradient is applied and the signal is digitised.
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2.3.2 Spin Echo

Another basic imaging technique is the spin echo sequence which is
based upon Erwin Hahn’s pioneering article "Spin Echoes"[22]. A
sequence diagram of a two–dimensional spin echo sequence is shown
in Figure 2.7. A 90◦ pulse tips the net magnetisation into the xy–
plane with coherent phase. After the initial excitation, the spins
lose their phase coherence as described in section 2.1.6 due to T ∗2

decay. Now a phase encoding gradient is applied. After half of the
desired echo time has passed a 180◦ pulse is applied which flips the
spins over in the xy–plane. Finally the readout gradient is applied
perpendicular to the slice encoding and phase encoding direction.
The 180◦ pulse leads to a rephasing of spins which were dephased
due to static field inhomogeneities (T ∗2 effects). Thus, the signal, S,
is proportional to e−

t
T2 .

2.3.3 MP–RAGE — An Advanced Sequence for
Neuro–imaging

For neuro–imaging, more advanced sequences are available which
yield a superior T1–weighted contrast between grey and white brain
matter and thus depict a better map of the anatomy. One such
sequence heavily used in neuroscience is the three–dimensional Mag-
netisation Prepared Rapid Acquisition Gradient Echo (MP–RAGE)
proposed in [23] and optimised for structural brain imaging in [24].
The sequence utilises a 180◦ inversion pulse followed by a waiting
period for optimal contrast generation which is followed by a gra-
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Figure 2.7: Sequence diagram of a spin echo sequence: a 90◦ RF pulse flips the magnetisation into
the transverse plane. After half of the desired echo time (TE) a 180◦ pulse is applied
which flips the magnetisation over in the transverse plane. This leads to restored phase
coherence of the spins at TE

2 after the 180◦ inversion pulse.
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Figure 2.8: Sequence diagram of a 3D MP–RAGE sequence: the magnetisation is prepared in the
outer phase encode loop with a 180◦ inversion pulse. After an inversion delay time TD1

a GRE type readout is applied for readout in the inner phase encode loop, which is
followed by a recovery time TD2 for contrast generation.

dient echo readout of a full phase encoding cycle of one of the two
phase encoding directions. After the readout another wait period
is necessary to achieve optimal contrast. A sequence diagram of an
MP–RAGE sequence is shown in Figure 2.8.

2.4 MRI Hardware

A complex set of hardware is necessary for the successful generation
of an MR image. In this section a brief description of the hard-
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ware used in state–of–the–art MRI machines is given based on the
description in [25].

2.4.1 The MRI Scanner — an Overview

Figure 2.9 depicts a simplified schematic of a modern, horizontal–
bore MRI scanner. The magnet and patient table are located inside
a room protected from radio frequency noise by a radio frequency
shield. Inside the magnet, the gradient coils are positioned, which
in turn enclose the radio frequency coil. Connections from the hard-
ware room are fed through filters to avoid breaking the RF screening.
A set of computers is responsible for running the MRI experiment,
analysing the data, and displaying the user interface. However, for
simplicity only a single computer is depicted in Figure 2.9. On the
console, the operator specifies and starts the measurements and eval-
uates the images. Then RF pulse shapes are calculated and sent to
the RF amplifier which drives the RF coil. The currents for the
gradient waveforms are calculated and converted to analogue signals
by the digital–to–analogue converter (DAC) and sent to the gradi-
ent amplifiers which feed the gradient coils. Signals from the net
magnetisation in the xy–plane are received through the RF receiver,
digitised by the analogue–to–digital converter (ADC), and send back
to the computer. Finally, an image is reconstructed and displayed
on the console.
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Figure 2.9: Simplified schematic of the hardware of a MRI scanner adapted from [25]. For details
see text.
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2.4.2 The Magnet

The static field magnet of an MRI scanner usually consists of a
solenoid coil of superconducting wire submerged in liquid helium.
The resistance in the superconductor drops to zero when it is cooled
below its critical temperature. Thus, a current once injected into
the superconductor will flow continually without the need for a feed-
ing electrical source. However, energy is still needed to keep the
superconductor below its critical temperature.

2.4.3 The Gradient System

The strong static magnetic field is superimposed by a much smaller
magnetic gradient field which is produced by room temperature gra-
dient coils. The gradient coil system consists of three sets of coils,
one for each physical axis (x, y, z). In a simplified view, the gradient
system of the most common imaging magnet type, the horizontal
bore magnet, consists of a Maxwell pair for generation of a gradi-
ent field in z–direction and a Golay set for gradients along x– and
y–directions6. A schematic of this configuration is shown in Figure
2.10. The gradient coils are driven by powerful, amplifiers with rapid
rise times. In the scanner used in this work, the gradient amplifiers
generate a maximum current of 625A and a maximum voltage of
2000V with a rise time of 200µs.

6The actual gradient coil geometry in a state–of–the–art scanner is much more complex. Gra-
dient coils have a non–trivial geometry and are designed by sophisticated methods, one of
which is the numerical distribution of current [26] on a cylindrical surface to achieve optimal
performance. The interested reader is directed towards [27] for a review of gradient coil design
methods.
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Figure 2.10: Schematic of the gradient coils. A Maxwell pair for the z–axis and a Golay set for
gradients along the x– and y–axis.
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Slew rate Limitations of the Gradient System

Even though the gradient systems have seen tremendous improve-
ments over the last decade, the scanner hardware imposes limits on
the MRI experiments. One such limit imposed by the gradient sys-
tem is the slew rate limit. The slew rate is the rate at which the
gradient field is changed with respect to time. It is measured in mT

m · s .
The slew rate limit of the scanner used in this work was 200 mT

m · s .

Gradient Fidelity

The fast switching of the currents in the gradient coils introduces
eddy currents in conducting material nearby, which reduces gradient
fidelity and changes the static field by introducing a time–varying
component. The effects of eddy currents can be reduced by gradient
pre–emphasis which is performed by many MRI hardware/software
manufacturers. Additionally, a multitude of other factors can influ-
ence the gradient fidelity such as varying amplifier gain factors and
temperature fluctuation. In later chapters it will be shown that cor-
rection of gradient infidelities can improve motion correction results.

2.4.4 The Radio Frequency System

For transmission, the required RF waveform is generated by the com-
puter and converted to an analogue signal by a digital–to–analogue
converter, amplified by the radio frequency amplifier and sent to the
RF coil through a transmit/receive switch. The generated B1 field
is a magnetic field perpendicular to the static B0 field. The B1 field

32



C
ha
pt
er

2

rotates the net magnetisation away from the z–direction into the
xy–plane. During reception, the RF coil picks up the signal because
of the rotating magnetisation in the xy–plane. The signal passes
the transmit/receive switch to the receiver and is digitised by an
analogue–to–digital converter.

2.5 Physiological Limits to the MRI
Experiment

In the previous section, the MRI scanner hardware was briefly intro-
duced and some limitations arising from the gradient hardware were
covered. However, hardware constraints are not the only limitations
imposed on an MRI experiment. The rapid switching of electromag-
netic fields can have physiological effects. The most important ones
are the absorption of energy and the consequential heating of liv-
ing tissue by the RF field and peripheral nerve stimulation by rapid
gradient switching. Both of which are covered in this section.

2.5.1 Specific Absorption Rate

The radio frequency field used to flip the spins in order to generate
an MR signal that can be used for image generation deposits energy
in the body. The specific absorption rate (SAR) was defined as a
measure of how much power is deposited per mass of tissue. The
unit of the SAR is W

kg . To reduce physiological reactions and to
avoid RF burns, MRI scanners adhere strict SAR controls. The
International Electrotechnical Commission (IEC) has set the current
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limits for the SAR in MRI to 8 W
Kg of tissue for any 5 minutes or

0.4 W
Kg for the whole body averaged over 15 minutes [28]. Due to the

shorter wavelength of the RF pulses at high magnetic field strengths,
SAR and SAR hotspots increase. Thus, it is important especially at
high field strengths to design MRI acquisitions such that they use
minimal RF energy.

2.5.2 Nerve Stimulation

According to Faraday’s law of induction the application of time vary-
ing gradient fields during an MRI scan induces an internal electric
current in the imaged person. In [29] it was estimated that a mag-
netic field change of 1 T

s leads to a current density of nearly 1 µA
cm2 .

If the gradients are switched rapidly during an MRI examination,
the induced electromagnetic force can become larger than the nerve
stimulation threshold. This is usually noted as a mild tingling sensa-
tion [30]. The greatest occurrence of nerve stimulation is reported by
gradient switching along the anterior—posterior direction when the
patient is in the supine position [30]. The IEC has set a dB

dt limit of
20 T

s for a gradient switching greater or equal than 120 µs [28]. How-
ever, the standard also supports a controlled operating mode with
higher limits ranging from 20 to 600 T

s depending on the switching
time. This first level operation mode has to be activated explicitly
by the physician.
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3 Theory of
Navigator–Based
Motion Correction

3.1 k–Space

When working with raw MRI data, the concept of k–space is a very
useful auxiliary construct that tremendously eases the description
of MR experiments. k–space is a frequency space reciprocal to the
spatial coordinates. It was first introduced into MRI in 1983 indepen-
dently by Ljunggren [31] and Twieg [32]. The raw (spatial frequency)
data acquired during the MRI scan can be ordered according to the
spatial frequencies they represent. The resulting space is the so–
called k–space, named after the wave vector, ~k, according to which
the signals are sorted. In the context of this thesis the k–space
formalism is of the utmost importance, since the three–dimensional
navigator developed here is, in essence, a highly optimized k–space
sampling pattern. Thus the k–space formalism will be introduced
analytically and pictorially.
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3.1.1 Analytical Description

Analytically, image space and k–space are linked by the Fourier
transform [33]. The Fourier transform decomposes a function, f ,
into a set of periodic functions. The continuous Fourier transform,
F (k), of a one–dimensional function f(x) is given by:

F (k) =
∞∫
−∞

f(x)e−i2πxkdx. (3.1)

It is reversible in the sense that f(x) can be regained by the inverse
Fourier transform which is defined as:

f(x) =
∞∫
−∞

F (k)ei2πxkdk. (3.2)

In the continuous case, the function is decomposed into an infinite
set of periodic functions. However, more relevant for medical imaging
is the discrete Fourier transform of a function, f(x), sampled N times
with equidistant spacing; this is given by:

Fk =
N−1∑
n=0

f(xn)e−
i2π
N nk, (3.3)

where xn denotes the nth sample point and k = 0, ..., N − 1. Its
inverse is given by

fx = 1
N

N−1∑
k=0

Fke
i2π
N nk (3.4)

for n = 0, ..., N − 1.
Rewriting the integral in the signal equation (Eq. 2.6) as a function

of the physical axes for a two–dimensional imaging experiment leads
to:

s(t) =
∫
x

∫
y

Mxye
−i2πkx(t)xe−i2πky(t)ydxdy, (3.5)
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with

ki = γ

2π

t∫
0
Gi(τ)dτ, (3.6)

whereby in (Eq. 3.6), γ is the gyromagnetic ratio of the resonating
nucleus and i denotes one of the imaging directions x or y.
Comparing Equations 3.1 and 3.5 it becomes apparent, that the

measured raw signal s(t) at time t always equals a value of the Fourier
transform of the transverse magnetisation distribution Mxy at a spa-
tial frequency kxy. Thus, the process of MRI can be seen as a prob-
lem of measuring the signal s(t) in such a way that an image can be
reconstructed by employing the Fourier transform[34].
This shows the immense importance of the discrete Fourier trans-

form for imaging in general and MRI in particular. The direct cal-
culation of the discrete Fourier transform from the definition in Eq.
3.3 requires O(N 2) operations[35]. A family of algorithms, the Fast
Fourier Transform (FFT) algorithms [35, 36, 37], are available for effi-
cient numerical calculation requiring only O(NlogN) operations[35].
Because of its speed and robustness, the majority of clinical MRI
applications utilise the Fast Fourier transform for image reconstruc-
tion.

3.1.2 Pictorial Description

The analytical description of k–space given above can be easily vi-
sualized; as mentioned above, spatial frequencies are ordered in k–
space according to their wave vector ~k (see Figure 3.1). Each k–value
represents a spatial frequency of an periodic plane wave. The mag-

37



3 Theory of Navigator–Based Motion Correction

Figure 3.1: Pictorial description of k–space adapted from [19, p. 117] and [38]. Spatial frequencies
are ordered in k–space according to their frequency and direction. The weighting factor
of a single frequency in the original k-space has been increased to create the surrounding
images. The further away from the centre, the higher the frequency of the corresponding
stripe pattern.

nitude value at any given position of k–space is a weighting factor.
This weighting factor quantifies the contribution of the spatial wave
with the given k–vector to the final image. The final image is then
composed by a weighted sum of all the spatial waves belonging to
each frequency in k–space.
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3.2 Effect of Rigid Body Motion on
k–space

Rigid body motion has a well–defined influence on the raw k–space
data. The effects described in this section are the basis for all rigid
body motion estimation and correction techniques operating in the
inverse space. An important property of k–space is the fact that
the effects of translation and rotation of an object can be separated.
Translations only affect the phase and rotations only affect the mag-
nitude of the raw signal.

3.2.1 Translations in k–Space

The effect of rigid body translation on the phase of the signal is
given by the Fourier shift theorem [33]. The Fourier shift theorem
states that if a function f(x) has the Fourier transform F (k), then
the shifted function f(x− a) has the Fourier transform F (k)e−iak.

3.2.2 Rotations in k-Space

A rotation in object space is a rotation of the magnitude data in
k–space around the central point in k–space. The phase signal is not
affected by rotations (apart from signal–to–noise changes due to the
rotated magnitude). In Figure 3.2 a slice of the MNI brain phantom
[39] is shown along with the image of the same slice rotated by 35◦.
The k–space magnitudes of both images are shown on a logarithmic
scale. It is apparent, that the magnitude features have been rotated
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3 Theory of Navigator–Based Motion Correction

the same angle as has the image.

3.3 Currently Available Navigated Motion
Correction Techniques for MRI

The severe limitations imposed by motion on MRI have given rise
to the development of a multitude of motion correction techniques.
This section gives an overview over the most important concepts and
briefly discusses their virtues and drawbacks.

3.3.1 Line Navigators for Breath–Motion Triggering

Historically, one of the first navigator techniques used for motion
correction or rather motion discrimination is the pencil beam navi-
gator [40],[41] employed for the measurement of motion induced by
breathing for thorax and abdominal imaging. Here, the navigator
is not used to track rigid body motion, but rather deformation or
displacement of the internal organs. A line navigator acquisition is
spliced into the imaging sequence which tracks the movement of the
diaphragm. Thus, the data can be either retrospectively ordered into
a k–space which is acquired at the same position in the breathing cy-
cle or the acquisition of the data can be triggered by the diaphragm
being in a certain position range.
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Figure 3.2: The upper row shows a slice from the MNI brain phantom [39] on the left and the
magnitude of the corresponding k–space on the right. The lower row shows the same
slice rotated by 35◦on the left and the magnitude values of the corresponding k–space
on the right. The magnitude values are rotated by the same amount as the brain slice
in the image.
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3.3.2 Three–Dimensional Navigators for Rigid Body
Motion Correction

The well–defined influence of rigid body motion on the raw MR sig-
nal described in section 3.2 prompted the development of advanced
navigators for rigid–body head motion. The development was ini-
tialised with the orbital navigator [42] for in–plane rotation correc-
tion, which was later extended to three dimensions with the spherical
navigator [1] covered in the next section. Another approach related
to the spherical navigator is the cloverleaf navigator [13] which was
developed in 2006.

Spherical Navigator

The spherical navigator covers 85% of the spherical surface in k–
space with a double spiral trajectory. The acquisition begins at the
equator and moves in a spiral fashion towards a single pole with a
constant sampling density spiral given by:

kx(n) = cos(
√
Nπsin−1kz(n)) ·

√
1− kz(n)2 (3.7)

ky(n) = sin(
√
Nπsin−1kz(n)) ·

√
1− kz(n)2 (3.8)

kz(n) = 2n−N − 1
N

, (3.9)

where N is the total number of sampling points in the navigator and
n ranges from 1 to N . A plot of the spherical navigator trajectory is
shown in Figure 3.3. The rationale behind covering a spherical shell
in k–space is the suitability for rotation estimation. Points far away
from the axis of rotation give a better rotation estimate than points
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Figure 3.3: The k–space trajectory of the spherical navigator as proposed in [1]. Eighty–five percent
of the spherical surface is covered in a two–shot acquisition. The trajectory moves in a
spiral fashion from the equator outwards towards a pole cap. With a separate excitation
pulse the second hemisphere is sampled.
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close to the axis. When sampling a spherical surface, no matter
around which axis the object was rotated, there are always sampling
points far away from this axis of rotation.
The spherical navigator was proposed as a two shot method, where

each hemisphere requires its own RF excitation pulse [1]. Due to an
excessive gradient slew rate increase near the poles of the sphere, the
spherical navigator cannot sample the complete spherical surface.
Thus, to stay within the hardware limits of the scanner, the poles
are left unsampled. Figure 3.4 shows the gradients and slew rates
for the spherical navigator with a 15% cut–off at the poles and for a
trajectory covering the whole surface1. The spherical navigator was
originally proposed with a pole cut–off of 15% and a total acquisition
time of 27ms [1].
Non–uniform accuracy of rotation estimation was reported for the

spherical navigator. Cross thread rotations, this are rotations per-
pendicular to the windings of the sampling scheme, are measured
with lower accuracy than rotations along the direction of sampling
[1]. Thus, for the spherical navigator there is one preferential axis
with higher accuracy.

Cloverleaf Navigator

The cloverleaf navigator [13] follows a different approach. Its k–space
trajectory consists of three quarter arcs centred on the k–space centre
and each one oriented perpendicular to one of the principal axes.
The quarter arcs are connected by line navigators which go along

1For clarity the slew rates in Figure 3.4 are plotted for the trajectory going from one pole cap
to the other and not from the equator outwards.
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Figure 3.4: The gradients and slew rates for the spherical navigator. The blue line denotes the
portion of the trajectory used in [1]. Plotted in red are the gradients and slew rates
necessary for whole sphere coverage with the spherical navigator.
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the principal axes (one for each line navigator). The data from the
quarter–arc acquisitions are used for rotation estimation, whilst the
data from the line acquisitions are used for translation estimation
along the three principal axes. The total acquisition time of the
cloverleaf navigator on a Siemens Magnetom Trio is 4.2ms [13]. This
rapid acquisition is an advantage of the cloverleaf navigator, as it can
be included in sequences with a short repetition time (TR) such as
FLASH [20]. No value for the precision of the cloverleaf navigator
measured relative to a gold standard has been reported. However,
it was noted that the individual measurements are relatively noisy
[13].

3.4 The Lissajous Navigator

A dependable motion correction is essential for MRI in general and
especially so for high–resolution imaging. The available navigator
approaches for rigid body motion correction suffer from limitations.
The spherical navigator exhibits an anisotropic accuracy of the ro-
tation estimate. The cloverleaf navigator is fast, but its motion pa-
rameters are noisy. Thus, it is not well suited for high–resolution
imaging. This prompted us to develop a novel, improved navigator
for rigid–body motion correction utilising a Lissajous type trajectory,
which is presented in this section.
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3.4.1 Conventional 2D Lissajous Figures

Conventional Lissajous figures in two dimensions are given by the
following equations:

x = A · sin(α · t) (3.10)
y = B · sin(β · t+ Φ), (3.11)

where x and y denote the displacement along the two orthogonal
coordinate axes, A and B are the amplitude scaling factors of the
sinusoidal motions along x and y, and α, β are the frequencies of
the sinusoidal motion and Φ is the relative phase between the waves.
The resulting trajectory is highly dependent on the frequencies α
and β and is closed when their ratio is a rational number. Figure 3.5
shows an example of a conventional two–dimensional Lissajous figure.
Because of their capabilities to traverse k–space rapidly and within
the slew rate constraints given by the scanner hardware, Lissajous
trajectories have previously been applied to non–Cartesian magnetic
resonance imaging [43],[44],[45].

3.4.2 Lissajous Trajectory on the Sphere

The moderate slew rate requirements and the alternating direction
of k–space traversal resulting from the sinusoids prompted the inves-
tigation of an alternative navigator trajectory utilising a Lissajous–
type trajectory for rigid–body motion correction. The k–space tra-
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Figure 3.5: A conventional two–dimensional Lissajous figure with the parameters A = B = 1,
α = 20, β = 21 and φ = 0.
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Figure 3.6: Plot of the Lissajous navigator trajectory. Yellow are early time points black are late
sample points. The trajectory is a series of "figures of eights" projected onto the spherical
surface, which rotate around the kz–axis. Navigator parameters are nΘ = 20, nΦ = 21,
kr = 0.03.

jectory of the Lissajous navigator is given by the following formulae:

kx = kr · sin(nΘt) · cos(nΦt) (3.12)
ky = kr · sin(nΘt) · sin(nΦt) (3.13)
kz = kr · cos(nΘt), (3.14)

where t ranges from 0 − 2π and nΘ and nΦ are rationale numbers
and kr is the k–space radius of the navigator. Figure 3.6 depicts
the k–space trajectory and gradients of the Lissajous navigator for
nΘ = 20,nΦ = 21 and kr = 0.03. This trajectory has significant
advantages for the application to navigated motion correction for
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MRI. Its consistently moderate slewrate requirements increase rota-
tion estimation accuracy and homogeneity as we shall see in later
chapters.

Reduced Slew Rate Requirements

The Lissajous navigator trajectory has the advantage that the max-
imum slew rate is reached repeatedly during each sinusoidal period
in the navigator. The spherical navigator on the other hand reaches
its maximum slew rate towards the end of the acquisition, near the
pole of the spherical shell, whilst at the equator the slew rate is much
lower. A result of this non–optimal trait of the spherical navigator
is that sampling of the whole sphere is not achievable within the
hardware limits of the system. The Lissajous navigators repeating
slew rate requirements over the whole acquisition, on the other hand,
allow the sampling of the complete sphere while staying within the
hardware limits of current scanners. Figure 3.7 shows the gradients
and Figure 3.8 shows slew rates calculated for the Lissajous navigator
in blue and for the spherical anvigator, with whole sphere coverage,
in dashed red.
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Figure 3.7: Gradients for the Lissajous navigator (blue solid line) and the spherical navigator (dashed
red line) for whole sphere coverage. Both navigators are matched for k–space radius and
acquisition time.
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Figure 3.8: Slew rates for the Lissajous navigator (blue solid line) and the spherical navigator (dashed
red line) for whole sphere coverage. Both navigators are matched for k–space radius and
acquisition time.

52



C
ha
pt
er

4

4 Data Processing
Algorithms

This chapter describes the data processing algorithms used to analyse
the simulated and measured navigator signals presented in this thesis.

4.1 Rotation Estimation

Rotations occurring between successive navigator acquisitions were
estimated from the magnitude signal of the navigator by means of
pattern matching on the spherical surface. All navigators of a scan
or simulation were evaluated against a reference navigator. Usually
the first simulated or measured navigator was chosen as a reference.
Trial rotations were then applied to a subsequent navigator by inter-
polation. The sum of the squared differences for the magnitude signal
for all sample points was minimised using a Nelder–Mead Simplex
optimisation routine [46]. Rotations were represented using the three
Euler angles (α, β, γ) in the notation described in the aeronautical
norm DIN9300 [47]. Figure 4.1 shows a flow chart of the rotation
estimation routine. All computations were performed directly on the
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Reference Navigator
Magnitude Data

M    

Second Navigator
Magnitude Data

M    

Rotated Second Navigator
Magnitude Data

M    

ref 2

2rot

Smoothed
Reference Navigator

(optional)

Smoothing

Minimisation Loop

Figure 4.1: Rotations are estimated by pattern-matching on the spherical surface. The magnitude
data of the navigator is matched to a reference navigator by applying sample rotations
to the data. The sum of squared differences is minimised using a Nelder-Mead Simplex
optimisation routine [46]. For noise reduction a smoothing can also be applied to the
reference navigator.

sampling grid of the reference navigator, rather than on an equally
spaced latitude–longitude grid as in Reference [1], as performing the
operations on the reference navigator grid showed higher accuracy.
All computations were implemented using Matlab (The Mathworks
Inc.).

54



C
ha
pt
er

4

4.1.1 Gridding on the Spherical Surface

To achieve a noise reduction in the navigator data, the required inter-
polation for the rotation estimation was performed using a gridding
on the spherical surface with a Gaussian kernel. By utilising the
spherical distance measurement the two–dimensional interpolation
problem can be reduced to a one–dimensional problem. Following
Bronsteins’s spherical coordinate definition [48], with 0 ≤ r < ∞,
0 ≤ θ ≤ π, and −π < φ ≤ π the shortest distance, d, between two
points, p1 and p2, in radian is given by:

d = acos{cos(θp1) · cos(θp2) + sin(θp1) · cos(φp1 − φp2)}. (4.1)

Thus, gridding to the sampling points of the reference navigator can
be achieved by carrying out the calculation in Eq. 4.2. The mag-
nitude signal Minterp at point pinterp can be calculated from its n
neighbouring points by calculating

Minterp =
∑n
i=1

1
σ
√

2π · e
− 1

2 (diσ )2 ·Mi∑n
i=1

1
σ
√

2π · e
− 1

2 (diσ )2
, (4.2)

where di is the distance between pinterp and pi, Mi is the signal at
point pi, and σ is the width of the Gaussian in radians.

4.2 T ∗2 Correction Algorithm

Rapid T ∗2 relaxation can lead to significant signal decay during the
navigator acquisition. Thus, in case of motion between two naviga-
tor echoes, the signals cannot be exactly matched due to a different
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Figure 4.2: Influence of T ∗2 decay on the navigator under the influence of motion. On the left, the
magnitude of a simulated Lissajous navigator with decay constants appropriate for 1.5
Tesla. The same navigator acquisition rotated 35◦around the z–axis. When rotation is
present, the T ∗2 –decay affects different features in the two navigators. This can cause
errors in the pattern–matching algorithm since the two navigators are no longer identical
objects.

temporal order of k–space feature acquisition. In Figure 4.2 the sim-
ulated magnitude signal of two Lissajous navigators is shown where
one navigator is rotated by 35◦. It is apparent from the figure that
decay during the navigator acquisition modulates the measured mag-
nitude pattern. When motion occurs between two navigator acqui-
sitions, the decay affects different features of the magnitude pattern.
This leads to a discrepancy between the navigator signals, which in
turn can affect the rotation estimation. To reduce this source of
error, a novel decay correction scheme was developed to enable cor-
rection of the decay. The crossing points in the Lissajous trajectory
were utilised to calculate the decay during the acquisition and to
correct its influence on the navigator signal without the necessity for
additional data acquisition.
The algorithm performs the following steps:
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1. The trajectory crossing points are identified.

For every sampling point in the trajectory its closest neighbours
are found. A plane pl1 is defined which is the plane spanned
by the current point, the next sampling point in time and the
origin. Now a plane pl2 is generated which is spanned by one
of the close neighbours, and either its preceding or following
point in time, as well as the origin. The intersection points of
the two planes pl1 and pl2 are calculated. If one of the two
intersection points is located inside of the square spanned by
the four points on the spherical surface, a valid crossing point
has been found. This procedure is repeated for each of the close
neighbours of a sampling point and for all sampling points in
the navigator.

This step has to be performed only once for each navigator
trajectory, not for every navigator measured.

2. Linear interpolation of the magnitude signals Mt1 and Mt2 di-
rectly onto the crossing point pcross.

At each crossing point, pcross, the magnitude values (Mt1,Mt2)
at two time–points (t1, t2) are calculated from the adjacent
points pat1, pbt1, pct2, pdt2 (see Figure 4.3 for definition of points).

3. Estimate the decay constant at the crossing point via a two–
point exponential fit.

Using the interpolated magnitude signals Mt1, and Mt2 at the
crossing point at acquisition times t1 and t2 an exponential
model is used to fit a single exponential decay constant c:
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acquired at t=t
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Figure 4.3: Crossing points in the Lissajous navigator. The magnitude values at the crossing point
(red x) at times, t1 and t2, are calculated from the adjacent sampling points from Branch
1 (pat1, pbt1) measured at time t1 and Branch 2 (pct2, pdt2) measured at time t2 by linear
interpolation.
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Mt1 = Mt0 · ec · t1 (4.3)
Mt2 = Mt0 · ec · t2 → (4.4)

c =
ln(Mt2

Mt1
)

t2 − t1
(4.5)

where Mt0 is the magnitude value at the crossing point pcross
immediately after the RF pulse (t = t0).

4. Finally, the influence of the decay during the signal acquisi-
tion can be corrected by a global decay correction. The mean,
cmean, of all correction factors c in the navigator is calculated.
All navigator magnitude values Muncorr

t are then corrected for
decay using this mean decay constant according to

M corr
t = Muncorr

t · 1
e(cmean · t) , (4.6)

where t is the acquisition time of the magnitude value which
is being corrected, Muncorr

t is the uncorrected magnitude sam-
pled at time t after the RF pulse and M corr

t is the corrected
magnitude value.

It should be noted here that the correction model is of an empir-
ical nature rather than being theoretically derived from the signal
equation. The rationale for the correction is the assumption that in
k–space the T ∗2 –decay can be described with sufficient accuracy as a
constant value.
The application of this algorithm is not limited to the Lissajous

trajectory. All calculation steps can be performed on arbitrary sam-
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pling trajectories on the spherical surface. The only prerequisite is a
trajectory which crosses itself.

4.3 Translation Estimation

Translation was estimated using the phase of the measured navigator
signals on the spherical surface, with the algorithm outlined in [1] and
described in the following paragraphs. The phase change ∆φ caused
by the translation ∆x,∆y,∆z at a k–space position (kx, ky, kz) is
given by:

∆φ = 2π(∆x · kx + ∆y · ky + ∆z · kz). (4.7)

For the n distributed sampling points of a navigator, this gives an
overdetermined system of n equations with three unknowns. This
system can be solved with a weighted least squares inversion. In
matrix formulation the system can be written as

kx = ∆Φ, (4.8)

where k is a nx3 matrix with the rows containing the k–space po-
sitions of the navigator sampling points (kx,ky,kz), ∆Φ is an nx1
vector containing the phase differences ∆Φ for each sampling point,
and x is a 3x1 column vector consisting of the unknown translations
∆x, ∆y, ∆z.
To introduce a weighting by the magnitude value of the sampling

point, the system can be expanded to

(kTWk)x = kTW∆Φ, (4.9)
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where W is a diagonal weighting matrix with the diagonal elements
being the multiplied magnitude values of the reference navigator and
the comparison navigator. Using

Q = (kTWk) (4.10)

we can write this as

x = Q−1kTW∆Φ. (4.11)

This algorithm is valid as long as no phase wraps occur, which
means the phase change for each sample point has to be in the in-
terval of [−π, π]. This holds true if the translations are smaller than
0.5
krad

, where krad is the k–space radius of the navigator. For larger
translations the use of a phase–unwrapping algorithm is necessary.
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5 Quantitative
Motion Estimation
through Simulations

Simulations are an important tool for the development of motion
correction procedures for MRI because they offer an environment
where each parameter can be controlled separately. This allows for
the comparison of different navigator trajectories under the exact
same conditions where a clear gold standard, the ground truth is
known. This results in quantitative comparisons that are hardly
possible without the tool of simulation. However, care must be taken
to bring the model of the simulations in accordance with real–world
experiments. Only when the simulation environment mimics the
real world sufficiently can the insights gained with simulations be
transferred to real–world scenarios.
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5.1 Jülich Extensible MRI Simulator —
JEMRIS

All simulations presented here were performed with the numerical
MRI simulator Jemris [49, 50, 51]. This simulator calculates the
numerical solution of an MRI experiment in a classical model by
solving the Bloch equation (Eq. 2.3) in the rotating frame for each
spin individually. In order to generate the MR signal, integration of
the signal equation (Eq. 2.6) is performed by summing up the signal
of all the simulated spins.

Susceptibility effects were simulated by assigning an off–resonance
to each spin calculated by the method described in [52].

Rigid body rotation was taken into account by rotating the gra-
dient coordinate system for the simulation. Rigid body translation
was achieved by shifting the simulated object by the desired amount.

5.2 Comparison of the Spherical Navigator
and the Lissajous Navigator

To assess the theoretical performance of the Lissajous navigator and
the spherical navigator [1] in the absence of noise, simulations were
performed with both navigator trajectories.
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5.2.1 Simulations & Analysis

The simulated navigator–only sequence consisted of a 90◦ RF pulse
immediately followed by an 18ms three–dimensional navigator read-
out. The navigator trajectories were matched for k–space radius,
maximum slew rate, acquisition time, and number of sampling points
(N=2000). The reported pole cut–off of 15% [1] was used for the
spherical navigator. The corresponding Lissajous navigator was sim-
ulated with nθ = 20 and nφ = 21 for maximum slew rate matching.
To ensure a fair comparison, the spherical navigator trajectory was
adapted to run from pole–to–pole with a single RF pulse.
The object used in the simulations was the MNI brain phantom

[39], (see also Figure 3.2), with white matter and grey matter relax-
ation times appropriate for a 1.5 Tesla environment.
All simulations presented in this chapter were performed using a

small–scale, high–performance computing cluster with up to 64 AMD
Opteron CPUs running Linux.

Rotation

Multiple simulations were undertaken with induced rotations from
0◦ to 20◦ in steps of 1◦ around all three principal axes. Analysis was
performed with the algorithms described in Section 4.1 implemented
in Matlab.

Translation

For the translation estimation, multiple simulations with translations
along the principal axes from 0m to 20mm along the three principal
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axes were calculated. Analysis was performed using the algorithm
described in Section 4.3.

5.2.2 Accuracy of Rotation Estimation

The mean accuracy of rotation estimation for the spherical navigator
was estimated to 0.45◦ with a maximum error of 3.0◦ at a rotation
angle of 20◦. For the Lissajous navigator, a mean absolute error of
0.22◦ was achieved with a maximum error of 1.0◦ at a rotation of
14◦ around the y–axis. Figure 5.1 depicts the absolute rotation es-
timation error as a function of rotation angle for the spherical and
Lissajous navigator for all three principal axes. Figures 5.2 - 5.4 de-
pict the absolute estimation errors on the off–rotation axes. For the
spherical navigator the error increases steadily with rotation for both
on– and off–rotation axes. The Lissajous navigator exhibits a more
complex error structure were the error increases with rotation–angle
until it reaches a maximum and decreases again at larger rotations.
As we will see in later chapters, this error structure is characteristic
for the Lissajous navigator and will be discussed in more detail in
Section 7.8.

5.2.3 Accuracy of Translation Estimation

Figures 5.5 and 5.6 show the accuracy of translation estimation as a
function of translation distance for both the spherical and the Lis-
sajous navigator at k–space radii of 0.03 1

mm and 0.07 1
mm . At a radius

of 0.03 1
mm the achieved accuracy of translation estimation performs
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Figure 5.2: Absolute rotation estimate errors on the off–rotation axes for rotations around x.

Figure 5.3: Absolute rotation estimate errors on the off–rotation axes for rotations around y.
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Figure 5.4: Absolute rotation estimate errors on the off–rotation axes for rotations around z.

reliably for both navigators with a mean translation estimation er-
ror of 0.0008mm for the spherical navigator and 0.0004mm for the
Lissajous navigator. However, at a k–space radius of 0.07 1

mm — the
optimal radius for rotation estimation (see Table 5.1) — both nav-
igators suffer from large errors in the translation estimates due to
phase wrapping. The mean absolute translation errors are 6.2mm
and 6.7mm for the spherical and Lissajous navigator, respectively.

5.3 Influence of Susceptibility, Signal Decay
and Chemical Shift on the Rotation
Estimation

In Table 5.1 the influence of susceptibility, relaxation decay and
chemical shift of fat on the accuracy of rotation estimation are given
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Figure 5.5: Translation estimation error as a function of translation for all three principal axes for
the spherical (red, dotted) and Lissajous navigator (blue, solid) for a navigator k–space
radius of 0.03 1

mm .
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Figure 5.6: Translation estimation error as a function of translation for all three principal axes for
the spherical (red, dotted) and Lissajous navigator (blue, solid) for a navigator k–space
radius of 0.07 1

mm
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as a function of the k–space radius of the navigator. Ideal indicates
an ideal navigator where the relaxation times T1 and T2 were set
to infinity (without relaxation) and no susceptibility–induced off–
resonances were taken into account. Susceptibility denotes a naviga-
tor where T1 and T2 were set to infinity, but susceptibility induced
off–resonances were included. Decay specifies a navigator where the
relaxation times T1 and T2 were values appropriate for a 1.5 Tesla
environment without accounting for susceptibility effects. All val-
ues in the row Chemical Shift (CS) were obtained with navigators
simulated without relaxation and susceptibility effects but with an
off–resonance associated to all spins belonging to fat. The rows Decay
+ Susceptibility and Decay + CS + Susceptibility are simultaneous
contributions of the effects.
The optimal radius for the accuracy of the rotation estimation is

found at a radius of 0.07 1
mm . Further, susceptibility effects have the

largest influence on the accuracy of the navigator. The influence of
susceptibility effects decreases with growing radius. However, even at
large radii, susceptibility–induced field inhomogeneities remain the
dominant effect limiting the accuracy of rotation estimation. Differ-
ent tissue susceptibilities lead to inhomogeneities in the static mag-
netic field. Thus, these effects are apparent at all k–space radii.
Signal decay, on the other hand, leads to a larger error at very small
k–space radii, while the influence of the effect rapidly decreases to-
wards larger k–space radii. One explanation for the large influence of
decay on the navigator signal near the k–space centre is the nature
of the decay. Specifically, signal decay occurs in all tissues and it
decays with different decay constants depending on the tissue, but
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some amount of decay is present in each volume element. Thus, in
k–space a large part of the decay is represented near the low, central
spatial frequencies, where large contrast features of the image are
encoded.
Some of these error sources cancel each other out. Thus, the com-

bined error in the simulation with the highest real–world applicability
— those with susceptibility effects, signal decay and chemical shift —
do exhibit results better than one would expect from looking at the
simulations where each of the effects has been considered separately.

5.4 Influence of Noise on the Accuracy of
Rotation Estimation

In order to investigate the influence of noise on the accuracy on
the rotation estimation of the Lissajous navigator, noise was added
to the navigators simulated with susceptibility, decay and chemical
shift with a radius of krad = 0.07 1

mm . Gaussian noise was added to
real and imaginary part of the navigator before rotation estimation.
The signal–to–noise ratio (SNR) of the navigator was calculated as
the signal magnitude in the centre of k-space at the time immedi-
ately after the RF pulse divided by the standard deviation of the
Gaussian distribution. Please note this is a more rigorous definition
of SNR than commonly used in imaging. In imaging, usually the
mean signal level in the imaged object is used in the numerator. Ap-
proximated, this would be the equivalent of the signal magnitude in
the centre of k-space at the echo time, not at the time immediately
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SNR Spherical Navigator Lissajous Navigator
100 0.5◦ ± 0.4◦ 0.2◦ ± 0.4◦

200 0.5◦ ± 0.2◦ 0.2◦ ± 0.2◦

300 0.5◦ ± 0.1◦ 0.2◦ ± 0.1◦

Table 5.2: Mean absolute error and mean standard deviation of the errors for the spherical navigator
and the Lissajous navigator for different signal-to-noise ratios. The influence of noise
on the precision two navigators is similar, however the Lissajous navigator remains more
accurate due to its lower systematic error.

after the excitation pulse. However, since the navigator itself does
not have an echo time, this more rigorous definition seems appropri-
ate. Simulations were carried out for an SNR of 100, 200 and 300 for
rotations from 0◦ to 20◦ around all principal axes. Sixty simulations
were performed per rotation angle. Both the spherical and the Lis-
sajous navigator show identical mean standard deviations and thus
similar influence for all three tested SNR (see Table 5.2). However,
the Lissajous navigator retains its lower systematic error and thus
outperforms the spherical navigator. Detailed error curves are shown
in Figures 5.7-5.10.

5.5 Advanced Lissajous Navigator with T ∗2
Correction (ALIGAT2R)

As seen in Section 5.3, signal decay is one dominant factor influencing
the accuracy of the navigator. To counteract this influence and regain
some of the accuracy lost due to the signal decay, the T ∗2 –correction
algorithm described in Section 4.2 was developed and implemented.
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Figure 5.8: Absolute error of the rotation estimates on the off–rotation axes for rotations around x
with SNR = 300.

Figure 5.9: Absolute error of the rotation estimates on the off–rotation axes for rotations around y
with SNR = 300.
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Figure 5.10: Absolute errors of the rotation estimates on the off–rotation axes for rotations around
z with SNR = 300.

5.5.1 Simulations & Analysis

Testing the ability of the algorithm to correct signal decay that has
occurred is difficult on measured data. Measured data necessarily
includes decay. Hence simulations provide a gold standard where
we have control over the decay mechanisms and can perform two
simulations: one with a set of relaxation times appropriate for a 1.5
Tesla system and one ideal simulation with decay times set to infinity.
Thus, ideal, non-relaxed data can be obtained. With these data,
the ideal navigator magnitude signal was compared to the corrected
navigator magnitude signal and the performance of the correction
algorithm was evaluated.
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k–space Radius Optimisation

In order to find the optimal k–space radius for the T ∗2 –correction
algorithm, the correction procedure was performed on a single nav-
igator at each simulated k–space radius. This navigator was then
point–wise compared to an ideal navigator without the influences
of decay, susceptibility and chemical shift. The radius where the
sum of squared differences between the ideal navigator and the cor-
rected navigator (normalised to the mean magnitude value of the
ideal navigator) was minimal was identified and used for the subse-
quent rotation estimation analysis.

Rotation Estimation Evaluation

At this radius, rotation estimation experiments were performed with
navigators rotated around the three principal axes from 0◦ to 20◦

in steps of 1◦. Noise was added to the navigators (SNR=300) as
described in the previous section and rotation estimation and decay
correction was performed as described in Chapter 4. Thirty repe-
titions were performed for each rotation angle. The procedure was
performed once, for the navigators simulated including the effects of
decay and chemical shift, and once for the navigators simulated with
decay, chemical shift and susceptibility effects.

5.5.2 Results

The k–space radius at which the correction algorithm performs op-
timally was found to be 0.03 1

mm . At larger k–space radii the sum of
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Figure 5.11: Ideal navigator without T ∗2 –decay and without chemical shift.

squared differences between ideal and corrected navigator increased.
This radius is, of course, object dependent, or more specifically de-
pendent on the relaxation times and their distribution in the object.
The optimal radius for the decay correction algorithm is significantly
smaller than the optimal radius for rotation estimation when no de-
cay correction algorithm is used (see Section 5.3).

In Figure 5.11 the magnitude pattern of an ideal navigator without
the influence of decay at the optimal radius 0.03 1

mm is plotted. The
corresponding simulation with decay constants appropriate for 1.5
Tesla is plotted in Figure 5.12. Decay artefacts are clearly visible
in the area where early threads are crossed by late threads. These
artefacts are reduced in Figure 5.13, which shows the navigator from
Figure 5.12 with additional T ∗2 –decay correction. The correction al-
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Figure 5.12: Uncorrected navigator with relaxation artefacts.

gorithm achieved a reduction of the difference between corrected and
ideal navigator from 11.1% (uncorrected) to 3.6% (corrected).
A rotated comparison navigator can be transformed back to the

reference navigator position by applying the inverse of the true ap-
plied rotation. The difference between this reverse transformed navi-
gator and the reference navigator indicates how well the true rotation
can be recovered. The smaller this difference is, the better the opti-
misation will be. Ideally, the difference would be zero at every point
of the navigator. The absolute difference for a rotation of 9◦ around
the y–axis is plotted in Figure 5.14 for the uncorrected navigator
and in Figure 5.15 for the corrected case. In the corrected case, the
difference is lower.
Figures 5.16-5.19 show the absolute error of the rotation around
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Figure 5.13: T ∗2 –decay corrected navigator.

the x–, y–, and z–axes as a function of rotation angle for the naviga-
tors with decay and chemical shift effects only. On all three axes, the
correction technique significantly reduces the error of the rotation es-
timation. For all three rotation axes combined, the mean absolute
error of the rotation estimation is 0.9◦ for the uncorrected navigator
and 0.3◦ for the corrected navigator.
A depiction of the absolute error of the rotation estimates for

navigators including susceptibility effects, in addition to decay and
chemical shift, can be found in Figures 5.20-5.23. Here, for all three
rotation axes combined, the mean absolute error of the rotation esti-
mation is 1.8◦ for the uncorrected navigator and 1.9◦ for the corrected
navigator.

82



C
ha
pt
er

5

Figure 5.14: This absolute difference between the reference navigator and a rotated (9◦ around
y–axis) navigator interpolated back to the reference position. Reference and rotated
navigator are uncorrected.

83



5 Quantitative Motion Estimation through Simulations

Figure 5.15: The absolute difference between the reference navigator and a rotated (9◦ around y–
axis) navigator interpolated back to the reference position. Reference and rotated
navigator are decay corrected.

Figure 5.16: Absolute error of the rotation estimates on the axis of rotation for the uncorrected
navigator (red, dotted), and the corrected navigator (blue, solid) with SNR = 300.
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Figure 5.17: Absolute error of the rotation estimates on the off–rotation axes for rotations around
x for the uncorrected navigator (red, dotted), and the corrected navigator (blue, solid)
with SNR = 300.

Figure 5.18: Absolute error of the rotation estimates on the off–rotation axes for rotations around
y for the uncorrected navigator (red, dotted), and the corrected navigator (blue, solid)
with SNR = 300.
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Figure 5.19: Absolute error of the rotation estimates on the off–rotation axes for rotations around
z for the uncorrected navigator (red, dotted), and the corrected navigator (blue, solid)
with SNR = 300.

Figure 5.20: Absolute error of the rotation estimates on the axis of rotation for the uncorrected
navigator (red, dotted), and the corrected navigator (blue, solid) with SNR = 300
simulated with decay, chemical shift, and susceptibility effects.
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Figure 5.21: Absolute error of the rotation estimates on the off–rotation axes for rotations around
x for the uncorrected navigator (red, dotted), and the corrected navigator (blue, solid)
with SNR = 300 simulated with decay, chemical shift, and susceptibility effects.

Figure 5.22: Absolute error of the rotation estimates on the off–rotation axes for rotations around
y for the uncorrected navigator (red, dotted), and the corrected navigator (blue, solid)
with SNR = 300 simulated with decay, chemical shift, and susceptibility effects.
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Figure 5.23: Absolute error of the rotation estimates on the off–rotation axes for rotations around
z for the uncorrected navigator (red, dotted), and the corrected navigator (blue, solid)
with SNR = 300 simulated with decay, chemical shift, and susceptibility effects.

5.5.3 Discussion

The proposed T ∗2 auto–correction technique for the Lissajous nav-
igator successfully compensates large amounts of the signal decay
throughout the acquisition time in the absence of field inhomogeneities.
Our simulations show that the method increases the accuracy of ro-
tation detection by up to 68% relative to the uncorrected navigators.
These results are achieved at a k–space radius where the correc-

tion algorithm performed optimally; the results may vary at differ-
ent k–space radii. However, the results reveal that using the de-
veloped T ∗2 –correction algorithm does improve the accuracy of rota-
tion estimation in homogeneous fields. The achievable improvement
in the magnitude data of the navigator is largest at small k–space
radii. Here, reasonable accuracy of the rotation estimation cannot
be achieved without the use of the decay correction algorithm.
The k–space radius dependency of the correction algorithm, as
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shown by the radius optimisation, is likely to be a result of the em-
pirical nature of the model, which is not rooted in a derivation from
the signal equation. The simulation results suggest that the model
only holds true at small k–space radii. While measuring at the low
k–space radius does not give the overall best performance of the
rotation estimation, it does open the possibility for further improve-
ments. At lower k–space radii, an increased number of threads can
be sampled in the same acquisition time which improves the radial
resolution and in turn is likely to increase the rotation estimation
further. This will be subject of further investigation. Translation es-
timation also benefits from the decreased k–space radius because the
range of the translation estimate is limited by phase wraps occurring
at translations larger than 0.5

krad
(see Section 4.3). Thus, a smaller

k–space radius, krad, increases the tracking range over which trans-
lational motion can be tracked. However, the correction procedure
is very sensitive to B0 field inhomogeneities. When B0 modulations
caused by susceptibility are included in the simulation, the correction
results in a 7% loss of accuracy of the rotation estimation compared
to the uncorrected navigator. The B0 inhomogeneities modulate the
decay and it deviates from an exponential pattern. Thus, when this
modulation is sufficiently large, the correction scheme is not able to
model the decay and correctly compensate for it.
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6 Measurement and
Optimisation of the
Fidelity of the
Navigator
Trajectory

6.1 Trajectory Measurement

The simulated data presented in the previous chapter assumed an
ideal navigator trajectory. However, in real world experiments de-
viations from the ideal trajectory can be caused by a multitude of
effects. Among others eddy currents, gradient delays, gradient ampli-
tude non–linearity and gradient hysteresis [53] can affect the naviga-
tor trajectory. Thus, it is advisable to measure the k–space trajectory
fidelity of the navigator with one of the available k-space trajectory
measurement techniques[54, 55, 56].
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6.1.1 Method

k–space trajectory measurements of the Lissajous navigator trajec-
tory were performed using the method proposed by Duyn et al. in
[55]. This technique was inspired by the method developed by Ma-
son et al. [54], who used a dedicated phantom with an isolated spin
population measured at different positions in the scanner to map
k–space trajectories. Instead of using a dedicated phantom, Duyn
et al. simply used conventional slice selection. Only two measure-
ments are required for each of the physical gradient axes. One is a
reference measurement consisting of only the slice encoding process
and subsequent readout without gradients. The second measurement
consists of the same slice encoding followed by a navigator gradient
for the investigated axis. If the slice encoding direction is chosen
to be the same direction as the navigator gradient and the slice is
positioned off–centre, the phase difference ∆Φi(t) between those two
measurements is linked to the k–space trajectory ki(t) by

∆Φi(t) =
t∫

0
γGi(t) ·Di · dt = Di · ki(t), (6.1)

where γ denotes the gyromagnetic ratio, Gi(t) is the spatial encoding
gradient amplitude, i is the encoding direction (the physical x–, y–
or z–axis) and Di is the distance of the slice to the gradient isocentre.
Thus, for each axis the actual k–space trajectory can be calculated
by dividing the measured phase differences by the off–centre distance
of the slice:

ki(t) = ∆Φi(t)
Di

. (6.2)
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6.1.2 Measurements

Measurements where performed on a Magnetom Tim Trio (Siemens
AG, Medical Solutions, Erlangen, Germany), a 3 Tesla system with
a single channel transmit/receive coil manufactured by Aurora Instr.
Inc., OH 44202 USA. A spherical phantom of diameter Dphantom =
170mm filled with a solution of 1.25g NiSO4 x 6 H2O per 1000g
H2O was placed in the isocentre of the magnet. For each gradient
direction the reference and encoding acquisitions were interleaved
and repeated 32 times for signal averaging. Measurements were per-
formed for the three physical gradient axes. The navigator parame-
ters were nφ = 20, nθ = 21 and krad = 0.8cm−1, number of sampling
points Nsamp = 8000, and a total acquisition time of tacq = 8ms.
The slice thickness was 2mm, and the slice position was located
40mm off–centre. To reduce relaxation artefacts a repetition time of
TR = 500ms was chosen. The measured phase was unwrapped using
the ”unwrap” command in Matlab prior to calculating the k–space
trajectory according to Equation 6.2. Additionally, the output of the
gradient amplifier DAC was measured using a Textronic DPO 4104
digital oscilloscope. All calculations were performed using Matlab
(The Mathworks Inc., Natick MA, USA).

6.1.3 Results

The ideal k–space trajectory and the trajectory measured with 64
averaged phase measurements are shown in Figure 6.1.
It is apparent from the figure that the measured trajectory devi-

ates significantly from the ideal trajectory. The angular location of
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Figure 6.1: The ideal (solid, grey) and measured (dashed, red) navigator trajectory along the kx,
ky and kz axis.
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Figure 6.2: Measured k–space trajectory radius as a function of sampling point. Fluctuations in the
range of ±6% occur.

the sampling points on the sphere deviates from the ideal points.
Moreover, variations of the k–space radius occur during the acquisi-
tion. Figure 6.2 shows the measured k–space radius of the Lissajous
navigator. Deviations of ±6% from the mean radius are visible.

6.2 Trajectory Correction

For imaging experiments it is not always mandatory to measure ex-
actly on the theoretical trajectory. Images can often be reconstructed
by knowing the actual trajectory and including this knowledge into
the reconstruction process [57]. In case of the Lissajous navigator,
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this approach would be feasible if the variation in the k–space tra-
jectory was limited to deviations in the angular coordinates. Due
to the amount of sampling points on the surface of the sphere, a
small angular deviation from the calculated trajectory would have
little influence, as long as the deviation is known, and the actual
trajectory is input into the estimation process. Thus, interpolations
on the spherical surface would be affected only minimally. Radius
variation on the other hand, cannot readily be corrected in post pro-
cessing. They lead to a modulation of the signal magnitude. Since
there are no other sampling points in radial direction which could
be used for interpolation, this effect cannot be corrected. Thus, it
is necessary to compensate the effects of the gradient infidelities de-
scribed in Section 6.1. For this purpose the novel iterative gradient
correction scheme described in this section was developed.

6.2.1 Method

To develop a correction method which yields the expected results, the
measurement process in a current MRI scanner has to be examined
in closer detail. The process is shown schematically in Figure 6.3.
The MRI scanner is programmed using an ideal gradient shape.

However, the ideal waveform is not the waveform which is finally
generated by the gradient amplifiers. Internally, the scanner software
first adjusts the ideal gradients to compensate undesired influences
such as gradient delays and eddy currents. This adjusted gradient
shape is the input function to the gradient amplifiers. Most of these
correction methods are proprietary and there is little or no infor-
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Figure 6.3: System manufacturers of MRI scanners include gradient correction schemes into their
systems. The scanner pre–distorts the ideal gradients in the manufacturer’s correction
algorithms to yield a gradient close to the ideal gradient in the measured object. A
custom gradient correction is performed before the manufacturer gradient correction
delivering a different input to the manufacturer correction. Thus manufacturer and
custom correction procedures are not entirely independent.
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Figure 6.4: Predistorted navigator k-space trajectory reconstructed from the amplifier DAC output
of the scanner from three different perspectives. The first order shims (gradient offsets)
were subtracted prior to reconstruction. In the absence of scanner pre–emphasis correc-
tions an ideal Lissajous navigator would be shown. The distortions show the extend of
corrections applied by the scanner.

mation about them. Due to the system design, a custom gradient
correction scheme can only be introduced before the black–box man-
ufacturer correction (see Figure 6.3). However, this has the effect,
that the manufacturer calculation receives a different input and po-
tentially performs a different correction than with the ideal gradient
shape as input. Since the manufacturer correction significantly al-
ters the k–space trajectory (see Figure 6.4), unexpected performance
might occur.
To counteract this effect, while minimising any remaining k–space

trajectory infidelities, a novel iterative correction scheme was devel-
oped. The algorithm performs the following steps:

1. Measurement of the gradient shapes in the object by excitation
with ideal (desired) gradients.

2. Filtering of measured gradients with a Butterworth filter [58]
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for noise reduction.

3. Calculation of gradient delays as a function of time over the
whole gradient shape.

4. Compensate measured and filtered gradient by the delays cal-
culated in Step 3.

5. Calculate difference between ideal navigator and post processed
(filtered & delay compensated) gradient.

6. Add difference to excitation gradient shape used in Step 1 as
correction factor.

7. Pre–warp gradient from previous step by the calculated gradi-
ent delay factors.

8. Repeat procedure with the pre–warped and amplitude cor-
rected gradient as excitation gradient.

During the second iteration no delay correction is necessary as
this is performed reliably during the first iteration.

A flow–chart of the correction procedure is shown in Figure 6.5.
Trajectory correction measurements were performed on a Magne-

tom Tim Trio using the same phantom and navigator settings as
described in Section 6.1.2. The measured raw data were exported of-
fline and processed using Matlab. The calculated, corrected gradient
shapes were used for a second trajectory measurement. These data
were used for calculation of the second iteration correction factors.
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Figure 6.5: The iterative gradient correction algorithm measures the gradients in the object when
excited with the ideal (desired) gradients. The measured gradients are filtered, and then
the gradient delay is calculated as a function of time. The measured gradients are warped
with those delay factors. Then the difference to the ideal scheme is calculated. This
difference is added on top of excitation gradient as correction factor. Finally, the result
is pre–warped to compensate for the measured gradient delays. The process is repeated
for a second iteration with the corrected gradient as excitation pattern.
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Finally, a third trajectory measurement was undertaken to validate
the results of the correction procedure.

6.2.2 Results

Gradient Delays

Figure 6.6 shows the measured gradient delays as a function of time
for the uncorrected navigator gradient (left) and for the navigator
gradients after the first iteration of the correction procedure (right).
The gradient delay is not a constant factor during the complete time
of the navigator gradient, but rather a linearly growing delay is ob-
served. The residual gradient delays after the correction process are
below ±1µs and exhibit little change over the course of the naviga-
tor. The slightly larger spread of the measurements of the z–gradient
delay is a result of the lower frequency of the navigator gradient
on this axis. The delay estimation algorithm performs better with
higher frequency gradients.
This surprising result of a linearly–varying gradient delay was con-

firmed by a second, independent method (data shown in Figure 6.7):
during the acquisition of Lissajous navigators, two of the three phys-
ical gradients were disabled. This leads to multiple traversals of
the k–space centre during each acquisition. Every time the k–space
centre is traversed a local signal maximum occurs in the magnitude
data. From these acquisitions gradient delays were calculated by
calculating the time difference between the local signal maxima and
the theoretical time of k–space centre traversal. These measurements
confirmed the observed linear variation in gradient delay throughout
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Figure 6.6: Measured gradient delays by trajectory measurement: on the left, the measured gradient
delays of the uncorrected navigator gradient are shown for the three logical gradient
axes. On the right, the residual gradient delays after the first iteration of the correction
process are shown. A significant reduction of the gradient delays is apparent.

the navigator acquisition.
A counterintuitive result is the negative gradient delay (the mea-

sured gradient precedes the ideal gradient!) towards the end of the
navigator acquisition. A likely explanation for this is the manufac-
turer’s gradient delay correction. Assuming a linearly–varying gradi-
ent delay is present and only a constant delay factor is available for
correction, how would a reasonable delay correction factor be cho-
sen? Since we are considering imaging the most important part of
the raw data is the echo centre. Thus, choosing the delay correction
factor such that the delay is zero at the echo centre is an obvious
choice. In most imaging acquisition the echo occurs at the centre of
the gradient, unless an asymmetric echo is used. Thus, for a 8ms
navigator gradient one would expect little or no delay around an
acquisition time of 4ms.
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Figure 6.7: Measured gradient delays by echo shift: the measured gradient delays of the uncorrected
navigator gradient are shown for the three logical gradient axes along with their regression
lines.
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Trajectory Fidelity

Figure 6.8 shows the ideal trajectory on the left, the measured uncor-
rected trajectory in the middle and the corrected trajectory on the
right. A zoomed view of the pole–cap is shown in Figure 6.9. The
corrected trajectory shows less deviation from the ideal trajectory
than the uncorrected one.
Figure 6.10 shows the ideal radius, the uncorrected measured ra-

dius and the measured, corrected radius after scaling to an identical
mean for better comparison. Figure 6.11 shows a zoomed view of
Figure 6.10.
A small modulation of ±0.9% was introduced in the radius of

the Lissajous navigator. The effectiveness of the iterative correc-
tion method can be seen on the ability to reproduce this modula-
tion. Compared with before correction, the mean absolute error of
the radius of the corrected trajectory was reduced by one order of
magnitude from 2.1% to 0.2%, while the maximum error was reduced
from 7.4% to 1.0%.
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Figure 6.9: Zoomed view of the ideal (grey, left), uncorrected (red, middle), and corrected (blue,
right) navigator k–space trajectory. The iterative k–space trajectory correction method
clearly improves the trajectory fidelity.

Figure 6.10: k–space radius deviations for the ideal (grey) trajectory, the uncorrected measured
(red) trajectory and the corrected (blue) trajectory. All curves were normalised to the
identical mean radius for better comparison.

106



C
ha
pt
er

6

Navigator sampling point

N
or

m
al

is
ed

 r
ad

iu
s 

[a
.u

.]

4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03 ideal

uncorrected

corrected
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of Figure 6.10.
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7 Experimental
Comparison of the
Lissajous Navigator
and the Spherical
Navigator

The developed Lissajous navigator trajectory was implemented on
the Siemens Magnetom platform and compared experimentally to an
implementation of the spherical navigator under identical conditions.
The procedures and results of this investigation are described in this
chapter.

7.1 Navigator Sequence

The navigator acquisition was spliced into a conventional three–
dimensional FLASH sequence such that before each k–space line ac-
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Figure 7.1: Sequence diagram of the modified navigator FLASH sequence. Before the acquisition of
each FLASH line, a navigator is measured with a separate RF pulse. Navigator and line
acquisition have identical repetition time, TR.

quisition, a navigator was acquired with a separate RF pulse. The
sequence diagram of the sequence used is given in Figure 7.1. Both
FLASH line readout and navigator acquisition used identical repeti-
tion times, TR.

7.2 Virtual Rotation

Establishing a gold standard for rotations in an MRI scanner is prob-
lematic. Automated mechanical systems are often incompatible with
the high magnetic field strength and are prone to introduce electrical
noise in the measurements. Furthermore, a high degree of accuracy
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on the order of a tenth of a degree is needed, which can be chal-
lenging to achieve even when ignoring the problem of magnetic field
compatibility.
One approach not relying on external hardware is to introduce

virtual rotations. That is, the imaged object is kept steady while
the gradient waveforms are rotated. One drawback of this method
is that the inhomogeneities of the static magnetic field and the RF
excitation field on the rotation estimation are likely to be underes-
timated. On the other hand, the best possible gold standard for the
rotation parameters is obtained: the exact input value. For this rea-
son, virtual rotations were implemented into the sequence described
in Section 7.1. The rotation parameters used throughout the mea-
surements presented in this chapter consisted of sinusoidal rotations
between -30◦and 30◦. Rotations were applied around a single phys-
ical gradient axis at a time, that is, sequentially for all three axes.
Figure 7.2 depicts a plot of the virtual rotation parameters used. For
measurements with more than 300 navigators, the rotation pattern
was repeated until the end of the measurement.

7.3 Two–Chamber Phantom

All measurements were performed with a two–chamber phantom [59]
with both chambers filled with a solution of 3.75g NiSO4 x 6 H2O

+ 5g NaCl per 1000g H2O on a 3 Tesla system. Figure 7.3 depicts
a photograph and Figure 7.4 a FLASH image of the phantom.
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Figure 7.2: Plot of the virtual rotation parameters used in the sequence.
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Figure 7.3: Photograph of the two–chamber phantom.
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Figure 7.4: Single slice of a FLASH acquisition of the two–chamber phantom.

7.4 Sequence and Navigator Parameters

A matrix size of (64 read x 32 slice x 40 phase) with a field–of–view
of (270mm x 160mm x 169 mm) and a slice thickness of 5mm were
used for all measurements. The navigator duration for all measure-
ments was 8ms including the dephasing and rephasing necessary to
reach the necessary k–space radius. A total of 8000 samples were ac-
quired for each navigator of which 6850 were located on the spherical
surface. Since the virtual rotations change the gradient moments on
the physical axes, something that can lead to artefacts from resid-
ual magnetisation, all measurements using virtual rotations were ac-
quired using a long repetition time of TR = 1500ms.
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7.5 Measurements

7.5.1 Radius Optimisation Measurements

To find the optimal radius for rotation estimation, measurements
were performed at k–space radii ranging from 0.4 1

cm to 1.2 1
cm in steps

of 0.13 1
cm . The optimal k–space radius was found by analysing the

rotation estimates and by choosing the radius with the lowest mean
absolute error of all rotation estimates. Initial measurements re-
vealed that the optimal radius was identical for both the Lissajous
and the spherical navigator. Thus, radius optimisation was subse-
quently performed for a single navigator (usually the non–optimised
Lissajous navigator). This radius was applied for all three navigators:
spherical, uncorrected Lissajous and corrected Lissajous navigator.

7.5.2 Trajectory Optimisation

For the Lissajous navigator at the optimal k–space radius, a tra-
jectory optimisation was carried out according to the procedure de-
scribed in Chapter 6.

7.5.3 Navigator Comparison Measurements

At the optimal radius three scans were performed: one with spher-
ical navigator, one with the Lissajous navigator and a third with
the Lissajous navigator with an optimised trajectory spliced into the
FLASH sequence described in Section 7.1. The three measurements
were performed with identical shim settings and object positions for
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optimal comparability.

7.6 Analysis

The acquired raw data were exported and analysed off–line with
the algorithms described in detail in Chapter 4.1. To reduce the
computational complexity, only every third data point (a total of
2283) was used for rotation estimation. Every third data point was
chosen because as shown in reference [1], two thousand data points
are sufficient for rotation estimation. The interpolation process used
a width of 6◦ for the Gaussian kernel.

7.7 Results

The radius optimisation measurements showed the best accuracy of
rotation estimation can be achieved with a radius of krad = 0.8 1

cm .
Figures 7.5-7.7 show plots of the measured magnitude signal for

the spherical navigator, the Lissajous navigator, and the Lissajous
navigator with an optimised trajectory fidelity, respectively. Com-
paring the non–optimised and the optimised Lissajous navigator, less
signal fluctuations are visible in the optimised navigator. The sole
difference between the measurements in Figure 7.6 and Figure 7.7
is the application of the trajectory correction algorithm developed
here, which was shown to reduce k–space radius fluctuations (Sec-
tion 6.2). Thus, it is concluded, that the reduced radius variations
in the optimised trajectory reduce magnitude signal fluctuations in
the Lissajous navigator.
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Figure 7.5: Magnitude signal of a spherical navigator acquisition at 3 Tesla with a k–space radius
of 0.8 1

cm overlaid by the navigator trajectory in black.
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Figure 7.6: Magnitude signal of a Lissajous navigator acquisition at 3 Tesla with a k–space radius
of 0.8 1

cm overlaid by the navigator trajectory in black.
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Figure 7.7: Magnitude signal of a Lissajous navigator acquisition with optimised trajectory fidelity
at 3 Tesla with a k-space radius of 0.8 1

cm overlaid by the navigator trajectory in black.
Compared with Figure 7.6 a smoother signal distribution is visible. This is an effect of
the corrected trajectory.
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Figure 7.8: Plot of the true rotations (black, solid), rotation estimates for the spherical navigator
(red, dotted), Lissajous navigator (grey, solid), and the Lissajous navigator with optimised
trajectory fidelity (blue, dashed).

Figure 7.8 depicts a plot of the gold standard rotation parameters
and the measured rotation parameters using the spherical naviga-
tor, the Lissajous navigator, and the Lissajous navigator using the
corrected k–space trajectory.
In Figure 7.9 the error in the rotation estimates on the axis of

rotation for rotations around x, y and z (from left to right) is plotted
as a function of rotation angle. Figures 7.10-7.12 depict plots of
the absolute error of the rotation estimates for the off–rotation axis,
for the spherical navigator and the Lissajous navigator with and
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Figure 7.10: Plot of the absolute rotation estimate errors on the off–rotation axes for rotations
around x.

without trajectory optimisations. Here, the absolute error equals
the estimated rotation angle, as the true rotation around the axis
was zero degree.
The mean absolute rotation error for the spherical navigator for

all three axis combined was measured to 0.50◦ for the spherical nav-
igator, 0.38◦ for the Lissajous navigator, and 0.31◦ for the trajectory
optimised Lissajous navigator. The maximum absolute errors on any
axis for the three navigators are 2.9◦ (spherical), 1.8◦ (Lissajous), and
1.5◦ (Lissajous, optimised trajectory fidelity).

7.8 Discussion

The optimal radius reported here is not a given constant for all mea-
surements. Two confounding factors influence the optimal radius.
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Figure 7.11: Plot of the absolute rotation estimate errors on the off–rotation axes for rotations
around y.

A
bs

. E
st

im
at

io
n 

E
rr

or
 [

D
eg

re
e]

Rotation X Error

-30 -20 -10 0 10 20 30
0

0.5

1

1.5

2

2.5

3

Lissajous

Lissajous Opt.

Spherical

Applied Rotations Around Z Axis [Degree]

Rotation Y Error

-30 -20 -10 0 10 20 30
0

0.5

1

1.5

2

2.5

3

Lissajous

Lissajous Opt.

Spherical
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around z.
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The first one is the amount of magnitude features on the spherical
surface. Close to the centre of k–space there are only a few broad
features on the navigator surface. Towards larger radii, the amount
of k-space features increases. Since the pattern matching performs
better when more features are present, a large radius is desirable
when only taking into account the magnitude features. The second
factor is the signal–to–noise ratio . At smaller radii in the centre of
k–space the signal–to–noise ratio is much higher than at larger radii.
Thus, from a signal–to–noise ratio perspective, a small radius would
be desirable. These two divergent effects lead to an optimal radius
being determined as a compromise between the amount of magni-
tude features and the signal–to–noise ratio of the measurement. The
optimal radius is also dependent on the imaged object, as its shape
influences the k–space feature pattern. However, since all brains and
heads share similar macroscopic shapes, we expect an optimisation
for one head to be sufficiently accurate for most other heads also.
Thus, for in vivo applications, the radius will have to be optimised
separately.
The anisotropy of the spherical navigator reported in reference [1]

can be confirmed. This particular navigator trajectory has a single
preferential rotation axis (z), along which the accuracy of rotation
detection is high for the complete parameter space. However, ro-
tations around the other two axes (x, y) rapidly lead to a loss of
accuracy. The errors grow nearly linear to maximum values of 1.4◦

and 2.9◦. In contrast, the accuracy of the rotation estimation of the
Lissajous navigator exhibits a higher degree of isotropy. The results
for rotation axis errors are similar for all three axes. The rotation
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axis error shows a characteristic curve, where the error first increases
and then decreases in a sinusoidal fashion at larger rotations angles.
A minimum is located at roughly 20◦ with some deviations depend-
ing on the axis. At a rotation angle of approximately 10◦ − 15◦ the
errors in the Lissajous navigator reach their maximum. A detailed
explanation of the characteristic shape of the error curve for both the
spherical and the Lissajous navigator will be given in the following
paragraphs.
The linear increase in the estimation of the error of the spherical

navigator can be attributed to the incomplete coverage of the sphere.
The more magnitude features rotate out of the sampled area of the
navigator, the worse the pattern matching performs. The absence of
this linear increase in the measurements of the trajectory–corrected
Lissajous navigator is a result of the full sphere coverage.
To explain the characteristic error curve of the Lissajous naviga-

tor with its regular local minima and maxima, a detailed look at the
Lissajous trajectory is necessary. The thread spacing of the navi-
gator — the angular distance between two consecutive figure eights
of the navigator — is 18◦. This value is close to the spacing of the
minima in the rotation estimation error of approximately 20◦. This
leads to the conclusion that the error is caused by interplay between
the interpolation procedure and the non–uniform sampling of the
Lissajous trajectory. When a navigator is rotated relative to the
reference navigator by an angle half the distance between the indi-
vidual ”threads” of the navigator (in the direction of the rotation),
the most difficult situation for the interpolation procedure is present.
In this case, all sampling points that can be used for interpolation
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have the largest distance (half of the thread spacing) to the interpo-
lation point. Thus, a lower accuracy of the interpolation procedure
has to be expected in such a situation, compared to situations where
measurement points are located closer to the interpolation point. At
larger rotations sampling points of the adjacent navigator thread are
closer to the interpolation point. Thus, the error reduces at larger
rotations until it reaches a minimum close to a rotation of a whole
thread distance.

The off–rotation axis errors of the Lissajous navigator increase in a
nearly linear fashion with rotation angle. The maximum off–rotation
axis error is 1.8◦ for the spherical navigator, 1.2◦ for the Lissajous
navigator and 1.4◦ for the Lissajous navigator with optimised trajec-
tory fidelity.

The off–rotation axis errors of the Lissajous navigator increase in a
nearly linear fashion with rotation angle. The maximum off-rotation
axis error is 1.8◦ for the spherical navigator, 1.2◦ for the Lissajous
navigator and 1.4◦ for the Lissajous navigator with optimised tra-
jectory fidelity. Interestingly, in some cases the optimised Lissajous
trajectory performs better than the Lissajous trajectory on the off–
rotation axis. This is likely caused by errors due to relaxation effects
and errors due to trajectory fidelity cancelling each other in the un-
corrected Lissajous navigator. However, the overall accuracy remains
improved by using the optimised trajectory.

126



C
ha
pt
er

7

7.9 Conclusions

In conclusion, a nearly isotropic rotation estimation error was at-
tained with the Lissajous navigator. Additionally, a reduction in
the maximum error of 48%, and an overall increased accuracy of
38% was achieved relative to the spherical navigator with identical
postprocessing. The significantly higher isotropy of the Lissajous
navigator provides a significant advantage for neuro–imaging appli-
cations, for example, where rotations can occur around any axis. In
particular, paediatric applications will benefit from motion corrected
imaging, as imaging children without motion correction capability is
a challenging task. Another application where rapid and large move-
ments occur is imaging of patients with Tourette syndrome. Due to
the capability of the Lissajous navigator for accurate determination
of large movements a considerable increase in image quality is to
be expected. Especially for the most challenging groups with large
movements, the Lissajous navigator offers a considerable advantage
over the spherical navigator.
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8 Summary and
Prospects

8.1 Summary

In this work, a novel three–dimensional navigator — the Lissajous
navigator — was developed, which the overcomes shortcomings of
the spherical navigator [1]. An overall increase in the accuracy of
rotation estimation of 38% from 0.5◦ to 0.3◦ with a navigator acqui-
sition time of 8ms was achieved. In addition, the homogeneity of
the accuracy is significantly higher for the Lissajous navigator than
for the spherical navigator. The spherical navigator has one prefer-
ential rotation axis around which the rotation estimates are good,
but two axes of rotation around which the rotation estimates rapidly
lose accuracy with increasing rotation angle. In contrast, the accu-
racy of the Lissajous navigator is nearly isotropic. This is a direct
result of the whole–sphere coverage achieved by the Lissajous sam-
pling scheme.
Numerical MRI simulations were carried out to allow a quanti-

tative comparison of the two navigators under identical conditions
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(Chapter 5). The simulations predicted a mean increase in the accu-
racy of rotation estimation of 50% for the Lissajous navigator (0.2◦)
relative to the spherical navigator (0.5◦) and a reduction of the max-
imum error by 65% (Section 5.2) from 3.0◦ (spherical) to 1.0◦ (Lis-
sajous). Additionally, the influence of signal decay, chemical shift
and susceptibility on the rotation estimation was investigated sep-
arately for the first time (Section 5.3). The simulations revealed a
significant influence of signal decay and chemical shift on the rota-
tion estimation. As a consequence, it is recommended to perform
navigated motion correction with fat suppression or chemically se-
lective excitation whenever possible. A strong influence of the signal
decay prompted the development of a novel T ∗2 –decay correction al-
gorithm (Section 5.5), which utilises the crossing–points in the Lis-
sajous trajectory for decay correction without the necessity to acquire
additional data. This auto–correction algorithm allowed for an im-
provement of the accuracy of rotation estimation by 70% from 1.3◦

uncorrected to 0.4◦ corrected at a small k–space radius (0.03 1
mm),

but has limited applicability at larger radii. However, the overall
best accuracy of rotation estimation is achieved at a k–space radius
of (0.07 1

mm) without decay correction.
The simulation results were validated by phantom measurements

at a field strength of 3 Tesla (Chapters 6 & 7). These measurements
indicate that poor gradient fidelity significantly worsens the accu-
racy of the rotation estimation of the navigator. Thus, the k–space
trajectory of the Lissajous navigator was measured and a novel k–
space correction scheme was developed (Chapter 6). The developed
correction scheme reduced the mean deviation of the desired naviga-
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tor radius by one order of magnitude from 2.0% to 0.2%. Finally, a
comparison of the Lissajous and spherical navigator was performed
with measured phantom data (Chapter 7). The investigation showed
an increased accuracy of 38% for the Lissajous navigator (0.3◦) over
the spherical navigator (0.5◦). Both simulations and measured data
qualitatively showed the same structure. The rotation estimates for
the Lissajous navigator exhibit the same characteristic shapes.
Thus, in conclusion, the Lissajous navigator delivers higher accu-

racy of rotation estimation and a higher degree of isotropy than the
spherical navigator with no evident drawbacks.

8.2 Prospects

The present work revealed that the Lissajous navigator is capable of
tracking motion with high accuracy while staying within the hard-
ware limits. The next developmental step should focus on the im-
plementation of real–time motion estimation and field–of–view ad-
justments for an active motion correction for MRI. To achieve this
rotation estimates with sufficient accuracy have to be calculated in
real–time. The task will thus be to bring in line the processing time
of the rotation estimation with the required accuracy of the navigator
and the repetition time of the navigator in the sequence.
The developed navigator could also be applied to simultaneous

MR–PET imaging. Here, the motion data derived by utilising Lis-
sajous navigators will be utilised to correct PET data for motion.
Finally, as the extent of translational motion that is detectable

is limited by the k–space radius of the utilised navigator, transla-
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tion measurements are effectively limited to a range of approximately
±6mm. To enable larger translational motion estimates, as might be
required for uncooperative subjects, one future improvement could
target the integration of line navigators for translational motion es-
timation.
External tracking systems always have the disadvantage of dis-

turbing the examination process in some way. Optical mouthpieces
have to be fitted first and might simply be unpractical for some pa-
tient groups. Markers attached to the forehead have to be applied
and can move independently of the brain due to skin movement.
This complicates their use in a clinical environment. Often no more
than 15 minutes are available for a clinical examination, not leav-
ing much time for the application of the external tracking system
during patient preparation. Also the additional hardware has to be
maintained. A motion correction approach based on the Lissajous
navigator shares none of these disadvantages with the external track-
ing systems. No additional hardware is required, no special patient
preparation is necessary. The procedure can be run identical to any
non–motion corrected examination. The only drawback is a moder-
ate, sequence dependent increase in scantime. Additionally, installed
systems can be enabled to perform motion correction with a simple
software upgrade when the Lissajous navigator is used. For external
tracking systems new hardware has to be installed on each scanner.
The current trend in MRI is to move to high and ultra–high fields

to take advantage of the increased signal at higher fields. Here the
problems of motion becomes even more apparent. Smaller voxel sizes
and larger absolute frequency and phase shifts intensify the image
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artefacts. Thus, for high field motion correction becomes increas-
ingly important, while higher magnetic fields and the longer bore
lengths in high field systems increase the engineering obstacles for
external tracking systems. Navigator approaches also face new chal-
lenges at high fields. Efficient strategies for counteracting the short-
ened T2 relaxation time have to be developed. However, once these
have been mastered, they will enable motion–corrected magnetic res-
onance imaging at ultra–high fields with high patient compliance.

133



8 Summary and Prospects

134



Index

B1 field, 12
T ∗2 Decay, 15
T1 Decay, 13
T2 Decay, 14
k–space, 35, 37
k-space

rotation, 39
translation, 39

Bloch equation, 13, 14, 64

chemical shift, 69
cloverleaf navigator, 44
coil

gradient, 30
radio frequency, 28, 32

data processing
rotation estimation, 53

decay correction, 56, 59

echo time, 23
eddy current, 32, 91, 96

field inhomogeneities, 15
FLASH sequence, 23, 46, 109
Fourier shift theorem, 39
Fourier transform, 36

continuous, 36
discrete, 36
inverse, 36

free induction decay, 9, 15, 17
frequency encoding, 17, 19

gradient, 17
amplitude non–linearity, 91
delay, 91, 96, 100, 101
frequency encoding, 19
pre–emphasis, 32
readout, 19
slice selection, 22

135



Index

gradient amplifier, 30
gradient coil, 30, 32
gradient echo, 22
gradient field, 17, 30
gridding, 55
gyromagnetic ratio, 10, 37

interpolation, 55, 96, 125
linear, 57

Jemris, 64

Larmor equation, 10, 18, 20
Larmor frequency, 12, 18
Lissajous figure, 47
Lissajous navigator

gradients, 49
trajectory, 49

magnetisation
equilibrium state, 14
net, 10, 14, 28

Maxwell pair, 30
MP–RAGE, 25

navigator
cloverleaf, 42, 44
Lissajous, 46
orbital, 42
pencil beam, 40

reference, 53
spherical, 42

nerve stimulation, 33, 34
net magnetisation, 10
noise, 73

orbital navigator, 42

pencil beam navigator, 40
phase coherence, 15, 25
phase encoding, 17, 21
Planck’s constant, 10
precession, 10

radio frequency coil, 32
reference navigator, 53
relaxation, 13, 69, 75, 126

T ∗2 , 15, 55
T1, 13, 22
T2, 14, 22
artefacts, 80
longitudinal, 13, 14

RF coil, 32
RF field, 11
rotating frame, 12, 64
rotation estimation, 53, 56, 66,

115, 116, 129

sequence

136



Index

gradient echo, 22
MP–RAGE, 25
spin echo, 25

sequence diagram, 23
signal equation, 15, 64
signal–to–noise ratio, 73, 124
slew rate, 32, 44, 50, 65

limit, 32
slice selection, 17, 18
spatial encoding, 17
spatial frequency, 35
specific absorption rate, 33
spherical distance, 55
spherical navigator, 42
spin echo, 25
spin excitation, 11
spin polarisation, 9
spin population difference, 10
spin–lattice interaction, 14
spin–spin interaction, 13, 14
spoiling, 23
static field magnet, 30
susceptibility, 69

trajectory correction, 104, 116,
130

trajectory measurement, 91, 104

translation estimation, 60, 65,
66, 89

virtual rotation, 111

137



Index

138



References
[1] E. B. Welch, A. Manduca, R. C. Grimm, H. A. Ward, and C. R.

Jack, “Spherical navigator echoes for full 3d rigid body motion
measurement in mri.,” Magn Reson Med, vol. 47, pp. 32–41, Jan
2002. (Cited on pages xv, xvii, 5, 6, 42, 43, 44, 45, 54, 60, 64, 65, 116, 124

and 129.)

[2] T. M. Cover and J. A. Thomas, Elements of Information The-
ory. 605 Third Ave, New York, Ny 10158-0012: John Wiley &
Sons Inc, second edition ed., July 2006. (Cited on page 4.)

[3] K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak,
and R. Turner, “Movement-related effects in fmri time-series.,”
Magn Reson Med, vol. 35, pp. 346–355, Mar 1996. (Cited on

pages 4 and 5.)

[4] R. P. Woods, S. R. Cherry, and J. C. Mazziotta, “Rapid auto-
mated algorithm for aligning and reslicing pet images.,” J Com-
put Assist Tomogr, vol. 16, no. 4, pp. 620–633, 1992. (Cited on

page 4.)

[5] R. P. Woods, S. T. Grafton, C. J. Holmes, S. R. Cherry, and J. C.
Mazziotta, “Automated image registration: I. general methods

139



References

and intrasubject, intramodality validation.,” J Comput Assist
Tomogr, vol. 22, no. 1, pp. 139–152, 1998. (Cited on page 4.)

[6] M. Jenkinson, P. Bannister, M. Brady, and S. Smith, “Im-
proved optimization for the robust and accurate linear regis-
tration and motion correction of brain images.,” Neuroimage,
vol. 17, pp. 825–841, Oct 2002. (Cited on page 4.)

[7] J. G. Pipe, “Motion correction with propeller mri: application to
head motion and free-breathing cardiac imaging.,” Magn Reson
Med, vol. 42, pp. 963–969, Nov 1999. (Cited on page 4.)

[8] K. P. Forbes, J. G. Pipe, C. R. Bird, and J. E. Heiserman,
“Propeller mri: clinical testing of a novel technique for quan-
tification and compensation of head motion.,” J Magn Reson
Imaging, vol. 14, pp. 215–222, Sep 2001. (Cited on page 4.)

[9] S. Thesen, O. Heid, E. Mueller, and L. R. Schad, “Prospective
acquisition correction for head motion with image-based track-
ing for real-time fmri.,” Magn Reson Med, vol. 44, pp. 457–465,
Sep 2000. (Cited on page 4.)

[10] O. Speck, J. Hennig, and M. Zaitsev, “Prospective real-time
slice-by-slice motion correction for fmri in freely moving sub-
jects.,” MAGMA, vol. 19, pp. 55–61, May 2006. (Cited on page 5.)

[11] C. Dold, M. Zaitsev, O. Speck, E. A. Firle, J. Hennig, and
G. Sakas, “Advantages and limitations of prospective head mo-
tion compensation for mri using an optical motion tracking de-

140



References

vice.,” Acad Radiol, vol. 13, pp. 1093–1103, Sep 2006. (Cited on

page 5.)

[12] M. Zaitsev, C. Dold, G. Sakas, J. Hennig, and O. Speck, “Mag-
netic resonance imaging of freely moving objects: prospective
real-time motion correction using an external optical motion
tracking system.,” Neuroimage, vol. 31, pp. 1038–1050, Jul 2006.
(Cited on page 5.)

[13] A. J. W. van der Kouwe, T. Benner, and A. M. Dale, “Real-
time rigid body motion correction and shimming using cloverleaf
navigators.,” Magn Reson Med, vol. 56, pp. 1019–1032, Nov
2006. (Cited on pages 5, 42, 44 and 46.)

[14] J. Maclaren, O. Speck, D. Stucht, P. Schulze, J. Hennig, and
M. Zaitsev, “Navigator accuracy requirements for prospective
motion correction.,” Magn Reson Med, vol. 63, pp. 162–170,
Jan 2010. (Cited on page 6.)

[15] L. G. Hanson, “Is quantum mechanics necessary for under-
standing magnetic resonance?,” Concept Magn. Reson. Part A,
vol. 32A, pp. 329–340, Sep 2008. (Cited on page 11.)

[16] J. Felder, Design and Optimisation of RF Frontend Components
for Unilateral and Mobile MR Tomographs Employing Efficient,
Linear Power Amplifiers. P.O. Box 101818, D-52018 Aachen:
Shaker Verlag, 2004. (Cited on page 12.)

[17] F. Bloch, “Nuclear induction,” Phys. Rev., vol. 70, pp. 460–474,
Oct 1946. (Cited on page 13.)

141



References

[18] E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkate-
san, Magnetic Resonance Imaging Physical Prinicples and Se-
quence Design. 605 Third Avenue, New York, NY 10158-0012,
USA: John Wiley & Sons, Inc., 1999. (Cited on page 13.)

[19] SiemensMedical, Magnete Spins und Resonanzen, Eine Ein-
führung in die Grundlagen der Magnetresonanztomographie. Er-
langen: Siemens AG, 2003. (Cited on pages 18 and 38.)

[20] A. Haase, J. Frahm, D. Matthaei, W. Hanicke, and K. Merboldt,
“Flash imaging - rapid nmr imaging using low flip-angle pulses,”
J Magn Res, vol. 67, pp. 258–266, Apr 1986. (Cited on pages 22,

23 and 46.)

[21] M. A. Bernstein, K. F. King, and X. J. Zhou, Handbook of MRI
Pulse Sequences. 200 Wheeler Road, 6th Floor, Burlington, MA
01803, USA: Elsevier Academic Press, illustrated edition (21.
september 2004) ed., Sept 2004. (Cited on page 23.)

[22] E. L. Hahn, “Spin echoes,” Phys. Rev., vol. 80, pp. 580–594,
Nov 1950. (Cited on page 25.)

[23] J. P. Mugler and J. R. Brookeman, “Three-dimensional
magnetization-prepared rapid gradient-echo imaging (3d mp
rage).,” Magn Reson Med, vol. 15, pp. 152–157, Jul 1990. (Cited

on page 25.)

[24] R. Deichmann, C. D. Good, O. Josephs, J. Ashburner, and
R. Turner, “Optimization of 3-d mp-rage sequences for struc-

142



References

tural brain imaging.,” Neuroimage, vol. 12, pp. 112–127, Jul
2000. (Cited on page 25.)

[25] J. P. Hornak, “The basics of mri.” http://www.cis.rit.edu/
htbooks/mri/, 2011. (Cited on pages 28 and 29.)

[26] R. Turner, “A target field approach to optimal coil design,”
Journal of Physics D-Applied Physics, vol. 19, pp. L147–L151,
Aug 14 1986. (Cited on page 30.)

[27] S. S. Hidalgo-Tobon, “Theory of gradient coil design meth-
ods for magnetic resonance imaging,” Concept Magnetic Res A,
vol. 36A, pp. 223–242, Jul 2010. (Cited on page 30.)

[28] IEC, “Medical electrical equipment - part 2-33: Particular re-
quirements for the basic safety and essential performance of
magnetic resonance equipment for medical diagnosis,” 2010.
(Cited on page 34.)

[29] T. F. Budinger, “Nuclear magnetic resonance (nmr) in vivo
studies: known thresholds for health effects.,” J Comput Assist
Tomogr, vol. 5, pp. 800–811, Dec 1981. (Cited on page 34.)

[30] J. Abart, K. Eberhardt, H. Fischer, W. Huk, E. Richter,
F. Schmitt, T. Storch, B. Tomandl, and E. Zeitler, “Peripheral
nerve stimulation by time-varying magnetic fields.,” J Comput
Assist Tomogr, vol. 21, no. 4, pp. 532–538, 1997. (Cited on page 34.)

[31] S. Ljunggren, “A simple graphical representation of fourier-

143

http://www.cis.rit.edu/htbooks/mri/
http://www.cis.rit.edu/htbooks/mri/


References

based imaging methods,” Journal of Magnetic Resonance,
vol. 54, no. 2, pp. 338–343, 1983. (Cited on page 35.)

[32] D. B. Twieg, “The k-trajectory formulation of the nmr imaging
process with applications in analysis and synthesis of imaging
methods.,” Med Phys, vol. 10, no. 5, pp. 610–621, 1983. (Cited

on page 35.)

[33] R. N. Bracewell, The Fourier Transform and its Applications.
Singapore: McGrap Hill, Inc., second edition, revised ed., 1986.
(Cited on pages 36 and 39.)

[34] D. G. Nishimura, Principles of magnetic resonance imaging.
Stanford Univ., 1996. (Cited on page 37.)

[35] J. Cooley and J. Tukey, “An algorithm for machine calculation of
complex fourier series,” Math Comput, vol. 19, no. 90, pp. 297–
301, 1965. (Cited on page 37.)

[36] M. Frigo and S. G. Johnson, “FFTW: an adaptive software
architecture for the FFT,” in Proc. 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, vol. 3,
(100662 Los Vaqueros Circle, P.O. Box 3014, Los Alamitos,
CA 90720-1264, USA), pp. 1381–1384, IEEE, May 12–15, 1998.
(Cited on page 37.)

[37] M. Frigo and S. G. Johnson, “The design and implementation
of FFTW3,” Proceedings of the IEEE, vol. 93, pp. 216–231, Feb.
2005. Special issue on “Program Generation, Optimization, and
Platform Adaptation”. (Cited on page 37.)

144



References

[38] D. M. Higgins, “The what is k-space? tutorial.” http:
//revisemri.com/tutorials/what_is_k_space, May 2010.
(Cited on page 38.)

[39] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Ka-
bani, C. J. Holmes, and A. C. Evans, “Design and construction
of a realistic digital brain phantom.,” IEEE Trans Med Imaging,
vol. 17, pp. 463–468, Jun 1998. (Cited on pages 39, 41 and 65.)

[40] R. L. Ehman and J. P. Felmlee, “Adaptive technique for
high-definition mr imaging of moving structures.,” Radiology,
vol. 173, pp. 255–263, Oct 1989. (Cited on page 40.)

[41] C. J. Hardy and H. E. Cline, “Spatial localization in 2 dimen-
sions using nmr designer pulses,” Journal of Magnetic Reso-
nance, vol. 82, pp. 647–654, May 1989. (Cited on page 40.)

[42] Z. W. Fu, Y. Wang, R. C. Grimm, P. J. Rossman, J. P. Felmlee,
S. J. Riederer, and R. L. Ehman, “Orbital navigator echoes for
motion measurements in magnetic resonance imaging.,” Magn
Reson Med, vol. 34, pp. 746–753, Nov 1995. (Cited on page 42.)

[43] R. Likes, “Moving gradient zeugmatography,” July 1981. (Cited

on page 47.)

[44] D. C. Noll, “Multishot rosette trajectories for spectrally selective
mr imaging.,” IEEE Trans Med Imaging, vol. 16, pp. 372–377,
Aug 1997. (Cited on page 47.)

145

http://revisemri.com/tutorials/what_is_k_space
http://revisemri.com/tutorials/what_is_k_space


References

[45] H. Feng, H. Gu, D. Silbersweig, E. Stern, and Y. Yang, “Single-
shot mr imaging using trapezoidal-gradient-based lissajous tra-
jectories.,” IEEE Trans Med Imaging, vol. 22, pp. 925–932, Aug
2003. (Cited on page 47.)

[46] J. C. Lagarias, “Convergence properties of the nelder-mead sim-
plex method in low dimensions,” SIAM Journal on Optimiza-
tion, vol. 9, pp. 112–147, DEC 21 1998. (Cited on pages 53 and 54.)

[47] N. L. im DIN Deutsches Institut fuer Normung e.V., “Din9300
- luft- und raumfahrt; begriffe, größen und formelzeichen und
flugmechanik; bewegung des luftfahrzeuges gegenüber der luft;
iso 1151-1:1988 modifiziert.” Beuth Verlag GmbH, 1990. (Cited

on page 53.)

[48] I. N. Bronstein, K. A. Semendjajew, G. Mussiol, and H. Muehlig,
Taschenbuch der Mathematik. Thun und Frankfurt am Main,
Germany: Verlag Harri Deutsch, 5. ueberarbeitete und erweit-
erte auflage ed., 2001. (Cited on page 55.)

[49] T. Stöcker, K. Vahedipour, and N. J. Shah, “Hpc simulation of
magnetic resonance imaging,” Advances in Parallel Computing,
vol. 15, no. 1, pp. 155–164, 2008. (Cited on page 64.)

[50] “http://www.jemris.org.” (Cited on page 64.)

[51] T. Stöcker, K. Vahedipour, D. Pflugfelder, and N. J. Shah,
“High-performance computing mri simulations.,” Magn Reson
Med, vol. 64, pp. 186–193, Jul 2010. (Cited on page 64.)

146



References

[52] J. P. Marques and R. Bowtell, “Application of a fourier-based
method for rapid calculation of field inhomogeneity due to spa-
tial variation of magnetic susceptibility,” Concepts Magn Reson
Part B, vol. 25B, pp. 65–78, 2005. (Cited on page 64.)

[53] B. J. Nieman, J. Bishop, and R. M. Henkelman, “Gradient hys-
teresis in mri and nmr experiments.,” J Magn Reson, vol. 177,
pp. 336–340, Dec 2005. (Cited on page 91.)

[54] G. F. Mason, T. Harshbarger, H. P. Hetherington, Y. Zhang,
G. M. Pohost, and D. B. Twieg, “A method to measure arbitrary
k-space trajectories for rapid mr imaging.,” Magn Reson Med,
vol. 38, pp. 492–496, Sep 1997. (Cited on pages 91 and 92.)

[55] J. H. Duyn, Y. Yang, J. A. Frank, and J. W. van der Veen,
“Simple correction method for k-space trajectory deviations in
mri.,” J Magn Reson, vol. 132, pp. 150–153, May 1998. (Cited

on pages 91 and 92.)

[56] D. J. Goodyear, M. Shea, S. D. Beyea, N. J. Shah, and B. J.
Balcom, “Single point measurements of magnetic field gradient
waveform.,” J Magn Reson, vol. 163, pp. 1–7, Jul 2003. (Cited

on page 91.)

[57] C. Barmet, N. D. Zanche, B. J. Wilm, and K. P. Pruessmann,
“A transmit/receive system for magnetic field monitoring of in
vivo mri.,” Magn Reson Med, vol. 62, pp. 269–276, Jul 2009.
(Cited on page 95.)

147



References

[58] S. Butterworth, “On the theory of filter amplifiers,” Experimenal
wireless & the wireless engineer, vol. 7, pp. 536–541, 1930. (Cited
on page 98.)

[59] H. Herzog, L. Tellmann, S. Qaim, S. Spellerberg, A. Schmid,
and H. Coenen, “Pet quantitation and imaging of the non-pure
positronemitting iodine isotope i-124,” Applied Radiation and
Isotopes, vol. 56, pp. 673–679, May 2002. (Cited on page 111.)

148


