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Abstract 
 

The rising use of vehicles and herewith the yearly decrease in available amount of 

crude oil left on the earth accompanied by a continuously increasing price puts high stress on 

the vehicle industry. Furthermore, Humans face a growing increase in the global 

environmental pollution concerns and tough emission standards constrain the maximum 

amount of vehicles emission to reduce air pollution. All of these factors force automobile and 

vehicle manufactures into never-ending effort to satisfy these requirements. Hence, the 

development of new vehicles to further reduce fuel consumption and emission is a mandatory.  

The high power density of hydraulic pumps/motors and hydro-pneumatic 

accumulators make hydraulic technology look promising for vehicles' transmission and its 

integration in the automobile industry should be considered. Furthermore, a reasonable price, 

reliability and long life time of hydraulic units are good enough and required for this purpose. 

The recently developed hydrostatic units, that meet the increased requirements of high 

efficiency over a wide range of operation offer, new capability for hydrostatic drivelines in 

vehicle applications.  

This thesis primarily addresses the potential of hydraulic transmission for use in 

automobiles. The analysis and simulations assume baseline vehicle specifications and 

components of a mid-sized passenger car. Three hydraulic drivetrain configurations were 

investigated. A continuously variable hydrostatic transmission integrated with an engine 

controlled to operate on the ideal fuel efficiency line is first introduced. Then, a secondary 

controlled hydrostatic transmission equipped with conventional hydrostatic units and an 

energy recovering system working under engine on/off control strategy is also investigated.  

Alongside the above, an innovative series full hydraulic hybrid drivetrain, referred as 

“the Hydrid” and its key components are researched in detail throughout the thesis. The 

general architecture of the Hydrid was introduced by the Dutch organization Innas BV, 

replacing the mechanical transmission with a distinct series hydraulic transmission which 

includes innovative components such as a three port-plate hydraulic transformer, fixed 

displacement pump and in-wheel hydro-motors designed on the floating cup technology. A 

generic power management strategy of the system power flows is developed by rule based 

algorithm, and the most efficient power flow control for each driving pattern is established.  

Results of the drivetrains performance, fuel consumption and CO2 emissions during a 

standard driving cycle are presented to evaluate the potential of each configuration to be 

applied in passenger cars. 
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Kurzfassung 
 

Der wachsende Einsatz von Fahrzeugen und hiermit die jährliche Abnahme der verfügbaren 

Rohölmenge, verbunden mit ständig steigenden Ölpreisen, stellen hohe Anforderungen an die 

Fahrzeugindustrie. Weiterhin sieht die Menschheit einem geschärften globalen Umweltbewusstsein 

und strengen Emissionsvorgaben entgegen, die den Maximalbetrag der Fahrzeugemissionen 

beschränken, um die Luftverschmutzung zu reduzieren. All diese Faktoren zwingen die 

Automobilbranche zu immer neuen Anstrengungen, um diese gegensätzlichen Anforderungen zu 

erfüllen. Infolgedessen ist die Entwicklung neuer Fahrzeuge zur Reduzierung des 

Treibstoffverbrauches und der Emissionen zwingend notwendig. 

Die hohe Leistungsdichte hydraulischer Pumpen und Motoren und der hydraulischen 

Gasdruckspeicher lassen die Hydraulik vielversprechend für die Kraftübertragung in Fahrzeugen 

erscheinen, und ihre Integration sollte in der Autoindustrie überlegt werden. Kosten, Zuverlässigkeit 

und Lebensdauer der hydraulischen Einheiten sind darüber hinaus für diese Anwendung angemessen. 

Die in letzter Zeit entwickelten Hydraulikeinheiten, die die gestiegenen Anforderungen an hohem 

Wirkungsgrad über einen weiten Arbeitsbereich erfüllen, eröffnen neue Möglichkeiten für 

hydrostatische Antriebsstränge in Fahrzeugen. 

Die vorliegende Arbeit beschäftigt sich in erster Linie mit dem Potential hydraulischer 

Kraftübertragung in Automobilen. Der Analyse und Simulation liegen Fahrzeugspezifikationen und 

Komponenten  für einen Mittelklasse-PKW zugrunde. Es wurden drei hydraulische Antriebsstrang-

konfigurationen untersucht. Als erstes wird eine stufenlos verstellbare hydrostatische Kraftübertragung 

vorgestellt, bei der der Verbrennungsmotor auf der Kurve des minimalen Kraftstoffverbrauchs geführt 

wird. Danach wird ein sekundär geregeltes hydrostatisches Getriebe mit konventionellen Einheiten 

und einem Energierückgewinnungssystem untersucht, wobei der Verbrennungsmotor nach einer 

Ein/Aus-Strategie gesteuert wird. 

Schließlich wird durch die gesamte Arbeit ein innovativer serieller Antriebsstrang, der unter 

dem Namen "Hydrid" bekannt ist, einschließlich seiner Komponenten im Detail erforscht. Die 

allgemeine Architektur des Hydrid wurde durch die niederländische Firma Innas BV eingeführt, die 

damit die mechanische Kraftübertragung durch eine serielle hydraulische Übertragung ersetzt. Darin 

enthalten sind neuartige Komponenten wie der hydraulische Transformator mit drei Anschlüssen, eine 

Konstantpumpe und hydrostatische Radmotoren, die alle nach dem Floating-Cup-Prinzip aufgebaut 

sind. Mit regelbasierten Algorithmen wurde eine allgemeingültige Managementstrategie für die 

Energieflüsse im System aufgebaut. Die jeweils effizienteste Energieflusssteuerung für jedes 

Fahrtmuster wurde herausgearbeitet. 

Die Leistung des Antriebsstrangs, der Kraftstoffverbrauch und die CO2-Emissionen wurden 

über einen Standard-Fahrzyklus ermittelt und dargestellt, um das Potential der verschiedenen 

Konfigurationen beim Einsatz im PKW zu beurteilen. 
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Latin letter 

a Distance from CG to front axle m 

Af Frontal area m2 

aF Vehicle acceleration m/s2 

b Distance from Center of Gravity (CG) to rear axle m 

Cd Air drag coefficient - 

Fa Acceleration force N 

FAer  Aerodynamic drag N 

Fex Excess traction force N 

fr Rolling resistance coefficient (firm Asphalt) - 

FR   Rolling resistance force N 

FSt  Road grade force N 

FT  Traction force at the drive wheels N 

gf Final drive gear ratio - 

gi Gear ratio - 

h Height of Center of Gravity of a vehicle  m 

iF Final drive ratio - 

iHST Hydrostatic transmission ratio - 

iP Pump mount ratio - 

iT,min,v Minimum transmission ratio - 

iT,min,v Maximum transmission ratio - 

Jd Rotational inertia of the driveshaft kg.m2 

JE  Rotational inertia of the engine kg.m2 

Jg,i Rotational inertia of a gear kg.m2 

JT Rotational inertia of the transmission from engine side kg.m2 

Jw Rotational inertial of the wheels  kg.m2 

L Distance between front and rear axle m 

fm  Mass flow rate of fuel g/s 
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mF Vehicle curb weight kg 

Maxle Torque on the axles Nm 

Mc    Torque on the clutch  (input to the transmission) Nm 

Md Torque output to the driveshaft Nm 

MICE Engine torque Nm 

MM Hydro-motor torque Nm 

mp Payload kg 

MP Pump torque Nm 

mr Equivalent mass of the rotating components kg 

mT Towing capacity kg 

Mw Wheel torque Nm 

N Normal load on the wheels N 

nM Hydromotor speed rpm 

np Pump speed rpm 

nw Wheels speed rpm 

PE Engine power kW 

PM Hydromotor power W 

PP Pump power W 

PT Traction power required at the wheels W 

QLoss,p Flow losses of the pump l/min 

QLoss,p Flow losses of the motor l/min 

QM Hydromotor flowrate l/min 

QP Pump flowrate l/min 

rw Wheel radius m 

t Time s 

vF Vehicle velocity km/h 

vF,max Maximum vehicle velocity km/h 

Vg Displacement volume of a hydrostatic unit cm3 

VM Hydromotor displacement  cm3 

VP Pump displacement  cm3 

Wg Gross vehicle weight N 
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Greek letter 

αst Road inclination angle deg 

δIHT Port plant angle of Innas hydraulic Transformer deg 

 Setting angle of hydro-motors - 

P Setting angle of pump - 

ηF Mechanical efficiency of final Drive  - 

ηICE Engine efficiency  - 

ηmech Mechanical efficiency  - 

ηhm Hydro-mechanical efficiency - 

ηo,M Overall efficiency of the motor - 

ηv,IHT Volumetric efficiency of IHT - 

ηv,M Volumetric efficiency of the hydromotor - 

ηv,P Volumetric efficiency of the pump - 

λ Mass factor of rotating parts - 

μp Tyre peak coefficient of road adhesion - 

ρa Air density kg/m3 

ωICE Engine angular speed  rad/s 

ωw Wheel speeds during braking rad/s 

ω.
d Rotational acceleration of the driveshaft rad/s2 

ω.
w Rotational acceleration of the wheels rad/s2 

Δp Pressure difference bar 

ΔV Change in accumulator volume liter 
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BSFC Brake Specific Fuel Consumption  

CBED Cumulo Brake Energy Drive  

CHD Cumulo Hydrostatic Drive  

CV-HST Continuously Variable Hydrostatic Transmission  

EEA European Environmental Agency 

EPA American Environmental Protection Agency 

EUDC Extra-Urban Driving Cycle (Highway part of the NEDC) 

FTP-75 Federal Test Procedure cycle 

HEV Hybrid Electric Vehicle  

HHV Hydraulic Hybrid Vehicle 

HLA Hydraulic Lunch Assist  

HMT Hydro-Mechanical Transmission 

HRB Hydraulic Regenerative Braking  

HST Hydrostatic Transmission  
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IHT Innas Hydraulic Transformer  
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Ideal Operating Line  

Infinitely Variable Transmission 

NEDC New European Driving Cycle 

ODI Online Data Import 

OICA Organization of Motor Vehicle Manufacturers 

OOP Optimal Operating Points 
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1.1 General Aspects 

 Increased fuel economy and decreased hazard emissions such as CO2 and NOx 

are the two major demands for automobile manufacturers to produce more energy-

efficient and environmentally friendly vehicles. Passenger and heavy duty vehicles 

consume a huge amount of fuel worldwide. This significant usage of fuel is the 

motivation for developing a vehicle that improves fuel economy. 

In the current automotive industry, there is a strong emphasis being placed on 

the fuel efficiency of a vehicle. This demand for fuel efficiency is driven primarily by 

fluctuating fuel prices and a desire to reduce emissions. In response to this demand, 

during the past 30 years, enormous progress has been made in hybrid vehicle 

technology resulting in increased sales of these types. Hybrid vehicles have proven to 

be efficient because they draw their power from a primary power source, usually, an 

Internal Combustion Engine (ICE) coupled with an auxiliary power source capable of 

energy recovery. Currently, mass produced hybrid vehicles have been electric hybrids, 

facilitated by the recent advances in electronics.  

Electric motors/generators still suffer from low power density compared to 

hydraulic motors as shown in Figure 1.1, which limit their ability for rapid 

acceleration or deceleration [1]. To overcome this shortcoming, hydraulic drivetrain 

needs to be investigated for use in vehicles. 

 

Figure 1.1: Specific power versus torque density of electric and hydraulic motors [1] 
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Looking at the whole powertrain, the fuel economy of passenger cars can be 

improved in various ways. Increasing the efficiency of the powertrain components, 

such as the engine and the transmission, is one way to do so. Another is to operate the 

engine in more fuel-optimal regions. Drivetrain hybridization, using mechanical 

flywheel, electric batteries and super-capacitors, or a hydro-pneumatic accumulator to 

restore the lost energy in braking is considered to be the best method. 

1.2 Motivation for the Research of Hydraulic Transmissions 

Hydraulic drives have, of course, been used on a number of stationary 

applications and off-road vehicles for decades. Hydraulic systems have proven to be 

very reliable and robust. They allow a flexible layout and easy control for the drive, 

including energy storage in accumulators. Interest in development of hydrostatic 

transmission components and its control has increased during the past few decades in 

response to increased concern about fuel consumption and environmental pollution.  

The high power density of hydraulic pumps/motors and accumulators as well as 

the ease of control of hydraulic components make hydraulic technology look 

promising for vehicle transmission, especially for applications with frequent stop-and-

go. Although hydro-pneumatic accumulators have an inferior energy density, they 

have an excellent power density, much higher than electric batteries. Moreover, 

cyclical charging and discharging at high power rates considerably reduces the service 

life of the state of the art batteries. Although electric hybrid powertrains and similar 

systems have proven to be more efficient than conventional vehicles, the overall 

efficiency of the system could be greatly improved by using an auxiliary power source, 

such as a hydro-pneumatic accumulator, with a much higher energy and power 

density. 

A main reason for not yet considering hydrostatic drivetrains in passenger 

vehicles may lie in the conception that hydraulic components have inferior efficiency 

compared to mechanical drives. Current prototypes of hydraulic hybrid drivetrains 

show the potential to save 25 to 40 % which is still considered too low compared to 

requirements of current drivelines [2]. Since requirements are tougher, there is a need 

for new and more efficient components. Therefore, the traditional configurations of 

hydraulic transmission need to be replaced with new ones that involve the integration 
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of transmission and power source to obtain the optimum operation from the vehicle. 

The recently developed hydraulic units that permit operation at higher system pressure 

and higher speeds with high efficiency may provide a chance for hydraulic drivelines 

to be used in passenger vehicles.  

In automotive technology, adding a secondary power source to the primary 

power source, i.e. combustion engine, forms a hybridized vehicle. Generally, using 

hybrid drivetrains is widely considered a key technology strategy in improving fuel 

efficiency and reducing emissions. Energy can be saved by using an accumulator 

because it is able to recover energy during deceleration.  

Hydraulic Hybrid Vehicles (HHVs) are one of several new energy saving 

automotive technologies being developed by some vehicle-manufacturers and are still 

under development in universities and research centers. The present prototype models 

of HHVs being in use such as urban delivery trucks, city busses and refuse trucks 

involve frequent stop-and-go driving have demonstrated their ability to significantly 

reduce fuel consumption and CO2 emissions. One major benefit of a hydraulic hybrid 

vehicle is the ability to capture a large percentage of the energy normally lost in 

vehicle braking. Efficiency of the ICE of a vehicle can be significantly increased by 

series hydraulic hybrids rather than parallel configurations. This is a result of 

controlling the accumulator pressure range between upper and lower limits avoiding 

operation of the engine under partial loads.    

Energy consumption and exhaust emissions of hybrid vehicles strongly depend 

on their configuration, efficiency of the components and applied control strategy. A 

high efficiency transmission can be designed using new developed hydraulic units 

arranged in distinct configuration as introduced in this thesis to reduce fuel 

consumption and emissions. Therefore, an extensive analysis is included for an 

innovative configuration of series hydraulic hybrid drivetrain designated here by “the 

Hydrid”. The analysis assumes base vehicle specifications and components similar to a 

mid-sized Sedan like a 2007 Volkswagen Passat. 

1.3 Aim of the Work 

Studying the potential of three different configurations of hydraulic 

transmission integrated with a diesel engine for use in cars through simulation. 
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Optimizing performance using powerful simulation models is relatively inexpensive 

compared to hardware design and development. Furthermore, competing designs can 

be evaluated and compared before hardware decision need to be made.  

Another objective is to develop appropriate control strategies that can be used 

for each concept. Investigating the effectiveness of these strategies on performance 

will be considered.  

A comparison of fuel consumption and CO2 emissions during a standard driving 

cycle for a continuously variable hydrostatic transmission and a secondary controlled 

transmission as well as the innovative series hydraulic hybrid drivetrain known as the 

“Hydrid” to the mechanical transmission of the baseline vehicle will be made.  

There will also be an exploration of the new configuration of Hydrid drivetrain 

as well as developing an energy management strategy to obtain the highest overall 

efficiency will be focused on.  

1.4 Scope of the Work 

The scope of the thesis is conducted in an effort to explore the potential and 

feasibility of hydraulic hybrid transmission represented by the innovative distinct 

configuration of the series hydraulic hybrid drivetrain referred to as the Hydrid to use 

in passenger cars. Thereby it will also be focused on the new technologies used, such 

as the three ports hydraulic transformer and the floating cup design applied to the 

hydrostatic units.  

1.5 Outline of the Thesis 

The structure of the thesis begins with a general introduction for the thesis in 

chapter 1 followed by a literature survey, description and discussion of the state of the 

art hydraulic hybrid vehicles technologies that can be found in chapter 2. The next two 

chapters deal with the baseline vehicle. To be more specific, chapter 3 contains all of 

the common factors and geometrical parameters describing the benchmark vehicle 

such as ICE characteristics, vehicle dynamics, as well as properties of the driving 

cycle that will be used as assessment criterion to evaluate performance, fuel economy 

and emissions for each drivetrain of the introduced hydraulic transmissions. In chapter 

4 the gear-shift mechanical transmission of the baseline vehicle is studied and 
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simulated to assure that operating conditions and all common geometrical parameters 

of the vehicle such as rolling friction coefficient and frontal area and drag coefficient, 

which will be used in the other proposed hydraulic transmissions, will lead to the same 

manufacturer data.  

In chapter 5 analysis and simulation of a continuously variable hydrostatic 

transmission integrated with a controlled diesel engine to operate along the points of 

minimum fuel consumption on the engine map is introduced. The control strategy aims 

to feed the vehicle with optimum power and proper transmission ratio.  

A secondary control pressure coupled hydrostatic transmission simulation study 

using state of the art hydraulic units is represented in chapter 6. This transmission 

aims to study the effect of recuperating braking energy on the vehicle performance. 

Chapter 7 describes in some depth the key design feature and components of 

the innovative series hydraulic hybrid vehicle, referred to as the Hydrid, being 

modeled and evaluated in the thesis. A rule based energy management strategy for 

improvements in fuel economy over the base vehicle can be gained by applying the 

proposed strategy. Conclusions and opportunities for future research work and outlook 

are proposed in chapter 8. 
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2.1 Introduction 

While the automotive transmission has undergone many changes and 

improvements within the lifetime of the automobile industry, the established methods 

of power transmission have remained basically the same for most of that period. Even 

though systems such as Continuously Variable Transmissions (CVTs), electric, and 

hybrid-electric drivetrains have made inroads into the automobile marketplace at 

different times over the past century, the gearbox with discrete shifting gear ratios has 

still been the standard by which other systems are judged and evaluated. Even though 

the basic transmission designs have been around for most of the past century, 

continued refinement and research has improved conventional transmissions to the 

point where they will be accepted as the standard until a truly cost effective and 

efficient piece of technology can replace them [3]. 

Today, energy efficiency of transmission systems for automobiles and trucks 

has become one of the most important topics in vehicle design, mainly due to 

increased fuel costs, environmental issues and emission regulations. Over the years, 

many different concepts have been developed that aim to improve fuel economy and 

reduce emissions. 

The specific properties of hydraulic drive systems such as high power density, 

which offer important advantages such as continuously variable transmission, 

continuous power transmission, infinitely variable transmission and high transmission 

ratios have opened up broad fields of applications for such units [4].  

Hydraulic drivetrains have reached a technology level that permits a large-scale 

introduction even in the class of full-sized passenger cars. The conventional form of a 

continuously variable hydrostatic transmission can be integrated with an appropriate 

control means for efficient operation of the engine would make it suitable for urban 

use. Also the known form of secondary controlled hydrostatic transmission can be 

applied in the vehicle drivetrain. Different hydraulic hybrid drivetrain configurations 

and prototypes were introduced by the American Environmental protection Agency 

(EPA) and most of them are still in the first stages of examination.  

The goal of this chapter is to present appropriate reviews on the state of the art in 

previously conducted work available in the literature as well as development and 
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techniques in the field of hydrostatic and or hydraulic hybrid transmission used in 

automotive application, so far. 

2.2 Background 

The first hybrid vehicle in the world shown in Figure 2.1 was developed by 

engineer Ferdinand Porsche in 1900 and called Lohnerporsche. It is considered a series 

type Hybrid Electric Vehicle (HEV) which used a hybrid of gasoline engine and 

electric motor and battery. 

 

Figure 2.1: The 'Lohnerporsche' [5] 

The hybrid-electric vehicle did not become widely available until the release of 

the Toyota Prius in Japan in 1997, followed by the Honda Insight in 1999. While 

initially perceived as unnecessary due to the low cost of gasoline, worldwide increases 

in the price of petroleum caused many automakers to release hybrids in the late 2000s; 

they are now perceived as a core segment of the automotive market of the future [5]. 

In 1648 a Frenchman, Blaise Pascal showed that the pressure in a fluid at rest is 

transmitted equally in all directions. Nearly 150 years elapsed before Englishman 

Joseph Bramah exploited this principle. In 1795 Bramah was granted a patent for a 

hydraulic press to transmit and amplify force by using a hand pump to pressurize a 

column of fluid. In 1906 the electric system for elevating and training guns in the 

battleship U.S.S. Virginia was replaced by a variable speed hydrostatic transmission 

system to maneuver the guns. The subsequent development of a range of components 

has widened the field of application of fluid power technology, which is concerned 

with the transfer, storage and control of energy by means of a pressurized fluid. For 
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example, the design of hydrostatic transmission systems by axial piston pump and 

motor to produce rotary motion was a major development. Interest in fluid power 

servomechanisms was boosted in 40s by the demand for automatic fire control systems 

and military aircraft controls [6, 7, 8]. In 1962 the principle of Secondary-Control was 

first patented in England by the engineers Pearson and Burret. The idea was also born 

in the Army University of Hamburg independent of the earlier patent in 1977. 

Cooperation with Mannesmann Rexroth made it possible to initiate tests and 

eventually simulate different concepts of secondary-controlled systems. The 

cooperation ended in 1986, but at that time several orders had already been booked 

from the industry. During this time, secondary-control became more common in 

industry [9].  

In last decades many hybrid vehicle concepts have been developed. Hydraulic 

hybrid drivetrains have been a core focus of the American Environmental protection 

Agency (EPA) under the EPA’s Clean Automotive Technology Program since the mid-

1990s. Much of EPA’s early research focused on the design of individual hydraulic hybrid 

components optimized for passenger vehicle applications (i.e., smaller, lighter, and more 

efficient), but more recently EPA has been working with their cooperative partners to 

demonstrate complete hydraulic hybrid drivetrains in specific vehicle applications. EPA 

has developed two types of hydraulic hybrid vehicles –mild hydraulic hybrids and full 

hydraulic hybrids. It built a mild hydraulic hybrid urban delivery vehicle that competed in 

the Michelin Bibendum Challenge in September 2003 and won a gold medal for fuel 

efficiency and a silver medal for acceleration performance. EPA is currently building a 

full hydraulic series hybrid urban delivery truck that will have further fuel economy and 

performance improvements [10]. 

2.3 Review of Relevant Literature and Technical Publications 

Hydrostatic transmissions have been widely used in mobile machines and off-

road vehicles such as wheel loaders, graders or tractors. In [11,12,13,14] various 

application can be found, such as earth moving machines, building and construction 

machines using different configurations of hydrostatic transmissions. The hydraulic 

transmission can be used to perform transmission of power from the engine to the 

vehicle wheel or in other design can be combined to work in parallel with the existing 
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mechanical gearbox. Much research was done in the area of applying hydraulic circuit 

as alternative transmission to mechanical gears. Since the major research efforts 

concern different forms and designs of hydrostatic transmissions, the focus of the 

following survey concentrates on mobile applications and road vehicles. A description 

of different hydraulic transmission systems applied and utilized in the automotive 

industry is also included. 

2.3.1 Non regenerative Hydrostatic and Hydro-mechanical Transmissions 

Individual and compound hydraulic drivetrains are reviewed here, not including 

any storing energy element. Those drivetrains are represented by conventional 

hydrostatic transmission and hydrostatic-mechanical systems or Hydro-Mechanical 

Transmissions (HMTs) which are composed of a hydrostatic transmission connected in 

parallel with mechanical transmission by planetary gears. The later system is generally 

known as power split drivetrain. 

2.3.1.1 Conventional hydrostatic transmission drivetrain    

A number of investigations of hydrostatic transmissions using different open 

and closed-loop concepts, which are not specified for on-road vehicle drivetrains were 

conducted in 1790’s and 1980. In the early 80’s Rydberg [15] investigated 

performance optimization of vehicle drivetrains with hydrostatic transmission. He used 

a simulation model considering leakage flow losses and indicates the importance of 

digital control in mobile applications. Research projects in the 90’s suggested a way to 

increase the efficiency of hydrostatic transmissions used in drivetrains such as J. 

Lennevi, et al. 1994 [16] who proposed a gain scheduling law based on PID-control to 

guarantee the desired closed-loop behavior for the whole operating range, while M. 

Sanelius, 1999 [17] showed that adaptive control concepts using variable displacement 

pumps and fixed displacement motors improve vehicle operation. Sanelius suggested 

the application of two hydraulic motors in parallel, where one of them can be 

disconnected from the driveline and controlled to zero displacement in order to 

increase total efficiency of the HST from low to high vehicle speed. 

To investigate the steady state and dynamic characteristics of hydrostatic 

transmission, Huhtala 1996 [18] developed nonlinear models with steady loss models 

both of a pump and a motor. He used command generator displacement to determine 
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the desired set values of the transmission input speed and the vehicle speed. Based on 

PI-fuzzy controller, Huhtala suggested an adaptive control strategy to achieve a high 

efficiency hydrostatic transmission. 

Several studies concerning the steady and dynamic performance of the 

continuously variable transmission using different modeling and control concepts can 

be found in [19, 20, 21, 22, 23, 24, 25, 26, 27].  

Ossyra J.C 2005 [28] analyzed and proposed in simulation and experimental 

work different control concepts based on cascade displacement setting for the 

displacement of the pump and the motor for off-road vehicles with hydrostatic 

transmission. The results show a reduction of fuel consumption from 12 ~ 20 %. 

Macor and Tramontan 2007 [29] presented a hydrostatic transmission 

connected to a hybrid propulsion system consisting of ICE and an electric motor 

connected to an energy storing battery to absorb or supply energy according to the 

traction. The system is applied to a transportation bus with maximum speed of 60 

km/h. Using HST allows the engine to work at a fixed point and sized for average 

power which in turn results in a fuel and emission reduction.   

2.3.1.2 Non-regenerative hydro-mechanical transmission 

A typical hydro-mechanical transmission (HMT) consists of mechanical 

transmission parts, planetary gears, clutches and a hydrostatic transmission (HST). 

HMTs transmit the power by two paths, the hydrostatic path and the mechanical path 

[30]. HMT combine the benefits of continuous variable transmission and high 

efficiency of mechanical transmission. 

Berger 1986 [31] and Blumenthal 1989 [32] investigated the suitability of 

applying hydro-mechanical power split transmission in medium sized cars. Berger 

built a simulation model for the combined HMT drivetrain including losses for system 

elements. The obtained steady and cycle based results from the developed simulation 

model show 18 % saving in fuel consumption compared to a mechanical transmission.  

Carl et al. 2006 [33] made a detailed study to apply power split in vehicle 

drivetrains. Carl investigated four architectures of power split transmission illustrating 

the advantages and disadvantages of each type with regards to energy consumption, 

efficiency, system complexity, compactness and control effort for on-road and off-road 
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vehicles. It was concluded that the output-coupled system shown in Figure 2.2 is 

advantageous for lower power type systems or systems that desire very simple control 

effort such as wheel loaders as well as in smaller passenger vehicles. For higher power 

applications such as busses, refuse vehicles, semi-trucks, and other high speed vehicles 

with high tractive forces compound-coupled or dual-stage input-coupled drives are 

suitable. 

 

Figure 2.2: Output-coupled power-split transmission [33] 

Kohmäscher 2008 [34] provides a detailed analysis for six possible 

combinations of input-coupled and output coupled HMTs as well as one selected 

Compound HMT. A simulation approach for hydro-mechanical power split 

transmissions was introduced for use in a wheel loader equipped with a 120 kW 

engine. He focuses on building loss models for hydraulic units and compound 

planetary gears which are an essential component for HMTs. It was found from the 

simulation results that the fuel consumption can be reduced by 25 % for the proposed 

duty cycle. 

2.3.2 Regenerative hydrostatic transmission drivetrains  

 Mobile machines and vehicles that store wasted braking energy in a hydraulic-

pneumatic accumulator for reuse it during acceleration or cruise mode is presented 

here. They can be divided into three categories, parallel, series and a combination of 

both i.e. series-parallel drivetrain.  

Work showing a comparison of parallel, series, and regenerative power split 

configurations of hydraulic hybrid vehicles has been done by Stelson [35] and Meyer 

[36] in 2008. It was found that parallel configuration obtains the best fuel economy 
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with regenerative power split being the least efficient. But the pumps and motors used 

are oversized to apply in passenger vehicles and therefore operate at low efficiency.  

2.3.2.1 Parallel hydraulic hybrid 

A parallel hybrid vehicle involves adding the hydraulic power and the 

conventional mechanical power together. It can be found in literature under several 

names and is not limited to Mild hydraulic hybrid vehicle by EPA, Hydraulic Lunch 

Assist (HLA) by Eaton Corporation, Hydraulic Regenerative Braking (HRB) system 

by Bosch, Hydraulic power assist by Ford Motor Company, or in general parallel 

hydraulic hybrid drivetrain. 

It has an internal combustion engine coupled to mechanical transmission and a 

hydraulic pump/motor connected to storage device that captures and stores a large 

fraction of the energy normally wasted in vehicle braking. The stored energy will be 

used to help engine in propelling the vehicle during the next vehicle acceleration. 

Parallel HHV can be viewed as an add-on to a conventional drivetrain.  

In the early 1980’s the Comulo Division of Volvo Flygmotor (now a part of 

Parker Hannifin) in close cooperation with AB VOAC Hydraulics Trollhättan AB in 

Sweden, developed a highly efficient over-center variable displacement bent axis type 

connected to a hydro-pneumatic accumulator to work in parallel with mechanical 

transmission as shown in Figure 2.3. Development started 1983 and it has been used in 

ordinary city buses on Stockholm roads from 1985. The developed drivetrain, called 

Cumulo Brake Energy Drive (CBED), considered the first on-road parallel hydraulic 

hybrid vehicles launched for the market. A reduction of fuel consumption and gas 

emissions by 16 to 25 % has been demonstrated [37]. 

Figure 2.3: Cumulo Brake energy Drive (CBED) [37] 
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Optimal power management strategy of a parallel hydraulic hybrid system 

applied in medium delivery truck vehicle is presented by [38]. A dynamic 

programming strategy has been proposed which results in a fuel economy increase 

from 28 ~ 48 % in comparison to the conventional vehicle.  

Research at Purdue University done by [39] applied optimal power management 

strategy on regenerative power-split transmissions. They found that the introduced 

concept has a significant potential for improving fuel economy in vehicle applications. 

In January 2002, Eaton Corporation, a major automotive component supplier, 

unveiled its HLA and stated that the HLA system could be ready for commercial 

introduction by mid-decade [10, 40]. Eaton Corp. designed HLA for use in specific 

vehicle applications shown in Figure 2.4.  

 

 

Figure 2.4: Eaton HLA drivetrain [41] 

The technical advantages of applying parallel hydraulic hybrid in heavy duty vehicles 

such as refuse trucks was discussed in [41]. It was concluded that the parallel HHV 

can improve fuel economy by up to 30 %. 

Another research work on parallel hydraulic hybrid for use in passenger cars 

was conducted at IFAS of RWTH Aachen University in [42] and is shown in Figure 

2.5. It introduced a test vehicle called IFASter to demonstrate the ease of integrating a 

hydraulic component in a conventional vehicle to build simple parallel hydraulic 

hybrid configuration.   
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Figure 2.5: Proposed configuration of the parallel HHV [42] 

2.3.2.2 Regenerative power-split drivetrains 

A hydro-mechanical transmission (HMT) drivetrain with regeneration and 

independent wheel torque control of a hydraulic hybrid passenger vehicle was 

presented by [43, 44]. The shown drivetrain in Figure 2.6 exhibits the benefits of both 

the parallel and series architectures but is based on a complex case which requires a 

comprehensive control strategy. A little saving in fuel consumption is achieved by this 

configuration. 

Figure 2.6:  Proposed HMT drive train with independent wheel torque control of a 
passenger vehicle system [43, 44] 

2.3.2.3 Series Hydraulic hybrid drivetrains 

The traditional secondary controlled hydrostatic transmission is considered one 

form of series hydraulic hybrid vehicles. Within this configuration the mechanical 

transmission is removed completely. The internal combustion engine is disconnected 

from the road load applied on of the vehicle wheels. The vehicle is propelled by the 

controlled power supplied by a hydrostatic transmission.  

As stated before, the idea of secondary controlled drives appeared in the 70s. 

Wassenberg at 1982 [45] introduced a comparison study between primary and 

    ICE 
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secondary controlled hydrostatic transmission for use in prototype field vehicle 

weights 4.5 ton with maximum speed about 41 km/h. It was indicated that the 

secondary controlled drive is more powerful for use in this application especially from 

the energy consumption point of view. On the same prototype vehicle [46] made a 

detailed study indicating that the maximum speed range can be increased to 60 km/h 

by using the secondary controlled system.  

Different control methods, modeling and simulation to improve the dynamic 

behavior of the secondary controlled system are treated in [47, 48]. Investigations 

concerning the effect of accumulator volume on the performance of the transmission 

can be found in [49, 50]. 

Further development was done on the aforementioned CBED parallel hybrid 

vehicle in 1991 to replace the mechanical transmission with a complete series 

hydraulic system called Cumulo Hydrostatic Drive (CHD), shown in Figure 2.7, 

including two independent control units for primary and secondary sides [37]. It aims 

for use in refuse trucks which mainly operate with frequent speed variations and 

moderate average speeds. Tests indicate that about 20 ~ 40 % fuel consumption can be 

obtained [2]. 

Figure 2.7: Cumulo Hydrostatic drive (CHD) [37] 

Some years ago, Parker Hannifin launched “the RunWise” project, which would 

become the largest project undertaken by the Industrial Group of Parker Hannifin. The 

goal was to develop an energy recovery hydraulic hybrid transmission for refuse 

trucks. Although many of the fundamental theories from the Cumulo project were 

adopted, a completely new system was developed [51]. 

EPA unveiled the world’s first full hydraulic hybrid SUV at the 2004 Society of 

Automotive Engineers (SAE) World Congress in Detroit, Michigan. This vehicle had 
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outstanding performance in the laboratory. Dynamometer tests showed that the full 

hydraulic hybrid SUV depicted in Figure 2.8 offered an estimated 35 ~ 55 % fuel 

economy improvement in comparison to a comparable, commercially available SUV. 

The increase in fuel economy consequently results in a reduction of carbon dioxide 

(CO2) emitted from the engine [52].  

  

Figure 2.8: A complete view of full hydraulic hybrid SUV at SAE Congress [52] 

In June 2006, EPA with a partnership arrangement with United Parcel Service 

(UPS), Eaton Corporation, and the U.S. Army’s National Automotive Center 

introduced the world's first full series hydraulic hybrid delivery truck shown in figure 

2.9 to a crowd of auto industry representatives, environmentalists, and reporters in 

Washington, DC. Laboratory tests show that this EPA patented technology can 

increase fuel efficiency by 60 to 70 % in urban driving conditions and reduce carbon 

CO2 compared to conventional UPS diesel delivery trucks [52].  

 

Figure 2.9: UPS full hydraulic hybrid drivetrain [52] 

Ivantysynova et al. 2006 [53] studied and modeled with a software tool two 

different hydrostatic transmission for application in refuse trucks. One transmission 
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was developed by Parker Hannifin, which uses two secondary controlled motors 

supplied from a constant pressure net of a pressure controlled pump as shown in 

Figure 2.10. The second is based on a simple output-coupled power split drive design. 

It has been shown that the secondary controlled drives consumes less fuel than the 

proposed power split drive.  

 

Figure 2.10: Secondary controlled Hydrostatic transmission setup [53] 

Freightliner Custom Chassis Corporation (FCCC) [54], a subsidiary of Daimler 

Trucks North America, has made an initial 20 unit commercial commitment for a 

series hydraulic drives system from Parker Hannifin Corporation which introduced its 

pilot hydraulic hybrid on display in March 2009 in The Work Truck Show Hybrid 

Pavilion at Chicago. Preliminary testing indicated that the hydraulic hybrid improves 

fuel economy between 50 ~ 70 % over traditional diesel-powered vehicles with 

automatic transmissions in stop-and-go applications. 

Figure 2.11: Parker Series HHV and its Engine operating point’s [54] 

The Scottish company Artemis Intelligent Power Ltd, has for the first time 

publicly revealed in Edinburgh, UK May 2008 [55], a new type of hybrid car and truck 



 
State of the art             19 
 

transmission based on its novel Digital Displacement® technology which was 

developed in Scotland. The demonstrated prototype car is a BMW-530i equipped with 

a Digital Displacement® Hybrid Transmission and has achieved 50 % reduction of 

fuel consumption for city driving compared with the same car equipped with a manual 

transmission. The two prototypes of Artemis are shown in Figure 2.12. 

IVT + regenerative 

17 % CO2 reduction 
               IVT + regenerative +Start/stop 

                30 % CO2 reduction 

Figure 2.12: Artemis's Digital Displacement® Hybrid Transmission prototypes [55] 

The heart of the system is a six piston radial digital displacement hydraulic 

pump/motor unit shown in Figure 2.13. This hydraulic unit replaces the port plates and 

swash plates in conventional hydraulic machines with computer controlled high-speed 

solenoid valves driven by a microprocessor.  These solenoids actively control poppet 

valves that rectify the flow into and out of each cylinder. The hydraulic pump 

connected to a conventional combustion engine replacing the gearbox. It is 

hydraulically connected to Digital Displacement Motors coupled to the wheels. 

   

Figure 2.13: Artemis modular digital displacement six piston radial machine [56, 57] 

Peter Achten from Dutch engineering organization Innas B.V developed a new 

concept of hydraulic transformer, referred to as the Innas Hydraulic Transformer 

Hydraulic
Starter Motor

Digital
Displacement™
Pump Motor

Accumulator



 
  Chapter 2                           
 

 

20

(IHT). The IHT as indicated in Figure 2.14 is designed with three ports [58]. It has 

been built and tested in a forklift [59, 60]. Achten also developed floating cup 

technology for use in hydrostatic pumps, motors and transformers. This development 

is shifting towards applying such technology for hydraulic hybrid vehicles.   

 

Figure 2.14: The Innas Hydraulic transformer [60] 

Achten [61, 62] proposed a layout for an all-wheel full hydrostatic transmission, 

shown in Figure 2.15, for automobile use, as opposed to mechanical transmission. The 

proposed transmission is called “The Hydrid”. A simulation on the proposed Hydrid 

using an internal combustion engine and all-wheel hydromotors is carried out at IFAS 

of RWTH Aachen University and will also be treated in this thesis. 

 

Figure 2.15: Hydraulic layout of the Hydrid with two drive engines [62] 

2.4 Summary 

The surveyed literature shows that a small amount of work has been done on 

hydraulic hybrid drivetrains. So far some research has focused on the field of hydraulic 

hybrid vehicles from concepts to prototypes of its three convenient types, parallel, 

series and parallel-series.  
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It becomes evident from the aforementioned literature review that applying 

hydraulic hybrid technology did not address the area of passenger cars. Generally, it is 

applied and tested in a special vehicle application such as refuse trucks and city buses 

characterized by frequent start stop operation. Adding a hydraulic system to the 

vehicle’s mechanical transmission as in parallel hydraulic hybrid will add weight, 

while regenerative power split systems are heavy, often complex to control and 

therefore difficult to realize in small to medium sized vehicles. This adds to the weight 

of the vehicle, thus offsetting some of the gains with regards to fuel economy making 

it unsuitable for use in passenger cars. A gap still exists in applying this technology to 

cars with the current state of the art hydrostatic pumps and motors. One reason is the 

limitation of maximum pressure and maximum speed of current hydrostatic pumps and 

motors especially variable displacement units. Furthermore, the efficiency of the 

current hydrostatic pumps and motors deteriorate rapidly if working under extreme 

conditions of high pressure and or speed. Variable displacement pumps and motors 

exhibit high weight and high noise levels during operations acceptable for industrial 

use, which need to be addressed for passenger car use. 

Currently, the situation stands to be altered by the development of hydraulic 

units e.g. the new digital displacement machines and the floating cup principle 

hydrostatic units. A small constant displacement pump and motors with low weight 

and low noise together with the state of the art IHT installed in the Hydrid allow for an 

increase in transmission efficiency. The ability to store braking energy can be achieved 

by using a medium sized accumulator. A real-time or on line simulation modeling of 

the Hydrid is needed to explain and investigate its operation under a proposed energy 

management strategy. Realization of the operation and performance of the introduced 

Hydrid drivetrain in various cycles that include an aggressive and smooth driving 

pattern is required and will be treated later on. Given the above, the approach in this 

thesis will be to explore the efficiency of the Hydrid drivetrain for use in passenger 

cars, using detailed simulations to study its performance.  
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3.1 Introduction 

The current study deals with different types of drivetrains, that include common 

parts such as the Internal Combustion Engine (ICE) and the vehicle body as well as the 

driving cycle used in simulation. All of the common parameters and factors such as 

ICE characteristics, vehicle dynamics, as well as driving cycle properties need to be 

discussed. The selected driving cycle is considered as assessment criterion to evaluate 

the performance of the introduced transmissions. 

The baseline conventional vehicle used in this study is a mid-sized passenger 

car similar to Volkswagen Passat equipped with a six gear transmission. A Mercedes 

Benz turbocharged diesel engine (maximum torque 370 N m @ 1800 rpm - 2800 rpm, 

maximum power 120 kW @ 4200 rpm) is applied as the baseline internal combustion 

engine because the engine data was readily available. 

The aims of describing the benchmark vehicle and engine model are to assure 

that the drive conditions, vehicle parameters and primary power source are the same 

for all simulation models built.  

3.2 Simulation Approach 

Throughout this research work, DSHplus 3.6.1 software was used to build 

different drivetrain simulation models. DSHplus software can be used for a variety of 

systems and industrial applications, having tools for modelling and simulating the 

hydraulic and mechanical parts of driveline systems. These tools include different 

technical libraries such as hydraulic, pneumatic, thermo-hydraulic, mechanical, control 

or electric components. DSH software is optimized for ease of use and speed of 

calculation for different systems building. It is integrated with source codes and code 

generation products, which enables the design and testing of controllers in real-time. 

DSHplus models can be converted to C++ code with real-time operation, to enable 

testing of embedded controllers using hardware-in-loop (HIL) tests instead of 

hardware prototypes. In all built drivetrain simulation models, components loss data 

and efficiency maps are loaded to each component element. 
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3.3 Internal Combustion Engine 

Energy is needed to propel an automobile. This requirement for energy is in 

most cases covered by the conversion of chemical energy from fossil fuels to 

mechanical energy. Usually, an Internal Combustion Engine (ICE) is used in the 

vehicle; therefore, it is necessary to know the properties of the engine when 

developing the introduced drivetrains and their control. The significant steady-state 

characteristics of the diesel engine are the torque and power behaviours as a function 

of its rotational speed.  

The common prime mover used in the simulation models is a direct injection 

diesel engine. The engine efficiency map is derived from the data of the OM 639 

diesel engine of the Mercedes Benz A-class [63]. The maximum engine power is 120 

kW at 4200 rpm and the maximum engine torque of 370 Nm is available over a wide 

range from 1800 to 2800 rpm. Engine fuel consumption map and engine 

characteristics are shown in Figure 3.1. The Wide Open Throttle line (WOT) 

represents the maximum torque at a wide open throttle for every engine speed.  

0

50

100

150

200

250

300

350

400

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Engine Speed [rpm]

T
o

rq
u

e 
[N

m
]

0

20

40

60

80

100

120

140

P
o

w
e

r 
[k

W
]

WOT

Power

220 

BSFC = 240 g/kW h

260 
280 

300 
320 

340 

 

Figure 3.1: ICE Fuel consumption map, torque and power characterizes. 

The dashed curves of hyperbolas in the diagram stand for the lines of constant 

power. They are spaced apart by a step of 5 kW. The shell curves represent the lines of 
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constant brake specific fuel consumption. Important points in the indicated diagram 

are the maximum torque and power.  

An engine achieves maximum efficiency when the intake of air is widely 

opened and the engine is running near its peak torque. Any engine will have different 

Brake Specific Fuel Consumption (BSFC) values at different speeds and loads. BSFC 

is a measure of fuel efficiency at the engine shaft.  It is generally expressed in g/kW-h 

unit. The relation between the fuel consumption rate, BSFC, shaft brake power, and 

engine efficiency can be expressed as follows; 
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The Lower Heating Value (LHVf) of the diesel fuel is 44000 J/g which represents the 

net calorific value of the burned fuel.  

3.3.1 Engine Parameters und Variables 

The DSHplus model of the engine as any other component includes some fixed 

parameters and variables. It includes the following parameters; engine moment of 

inertia, minimum and maximum speed as well as engine maximum torque, engine drag 

and specific fuel consumption look-up tables. 

The engine model variables are the amount of fuel throttle corresponding to the 

pedal position as the input command denoted by [alpha] in the model. It represents the 

amount of fuel consumed from a fuel tank to develop engine propulsion power. The 

delivered engine torque depends on the throttle position and is a fraction between 0.0 

and 1.0 of its maximum. The engine speed and brake torque at the engine shaft which 

is represented by the -Mech- connection shown in Figure 3.2, are considered as the 

engine output. The figure shows also the possible measured signals from the engine 

model such as engine speed (n_ICE), power and fuel consumption. 



 
  Chapter 3                           
 

 

26

 

Figure 3.2: Engine model in DSHplus 

3.4 Driving Cycle 

Due to the increasing use of automobiles and increasing environmental 

pollutions, many governments in the seventies and the eighties forced the automobile 

manufacturers to develop vehicles with higher efficiency and lower emissions, which 

the establishment of emission laws. Connected with these laws the need for test 

procedures arose to compare several automobiles by a standard driving cycle. 

A driving cycle represents certain driving patterns and is described by means of 

a velocity-time table. The track that is to be covered is divided in small time-steps, 

mostly seconds. The acceleration during a time-step is assumed to be constant. As a 

result the velocity during a time-step is a linear function of time. Because velocity and 

acceleration are known for each point of time, the required power as a function of time 

can be determined analytically. 

The standard test cycle used in the simulation models is the NEDC. It is mostly 

used by the European countries for the certification of passenger cars and light trucks, 

as it is supposed to represent the typical usage of a car in Europe. The cycle consists of 

two main parts, Urban Driving Cycle (UDC) and Extra-Urban Driving Cycle (EUDC). 

UDC and EUDC were designed to represent city and highway driving conditions 

respectively.  As shown in Figures 3.3, the total cycle duration is 1180 seconds, in 

which 780 seconds of 4.052 km urban trip at an average speed of 33.6 km/h and at a 

maximum speed of 50 km/h. The UDC includes four equal urban segments called 

ECE-15 to obtain an adequate driving distance and temperature. The EUDC cycle 

illustrates the aggressive pattern and high speed driving of the cycle on a flat road. It 
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takes 400 seconds for 6.955 km in highway drive with an average speed of 62.6 km/h 

and maximum speed of 120 km/h [64]. 
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Figure 3.3: Profile and velocity patterns of the NEDC [64] 

The driving cycle will be used in the simulations to define driver requirements 

and is also considered as an assessment criterion to evaluate the drivetrain fuel 

consumption and CO2 emissions. The driver model uses the difference between test 

cycle velocity and the actual vehicle velocity to develop the appropriate error signal 

fed to the controller. 

It can be concluded that applied test cycles differ significantly in terms of 

relative amount of the energy available for regenerative braking, average velocity, and 

magnitude of the segments featuring steady-state operation of the powertrains.  

3.5 Vehicle Performance Requirements 

The requirements of the drivetrain components such as engine and transmission 

are based upon vehicle requirements. In order to choose the components size and 

speed ratios, the demands of the drive vehicle must be specified. The performance 

requirements are acceleration and maximum speed, which result in a traction of the 

drivetrain. 

3.5.1 Baseline vehicle specifications 

 To be able to determine the drivetrain components which fulfil performance 

requirements, the vehicle must be specified in terms of vehicle geometrical parameters 

and engine characteristics, which are summarized in Table 3-1. 
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 Table 3-1: Baseline vehicle and engine parameters 

Parameter symbol Value Unit 

Curb mass mF 1554 kg 

Payload mp 650 kg 

Towing capacity  Braked mT 1800 kg 

Un-braked 750 kg 

Height of Center of Gravity (CG) h 0,65 m 

Distance from CG to front and rear axle a, b 1.2 , 1.3 m 

Frontal area Af 2.26 m2 

Air drag coefficient Cd 0.28 - 

Rolling resistance coefficient (firm Asphalt) fr 0.008 - 

Wheel radius rw 0.315 m 

Maximum vehicle velocity vF,max 220 km/h 

 All of the initial conditions and input data such as vehicle parameters and 

command velocity from the driving cycle will be the same for simulation models of 

the introduced transmissions in the thesis. 

Comparison of the data for the various models of the baseline vehicle is 

represented in Table 3.2. It indicates that automatic transmissions and all-wheel drive 

options increase the specific fuel consumption and the CO2 emission of the vehicle. 

This is foremost due to the reduced efficiency of the 4WD-transmission compared to 

the manual. Furthermore, the increased weight of especially all-wheel drive option 

further deteriorates the fuel economy and the CO2 emissions.  

Table 3.2: Influence of transmission options on vehicle’s fuel consumption [62] 

Fuel 

Transmission type 

 Automatic Transmission (AT) 
vs  

 Manual transmission (MT) 

Additional 

weight 

% of  fuel consumption and 

CO2-emissions 

Petrol 
AT compared to MT + 34 kg + 3 to 7 % 

4WD compared to 2WD +103 kg + 7 % 

Diesel 
AT compared to MT +24 kg + 7 to 12 % 

4WD compared to 2WD +100 kg + 14 % 
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3.5.2 Longitudinal vehicle dynamics 

 When a vehicle is in motion, different forces are acting upon it. To initiate and 

maintain vehicle motion, a thrust force is required at the tires. This force is usually 

referred to as the tractive force, which is required to overcome resisting forces during 

vehicle motion.  

 The major components of the resisting forces to be overcome by the tire traction 

force are comprised of aerodynamic drag, rolling resistance, inertia force, and grade 

force as shown in the free body diagram of Figure 3.4. The vehicle dynamics are 

adapted here as a lumped mass model. 

g
m g sin st

Fa

mg
+

 

Figure 3.4:  Free body diagram of the longitudinal dynamic forces acting on a vehicle  

 The analysis considers only the major forces that occur in the direction of 

vehicle motion, and do not take into account perpendicular forces on traveling surface. 

The traction force FT required at the drive wheels is made up of the driving resistance 

forces [65], and is defined as 

FT = FAer + FR + FGr +  Fa               (3-4) 

The aerodynamic drag on the vehicle is a function of vehicle velocity squared, 

air density, vehicle frontal area, and coefficient of drag. The rolling resistance force is 

a function of vehicle weight, rolling resistance coefficient. The Grade force is a 

function of vehicle weight and grade angle. While the inertia force is equal to effective 

vehicle mass multiplied by the vehicle acceleration, then: 
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amfgmvAc
r

M
F gStStRgFfdL

R

T
T   )sincos(

2

1 2
             (3-5) 

The air drag force is the dominant at intermediate and high speeds because the 

required power to overcome the air drag force is proportional to the car velocity raised 

to power three.  

It is known that a point exists beyond which, no matter how much torque an 

engine can provide to the vehicle’s wheels, there will be no effect on performance. At 

this point the developed force only results in spinning of tires and does not overcome 

resistance nor accelerate the vehicle. For a 4WD vehicle, the gross vehicle weight (Wg) 

equals the normal load force (N). 

The ability of a vehicle to develop traction depends on the weight on the drive 

wheels and coefficient of friction between wheels and road surface. Force required to 

spin the tyres (wheels begin to slip) known as the maximum tractive effort is given by, 

NF pT .max,  = stgp W  cos..                  (3-6) 

Pushing fuel pedal down further than to get more force, the wheels will start 

spinning and lose grip and the traction force drops below the maximum amount. So, 

for maximum acceleration the traction force must be just below the friction threshold. 

Since installed engine capacity is limited, the propulsion capability of a vehicle is 

constrained. 

Hence, the road performance can be expressed as follows, 

2
max, 2

sincos Ffd
a

StgStRgTg vAcWfWFvm
     (3-7) 

The power required at the wheel’s axles is, 

 FTT vFP .  

FFStStRgFfd
L

T vamfWvAcP .)sincos(
2

2






  

   (3-8) 

 DSHplus simulation model, shown in Figure 3.5, was built to calculate the 

demand load and power at the vehicle wheel during the NEDC cycle.  
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Figure 2.5: Longitudinal vehicle dynamics simulation model of the baseline vehicle 

 Load forces as well as the demand power that was required to overcome the 

resistance forces are shown in Figure 3.6. The load force curve is a parabolic curve, 

this because the load force is proportional to the velocity square. At maximum speed 

of 220 km/hr, power required at the wheels is about 105 kW as shown in the figure.  
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Figure 3.6: Road load force and power at the vehicle speed range 

 Simulation results of the longitudinal vehicle dynamics model including load 

force and load torque as well as the load power required at wheels to overcome the 

resistance forces along the NEDC cycle are shown in Figure 3.7. Positive load power 

occurs during acceleration and constant driving speed. It will be negative in 

deceleration phases, and then considered as lost power during braking mode. 

 Rolling resistance force 

                                          
 
                 Aerodynamic force 

 
 
 
 
 
 

Driving 
cycle  

Acceleration force 

Demanded 
power  

and  
torque 



 
  Chapter 3                           
 

 

32

 The figure reveals that, the wheel torque ranges between -657 Nm and +557 

Nm during of the NEDC. This is much lower than the maximum torque (4000 Nm at 

slope 38 %) for which the drivetrain must designed. 
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Figure 3.7: Load force, moment and power of the baseline vehicle during the NEDC cycle 
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3.5.3 Acceleration performance  

The baseline vehicle can pull away from standstill, climbing up a hill with a 12 % 

slope being fully loaded vehicle and including the maximum allowable trailer load.  

Equation (3.4) can be rewritten in the form of Riccati’s differential equation as 

follows; 

 
dtv
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   (3-9) 

On integration of equation (3.9) the theoretical time or the velocity at any instant can 

be expressed as follows, 
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And, 
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           (3-12) 

With the parameters mentioned in Table 3-1, and assuming flat road. The vehicle will 

take 9.7 seconds to accelerate from 0 to 100 km/h (27.8 m/s). 
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4.1 Introduction 

The mechanical drivetrain is the oldest transmission used in automobiles. The 

first cars powered by internal combustion engines running on fuel appeared in 1806, 

which led to the introduction of the modern gasoline or petrol-fueled internal 

combustion engine in 1885 [66]. 

The transmission introduced in this chapter is a standard 6-speed semi-

automatically shifted transmission as used in the VW mid-sized Passat. It is based on 

manual transmissions which include automatic clutches in order to synchronize, 

connect or disconnect the engine from the transmission gearbox automatically while 

the driver selects the proper gears. 

The mechanical transmission installed in the mid-sized baseline vehicle is 

considered as the reference transmission for this study. The aim of this chapter is to 

build a simulation model to assure that all common circumstances, vehicle parameters 

and operating conditions will lead to the same data of fuel consumption and CO2 

emissions values announced by the manufacturer. The published data by the 

manufacturer is based on the New European Driving cycle (NEDC). The resulting fuel 

consumption values and CO2 emissions from the simulation in two driving schemes 

i.e. the city (UCD) and highway driving (EUCD) cycles will be used in comparison 

with the introduced different hydraulic drivetrains in this work. 

In this chapter, the basic dynamic relations for the mechanical drivetrain 

transmission are introduced. The velocity range that can be obtained for each gear over 

the engine speed range of the geared transmission is also explained. The performance 

of the baseline vehicle with regards to the maximum traction force and power of the 

mechanical transmission against the road load resistance is calculated and presented. 

Simulation model for the whole drivetrain including driver model and controller, 

followed by simulation results and comparison with the manufacturer’s data is 

introduced.  

4.2 Drivetrain Components 

The standard mechanical drivetrain consists basically of mechanical clutch, 

gearbox, drive shaft (propeller shaft), final drive and wheel axle shafts to transfer the 
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engine torque to the vehicle wheels as shown in Figure 4.1. In a manual transmission, 

the driver disconnects the engine from the transmission input with the clutch pedal 

while selecting the gear via the gear lever or while braking and synchronizes, or 

connects the engine back to the transmission during propulsion. The torque from the 

engine is converted via the gearbox and the differential before applying it to the 

vehicle’s wheels. 

Axle shaft

Drive shaft

Gearbox

ClutchEngine

 ICE

Differential

 

Figure 4.1: Mechanical drivetrain components layout  

The all-wheel drive versions of the mid-sized Passat described here have six forward 

speeds and one reverse gear. The gear-shift ratios as well as moment of inertia and 

mechanical efficiencies for each gear are listed in Table 4-1 [67]. 

Table 4-1: Gear ratios of the mid-sized baseline vehicle 

Gear  Gear ratio Inertia  [kg.m2] Efficiency 

1st  3.46 0.145 
0.966 

2nd  2.05 0.102 
0.967 

3rd  1.30 0.079 
0.972 

4th  0.91 0.057 
0.973 

5th  0.90 0.034 
0.97 

6th  0.76 0.03 
0.98 

Final drive     -    1/4 

Final drive     -    5/6     

4.12 

3.33 
0.135 0.98 

Reverse 3.98 0.135 0.98 
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 The largest gear (6th gear) is generally designed to attain the maximum 

vehicle velocity. While the minimum gear (1st gear) is designed to sustain the 

maximum traction required at the wheels e.g. for climbing ability and the smallest 

possible driving speed with an engaged clutch [68].  

The forward velocity vF of the vehicle is proportional to the angular velocity of 

the engine, and can be expressed in terms of transmission gear ratios and wheel radius 

as follows; 

fi

wICE
F gg

rn
v

.2
           (4-1) 

Generally, the internal combustion engine cannot operate below a minimum 

engine speed nmin. Consequently the vehicle cannot move slower than a minimum 

speed vmin while the engine is connected to the drive wheels. At starting and stopping 

stages of motion, the vehicle needs to have speed less than vmin. So, a clutch or torque 

converter must be used for starting, stopping, and gear shifting. 

A gear-speed plot can be drawn by using equation (4-1) as shown in Figure 4.2. 

The angular velocities associated to maximum and minimum engine speed are 

indicated by horizontal dashed lines. The circles drawn at the intersection points of 

gear lines with the vehicle velocity represent the shifting speed to the subsequent 

smaller gear.  
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Figure 4.2: Speed-velocity plot for the stepped mechanical driveline 
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The figure indicates also that the speed margin between maximum speed and 

shifting speed increases with shifting-up to the next gear. 

The larger transmission gap at lower velocity range is tolerated in passenger 

cars due to the high surplus power being required to accelerate the vehicle [68].  

4.3 Mechanical Transmission Analysis 

  The driveline dynamics model includes the rotational dynamics of dry clutch 

and gearbox combination, which receives engine torque and delivers tractive torque to 

the vehicle wheels through the differential and propelshaft. The dynamic equations are 

used in the different elements of the simulation model that was built in DSHplus. 

Since the engine is responsible for supplying drive power to the mechanical 

transmission, the provided engine power can be expressed as;  

ICEICEE MP                 (4-2)        

The engine power is transferred to the transmission through a clutch. The 

widely used mechanical clutches in mechanical stepped transmissions are in the form 

of dry single-plate clutches [68]. The torque delivered through the clutch is the input to 

the transmission and can be determined by application of Newton’s second law for 

rotational motions; 

ICEcEEc JJMM .)(          (4-3) 

Depending on which gear is selected, the input torque to the gear box is 

amplified by the ith gear ratio before being applied to the differential, where i takes the 

values from one to six. 

Gear ratio; 
iin

iout

iout

iin

iin

iout
i M
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Z
g

,

,

,

,

,

,         (4-4) 

The amplified torque at the output of the transmission is decreased by inertial 

losses in the gears and shafts. If the transmission inertia is characterized by its value on 

the input side, the output torque of the drive shaft can be approximated by the 

expression; 

iICEgiCd gJMM ).(           (4-5) 

Similarly, the torque delivered to the axles to accelerate the rotating wheels and 

provide tractive force at the ground is amplified by the final drive or differential ratio 
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with some reduction from the inertia of the driveline components between the 

transmission and final drive.  

Commonly used models of the differential are reduced to one shaft and not two 

as in a real vehicle, and can be modeled as a planetary gear set arrangement [69]. Then 

the expression of axle torque is; 

fdddaxle gJMM ).(           (4-6) 

Now, the torque from the engine (i.e. at the crankshaft) is converted via the gear 

and differential before being applied to the wheels. The gearing multiplies the torque 

from the engine by a factor depending on the gear ratios. Hence the wheel torque can 

be expressed as; 

wwaxlewwT JMrFM  .         (4-7) 

The angular velocity and acceleration of the engine, transmission, and driveline 

are related to that of the wheels by the gear ratios as follows; 

diE g    , and wfd g    , then wfiE gg         (4-8) 

Recognizing that the vehicle linear acceleration can be expressed in terms of the 

wheel angular acceleration by the relation; 

w
w r

a
            (4-9) 

To get the tractive force available at the ground, the equations from (4-3) to (4-

9) should be combined while eliminating all intermediate variables to get the traction 

force on the wheel. 

 
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wfdfigicE
w

fiICE
T

r

a
JgJggJJJ
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ggM
F             (4-10) 

The effect of mechanical losses can be approximated by adding an efficiency 

value to the first term on the right-hand side of equation (4-10) to get the final form; 

 
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222, )(
w

wfdfigicE
w

ftftICE
T

r

a
JgJggJJJ

r

ggM
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
          (4-11) 

Equation (4-11) shows that the equivalent inertia of each component is 

"amplified" by the square of the numerical gear ratio between the component and the 

wheels. For convenience, to obtain a simplified equation the rotational inertias from 
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Eq. (4-10) are often lumped in with the mass of the vehicle. Here the total rotating 

parts inertia is reduced to the drive axles for a gear (i) and can be expressed as; 

2
,

222
, )( wirfigiEfdwiR rmggJJgJJJ               (4-12) 

 am
r

gM
F ir

w

ftftE
T ,

, 


                (4-13) 

Thus Eq. (4-13) provides an expression for the tractive effort which is obtained 

from the engine to overcome road load forces and accelerate the vehicle. It has two 

components; the first term on the right side represents the steady-state tractive force 

available from the engine at the ground to overcome the road load forces of 

aerodynamics and rolling resistance, to accelerate, or to climb a grade, while the 

second term represents the "loss" of tractive force due to the rotating inertia of the 

engine and drivetrain components.  

Knowing the available tractive force at the wheels, it is now possible to predict 

the acceleration performance of a vehicle. The expression for the acceleration must 

consider all the forces that occur on the drive wheels, as expressed in chapter 3, in 

equation 3-4, which takes the form; 

GrAerRTg FFFFam                           (4-14) 

Again combining equations (4-13) and (4-14) eliminating common variable 

leads to; 

GrRAer
w

tfiICE
irg FFF

r

ggM
amm 


)( ,                    (4-15) 

Referring to the complete form of the vehicle’s equation of motion represented 

by equation (4-15), there are no convenient explicit solutions for acceleration 

performance. Except for the road gradient term, all other forces vary with speed, and 

must be evaluated at each speed. An equation as shown above can be used to calculate 

acceleration performance at specified speeds. The combination of the two masses is an 

"effective mass" and the ratio of (mg + mr,i)/mg is the "mass factor". The mass factor 

will depend on the operating gear. A representative form for the mass factor (λ) is 

often taken as introduced in [70]; 

λ= 1+ 0.04 + 0.0025 
22

fi gg                         (4-16) 
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The acceleration of a vehicle is determined by the net force and the vehicle’s 

mass. The net force is the difference between the traction force and total resistance 

force on the vehicle. 


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4.3.1 Driving performance 

In mechanical transmission, the required conversion of characteristics between 

engine and drive wheels takes place through the transmission and final drive gear 

ratios. The maximum tractive effort available from the engine at steady drive 

conditions for different gear ratios can be plotted using equation 4.13, as shown in the 

traction force diagram of Figure 4.3. 

The diagram demonstrates that the road resistance curve intersects with the 

maximum traction curve at the point of maximum vehicle velocity (220 km/h) being 

obtained by driving the vehicle in the 6th gear. Possible vehicle operating points are 

indicated by the intersection of the road resistance for different gradient and traction 

force curves. Moreover, the diagram clearly indicates that, in low gears where the gear 

ratio is high, a lot of torque on the vehicle’s wheels can be delivered but not much 

speed. While in high gears, more speed can be obtained at the wheel but less torque.  
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Figure 4.3: Maximum available traction force of geared transmission 
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The minimum velocity margin for each gear can be obtained by the following 

equation; 

fi

wICE
i gg

rn
v

.2 min,
min,


                            (4-18) 

Multiplying the respective traction force with the particular driving speed, the 

full load or maximum power available at the wheel hub at different gears can be 

represented as shown in Figure 4.4. In addition, demand power necessary for driving at 

constant velocity over plane road is also indicated.  

It is evident from the characteristic of the diagram that the vehicle attains its 

maximum speed approximately at maximum engine power.  
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Figure 4.4: Maximum available traction power of the mechanical drivetrain 

In both figures (4-3) and (4-4) the difference between the available gear traction 

force and the demand force is the excess traction force that will be used to climb a 

road or to accelerate the vehicle. This is also correct for the tractive power and can be 

represented as follows;  

  FdemiTFexex vFFvFp  ,.                         (4-19) 

As far as the rotational masses (i.e. λ >1) are concerned, the maximum traction 

force and power will be decreased by a small amount. 
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4.4 Mechanical Drivetrain Simulation Model 

To build a simulation model, the cycle-driver model that controls the clutch 

pedal gear shifts should be first defined at particular points in time during the NEDC 

cycle. The expert from the Organization of Motor Vehicle Manufacturers (OICA) has 

prepared and introduced specific gear shift strategy in line with the requirement of the 

regulation, where in paragraph 2.3.2 of Annex 4 of vehicles equipped with manual and 

semi-automatic-shift gearboxes shall be tested by using the gears normally employed 

for driving as an alternative to the gear shift points as specified in Table 4-2. The 

values used in shift points allow manufacturers to examine produced automobiles 

during the NEDC driving cycle [71].  

Table 4-2: Manufacturers’ specific gear shifting strategy [71] 

Gear 1st gear 2nd gear 3rd gear 4th gear 5th gear 6th gear 

Velocity [km/h] 0 <v< 15 15v< 35 35v < 50 50 v< 70 70 v< 100 100v 120 

Percentage time 
sharing during 
steady speeds 

8.2 21.8 22.7 15.6 22.7 9.0 

The data represented in Table 4-2 are plotted on the NEDC indicating the gear 

shift strategy for city and highway parts of the cycle is indicated in Figure 4.5. 

 

Figure 4.5: The manufacturer specific gear-shift strategy during NEDC [71] 
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A simulation model using the mechanical and control elements library in 

DSHplus environment was built as shown in Figure 4-6. The simulation model 

includes a pre-scribed shift points for each level of vehicle speed. It’s considered as a 

semi-automatic transmission combination using dry clutch. Its structure is similar to 

automatic transmission performance with elimination of a torque converter. The model 

includes a vehicle driver, controller, ICE, dry clutch, automated-manual shaft 

transmission, brake system, complete vehicle longitudinal dynamics with tire-road 

interface characterization. There is no regenerative system in the presented model. 

The driver model includes an implicit vehicle velocity controller, with driver velocity 

error and Proportional-Integral-Derivative (PID) capability, and a drive cycle to 

provide a vehicle input command. The driver model uses the difference between the 

simulated vehicle velocity and a commanded vehicle velocity to generate either 

driving signal to the engine throttle controller or braking signals to the brakes. 

Command signals are also provided to the clutch and transmission system to drive 

with the proper gear. In particular, the controller provides engine, clutch and 

transmission control during shifting or braking.  
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Figure 4.6: DSHplus simulation model for the mechanical drivetrain  

Engine controller: It includes throttle with a variable gain PID controller and limiter 

to provide a specified fuel signal to the engine based on the command from the driver 
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controller. Also included in the throttle controller are the Wide Open Throttle (WOT) 

operating logic and the engine idle speed to constrain the engine speed.  

Clutch: The clutch uses friction to transmit torque to the gearbox. The clutch will be 

commanded to engage when engine speed is sufficient and the transmission in gear. 

The clutch will be commanded to disengage during up / down-shifting, braking or in 

case engine speed would drop below idle speed. 

Transmission controller: It determines when a shift event shall occur and selects the 

appropriate gear based on transmission’s output speed, throttle angle, current gear and 

clutch state. During deceleration the clutch is disengaged, the engine is ramped to idle 

speed, and the controller continuous to shift the transmission to be in the proper gear 

when an engagement is requested. A shift command and gear change are not activated 

until the controller initiates a disengage signal to the current clutch. The transmission 

gear shift is emulated by modeling a proper delay based on experimental data.  

Brakes: Brake commands are received from the driver model and send directly to the 

brake element connected to the wheels. While braking the clutch should be open to 

disconnect the engine shaft from the transmission gearbox avoiding engine stall.  

4.5 Results and Discussion 

Vehicle velocity, gear changes, engine operating points, as well as engine 

speed, torque and power consumed along the driving cycle will also be presented and 

discussed. A summary of fuel consumption and CO2 resulting from the simulation 

model is declared and compared to the announced manufacturer data for the baseline 

mid-sized vehicle. 

4.5.1 Engine operating points 

The engine’s operating points for the prescribed gear-shift mechanical 

transmission during the NEDC on the engine maps are depicted in Figures 4-7. The 

figure reveals that the operating points of the mechanical transmission are distributed 

on the engine map in the region of low engine efficiency. This distributed form of 

engine operating points is called map-based mode [72]. It shows that the engine is 

running at low loads, which are typical for average driving conditions in the NEDC, 
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requiring much less than its maximum torque. The operation of the engine at these low 

loads leads to high average fuel consumption.  

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000

Speed [rpm]

E
n

g
in

e
 t

o
rq

u
e

 [
N

m
]

37.2%

34.0%

31.5% 29.2%

27.3%

25.5%

 

Figure 4-7: Engine operating points of the mechanical drivetrain during the NEDC cycle 

4.5.2 Characteristics curves  

Figure 4.8 shows some characteristic curves for the main variable of the 

mechanical drivetrain during the NEDC cycle. Since this thesis investigates different 

types of hydraulic transmissions compared to the baseline mechanical transmission 

and in order to be consistent with the standard sign convention, the power provided 

into the system (i.e. the transmission) is considered negative. Hence, the engine 

delivered power will carry negative sign since it represents work done on the 

transmission. On the other hand, restored energy during vehicle’s braking is 

considered positive in order to clearly distinguish it from the external power supplied 

by the engine as treated in chapters 6 and 7.  

The first diagram shows the simulated vehicle velocity tracking the reference 

commanded value during the mission cycle. The second diagram shows the gearbox 

shifting status according to driver demand. It agrees with the organization of motor 

vehicle manufacturers (OCIA) described in this chapter. The 3rd curve shows that the 

engine speed in some way follows the vehicle speed requirement. The engine speed 

momentarily drops at each gear change and then increases according to the demand 

velocity. Maximum engine speed attained is approximately 2500 rpm. Engine torque is 
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represented in the fourth curve from below. The curve shows that the motor torque is 

increased at higher vehicle velocities and also drops momentarily at gear changes. It is 

clear from the figure that the engine is working under low loads, as the maximum 

attainable torque during the cycle is far below the maximum engine torque of 370 Nm. 

The top curve in the diagram shows the power consumed by the engine when drive the 

vehicle during the NEDC cycle.  
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Figure 4-8: Performance curves of the mechanical drivetrain during the NEDC cycle 
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4.5.3 Fuel consumption and CO2 emissions 

A comparison between the simulation model results and the manufacturer’s data 

of the baseline mid-sized vehicle for fuel consumption in the city and highway scheme 

is provided in Figure 4.9. Also the CO2 emission of the simulated and catalogue data 

of the reference vehicle is provided in Figure 4.10. The resulting values from the 

simulation look very good when compared to the reference data as there are only small 

differences between simulation and road test data published by the manufacturer. 
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Figure 4-9: Fuel consumption during the NEDC cycle 
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Figure 4-10: Comparison of combined CO2 emission during the NEDC cycle  
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During this work, the resulting values of fuel consumption and CO2 emissions 

will be used as the comparison criteria to be compared to the similar values obtained 

for the other proposed hydrostatic and hydraulic hybrid transmissions.  

4.6 Conclusion and Outlook 

In this chapter a general description for the mechanical transmission that will be 

used as the baseline vehicle in this work is introduced. Speed behaviour for each gear 

in the effective range of engine speed was provided showing the velocity range that 

can be obtained for each gear. Driving performance characteristics including the 

maximum traction force and power versus the vehicle velocity range was also plotted. 

The plotted diagrams prove that the road resistance curve intersects the maximum 

traction curve at the maximum vehicle velocity. In order to build a simulation model, a 

gear shift strategy obtained from the Organisation of Motor Vehicle manufacturers 

(OCIA) was used to simulate driver request. The simulation results reveal that the 

obtained values for the fuel and CO2 are acceptable compared to the manufacturer’s 

catalogue data. The engine used in the simulation differs slightly from the original one 

installed in the baseline vehicle, hence the same simulation model including vehicle 

dynamics, initial conditions as well as the engine model can be used to simulate the 

proposed alternative transmission methods in this work.   

Growing fuel prices year by year and also adequate amount of fossil fuel 

available on the earth are increasing the demand for producing fuel efficient vehicles. 

On the other hand, strict environmental issues concerning the hazard emissions 

resulting from burning fuel in vehicles compound the challenges for vehicle 

manufactures. Many ideas for developing fuel efficient vehicles arose in the mid of the 

twentieth century. Some of these ideas concentrate on the use of alternative fuel or 

energy sources, such as Fuel Cell Vehicles (FCVs) and Electric Vehicles (EVs). 

Another trend is to replace the conventional mechanical transmission with 

continuously variable transmissions, allowing the engine to operate in higher 

efficiency ranges. Other research concentrates on vehicle hybridization. The idea is to 

use a secondary power source beside the primary power source represented by the 

engine to reuse the braking energy in order to improve fuel economy and reduce 

hazard emissions. 
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5.1 Introduction 

Hydrostatic drives are used in mobile, industrial and aircraft applications when 

typical advantages such as a high power density, good controllability, flexibility in the 

system set-up, the excellent dynamic performance as well as the efficient and easy 

generation of linear movements, especially under high forces are required. This 

provides a clear advantage for this kind of drive technique over electrical or 

mechanical solutions [19]. From the vehicle drivetrain point of view, the application of 

hydrostatic transmissions (HST) has numerous advantages. A continuously variable 

transmission is possible within full speed range of the drivetrain giving the availability 

of best matching between the engine and transmission to improve fuel economy and 

dynamic performance. Moreover, very smooth speed change, ease of control and equal 

speed in forward and reverse motion are considered additional benefits. Furthermore, 

convenient layout in the vehicle, as the engine is connected to the wheel motors by 

hoses or pipes, without regarding their relative positions [73] as well as the robustness 

of hydraulics should be mentioned as an advantage.  

The HST provides continuously variable ratio characteristics with high torque 

capacity but a slightly low efficiency at a certain operating range, such as at maximum 

system pressure or minimum motor or pump displacement. 

In this chapter, a vehicle with a Continuously Variable Hydrostatic 

Transmission (CV-HST) integrated with a controlled engine to operate in minimum 

fuel consumption points will be introduced. The CV-HST represents a flow coupled 

transmission; where the motor speed depends on the flow delivered from the pump. 

The torque is hydrostatically determined by system pressure being generated by the 

pump and also applied at the motor. This configuration is able to form a feasible 

alternative powertrain due to its potential to choose engine operating points freely, 

which may lead to a considerable reduction in a vehicle’s fuel consumption.  

An algorithm based on engine specific fuel consumption is developed to set an 

Ideal Operating Line (IOL) which represents the locus of the ideal operating points of 

the engine at various power demands. This allows the engine being connected to the 

input shaft of the transmission, to operate mostly in efficient operating points. The 

system includes controllers to continuously vary the displacement of the pump and in-
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wheel hydro-motors, so that the adjustable speed range can be covered and the mean 

efficiency of the vehicle improved. 

Contrary to the mechanically stepped transmission, the continuously variable 

hydrostatic transmission has the possibility to operate the engine in different speeds in 

a wide range of the vehicle velocity. Figure 5.1 explains this concept; the divergent 

straight lines in the diagram represent fixed transmission ratios corresponding to each 

gear for the aforementioned mechanical transmission in chapter 4. For each 

transmission line a certain velocity range can be covered.  For instance, a velocity of 

100 km/h can be obtained at three different engine speeds in the stepped transmission 

as shown by the horizontal dashed line in the diagram. Generally, the CV-HST can 

theoretically cover all the shaded area shown in the diagram with many transmission 

ratios satisfying the required speed performance. It can shift the transmission ratio 

continuously and smoothly by changing the displacements of the pump and/or the 

motor when power is demanded.  
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Figure 5.1: Transmission ratio range of the CV-HST versus geared transmission 

5.2 Hydrostatic Transmission Structure and Component Selection 

The requirements of the hydrostatic transmission drivetrain components are 

based upon the vehicle requirements. In order to choose the rating of the components 

(size and ratios design) the demands of the drive must be specified. The performance 

requirements of a vehicle are maximum torque, acceleration and maximum speed, 
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which can be represented in a traction curve. Hence, the hydrostatic transmission is 

limited by torque at low speed and maximum power at high output speeds as shown by 

full-load curve of Figure 5.2. Beyond this curve, no higher power output or higher 

torque can be generated [68]. The figure also indicates that the maximum wheel torque 

is limited by the maximum differential pressure across the hydromotors while the 

maximum vehicle velocity is limited by the pump size and the maximum available 

engine power as it intersects the road resistance curve. The maximum vehicle velocity 

varies inversely with the road gradient, as shown in the diagram by the dashed curves.  

   

Figure 5.2: Requirements of the CV-HST as based on the vehicle requirements 

Most vehicles require high tractive forces during starting and climbing which 

may be 10-30 times the relatively light load in normal operation [73]. Vehicle speed 

and load varies over a wide range and requires maximum tractive effort when starting 

under full load. Hydraulic systems using fixed displacement are inefficient in cases 

where the desired velocity and load vary over a wide range, since the excess flow is 

dissipated via relief valves [74]. 

In some mobile applications, such as wheel loader, an HST system with only 

variable displacement pump does not satisfy the required torque-speed curve. Hence, 

the displacement of the pump should basically be variable as well as; the displacement 

of the wheel motors should also be variable to cover a large speed range of the vehicle. 

Using variable displacement motor also helps to avoid the reduction of system 
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pressure during normal operation far from its high efficiency region. This can occur if 

the displacement of the motor is held constant. At high vehicle velocities the motor 

displacement can be decreased to increase system pressure which in turn reduces 

velocity of the oil flow through the circuit in order to reduce flow losses. On the other 

hand, when the system pressure is increased at low motor displacement the leakage 

increases and the overall efficiency of the motor is reduced in these operating cases.  

5.2.1 Basic principle 

The basic layout of a simple hydrostatic transmission system consists mainly of one 

primary pump and one secondary motor. Figure 5.3 indicates a combination of 

variable displacement pump and variable displacement motor.  

 

Figure 5.3: A simple hydrostatic transmission system 

The relation between pump and motor can be expressed in terms of their basic 

variables such as, speed, displacement, and pressure. Generally, the pump is coupled 

to a prime mover (e.g. engine or electric motor) while the hydromotor is connected to 

the load. The pump is used to transfer the mechanical energy of the prime mover into 

pressure energy in fluid being delivered to the hydro-motor throughout hydraulic hoses 

or pipes. The hydromotor in turns converts the fluid pressure energy back into 

mechanical energy to drive the load connected on its shaft end.  The basic equation 

relating the two hydrostatic units are listed in Table 5-1 [7, 15]. The flow and torque 

loss models for hydrostatic pump and motor loaded to the simulation model are taken 

from the measured data at IFAS on similar units.   
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The pipeline model used in the simulation model is based on [7]. It accounts for 

flow loss as well as fluid compressibility and can be expressed as follows;  

    MlossMPlossP
H

QQQQ
Cdt

pd
.,

1


        (5-1) 

Table 5-1: Basic relations of a simple hydrostatic transmission.  
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Figure 5.4: Overall efficiency maps of a hydrostatic unit in motoring mode 
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5.2.2 Hydrostatic transmission design 

The design of the hydrostatic transmission is a classic design problem, as its 

variables are interrelated in a very interesting way [75]. The method described here is 

one of several designs that also meet the functional requirements of the system. 

The proposed hydrostatic transmission configuration is comprised of one main primary 

variable displacement pump connected to secondary variable displacement wheel 

motor of the same size. A variable displacement pump and motor enables a variation 

of the engine speed independent of the vehicle load and will result in a stepless 

transmission with a wide speed ratio and high efficiency.  

The displacement setting of the hydrostatic pump and motors will be controlled 

in combined/parallel way as described in [7]. Figure 5.5, describes the main 

performance of the combined/parallel displacement control concept, as the 

displacement of the pump is increased, the displacement of the hydromotor decreases 

in controlled manner. The engine is supposed to deliver its maximum power in the 

defined speed range of the vehicle.   

Figure 5.5: Characteristics of the combined displacement setting [7] 
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where the efficiency map of this type is available. The alternative is to use high-torque, 

low speed motors to drive the wheels directly. The efficiency maps of this type are not 

available for this thesis. 

The pump and hydromotors selection depends on the state of the art pump 

catalogue data sheet of Bosch Rexroth for types A4VG and A6VM [76]. Referring to 

the data sheet of Bosch-Rexroth A6VM hydromotors, it reveals that the maximum 

motor speed ranges from 2010 to 8750 rpm for sizes of 1000 ~ 28. But the vehicle 

should operate normally in the speed range from zero to 1850 rpm or above. Then, a 

planetary final drive between the hydromotors and wheel hub is a precondition. The 

final drive converts a high-speed, low-torque input of the motor into a low-speed, 

high-torque output at the wheel. Also, the engine speed ranges between 1200 ~ 4400 

rpm, while the maximum pump speed of Bosch Rexroth A4VG pumps ranges between 

2600 ~ 4500 for sizes from 260 to 28 cm3/rev. A pump mount gearbox between the 

engine and the motor is also required to operate the pump at proper operational range. 

The configuration chosen consists of four hydromotors as shown in Figure 5.6; 

two hydromotors connected to the front wheels via planetary gear and two others 

which are used to drive the rear wheels simultaneously. To determine the torque that 

must be developed at each wheel, the total maximum wheel torque is divided by the 

number of driving wheels.  
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Figure 5.6: The Configuration of the hydrostatic transmission used in CV-HST drivetrain 

The design of the transmission components are subject to some constraints such 

as; maximum engine power is delivered at maximum pump displacement; maximum 

system pressure which occurs at maximum traction limit, is held just beneath the 
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opening pressure of the relief valve of 420 bar; maximum engine speed occurs at 

maximum power is 4100 rpm; minimum permissible displacement for the in-wheel 

hydro-motors is 25 % from its maximum displacement; and pump mount gearbox and 

planetary final drive gearbox are assumed to have 98 % constant mechanical efficiency 

independent from varied load conditions.  

The algorithm used to select the motor size is depending on torque ratio at 

maximum load in an iteration process as shown in the flow chart of Figure 5.7.  

  

Figure 5.7: Flow rate of the iteration process of hydromotor selection process 
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The final drive (wheel hub) gear ratio is determined from the maximum 

permissible motor speed and the maximum speed of the vehicle’s wheel which can be 

expressed as 

max,

max,

w

M
F n

n
i                                                  (5-2) 

Similarly, the pump gear reduction ratio is determined by the engine speed 

corresponding to maximum power and the maximum pump speed, as follows; 

max.

max

P

PICE

P n

n
i                                (5-3) 

The selection of the pump size is calculated on flow balance basis at maximum 

vehicle velocity. For initial iteration, the pump volumetric efficiency v.P =86 % at 

high pressure and 90 % for road travel  

Mp QQ             (5-4) 

At maximum vehicle speed the motor displacement becomes as small as 

possible, i.e.  VM,min = 0.25 VM,max 



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
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,
max,

25.0
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

     (5-5) 

As check criteria in the successive iteration process, the pump is sized such that 

the torque required to drive it, at displacement, is not less than engine torque 

corresponding to maximum power, where; 

mechPICE

P
p M

M
i


max

           (5-6) 

The design process starts with some initial average values and is looped back 

several times to restart the design at different points to get the suitable sizes from the 

point of view of maximum speed and maximum torque limits of the hydraulic pump 

and motor. The nominal component sizes which can perform the task are listed in 

Table 5-2. 
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Table 5-2: Components characteristics of the CV-HST transmission 

Item Type 
Displacement 

[cm3] 
Max. speed 

[rpm] 
Max. Torque 

[Nm] 
Transmission 

ratio 
Vg,max nmax Mg,max i=nin /nout 

Pump A4VG 125 2850 795 - 

Motor A6VM  107 5600 681 - 

Pump mount Spur gear  1.45 

Motor final drive Planetary  3 

5.3 Description of the CV-HST Drivetrain 

The basic principle layout of the proposed continuously variable hydrostatic 

transmission (CV-HST), including all details is shown in Figure 5.8. The hydrostatic 

transmission is built in a closed loop as shown. It consists mainly of a bi-directional 

reversible variable displacement piston pump (3) driven by a diesel engine (1) through 

a pump mount gearbox (2) which reduces the engine speed to the proper operational 

range of the pump. High pressure oil from the pump being delivered to the variable 

displacement motors (4) through the closed hydraulic circuit generates the required 

tractive torque necessary to propel the vehicle. The hydromotors drive the sun gear of 

the planetary gearbox (5) which in turn drives planetary gear carrier connected to the 

wheels. 

 

Figure 5.8: Basic layout of the CV-HST drivetrain 
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For safety purposes, the circuit uses two high pressure relief valves (7) to dump 

out the high pressure line to the low pressure line in case of overload. A boost pump 

(6) usually built-in to the main pump provides a separate fluid supply to make-up the 

leakage in the transmission. It also charges the low pressure line to a level of 15-20 

bars to increase the load stiffness and prevent cavitations [75]. Furthermore, When the 

hydromotors are driven, a replenish or flushing valve (8) is used to pass all returning 

oil from the main hydraulic circuit to tank throughout the relief valve connected to its 

output. This keeps the oil temperature at safe levels otherwise more heat could be 

generated especially during an uphill drive. 

5.4 System Control Techniques 

The main objective of the control system for the CV-HST drivetrain is to satisfy 

the required power from the propulsion system while keeping fuel consumption and 

CO2 emissions as low as possible. Therefore, the control system regulates 

simultaneously the amount of fuel supplied to the engine, pump displacement, and 

motor displacement in such a manner as to achieve optimum performance.  

5.4.1 General control system  

The CV-HST drivetrain includes some variables to control its operation. These 

variables are engine speed, pump and motor displacements, system pressure, engine 

torque and speed. As the drivetrain can operate in the four quadrants of operation, the 

pump can operate in bi-direction to allow forward, neutral and backward motion, while 

the hydro-motors’ displacement can be varied only in one direction to overcome the 

vehicle load demand. Figure 5.9 shows the general control system of the vehicle 

indicating the signal measured from the system and signals supplied from the control 

unit as used in the DSHplus simulation model. For better visibility the front wheel 

motors are not shown in this picture.  

The control unit shown in the figure includes driver requirements as a 

consequence of the drive cycle characteristics, the engine Ideal Operation Line (IOL) 

controller, as well as pump and motor displacement controllers. The function of these 

controllers is to regulate the operation of the whole drivetrain without interrupting the 

required speed by varying the transmission ratio in a controlled manner, while keeping 
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the engine running in the range of IOL. It also ensures that driving the engine at the 

best-efficiency line will not decrease vehicle performance. 
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Figure 5.9: General control system of the CV-HST drivetrain 

For the given desired velocity and throttle opening, the desired power is 

calculated from the engine characteristic map by considering component losses. 

Finally, the desired transmission ratio is obtained from the modified speed ratio map 

with respect to the vehicle velocity and desired power. 

5.4.2 Operating point optimization 

A strategy was chosen to operate the engine installed in CV-HST drivetrain at 

nearly the optimum operating points. The optimization process aims to reduce the fuel 

consumption of the engine and satisfy the performance requirements without 

compromise. In fact it will optimize the engine performance characteristics where the 

engine will neither run at low torque at low demands nor will it run to unnecessary 

speeds beyond maximum power revolutions. This is done by controlling hydrostatic 

transmission ratio, which enables the engine to freely operate at optimum speeds 

independent of the load torque.  

The IOL or fuel economy controller is developed based on fuel consumption 

maps of the engine speed as well as the desired vehicle velocity and acceleration. 

The technique applied here is to shift the engine operating points to another region of 

minimum fuel consumption. Figure 5.10 depicts the engine map with the Brake 

Specific Fuel Consumption (BSFC) lines. The algorithm of driving the Optimal 
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Operating Points (OOP) is to calculate the demanded power corresponding to each 

velocity within the available engine power range. For each demanded power, a point 

of minimum fuel consumption on the engine map exists. The locus of these points, 

determining minimum fuel consumption with respect to the iso-power curves over the 

operating power range of the engine, will form the Ideal Operating Line (IOL). The 

torque and speed pairs (nICE, MICE) can then be obtained for each engine power.  

The figure also shows an engine speed corresponding to a certain steady 

velocity, being about 3000 rpm indicated by point-A. At this point, the developed 

engine torque is quite low leading to high fuel consumption. The same power required 

from the engine can be obtained at low specific fuel consumption point by moving the 

point-A on the same constant iso-power line up to point-B, which is characterized by 

high torque and low speed. Running the engine at point-B permits it to develop the 

same required power with a lower fuel consumption compared to point-A.  

Hydrostatic continuous variable transmissions offer the possibility to freely 

choose the engine operating points for a prescribed power demand on the line of 

constant engine power.  
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Figure 5.10: Ideal operation line (IOL) across the engine operating range 

The controller follows the IOL during the steady periods of operation, allowing 

the engine to deviate in a controlled manner from the IOL during transients. By doing 

so, the power is adjusted by varying transmission ratio rather independent on engine 

torque to provide instantaneous power. Total transmission ratio can be expressed as; 

BSFC =
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         (5-7) 

FHSTpT iiii              (5-8) 

Where iP and iF, describe pump mount and final planetary gear connected to the 

motor, both of them are greater than 1, to meet pump and motor operation speed range. 

During system operation, the pump feeds the motor directly, so that the HST 

transmission can also be expressed as a function of the pump and motor displacements 

as follows; 

MvPvPP

MM

M

P
HST V

V

n

n
i

.,max,

max, 1




                (5-9) 

Where,  
 

max,

,,,max,

.

..

MM

MLossPLossppP
M V

QQVn
n


 

              (5-10) 

Equation (5-8) indicates that, the transmission ratio of the hydrostatic 

transmission varies according to the volumetric displacements of its hydraulic 

components (i.e. pump and hydromotors). 

The chosen transmission ratio must comply with the vehicle speed as well as 

the road load requirements. For instance, the minimum transmission ratio occurs at the 

maximum attainable vehicle velocity and can be expressed as follows; 

max.
min,

max

w

PE

T n

n
i                    (5-11) 

Also, the largest transmission ratio required is calculated at maximum climbing 

ability which is usually occurs at the smallest possible driving velocity. 

max.

max,
max,

ICE

w
T M

M
i                             (5-12) 

5.4.3 Transmission ratio controller 

The operation of the HST ratio’s controller is based on vehicle speed 

requirements, whereas the vehicle speed is related to the engine speed and the 

transmission ratio which can be expressed as follows;  

60.

...2

T

wICE
F i

rn
v


                            (5-13) 
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The HST ratio controller is used in the simulation model as a constraint to 

determine the primary value of the transmission ratio that should be sent to the pump 

and motor displacement controller in order to satisfy the vehicle speed requirements. 

The developed primary value from the controller will be subjected to a second 

constraint considering the road load requirements during operation, to satisfy both 

vehicle speed and road load requirements.  

The transmission ratio of the CV-HST varies between its minimum and 

maximum values (iT,min , iT,max) over the appropriate engine speed range (nICE,1 , nICE,2), 

refer to Figure 5.11. In the simulation model, the effective engine speed range varies 

from 1300 up to 4200 rpm. As illustrated in the diagram, if the engine operates at the 

lower speed limit nICE,1 then vehicle speeds of Vn1,min can be obtained at the maximum 

transmission ratios while Vn1,max can be obtained at the minimum transmission ratio. 

On the other hand, if the engine operates at nICE,2, vehicle speeds of Vn2,min and Vn2,max 

can be obtained at the maximum and minimum transmission ratios respectively.  
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Figure 5.11: Transmission ratio selection based on speed requirements 

The vehicle velocity limits are stored in the look-up table of the controller to 

determine the appropriate transmission ratio. Generally, for each required vehicle 

velocity there are certain ranges for the transmission ratio to satisfy this speed, but 
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there is only one transmission ratio where the engine can run in optimum condition of 

minimum fuel consumption. 

For an arbitrary vehicle speed vF lies in the range between Vn2,min and Vn1,max. The 

suitable transmission ratio for this arbitrary velocity is limited in the range of iT,min,v up 

to iT,max,v indicated by the shaded area. The resulting range can be obtained at the 

intersection of the horizontal line representing the desired velocity with the engine 

speed range limit (nICE,1 ,  nICE,2) indicated in the diagram by the two solid circles at the 

extremes. There are many transmission ratios satisfying the vehicle speed 

requirements in the obtained range (iT,min,v , iT,max,v), some of them are indicated by the 

hollow circles. Within this range there is only one optimum engine speed consuming 

minimum fuel consumption to drive the vehicle at the desired velocity.  

 

Figure 5.12: Transmission ratio limitation based on vehicle speed demand 

Figure 5.12 summarizes the possible transmission ratio limits of the controller 

based on the vehicle speed requirements. The first diagram on the left shows the 

possible range of the transmission ratio corresponding to a vehicle velocity where 

demand lies in the range (vidle , vn2,min) represented by the shaded area. In this case, the 

minimum transmission ratio is shifted-down to the new value iT,min,v. The upper limit 

of the engine speed is decreased from nICE,2 to the new upper limit nmax,v, where the 

value of nmax,v varies depending on the desired vehicle velocity vF.   

The middle diagram, case 2, is already explained in detail in the the general 

case previously described in Figure 5.11. Contrary to the first case, the third diagram 
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on the right shows the permissible transmission ratio range corresponding to a vehicle 

velocity located in the range (vn1,max, vn2,max). As shown the maximum transmission 

ratio is shifted up to the new value iT,max,v, and the lower limit of the engine speed nICE,1 

may increase to the new lower limit nmin,v depending on the value of required velocity.  

5.4.4 Functional architecture of the vehicle controller  

The vehicle controller is developed based on the efficiency maps of the engine, 

pump and hydromotors, as well as drive cycle required speed and road load. The 

controller considers the vehicle speed requirements, as well as the road load 

requirements. Generally any chosen transmission ratio must satisfy vehicle speed and 

road load requirements, in order to ensure that the engine torque can meet the required 

load torque of the vehicle and also to avoid operation of the engine above the 

maximum speed.  

The proposed control strategy of the CV-HST drivetrain computes the Optimal 

Operating Point (OOP) of the engine. It provides the controller with the optimal torque 

and consequently forces the engine to operate in its optimal speed by choosing the 

appropriate transmission ratio. Figure 5.13 shows the functional diagram of the vehicle 

controller, where nICE,d is the desired engine speed determined by the HST controller. 

The nw and Mw are the torque and speed request on the driven wheel, with, nICE and MICE 

being the actual speed and torque requests from the engine respectively.   

 

 Figure 5.13: Functional diagram of the CV-HST controller 
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The controller calculates at first a desired transmission ratio based on vehicle 

speed requirements and compares this primary value with the actual required torque-

based transmission ratio depending on the road load. Then the proper transmission 

ratio is chosen to operate the engine in its optimal operating point. The demand torque 

on the engine side of the transmission is obtained by dividing the demand torque on 

the wheels by the primary selected transmission ratio. If the result value is lower than 

the maximum total capability of the engine implemented in the engine map, then the 

chosen transmission ratio can satisfy load requirement, otherwise it is discarded and 

another value is determined in the permissible transmission ratio range. The pump and 

motor displacement controllers react with the selected transmission ratio by adjusting 

the displacement of both units simultaneously. This forces the engine to operate at 

optimal speed of minimum fuel consumption under the demanded load. 

 Shifting the transmission ratio from one operating point to another operating 

point is used during normal driving, while the output power is controlled by varying 

the engine speed. In this case, the specific trajectory by which the new transmission 

ratio is reached becomes relevant for the driveability of the vehicle.  

5.5 Simulation Model  

A simulation model for the whole CV-HST drivetrain was built in DSHplus 

environment to study the performance of the system under the aforementioned control 

strategy. Figure 5.14 depicts the hydrostatic transmission system with input control 

signals as fed from the pump and motors displacement controllers. The pump and 

motors controllers are adapted to operate the hydrostatic pump and hydromotors at 

high displacement whenever possible depending on the vehicle demands, in order to 

attain high efficiencies in the most frequent velocity range of the vehicle.  

Accurate volumetric and hydro-mechanical losses 3D look-up tables based on 

the measured data described in [34], which are a function of speed, pressure, and 

swashplate angle, are loaded to the hydrostatic units. The internal combustion engine 

with its throttle and speed controller components are also shown on the left side of the 

model. Engine fuel consumption and maximum torque maps are loaded to the engine. 

The value of the throttle signal supplied to the engine is proportional to the vehicle 

speed. 
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Figure 5.14: DSHplus simulation model for the CV-HST drivetrain 

A driver model is represented by the Online Data Input (ODI) and PID type 

controller is used to manipulate the vehicle operation and also to couple or decouple 

the pump from the engine according to the travel mode. It feeds the transmission 

controller with the required motion i.e. acceleration, deceleration, forward or backward 

travel and manipulates the value of the throttle angle to follow the driving schedule. 

The controllers integrated in the system force the engine to operate in its Optimal 

Operating Line (IOL) depending on the vehicle speed requirements and road load 

torque. 

5.6 Results and Discussion 

The simulation model was run during the NEDC driving cycle computing fuel 

consumption and CO2 emission in comparison to the baseline vehicle on this European 

standard test cycle which is considered the basic cycle criteria of evaluation in this 

thesis. Engine operating point according to the introduced control strategy is 

explained. The characteristic curves of system variable showing its variation during 

the driving cycle is also indicated. 
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5.6.1 Engine operating points 

The operating point of the engine on the torque-speed diagram is shown in 

Figure 5.15, which demonstrates that the engine is forced to operate near IOL under 

the control strategy applied in CV-HST drivetrain. This enables the transition of the 

operating point from map-based mode as obtained in mechanical drivetrain to best-line 

mode.   
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Figure 5.15: Engine operating points of the CV-HST during the NEDC 

The engine installed in a mechanical transmission suffers from operation at low 

loads. The operation of the engine at these low loads leads to high average fuel 

consumption.  

In IOL control strategy, the low loads operation region is shifted to another 

point of minimum fuel consumption on the same iso-power curve. 

5.6.2 Characteristics curves  

Figure 5.16 shows the performance analysis curves of the CV-HST variables 

during the NEDC cycle. The vehicle velocity which is represented by the first curve 

shows a good match with the desired velocity over the whole drive range. The second 

curve represents the internal combustion engine speeds. The engine is continuously 

running for the entire driving time.  
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Figure 5.16: characteristic curves of the CV-HST drivetrain during the NEDC cycle 

During vehicle stop the engine is running in its idle speed of 1200 rpm 

otherwise it reacts to the vehicle speed according to the command signal from the 

controller. Hydromotor pressure in propulsion and braking modes are illustrated 

respectively in the third and forth diagrams.  
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Pump displacement setting, P , is indicated in the fifth diagram. The pump 

displacement increases when the demanded vehicle speed increases. The available 

control range of the pump displacement lies between 0 to 100 %. At maximum cycle 

velocity the pump displacement reaches about 76 % of its maximum value, while the 

hydromotor attains approximately 34 % of the maximum displacement, as indicated in 

the top curve in the figure. Contrary to the pump displacement, the motor displacement 

decreases with increasing vehicle speed. The behavior of the performances curves of 

system variables matches the vehicle requirements as illustrated during the driving 

cycle. 

5.6.3 Hydromotor operating points 

Figure 5.17 indicates the operation point of the hydromotor during the drive 

cycle. The diagram can be divided into two parts with respect to the y-axis which 

refers to the pressure difference across the hydromotor. The upper part, i.e. the positive 

pressure difference range, represents the operation point of the hydromotors under 

road load in forward travelling during the cycle. The lower part, which lies in the 

negative pressure range of the motor, represents deceleration or braking cases. The 

average motor efficiency in driving mode is approximately 51 %, with an average of 

79 % during braking mode.  

During deceleration mode, the hydromotors are swiveled back to their 

maximum displacements in order to gain maximum braking torque while reducing 

vehicle speed.  In this case, the hydromotors reverse their pressure direction and 

operate as pumps delivering flow, leading to system pressure rise. The pump controller 

reacts to this situation by reducing the pump displacement to zero in order to reduce 

the driving torque on the ICE.  

In the current system, there is no energy recuperation for the braking energy of 

the vehicle. Configurations which recuperate the braking energy will be discussed later 

in the next two chapters, where a large amount of this unexploited braking energy can 

be stored in the form of potential energy within a hydro-pneumatic accumulator.  
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Figure 5.17: Hydromotor operating points during the NEDC cycle 

5.7.4 Fuel consumption and CO2 emissions 

Simulation results for fuel consumption and CO2 emissions for the CV-HST 

drivetrain compared to the baseline mechanical transmission are illustrated here.  

The bar chart shown in Figure 5.18 reveals a reduction of fuel consumption about 37 

% in the city drive cycle as a result of running the engine in the best operation line 

strategy in low loads drive. 

Contrary to the city drive, the fuel consumption of the CV-HST drivetrain is 

increased in highway cycle. The increase in fuel consumption is a direct result of the 

reduction in hydrostatic transmission system efficiency at these higher speeds. The 

speed of the engine increases to meet the vehicle requirements, the pump displacement 

also increases causing a reduction in system efficiency. At these higher speeds the 

hydromotor operates at small displacements being characterized by low efficiency 

causing deterioration of total system efficiency. The total reduction of the CO2 

emissions during the cycle is negligible as shown in the bar chart of Figure 5.19. 
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Figure 5.18: Fuel consumption of the CV-HST versus mechanical drivetrain 
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Figure 5.19: CO2 emissions of the CV-HST versus mechanical drivetrain 
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5.7 Conclusion 

This chapter introduced a detailed description for a hydrostatic transmission 

system using variable displacement pump and variable displacement motor, integrated 

with a control strategy to operate the engine in best-line of minimum fuel 

consumption. The results indicate that it is generally accepted that CV-HST has the 

potential to provide some desirable attributes specifically in city drive such as; a wider 

range ratio, good fuel economy, shifting ratio continuously and smoothly. However it 

is not suited to apply in passenger vehicles due to its huge components size, high 

weight and cost.  

The simulation results show that the continuously variable hydrostatic 

transmission integrated with the complicated control system has almost no fuel saving 

compared to the gear-shift transmission, because the gain in running the engine on 

minimum fuel consumption line will be lost by the low component efficiency 

especially at high vehicle speed.  

Generally, the HST is considered as double energy conversion, its efficiency is 

not high enough compared with mechanical transmission. To reduce the gap in 

efficiency, a suitable method and simple control strategy are required to store the lost 

energy during vehicle braking.  

The aim of recuperating the unused braking energy is to raise the net energy 

efficiency of the system or the round-trip efficiency. In regenerative transmission, part 

of the energy developed by the engine which is lost in multiple braking can be restored 

in order to reduce the operation time of the engine and consequently reduce its fuel 

consumption.   
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6.1 Introduction 

The conventional form of a hydrostatic transmission presented in chapter 5 is 

known as flow coupling hydrostatic transmission, because the relation between the 

motor and the pump is basically dependent on the flow delivered from the pump. As 

the efficiency of the flow coupling hydrostatic transmission configuration is not high 

enough, the conventional hydrostatic transmission was integrated with a complex 

control system in order to force the engine to operate along an optimum operation line 

of minimum fuel consumption according to the required power. The applied strategy 

causes a further reduction in fuel consumption in the low loads during city drive which 

is not the case in the highway drive where the losses increase at high vehicle speed as 

indicated in the results of chapter 5.  

By locating an accumulator on the high pressure side of the HST circuit, the 

relation between pump and motors changes from flow coupling to pressure coupling. 

Installing an accumulator in the high pressure (HP) line permits the hydraulic system 

to recuperate most of the lost vehicle kinetic energy in deceleration and braking states 

[77]. A pump is used to charge the accumulator, while the vehicle speed is controlled 

by adjusting the displacement of the secondary unit (i.e. the hydromotor). The 

secondary unit works as a motor in normal driving mode while it can also work as a 

pump, regenerating the kinetic energy during deceleration and braking cases. The 

hydraulic accumulator is used for storing the recovered energy through flow coming 

from the secondary unit. It takes its energy either via the primary flow delivered by the 

pump or the secondary unit. The system operating pressure is independent of the 

vehicle load which is not the case in conventional flow coupling hydrostatic 

transmission. This independence creates several benefits including energy recuperation 

and the ability to change the rotational direction of the hydraulic motor by displacing it 

over-center. Therefore the accumulator plays an important role in the Secondary-

Controlled Hydrostatic Transmission (SC-HST) where it dominates the overall 

performance of the drivetrain.  

The proposed Secondary-Controlled Hydrostatic Transmission (SC-HST) is 

considered to be an energy-saving system. A study of the potential of a secondary 

controlled in vehicle drivetrain is therefore interesting. In this chapter complete system 



 
  Chapter 6                             
 

 

78

description and analysis, alongside discussion of system control and operation modes 

will be introduced. The energy utilization as well as the recuperation potential of the 

system is investigated by means of DSHplus simulation model. The proposed 

drivetrain can regenerate most of the vehicle’s kinetic energy during acceleration 

which is dissipated in the form of heat via friction brakes.   

6.2 Configuration of a Secondary-Controlled Hydrostatic Transmission  

The basic idea of a secondary controlled hydrostatic transmission was first 

patented in 1962 and was applied and developed in the early 1980s [9, 78]. Secondary 

control is a known technology in the field of hydraulics offering precise positioning 

and speed as well as the possibility of energy recuperation [79]. Secondary control is 

currently applied in machinery such as excavators, forklifts and wheel loaders, where 

it moves high loads in cyclic motions which are ideal conditions for energy 

recuperating systems [80, 81].  

The outstanding features of the secondary control over the conventional 

hydrostatic transmission are the ability of recovering the braking energy, higher 

efficiency, higher dynamic response, energy recuperation and better accuracy in speed, 

torque and positioning [45, 82, 83]. The secondary controlled hydrostatic transmission 

is considered as a multisource or hybrid driving system. The primary power source, 

such as electric motor or Internal Combustion Engine (ICE), works in a stable zone 

independent from the current load of the vehicle. A hydro-pneumatic accumulator is 

considered the secondary power source. It accumulates the power of the primary 

power source and the energy recovered from the hydromotor during deceleration. 

6.2.1 Basic principle 

Theoretical principle of a secondary-controlled hydrostatic transmission is 

represented in Figure 6.1. A constant or variable displacement hydraulic pump 

representing the primary unit keeps the high pressure line of the circuit and 

consequently the accumulator pressure at a predetermined level.  
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                     Figure 6.1: A basic secondary controlled system 

The dashed line plotted on the pump means that the pump can be used as 

constant or variable displacement, on the other hand the solid line plotted on the motor 

means that it must be variable displacement to satisfy a secondary-controlled concept.  

A hydromotor representing the secondary unit is a variable displacement unit 

and can work as both pump and motor. It must be able to be controlled over-center 

allowing positive and negative torque in any direction of vehicle travel speed which is 

commonly referred as four quadrant of operation (i.e. forward, backward acceleration 

and/or deceleration). 

When the system pressure is kept constant, the hydromotor output torque is 

directly proportional to its displacement of the secondary which can be expressed as 

follows; 
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When increasing the swivel angle the flow requirement raises according to; 
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Solving equation (6.1) and (6.2) together yields; 
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If the pressure difference is held constant at predetermined level then the motor 

flowrate is directly proportional to vehicle speed and load torque. At a certain constant 
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speed, a change in vehicle load would result in a certain change in flow and the 

secondary unit reacts with a change in displaced volume. Such a relationship makes 

the secondary controlled hydrostatic transmission (SC-HST) particularly energy 

efficient since the high loads can occur at high speeds without necessarily increasing 

the system pressure avoiding high flow losses.  

In a secondary controlled system, if the pump is controlled to keep the same 

pressure level in the system then the accumulator pressure will also remain constant 

and consequently the hydromotor pressure. This means that no energy storage can be 

made in the accumulator during braking. The oil flow will instead be directed back to 

the pump. A torque can be created which acts to unload the diesel engine. This type of 

energy recuperation is however not ideal in the vehicle drivetrain application. It may 

be suitable for other systems driving different loads which demand power from the 

engine.  

Hence, the accumulator pressure level should vary between a minimum and 

maximum values to achieve as much energy recuperation as possible. The selected 

pressure range should allow the accumulator to store most of vehicle’s kinetic energy 

during braking while its pressure is being raised from minimum to maximum value.  

During braking the load torque becomes negative. The secondary unit starts 

working as a pump and effectively delivers flow from the low pressure side back to the 

accumulator on the high pressure side. The motor swivel angle is controlled over-

center and the flow is directed back into the high pressure line, converting the kinetic 

energy of braking into pressure energy. The recovered energy is stored in the 

accumulator for later use.  

6.2.2 SC-HST concept design 

Components and units selection of the proposed secondary-controlled 

hydrostatic drivetrain is done in a similar way as for the conventional hydrostatic 

transmission. The introduced secondary-controlled hydrostatic transmission is 

designed using high pressure (HP) and low pressure (LP) accumulators to keep the 

balance of oil volume in the circuit as shown in Figure 6.2. 

To reach the maximum torque a certain motor size is needed which depents on 

the gear ratio and the chosen pressure level in the circuit. Since the high pressure (HP) 
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side never changes in a hydraulic circuit and the four quadrants of operation are 

demanded from the variable displacement hydromotor, then the Rexroth reversible-

variable displacement A6VM motor is a suitable to use also as secondary unit in order 

to meet the above requirements.  

The required motor and pump sizes can be calculated when the maximum 

swivel angle is used as the operation point. 
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On the primary side, a small constant displacement pump is suitable to charge 

the accumulator when needed, as it is connected to the engine shaft directly. The same 

Rexroth A4VG pump type applied in the conventional contentiously hydrostatic 

transmission represented in chapter 5 is also used in the hydraulic circuit of the 

secondary-controlled hydrostatic transmission to enable a fair comparison and also to 

use the same flow and torque losses look-up tables which are integrated in the pump 

and motor units.  

In the SC-HST simulation model described in this chapter, the pump 

displacement is held constant at maximum swivel angle by supplying a constant value 

on the displacement controller of the pump in order to work at maximum capacity on 

constant flow basis as fixed displacement ones.  

 

Figure 6.2:  Conception design of the Introduced SC-HST circuit  
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A bypass valve and control switch are required on the pump side in order to run 

the diesel engine at a predetermined torque level, adjusted by the pressure controller 

installed on the accumulator as will be explained later in detail. In braking mode, the 

reversed flow from the hydromotor is delivered to the accumulator, making the kinetic 

energy available for reuse.  

6.3 Hydro-pneumatic Accumulators 

 Accumulators are fluid power components that store potential energy and return 

it to the circuit on demand. Accumulators have several functions in the hydraulic 

circuit of the SC-HST transmission system. However, the primary functions of the 

accumulators in the hydraulic circuit are to stabilize the working pressure in its secure 

limits, make the system easier to control and conserve hydraulic energy.  

In the introduced SC-HST drivetrain, a high pressure accumulator is mounted 

between the pump and the hydromotor on the high pressure side to change the flow 

coupling relationship of the pump and the motor to pressure coupling. In order to 

maintain the pressure coupling between the fixed displacement pump and the motor, 

the accumulator is controlled to operate in a certain pressure range, for instance on the 

high pressure side between 200 and 400 bar.  

6.3.1 Sizing the accumulator 

 Sizing the accumulator accurately is a challenge. The selection of the proper 

size accumulator is important for an efficient operation.  The proper pre-charge gas 

pressure of two accumulators being installed in each side of the common pressure rail 

(i.e. high pressure side and low pressure side) are critical to the operation of  the 

system. The pre-charge of the low pressure accumulator is taken as a ratio of the 

minimum suction pressure of the pump but the pre-charge of the high pressure 

accumulator is a percentage of the minimum working pressure of the system. 

 Referring to Figure 6.3, the pre-charge gas pressure of the accumulator, po is 

normally just below the minimum working pressure pmin of the hydraulic system. This 

is to prevent the accumulator bladder constantly closing the anti-extrusion check valve. 

From the viewpoint of energy conservation; the pre-charge gas pressure can be 

theoretically equal to 90 % of the minimum pressure denoted by p1, i.e. po=0.9 pmin. 
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The maximum working pressure denoted by p2, is the fluid pressure when the 

accumulator is fully charged; this pressure should not be greater than three times the 

minimum working pressure, otherwise the elastomer material of the bladder may be 

damaged. 

 The volume and pre-charge gas pressure are discussed in this article from the 

point of view of energy recovery and reduction of pressure fluctuation; this is because 

both of them have a close relationship to the performance of the system. To be more 

conservative in sizing the accumulators, it is best to estimate a change in gas volume.  

 Systems using fixed-displacement pumps typically respond faster, so that 

smaller accumulators can be used. The accumulators will be designed according to the 

amount of inlet and outlet fluid through it to fulfill the actuators demands. This 

requires knowledge of the motion profile of the hydro-motors to calculate the amount 

of oil required in the accumulator; also the pump flow as a function of the pressure 

needs to be taken into account.  

As the vehicle speed reduces from the high speed vF1 to the low speed vF2, the 

decrease in kinetic energy can be expressed as, 
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The energy is stored in the accumulator in the form of potential energy during 

braking and it is released during the acceleration process. The optimal size of the accu-

mulator is determined by the amount of energy which has to be stored. As the rate of 

charging and discharging occur rapidly, then energy exchange between nitrogen and 

atmosphere can be considered adiabatic. 

Maximum discharge quantity, optimum pressure ratio and stored energy are 

calculated according to the following equations neglecting power losses [7];  
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12,12 308.0 VpW a           (6-8) 

 

Figure 6.3: Relation between accumulator pressure and volume [7] 

The calculation reveals an accumulator volume of 20 liter, which is capable of 

storing most of the brake energy 258.720 J or 72 Wh and cover most of the power and 

traction transients of the vehicle. This amount is equivalent to brake the vehicle from 

60 km/hr to zero. A larger accumulator will however be both expensive and requiring 

more space. 

For the purpose of a hydraulic circuit, a 22 liter low pressure accumulator will 

be selected in order to use as a make-up fluid whenever fluid is introduced into the 

high pressure accumulator, which assures pre-flow during engine start.  

6.4 Drivetrain Architecture  

A hydraulic fixed displacement axial piston pump type A4VG, size 71 cm3/rev 

(Bosch Rexroth), is coupled to the engine output shaft as shown in Figure 6.4. A 20 

liter bidirectional hydro-pneumatic accumulator pre-charged with N2 at 180 bar being 

used as a secondary power source is located in the high pressure side of the hydraulic 

circuit to recuperate the braking energy and restore it to the system when needed. 

Another 22 liter low pressure accumulator is connected to the low pressure side that 

functions as a fluid reservoir.  

A pressure relief valve is installed in the circuit to protect the circuit from 

overloads when system pressure increases higher than the secure pressure value of 420 

bar. The pressure range of the high pressure accumulator which varies between 200 

and 400 bar affects the necessary size of the hydromotor. A lower pressure demands a 

bigger displacement to create the same torque according to motor torque and 
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displacement relation, refer to equation 6.1. A choice must thus be made of how the 

primary unit should control the pressure level in the circuit. 

Variable displacement bidirectional hydro-motors type A6VM (Bosch Rexroth), 

each attached directly to the four wheels of the vehicle, each of size 107 cm3/rev to 

reduce mechanical losses is suitable to satisfy the vehicle performance.  
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Pump Pump/ Motor
 Valve
 block ICE

PG

PG

PG

PG

 

Figure 6.4: Architecture of the SC-HST drivetrain 

6.5 Control Strategy 

The secondary-controlled drivetrain has a speed control circuit with free 

variable of swivel angle or torque. When the speed is preselected, the secondary unit 

searches the required torque automatically in order to keep the given speed at any 

operating pressure.This means that a reference speed affects the motor displacement so 

that the speed is always followed-up. An increased load will hence make the secondary 

unit respond in a higher swivel angle to create an equal torque and keep the reference 

speed. At higher speeds, a lower pressure difference meaning that the hydromotors 

work with higher swivel angles to cover the road load torque. This increases the 

overall efficiency of the motor. 

The SC-HST not only regenerates the kinetic energy of the vehicle, but it also 

performs the tasks of engine manager, having some energy-saving benefits [82]. 
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When a low load is required by the vehicle, the engine can either be shut off 

while the accumulator alone drives the vehicle or the accumulator increases the engine 

load to supply extra energy to the accumulator to be stored for later use.   

The accumulator pressure level is controlled via a pressure-controller which 

actuates the engine when the accumulator pressure goes below a specified threshold 

minimum value i.e. 200 bar. The engine is turned-off when the accumulator pressure 

goes higher than 400 bar. 

 Therefore the accumulator plays an important role in the system operation 

dominating the overall performance of the system. Since a series-hybrid omits a 

mechanical link between the combustion engine and the wheels, the engine is running 

at an efficient rate even as the vehicle changes speed. The pressure controller set value 

of the primary unit is correlated to the vehicle speed pref = f(v). When vehicle speed 

increases the set pressure should be decreased, giving the system more possibilities to 

store energy. The optimal pressure thresholds for the accumulator would therefore be a 

pressure of 200 bar at maximum speed and 400 bar at zero speed.  

A simplified block diagram of the SC-HST illustrating the overall control 

strategy is indicated in Figure 6.5.  

 

Figure 6.5:  Block diagram indicating the overall control strategy of SC-HST 

As shown in the block diagram, the system consists of three sub-systems. The 

first subsystem represents the engine-pump combination and its p-controller which 

controls the engine on/off according to accumulator pressure level. It is responsible for 

converting the thermal energy into hydraulic energy to charge the accumulator. Part 2 
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corresponds to the storage subsystem which is a hydro-pneumatic accumulator. Part 3 

represents the traction subsystem which is composed of in-wheel variable 

displacement hydro-motors and its n-control to control the vehicle velocity. The 

interaction between these subsystems is managed by the control unit. 

6.6 Simulation Model 

The simulation model depicted in Figure 6.6 has been built to evaluate the 

performance of the proposed control strategy developed for the SC-HST drivetrain. 

The model investigates the effects of driving patterns on the engine and estimates the 

vehicle’s energy use, emissions and fuel consumption for a range as in the NEDC 

cycle. 

There are two independent PID-fixed gain controllers used in the model. The 

first is a speed-controller located at the hydro-motors side to actuate their displacement 

according to load demand on the wheels. The resulting error in speed between the 

commanded and actual velocity is controlled by the speed controller and then saturated 

to limit the controlled signal. The final saturated signal is used to adjust the 

hydromotor swivel angle to obtain the required vehicle velocity. The error of 

saturation is only active in accelerating movements since the flow generated from the 

secondary unit, at braking motion, is not limited. 
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Figure 6.6: Simulation model of SC-HST drivetrain in DSHplus 
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The basic task of the primary side of SC-HST is to control the energy charge 

level of the accumulator that is made by means of controlling fuel quantity to the 

engine. The accumulator pressure level is monitored and regulated so that it stays in a 

secure operating range by the pressure controller. The pressure controller stands for 

controlling the high pressure line and consequently the engine operation. The 

difference between the current set pressure and the accumulator actual pressure in the 

circuit are compared and controlled with a traditional PID-controller. The output 

signals from the PID-controller are then saturated to keep the control signal within 

limits. 

The complete engine and pressure controller comprises of an input pressure 

signal from the accumulator, limiter, noise filter, gas throttle valve signal, an angular 

velocity switch and a solenoid venting valve (shuttle valve). The solenoid valve will 

also be connected to the ICE starter, so that the pump can start the engine under no-

load from stand-still through stored energy in the HP accumulator. The hydraulic 

circuit is equipped with a check valve at the pump output to prevent the stored energy 

from escaping through the pump, and an electrically controlled shut-off valve to block-

out the flow to the motors during standstill. An additional pressure relief valve sets the 

maximum pressure in the circuit. The Online Data Import (ODI) is used for 

implementing the NEDC cycle in the simulation while the controller tracks the 

required vehicle speeds. 

6.7 Results and Discussion 

Similar to the conventional hydrostatic transmission the SC-HST simulation 

model was also run for the NEDC driving cycle to get fuel consumption and CO2 

emissions as well as the drivetrain is variable performance during the cycle. This cycle 

is selected for purpose of analysis as it includes hard acceleration, cruising at constant 

velocities and braking phases. The simulation results are performed on the on-off 

control strategy. All of the initial conditions and input data such as vehicle parameters 

and command velocity from the cycle are the same as the previous CV-HST 

simulation model described in chapter 5.  
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6.7.1 Engine operating points 

The engine’s operating points for the SC-HST transmissions during the NEDC is 

depicted in Figure 6.7.  It is clear for the figure that, by using SC-HST in the vehicle 

drivetrain, the operating points were moved to the highest efficiency region. This is a 

direct result of using the pressure controller which permits the engine to run under 

high load only in the defined range of operation of the accumulator of 200 to 400 bar. 
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Figure 6.7: Engine operating points of the SC-HST drivetrain 

6.7.2 Characteristics curves  

A complete profile of the simulation result for the driving mission in NEDC 

cycle is shown in Figure 6.8. The first curve shows that the actual vehicle velocity is 

completely tracking the commanded velocity along the mission NEDC cycle. The 

system pressure in the drivetrains is maintained in the secure range of the accumulator 

ranging from 200 to 400 bar as indicated by the 2nd curve.  

 The vehicle begins and ends operation with a fully charged accumulator. The 

accumulator pressure decreases with increasing vehicle speed until it reaches 200 bar. 

At this minimum threshold value, the pressure controller actuates the engine on. 

Referring to the third curve, it shows the engine speed profile during the driving cycle. 

The curve shows that the engine is turned on corresponding to each lowest pressure 
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valley, at which the pressure controller actuates the engine on to recharge the 

accumulator again, up to the upper secure limit. The engine first run is at 75.5 sec from 

cycle start, as the energy of the accumulator reaches the minimum limit.  
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Figure 6.8: Characteristics operation curves of SC-HST during the NEDC cycle 
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The system analysis reveals that the engine run approximately 21 % of the 

mission cycle time. The engine in the SC-HST drivetrain runs nervously on short times 

as shown by the engine speed curve. This is due to the pressure difference on the 

accumulator being the same as that on the wheel motor, i.e. the pressure on load side is 

the same on the accumulator side, causing high variations in the working pressure 

during the cycle. The fourth curve shows the power consumed for each period of 

engine run. The fifth curve shows the recuperated power during the driving cycle 

which corresponds to each braking phase in the vehicle. 

The swivel angle setting ratio of the variable displacement hydromotor is shown 

in the top curve of the diagram. As shown, the swivel angles have positive angles in 

propulsion mode and negative angles during braking mode. 

6.7.3 Hydromotor operating points 

The operating points of the hydro-motors are depicted during the drive cycle in 

Figure 6.9.  
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Figure 6.9: Hydro-motor’s operating points during the NEDC cycle 
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The shown diagram can be divided into two parts with respect to the y-axis 

which refer to the displacement setting of the hydromotor. The upper part, i.e. the 

positive displacement range, represents the operation point of the hydromotors under 

road load in the travelled distance during the cycle. The lower part which lies in the 

negative displacement range of the motor represents deceleration case. 

The average motor efficiency in driving mode is approximately 79 % and 

average of 67 % during braking mode. During deceleration operation the hydromotors 

are swiveled over-center to the negative swivel angle in order to gain maximum 

braking torque while reducing vehicle speed.  In this case, the hydromotors reverse 

their flow direction and operate as pumps delivering flow streams against the main 

flow stream which cause a momentarily rise in system pressure. 

6.7.4 Fuel consumption and CO2 emissions 

Fuel consumption and CO2 emission resulting from the simulation models of 

the SC-HST are compared to the baseline vehicle as shown in figures 6.10 and 6.11. 
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Figure 6.10: Fuel consumption of the SC-HST versus mechanical during the NEDC cycle 
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The results show that the fuel consumption and consequently CO2 emissions are 

reduced by amount of 30 % in the SC-HST compared to the conventional baseline 

vehicle.  

The CO2 emission is reduced to about 123.37 g/km. The additional total 

reduction of fuel and CO2 during the NEDC cycle was gained by SC-HST drivetrain 

due to its abilities to recuperate a part of the braking energy in the high pressure 

accumulator and reusing it during propulsion and also due to shutting the engine off 

when the accumulator pressure is above the minimum value or during braking. The 

reuse of the system energy substitutes some of the losses in the transmission system. 
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Figure 6.11: CO2 emissions of the CV-HST versus mechanical during the NEDC cycle 

6.8 Conclusion 

Generally, the secondary-controlled hydrostatic transmission is considered as 

the basic form of the series hydraulic hybrid, which uses one of the current market 

hydraulic components. Fuel consumption and consequently CO2 emissions can be 

reduced considerably by adding a hydraulic accumulator as a secondary power source 

to the primary combustion engine which will tend to improve the round-trip efficiency. 

The aim of using this type of standard series hydraulic hybrid or the secondary-

controlled hydrostatic transmission is to increase the whole system efficiency with 
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efficient use of the primary power source, efficient management of energy for motion 

and efficient recovering and reuse of braking energy. 

This chapter assesses the potential fuel savings and emissions reductions 

associated with hydraulic hybridization for the baseline vehicle. Two traditional PID-

controllers were used to regulate the operation of the drivetrain. A speed controller is 

responsible to track the desired velocity input, and a pressure controller is responsible 

for keeping the high pressure accumulator, and consequently the high pressure line, in 

effective secure limits between 200 to 400 bar.  

The strategy implemented on the introduced SC-HST drivetrain forced the 

engine to run only under medium to high loads avoiding low and partial operation 

which consumes large amounts of fuel. Furthermore, it is highly efficient even under 

partial road loads conditions. By doing so, the engine off time reaches approximately 

79 % the cycle time.  

The results indicate that secondary-controlled hydrostatic transmission as a 

conventional hydraulic hybrid system has the potential to reduce fuel consumption and 

consequently CO2 emissions. SC-HST offers good fuel saving of approximately 30 % 

compared to the mechanical transmission during the standard NEDC driving cycle, but 

the SC-HST drivetrain still suffers from high pressure variations. These variations in 

pressure arise from that the road load changes which have a direct effect on the 

accumulator pressure, i.e. all the load needs should be covered by the accumulator. 

Furthermore, the secondary controlled hydromotor suffer from low level of 

efficiency at low motor displacement during low loads. The efficiency of the variable 

displacement motors is very low at low speed and torque, i.e. at low power demands, 

which are typical for average driving condition in the NEDC. Therefore there are still 

some deficiencies in applying SC-HST such as variable displacement motors being 

large units, heavy and less efficient than constant ones. The high mass of the motors 

increase the suspended weight of the wheels. Also the current motors may suffer from 

slip-stiction friction, which might reduce the torque at brake-away conditions.  

It is better if possible to choose a fixed displacement motors at the vehicle 

wheel which can operate at a high pressure range over the current units, in order to 

reduce drivetrain weight and increase efficiency. A hydraulic transformer can separate 



 
Secondary-controlled hydrostatic drivetrain  
 

 

95

the accumulator from the pressure variation on the load side to increase the stability of 

the system. It can manage system pressure according to load demands and cover the 

pressure gap between pressure source and load side avoiding repeated on-off run for 

the engine. It can also amplify the high pressure line even if the accumulator pressure 

reaches the minimum threshold of 200 bar or amplify the pressure in the motor side to 

the accumulator during braking to increase the stored energy.  

In this case the speed controller should be moved from the motor to the 

transformer. If a state of the art transformer is used, it will suffer from the same 

problems as conventional motors, such as low efficiency, big size and high weight. A 

new design of hydraulic transformer and high pressure range fixed displacement units 

is required to accomplish the required performance. 



 

 

 

 

Chapter 7  

Novel Series Hydraulic Hybrid Vehicle 

“The Hydrid” 
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7.1 Introduction 

Automobile and vehicle manufacturers are directing their effort towards 

designing and producing less polluting and more fuel efficient vehicles in order to 

meet the new tough emissions regulations issued by many committees such as the 

American EPA and the European Environmental Agency (EEA) to help reduce air 

pollutions. The development of new vehicles to reduce fuel consumption and 

emissions is a prerequisite to protect humans and the environment.  

One way to improve fuel economy and reduce the emissions of a vehicle is to 

hybridize it. The word “Hybrid” has its origin in the Latin language and means: “a 

Mixture or combination of two things” [84]. 

A hybrid drivetrain consists of at least two energy conversion devices. The first 

one is an irreversible primary power source such as an internal combustion engine 

(ICE) which converts the long-term chemical energy stored in a fuel into mechanical 

rotation. The second is a reversible secondary power source such as an electro-

chemical battery or a hydro-pneumatic accumulator which converts the short-term 

chemical energy stored in a battery or the potential energy in the accumulator to propel 

the vehicle’s wheels. The ICE uses the long-term chemical energy stored in a fuel, 

while a battery/accumulator use the short-term chemical/potential energy to drive the 

wheels.   

  By vehicle hybridization, the whole drivetrain efficiency can be increased by 

optimal use of the primary power source, efficient transformation of energy for motion 

and efficient recovering and reuse of braking energy [2].   

7.1.1 Hybrid drivetrain configurations 

Hybrid vehicles can have three different system configurations; series, parallel 

and series-parallel as depicted in Figure 7.1. These configurations can be divided into 

two main common technologies, electric hybrid and hydraulic hybrid. Hydraulic 

hybrids operate basically the same way as electric hybrids, using a motor-pump 

instead of an electric motor-generator and a hydraulic accumulator rather than the 

battery pack to store recuperated energy. A control strategy is necessary to control the 

power flow from both the primary and secondary power sources to the vehicle’s 
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wheels. Nowadays, the electric hybrids are promoted and successfully applied in the 

automobile industry, but hydraulic hybrids are still under development.   

Figure 7.1: General configuration of hybrid drivetrains 

Series configuration: Figure 7.1-a; shows the simple layout of series hybrid vehicles. 

Power is supplied by an engine-driven generator/pump and/ or a storage device such as 

a battery or hydraulic accumulator to the motors. In this case the engine is decoupled 

from the vehicle load and can run in an efficient range, but all system components 

need to have maximum efficiency to overcome the loss of efficiency during 

transforming the power from one source to another. During cruises or accelerations, 

both the ICE and storage device supply energy to the motors. At deceleration or 

braking, motors works as generators/pumps to store the vehicle’s kinetic energy in the 

storage medium for later use.     

Parallel configuration: Figure 7.1-b; indicates the main components of the parallel 

hybrid vehicle. Both the primary and secondary power sources are connected 

mechanically to the main drive shaft. Power is supplied to the wheel either by the ICE 

or the storage device individually or simultaneously. Regenerative braking is also 

possible. 

Series- parallel configuration: it is also known as a power split unit. It incorporates 

both characteristics of series and parallel configurations by using a split device 

connecting the engine, a generator/pump and the motor as shown Figure 7.1-c. Power 

is partially transferred hydraulically/electrically from the pump/generator to the motor 

or to the storage device and the rest is transmitted mechanically through the planetary 

gear set. This configuration enables the continuous variation of the speed of the 

Storage device

  G  Fd ICE  M
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 ICE
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combustion engine, letting the control algorithm choose the adequate ratio between 

input and output, for fuel economy and performance requirements.  

In hybrid systems, both serial and parallel, it is possible to eliminate idle losses 

(the losses that occur when the vehicle stops while the engine still runs). They also 

allow a better and more energy efficient integration and operation of auxiliary loads, 

like power steering and air conditioning system.  

A series hybrid vehicle represents a second generation or second-phase of 

hybrid vehicles. In a series hybrid, the mechanical transmission can be completely 

deleted, but it requires a well done control system. Since the engine is completely de-

coupled from the wheel load then it can be fully optimized for power supply and 

efficient operation near its peak efficiency, which is not the case in parallel hybrids. 

Also in series hybrid, the engine can be turned-off at those times where the vehicle is 

not in motion or where there is sufficient stored energy to propel the vehicle, which in 

turn saves fuel.  

7.1.2 Characteristics of electric and hydraulic hybrid 

Nowadays all hope seems to be focused on the (parallel) hybrid electric 

drivetrain, with the all-electric transmission on the horizon as the ultimate solution. 

The electric components however cause a strong increase in the manufacturing cost, 

resulting in limited market acceptance. Recent studies showed a very limited potential 

for hybrid electric vehicles of less than 10 % of the total sales volume by the year 

2035. The hybrid electric transmission is also by far the most expensive option for 

CO2 subsidence [85]. The cost increase of hybrid electric transmissions is inevitable. 

Being a parallel hybrid solution, the electric system is an add-on to the mechanical 

transmission, and by definition increases complexity, weight and cost of the vehicle. 

Despite mass production, electric transmission components remain too expensive [86]. 

Furthermore, the poor average cycle efficiency of the batteries and the electric motors 

result in a limited reduction of fuel consumption. 

There are some similarities and differences between electric and hydraulic 

energy. It is important in hybrid vehicles to specify some characteristics of storing 

energy in the secondary power source (i.e. batteries or accumulator) used.    
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In electric hybrid; excess engine power is continually stored during a longer period of 

time in a battery (coarse shading) of Figure 7.2-a, and accessed only as needed (soft 

shading). The battery can accept a large amount of energy, but the charging process 

takes long time. 

(a) Electric hybrid   (b) Hydraulic hybrid 

Figure 7.2: General characteristics of electric hybrid und hydraulic hybrid [84] 

In hydraulic hybrid; during braking the kinetic energy is transferred to a hydraulic 

accumulator (coarse shading) of Figure 7.2-b, and used during accelerating (soft 

shading). A large amount of energy can be stored in a very short time and immediately 

accessed. Virtually all of the braking energy can be stored [84]. 

Generally, it is well known that hybrid drivetrains, electric or hydraulic, can 

reduce fuel consumption and carbon dioxide (CO2) emissions, especially if a serial 

system could be applied. Serial systems require a maximum efficiency of the 

transmission components to get high transmission efficiency. Electric components 

have a poor power density, which increases weight and cost of the vehicle, even when 

considering large scale production. This would result in an increase of the fuel 

consumption and CO2 emissions. Due to these shortages, most current hybrid electric 

vehicles are applied with parallel systems, in which the electric system does not 

replace the mechanical transmission, but is added to it. Parallel hybrid systems 

therefore have several shortcomings. They are heavier, thus more expensive and offer 

only a limited reduction of fuel consumption and CO2 emission [87]. The alternative is 

a full hydraulic hybrid transmission.  

Hydraulic systems have proven to be extremely reliable and robust. They allow 

a flexible layout and easy control for the drivetrain, including energy storage in 

accumulators. Although hydraulic accumulators have an inferior energy density, they 

have an excellent power density, much higher than electric batteries as shown in the 

Ragone diagram Figure 7.3. The low power densities of fuel cells as well as batteries 
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are due to their high internal resistance. They are only marginally suitable for 

recovering brake energy. Moreover, cyclical charging and discharging at high power 

rates considerably reduces their service life [88]. 

 

Figure 7.3: Ragone diagram of storage devices [88] 

Previously, the efficiency of hydraulic pumps and motors was rather poor 

(similar to electric motors and generators applied in vehicles), but the recent 

development of the floating cup units by INNAS and digital displacement units by 

ARTEMIS has changed this situation [2]. Tests of the floating cup units have already 

resulted in total efficiency of up to 98 % [89]. They also offer a reduction in size, 

weight and cost, as well as noise and pulsation levels. They will be discussed in more 

detail within this chapter.  

A hydraulic hybrid is characterized by its ability to capture regenerative braking 

energy quickly, compared to electric batteries which absorb about 30 % of the braking 

energy [2]. The high power density of hydraulic pumps/motors and hydro-pneumatic 

accumulators make hydraulic technology look promising for vehicles. It should be 

integrated in the automobile industry due to its low price and the recently developed 

units of high efficiency compared to electric machines [77]. 

The hydraulic hybrid drivetrain that will be dealt within this chapter has a 

particular configuration and will be referred to as “the Hydrid”. 
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7.1.3 Tasks  

 Exploring and investigating the “Hydrid” drivetrain configuration and 

components. 

 Choosing and optimizing the size of the Hydrid drivetrain components (Engine, 

accumulators and hydrostatic units) to match the performance and requirements of 

the baseline vehicle, in order to minimize fuel consumption. 

 Building up a simulation model of the introduced series hydraulic hybrid 

drivetrain using precise models for the system components (taking into account 

component efficiencies). 

 Improving the controller setup on the basis of system performance.  

 Introducing energy management strategy to obtain the highest efficiency. 

 Analyzing the simulated results of fuel consumption and CO2 emissions with the 

baseline vehicle data. 

7.2 The Hydrid Drivetrain  

The general architecture of the Hydrid drivetrain was introduced by the Dutch 

organization for scientific research Innas B.V [62], replacing the mechanical 

transmission with a novel series hydraulic hybrid transmission. It is tested and 

analyzed using DSHplus 3.6.1 simulation software tool at IFAS of RWTH Aachen 

University to evaluate its capabilities of application in passenger cars [87, 90]. 

The Hydrid is a generic term characterized by the full hydraulic hybrid of a 

distinct series configuration. It includes innovative hydrostatic units such as the 

recently developed three port-plate Innas Hydraulic Transformer designated by IHT, a 

fixed displacement pump, and in-wheel hydro-motors designed on the new high 

efficiency floating cup technology. In addition to this a high pressure accumulator is 

fitted between the pump and the IHT to store the braking energy and utilizing it back 

during propulsion mode. The hydrostatic units used in the Hydrid are designed 

according to the floating cup technology which is characterized by high efficiency, 

low torque fluctuation and low noise.  

The novel series hydraulic hybrid vehicle or shortly the Hydrid, is expected to 

compete with today’s well known electric hybrid vehicle because hydraulic drives are 
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generally used when power to weight ratio, controllability and dynamic performance 

are important features. Furthermore they should to be realized at reasonable 

investment costs combined with long life times and low maintenance. 

7.2.1 The Hydrid drivetrain configurations 

The drivetrain components of the Hydrid can be combined in a flexible manner 

resulting in different configurations. They can be used for 2WD in front or rear wheels 

or for 4WD i.e. all wheel drive, according to the design requirements and vehicle size.  

In each configuration, the hydraulic circuit should mainly include a Floating 

Cup type fixed displacement hydraulic pump coupled to the combustion engine output 

shaft to charge the primary side. A High Pressure (HP) accumulator pre-charged with 

N2 at 180 bar is mounted on the high pressure side of what is called common pressure 

rail (CPR), and another low pressure (LP) accumulator is connected to the other side 

of the CPR. The high pressure accumulator discharges (at propulsion) or receives (at 

braking) its charge through the Innas hydraulic transformer (IHT) of the floating cup 

type. The IHT is responsible for transforming power from CPR to the fixed 

displacement hydro-motors mounted in-line with the vehicle wheels according to 

demand load in the four quadrants of operation. In addition, the entire system has 

auxiliary components such as pressure relief valves, cooling units, oil filters and an 

auxiliary pump for feeding the circuit with extra fluid to prevent cavitation in the low 

pressure side and also to compensate for leakage in the system. 

 This study will focused in on the all wheel drive to be comparable with the 

selected baseline vehicle. In all wheel drive there are two concepts, both of them must 

include two units of the IHT. One feeds the front wheel motors and the other feeds the 

rear wheel motors.  

The first concept depicted in Figure 7.4-a uses two engines of different or equal 

capacity as that introduced in the 6th IFK in Dresden [87]. The small capacity of 

engine-pump combination will drive the vehicle at low to medium demands, for 

instance in city operation, while the second unit is only needed to operate 

simultaneously for situations in which the power demand exceeds the installed power 

of a single engine. But this concept is expected to face many difficulties in finding 

space for two engines with their accessories e.g. exhaust and cooling … etc. 
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Figure 7.4-a: The Hydrid drivetrain with two engine-pump combinations for 4WD 

The second concept employs only one engine-pump combination to drive the 

vehicle with full engine capacity are shown in Figure 7.4-b. This concept will be 

considered as the base of the work in this study to apply in mid-sized passenger cars 

and is considered in detail in this chapter.   
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Figure 7.4-b: The Hydrid drivetrain with one engine-pump combination for 4WD 

7.3 Drivetrain Components 

A hydraulic hybrid will likely have a hydraulic regenerative braking system due 

to the existence of hydro-pneumatic accumulator. The Hydrid drivetrain, as explained 

above includes two power sources, i.e. combustion engine and accumulator, 

interacting in controlled manner with the other system components to obtain the 

required motion.  
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The basic components of the drivetrain, including the recently developed 

hydrostatic unit are presented in the following sub-articles.  

7.3.1 The internal combustion engine 

The internal combustion engine represents the primary power source in the Hydrid 

drivetrain which is necessary to charge the hydro-pneumatic accumulator during 

driving. The installed power of the engine is 120 kW. It is completely disconnected 

from the road load in the proposed drivetrain. It is solely responsible for charging the 

hydro-pneumatic accumulator via a coupled fixed displacement pump with the 

required pressure during driving. 

Depending on the effective operating pressure range of the accumulator, the 

torque range of the engine-pump combination will be constrained between minimum 

and maximum values corresponding to the maximum and minimum pressure of the 

accumulator. For instance the engine torque will vary between 50 % (@ 200 bar) and 

100 % (@ 400 bar) of the maximum torque. The internal combustion engine is 

therefore forced to operate at medium to high loads, where optimum performance and 

high efficiency can be obtained.  

7.3.2 The hydrostatic units 

The hydrostatic units used in the Hydrid powertrain such as the pump, motors, 

and Innas hydro-transformer IHT are axial piston units designed following the 

innovative highly efficient floating cup technology developed by Innas B.V. The 

three-port plate IHT and the floating cup design are considered key components for 

introducing the Hydrid drivetrain. The IHT is used for power control and the new 

multi-piston principle of the floating cup units strongly increase the transmission 

efficiency and reduce the noise, vibration and harshness issues related to conventional 

hydrostatic units.  

7.3.2.1 Hydrostatic pump and motor   

The breakthrough technology for the Hydrid is the floating cup principle for the 

design of its hydrostatic units. It aims to increase the average efficiency of all the 

hydrostatic components in the Hydrid such as axial piston pump, transformer(s) and 

hydro-motors and consequently the overall transmission efficiency. Figure 7.5 depicts 
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a floating cup unit having 24 pistons arranged in a double ring back to-back 

configuration. 

The Floating Cup Principle (FCP) was constructed with double faced pistons to 

create a mirrored design. An important advantage of this concept is the complete 

balancing of hydraulic forces in axial direction. This enables the use of small, simple 

bearings. The torque on the shaft is still very small compared with conventional axial 

displacement units.  

  
 

Figure 7.5: A floating cup hydrostatic unit [60] 

A floating cup pump was investigated by IFAS of RWTH Aachen University. 

Two basic types of hydrostatic units were compared to the floating cup unit. The study 

reveals that key features of the floating cup unit are low flow pulsation and low piston 

friction losses.  

Figure 7.6:  Variation of output torque of FC motor versus state of the art axial piston 

units [89]  

φ 

Rotor with pistons Cylinder 
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The effect of the low friction losses and the high number of pistons can be seen 

in the diagram of Figure 7.6 which shows the torque output (relative to the maximum 

theoretical torque) measured at a low rotational speed (< 1 rpm) of a floating cup 

motor, compared to a bent axis and a radial piston motor. Noise and vibration are low 

as a result of low pulsations especially due to the high number of pistons (24 pistons) 

compared to the traditional units having from 7 to 9 pistons.  

The floating cup principle exhibits the optimum performance with minimum 

losses and higher efficiency in a wide range of operating conditions with an efficiency 

exceeding 95 % as shown in Figure 7.7. In addition, the hydro-mechanical losses are 

very low at the operating condition of low speeds in combination with high loads. This 

makes the floating cup principle very attractive for application in hydrostatic motors. 

The power density of the slipper type, bent axis and floating cup machine are 

comparable.   

Normally, hydraulic motors suffer severely from stick-slip friction, which 

strongly reduces the torque at brake-away conditions. Furthermore most motors have a 

smaller number of pistons (or other displacement volumes). This results in a large 

variation of the drive torque of these motors, which is not the case in the floating cup 

design. The floating cup machines also exhibit hardly any coulomb friction. Therefore, 

the torque delivered by the floating cup motors is close to the theoretical torque, as 

evaluated by IFAS of RWTH Aachen [90]. 
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Figure 7.7:  Efficiency of the FC pump and FC motor 
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7.3.2.2 Innas Hydraulic transformer 

The Innas Hydraulic Transformer (IHT), depicted in the left part of Figure 7.8, 

is responsible for transforming power from the high pressure side of the common 

pressure rail (CPR) to the in-wheel hydro-motors, according to demand load in the 

four quadrants of operation on constant power basis with high efficiency. IHT converts 

the difference in pressure between the power source side and that required by the in-

wheel motors on the demand side by simultaneously changing the ratio between its 

inlet and outlet flow. The possibility of transferring a flowrate at a relatively low 

pressure level to another at a higher pressure level offers the option to recuperate 

energy from the wheel motors to the CPR and store it in the accumulator. It can 

transfer energy in both directions, i.e. from higher to lower level on constant power 

basis and vice versa with high efficiency like an electric transformer [60]. It is used for 

power control and is characterized by its high flexibility, high efficiency and small 

weight. 

The IHT is used to convert hydraulic energy by keeping the product of pressure 

and flow at the input side (A) equal to the product of the pressure and flow at its output 

(B) with the consideration of it’s high efficiency as shown by its characteristic curve 

on the right part of Figure 7.8, the conversion is also reversible. In case of throttling as 

in valves, pressure drops while the output flow equals the input flow. A pressure 

decrease through the IHT will result in an increase of flow. A third flow connection is 

added to the tank to fulfill mass conservation. The transformation can also occur in the 

other direction, i.e. during deceleration, where a low load pressure can be transformed 

to the common pressure rail level with a smaller flow enabling energy recuperation. 

 

Figure 7.8: IHT unit and its operation principle [60] 

δIHT 
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The ratio between input pressure and output pressure as well as that between 

supply flow and delivered flow can be chosen by setting the angular position of the 

port-plate (δIHT). The IHT principle could best be compared to an electric transformer 

where the product of voltage and current in principle remains constant. A small servo-

positioning mechanism installed inside the IHT determines the angular position of the 

port-plate that controls the inlet and outlet pressure of the transformer according to the 

required vehicle speed [60].  

The transformer used in the Hydrid is a four quadrant design and it has basically 

three ports in its port-plate. Port-A is connected to the high pressure line; it represents 

the supply port during vehicle propulsion. Port-B is connected to the load side feeding 

of the hydro-motors. Port-T is connected to the low pressure side or the tank. The 

transformation ratio can be expressed as, 

)sin(.sin

)sin(.sin.sin.sin

222

2222













IHT

p
p

IHT

B

A

A

B A

T

Q

Q

p

p
    (7-1) 

Where δIHT is the port-plate control angle and α, β and γ are the arc length of the ports 

A, B and T, respectively. 

This equation has been plotted in Figure 7.9 for an ideal IHT, with three 

kidneys spanning an arc of 120o each and with the make-up pressure put to zero. The 

figure shows that an IHT can transform the pressure down or up.  

Figure 7.9: Pressure transformation curve and scaled flow [58] 

The efficiency of the IHT can be expressed by the following formula during 

propulsion and braking modes respectively. 
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TTAA

BB
PIHT QpQp

Qp


,          (7-2) 

AA

TTBB
BIHT Qp

QpQp 
,          (7-3) 

The left part of Figure 7.9 shows the theoretical pressure transformation of an 

IHT, each spanning an arc length of 120o.   is only a function of the port plate 

control angle. 

The diagram shows that the supply pressure can also be amplified. Here the 

curve is given up to δIHT = 90o, which gives a theoretical maximum value of  = 2. 

The port plate can be turned further to reach even higher amplification factors, but at 

higher values of δIHT the transformation efficiency will gradually worsen [58]. The 

efficiency of the IHT is shown in Figure 7.10. 
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Figure 7.10: Total efficiency of the IHT 

7.3.3 Common pressure rail  

The common pressure rail (CPR) is considered a new approach in hydraulic 

systems. It separates the hydraulic power unit (pump) from the loads (motors and 

cylinders) as shown in Figure 7.11 i.e. loads do not influence each other. A high and a 

low pressure bladder gas accumulator is mounted on each side of the CPR.  
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Figure 7.11:  Common pressure rail [58] 

By means of hydro-pneumatic accumulators the pressure level of the common 

pressure rail can be varied in a controlled manner. The energy that is stored in 

accumulators can be used for power management and energy recuperation. The 

pressure does not necessarily have to be constant, as hydraulic transformers are used as 

control devices between the pressure side and load side. The CPR technology enables 

a much simpler and more flexible ‘plug-and-play’ approach of hydraulic circuits, in 

analogy to constant voltage electric systems by the electricity grid [58].  

7.3.4 Accumulator State Of Charge (SOC) 

The hydro-pneumatic accumulator stores energy in a similar way to electric 

batteries. The accumulator is subjected to frequent charge and discharge phases, which 

leads to use the same terminology of the battery State Of Charge (SOC).  

In the Hydrid drivetrain, the accumulator attains its energy either from the in-

wheel motors during vehicle deceleration or directly from the engine depending on its 

SOC. The effective band of the accumulator SOC is related to its gas pressure. The 

effective pressure range of the accumulator varies between 200 and 400 bar. So the 

state of charge of a hydro-pneumatic accumulator will be defined as the ratio of the 

difference in instantaneous fluid pressure and the pre-charge pressure to the difference 

in maximum fluid pressure and pre-charge fluid pressure.  

Figure 7.12 illustrates the SOC of an accumulator in terms of pressure. For the 

purpose of conserving energy, the effective fluid volume (ΔV) is corresponding to the 

effective band of the SOC. The minimum state of charge SOC for the high pressure 

accumulator occurs when it has very little fluid in it, and the bulk of the fluid is in the 

low pressure reservoir. 
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         (a) Pre-charge pressure           (b) Working pressure           (c) Maximum charged 

   p (t) = po= 180 bar            180 bar< p (t) <420 bar        pmax = 420 bar  
           SOC=0                                0<SOC<1                      SOC=1 

Figure 7.12: State of charge (SOC) of the accumulator in terms of pressure 

7.3.5 Dimension and characteristics of the hydraulic components  

The hydraulic transmission must fulfill the same demands as the mechanical 

transmission and therefore has to deliver the same peak power, speed and torque 

performance as the conventional drivetrain. Aside from this, the Hydrid drivetrain 

shown in Figure 7.13 can be optimized to meet the requirements of the more modest 

normal drive and to match the performance and requirements of the conventional 

vehicle and to minimize fuel consumption. The system components were sized to 

achieve a performance similar to that of existing midsize vehicles. Component 

limitations, such as maximum speed or torque, are taken into account to ensure the 

proper behavior of each component.  
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displacemnet
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Figure 7.13: Layout of the series Hydrid drivetrain [87] 
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The cycle simulation is performed with a 60 cm3/rev pump, 60 cc/rev 

transformers 65 cm3/rev in-wheel motors with accumulator size equal to 20 L which 

can be charged to a maximum pressure of 420 bar. All hydrostatic units are selected to 

operate on the floating cup principle which have 24 pistons and therefore deliver flow 

at only 1.4 % torque variation. The analysis will concentrate on one of many possible 

configurations of the Hydrid.  

Table 7-1: Dimensions and characteristics of hydrostatic components of the Hydrid 

Component Pump Hydraulic transformers Motors 

Quantity 1  2  4  

Size of each unit 60 cm3/rev 60 cm3/rev  65 cm3/rev 

Maximum ∆p 420 bar  
CPR-side: 420 bar  

Motor-side: 500 bar  
500 bar  

Maximum rotational speed 6000 rpm  3000 rpm  1900 rpm 

7.4 Simulation Model and System Control  

The simulation model of the Hydrid drivetrain was done in DSHplus 3.6.1 

software, including components loss model and static component models to study the 

benefits of implementing hydraulic hybrid in the baseline vehicle. One of the main 

objectives of the simulation was to develop a simulated environment for testing the 

proposed control strategy developed for the Hydrid drivetrain. Therefore, the system 

should have the ability to operate the load in four quadrants of operation, i.e. forward 

and backward motion - acceleration or deceleration, the ability to brake or drive the 

vehicle and the ability to operate under various load conditions.   

However, more than the aforementioned drivetrains, the robustness of the 

applied power and control strategy of the Hydrid is dependent on the driving cycles 

which may include aggressive or smooth patterns. Therefore, two additional practical 

world-wide driving cycles are implemented in the Hydrid simulation model. These 

cycles are the Japanese 10/15-mode and the American Federal Test Procedure FTP-75.  

The Japanese cycle is a modal cycle representing congested driving. This is 

particularly relevant for an evaluation of hybrid vehicles because the two electrical 

hybrids that have been commercially introduced so far – Prius and Insight – are both 
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Japanese and have been tested on this cycle. The American FTP-75 is a transient cycle 

which gives a better representation of real driving patterns [86].  

Operation performance, system variables behavior, fuel consumption and CO2 

emissions will be evaluated for each cycle. 

7.4.1 Simulation model building 

Throughout the simulation the command input of the vehicle speed is 

dependant upon the input driving cycle. One of the purposes of the simulation model is 

to investigate the effects of different driving patterns on the engine and to estimate the 

vehicle’s energy use, emissions and fuel consumption for a range of driving cycles. 

As shown in Figure 7.14, the hydraulic circuit is equipped with a check valve at 

the pump output to prevent the stored energy from escaping through the pump. An 

additional pressure relief valve sets the maximum pressure at the pump side to 420 bar 

and at the motor side to 500 bar. The Online Data import (ODI) module is used for 

implementing the driving cycle in the simulation model while the controller tracks the 

required vehicle speeds. 
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Figure 7.14: Simulation model of the Hydrid drivetrain in DSHplus 

A separate fluid supply achieved by a feed pump must be provided to 

compensate the leakage in the pump, IHT and motor units on the low pressure side. 

A part of the simulation model indicating the motor side is depicted in figure 
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7.15-a. As shown, the hydro-motors are equipped with two cross-line pressure relief 

valves to limit the hydro-motor pressure to 500 bar.  

There are also two pilot-operated check valves (CVs) installed on the motors 

side which are used to control the flow passes depending on the direction of motion. 

During stand still, valves are normally closed and work as brake valves to prevent 

vehicle motion.  

 

Figure 7.15-a: Pilot-operated check valves description in propulsion mode 

According to the direction control signal from the control unit, check valve 

number one (CV1) is always closed during forward propulsion and braking as shown 

in Figure 7.15-b. Check valve number two (CV2) is actuated-on by the driver during 

forward propulsion to allow flow balance on the motors satisfying mass conservation.  

On the other side during braking, CV2 is de-energized from the control unit 

allowing flow from the reservoir to pass to the hydro-motors in order to prevent 

cavitation and also to prevent further motion after vehicle stopping. 
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          Forward propulsion                                 Forward braking 

Figure 7.15-b: Pilot-operated check valves operation 

7.4.2 System control concept 

The drivetrain control concept has to fulfill safe and stable operation of the 

vehicle. The system control model basically includes two independent PID fixed-gain 

controllers. One stands for controlling the high pressure line of the CPR and 

consequently the engine operation. The other stands for controlling the speed of the in-

wheel hydro-motors and consequently the vehicle speed under mission cycle by 

changing the port-plat angle (δIHT) of the hydraulic transformer. Both of the controllers 

attempt to correct the error between the measured value and the desired set point by 

calculating and then outputting a corrective action which can adjust the operation of 

the system. Unlike the SC-HST, the speed n-controller is shifted from the in-wheel 

motor to the hydro-transformer. PID controller parameters (the gains of the 

proportional, integral and derivative terms) of the pressure and speed control loops 

were tuned and adjusted to the optimum values to obtain the desired response and to 

stabilize the operation of the system. The tuning process was done at two different 

operating ranges. These are the low speed and high speed of the drivetrain.  
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The aims of the controllers are:  

 - Stopping the engine whenever this is possible, thereby eliminating idle losses; 

 - Recuperating the kinetic energy of the vehicle during braking; 

 - Improving the average efficiency of the engine by running it at high loads only. 

A simplified block diagram illustrating the overall control strategy of the 

system components is indicated in Figure 7.16. As shown in the block diagram, the 

Hydrid drivetrain consists of four subsystems. The first subsystem represents the 

engine-pump combination and its p-controller which turns the engine on/off according 

to accumulator SOC. It is responsible for converting the thermal energy of the engine 

into hydraulic energy to charge the accumulator. Part-2 corresponds to the storage 

subsystem represented by a hydro-pneumatic accumulator. Part-3 represents the 

traction subsystem which is composed of in-wheel constant displacement hydro-

motors. Part-4 consists of the CPR and hydraulic power transformation in addition to 

the n-controller which is responsible for controlling the vehicle velocity. In order to 

control these different behavior components (ICE, accumulators, hydraulic 

transformer, and in-wheel hydro-motors), the energy flow coming from each element 

has to be managed by the control unit.  

 

Figure 7.16:  Block diagram indicating the overall control strategy of the Hydrid [76] 
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7.4.2.1 Pressure Controller (p-controller) 

The pressure controller is located at the primary side of the Hydrid drivetrain. It 

can be considered as the master controller of the system. It mainly determines the 

command value for the engine depending on the working pressure of the high pressure 

side. For the sake of conserving energy, the pressure controller must possess logic in 

order to ensure that the speed of the engine is always positive (i.e. the speed of the 

engine is kept either positive or zero). The control effort, which is sent from the 

pressure controller to the engine, is zero when the pressure at the high-pressure line is 

above the maximum threshold pressure, and the engine does not start operation until 

the working pressure becomes smaller than a certain minimum threshold pressure. 

The pressure controller comprises of a pressure signal, limiter, noise filter, gas 

throttle valve, an angular velocity switch and a solenoid venting valve (shuttle valve). 

The solenoid valve will also be connected to the ICE starter, so that the pump can start 

the engine under no-load from stand-still through stored energy in the HP accumulator.  

The pressure p-controller is responsible to keep the working pressure in the high 

pressure line within secure limits, i.e. between 200 and 400 bar. The controller 

reference pressure is correlated to the vehicle velocity and initially set to 300 bar. The 

controller output error signal has a dead zone of -100 and +70, bar in order to permit a 

high pressure line changing range of 200 bar during the system operation and also to 

prevent unstable engine operation. The angular velocity switch which takes its signal 

from the engine speed is set to operate between the range 1200-2200 rpm to de-

energize the solenoid venting valve in order to permit unloading of the pump. The 

solenoid valve will also be connected to the ICE starter, so that the pump can be 

started under no-load from stand-still or idle conditions through the stored energy in 

the accumulator. 

7.4.2.2 Speed controller (n-controller) 

The speed controller is responsible to track the commanded velocity signal. The 

rotational speed of the in-wheel motors is fed back to the controller thus forming the 

closed loop. With a closed loop controller for the speed, the output vehicle velocity 

will follow the command cycle velocity independent on the load changes. 
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In propulsion mode, the n-controller produces a positive signal which adjusts 

the IHT port-plate angle to run in positive direction depending on the pressure ratio of 

the accumulator and the load ports. It also causes the displacement of the hydraulic 

transformer to become negative in order to produce negative output torque on the in-

wheel motors as the vehicle decelerates. The motor subsequently pumps oil from the 

low pressure line to the high pressure line. This in turn also causes the working 

pressure to become higher than the set pressure. However, the logic in the pressure 

controller restricts the speed of the engine to zero via controller limiter. The oil 

pumped by the in-wheel motors therefore cannot be discharged to the pump but rather 

stored in the accumulator until it is used again. 

7.5 Power Management Strategy 

The goal of power management is to minimize fuel consumption and to supply the 

required power by controlling the power flow of the system. In general, a series hybrid 

protects the engine from transient operation conditions associated with the delivery of 

power directly to the vehicle. This originates the idea of the simple on/off control 

strategy. Under this strategy, the engine can operate only from medium to high loads at 

optimum points and will be turned-on or -off according to the State Of Charge (SOC) 

status of the accumulator.  

7.5.1 Drivetrain power flow  

The Hydrid vehicle has distinct characteristics that make it different from other 

types of hybridization such as electric hybrids. Conceptually, the Hydrid drivetrain can 

be considered as an engine-assisted hydraulic vehicle. When the accumulator is 

completely charged and power demand is low, the engine can be turned off.  

As shown in the flow diagram indicated in Figure 7.17, the power flow path 

from the primary power source, i.e. combustion engine, is unidirectional because it 

represents the irreversible combustion process. But the power flow path from the 

hydraulic storage accumulator, the IHT and the in-wheel hydro-motors are 

bidirectional to satisfy propulsion and braking modes. This takes into account the 

possibility of starting the engine through the power stored in the accumulator. 
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Figure 7.16: Energy flow diagram for typical Hydrid drivetrain 

Due to hybridization of a vehicle, the power flow inside the drivetrain can go 

through various paths in different directions. Each possibility can be represented by a 

driving mode. The different operation modes for the Hydrid powertrain can be divided 

into four modes as described below and indicated in Figure 7.18 [91].  

 
 

 
 
 

 
 

 

ICE = Internal Combustion Engine, P = Pump; Acc. = Accumulator, IHT = Innas hydraulic transformer, and 
M = In-wheel hydro-motor 

Figure 7.18: The four driving energy flow modes of the Hydrid drivetrain 
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ICE P 

Acc. 

IHT 

M

M

ICE P

Acc.

IHT 

M

M

ICE P

Acc.

IHT 

M

M

ICE P 

Acc. 

IHT 

M

M

 
    ICE Pump 

IHT  
(Controller)

Accumulator 
Motor 

Motor 
Mechanical energy flow 

Hydraulic energy flow 

II. Dual mode driving 

III. Engine charging IV. Energy recovery 

I. Accumulator driving 



 
The Hydrid drivetrain  121 
 

 

On the other hand, during braking mode, regenerative braking will be activated 

if the power demand is negative. Other rules are used permitting the accumulator to 

operate within an effective range of SOC and to ensure that some limits are not 

exceeded, for instance 48 ~ 95 % which is corresponding to the effective pressure 

range of the accumulator, i.e. 200 to 400 bar. These limits represent the maximum 

allowable charging and discharging power ratios of the accumulator during braking 

and driving modes.  

7.5.2 Rule-based power algorithm 

A rule-based strategy is based on heuristics, i.e. it is based on engineering 

intuition. It is powerful method in on/off control strategy and can be easily 

implemented in the system. Moreover, an on/off approach is simple and more robust.  

Under this strategy, the engine will run at high efficiency operating points. 

These operating points are selected based on the efficiency maps. A region of best 

efficiency is defined on engine maps, whereas the range of delivered engine torques is 

limited by minimum MICE,min and  maximum MICE,max values which correspond to the 

accumulator pressure thresholds (200 ~ 400 bar). 

As described by the following rules, system behavior is divided into discrete 

events. Each event is connected to the other one by certain rules. If the rule is 

performed, the system moves from one state to another depending on the resolution of 

the rules.  

I- Accumulator driving:  

In this mode, the power demand is supplied only by the energy stored in the 

accumulator without consuming power from the engine. The accumulator SOC 

value is within its two effective limits, i.e, SOCmin< SOC(t) < SOCmax, and the 

available accumulator discharging power PA,d is sufficient to drive the in-wheel 

motors load PM. The engine is typically off until the accumulator SOC reaches its 

minimum effective limit. 

II. Dual driving mode:  

 This occurs only when the demand power Pd is extremely higher than the available 

accumulator power, and the accumulator SOC is not high enough. Then both 

sources will supply power to maintain the dynamic performance of the vehicle.  
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III. Engine charging:  

 If SOC(t)   SOCmin, during stand-still and before driving, the controller will actuate 

the engine to charge the HP accumulator up to the maximum limit. This relies on the 

logic of the pressure controller which keeps the accumulator SOC within preset 

effective limits (48 ~ 95 %). During charging mode, the accumulator charging 

power is treated as a net demand power (i.e. PA,c = Pd) from the engine. 

IV. Braking recovery mode:  

When the vehicle begins to decelerate, the demand power becomes negative (Pd < 0) 

and the engine is turned-off. In this mode, the hydro-motors work as pumps to 

recuperate the kinetic energy of the braking. The IHT in turn transfers this energy to 

the HP accumulator and is stored there. If the braking energy exceeds the maximum 

allowable capacity of the accumulator, the conventional braking system will be 

activated. A summary of the logic sets of rule-based algorithms that have been used 

are listed in Table 7-2. 

Table 7-2: Summery of rule-based control rules 

1- Accumulator mode     (Pd >0) 2- Dual driving mode    (Pd >0) 

IF           SOCmin< SOC(t) < SOCmax    

            IF       PM < PA,d  

                 THEN       

                      PICE = 0    &    PA,d = PM 

           ELSE IF   PM > PA,d 

                    Switch to dual mode 

IF      SOCmin< SOC(t) < SOCmax    

       IF            PM >> PA,d 

            THEN       

                 Engine is on      

               where   PE,min <PE <PE,max 

               and        PA,d + PICE = PM 

3- Engine charging mode  (Pd > PA,d,max) 4- Braking mode   (Pd < 0) 

IF           SOC(t)   SOCmin                   

       THEN 

                Engine is on      

                where   PICE,min <PICE <PICE,max 

                                      PE = PA,c  or     PICE = Pd   

IF        SOCmin < SOC(t) < SOCmax   

   THEN  

           PICE = 0 & PM = PA,c 

  ELSE IF  SOC >=  SOCmax  & (Pd  PA,c) 

      Release Energy 

Generally, the rules show that, if the traction power is positive and the 

pressure of the accumulator is lower or equal to 48 % of its maximum value, the 

engine is turned-on. When the pressure of the accumulator is between its working 

limits the engine is off. In any case, when the traction power becomes negative during 
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deceleration the engine is off. In order to avoid rapid frequent start and stop process of 

the ICE, it has to stop when the pressure of the accumulator reaches 95 % of its 

maximum value.  

7.6 Results and Discussion 

Operation performance, system variables behaviour, fuel economy and CO2 

emissions of the introduced drivetrain during transient and modal cycles are presented 

in this section. The transient cycles give a better representation of real driving patterns 

than the modal cycles. The American Federal Test Procedure (FTP-75) is a transient 

cycle, whereas both the official New European Drive Cycle (NEDC) and the Japanese 

10/15-Mode cycles are considered modal cycles.  

A summary of the selected driving cycle characteristics is listed in Table 7-3. 

Fuel consumption and CO2 emissions data are not calculated in the first part of the 

Japanese cycle represented by an initial 15 mode cycle (231 s) as well as first part of 

the American cycle which take 505 s, according to the description found in [86]. 

Table 7-3: Characteristics of the European, American and Japanese driving cycles [86] 

 Driving cycle 
property NEDC 10/15- mode FTP-75 

Test time duration  [s] 1180 660 1370 

Travelled distance  [km] 11.02 4.16 17.77 

Average speed vav  [km/h] 33.6 22.7 34.1 

Maximum speed vmax   [km/h] 120 70 91.25 

Maximum deceleration dmax  [m/s2] -1.07 - 0.8 -1.47 

Maximum acceleration amax  [m/s2] 2.2 0.8 1.47 

% stopping time [-] 23.73 31.36 18.04 

% braking time   [-] 17.88 21.06 34.9 

 

The energy consumption for starting the engine and the power consumption 

for auxiliaries are not considered in simulation.   

7.6.1 Performance analysis 

Complete profiles of the drivetrain variables during the NEDC, 10/15 mode and 

FTP-75 driving cycles are shown respectively in the multi-curves of Figures 7.19-a, b, 

c to assess system operation.  
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The first curves from below in each diagram shows that the actual vehicle 

velocity coincides with the reference velocity along the mission cycles.  

The accumulator pressure plotted in the second curve in each cycle is 

maintained in the secure operating range of 200 to 400 bar. It is clear from the 

behavior of the accumulator pressure that it follows the power transients of the vehicle 

more than a need for storing energy. The accumulator pressure level decreases during 

propulsion and rises during braking or when charging the accumulator with the engine 

power.  

 During the beginning of the cycles the vehicle can run completely depending 

on stored energy in the high-pressure accumulator. When the pressure level in the 

accumulator drops below the minimum threshold value, i.e. 200 bar, the engine is 

started and supplies energy to the system up to the upper threshold of the accumulator 

pressure, unless the vehicle decelerates or braking mode occurs, permitting the braking 

energy to be recuperated in the accumulator as shown by the third curve in the diagram 

from below.  

The engine run times are about 16 %, 14.3 %, and 18.6 % for the NEDC, and 

10/15-mode FTP-75 cycles respectively and at the rest of the time it is shut-off. A 

direct reason is the principle of operation of the IHT, as it can cover the gap in 

pressure differences between load and source sides as long as the accumulator pressure 

is greater than or equal 200 bar, allowing smooth and steady operation for the engine.  

The engine delivered power is indicated in the fourth curve. In the highway part 

of the cycles, approximately half of the installed engine power is required, which gives 

a possibility of downsizing the engine if necessary.  In the FTP-75 cycle, pressure, 

engine speed, and consequently engine power behavior are transient, which is not the 

case for the NEDC and 10/15-mode cycles. This is due to the high transient patterns of 

the American cycle otherwise the same control methodology was applied.  

The recuperated power of the Hydrid during braking is indicated in the 5th 

curve. The FTP-75 cycle exhibits high recuperated energy which corresponds to high 

braking time of 34.9 % compared to other two cycles (see Table 7-3).  

The top curve in each diagram shows that the angular position of the IHT port-

plate δIHT has positive angles in propulsion mode and negative angles during braking 
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mode. The negative angles are a result of working the in-wheel motors in pumping 

mode as the vehicle is causing a negative pressure difference across the hydro-motors. 

Thereby they are supplying power back to the high-pressure accumulator while 

braking the vehicle.  
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Figure 7.19-a: The Hydrid drivetrain performance curves during the NEDC cycle  
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Figure 7.19-b: The Hydrid drivetrain performance curves during the10/15-mode cycle  
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Figure 7.19-c: The Hydrid drivetrain performance curves during the FTP-75 cycle  

The simulation shows that the hydraulic energy required by the in-wheel hydro-

motors is supplied exclusively by the accumulator. When the speed of the vehicle 

increases; the engine does not start operation until the working pressure of the 

common pressure rail CPR becomes smaller than the minimum value, which is pre-

adjusted in the dead zone of the pressure control loop. The working pressure of the 

CPR consequently decreases while the vehicle speed increases; the pressure does not 

necessarily have to be constant, as the hydraulic transformer is used as a control device 
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to compensate the gap in pressure between the hydro-motors pressure and the 

accumulator pressure. 

The speed controller causes the displacement of the IHT to become negative in 

order to produce negative pressure/torque as the load decelerates. The transformer 

subsequently pumps oil from the low pressure line depending on the pressure level. 

This in turn also causes the working pressure of the CPR to become higher than the set 

pressure. However, the logic in the pressure controller restricts the torque and 

consequently the speed of the engine to be zero. The oil pumped by the in wheel 

hydro-motors therefore cannot be discharged via the pump and will be stored in the 

accumulator. 

7.6.2 Components operating points on efficiency maps     

In this section a detailed description of components efficiency will be discussed 

for the NEDC cycle which considers enough to show the operating points for each 

component of the drivetrain on their efficiency maps.  

As presented in chapter 4, the installed engine in the conventional vehicle is 

running at partial loads results in engine efficiency around 28 %. The strongly reduced 

engine efficiency at these operating conditions is the most important reason for a 

vehicle having high fuel consumption while driving in the city.  Contrary, the Hydrid 

aims to improve the fuel economy of the vehicle at partial loads. The pressure p-

controller in the Hydrid always forces the engine to run at high loads above 200 Nm as 

shown in the right diagram of Figure 7.20 which results in average engine efficiency 

around 37 %. 
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The fixed displacement floating cup pump is directly coupled to the engine 

shaft and subjected to the same controller which forces the engine to run in high torque 

according to the SOC of the accumulator. Therefore, the pump operating points exhibit 

the same behavior as the engine, running in the region of high efficiency on the 

contour line of the efficiency map, as shown in Figure 7.21 The average efficiency of 

the pump cover the NEDC cycle is about 94 %. 
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Figure 7.21: operating points of FC-Pump during the NEDC cycle 

Like the engine, the pump is only in operation when it is needed for charging 

the accumulator, i.e. it runs only when the engine is turned-on. This is not the case for 

the hydraulic transformer and the in-wheel motors. Both IHT and hydro-motors are in 

operation throughout the propulsion and braking modes of the cycle. Figure 7.22 and 

7.23 indicate the operation point of the IHT in the two quadrants of operation. The 

average efficiency of the IHT during propulsion is about 91 % and in braking mode 

reaches about 93 %.  
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Figure 7.22: IHT operating point during propulsion mode during the NEDC cycle 
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Figure 7.23: IHT operating point during braking mode during the NEDC cycle 

One important benefit of the transformer is that it permits for a smaller motor 

size because it can amplify the pressure level on the motor side up to 500 bar, even 

when the pressure level in the accumulator is only 200 bar. 
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The operating points of the constant displacement floating cup hydro-motors are 

depicted in Figure 7.24. The in-wheel hydro-motor as used in the Hydrid will operate 

at average efficiencies about 96 % during propulsion mode and average of 94 % 

during braking mode.  
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Figure 7.24: Operating points of the in-wheel Hydro-motors during the NEDC  

7.6.3 Transmission efficiency 

The required energy of a mid-sized Sedan during driving can be obtained by 

integration of the required power during the NEDC cycle time. This amount to 1164 

Wh of energy must be supplied to the vehicle. The grater part of this energy is required 

to overcome the aerodynamic drag, especially when driving at high speeds i.e. during 

the highway part of the cycle, and the rest to overcome rolling resistance. The same 

amount of aerodynamic energy is needed for the Hydrid drivetrain, but the brake 

energy is not dissipated during braking. Instead, it is supplied back to the common 

pressure rail in order to be stored in the accumulator. 

The efficiency of the hydraulic components that constitute the hydrostatic 

transmission alone don’t show higher efficiency than the mechanical transmission of 

the baseline vehicle, because they have more losses due to series configuration, but 
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these losses are compensated by the energy recuperated during breaking mode as 

shown in Figure 7.25. By considering the recuperated brake energy, the total 

transmission efficiency of the Hydrid vehicle at the end is somewhat better than 

mechanical transmission efficiency.  

  

Mechanical drivetrain  ( %92, mechT ) The Hydrid drivetrain ( %5.93, mechT ) 

Figure 7.25: Transmission efficiencies of mechanical and Hydrid drivetrains 

The transmission efficiency can be expressed as the ratio of the consumed 

energy at the vehicle wheels to the supplied energy from the primary power source i.e. 

ICE as indicated by the following formula. 
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During propulsion, the total average transmission efficiency including pump, 

transformer and motors is about 83.6 %. During braking, the combined average 

efficiency of the motors and transformers is 88.3 %. During braking 15 % of the 
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energy delivered by the engine is recuperated in the high-pressure accumulator via the 

in-wheel motors. Theoretically, this amount could be increased if more energy could 

be stored in the accumulator.  

7.6.4 Fuel consumption and CO2 emissions  

The question must now be raised concerning the value of fuel economy and 

emission benefits gained by the Hydrid. The fuel consumption and CO2 emissions have 

been calculated during three introduced cycles, based on a mid-sized Passat sedan. 

Figure 7.26 shows the Hydrid’s fuel consumption advantage over conventional 

vehicles and how it depends on driving cycle.  
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Figure 7.25: Fuel consumption of the Hydrid compared to the mechanical drivetrain 

It is evident from the figure that the Hydrid appears does best on slow cycles with a 

great deal of stop-and-go drive as found in the Japanese cycle. 

Specifically, for the European NEDC the Hydrid vehicle has a total fuel 

consumption of approximately one third (0.344) liters, at a total travelled distance of 

11.02 km. This amounts to an average specific fuel consumption of 3.12 Liter/100 km 

and CO2 emissions to 82.11 g/km. 
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Figure 7.26: CO2 emissions of the Hydrid compared to the mechanical drivetrain 

The reduction of CO2 emissions of the Hydrid drivetrain over the conventional 

vehicle is shown in Figure 7.26. The best relative fuel saving value is about 57.0 % for 

the FTP-75 cycle compared to 54.3 % for the 10/15-mode cycle and 53.1 % for the 

NEDC which is directly related to the percentage of braking time of the cycles. 

The European Commission has recently announced CO2-emission limits for 

new passenger cars. The proposal sets mandatory targets from 2012 onwards to an 

average maximum level of 130 g/km. The European Parliament also insisted on a 

second step to be taken in view of the longer-term target: the average new car should 

reach 95 g CO2/km by 2020 and possibly 70 g CO2/km by 2025, subject to 

confirmation or review by the Commission no later than 2016. 

The CO2 emissions of the Hydrid are reduced far below the limits set by the 

European Commission of 130 g/km for 2012, and even below the long term target of 

95 g/km as a limit for 2020.  For instance CO2 emissions during the NEDC cycle is 

equal to 82.11 g/km. 

(130g/km) 2012 

(95 g/km) 2020 
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The results show that the fuel consumption and consequently the CO2 

emissions are reduced during the city part as well as during the highway part of the 

driving cycles by more than 50 %.  

Contrary to conventional drivetrains, the city cycle does not result in higher 

fuel consumption per 100 km than the highway driving, which makes an efficient 

drivetrain.  

The good fuel economy of the Hydrid is achieved due to: 

 The reduction of vehicle weight due to the elimination of mechanical drivetrain 

and the low weight of the hydraulic components characterized by its high torque 

and power density. 

 Shutting the engine off during approximately 84 % of the cycle time. 

 Recuperated brake energy (about half of the energy that can be recuperated during 

the cycle is stored in the high-pressure accumulator). 

 The high efficiency of the hydraulic components (pump, accumulators, 

transformers and in-wheel motors). 

 Forcing the engine to run at high efficiency. 

It can be concluded that, with modern hydraulic components, a very efficient serial 

hybrid drivetrain for on-road vehicles can be achieved. 

7.7 Conclusions 

This chapter assesses the potential fuel savings and emissions reductions 

associated with the Hydrid drivetrain for mid-sized passenger cars such as VW Sedan 

Passat vehicle for three real driving cycles.  

The performance of the Hydrid drivetrain under rule based power management 

strategy is presented. The control strategy enables recovery and reuse of energy 

normally lost in conventional vehicle during braking mode. It also eliminates idling 

losses by shutting off the engine during braking or stopped periods as the vehicle can 

still be operated and driven with the engine turned off. Reducing engine operation time 

results in a significant fuel consumption improvement. This in turn will reduce vehicle 

maintenance, particularly for the brakes. The Hydrid technology also provides a 

cleaner and more efficient operation when engine speed is independent of vehicle 

speed.  



 
  Chapter 7                           
 

 

136

The results reveal that the Hydrid vehicle’s fuel economy is highly dependant 

upon accumulator SOC, and the Hydrid drivetrain achieves the largest percentage gain 

in fuel economy over the baseline conventional vehicle on the slowest driving cycles. 

This is due to the inefficiencies of slow stop-and-go driving, high idling losses, high 

braking losses and highly inefficient engine operation being overcome by the Hydrid 

control system, where the engine is forced to run only under high loads due to the 

controlled effective range of accumulator pressure (200 ~ 400 bar). 

Based on the recently developed component technology used in the Hydrid, 

such as the floating cup units and the IHT, as well as the particular Hydrid drivetrain 

configuration applied, fuel saving ranging from 48 ~ 53 % over the baseline vehicle 

can be obtained. Thus the Hydrid introduces a highly efficient alternative drivetrain 

has the potential to reduce fuel consumption and consequently CO2.  

The key to the good efficiency of the Hydrid drivetrain is the recuperated 

energy in the accumulator and the improved operation of the engine which enables the 

engine to operate at its peak efficiency in short times.  

 The Hydrid is able to compete with the electric hybrid vehicles due to the 

remarkable efficiency of the IHT and the new floating cup units, robust control and 

high power density. CO2 emissions are reduced to 82.1 g/km, far below the limits set 

by the European commission of 130 g/km at year 2012. The results are encouraging 

enough to recommend the Hydrid drivetrain for automobile industry with the benefits 

of conserving fuel and preserving the environment.  The Hydrid has the potential to 

become a market leader.  
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Summary 

In order to develop a hydrostatic transmission that can be applied to medium 

sized passenger cars, some key problems need to be solved such as how to design 

displacement units to satisfy size and noise constraints; how to recuperate  braking 

energy; how to design a hydrostatic drivetrain configuration that reduces power loss. 

Three alternative drivetrains using hydraulic power were evaluated by 

simulation modeling in order to determine the potential of different hydrostatic 

drivetrain configurations to be applied in mid-sized vehicles. The well-known 

continuously variable hydrostatic transmission (CV-HST), integrated with a controlled 

engine to operate at minimum fuel consumption points is discussed and evaluated. An 

algorithm based on engine specific fuel consumption is implemented to set an Ideal 

Operating Line (IOL) for the engine. This allows the engine, being connected to the 

input shaft of the transmission, to operate mostly in efficient operating points.  

The results show that CV-HST has the potential to provide such desirable 

attributes especially in city drive as: a wide range ratio, good fuel economy, shifting 

ratio continuously and smoothly, but it is not suitable to passenger application due to 

high losses at high driving speeds as well as the large size and consequently weight 

and cost of the transmission. The simulation shows that this system has almost no fuel 

saving compared to the gear-shift transmission because the gain in IOL operation will 

be lost by low component efficiency. 

Next, a pressure coupling secondary controlled hydrostatic transmission (SC-

HST) is simulated. With the SC-HST where the engine is forced to run at medium to 

high torque loads only, the fuel consumption is reduced to approximately by 30 % but 

it still has the problem of size, noise and low efficiency at low motor displacements 

during low loads. Current hydrostatic components cannot comply with the ambitious 

aspirant of fluid power engineers to design fully hydraulic hybrid passenger cars. 

Utilizing the innovative distinct configuration of series hydraulic hybrid 

referred to as “the Hydrid”, together with high efficiency floating cup hydrostatic units 

in addition to on/off control strategy leads to better fuel economy and further emission 

reduction compared to the SC-HST using traditional units.   
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The performance of the Hydrid drivetrain under rule based power management 

strategy is presented. The control strategy of using on/off control through three real 

driving cycles exhibits a fuel saving, ranging from 48-53 % over the baseline vehicle. 

Contrary to the gear-shift transmission, the Hydrid allows optimum operation for the 

engine in the region of maximum efficiency. The Hydrid drivetrain offers a means of 

improving the engine efficiency by letting the engine run only at medium to high load 

with brief peaks avoiding partial load operation. The strategy implemented reduces the 

engine run time by shutting it off or idle during 69 % of the cycle time, which is 

depends mainly on the state of charge (SOC) of the accumulator.  

The lower fuel consumption of the Hydrid does not result solely from the 

energy recovery system by shutting off the engine in most of the drive cycle, but also 

form the optimized control concept, that permits running the hydrostatic units under 

optimum operating conditions with respect to their losses, which consequently leads to 

higher overall transmission efficiency .  

 The results are encouraging enough to recommend the Hydrid drivetrain for 

automobile purposes with the aim to save fuel and preserve the environment by 

reducing emitted carbon dioxide, as well as to satisfy future European regulation for 

passenger cars. The results reveal that the Hydrid vehicle’s fuel economy is highly 

dependant upon accumulator SOC and the Hydrid drivetrain achieves the largest 

percentage gain in fuel economy over the baseline conventional vehicle on the slowest 

driving cycles. This is due to the fact that the inefficiencies of slow stop-and-go 

driving, high idling losses, high braking losses and highly inefficient engine operation 

is excluded by the Hydrid control system.  

It is estimated that the Hydrid has a good potential to conquer the market as the 

efficiency of the new floating cup units is remarkably high. Moreover, the price of the 

hydraulic components is compare favorably to the electric solution and the life-time of 

the hydraulic accumulator is longer than electric batteries. The CO2 emissions are 

reduced to 82.1 g/km, far below the limits set by the European Commission of 130 

g/km in 2012, and even below the long term target of 95 g/km as a limit for 2020. 
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Outlook 

Collecting accurate data on the production units of the different components 

necessary in driveline configurations including the engine is mandatory. Further 

improvement of control strategy for the driveline, an adaptive learning method while 

driving by intelligent control could be an avenue to take. Further investigation of the 

Hydrid under different conditions in different driving cycles containing road slope will 

be necessary.  

Downsizing the engine in the Hydrid is not dealt within this study and needs 

investigation. This is relatively more important in engine-on strategy than with engine-

off strategy, since with the latter the engine is already operating at or near its peak 

efficiency point most of time.  

A prototype vehicle, designed on the distinct configuration of the Hydrid, is 

required to validate the proposed system. As the engine in the Hydrid is controlled by 

an on/off strategy, some aspects should be considered during validation, such as 

finding a means to drive the power steering pump as well as the alternator to maintain 

battery charge.  

The high pressure hydraulic oil available in the high pressure side of the 

common pressure rail of the Hydrid can be used to provide power steering and also to 

operate the alternator hydraulically. In addition, more frequent engine starting, if 

accomplished using a conventional starter, would require a larger battery to handle the 

increased usage. Starting the engine from the pressure stored in the accumulator is 

another consideration. The need for drive modifications depends on the exact system 

configuration, with some requiring no change at all from the conventional system. 
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