Der mikrobielle Umsatz von Ernterückständen
in einem landwirtschaftlich genutzten Boden
und dessen Beeinflussung durch ausgewählte Xenobiotika

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
genehmigte Dissertation

vorgelegt von
Beata Bulawa
aus Stettin (Polen)

Berichter: Universitätsprofessor Dr rer nat. Andreas Schäffer
Universitätsprofessor Dr. Harry Vereecken

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.
Inhaltsverzeichnis

1 Einleitung und Fragestellung ... 1

2 Stand der Forschung .. 2
 2.1 Rolle der Mikroorganismen im Boden ... 2
 2.2 Die organische Substanz des Bodens ... 3
 2.3 Xenobiotika im Boden ... 4
 2.3.1 Pflanzenschutzmittel und ihre Wirkung auf die mikrobiellen Gemeinschaften im Boden .. 4
 2.3.2 Das Herbizid Benazolin .. 6
 2.3.3 PAK und ihre Wirkung auf die mikrobiellen Gemeinschaften im Boden 10
 2.3.4 Benzo[a]pyren, ein Vertreter der polyzyklischen aromatischen Kohlenwasserstoffe ... 13
 2.4 Einsatz molekularbiologischer Methoden zur Beurteilung der Wirkung von Xenobiotika auf die mikrobiellen Gemeinschaften in Böden .. 18
 2.4.1 Denaturierende Gradienten Gelelektrophorese ... 19
 2.4.2 Einsatz von pilzspezifischen Primern zum Amplifizieren von 18S rDNA 20

3 Material und Methoden ... 22
 3.1 Aufbau der Umsatzversuche .. 22
 3.1.1 Charakterisierung des Versuchs bodens .. 22
 3.1.2 Vorbereitung des Bodens .. 23
 3.1.3 Maisstroh ... 23
 3.1.4 Mikrobielle Gemeinschaften im Boden .. 23
 3.1.5 Abbaustudien .. 24
 3.2 Applizierte Xenobiotika (Benazolin, Benzo[a]pyren) .. 25
 3.3 Beschreibung der Experimente ... 26
 3.3.1 Einfluss unterschiedlicher Benazolin-Konzentrationen auf den Umsatz von \(^{14}\text{C}\)-markiertem Maisstroh durch mikrobielle Gemeinschaften 26
 3.3.2 Einfluss unterschiedlicher Benazolin- und Benzo[a]pyren-Konzentrationen auf den Umsatz von \(^{14}\text{C}\)-markiertem Maisstroh und die beteiligten mikrobiellen Gemeinschaften ... 27
3.3.3 Einfluss von Benazolin und Benzo[a]pyren auf die an den Umsatz-Prozessen von Maisstroh beteiligten mikrobiellen Gemeinschaften über 150 Tage ... 28

3.4 Analytische und radiochemische Methoden ... 29
3.4.1 Mineralisierung von 14C-markiertem Maisstroh ... 29
3.4.2 Mikrobielle Aktivität: DMSO-Reduktase-Raten ... 29
3.4.3 Bestimmung des Ergosterolgehalts ... 30
3.4.4 Bestimmung der 14C-Aktivität im Boden .. 32
 3.4.4.1 Veraschung von Bodenproben ... 32
 3.4.4.2 Bestimmung der Widerfindungsrate des Oxidizers ... 32
3.4.5 Statistische Analyse ... 32

3.5 Molekularbiologische Methoden ... 33
3.5.1 Analyse der mikrobiellen Gemeinschaften mittels DGGE von amplifizierten 16S bzw. 18S rDNA Sequenzen ... 33
 3.5.1.1 DNA-Extraktion aus Boden und Aufreinigung ... 33
 3.5.1.2 Polymerase-Kettenreaktion (PCR) ... 33
 3.5.1.3 Agarose-Gelelektrophorese .. 39
 3.5.1.4 Quantifizierung von DNA mit „PicoGreen® ds DNA Quantitation Kit“ von Molecular Probes .. 40
 3.5.1.5 Denaturierende Gradienten Gelelektrophorese (DGGE) .. 41
 3.5.1.6 Silberfärbung ... 43
3.5.2 Sequenzanalysen ... 44
 3.5.2.1 DNA-Elution aus PAA-Gelen .. 44
 3.5.2.2 Probenvorbereitung zum Sequenzieren .. 44
 3.5.2.3 Probenvorbereitung zum Klonieren .. 45
3.5.3 Nichtradioaktive Sequenzierung mittels LI-COR 4200 DNA-Sequencer (MWG BioTech) ... 50
3.5.4 Phylogenetische Analyse ... 51

4 Ergebnisse ... 53
4.1 Einfluss unterschiedlicher Benazolin-Konzentrationen auf den Umsatz von Maisstroh ... 54
 4.1.1 Abbau von 14C-markiertem Maisstroh .. 54
 4.1.2 Mikrobielle Aktivität (DMSO-Reduktase-Raten) .. 56
 4.1.3 Kontrolle des pH-Wertes in Mikrokosmen über 42 Tage ... 58
4.2 Einfluss unterschiedlicher Benazolin- und Benzo[a]pyren-Konzentrationen auf die Mineralisierung von \(^{14}\text{C}\)-markiertem Maisstroh und die beteiligten mikrobiellen Gemeinschaften ... 58

4.2.1 Abbau von \(^{14}\text{C}\)-markiertem Maisstroh .. 59

4.2.2 Mikrobielle Aktivität (DMSO-Reduktase-Raten) ... 63

4.2.3 Einfluss von Benazolin und Benzo[a]pyren auf die Ergosterolgehalte (pilzliche Biomasse) im Boden .. 67

4.2.4 Analyse der mikrobiellen Gemeinschaften mittels DGGE von amplifizierten 16S rDNA-Fragmenten .. 71

4.2.5 Amplifikation von 18S rDNA-Abschnitten mit pilzspezifischen Primern 74

4.2.6 Analyse der Bodenpilze mittels DGGE von amplifizierten 18S rDNA-Fragmenten .. 76

4.3 Einfluss von Benazolin und Benzo[a]pyren auf die an den Umsatz-Prozessen von Maisstroh beteiligten mikrobiellen Gemeinschaften über 150 Tage 79

4.3.1 Einfluss von 200 mg kg\(^{-1}\) Benazolin und Benzo[a]pyren auf die Ergosterolgehalte im Boden in einem Zeitraum von 150 Tagen 79

4.3.2 Molekularbiologische Analyse mikrobieller Gemeinschaften im Boden mittels denaturierender Gradienten-Gelelektrophorese (DGGE) 80

4.3.2.1 Molekularbiologische Analyse der amplifizierten 16S rDNA-Fragmente .. 81

4.3.2.2 Molekularbiologische Analyse der amplifizierten 18S rDNA-Fragmente .. 85

4.4 Phylogenetische Zuordnung einzelner an Umsatz-Prozessen von Ernterückständen beteiligter Mikroorganismen unter einem Einfluss von Benazolin und Benzo[a]pyren .. 89

4.4.1 Sequenzanalyse von 16S rDNA-Fragmenten aus Xenobiotika-belastetem Boden nach 90 Tagen Inkubationszeit ... 89

4.4.2 Sequenzanalyse von 16S rDNA-Fragmenten aus Xenobiotika-belastetem Boden nach 150 Tagen Inkubationszeit ... 92

4.4.3 Sequenzanalyse von 18S rDNA-Fragmenten aus Xenobiotika-belastetem Boden nach 150 Tagen Inkubationszeit ... 96

5 Diskussion ... 106

5.1 Diskussion der einzelnen Versuchsabschnitte ... 106
5.1.1 Einfluss der unterschiedlichen Wirkstoffkonzentrationen des Herbizids Benazolin auf den Umsatz von Maisstroh durch mikrobielle Gemeinschaften im Boden	106
5.1.2 Einfluss von verschiedenen Benazolin und Benzo[a]pyren Konzentrationen auf die Mineralisierung von 14C-markiertem Maisstroh und die daran beteiligten mikrobiellen Gemeinschaften über 90 Tage	108
5.1.3 Einfluss von Benazolin und Benzo[a]pyren auf die an den Umsatz-Prozessen von Ernterückständen beteiligten mikrobiellen Gemeinschaften über 150 Tage	112
5.1.4 Phylogenetische Zuordnung der an den Umsatz-Prozessen von Ernterückständen beteiligten Mikroorganismen unter dem Einfluss von Benazolin und Benzo[a]pyren	114
5.2 Zusammenfassende Bewertung	118
5.2.1 Einfluss von Xenobiotika auf den mikrobiellen Umsatz von Ernterückständen im Boden	118
5.2.2 Schlussfolgerungen	121
6 Zusammenfassung	123
7 Literatur	125
8 Anhang	143
Abbildungsverzeichnis

Abbildung 2-1 Mögliche Abbauwege für Benazolin-ethyl in Böden und Gewässern (MOEDE, 1995).................9
Abbildung 2-2 Mögliche Stoffwechselwege des Mono- und Dioxygenase-katalysierten Abbaus von aromatischen Kohlenwasserstoffen (CERNIGLIA, 1984)...12
Abbildung 2-3 Metabolische Aktivierung von Benzo[a]pyren in seine kanzerogene Derivateformen (CERNIGLIA, 1984)...14
Abbildung 3-1 Schematischer Aufbau eines Abbaugefässes (ANDERSON, 1975)...25
Abbildung 4-1 Mineralisierung des 14C-markierten Maisstrohes in nativem Boden nach Applikation von Benazolin in drei Konzentrationen (1, 10, 50 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a.R. = applizierte Radioaktivität = 100%)..55
Abbildung 4-2 Mineralisierung des 14C-markierten Maisstrohes in geglühtem Boden nach Applikation von Benazolin in drei Konzentrationen (1, 10, 50 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a. R. = applizierte Radioaktivität = 100%)...56
Abbildung 4-3 Mikrobielle Aktivität in nativem Boden nach Applikation von Benazolin in drei Konzentrationen (1, 10, 50 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)..57
Abbildung 4-4 Mikrobielle Aktivität in geglühtem Boden nach Applikation von Benazolin in drei Konzentrationen (1, 10, 50 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)..58
Abbildung 4-5 Mineralisierung des 14C-markierten Maisstrohes in nativem Boden nach Applikation von Benazolin in zwei Konzentrationen (50 und 200 mg kg⁻¹); (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a.R. = applizierte Radioaktivität = 100%)..60
Abbildung 4-6 Mineralisierung des 14C-markierten Maisstrohes in geglühtem Boden nach Applikation von Benazolin in zwei Konzentrationen (50 und 200 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a. R. = applizierte Radioaktivität = 100%)...60
Abbildung 4-7 Mineralisierung des 14C-markierten Maisstrohes in nativem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a.R. = applizierte Radioaktivität = 100%)...62
Abbildung 4-8 Mineralisierung des 14C-markierten Maisstrohes in geglühtem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a. R. = applizierte Radioaktivität = 100%)...62
Abbildung 4-9 Mikrobielle Aktivität in nativem Boden nach Applikation von Benazolin in zwei Konzentrationen (50 und 200 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen jeweils in dreifacher Bestimmung)..64
Abbildung 4-10 Mikrobielle Aktivität in geglühtem Boden nach der Applikation von Benazolin in zwei Konzentrationen (50 und 200 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen jeweils in dreifacher Bestimmung)..65
Abbildungsverzeichnis

Abbildung 4-11 Mikrobielle Aktivität in nativem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg\(^{-1}\)) (Mittelwerte aus 2 Parallelansätzen jeweils in dreifacher Bestimmung)...66

Abbildung 4-12 Mikrobielle Aktivität in geglühtem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg\(^{-1}\)) (Mittelwerte aus 2 Parallelansätzen jeweils in dreifacher Bestimmung)..67

Abbildung 4-13 Ergosterolgehalt in nativem Boden nach Applikation von Benazolin in zwei Konzentrationen (50 und 200 mg kg\(^{-1}\)) in µg g\(^{-1}\) Boden (Trockenmasse; Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen).............................68

Abbildung 4-14 Ergosterolgehalt in geglühtem Boden nach Applikation von Benazolin in zwei Konzentrationen (50 und 200 mg kg\(^{-1}\)) in µg g\(^{-1}\) Boden (Trockenmasse; Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen)...69

Abbildung 4-15 Ergosterolgehalt in nativem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg\(^{-1}\)) in µg g\(^{-1}\) Boden (Trockenmasse; Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen)..70

Abbildung 4-16 Ergosterolgehalt in geglühtem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg\(^{-1}\)) in µg g\(^{-1}\) Boden (Trockenmasse; Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen)..71

Abbildung 4-17 Zeitliche Veränderung der DGGE-Bandenmuster in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren am 0. und 90. Tag:
(BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
B200: Ansatz mit 50 mg kg\(^{-1}\) Benazolin,
B200, B200/1: Ansatz mit 200 mg kg\(^{-1}\) Benazolin,
B200, B200/1: Ansatz mit 200 mg kg\(^{-1}\) Benazolin,
B200, B200/1, B200/2: Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren)...72

Abbildung 4-18 Zeitliche Veränderung der DGGE-Bandenmuster in geglühtem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren nach 14 und 90 Tagen:
(BK, BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
B200, B200/1, B200/2: Ansatz mit 200 mg kg\(^{-1}\) Benazolin,
B200, B200/1, B200/2: Ansatz mit 200 mg kg\(^{-1}\) Benazolin,
B200, B200/1, B200/2: Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren)...72

Abbildung 4-19 (A) DGGE-Bandenmuster in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren nach 90 Tagen (90T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;
(BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
B200/1: Ansatz mit 200 mg kg\(^{-1}\) Benazolin)
Abbildungsverzeichnis

BaP K1, BaP K2: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
BaP 200/1, BaP200/2: Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren)...73

Abbildung 4-20 (A) DGGE-Bandenmuster in geglihtem Boden bei der Humifizierung von
Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren
nach 90 Tagen (90T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-
Software;
(BK: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe
B 50: Ansatz mit 50 mg kg\(^{-1}\) Benazolin,
B200: Ansatz mit 200 mg kg\(^{-1}\) Benazolin,
BaP K: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
BaP 50/1, BaP 50/2: Ansatz mit 50 mg kg\(^{-1}\) Benzo[a]pyren,
BaP 200/1, BaP200/2: Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren)...74

Abbildung 4-21 (A) Agarose-Gel der amplifizierten 18S rDNA-Fragmenten von 350 bp Länge mit dem
pilzspezifischen Primer-Paar NS1/GCFung; (B) ein Beispiel für die
gelektrophoretische Auftrennung (DGGE) der PCR-Produkte;
(MM – EZ Load Precision Molecular Mass Ruler von Bio Rad
M2 – Supperladder-Mid 200 bp Ladder von ABgene)..75

Abbildung 4-22 DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in geglihtem (A) und
nativem (B) Boden bei der Humifizierung von Ernterückständen unter einem Einfluss
von Benazolin und Benzo[a]pyren nach 90 Tagen (90T);
(K1, K2: Kontrolle mit Maisstroh- und ohne Xenobiotika-Zugabe in geglihtem Boden,
B G 200/1, B G 200/2: Ansatz mit 200 mg kg\(^{-1}\) Benazolin in geglihtem Boden,
BaP G 200/1: Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren in geglihtem Boden,
BaP 200/1, BaP200/2: Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren,
K1F, K2F: Kontrolle mit Maisstroh- und ohne Xenobiotika-Zugabe in nativem Boden,
B F 200/1, B F 200/2: Ansatz mit 200 mg kg\(^{-1}\) Benazolin in nativem Boden,
BaP F 200/1, BaP F 200/2: Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren in nativem Boden)..........76

Abbildung 4-23 (A) Zeitliche Veränderung der DGGE-Bandenmuster der amplifizierten 18S rDNA-
Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem
Einfluss von Benazolin und Benzo[a]pyren nach 0 (0T) und 90 Tagen (90T); (grüne
Pfeile markieren Bandenveränderungen zwischen den 0. und 90. Tag; rote Pfeile
markieren neue Bande innerhalb der Bandenmuster nach 90 Tagen); (B) digitale
Image-Analyse des DGGE-Gels mit GelCompare-Software;
(K1, K2: Kontrolle mit Maisstroh- und ohne Xenobiotika-Zugabe,
B50/1: Ansatz mit 50 mg kg\(^{-1}\) Benazolin
B200/1, B200/2: Ansatz mit 200 mg kg\(^{-1}\) Benazolin,
BaP 50/1: Ansatz mit 50 mg kg\(^{-1}\) Benzo[a]pyren,
BaP 200/1, BaP200/2: Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren)...78

Abbildung 4-24 Ergosterolgehalt in nativem Boden nach Applikation von Benazolin und Benzo[a]pyren
jeweils in einer Konzentration von 200 mg kg\(^{-1}\) über 150 Tage; (Mittelwerte aus 2
Parallelen mit jeweils 3 unabhängigen Aufarbeitungen)..80
Abbildung 4-25 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentration von 200 mg kg⁻¹ nach 90 Tagen (90T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software; (F1, F2, F3: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 1,2,3; B200/2 1,2,3: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1 1,2,3; BaP200/2 1,2,3: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren).............................82

Abbildung 4-26 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentration von 200 mg kg⁻¹ nach 150 Tagen (150T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software; (F1, F2: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 1,2,3; B200/2 1,2,3: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1 1,2,3; BaP200/2 1,2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)................................83

Abbildung 4-27 (A) Zeitliche Veränderung der DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentration von 200 mg kg⁻¹ nach 90 (90T) und 150 Tagen (150T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software; (F1: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1, B200/2: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1, BaP200/2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)..84

Abbildung 4-28 (A) DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentration von 200 mg kg⁻¹ nach 90 Tagen (90T); (die aufgetragenen Pfeile bezeichnen Banden mit stärkerer Intensität); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software; (F1, F2, F3: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 1,2,3; B200/2 1,2,3: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1 1,2,3; BaP200/2 1,2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)..86

Abbildung 4-29 (A) DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentration von 200 mg kg⁻¹ nach 150 Tagen (150T);
Abbildungsverzeichnis

(die aufgetragenen Pfeile bezeichnen Banden mit stärkerer Intensität); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;
(F1, F2: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe,
BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
B200/1, B200/2, B200/3: Ansatz mit 200 mg kg⁻¹ Benazolin,
BaP200/1, BaP200/2, BaP200/3: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren).............................87

Abbildung 4-30 (A) Zeitliche Veränderung der DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentration von 200 mg kg⁻¹ nach 90 (90T) und 150 Tagen (150T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;
(F1: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe,
BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
BaPK1, BaPK2: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
B200/1, B200/2: Ansatz mit 200 mg kg⁻¹ Benazolin,
BaP200/1, BaP200/2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)..88

Abbildung 4-31 Ausgeschnittene Banden aus dem erstellten DGGE-Bandenmuster für amplifizierte 16S rDNA-Fragmente nach 90 Tagen Inkubationszeit;
Spurenbezeichnung:
BK: Boden mit Maisstroh, ohne Benazolin-Zugabe (Kontrolle),
BaPK: Boden mit Maisstroh, ohne Benzo[a]pyren-Zugabe (Kontrolle),
B 50: Boden mit 50mg kg⁻¹ Benazolin,
B 200: Boden mit 200 mg kg⁻¹ Benazolin,
BaP 50/1, BaP 50/2: Boden mit 50 mg kg⁻¹ Benzo[a]pyren,
BaP 200/1, BaP 200/2: Boden mit 200 mg kg⁻¹ Benzo[a]pyren;
Bandenbezeichnung:
BaP1, BaP2, BaP3: ausgeschnittene neue Banden aus den DGGE-Spuren für Versuchsansätzen mit 200 mg kg⁻¹ Benzo[a]pyren,
B1, B2, B3: ausgeschnittene neue Banden aus den DGGE-Spuren für Versuchsansätzen mit 200 mg kg⁻¹ Benazolin. ..90

Abbildung 4-32 Ausgeschnittene Banden aus dem erstellten DGGE-Bandenmuster für amplifizierte 16S rDNA-Fragmente nach 150 Tagen Inkubationszeit;
Spurenbezeichnung:
kontrolle: Boden mit Maisstroh, ohne Xenobiotika –Zugabe,
B 200: Boden mit 200 mg kg⁻¹ Benazolin,
BaP 200: Boden mit 200 mg kg⁻¹ Benzo[a]pyren;
Bandenbezeichnung:
J: ausgeschnittene gemeinsame für Kontrollansätze und Ansätze mit 200 mg kg⁻¹ Benzo[a]pyren neue Bande,
K: ausgeschnittene neue Bande aus den Spuren für Versuchsansätze mit 200 mg kg⁻¹
Abbildungsverzeichnis

Benzo[a]pyren,
L: ausgeschnittene neue Banden aus den Spuren für Versuchsansätzen mit 200 mg kg⁻¹ Benazolin...93

Abbildung 4-33 Ausgeschnittene Banden aus dem erstellten DGGE-Bandenmuster für amplifizierte 18S rDNA-Fragmente nach 150 Tagen Inkubationszeit;
Spurenbezeichnung:
Kontrolle: Boden mit Maisstroh, ohne Xenobiotika – Zugabe,
B 200: Boden mit 200 mg kg⁻¹ Benazolin,
BaP 200: Boden mit 200 mg kg⁻¹ Benzo[a]pyren;
seitliche Beschriftung: eluierte DNA-Fragmente aus entsprechenden Banden.............................96

Abbildung 4-34 Phylogenetische Zuordnung der Teilsequenzen der Bodenpilze, die in Xenobiotikabelastetem Boden nach 150 Tagen Inkubationszeit auftraten (RDP-Datenbank)..................105

Abbildung 8-1 Veränderung des pH-Wertes in nativem Boden mit ¹⁴C-markiertem Maisstroh nach Applikation von Benazolin in drei Konzentrationen (1, 10, 50 mg kg⁻¹) über 42 Tage (Mittelwerte aus 2 Parallelansätzen in jeweils fünffacher Bestimmung)...............................154

Abbildung 8-2 Veränderung des pH-Wertes in geöltetem Boden mit ¹⁴C-markiertem Maisstroh nach Applikation von Benazolin in drei Konzentrationen (1, 10, 50 mg kg⁻¹) über 42 Tage (Mittelwerte aus 2 Parallelansätzen in jeweils fünffacher Bestimmung)...............................154

Abbildung 8-3 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin in zwei Konzentrationen (50, 200 mg kg⁻¹) nach 14 Tagen (14T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;
(BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
B50/1, B50/2: Ansätze mit 50 mg kg⁻¹ Benazolin,
B200/1, B200/2: Ansätze mit 200 mg kg⁻¹ Benazolin)...155

Abbildung 8-4 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benzo[a]pyren in drei Konzentrationen (1, 50, 200 mg kg⁻¹) nach 14 Tagen (14T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;
(BaP K: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
BaP 1: Ansatz mit 1 mg kg⁻¹ Benzo[a]pyren,
BaP 50: Ansatz mit 50 mg kg⁻¹ Benzo[a]pyren,
BaP 200: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)..155

Abbildung 8-5 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin in zwei Konzentrationen (50, 200 mg kg⁻¹) nach 49 Tagen (49T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;
(BK: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
B50: Ansatz mit 50 mg kg⁻¹ Benazolin,
B200: Ansatz mit 200 mg kg⁻¹ Benazolin)...156
Abbildung 8-6
(A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benzo[a]pyren in drei Konzentrationen (1, 50, 200 mg kg⁻¹) nach 49 Tagen (49T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(BaP K: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
BaP 1: Ansatz mit 1 mg kg⁻¹ Benzo[a]pyren,
BaP 50: Ansatz mit 50 mg kg⁻¹ Benzo[a]pyren,
BaP 200: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren) ..156

Abbildung 8-7
(A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in geglühtem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin in zwei Konzentrationen (50, 200 mg kg⁻¹) nach 14 (14T) und 49 Tagen (49T);

(B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(NB: Nativer Boden ohne Maisstroh- und Benazolin-Zugabe,
BKG: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
B50G: Ansatz mit 50 mg kg⁻¹ Benazolin,
B200G: Ansatz mit 200 mg kg⁻¹ Benazolin) ..157

Abbildung 8-8
(A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in geglühtem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benzo[a]pyren in drei Konzentrationen (1, 50, 200 mg kg⁻¹) nach 14 (14T) und 49 Tagen (49T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(BaP K: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
BaP 1: Ansatz mit 1 mg kg⁻¹ Benzo[a]pyren,
BaP 50: Ansatz mit 50 mg kg⁻¹ Benzo[a]pyren,
BaP 200: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren) ..158

Abbildung 8-9
DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren jeweils in einer Konzentration von 200 mg kg⁻¹ am Tag 0;

(F: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe,
BK: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
BaPK: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
B200: Ansatz mit 200 mg kg⁻¹ Benazolin,
BaP200: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren) ..158

Abbildung 8-10
DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren jeweils in einer Konzentration von 200 mg kg⁻¹ nach 14 Tagen;

(F: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe,
BK: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
BaPK: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
B200: Ansatz mit 200 mg kg⁻¹ Benazolin,
BaP200: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren) ..159
Abbildung 8-11 DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentration von 200 mg kg\(^{-1}\) nach 49 Tagen;
(F1, F2: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 (1, 2, 3), B200/2 (1, 2, 3): Ansatz mit 200 mg kg\(^{-1}\) Benazolin, BaP200/1 (1, 2, 3), BaP200/2 (1, 2, 3): Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren)..................160

Abbildung 8-12 (A) DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren nach 14 Tagen; (B) digitale Image-Analyse des Gels mit GelCompare-Software;
(F1, F2: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1, B200/1', B200/2, B200/2': Ansatz mit 200 mg kg\(^{-1}\) Benazolin, BaP200/1, BaP200/1', BaP200/2, BaP200/2': Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren)...............161

Abbildung 8-13 (A) DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren nach 49 Tagen; (B) digitale Image-Analyse des Gels mit GelCompare-Software;
(F1, F2: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 (1, 2, 3), B200/2 (1, 2, 3): Ansatz mit 200 mg kg\(^{-1}\) Benazolin, BaP200/1 (1, 2, 3), BaP200/2 (1, 2, 3): Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren)..........................162

Abbildung 8-14 (A) Ausgeschnittene, repräsentative Banden für die Versuchsansätze mit 200 mg kg\(^{-1}\) Benazolin und 200 mg kg\(^{-1}\) Benzo[a]pyren nach 90 Tagen zum Eluieren von DNA; (B) zweite gelektrophoretische Auftrennung der Banden BaP1, BaP2, BaP3 (spezifisch für die Ansätze mit Benzo[a]pyren) bzw. B1 (spezifisch für die Ansätze mit Benazolin)..163

Abbildung 8-15 (A) Ausgeschnittene, repräsentative Banden für die Versuchsansätze mit 200 mg kg\(^{-1}\) Benazolin (B200), 200 mg kg\(^{-1}\) Benzo[a]pyren (BaP200) und Kontrolle nach 150 Tagen zum Eluieren von DNA; (B) zweite gelektrophoretische Auftrennung der Banden K (spezifisch für die Ansätze mit Benzo[a]pyren), L (spezifisch für die Ansätze mit Benazolin) und J (spezifisch für die Kontrolle und die Ansätze mit Benzo[a]pyren)...163

Abbildung 8-16 (A) Ausgeschnittene, repräsentative Banden für die Versuchsansätze mit 200 mg kg\(^{-1}\) Benazolin (B200), 200 mg kg\(^{-1}\) Benzo[a]pyren (BaP200) und Kontrolle (BaPK) nach 150 Tagen zum Eluieren von 18S DNA; (B) zweite gelektrophoretische Auftrennung der spezifischen für alle Versuchsansätze Banden P1, P2, P3, P1.1; P2.1 und, P4.1..............164
Tabellenverzeichnis

Tabelle 2-1 Physikalische und chemische Daten des Herbizids Benazolin und seines Derivates
Benazolin-ethyl (TOMLIN, 1997)...7
Tabelle 2-2 Toxikologische Daten zu Benazolin und Benazolin-ethyl (TOMLIN, 1997).........................8
Tabelle 2-3 Physikalische, chemische und toxikologische Daten des PAK-Vertreters Benzo[a]pyren
(BLUME, 1990; KÄSTNER et al., 1993)..13
Tabelle 2-4 Beispiele für den Abbau von Benzo[a]pyren durch Bakterien und Pilze...............................16
Tabelle 3-1 Chemisch-physikalische Charakterisierung des Versuchs bodens, ermittelt von der
Rheinischen Friedrich-Wilhelms-Universität Bonn..22
Tabelle 3-2 Zusammensetzung der Extraktionslösung zum Erhalten einer Bodensuspension..................24
Tabelle 3-3 Applizierte Xenobiotika in Maisstroh-Abbauversuchen (physikalisch-chemische
Eigenschaften der Stoffe sind in Kapitel 2.3.3 und 2.3.4 dargestellt)..25
Tabelle 3-4 Verwendete Primer zur Amplifikation von pilzlicher 18S rDNA aus Boden (unterstrichene
Sequenz bezeichnet jeweils die GC-Klammer)...36
Tabelle 3-5 Vorbereitung der Stammlösungen für eine fluoreszenzspektroskopische Bestimmung
der DNA-Konzentration in PCR-Produkten..40
Tabelle 3-6 Übersicht über die Laufbedingungen der DGGE für 16S rDNA..41
Tabelle 3-7 Übersicht über die Laufbedingungen der DGGE für 16S rDNA..42
Tabelle 3-8 Zusammensetzung der Acrylamid-Stammlösungen...42
Tabelle 3-9 Zusammensetzung des Probenauftragspuffers für DGGE..43
Tabelle 3-10 DNA-Elutionspuffer...44
Tabelle 4-1 Phylogenetische Zuordnung einiger Mikroorganismen, die in Xenobiotika-belastetem
Boden nach 90 Tagen Inkubationszeit auftraten. Die analysierten 16S rDNA-Fragmente
wurden mit öffentlich verfügbaren Referenzdaten in der NCBI-Datenbank verglichen
und dementsprechend zugeordnet (BLAST-N in NCBI, WI; Altschul et al., 1997;
Sim=Übereinstimmung der analysierten ribosomalen 16S DNA-Fragmente mit den
entsprechenden Sequenzen in der Datenbank in [%]; bp=Länge der sequenzierten
DNA-Abschnitten, in Basenpaaren ausgedrückt)..91
Tabelle 4-2 Phylogenetische Zuordnung einiger Mikroorganismen, die in Xenobiotika-belastetem
Boden nach 150 Tagen Inkubationszeit auftraten. Die analysierten 16S rDNA-Fragmente
wurden mit öffentlich verfügbaren Referenzdaten in der NCBI-Datenbank
verglichen und dementsprechend zugeordnet (BLAST-N in NCBI, WI;
Altschul et al., 1997; Sim=Übereinstimmung der analysierten ribosomalen 16S DNA-
Fragmente mit den entsprechenden Sequenzen in der Datenbank in [%]; bp=Länge
der sequenzierten DNA-Abschnitten, in Basenpaaren ausgedrückt)..95
Tabelle 4-3 Phylogenetische Zuordnung einiger Pilze, die in Xenobiotika-belastetem
Boden nach 150 Tagen Inkubationszeit auftraten. Die analysierten 18S rDNA-
Fragmente wurden mit öffentlich verfügbaren Referenzdaten in der NCBI-Datenbank
verglichen und dementsprechend zugeordnet (BLAST-N in NCBI, WI;
Altschul et al., 1997; Sim=Übereinstimmung der analysierten ribosomalen 18S DNA-Fragmente mit den entsprechenden Sequenzen in der Datenbank in [%]; bp=Länge der sequenzierten DNA-Abschnitten, in Basenpaaren ausgedrückt).................................99

Tabelle 8-1 Zusammensetzung der denaturierenden Lösungen...143
Tabelle 8-2 Medien und Lösungen zur Minipräparation von Plasmid-DNA...144
Tabelle 8-3 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in nativem Boden nach
Applikation von Benazolin in drei Konzentrationen über 42 Tage (a.R. = applizierte Radioaktivität = 100%)
(Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)...145
Tabelle 8-4 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in geglühtem Boden nach
Applikation von Benazolin in drei Konzentrationen über 42 Tage (a.R. = applizierte Radioaktivität = 100%)
(Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)...145
Tabelle 8-5 DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in nativem Boden nach
Applikation des Herbizids Benazolin in drei Konzentrationen über 42 Tage
(Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)...146
Tabelle 8-6 DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in geglühtem Boden
nach Applikation des Benzo[a]pyren in drei Konzentrationen über 42 Tage (a.R. = applizierte Radioaktivität = 100%)
(Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)...146
Tabelle 8-7 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in nativem Boden nach
Applikation von Benazolin in zwei Konzentrationen über 90 Tage (a.R. = applizierte Radioaktivität = 100%)
(Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)...147
Tabelle 8-8 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in geglühtem Boden nach
Applikation von Benazolin in zwei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a.R. = applizierte Radioaktivität = 100%)
(Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)...147
Tabelle 8-9 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in nativem Boden nach
Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a.R. = applizierte Radioaktivität = 100%)
(Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)...148
Tabelle 8-10 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in geglühtem Boden nach
Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a.R. = applizierte Radioaktivität = 100%)
(Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)...148
Tabelle 8-11 DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in nativem Boden
nach Applikation des Herbizids Benazolin in zwei Konzentrationen über 90 Tage.................149
Tabelle 8-12 DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in geglühtem Boden
nach Applikation des Herbizids Benazolin in zwei Konzentrationen über 90 Tage.................149
Tabelle 8-13 DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in nativem Boden
nach Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage.................150
Tabelle 8-14 DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in geglühtem Boden
nach Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage.................150
Tabelle 8-15	Ergosterolgehalt in nativem Boden nach Applikation von Benazolin in zwei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen, TM-Trockenmasse des Bodens) ... 151
Tabelle 8-16	Ergosterolgehalt in geglühtem Boden nach Applikation von Benazolin in zwei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen, TM-Trockenmasse des Bodens) ... 151
Tabelle 8-17	Ergosterolgehalt in nativem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen, TM-Trockenmasse des Bodens) ... 152
Tabelle 8-18	Ergosterolgehalt in geglühtem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen, TM-Trockenmasse des Bodens) ... 153
Tabelle 8-19	Ergosterolgehalt in nativem Boden nach Applikation von Benazolin und Benzo[a]pyren jeweils in einer Konzentration von 200 mg kg⁻¹ über 150 Tage (Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen, TM-Trockenmasse des Bodens) ... 153
Abkürzungsverzeichnis

Chemikalien

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>Amoniumpersulfat</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>DDT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>DMS</td>
<td>Dimethylsulfid</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonucleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxynukleosid-Triphosphate</td>
</tr>
<tr>
<td>dsDNA</td>
<td>doppelsträngige DNA</td>
</tr>
<tr>
<td>EcoR1</td>
<td>Restriktionsendonuklease von Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen-diamin-tetraessigsäure</td>
</tr>
<tr>
<td>Ficoll 400</td>
<td>Polysucrose 400</td>
</tr>
<tr>
<td>HindIII</td>
<td>Restriktionsendonuklease von Haemophilus influencae</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropylthiogalactosid</td>
</tr>
<tr>
<td>NAD</td>
<td>Nikotinamid-Adeninnukleotid</td>
</tr>
<tr>
<td>PAA</td>
<td>Polyacrylamid</td>
</tr>
<tr>
<td>PAK</td>
<td>polzyklische aromatische Kohlenwasserstoffe</td>
</tr>
<tr>
<td>RNase I<sub>f</sub></td>
<td>Ribonuklease</td>
</tr>
<tr>
<td>SDS</td>
<td>Natrium-dodecysulfat</td>
</tr>
<tr>
<td>Std-DNA</td>
<td>Lambda DNA standard</td>
</tr>
<tr>
<td>T4 PNK</td>
<td>T4 Polynukleotidkinase</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetat-EDTA-Puffer</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borsäure-EDTA-PAA-Puffer</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA-Puffer</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N′,N′-Tetramethylethyldiamin</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>Tween</td>
<td>Polyoxyethylensorbitan</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-Brom-4-chlor-3-indolyl-β-D-galactopyranosid</td>
</tr>
</tbody>
</table>
Sontiges

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff/Englischer Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Ein-Wege Varianzanalyse</td>
</tr>
<tr>
<td>a. R.</td>
<td>applizierte Radioaktivität</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare (DNA-Länge)</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>C-Quelle</td>
<td>Kohlenstoffquelle</td>
</tr>
<tr>
<td>GC-Klammer</td>
<td>Guanidin- und Cytosin-reiche Sequenz</td>
</tr>
<tr>
<td>GC-Säule</td>
<td>Gaschromatograph-Säule</td>
</tr>
<tr>
<td>HPLC</td>
<td>Hochleistungs-Flüssigchromatographie (high performance liquid chromatography)</td>
</tr>
<tr>
<td>LB</td>
<td>Agar oder Medium für E. coli (Plasmid-Präparation)</td>
</tr>
<tr>
<td>LD₅₀</td>
<td>mittlere letale Dosis, bei der 50 % der Versuchstiere sterben</td>
</tr>
<tr>
<td>LSC</td>
<td>Flüssigkeit-Szintillationsspektrometer</td>
</tr>
<tr>
<td>min.</td>
<td>Minute(n)</td>
</tr>
<tr>
<td>MWK</td>
<td>maximale Wasserhaltekapazität</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>n. n.</td>
<td>nicht nachweisbar</td>
</tr>
<tr>
<td>pBluescript SK⁺</td>
<td>Klonierungsvektor</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>RDP</td>
<td>The Ribosomal Database Project</td>
</tr>
<tr>
<td>Sim</td>
<td>Übereinstimmung (similarity)</td>
</tr>
<tr>
<td>sp.</td>
<td>species</td>
</tr>
<tr>
<td>TM</td>
<td>Trockenmasse</td>
</tr>
<tr>
<td>U</td>
<td>Einheit der Enzymaktivität</td>
</tr>
<tr>
<td>U min⁻¹</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleichen</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumenanteilen pro Volumen</td>
</tr>
<tr>
<td>XL1 Blue Zellen</td>
<td>kompetente E. coli Zellen</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>z.T.</td>
<td>zum Teil</td>
</tr>
</tbody>
</table>
1 Einleitung und Fragestellung

Um die Funktion und Struktur der Bodenbakterien sowie der Bodenpilze bei den Umsatzprozessen unter Wirkung von Xenobiotika aufklären zu können, wurden pilzliche und bakterielle DNA-Fingerprints erstellt, die anschließend durch eine phylogenetische Zuordnung ausgewählter bakterieller 16S- bzw. pilzlicher 18S DNA-Sequenzen ergänzt wurden.
Stand der Forschung

2.1 Rolle der Mikroorganismen im Boden

2.2 Die organische Substanz des Bodens

Unter Feld- bzw. Laborbedingungen stellen Untersuchungen zum Streuabbau eine einfache Methode zur Beurteilung der Abbaudynamik im Boden sowie einer Wirkung von Fremdstoffen auf die Abbauprozesse dar (Broder und Wagner, 1988; Malkomes, 1982; Malkomes, 1989; Harden et al., 1993; Berger und Hetefuss, 1991).
2.3 Xenobiotika im Boden

2.3.1 Pflanzenschutzmittel und ihre Wirkung auf die mikrobiellen Gemeinschaften im Boden

Eine Anwendung molekularbiologischer Methoden (z.B. denaturierende Gradienten Gelelektrophorese, DGGE oder Temperatur-Gradienten Gelelektrophorese, TGGE und Sequenzanalyse), die auf dem genetischen Material der Mikroorganismen basieren, stellt eine wertvolle Ergänzung zu den traditionellen Methoden dar und führt zu einem besserem Verständnis der durch Pestizide verursachten Nebenwirkungen (Engelen et al., 1998; Fantroussi El et al., 1999; Recchio et al., 2001; Liebich et al., 2003). Mit Hilfe dieser empfindlichen Methode wurde häufig eine Beeinträchtigung der mikrobiellen Struktur in belasteten Böden festgestellt, obwohl die Summenparameter, wie Biomasse oder mikrobielle Aktivität, nicht beeinflusst wurden (Johnsen, et al., 2001).

2.3.2 Das Herbizid Benazolin

Das Herbizid Benazolin GALTAK (Firma AgrEvo), ein Vertreter der Benzothiazole, ist ein Auxin-Herbizid, das durch seine wachstumsregulierende Wirkung gezielt zur Bekämpfung breitblättriger Unkräuter, vor allem gegen Vogelmiere und Klettenlabkraut in Getreide- und Rapsanbau appliziert wird. Die empfohlene Aufwandmenge beträgt 0,5 kg Wirkstoff ha⁻¹. Das Herbizid wird meistens in Form eines wasserlöslichen Konzentrats (100 oder 200 g Wirkstoff L⁻¹) angewendet (Domsch, 1992). In der Tabelle 2-1 sind einige chemische und physikalische Daten des Herbizides zusammengestellt.

Benazolin hat eine geringe akute orale und dermale Toxizität (Tabelle 2-2) und ist nach der Gefahrstoffverordnung von 26.08.1986 nicht kennzeichnungspflichtig (LD₅₀>2000 mg kg⁻¹). Auf Grund von Tierversuchen konnte weder kanzerogene, noch teratogene, noch eine sensibilisierende Wirkung bei Hautkontakt festgestellt werden.
Tabelle 2-1 Physikalische und chemische Daten des Herbizids Benazolin und seines Derivates Benazolin-ethyl (TOMLIN, 1997)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Benazolin</th>
<th>Benazolin-ethyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUPAC-Bezeichnung</td>
<td>4-Chlor-2-oxobenzothiazolin-3-yl-essigsäure</td>
<td>4-Chlor-2-oxobenzothiazolin-3-yl-essigsäureethylester</td>
</tr>
<tr>
<td>Summenformel</td>
<td>C₉H₆ClNO₃S</td>
<td>C₁₁H₁₀ClNO₃S</td>
</tr>
<tr>
<td>Strukturformel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molare Masse in g mol⁻¹</td>
<td>243,7</td>
<td>271,7</td>
</tr>
<tr>
<td>Schmelzpunkt in °C</td>
<td>193</td>
<td>79</td>
</tr>
<tr>
<td>Dampfdruck in mPa bei 20°C</td>
<td>1x10⁻⁴ tech.</td>
<td>0,37 bei 25°C</td>
</tr>
<tr>
<td>Verteilungskoeffizient, in log P₀/w bei 20°C</td>
<td>1,34</td>
<td>2,50</td>
</tr>
<tr>
<td>Wasserlöslichkeit in g L⁻¹ bei 20°C</td>
<td>0,60</td>
<td>0,047</td>
</tr>
<tr>
<td>Löslichkeit in organischen Lösungen in g L⁻¹ bei 20°C</td>
<td>Aceton: 100-120</td>
<td>Aceton: 229</td>
</tr>
<tr>
<td></td>
<td>Ethanol: 30-38</td>
<td>Dichloromethan: 603</td>
</tr>
<tr>
<td></td>
<td>Ethylacetat: 21-25</td>
<td>Ethylacetat: 148</td>
</tr>
<tr>
<td></td>
<td>Isopropanol: 25-30</td>
<td>Toluen: 198</td>
</tr>
<tr>
<td>Adsorptionskoeffizient, (Kd)</td>
<td>1,0 (sandiger Lehm)</td>
<td>15,0 (sandiger Lehm)</td>
</tr>
<tr>
<td></td>
<td>0,4 (Lehm)</td>
<td>8,0 (Lehm)</td>
</tr>
<tr>
<td>Hydrolytische Stabilität</td>
<td>Stabil im neutralen, sauren und leicht basischen Bereichen; unstabil im stark basischen Bereich</td>
<td>Stabil im neutralen und sauren Bereich</td>
</tr>
<tr>
<td>Dissoziationskonstante, (pKₐ)</td>
<td>3,04 bei 20°C</td>
<td>---</td>
</tr>
</tbody>
</table>

Tabelle 2-2 Toxikologische Daten zu Benazolin und Benazolin-ethyl (TOMLIN, 1997)

<table>
<thead>
<tr>
<th>Toxizitätsdaten in mg kg$^{-1}$</th>
<th>Benazolin</th>
<th>Benazolin-ethyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD$_{50}$ (oral, Ratte) in mg kg$^{-1}$</td>
<td>> 5000</td>
<td>> 6000</td>
</tr>
<tr>
<td>LD$_{50}$ (oral, Mäuse) in mg kg$^{-1}$</td>
<td>> 4000</td>
<td>> 4000</td>
</tr>
<tr>
<td>LD$_{50}$ (dermal, Ratte) in mg kg$^{-1}$</td>
<td>> 5000</td>
<td>> 2100</td>
</tr>
<tr>
<td>LC$_{50}$ (Inhalation (4h), Ratte) in mg m$^{-3}$</td>
<td>1,43</td>
<td>5,5</td>
</tr>
</tbody>
</table>
Abbildung 2-1 Mögliche Abbauwege für Benazolin-ethyl in Böden und Gewässern (MOEDE, 1995)
2.3.3 PAK und ihre Wirkung auf die mikrobiellen Gemeinschaften im Boden

Die Mineralisierung von PAK wird durch die Einführung von Sauerstoff-Atomen in einen der aromatischen Ringe eingeleitet. Diese Reaktion wird bei Bakterien von einer Dioxygenase katalysiert und führt zur Bildung eines cis-Dihydrodiol-Intermedias (GIBSON und

ebenfalls, dass leicht verwertbare organische Substrate einen kometabolischen Abbau fördern können.

2.3.4 **Benzo[a]pyren, ein Vertreter der polyzyklischen aromatischen Kohlenwasserstoffe**

Benzo[a]pyren repräsentiert polyzyklische aromatische Kohlenwasserstoffe (PAK), die aus fünf kondensierten Benzolringen bestehen. Die Entstehungsquellen wurden in Kapitel 2.3.3 beschrieben. Die wichtigsten chemisch-physikalischen Eigenschaften des Benzo[a]pyrens, aus denen sich sein Verhalten in der Umwelt und sein ökotoxikologisches Gefährdungspotential ergeben, sind in der Tabelle 2-3 aufgeführt.

Tabelle 2-3 **Physikalische, chemische und toxikologische Daten des PAK-Vertreters Benzo[a]pyren** *(BLUMÉ, 1990; KÄSTNER et al., 1993)*

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Benzo[a]pyren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strukturformel</td>
<td></td>
</tr>
<tr>
<td>Molare Masse in µg mol⁻¹</td>
<td>252,3</td>
</tr>
<tr>
<td>Wasserlöslichkeit bei 25°C in µg L⁻¹</td>
<td>3,8-14,0</td>
</tr>
<tr>
<td>Dampfdruck in Torr bei 20°C</td>
<td>5,0 10⁻⁷</td>
</tr>
<tr>
<td>Verteilungskoeffizient, log P{OW}</td>
<td>6,04</td>
</tr>
<tr>
<td>Verteilungskoeffizient, log K{OC}</td>
<td>6,65</td>
</tr>
<tr>
<td>Henry-Konstante</td>
<td>4,9 10⁻¹</td>
</tr>
<tr>
<td>orale LD₅₀ für Ratte in mg kg⁻¹</td>
<td>50</td>
</tr>
</tbody>
</table>

Von großer Bedeutung für die toxikologische Beurteilung von Benzo[a]pyren ist vor allem sein potentiell kanzerogener Charakter, der wie in der Kapitel 2.3.3 erwähnt, erst durch den Umbau zu reaktiven elektrophilen Metaboliten in der Säugetierzelle entfaltet wird *(CERNIGLIA, 1984; WISLOCKI und LU, 1988)*. Dabei spielen die regio- und stereospezifischen Eigenschaften der Metaboliten eine entscheidende Rolle. Benzo[a]pyren wird in der
Empfängerzelle mit Hilfe einer Monoxygenase vom Typ Cytochrom P450 und einer Epoxidhydrolase zu verschiedenen primären und zweitrangigen Verbindungen metabolisiert. Die tatsächlichen kanzerogenen Eigenschaften weist das (+)-7,8-Diol-9,10-Epoxid in anti-Stellung zur 7-OH-Gruppe auf (Abbildung 2-3).

Abbildung 2-3 Metabolische Aktivierung von Benzo[a]pyren in seine kanzerogene Derivatformen (CERNIGLIA, 1984)

Die Isomere, bei denen die Epoxid- bzw. Diol-Bildung in 4,5 oder 9,10 Position erfolgt, zeigen im Vergleich zum 7,8-Isomer nur eine sehr geringe kanzerogene Aktivität. Befindet sich die Epoxid-brücke in 9,10-Position auf der gleichen Ringseite wie die Hydroxylgruppe an Position 7 (syn-Stellung) führt dies zur nahezu vollständigen Elimination des
Stand der Forschung

Tabelle 2-4 Beispiele für den Abbau von Benzo[a]pyren durch Bakterien und Pilze

<table>
<thead>
<tr>
<th>Mikroorganismen</th>
<th>Medium</th>
<th>Abbau und Inkubationsdauer (*: Einsatz von 14C-markiertem Benzo[a]pyren)</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mischkultur</td>
<td>Boden + Ölschlamm</td>
<td>44,4% Abbau nach 1280 Tagen</td>
<td>BOSsert et al., 1984</td>
</tr>
<tr>
<td>Mischkultur</td>
<td>Sediment als Slurry</td>
<td>(*) < 0,2%, 0,5% und 3,1% 14CO$_{2}$ nach 8 Wochen</td>
<td>HEITKAMP und CERNIGLIA, 1987</td>
</tr>
<tr>
<td>isolierter PAK-Abbauper</td>
<td>Flüssigkultur, C-Quelle: Hefeextrakt + Pepton + Stärke + Pyren</td>
<td>(*) 24,7% als Metaboliten extrahiert; nach 2 Wochen kein 14CO$_{2}$ nachweisbar</td>
<td>HEITKAMP und CERNIGLIA, 1988</td>
</tr>
<tr>
<td>Mischkultur</td>
<td>Boden + Raffinerieabfälle</td>
<td>(*) 7,68% als 14CO$_{2}$ nach 4 Monaten</td>
<td>HOSLER et al., 1988</td>
</tr>
<tr>
<td>Mycobacterium sp.</td>
<td>unbelastetes Sediment als Slurry</td>
<td>(*) 3,6% als 14CO$_{2}$ nach 28 Tagen</td>
<td>HEITKAMP und CERNIGLIA, 1989</td>
</tr>
<tr>
<td>Mischkultur</td>
<td>unbelasteter Boden</td>
<td>berechnete Halbwertszeit > 300 Tage</td>
<td>PARK et al., 1990</td>
</tr>
<tr>
<td>Mischkultur</td>
<td>PAK belastete Böden</td>
<td>(*) bis zu 25% als 14CO${2}$ nach > 180 Tagen (je nach Boden); 21% 14CO${2}$ nach 2 Wochen</td>
<td>GROSSER et al., 1991</td>
</tr>
<tr>
<td>isoliertes Mycobacterium sp.</td>
<td>Flüssigkultur, C-Quelle: Hefeextrakt + Pepton + Stärke + Pyren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodococcus sp.</td>
<td>Flüssigkultur, C-Quelle: Pyren</td>
<td>11% Abbau nach 2 Wochen</td>
<td>WALTER et al., 1991</td>
</tr>
<tr>
<td>Mischkultur</td>
<td>PAK belastete Böden</td>
<td>< 8% nach 160 Tagen</td>
<td>GROSSER et al., 1995</td>
</tr>
<tr>
<td>Mycobacterium sp.</td>
<td>Flüssigkultur, C-Quelle: Hefeextrakt + Pepton + Stärke + Pyren</td>
<td>(*) 28% nach 32 Tagen als Metaboliten extrahiert; 6 Metaboliten identifiziert; Abbauweg beschrieben</td>
<td>SCHNEIDER et al., 1996</td>
</tr>
<tr>
<td>Mikroorganismen</td>
<td>Medium</td>
<td>Abbau und Inkubationsdauer (*: Einsatz von 14C-markiertem Benzo[a]pyren)</td>
<td>Quelle</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Pseudomonas capacia</td>
<td>Flüssigkultur ohne weitere C-Quelle</td>
<td>20-30% nach 63 Tagen</td>
<td>JUHASZ et al., 1996</td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td>Flüssigkultur, C-Quelle: Phenanthren</td>
<td>41% nach 46 Tagen</td>
<td>JUHASZ et al., 1997</td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td>Flüssigkultur: reiches Medium für Basidiomycete (BRM)</td>
<td>(*) 0,19% 14CO$_2$ nach 11 Tagen</td>
<td>BEZALEL et al., 1996</td>
</tr>
<tr>
<td>Bjerkandera sp.</td>
<td>Flüssigkultur, C-Quelle: mykologisches Pepton+Glukose; Medium angereichert mit Mangan</td>
<td>(*) 8,5% als 14CO$_2$, 73% als wasserlösliche Metaboliten, 4% gelöst in Dibuthylether nach 15 Tagen; nach 150 Tagen: 34% CO$_2$, wasserlösliche 16%</td>
<td>KOTTERMAN et al., 1998</td>
</tr>
<tr>
<td>Phanerochaete laevis</td>
<td>Flüssigkultur, C-Quelle: Malzextrakt+Glukose+N-Quelle: Ammoniumtartrat</td>
<td>(*) 1,5% 14CO$_2$, 9,3% wasserlösliche Metaboliten, 50,5% löslich in organischer Phase nach 4 Wochen</td>
<td>BOGAN and LAMAR, 1996</td>
</tr>
<tr>
<td>Bjerkandera sp., Bjerkandera adusta, nicht identifiziertes Agaricales</td>
<td>Flüssigkultur, C-Quelle: Malzextrakt+Glukose+Tiamin</td>
<td>ca. 83,1%-65% nach 28 Tagen</td>
<td>FIELD et al., 1992</td>
</tr>
<tr>
<td>Cunninghamella elegans</td>
<td>Flüssigkultur, C-Quelle: Dextrose</td>
<td>(*) 18,4 % nach 96 h als Metaboliten wiedergefunden</td>
<td>CERNIGLIA und GIBSON, 1979</td>
</tr>
</tbody>
</table>
2.4 Einsatz molekularbiologischer Methoden zur Beurteilung der Wirkung von Xenobiotika auf die mikrobiellen Gemeinschaften in Böden

Zur Beschreibung der strukturellen Diversität der Bodenmikroflora dienen die eubakteriellen 16S rDNA (RHEIMS et al., 1996; ENGELEN et al., 1998; GELSOMINO et al., 1999; ALFREIDER et al., 2002; SCHMALENBERGER und TEBBE, 2003) und die eukaryotischen 18S rDNA (KOWALCHUK et al., 1997a; KOWALCHUK et al., 1997b; SMIT et al., 1999; ELSAS VAN et al., 2000; MAY et al., 2001; VALINSKY et al., 2002; ANDERSON et al., 2003). Diese DNA beinhalten sowohl in allen Organismen identische stark konservierte als auch für einzelne Arten oder Stämme spezifische hochvariable Bereiche (MORGAN und WINSTANLEY, 1997; LUDWIG und SCHLEIFER, 1994). Die konservierten Bereiche können als Bindungsstelle für verschiedene Primer während der Polymerase-Kettenreaktion (PCR) dienen, wobei die variablen Abschnitte vervielfältigt werden. Die PCR basiert auf der Denaturierung einer doppelsträngigen DNA (dsDNA), an welche sich am 5´- und 3´-Ende des zu amplifizierten

2.4.1 Denaturierende Gradienten Gelelektrophorese

Eine Sequenzanalyse von reamplifizierten 16S bzw. 18S rDNA-Fragmenten erweitert das Informationsspektrum über mikrobiellen Gemeinschaften und führt somit zum besseren Verständnis des mikrobiellen Verhaltens gegenüber veränderten Lebensbedingungen.

2.4.2 Einsatz von pilzspezifischen Primern zum Amplifizieren von 18S rDNA

Die PCR-DGGE-Analytik wird häufig verwendet, um die mikrobielle Diversität in verschiedenen Umweltproben mit Hilfe der ribosomalen DNA zu erfassen (Ferris et al., 1996; Muyzer et al., 1993; Heuer et al., 1997; Heuer und Smalla, 1997; Kowalchuk et al., 1997b; Vallaey et al., 1997; Duineveld et al., 1998). Obwohl für die Amplifikation von 16S rDNA-Abschnitten mehrere universelle und Gruppen-spezifische Primer beschrieben wurden, werden weiterhin Primer für die Amplifikation von pilzspezifischen 18S rDNA-Fragmenten entwickelt, um alle Hauptgruppen der Pilze zu erfassen und gleichzeitig eine Amplifikation von nicht-pilzlichen 18S rDNA zu vermeiden (Schabereiter-Gurtner et al., 2001; Anderson et al., 2003; May et al., 2001; Zhou et al., 2000). Obwohl für die Amplifikation von 16S rDNA-Abschnitten mehrere universelle und Gruppen-spezifische Primer beschrieben wurden, werden weiterhin Primer für die Amplifikation von pilzspezifischen 18S rDNA-Fragmenten entwickelt, um alle Hauptgruppen der Pilze zu erfassen und gleichzeitig eine Amplifikation von nicht-pilzlichen 18S rDNA zu vermeiden (Schabereiter-Gurtner et al., 2001; Anderson et al., 2003; May et al., 2001; Zhou et al., 2000). Diese Aufgabe ist durch die niedrige Sequenzen-Differenz innerhalb der pilzlichen 18S rDNA und der hohen Ähnlichkeit mit einigen 18S rDNA-Regionen anderer Eukaryoten nicht einfach zu lösen (Kowalchuk, 1998; Smitt et al., 1999; Elsas van et al., 2000). Aus diesem Grund wurden in der Literatur häufig pilzspezifische Primer dargestellt, die jedoch nach weiteren Untersuchungen auch 18S rDNA-Abschnitte anderer eukaryotischer Organismen vervielfältigten (Smit et al., 1999; Borneman und Hartin, 2000). Die niedrige Sequenzen-Differenz in der 18S rDNA ist ebenfalls die Ursache für eine niedrigere Diversität der DGGE-
3 Material und Methoden

3.1 Aufbau der Umsatzversuche

3.1.1 Charakterisierung des Versuchs bodens

Tabelle 3-1 Chemisch-physikalische Charakterisierung des Versuchs bodens, ermittelt von der Rheinischen Friedrich-Wilhelms-Universität Bonn

<table>
<thead>
<tr>
<th></th>
<th>nativer Boden</th>
<th>geglähter Boden</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-Wert (CaCl₂)</td>
<td>7,00</td>
<td>7,28</td>
</tr>
<tr>
<td>C₉gesamt</td>
<td>0,92 %</td>
<td>n.n.</td>
</tr>
<tr>
<td>N₉gesamt</td>
<td>0,081 %</td>
<td>n.n.</td>
</tr>
<tr>
<td>Sand</td>
<td>3,3 %</td>
<td>11,25 %</td>
</tr>
<tr>
<td>grob</td>
<td>0,5 %</td>
<td>0,75 %</td>
</tr>
<tr>
<td>mittel</td>
<td>1,0 %</td>
<td>5,25 %</td>
</tr>
<tr>
<td>fein</td>
<td>1,8 %</td>
<td>5,25 %</td>
</tr>
<tr>
<td>Schluff</td>
<td>80,6 %</td>
<td>84,95 %</td>
</tr>
<tr>
<td>grob</td>
<td>56,5 %</td>
<td>61,35 %</td>
</tr>
<tr>
<td>mittel</td>
<td>19,9 %</td>
<td>19,6 %</td>
</tr>
<tr>
<td>fein</td>
<td>4,2 %</td>
<td>4,0 %</td>
</tr>
<tr>
<td>Ton</td>
<td>16,1 %</td>
<td>3,8 %</td>
</tr>
</tbody>
</table>
Material und Methoden

3.1.2 Vorbereitung des Bodens

Für alle Versuchsreihen in zwei Parallelansätzen wurde die Parabraunerde zunächst auf 2,0 mm gesiebt. Der zum Glühen vorgesehene Teil noch zusätzlich auf 0,5 mm. Anschließend wurde Maisstroh zugegeben und die Xenobiotika appliziert (vgl. Kapitel 3-1). Schließlich wurde die Bodenfeuchte auf 40 % der maximalen Wasserhaltekapazität (MWK) eingestellt. Die so vorbereiteten Versuchsansätze wurden bei 20°C inkubiert und zu verschiedenen Zeitpunkten zur Untersuchung entnommen. Zum Vergleich wurden Kontrollansätze vorbereitet, die bis auf die Applikation der Wirkstoffe gleich wie die Hauptproben behandelt wurden.

3.1.3 Maisstroh

3.1.4 Mikrobielle Gemeinschaften im Boden

In den Versuchsansätzen mit nativem Boden wurde die Parabraunerde in naturellem Zustand eingesetzt. Dem geglühten Boden wurden Bodenmikroorganismen in Form einer Bodensuspension hinzugefügt, die aus kleinen Aliquoten der Parabraunerde vorbereitet wurde. Dazu wurden 10 g Boden mit 90 mL Extraktionslösung versetzt und 5 Min im einen Schüttler bei 200 U min⁻¹ 20 min extrahiert. Die Inokulation erfolgte mit 1 mL dieser Suspension auf 100 g Boden.
Material und Methoden

Tabelle 3-2 Zusammensetzung der Extraktionslösung zum Erhalten einer Bodensuspension

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>0,10 g L⁻¹</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>0,02 g L⁻¹</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>0,20 g L⁻¹</td>
</tr>
<tr>
<td>Tween 80</td>
<td>5,00 g L⁻¹</td>
</tr>
</tbody>
</table>

3.1.5 Abbaustudien

Die Humifizierung von Maisstroh wurde nach ANDERSON (1975) in speziell dafür vorbereiteten Gefäßen, die in Abbildung 3-1 dargestellt sind, mit nativer und geglühter Parabraunerde durchgeführt, zu der Xenobiotika (vgl. Kapitel 3.1) und Maistroh (vgl. Kapitel 3.2.3) gegeben wurden. Die Inkubation wurde bei 20°C ± 1°C und 40 % der maximalen Wasserhaltekapazität (MWK), was einer absoluten Feuchte von 18,9 % entsprach, im Dunkeln durchgeführt. Zusätzlich wurden weitere 2 mL Wasser g⁻¹ Maisstroh zur Kompensation der Wasseraufnahme durch Quellung des Strohs zugegeben. Die Abbauversuche wurden je nach Versuchsduer entweder in 500 mL Erlenmeyerkolben mit 250 g Boden oder 750 mL Erlenmeyerkolben mit 300 g Boden durchgeführt. Die aufgesetzten CO₂-Fallen wurden an bestimmten Probennahmeterminen ausgetauscht, wobei die Gefäße zuvor 5 min über den seitlichen Glasstutzen mit steril-gefiltertem Stickstoff gespült wurden. Die Bodenfeuchte wurde regelmäßig kontrolliert und gegebenenfalls auf den Referenzwert mit sterilem entionisiertem Wasser neu eingestellt.
Material und Methoden

Glasrohr
(20 mm ID, 145 mm Länge)
Quarzwolle
2 g Natronkalk
(zur Absorption von atmosphärischem CO₂)
Quarzwolle
10 g Natronkalk
(zur Absorption von ^14CO₂)
Quarzwolle
Glasstutzen zur Belüftung

Erlenmeyerkolben (500 mL bzw. 750 mL)
Boden

Abbildung 3-1 Schematischer Aufbau eines Abbaugefäßes (ANDERSON, 1975)

3.2 Applizierte Xenobiotika (Benazolin, Benzo[a]pyren)

Als Modellsubstanzen, deren Wirkung auf die Umsatzprozesse von Ernterückständen und die daran beteiligten mikrobiellen Gemeinschaften untersucht wurde, wurden die in der Tabelle 3-1 dargestellten Xenobiotika verwendet.

Tabelle 3-3 Applizierte Xenobiotika in Maisstroh-Abbauversuchen (physikalisch-chemische Eigenschaften der Stoffe sind in Kapitel 2.3.3 und 2.3.4 dargestellt)

<table>
<thead>
<tr>
<th>Fremdstoff</th>
<th>Struktur</th>
<th>Reinheit</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benazolin,</td>
<td></td>
<td>≥ 99% (HPLC)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>(Herbizid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo[a]pyren,</td>
<td></td>
<td>min. 97% (HPLC)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>(PAK-Vertreter)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 Beschreibung der Experimente

Insgesamt wurden drei Experimente zur Untersuchung der Wirkung von Benazolin und Benzo[a]pyren auf die am Umsatz von Maisstroh beteiligten mikrobiellen Gemeinschaften durchgeführt. Während die zwei ersten Versuche nach einer Zugabe von 14C-markiertem Maisstroh sowohl in nativem als auch geglühtem Boden durchgeführt wurden, wurde im letzten Experiment nur der native Boden mit eingearbeitem unmarkiertem Maisstroh untersucht.

3.3.1 Einfluss unterschiedlicher Benazolin-Konzentrationen auf den Umsatz von 14C-markiertem Maisstroh durch mikrobielle Gemeinschaften

In diesem Experiment wurde über 42 Tage die Wirkung verschiedener Konzentrationen des Benazolins (1, 10 und 50 mg kg$^{-1}$) auf die mikrobiellen Gemeinschaften untersucht, die im Boden mit ungestörter Bodenmatrix am Umsatz von Maisstroh beteiligt waren und im geglühten Boden, dessen Matrix durch Glühvorgang zerstört wurde, bei der Entstehung neues Kohlenstoffkörper teilnahmen. In bestimmten Zeitabständen wurden die Mineralisierung des Maisstrohs, die DMSO-Reduktase-Raten und der pH-Wert untersucht.

Versuchsansätze:
- nativer Boden + Maisstroh (Kontrolle)
- nativer Boden + Maisstroh + 1 mg kg$^{-1}$ Benazolin
- nativer Boden + Maisstroh + 10 mg kg$^{-1}$ Benazolin
- nativer Boden + Maisstroh + 50 mg kg$^{-1}$ Benazolin
- gegläuter Boden + Maisstroh + Bodensuspension (Kontrolle)
- gegläuter Boden + Maisstroh + Bodensuspension + 1 mg kg$^{-1}$ Benazolin
- gegläuter Boden + Maisstroh + Bodensuspension + 10 mg kg$^{-1}$ Benazolin
- gegläuter Boden + Maisstroh + Bodensuspension + 50 mg kg$^{-1}$ Benazolin
3.3.2 Einfluss unterschiedlicher Benazolin- und Benzo[a]pyren-Konzentrationen auf den Umsatz von \(^{14}\text{C}\)-markiertem Maisstroh und die beteiligten mikrobiellen Gemeinschaften

In diesem Versuch sollte neben der Wirkung von Benazolin auch die Wirkung von Benzo[a]pyren auf die am Umsatz von Maisstroh beteiligten mikrobiellen Gemeinschaften über 90 Tage analysiert werden. Benazolin wurde in zwei Konzentrationen von 50 und 200 mg kg\(^{-1}\) appliziert. Für Benzo[a]pyren wurden drei Konzentrationen von 1, 50 und 200 mg kg\(^{-1}\) ausgewählt.

Versuchsansätze:
- nativer Boden (Kontrolle)

mit Benazolin (B):
- Kontrolle für die Versuchsreihe mit nativem Boden und Benazolin: nativer Boden + Maisstroh + Ethylacetat (Lösungsmittel für Benazolin)
- nativer Boden + Maisstroh + 50 mg kg\(^{-1}\) Benazolin
- nativer Boden + Maisstroh + 200 mg kg\(^{-1}\) Benazolin
- Kontrolle für die Versuchsreihe mit geglühtem Boden und Benazolin: geglühter Boden + Maisstroh + Bodensuspension + Ethylacetat
- geglühter Boden + Maisstroh + Bodensuspension + 50 mg kg\(^{-1}\) Benazolin
- geglühter Boden + Maisstroh + Bodensuspension + 200 mg kg\(^{-1}\) Benazolin

mit Benzo[a]pyren (BaP):
- Kontrolle für die Versuchsreihe mit nativen Boden und Benzo[a]pyren: nativer Boden + Maisstroh + Toluol (Lösungsmittel für Benzo[a]pyren)
- nativer Boden + Maisstroh + 1 mg kg\(^{-1}\) Benzo[a]pyren
- nativer Boden + Maisstroh + 50 mg kg\(^{-1}\) Benzo[a]pyren
- nativer Boden + Maisstroh + 200 mg kg\(^{-1}\) Benzo[a]pyren
- Kontrolle für die Versuchsreihe mit geglühtem Boden und Benzo[a]pyren: geglühter Boden + Maisstroh + Bodensuspension + Toluol
- geglühter Boden + Maisstroh + Bodensuspension + 1 mg kg\(^{-1}\) Benzo[a]pyren
- geglühter Boden + Maisstroh + Bodensuspension + 50 mg kg\(^{-1}\) Benzo[a]pyren
- geglühter Boden + Maisstroh + Bodensuspension + 200 mg kg\(^{-1}\) Benzo[a]pyren
Material und Methoden

Durchgeführte Analytik:
- Mineralisierung des 14C-markierten Maisstrohs
- DMSO-Reduktase-Rate zur Bestimmung der mikrobiellen Aktivität
- Bestimmung der Ergosterolgehalte im Boden als Indikator für die Pilzbiomasse
- Molekularbiologische Analyse der mikrobiellen Diversität mittels PCR/DGGE-Analytik und Sequenzanalyse

3.3.3 Einfluss von Benazolin und Benzo[a]pyren auf die an den Umsatz-Prozessen von Maisstroh beteiligten mikrobiellen Gemeinschaften über 150 Tage

In diesem Experiment wurde die Wirkung der eingesetzten Xenobiotika auf die mikrobielle Diversität und pilzliche Biomasse im nativen mit Maisstroh angereicherten Boden analysiert. Sowohl Benazolin als auch Benzo[a]pyren wurden in einer Konzentrationen von 200 mg kg$^{-1}$ eingesetzt. Die Inkubation erfolgte über 150 Tage.

Versuchsansätze:
- nativer Boden (Kontrolle)

mit Benazolin:
- Kontrolle für die Versuchsreihe mit Benazolin: nativer Boden + Maisstroh + Ethylacetat
- nativer Boden + Maisstroh + 200 mg kg$^{-1}$ Benazolin

mit Benzo[a]pyren (BaP):
- Kontrolle für die Versuchsreihe mit Benzo[a]pyren: nativer Boden + Maisstroh + Toluol
- nativer Boden + Maisstroh + 200 mg kg$^{-1}$ Benzo[a]pyren

Durchgeführte Analytik:
- Ergosterolgehalte im Boden
- PCR/DGGE-Analytik für bakterielle 16S und pilzliche 18S rDNA
- Sequenzanalyse der mittels PCR amplifizierten Fragmente
3.4 Analytische und radiochemische Methoden

3.4.1 Mineralisierung von 14C-markiertem Maisstroh

Die Mineralisierung von Maisstroh wurde in aufgesetzten CO$_2$-Fällen (Abbaugefäße, Abbildung 3-1) quantitativ erfasst. Bevor die Fallen entnommen oder ausgetauscht werden, wurden die Abbaugefäße mit Hilfe des seitlichen Glasstutzen mit steril-filtriertem Stickstoff über 5 min gespült. Die CO$_2$-Fälle wurden bis zur Aufarbeitung unter einer Stickstoffatmosphäre in Plastikfolien eingeschweißt. Das in Natronkalk gebundene 14CO$_2$ wurde mit 60 mL 6 N HCl freigesetzt und in 75 mL eines Ethanolamin-Methanol-Gemischs (30:70) wieder sorbiert. Aliquote von 5 mL wurden mit einem Szintillationscocktail (Instant Scint-Gel Plus, Canberra Packard) vermischt und im Flüssigkeits-Szintillationsspektrometer (LSC, Tri-Carb 2500 TR, Canberra Packard) gemessen.

3.4.2 Mikrobielle Aktivität: DMSO-Reduktase-Raten

$$(\text{CH}_3)_2\text{SO} + 2\text{e}^- + 2\text{H}^+ \rightarrow (\text{CH}_3)_2\text{S} + \text{H}_2\text{O}$$

DMSO \hspace{2cm} DMS

Durchführung:

Das durch die mikrobielle Aktivität aus DMSO freigesetzte Dimethylsulfid (DMS) wurde in einem Gaschromatographen von Hawlett-Packard (HP 8590 Series II) mit Flammenionisationsdetektor (GC-FID) gemessen, der mit einer GS-Q Megabore Säule, L = 30 m, Ø = 0,53 mm (Fisions Instrument) ausgerüstet war. Um die erhaltenen Flächenintegrale (HP Integrator) in DMS-Massen umrechnen zu können, wurde vor der Messung mittels DMS eine Kalibrierkurve aufgenommen.
Aus jedem Inkubationsgefäß wurden 5 g Frischboden in zweifacher Wiederholung in luftdicht verschließbare Glasgefäße mit bekanntem Volumen eingewogen. Die Gefäße wurden 8 Minuten bei 40°C im Wasserbad vorinkubiert. Danach wurden die Proben mit 2,0 mL einer 10 % igen DMSO / H2O-Lösung (v/v) versetzt, gasdicht mit Gummisepten verschlossen und für 3 h bei 40°C in einem Wasserbad inkubiert. Anschließend wurden 250 µL aus der Gasphase oberhalb der Bodenprobe mittels einer Hamiltonspritze über das Septum entnommen und direkt in die GC-Säule injiziert. Die gaschromatographische Trennung erfolgte bei einer isokratischen Temperatur von 160°C. Anschließend wurden die Proben bis zur Gewichtskonstanz bei 105°C für mindestens 16 h getrocknet, um die erhaltenen Reduktaseraten auf die Trockenmasse beziehen zu können. Die Angabe der Reduktaserate erfolgte in µg DMS g\(^{-1}\) (Trockenmasse) h\(^{-1}\).

Wenn die Messungen nicht direkt nach der Beprobung erfolgen konnten, wurden die Boden aliquote im Kühlschrank bei max. 4°C bis zu zwei Wochen gelagert.

3.4.3 Bestimmung des Ergosterolgehalts

Die Extraktion wurde nach EASH et al. (1996) mit einigen Modifikationen durchgeführt. Es wurden nur 3 g Boden aufgearbeitet. Anstatt Pentan wurde für die Extraktion des aufgeschlossenen Bodens n-Hexan verwendet, da es eine höhere Flüchtigkeit als Pentan
besitzt und dadurch die Abdampfung bei Raumtemperatur stattfinden konnte. Der Methanol-
Extrakt, der mit HPLC gemessen wurde, wurde nicht filtriert, da die Reinheit des Extraktes
ausreichend war, um den Ergosterolgehalt im Boden mittels HPLC zu bestimmen.

Durchführung:
Bodenaliquote von 3 g wurden in 18 mL kaltem Methanol (-20°C) und 6 ml KOH (4 % KOH,
in 95 % Ethanol, w/v/v) suspendiert, durch Vortexen gemischt und 1 min bei mittlerer
Intensität mit einem Ultraschallstab (Pulsierbetrieb Branson Digital Sonifier 250) beschallt.
Danach wurde die Bodensuspension im Wasserbad bei 85°C über 30 min inkubiert und
anschließend auf Raumtemperatur abgekühlt. Nach einer Zugabe von 5 mL Wasser wurde
eine Vakuum- Filtration (Rundfilter Macherey und Nagel 398) durchgeführt. Anschließend
wurde der Filter mit 5 mL Methanol gewaschen. Das Filtrat wurde mit 5 mL Hexan durch
Vortexen extrahiert. Dieser Schritt wird drei mal wiederholt. Die drei Hexan-Phasen wurden
in ein Glas-Vial (20 mL) überführt, vereinigt und anschließend unter N₂-Strom getrocknet.
Schließlich wurde 1 mL Methanol zugegeben, gemischt und in braune HPLC-Vials überführt.

Quantifizierung des Ergosterol:
Die Quantifizierung des Ergosterol erfolgte über Kalibrierstandards (Sigma) mittels
Hochleistungs-Flüssigchromatographie (HPLC). Aliquote der Ergosterol-Standardlösung und
der Ergosterol-Extrakte von 50 µL wurden bei folgenden HPLC-Bedingungen getrennt:

- HPLC-Säule: LiChropher 60 RP Select-B (Merck)
 Länge 250 mm, Innendurchmesser 4 mm
 Korngröße des Füllmaterials 5 µm
- Vorsäule: Select-B (Merck),
 Länge 4 mm, Innendurchmesser 4 mm
- Säulenofen-Temperatur: 25°C
- Eluent: isokratischen Laufmittelgemisch
 von Acetonitril/Wasser (80:20, v/v)
- Flussrate: 1,2 mL min⁻¹
- Detektion: UV/VIS-Detektor UVD 340, Gynkotek, bei 282 nm
- Retentionszeit des Ergosterol lag bei ca. 25 min.
3.4.4 Bestimmung der 14C-Aktivität im Boden

3.4.4.1 Veraschung von Bodenproben

3.4.4.2 Bestimmung der Wiederfindungsrate des Oxidizers

Vor jeder Benutzung des Oxidizers wurde der Kalibrierfaktor und der Nullwert bestimmt. Zunächst wurden sechs Verbrennungsvorgänge mit jeweils 500-600 mg Cellulose durchgeführt, um die eventuell im Gerät verbliebene 14C-Aktivität zu entfernen. Danach wurden drei Cellulose-Proben (jeweils 500-600 mg) als Nullwert verbrannt und die 14C-Aktivität am LSC vermessens. Nach der Verbrennung der nächsten drei Cellulose-Proben (jeweils 500-600 mg) wurden in die Szintillationsgefäße mit den aufgefangenen Carbosorb- und Permafluor-Lösungen 50 µL eines Verbrunnungsstandards (SPEC-CHECTM-14C, Canberra Packard, spezifische Aktivität $14,2 \pm 3\ %$ kBq mL$^{-1})$ gegeben und die 14C-Aktivität vermessen (direkter Standard). Anschließend wurden drei Cellulose-Proben (jew. 500-600 mg) mit je 50 µL des gleichen Verbrunnungsstandards versetzt und im Oxidizer verbrannt. Die aufgefangene Radioaktivität wurde dann am LSC bestimmt (Recovery). Aus den Werten wurde jeweils der Mittelwert und daraus die Wiederfindungsrate errechnet, die bei allen Verbrennungen mindestens 97 % betrug.

3.4.5 Statistische Analyse

Die Maisstroh-Mineralisierung, DMSO-Reduktase-Rate und Ergosterolgehalte wurden statistisch mittels ANOVA Ein-Wege Varianzanalyse (ORIGIN 6OG Software) analysiert. Eine Ein-Wege Varianzanalyse wird angewendet, wenn ein einzelner Test durchgeführt wird, um herauszufinden, ob zwei oder mehr Grundgesamtheiten den gleichen Mittelwert
aufweisen. Voraussetzungen für diesen Test sind eine Normalverteilung der Daten und eine konstante Varianz.

Die Nullhypothese lautet, dass die Mittelwerte alle gleich sind und die Alternativhypothese, dass die Mittelwerte verschieden sind. Wenn mindestens eine der Mittelwerte sich signifikant von den anderen unterscheidet, wird die Nullhypothese verworfen und die Entscheidungsregeln geben an, dass sich die Mittelwerte signifikant unterscheiden. Anderenfalls wird die Nullhypothese angenommen und die Entscheidungsregel bedeutet, dass sich die Mittelwerte nicht signifikant unterscheiden.

3.5 Molekularbiologische Methoden

3.5.1 Analyse der mikrobiellen Gemeinschaften mittels DGGE von amplifizierten 16S bzw. 18S rDNA Sequenzen

Die in diesem Kapitel beschriebenen molekularbiologischen Methoden umfassen DNA-Extraktion aus Boden, Polymerase-Kettenreaktion (PCR), denaturierende Gradienten Gelelektrophorese (DGGE) zur Abschätzung der mikrobiellen Diversität im mit Xenobiotika behandelten Böden, Klonierung und Sequenzierung zur phylogenetischen Zuordnung der analysierten DNA-Abschnitte.

3.5.1.1 DNA-Extraktion aus Boden und Aufreinigung

3.5.1.2 Polymerase-Kettenreaktion (PCR)

In der Polymerase-Kettenreaktion wurden bestimmte Bereiche der extrahierten und aufgereinigten genomischen DNA durch Einsatz spezifischer Oligonukleotide als Startmoleküle (Primer) für eine thermostabile DNA-Polymerase amplifiziert. Die PCR bestand aus drei Schritten. Zuerst wurde die zu amplifizierende DNA denaturiert, anschließend binden die Primer an komplementäre Sequenzabschnitte auf den DNA-Matrizen (Einzelstränge) und schließlich wurden die 3’-Enden der gebundenen Primer durch eine
thermostabile DNA-Polymerase verlängert. Diese drei Schritte wurden mehrfach wiederholt, bis ausreichende Mengen der amplifizierten DNA-Abschnitte vorliegen. Durch das Einfügen einer ca. 40 bp langen GC-reichen Sequenz („GC-Klammer“) am 5´-Ende eines reverse-Primers, wurde die thermische Stabilität der PCR-Produkte erhöht und damit ein vollständiges Aufschmelzen der DNA während der anschließenden DGGE verhindert (MYERS et al., 1985; SHEFFIELD et al., 1989).

Um eine DNA-Kontamination auszuschließen und die Spezifität der eingesetzten Primer zu überprüfen, wurde jede PCR zusätzlich mit einer negativen (ohne DNA-Zusatz) und wenigstens einer positiven Kontrolle durchgeführt, die aus bestimmter bakterieller und pilzlicher DNA bestand.

Amplifikation der 16S rDNA-Sequenzen

Die Amplifikation der 16S rDNA erfolgte mit zwei in der Literatur mehrfach beschriebenen universellen Primer komplementär zu den Positionen 968 (Primer U968GC) und 1401 (Primer 1401) der 16S rDNA von Escherichia coli, wobei der Primer U968GC zusätzlich am 5´-Ende eine GC-reiche Sequenz enthält. Es wurden ca. 450 bp lange Abschnitte der 16S rDNA, die die variablen Regionen V6 bis V8 beinhalten, mittels der Polymerase-Kettenreaktion amplifiziert (FERRIS et al., 1996; HEUER et al., 1997; ENGELEN et al., 1998; SMALLA et al., 1998; ZOETENDAL et al., 1998; GELSOMINO et al., 1999; PEREIRA et al., 2002; KONSTANTINOV et al., 2003).

Eingesetzte Primer:

U968GC: 5´CGC CCG CGG CGC GCC CCG GCC GGC GGG GCA CGG GGG GAA CGC GAA GAA CCT TAC 3´

L1401: 5´CGG TGT GTA CAA GAC CC 3´

Standardansatz für PCR

10 x Reaktionspuffer 5 µL (ABgene)
(750 mM Tris-HCl, pH 8,8 bei 25°C, 200 mM (NH₄)₂SO₄, 0,1 % (v/v) Tween)
25 mM MgCl₂ 3 µL (ABgene)
20 mM dNTP Mix 2 µL (ABgene)
DMSO 1,5 µL (Sigma)
10 pmol/mL Primer jew. 2,5 µL (MWG Biotech)
Thermo-Start Polymerase (5U/µL) 0,25 µL (ABgene)
DNA-Extrak 0,5 µL
Die PCR-Ansätze wurden mit sterilen hochreinem Wasser (18,2 MΩ cm, Milli-Q 185 Plus, Millipore) auf 50 µL aufgefüllt und über 35 Zyklen im Thermocycler (Techne, Progene) inkubiert.

Temperaturprogramm für die Amplifikation der 16S rDNA-Sequenzen

Aktivieren der Thermo-Start DNA Polymerase 15 min 95°C

1.-35. Zyklus:

Denaturierung 1 min 94°C
Annealing 1 min 54°C
Extension 1 min 72°C

36. Zyklus: 10 min 72°C

Amplifikation pilzspezifischer DNA-Sequenzen

Als Ausgangs-DNA für eine Vervielfältigung bestimmter Fragmenten der pilzlichen 18S rDNA mittels einer Polymerase-Kettenreaktion (PCR) diente die gleiche hochmolekulare genomische DNA wie bei der Amplifikation der 16S rDNA. Die Amplifikation der pilzlichen 18S rDNA-Sequenzen erfolgte mit unterschiedlichen pilzspezifischen Oligonukleotiden, die in der Tabelle 3-4 dargestellt sind. Nach der Vorbereitung der Standardansätze für die PCR wurden diese mit sterilen hochreinem Wasser (18,2 MΩ cm, Milli-Q 185 Plus, Millipore) auf 50 µL aufgefüllt und über eine entsprechende Zyklenzahl im Thermocycler (Techne, Progene) inkubiert. Anschließend wurden die unterschiedlichen PCR-Produkte für die DGGE-Analytik eingesetzt.

Da die beste Auftrennung der 18S rDNA-Fragmente in einem Polyacrylamid-Gel mit dem PCR-Produkt erfolgte, das nach der Amplifikation mit den Primern nach May et al. (2001) gewonnen wurde, wurden diese Nukleotide für weitere Analysen der pilzlichen Diversität im Boden ausgewählt. Der vorwärts-Primer NS1 liegt in der Position 20-38 von *Saccharomyces cerevisiae* (GenBank Nr. J01353) und wurde für die PCR/DGGE-Analytik um eine 40 bp lange GC-Klammer an der Position 5´ verlängert (Muyzer et al., 1993). Da in der Literatur beschrieben wurde, dass der Primer komplementäre Sequenzen auch für einige Pflanzen besitzt (White et al., 1990), wurde die zweite Region von den Autoren viel spezifischer ausgewählt. Der Primer GCFung lagert sich in einem pilzspezifischen Bereich an der Position 351-368 von *S. cerevisiae* an. Die Primer (NS1/GCFung) wurden so selektiert, dass schließlich ein Fragment von 350 bp amplifiziert wurde, dessen Länge wegen der optimalen
Auflösung des PCR-Produktes in der DGGE nach Myers et al. (1987) am besten für diese Analytik geeignet war.

Tabelle 3-4 Verwendete Primer zur Amplifikation von pilzlicher 18S rDNA aus Boden (unterstrichene Sequenz bezeichnet jeweils die GC-Klammer)

<table>
<thead>
<tr>
<th>Primer Bezeichnung</th>
<th>5’-3’ Sequenz</th>
<th>PCR-Produkt-Länge [bp]</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>forward-Primer: FF2</td>
<td>GGT TCT ATT TTG TTG GTT TCT A</td>
<td>425</td>
<td>ZHOU et al., 2000</td>
</tr>
<tr>
<td>reverse-Primer: FR1+GC</td>
<td>CCC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GCC GCT TCT AAC TGA TCA ATC CTT ATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>forward-Primer: NS1</td>
<td>GTA GTC ATA TGC TTG TCT C</td>
<td>1650</td>
<td>VAINIO und HANTULA, 2000</td>
</tr>
<tr>
<td>reverse-Primer: FR1-1+GC**</td>
<td>CCC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GCC GAI CCA TTC AAT CGG TAI T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nested PCR: Primer für die erste PCR: forward-Primer: EF4f</td>
<td>GGA AGG G[G/A]T GTA TTT ATT AG</td>
<td>530</td>
<td>ELSAS VAN et al., 2000</td>
</tr>
<tr>
<td>reverse-Primer: Fung5r</td>
<td>GTA AAA GTC CTG GTT CCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer für die zweite PCR: forward-Primer: NS2f</td>
<td>GGC TGC TGG CAC CAG ACT TGC</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>reverse-Primer: Fung5r+GC</td>
<td>CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG GGT AAA AGT CCT GGT TCC C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>forward-Primer: NS1</td>
<td>GTA GTC ATA TGC TTG TCT C</td>
<td>350</td>
<td>MAY et al., 2001</td>
</tr>
<tr>
<td>reverse-Primer: GCFung</td>
<td>CGC CCG CCG CGC CCC CCG CCC CAT TCC CCG TTA CCC GTT G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vorbereitung der PCR-Ansätze mit Primer FF2/FR1+GC (Produktlänge 425 bp)

10 x Reaktionspuffer 5 µL (ABgene)
(750 mM Tris-HCl, pH 8,8 bei 25°C, 200 mM (NH₄)₂SO₄, 0,1 % (v/v) Tween)
25 mM MgCl₂ 3 µL (ABgene)
20 mM dNTP Mix 2 µL (ABgene)
DMSO 1,5 µL (Sigma)
10 pmol Primer FF2, FR1+GC jew. 1 µL (MWG Biotech)
Thermo-Start Polymerase (5U/µL) 0,25 µL (ABgene)
DNA-Extrakt 1,0 µL

Temperaturprogramm für die Amplifikation
Aktivieren der Thermo-Start DNA Polymerase 15 min 95°C
1.-35. Zyklus:
 Denaturierung 1 min 94°C
 Annealing 1 min 52°C
 Extension 2 min 72°C
41. Zyklus: 10 min 72°C

Vorbereitung der PCR-Ansätze mit Primer NS1/FR1-1+GC (Produktlänge 1650 bp)

10 x Reaktionspuffer 5 µL (ABgene)
(750 mM Tris-HCl, pH 8,8 bei 25°C, 200 mM (NH₄)₂SO₄, 0,1 % (v/v) Tween)
25 mM MgCl₂ 3 µL (ABgene)
20 mM dNTP Mix 2 µL (ABgene)
DMSO 1,5 µL (Sigma)
Primer NS1, FR1-1+GC (0,5 µM µL⁻¹) jew. 1 µL (MWG Biotech)
Thermo-Start Polymerase (5U/µL) 0,25 µL (ABgene)
DNA-Extrakt 1,0 µL

Temperaturprogramm für die Amplifikation
Aktivieren von Thermo-Start DNA Polymerase 15 min 95°C
1.-35. Zyklus:
 Denaturierung 1 min 94°C
 Annealing 45 sek. 47°C
Material und Methoden

Extension 3 min 72°C

36. Zyklus: 10 min 72°C

Standardansätze für nested-PCR mit Primer EF4f/Fung5r und NS2f/Fung5r+GC

- erste PCR mit Primer EF4f/Fung5r (Produktlänge 530 bp)
 - 10 x Reaktionspuffer 5 µL (ABgene)
 - (750 mM Tris-HCl, pH 8,8 bei 25°C, 200 mM (NH₄)₂SO₄, 0,1 % (v/v) Tween)
 - 25 mM MgCl₂ 3 µL (ABgene)
 - 20 mM dNTP Mix 2 µL (ABgene)
 - DMSO 1,5 µL (Sigma)
 - 10 pmol Primer EF4f, Fung5r jew. 2,5 µL (MWG Biotech)
 - Thermo-Start Polymerase (5U/µL) 0,25 µL (ABgene)
 - DNA-Extrakt 0,5 µL

Temperaturprogramm für die Amplifikation

Aktivieren der Thermo-Start DNA Polymerase 15 min 95°C
1.-40. Zyklus:
 - Denaturierung 3 min 94°C
 - Annealing 1 min 48°C
 - Extension 2 min 72°C
41. Zyklus: 10 min 72°C

- zweite PCR mit Primer NS2f/Fung5r+GC (Produktlänge 230 bp)

Diese PCR-Ansätze werden analog zur ersten PCR vorbereitet. Als Template dient das erste PCR-Produkt (0,5 µL / Ansatz).

Temperaturprogramm für die Amplifikation mit „Touch-down“- Temperatur-Schema

Aktivieren der Thermo-Start DNA Polymerase 15 min 95°C
2 Zyklen: 1 Min 94°C
1 Min 60°C
1 Min 72°C
2 Zyklen: 1 Min 94°C
1 Min 58°C bis 52°C (2°C pro Schritt, jeweils zwei Zyklen)
1 Min 72°C
letzter Zyklus: 72°C 10 Min
Vorbereitung der PCR-Ansätze mit Primer NS1/GCFung (Produktlänge 350 bp)

<table>
<thead>
<tr>
<th>Material/Reagenz</th>
<th>Menge</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x Reaktionspuffer</td>
<td>5 µL</td>
<td>ABgene</td>
</tr>
<tr>
<td>(750 mM Tris-HCl, pH 8,8 bei 25°C, 200 mM (NH₄)₂SO₄, 0,1 % (v/v) Tween)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 mM MgCl₂</td>
<td>3 µL</td>
<td>ABgene</td>
</tr>
<tr>
<td>20 mM dNTP Mix</td>
<td>2 µL</td>
<td>ABgene</td>
</tr>
<tr>
<td>DMSO</td>
<td>1,5 µL</td>
<td>Sigma</td>
</tr>
<tr>
<td>25 pmol Primer NS1, GCFung</td>
<td>jew. 1 µL</td>
<td>MWG Biotech</td>
</tr>
<tr>
<td>Thermo-Start Polymerase (5U/µL)</td>
<td>0,25 µL</td>
<td>ABgene</td>
</tr>
<tr>
<td>DNA-Extrakt</td>
<td>0,5 µL</td>
<td></td>
</tr>
</tbody>
</table>

Temperaturprogramm für die Amplifikation

Aktivieren der Thermo-Start DNA Polymerase 15 min 95°C

1.-40. Zyklus:

- Denaturierung 1 min 94°C
- Annealing 1 min 50°C
- Extension 3 min 72°C

41. Zyklus: 10 min 72°C

3.5.1.3 Agarose-Gelelektrophorese

Die Polymerase-Kettenreaktion wurde anschließend mittels einer Agarosegelelektrophorese überprüft. Dafür wurde Agarose in der Konzentration von 1 % (w/v) in 1 x TAE-Puffer (40 mM Tris, 20 mM Essigsäure, 1 mM EDTA, pH 8,0) in einer Mikrowelle geschmolzen. Nach dem Abkühlen wurden 3 µL Ethydiumbromid auf 100 mL des Gels zugegeben und die Agarose in eine horizontale Gelelektrophoresekammer gegossen. Nachdem die Agarose erstarrt war, wurden jeweils 8 µL PCR-Produkt mit 3 µL Probenauftragspuffer (50 mM EDTA, 15 % Ficoll 400 (w/v), 0,25 % Bromphenolblau (w/v), 0,25 % Xylenolcyanol (w/v), pH 8,0) versetzt und auf das Gel aufgetragen. Nach 60 min Laufzeit bei einer konstanten Stromstärke von 120 mA wurde die Länge der PCR-Produkten anhand eines Molekulargewichtsmarkers (BioRad, EZ Load Precission Molecular Mass Rulers, 50 µL / mL) bestimmt.
3.5.1.4 Quantifizierung von DNA mit „PicoGreen® ds DNA Quantitation Kit“ von Molecular Probes

Durchführung:
Sowohl die Vorbereitung des Standards (Lambda DNA standard) als auch die Durchführung der Messungen erfolgten nach Angaben des Herstellers.
Die gesuchte DNA-Konzentration wurde aus der gemessenen Standardkurve berechnet, die für folgende Lambda-DNA-Konzentrationen vorbereitet wurde:

<table>
<thead>
<tr>
<th>Std-DNA-Menge in µL (Stammlösung: 50 ng/mL)</th>
<th>TE-Puffer-Zugabe in µL</th>
<th>PicoGreen-Lösung-Zugabe in µL</th>
<th>DNA Konzentration in PicoGreen-Lösung in pg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>------ keine ------</td>
<td>2000</td>
<td>2000</td>
<td>Blindwert</td>
</tr>
<tr>
<td>20</td>
<td>1980</td>
<td>2000</td>
<td>250</td>
</tr>
<tr>
<td>40</td>
<td>1960</td>
<td>2000</td>
<td>500</td>
</tr>
<tr>
<td>80</td>
<td>1920</td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>120</td>
<td>1880</td>
<td>2000</td>
<td>1500</td>
</tr>
<tr>
<td>160</td>
<td>1840</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>200</td>
<td>1800</td>
<td>2000</td>
<td>2500</td>
</tr>
</tbody>
</table>
Die vorbereiteten Standards wurden zuerst 2 bis 5 min bei Raumtemperatur inkubiert und anschließend bei einer Anregung von 480 nm und einer Emission von 520 nm in einem Perkin Elmer Fluoreszenzspektrophotometer LS 50 gemessen.

Vorbereitung der Proben:
1. Jeweils 10 µL DNA auf 2 mL mit TE-Puffer ergänzen,
2. 2 mL PicoGreen in TE-Puffer dazu geben,
3. die Messung erfolgt nach 2 bis 5 Minuten Inkubation bei Raumtemperatur unter den gleichen Parametern wie für die Standard-Lösungen.

3.5.1.5 *Denaturierende Gradienten Gelelektrophorese (DGGE)*

DNA-Fragmente gleicher Länge aber verschiedener Nukleotid-Sequenz wurden mittels DGGE aufgetrennt (MYERS et al., 1985). Das Prinzip der DGGE beruht auf der unterschiedlichen Mobilität der Moleküle in einem Polyacrylamid-Gel mit linearen denaturierenden Gradienten. Als denaturierende Reagenzien wurden Harnstoff und Formamid eingesetzt. Aus zwei zuvor hergestellten Acrylamid–Stammlösungen (eine ohne denaturierende Reagenzien (0 %) und eine mit 7 M Harnstoff und 40 % Formamid (v/v) (100 %) in einer 6 bzw. 7 % Acrylamid-Lösung (w/v); Tabelle 3-8) wurden jeweils zwei Arbeitslösungen (mit einer minimalen und einer maximalen Menge des Agens) für die Gradienten-Gele vorbereitet. Nach der Zugabe von 1 mg Ammoniumpersulfat und 1 µL TEMED (SIGMA) pro mL Gellösung wurden die denaturierenden Lösungen in zwei miteinander verbundene Kammern eines Gradientenmischer gegeben (jeweils 12 mL) und anschließend zwischen zwei Glasplatten auf die hydrophile Seite einer GelBond PAG Folie (Cambrex BioScience, Rockland, USA) so gegossen, dass ein vertikaler Gradient des denaturierenden Agens entstand. Die PCR-Produkte wurden 1:1 mit einem Probenauftragspuffer (Tabelle 3-9) gemischt und auf das Gel aufgetragen. Die DGGE wurde unter folgenden Laufbedingungen durchgeführt (Tabelle 3-6 bzw. 3-7):

Tabelle 3-6 Übersicht über die Laufbedingungen der DGGE für 16S rDNA

<table>
<thead>
<tr>
<th>Primer</th>
<th>L1401/U968GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid-Lösung (w/v)</td>
<td>6 %</td>
</tr>
<tr>
<td>Gradient</td>
<td>30-70 %</td>
</tr>
<tr>
<td>Laufzeit</td>
<td>16 h</td>
</tr>
<tr>
<td>Spannung</td>
<td>50 V</td>
</tr>
<tr>
<td>Temperatur</td>
<td>60°C</td>
</tr>
</tbody>
</table>
Für die DGGE-Auftrennung der 18S rDNA-Fragmente wurden die in der Literatur angegebene Laufbedingungen getestet und anschließend experimentell für alle PCR-Produkte bestimmt.

Tabelle 3-7 Übersicht über die Laufbedingungen der DGGE für 18S rDNA

<table>
<thead>
<tr>
<th>Primer</th>
<th>NS1/GC-Fung</th>
<th>FF2/FR1</th>
<th>NS1/FR1</th>
<th>NS2/F5r (nested PCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid-Lösung, % (w/v)</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Gradient, %</td>
<td>15-35</td>
<td>20-45</td>
<td>15-45</td>
<td>35-65</td>
</tr>
<tr>
<td>Laufzeit, h</td>
<td>20</td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Spannung, V</td>
<td>50</td>
<td>80</td>
<td>150</td>
<td>80</td>
</tr>
<tr>
<td>Temperatur, °C</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Tabelle 3-8 Zusammensetzung der Acrylamid-Stammlösungen

<table>
<thead>
<tr>
<th>Stammlösungen für 6 % Acrylamid-Lösung</th>
<th>0 % denat. Lösung</th>
<th>100 % denat. Lösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid (40 %)</td>
<td>15 % (v/v)</td>
<td>15 % (v/v)</td>
</tr>
<tr>
<td>TAE (50 x)</td>
<td>2 % (v/v)</td>
<td>2 % (v/v)</td>
</tr>
<tr>
<td>Formamid (deionisiert)</td>
<td></td>
<td>40 % (v/v)</td>
</tr>
<tr>
<td>Harnstoff</td>
<td></td>
<td>42 % (w/v)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stammlösungen für 7% Acrylamid-Lösung</th>
<th>0 % denat. Lösung</th>
<th>100 % denat. Lösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid (40 %)</td>
<td>17,5 % (v/v)</td>
<td>17,5 % (v/v)</td>
</tr>
<tr>
<td>TAE (50 x)</td>
<td>0,5 % (v/v)</td>
<td>0,5 % (v/v)</td>
</tr>
<tr>
<td>Formamid (deionisiert)</td>
<td></td>
<td>40 % (v/v)</td>
</tr>
<tr>
<td>Harnstoff</td>
<td></td>
<td>42 % (w/v)</td>
</tr>
</tbody>
</table>
Material und Methoden

Tabelle 3-9 Zusammensetzung des Probenauftragspuffers für DGGE

<table>
<thead>
<tr>
<th>Menge, mL</th>
<th>Konzentration in der Lösung, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromphenolblau</td>
<td>0,25</td>
</tr>
<tr>
<td>Xylencyanol</td>
<td>0,25</td>
</tr>
<tr>
<td>Glicerin</td>
<td>7,00</td>
</tr>
<tr>
<td>entionisiertes Wasser</td>
<td>2,50</td>
</tr>
</tbody>
</table>

3.5.1.6 Silberfärbung

Silberfärbung-Lösungen:

- **Fixierlösung:** 10 % Ethanol (v/v)
 - 0,5 % Essigsäure (v/v)
 - 3 x 3 min fixieren
- **Färbelösung:** 0,1 % AgNO₃ (w/v)
 - 10 min färben, anschließend sorgfältig mit Reinstwasser spülen
- **Entwicklungslösung:** 1,5 % NaOH (w/v)
 - 0,15 % Formaldehyd (w/v)
 - 0,01 % NaBH₄ (w/v)
 - 15 bis 20 min entwickeln
- **Stopp-Lösung:** 0,75 % Na₂CO₃ (w/v)
 - dauert 5 bis 10 min

Auswertung der Gele:

Die Auswertung der DGGE-Gele erfolgte mit GelCompare-Software. Mit dem „Pearson coefficient“ wurde die Deckungsgleichheit (Kongruenz) der densitometrischen Kurven bestimmt, die als ganzes verglichen wurden. Jede DGGE-Spur entspricht einer Kurve.
3.5.2 Sequenzanalysen

In den Versuchsansätzen mit Benazolin und Benzo[a]pyren neu entstandene Banden wurden aus den Polyacrylamid-Gelen ausgeschnitten, gereinigt, reamplifiziert und anschließend sequenziert.

3.5.2.1 DNA-Elution aus PAA-Gelen

Die Banden wurden mit einem sterilen Skalpell aus dem Gel ausschnitten, in 1,5 mL Reaktionsgefäße eingesetzt, mit 50 µL Elutionspuffer (vgl. Tabelle 3-10) versetzt und 3 h bei 37°C und 800 U min⁻¹ in einem Thermomixer (Eppendorf) inkubiert. Nach der anschließenden Zentrifugation (1 min bei 12000 x g) wurden 40 µL des Überstandes abgenommen und die DNA mit dem doppelten Volumen Ethanol bei –20°C über Nacht gefällt. Nach der Fällung wurde die DNA 15 min bei 4°C und 24000 x g pelletiert, der Überstand abpipettiert und das Pellet bei 37°C über 10-20 min getrocknet. Anschließend wurde die DNA in 12 µL TE-Puffer (5 mM Tris, pH 7,5, 0,1 mM EDTA) gelöst. Davon 1-2 µL wurden in die PCR eingesetzt.

Tabelle 3-10 DNA-Elutionspuffer

<table>
<thead>
<tr>
<th>Zusammensetzung</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoniumacetat</td>
<td>0,5 mM</td>
</tr>
<tr>
<td>Magnesiumacetat 4 H₂O</td>
<td>10 mM</td>
</tr>
<tr>
<td>EDTA</td>
<td>1 mM</td>
</tr>
<tr>
<td>SDS</td>
<td>0,1 %</td>
</tr>
<tr>
<td>pH</td>
<td>8,0</td>
</tr>
</tbody>
</table>

3.5.2.2 Probenvorbereitung zum Sequenzieren

Die Reamplifikation wurde unter den gleichen Versuchsbedingungen durchgeführt, wie zuvor für die 16S bzw. 18S rDNA. Nach dem Verlauf der Reaktion wurden die Produkte mit QIAquick PCR Purification Kit (QIAGEN, Hilden, Deutschland) nach Angaben des Herstellers gereinigt und anschließend mit Hilfe einer Agarose-Gelelektrophorese überprüft.
Eine direkte Sequenzierung wurde teilweise an der RWTH Aachen durchgeführt und teilweise in Auftrag der Firma MWG Biotech (Ebersberg, Deutschland) gegeben. Die PCR-Produkte, für die keine eindeutige Sequenzierung möglich war, wurden zuerst kloniert und dann sequenziert. Die Klonierung und anschließende Sequenzierung erfolgte nach Protokollen der Arbeitsgruppe von Dr. Arnd Baumann des Instituts für Biologische Informationsverarbeitung (IBI) der Forschungszentrum Jülich, GmbH.

3.5.2.3 Probenvorbereitung zum Klonieren

Reparatur-Reaktion mit DNA Polymerase I (Klenow-Enzym)

Da während der PCR die Struktur des Produktes beschädigt werden kann, wurde eine Reparatur-Reaktion mit dem Klenow-Enzym durchgeführt. Die Polymerase besitzt die Fähigkeit, neue Nukleotide nach Bedarf in die Richtung 3´→5´ anzubauen.

Vorbereitung der Ansätze:

10 x Reaktionspuffer (EcoPol Buffer von BioLabs) 5 µL
(Zusammensetzung: 10 mM Tris-Hcl, pH 7,5; 5 mM MgCl₂; 7,5 mM DTT (Dithiothreitol))
20 mM dNTP (BioLabs) 0,5 µL
Klenow-Enzym (BioLabs) 1 U/µg DNA
Template 20 µL
steriles Wasser bis zum 50 µL nachfüllen

Die vorbereiteten Ansätze wurden bei 37°C über 45 min inkubiert.

DNA-Fällung mit gesättigtem Phenol

Nach der Inkubation wurde gesättigter Phenol im Verhältnis 1:1 zugegeben und 2 min bei maximaler Geschwindigkeit zentrifugiert. Die wässrige Phase wurde abpipettiert und in ein neues Reaktionsgefäß umgefüllt. Das gleiche Volumen an Chloroform wurden zugegeben und 2 min zentrifugiert. Nach Abpipettieren der wässrigen Phase wurden 5 µL 3M LiCl zugegeben, gut durchmischt und zentrifugiert (Fällung). Danach wurde der Überstand mit 150 µL Ethanol (abs.) versetzt und über 40 min bei 15.500 rpm und 4°C zentrifugiert. Anschließend wurde den Überstand abgesaugt, das Pellet getrocknet und in 5 µL TE-Puffer (10 mM Tris, pH 7,4; 1 mM EDTA) resuspendiert.
T4-Polynukleotid-Kinase-Reaktion zum Anfügen der Phosphatgruppen an freie 5'-Enden

Da für den Einbau des analysierten Fragments in einen Vektor an jeder Seite zwei Phosphodiesterbrücken vorhanden sein müssen, wurde vor der Klonierung eine Kinase-Reaktion durchgeführt.

Zu 5 µL DNA in TE-Puffer wurde 10 µL folgendes T4 Polynukleotid-Kinase (PNK)-Reaktionsgemisches zugegeben:

Zusammensetzung des Reaktionsgemisches:

<table>
<thead>
<tr>
<th>T4 PNK Reaktionspuffer (BioLab)</th>
<th>2,0 µL</th>
</tr>
</thead>
</table>

(Zusammensetzung: 70 mM Tris-HCl, pH 7,6; 10 mM MgCl₂; 5 mM Dithiothreitol)

- 10 mM ATP (BioLab) 1,0 µL
- 25 mM MgCl₂ (BioLab) 1,0 µL
- PNK (BioLab) 1,0 µL
- steriles Wasser 5,0 µL

Diese Ansätze wurden 30 min bei 37°C inkubiert. Danach wurde die Kinase durch Erhitzen über 10 min bei 65°C gestoppt. Anschließend wurden die untersuchten Fragmente für die Ligation eingesetzt.

Ligation von DNA-Fragmenten

Mit Hilfe der T4-Ligase wurden analysierte Fragmente mit dem Klonierungsvektor pBluescript SK⁺ (mit EcoRV geschnitten) verknüpft.

Ligationsansätze:

- Vektor DNA (pBluescript SK⁺) (Stratagene) 1,0 µL
- DNA-Fragment 4,0 µL
- Ligationspuffer (BioLab) 1,5 µL

(Zusammensetzung: 50 mM Tris-HCl, 10 mM MgCl₂, 10 mM DDT, 1 mM ATP, 25 µg mL⁻¹ BSA, pH 7,5)

- ATP (10 mM) (BioLab) 0,5 µL
- H₂O 7,0 µL
- T4 DNA Ligase (1U / µL) (BioLab) 1,0 µL

die Ligationsansätze wurden 2 Stunden bei Raumtemperatur inkubiert.
Der Ligationsansatz wurde anschließend mit 100 µL kompetenten E. coli XL1 Blue Zellen (Stratagene, Heidelberg) versetzt und 30 min auf Eis inkubiert. Da bei E. coli nur wenige Zellen zu Transformanten werden, wurde eine Selektion auf die Ampicillin-Resistenz durchgeführt. Dazu wurde das Transformations-Gemisch auf LB-Agarplatten mit Ampicillin ausgestrichen. Die Zusammensetzung des LB-Agar sowie die Ampicillin-Konzentration sind in der Tabelle 8-2 im Anhang beschrieben. Zur Selektion auf positive Klone wurde zusätzlich bei den Konstrukten auch eine blau/weiß-Selektion anhand der β-Galaktosidase-Aktivität mit einem Lactoseanalog X-Gal (5-Brom-4-chlor-3-indolyl-β-D-galactopyranosid, 2 % in Dimethylformamid, 20 µL / 9 cm Platte) und einem Induktor für das Enzym Isopropylthiogalactosid, IPTG (0,5 M), durchgeführt.

Nach ca. 12 Stunden wurden 5 mL LB-Medium (vgl. Tabelle 8-2 im Anhang) mit Ampicillin-Zugabe (100 mg mL⁻¹; 5 µL / Reagenzglas) vorbereitet, jeweils mit einer Einzelkolonie beimpft und über mindestens 6 Stunden in einem Schüttler bei 37°C inkubiert.

Minipräparation von Plasmid-DNA

1,5 mL Kulturflüssigkeit wurde in ein Eppendorfreaktionsgefäß überführt und 1 min bei 14.000 U min⁻¹ bei Raumtemperatur zentrifugiert (Eppendorfzentrifuge). Der Überstand wurde danach dekantiert und das Bakterienpellet in 100 µL der Lösung I (zusammen mit Lösung II und III, Tabelle 8-2 im Anhang) resuspendiert (vortexen). Die Suspension wurde sofort mit 200 µL der Lösung II versetzt und durchmischt (vortexen). Die klare, visköse Lösung wurde anschließend mit 150 µL der Lösung III versetzt, durchmischt (vortexen) und 3 min bei 14.000 U min⁻¹ zentrifugiert.

Zu diesem Zeitpunkt wurde 200 µL Phenol / Chloroform (1 : 1, v/v) in ein sauberes Eppendorfreaktionsgefäß pipettiert. Nach der Zentrifugation wurde die wässrige Phase zu diesem Phenol / Chloroform-Gemisch pipettiert, gut durchmischt (vortexen) und 2 min bei 14.000 U min⁻¹ zentrifugiert. Danach wurde die wässrige Phase in ein neues Eppendorfreaktionsgefäß überführt, in das 200 µL Chloroform vorpipettiert wurden. Die Phasen wurden durchmischt (vortexen) und 1 min bei 14.000 U min⁻¹ bei Raumtemperatur zentrifugiert. Die wässrige Phase wurde wieder in ein sauberes Eppendorfreaktionsgefäß überführt, in das 1 mL Ethanol (abs.) zugegeben und gut durchmischt wurde. Nach der Zentrifugation bei 14.000 U min⁻¹ über 3 min bei Raumtemperatur wurde der Überstand
Material und Methoden

dekantiert und das Nukleinsäurepellet mit 200 µL 70 % Ethanol gewaschen (vortexen). Nach der Zentrifugation (1 min bei 14.000 U min⁻¹) wurde der Überstand abgesaugt und das Pellet maximal 1 min im Ölpumpenvakuum getrocknet. Anschließend wurden die Nukleinsäuren in 20 µL TE-Puffer (10 mM Tris-HCl, 1 mM EDTA, pH 7,4) aufgenommen. Die gewonnenen DNA wurden anschließend mit EcoR1 und HindIII Restriktionsendonukleasen geschnitten. Diese Restriktionsendonukleasen greifen nur an bestimmten Sequenzen an. Die Angriffsorte sind kurze Palindrome, d. h. reverse Verdoppelungen von DNA-Sequenzen. Die EcoR1 Restriktionsendonuklease von *Escherichia coli*-Zellen, erkennt folgende Sequenz:

G/AATTC

CTTAA/G und spaltet sie an den durch Schrägstrich gekennzeichneten Nukleotiden. Die zweite Restriktionsendonuklease Hind III stammt aus *Haemophilus influencae* und erkennt folgende Sequenz:

A/AGCTT

TTCGA/A.

Vorbereitung der Restriktions-Ansätze (insgesamt 15 µL):

<table>
<thead>
<tr>
<th>Reaktionskomponenten</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriktionspuffer NE Puffer (BioLabs)</td>
<td>1,50 µL</td>
</tr>
<tr>
<td>(Zusammensetzung: 50 mM NaCl, 100 mM Tris-HCl, 10 mM MgCl₂, 0,025 % Triton X-100; pH 7,5)</td>
<td></td>
</tr>
<tr>
<td>EcoR I (10 U/µL; BioLabs)</td>
<td>0,15 µL</td>
</tr>
<tr>
<td>Hind III (10 U/µL; BioLabs)</td>
<td>0,15 µL</td>
</tr>
<tr>
<td>Ribonuklease I (10 U/µL; BioLabs)</td>
<td>0,05 µL</td>
</tr>
<tr>
<td>Steriles Wasser</td>
<td>11,15 µL</td>
</tr>
<tr>
<td>DNA-Fragmente</td>
<td>2,00 µL</td>
</tr>
</tbody>
</table>

Die Länge der entstehenden Fragmente wurde mittels Agarose-Gelelektrophorese überprüft. Dafür wurde ein 1,5 % Agarose-Gel in 1xTAE-Puffer (40 mM Tris, 20 mM Essigsäure, 1 mM EDTA, pH 8,0) vorbereitet. 10 µL DNA wurde mit 3 µL Probenauftragspuffer (50 mM EDTA, 15 % Ficoll 400 (w/v), 0,25 % Bromphenolblau (w/v), 0,25 % Xylenocyanol (w/v), pH 8,0) vermischt und auf das Gel aufgetragen, das bereits Ethidiumbromid (3 µL/100 mL Agarose-Lösung) enthält. Die Auftrennung der Fragmente erfolgte bei 100V über 1 h. Die rekombinierte DNA, die die richtigen Fragmente lieferte, diente als Ausgangsmaterial für weitere Bearbeitungsschritte der untersuchten DNA.
Präparation von Plasmid-DNA

50 mL LB-Medium mit Ampicillin-Zugabe (vgl. Tabelle 8-2 im Anhang) wurde mit ca. 50 µL einer Vorkultur beimpft und über Nacht bei 37°C inkubiert. Danach wurde die Kulturfüssigkeit in Falcon-Röhrchen (25 mL) überführt und 10 min zentrifugiert (5.500 U min⁻¹, 4°C). Der Überstand wurde anschließend dekantiert und das Bakterienpellet in 3 mL der Lösung I (vgl. Tabelle 8-2 im Anhang) resuspendiert. Diese Suspension wurde mit 6 mL der Lösung II versetzt und vorsichtig vermischts, bis die Lösung klar war. Die viskose Lösung wurde danach mit 6 mL Lösung III versetzt, durchmischt und 2 min zentrifugiert (5.500 U min⁻¹, 4°C). Der Überstand wurde durch einen Faltenfilter in ein sauberes Falcon-Röhrchen (25 mL) filtriert. Anschließend wurden die Nukleinsäuren durch Mischen mit Isopropanol (im Verhältnis 1:1) ausgefallen und 30 min bei 5.500 U min⁻¹, 4°C zentrifugiert. Der Überstand wurde dekantiert und der Niederschlag in 1,45 mL H₂O (bidest) gelöst. 2,5 mL LiCl (4M) und 50 µL Tris-HCl, pH 7,5 (1 M) wurden zugegeben, gut durchmischt und 3 min. bei 5.500 U min⁻¹, 4°C zentrifugiert. Anschließend wurde der Überstand mit 10 mL Ethanol (abs.) versetzt, gut durchmischt und 10 min bei 5.500 U min⁻¹, 4°C zentrifugiert. Der Überstand wurde dekantiert und der Niederschlag kurz im Ölpumpenvakuum getrocknet. Danach wurde der Niederschlag in 200 µL TE-Puffer (10 mM Tris, pH 7,4; 1 mM EDTA) resuspendiert. Nach einer Zugabe von 2-3 µL RNase (BioLabs) wurde die Mischung in ein Eppendorf-Reaktionsgefäβ überführt und 60 min bei 37°C inkubiert. Anschließend wurde 200 µL Phenol / Chloroform (1 : 1) zugegeben, gut durchmischt und 2 min. bei 15.300 U min⁻¹ in Raumtemperatur zentrifugiert. Die wässrige Phase wurde in ein sauberes Eppendorf-Reaktionsgefäβ pipettiert und die Phenolextraktion wiederholt. Danach wurde die wässrige Phase mit 200 µL Chloroform versetzt, durchmischt und zentrifugiert (1 min bei 15.300 U min⁻¹). Diese Chloroform-Extraktion wurde ebenfalls wiederholt. Die wässrige Phase wurde mit 20 µL LiCl (3 M) und 600 µL Ethanol (abs.) versetzt, durchmischt und zentrifugiert (5 min bei 15.300 U min⁻¹). Der Überstand wurde dekantiert und das Pellet mit ca. 200 µL 70% Ethanol gewaschen und anschließend zentrifugiert (1 min bei 15.300 U min⁻¹). Danach wurde der Überstand abgesaugt, das Pellet max. 1 min im Ölpumpenvakuum getrocknet und anschließend in 100-200 µL TE-Puffer (10 mM Tris-HCl, 1 mM EDTA, pH 7,4) aufgenommen.

Die Länge der Plasmid-DNA wurde mittels Agarose-Gelelektrophorese geprüft. Auf das 1,5% Gel wurden 0,5 µL DNA in 5 µL TE-Puffer (10 mM Tris-HCl, 1 mM EDTA, pH 7,4) mit
2 µL eines Probenauftragspuffers (50 mM EDTA, 15 % Ficoll 400 (w/v), 0,25 % Bromphenolblau (w/v), 0,25 % Xylencyanol (w/v), pH 8,0) aufgetragen. Das Produkt mit der richtigen Länge wurde weiter bearbeitet.

3.5.3 Nichtradioaktive Sequenzierung mittels LI-COR 4200 DNA-Sequencer (MWG Biotech)

Für die nichtradioaktive Sequenzierung wurde zuerst eine PCR nach dem unten angegebenen Schema durchgeführt, wobei pro Reaktion 120 ng Konstrukt eingesetzt wurden. Die Sequenzierprimer wurden auf eine Konzentration von 2 pmol µL⁻¹ eingestellt.

Für den PCR-Voransatz wurden folgende Mengen verwendet:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>120 ng</td>
</tr>
<tr>
<td>Primer (2 pmol/µL)</td>
<td>0,8 µL</td>
</tr>
<tr>
<td>H₂O</td>
<td>6,2 µL</td>
</tr>
<tr>
<td>Gesamt</td>
<td>7,0 µL</td>
</tr>
</tbody>
</table>

Eingesetzte Sequenzier-Primer:

forward-Primer: T3
5´AAT TAA CCC TCA CTA AAG GG 3´

revers-Primer: T7
3´CGG GAT ATC ACT CAG CAT AAT G 3´

Die Sequenzierungsansätze wurden mit Hilfe des Amersham Sequenzierungskits (Bioscience) nach Angaben des Herstellers vorbereitet. Die Terminations-Gemische wurden vor der PCR mit H₂O verdünnt (1 : 1). Danach wurden 1,5 µL des PCR-Voransatzes auf vier PCR-Reaktionsgefäße verteilt, in die anschließend 1,0 µL des Terminations-Gemisches zugegeben wurde.

Temperaturenprotokoll für PCR:

<table>
<thead>
<tr>
<th>Prozedur</th>
<th>Zeit/Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturierung</td>
<td>2 min, 94°C</td>
</tr>
</tbody>
</table>
| Amplifikation (35 Zyklen) | 40 s, 94°C
 | 40 s, 50°C |
| | 1 min, 70°C |

Anschließend wurden die Ansätze auf 4°C abgekühlt und erst vor dem Auftragen auf das Sequenziergel 2 min bei 70°C denaturiert.
Gießen des Sequenziergels

Zusammensetzung der Sequenziergellösung:

- Harnstoff: 21,0 g
- H₂O: 30,5 mL
- DMSO: 0,5 mL
- 10xTBE: 5,0 mL
- PAA (Polyacrylamid): 5,6 mL

Die Mischung wurde bei Raumtemperatur unter Rühren gelöst und anschließend im Ultraschallbad entgas t. Direkt vor dem Gießen wurden 50 µL TEMED und 350 µL frisch angesetztes 10 %-iges APS zugegeben. Nach vorsichtigem Durchmischen wurde diese Gellösung mit Hilfe einer 50 mL Spritze durch ein 0,45 µm Sterilfilter zwischen zwei Glasplatten gefüllt. Das Gel wurde in die Sequenzierapparatur eingespannt und ein Vorlauf von 30 – 45 min durchgeführt. Als Elektrophoresepuffer wurde 1 x TBE-Puffer benutzt. Der Vorlauf und die Elektrophorese erfolgten unter folgenden Bedingungen:

- Spannung: 2200 V, Stromstärke: 50 mA, Leistung: 50 W, Temperatur: 45°C.

3.5.4 Phylogenetische Analyse

Stammbaum umgewandelt, der die verwandtschaftlichen Beziehungen zwischen den Organismen visualisiert.
4 Ergebnisse

Um die biologischen Prozesse zu verfolgen wurden klassische bodenbiologische und molekularbiologischen Methoden verwendet.

4.1 Einfluss unterschiedlicher Benazolin-Konzentrationen auf den Umsatz von Maisstroh

In einem Zeitraum von 6 Wochen wurde das Verhalten der mikrobiellen Gemeinschaften in nativem und gegläutem Boden nach der Applikation des Benazolins in drei Konzentrationen (1, 10 und 50 mg kg\(^{-1}\)) beobachtet (vgl. Kapitel 3.3.1). Während dieser Zeit wurden nach 0, 1, 7, 21 und 42 Tagen die mikrobiellen Aktivitäten anhand der DMSO-Reduktase-Rate, die Mineralisierungsrate von \(^{14}\text{C}\)-markiertem Maisstroh und der aktuelle pH-Wert des Bodens kontrolliert.

4.1.1 Abbau von \(^{14}\text{C}\)-markiertem Maisstroh

Über den gesamten Inkubationszeitraum von 42 Tagen wurde im nativen Boden ein kontinuierlicher Anstieg der Mineralisierung beobachtet, wobei der stärkste Abbau innerhalb der ersten 7 Tage festgestellt wurde. Bereits ab dem ersten Tag nahm die \(^{14}\text{CO}_2\)-Freisetzung in den Ansätzen mit 1, bzw. 10 mg kg\(^{-1}\) Benazolin sowie in den Ansätzen ohne Herbizid-Zugabe schnell zu. In den Varianten mit 50 mg kg\(^{-1}\) Benazolin blieb die Maisstroh-Mineralisierung über die ersten zwei Tage auf gleichem Niveau von ca. 3 % des eingesetzten radioaktiven Maisstrohs und stieg danach an, erreichte jedoch nicht das Niveau der Mineralisierung in allen anderen Versuchsansätzen (Abbildung 4-1). Dementsprechend wurde nach eine Woche die niedrigste Mineralisierung von 9,5 % des radioaktiven Maisstrohs in den Ansätzen mit 50 mg kg\(^{-1}\) Benazolin festgestellt. Der höchste Wert von 14,7 % wurde zugleich in den Ansätzen mit 10 mg kg\(^{-1}\) Benazolin gemessen. Nach 42 Tagen wurde der höchste Maisstroh-Abbau von 21,5 % der applizierten Radioaktivität ebenfalls im Boden mit 10 mg kg\(^{-1}\) Benazolin und der niedrigste Abbau von 15,8 % in Versuchsansätzen mit 50 mg kg\(^{-1}\) Benazolin notiert. Diese Unterschiede wurden mit Hilfe der Ein-Wege ANOVA-Auswertung (vgl. Kapitel 3.4.5) auf dem Signifikanzniveau von 0,05 statistisch bestätigt.
In allen Versuchsansätzen mit geglühtem Boden wurde während der ersten zwei Tage keine Mineralisierung des Maisstrohs beobachtet (Abbildung 4-2). Ansonsten verlief der Abbau ähnlich wie im nativen Boden. In allen Ansätzen (mit 1, 10, 50 mg kg⁻¹ Benazolin und in der Kontrolle ohne Benazolin) wurde nach zwei Tagen ein kontinuierlicher Anstieg der Mineralisierung festgestellt, wobei der stärkste Anstieg bis zum 7. Tag stattfand. In Versuchsansätzen mit 50 mg kg⁻¹ Benazolin wurde im Vergleich zu anderen Ansätzen innerhalb der ersten 4 Tage eine Hemmung des Abbaus festgestellt. Während in Versuchsansätzen mit 1 bzw. 10 mg kg⁻¹ Benazolin und in der Kontrolle ohne Benazolin-Zugabe die Mineralisierung des radioaktiv markierten Maisstrohs im Bereich zwischen 3,6-4,2 % zu diesem Zeitpunkt lag, wurde im Boden mit 50 mg kg⁻¹ Benazolin lediglich 0,7 % des Maisstrohs abgebaut. Nach 42 Tagen wurde ebenfalls in diesen Ansätzen die niedrigste Maisstroh-Mineralisierung von 9,4 % festgestellt. Gleichzeitig erreichte die ¹⁴CO₂-Freisetzung im Boden mit 10 mg kg⁻¹ Benazolin einen maximalen Wert von 13,1 % der applizierten Radioaktivität. Die statistische Auswertung mittels Ein-Wege ANOVA (auf dem Signifikanzniveau von 0,05) deutete ebenfalls auf die signifikanten Unterschiede zwischen den Mineralisierungsraten in den Versuchsansätzen mit 10 und 50 mg kg⁻¹ Benazolin hin.
4.1.2 Mikrobielle Aktivität (DMSO-Reduktase-Raten)

In nativem Boden wurde über den Zeitraum von 42 Tagen wurde in nativem Boden die höchste mikrobielle Aktivität in Versuchsansätzen mit 1 mg kg⁻¹ Benazolin und die niedrigste in der Kontrolle ohne Benazolin-Zugabe beobachtet. Zugleich erreichte die DMSO-Reduktase-Rate im Boden mit 10 mg kg⁻¹ Benazolin höhere Werte als in den Ansätzen mit 50 mg kg⁻¹ Benazolin.

In allen Versuchsansätzen mit nativem Boden wurden die am Tag 0 gemessenen mikrobiellen Aktivitäten (vgl. Abbildung 4-3 und Tabelle 8-5 im Anhang) von durchschnittlich 0,6-0,7 µg DMS g⁻¹ h⁻¹ rasch reduziert und erreichten nach einem Tag durchschnittlich 0,4-0,5 µg DMS g⁻¹ h⁻¹. Danach wurde in allen Bodenproben bis zum 14. Tag ein kontinuierlicher Anstieg der DMSO-Reduktase-Rate festgestellt. Während der nächsten 4 Wochen veränderte sich die mikrobielle Aktivität in den Versuchsansätzen mit 10 bzw. 50 mg kg⁻¹ Benazolin kaum. In den Ansätzen mit 10 mg kg⁻¹ nahm die DMSO-Reduktase-Rate lediglich von 0,79 µg DMS g⁻¹ h⁻¹ auf 0,86 µg DMS g⁻¹ h⁻¹ zu. Im Boden mit 50 mg kg⁻¹ blieb sie dagegen auf gleichem Niveau von durchschnittlich 0,71 µg DMS g⁻¹ h⁻¹. In den Versuchsansätzen mit 1 mg kg⁻¹ und ohne Herbizid-Zugabe wurde nach 14 Tagen eine Senkung und anschließend nach 21 Tagen eine Steigerung der DMSO-Reduktase-Rate bis auf 0,97 µg DMS g⁻¹ h⁻¹ am 42. Tag in den Ansätzen mit 1 mg kg⁻¹ Benazolin bzw. 0,75 µg DMS g⁻¹ h⁻¹ in der Kontrolle beobachtet. Die statistische Auswertung mit Hilfe der ANOVA-Analyse (Signifikanzniveau von 0,05; vgl. Kapitel 3.4.5) zum Vergleich der verschiedenen Versuchsansätze zeigte

Abbildung 4-3 Mikrobielle Aktivität in nativem Boden nach Applikation von Benazolin in drei Konzentrationen (1, 10, 50 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)

In den Versuchsansätzen mit geglühtem Boden (Abbildung 4-4) blieben die DMSO-Reduktase-Raten innerhalb der ersten 7 Tage auf gleichem Niveau von durchschnittlich 0,05 µg DMS g⁻¹ h⁻¹. Nur im Boden mit 1 mg kg⁻¹ Benazolin erreichte die mikrobielle Aktivität nach einer Woche höhere Werte im Vergleich zu anderen Ansätzen von 0,09 µg DMS g⁻¹ h⁻¹. Zwischen dem 7. und 21. Tag stieg die mikrobielle Aktivität unabhängig von der Benazolin-Applikation in allen Ansätzen bis auf ca. 0,2 µg DMS g⁻¹ h⁻¹ am 21. Tag und fiel bis zum Tag 42 wieder auf durchschnittlich 0,15 µg DMS g⁻¹ h⁻¹ ab. In den Versuchsansätzen deutete die ANOVA-Auswertung auf dem Signifikanzniveau von 0,05 auf keine signifikanten Unterschiede hin.
4.1.3 Kontrolle des pH-Wertes in Mikrokosmen über 42 Tage

Der gemessene pH-Wert in nativem bzw. geglühtem Boden (vgl. Abbildung 8-1 bzw. Abbildung 8-2 im Anhang) stieg in allen Versuchsansätzen innerhalb der ersten 7 Tage von 7,5 um bis zu einer pH-Einheit auf 8,5 an, erreichte jedoch am Ende des Versuchszeitraums wieder Werte zwischen pH 7,6 und 7,8. Es wurden keine signifikanten pH-Unterschiede zwischen den verschiedenen Ansätzen beobachtet.

4.2 Einfluss unterschiedlicher Benazolin- und Benzo[a]pyren-Konzentrationen auf die Mineralisierung von 14C-markiertem Maisstroh und die beteiligten mikrobiellen Gemeinschaften

In diesem Versuch wurde das Verhalten der Bodenmikroorganismen gegenüber Benazolin und Benzo[a]pyren analysiert, wobei beide Xenobiotika vor allem im Überschuss, im Vergleich zu realen landwirtschaftlichen Aufwandmengen (Benazolin) bzw. vorkommender landwirtschaftlicher Kontamination (Benzo[a]pyren) auf den Boden appliziert wurden (vgl. Kapitel 3.3.2). Während der Inkubation wurden neben der mikrobiellen Aktivität und der Mineralisierung des 14C-markierten Maisstrohs zusätzlich die Ergosterolgehalte (Pilzbiomasse) im nativen und geglühten Boden gemessen. Eine Wirkung der eingesetzten Fremdstoffe auf die Struktur der mikrobiellen Gemeinschaften wurde mittels molekularbiologischer Methoden untersucht. Es wurden DNA-Fingerprints mittels
Ergebnisse
denaturierender Gradienten-Gelelektrophorese (DGGE) für alle Versuchsansätze erstellt und miteinander verglichen.

4.2.1 Abbau von 14C-markiertem Maisstroh

Über einen Zeitraum von 90 Tagen wurde die Mineralisierung von 14C-markiertem Maisstroh bei gleichzeitiger Anwesenheit von Xenobiotika durch mikrobielle Gemeinschaften im nativen und geglühnten Boden beobachtet.

Bis zum 90. Tag war ein kontinuierlicher Anstieg der Mineralisierung in allen Versuchsansätzen zu verzeichnen, wobei die stärkste Mineralisierung innerhalb der ersten Woche stattfand. In nativem Boden (Abbildung 4-5) wurde nach einer Woche die stärkste Mineralisierung von 14C-markiertem Maisstroh in Kontrollansätzen ohne Benazolin und die schwächste in Versuchsansätzen mit 50 mg kg$^{-1}$ festgestellt. Die 14CO$_2$-Freisetzung betrug nach 7 Tagen in den Kontrollen 22 % der applizierten Radioaktivität (a.R.) und im Boden mit 50 mg kg$^{-1}$ 17,6 % a.R. Diese Tendenz zum stärksten Abbau des Maisstrohs in den Kontrollansätzen und zum schwächsten Abbau in den Versuchsansätzen mit 50 mg kg$^{-1}$ Benazolin wurde bis zur letzten Beprobung erhalten. Dementsprechend betrug am 90. Tag die Mineralisierungsrate in den Kontrollen 36,2 % a.R. und in den Ansätzen mit 50 mg kg$^{-1}$ Benazolin 31,6 % a.R. Zugleich wurden im Boden mit 200 mg kg$^{-1}$ Benazolin 34,4 % des 14C-markierten Maisstrohs mineralisiert. Anschließend wurden diese Messwerte statistisch mit Hilfe Ein-Wege-ANOVA-Analyse ausgewertet. Die Mineralisierung von Maisstroh war in allen Versuchsansätzen am 90. Tag auf dem Signifikanzniveau von 0,05 bedeutend unterschiedlich.
Ergebnisse

Abbildung 4-5 Mineralisierung des 14C-markierten Maisstrohes in nativem Boden nach Applikation von Benazolin in zwei Konzentrationen (50 und 200 mg kg$^{-1}$) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a.R. = applizierte Radioaktivität = 100%)

In allen Versuchsansätzen mit geglühtem Boden wurde, ähnlich wie in nativem Boden, ein kontinuierlicher Anstieg der Mineralisierung des 14C-markierten Maisstrohes (Abbildung 4-6) bis zum Versuchsende beobachtet. Die freigesetzte 14CO$_2$-Menge war jedoch in allen Ansätzen sehr ähnlich, sodass keine Wirkung des in zwei Konzentrationen (50 und 200 mg kg$^{-1}$) eingesetzten Benazolins auf die Mineralisierung festgestellt werden konnte.

Abbildung 4-6 Mineralisierung des 14C-markierten Maisstrohes in geglühtem Boden nach Applikation von Benazolin in zwei Konzentrationen (50 und 200 mg kg$^{-1}$) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a.R. = applizierte Radioaktivität = 100%)
Ergebnisse

In allen Versuchsansätzen mit nativem Boden und Benzo[a]pyren (Abbildung 4-7) erreichten die Mineralisierungsraten über die ersten 4 Tage höhere Werte als in der Kontrolle. Danach war bis zum letzten Tag der Inkubation in Böden mit 50 und 200 mg kg\(^{-1}\) Benzo[a]pyren der stärkste kontinuierliche Abbau von \(^{14}\)C-markiertem Maisstroh zu verzeichnen. In Böden mit 1 mg kg\(^{-1}\) Benzo[a]pyren wurde nach 7 Tagen im Vergleich zu anderen Versuchsansätzen, einschließlich der Kontrolle ohne Benzo[a]pyren, ein Rückgang der Mineralisierungsraten festgestellt. Nach zwei Wochen wurde in Böden mit 50 bzw. 200 mg kg\(^{-1}\) Benzo[a]pyren vergleichbare Menge des \(^{14}\)C-markiertem Maisstrohs (23,3 % bzw. 23,7 % a.R.) mineralisiert. Gleichzeitig betrug die \(^{14}\)CO\(_2\)-Freisetzung in der Kontrolle 19,7 % und im Boden mit 1 mg kg\(^{-1}\) Benzo[a]pyren lediglich 18,3 % der applizierten Radioaktivität. Die niedrigste Mineralisierung wurde in diesen Ansätzen bis zur letzten Beprobung beobachtet. Auch am 90. Tag wurden die höchsten Mineralisierungsraten in den Ansätzen mit 50 bzw. 200 mg kg\(^{-1}\) Benzo[a]pyren erreicht. In diesen Böden wurden 34,2 % bzw. 34,4 % des aktiven Maisstrohs mineralisiert. Zu diesem Zeitpunkt betrug die \(^{14}\)CO\(_2\)-Freisetzung in der Kontrolle 29,4 % und in den Versuchsansätzen mit 1 mg kg\(^{-1}\) Benzo[a]pyren 25,9 % der applizierten Radioaktivität. Die Mineralisierungsraten in allen Versuchsansätzen unterschieden sich auf dem Signifikanzniveau von 0,05 signifikant voneinander (Ein-Wege-ANOVA). Die hohen Standardabweichungen (vgl. Tabelle 8-9 im Anhang) wurden durch die unterschiedliche Entwicklung der Parallelansätze verursacht. Die Tendenz zum stärksten Abbau in den Bodenproben mit 50 und 200 mg kg\(^{-1}\) Benzo[a]pyren und schwächsten Abbau bei 1 mg kg\(^{-1}\) Benzo[a]pyren blieb jedoch in allen Ansätzen erhalten.
Ergebnisse

Abbildung 4-7 Mineralisierung des 14C-markierten Maisstrohes in nativem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg$^{-1}$) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a.R. = applizierte Radioaktivität = 100%)

Im geglühten Boden wurde in allen Versuchsansätzen unabhängig von der dotierten Benzo[a]pyren-Menge der gleiche kontinuierliche Anstieg der Mineralisierungsrate bis zum 90. Tag beobachtet (Abbildung 4-8). Hiermit wurde keine Wirkung des Benzo[a]pyrens auf die Mineralisierung des Maisstrohs festgestellt. Am Versuchsende betrug die 14CO$_2$-Freisetzung in den allen Ansätzen durchschnittlich 26 % der applizierten Radioaktivität.

Abbildungen 4-8 Mineralisierung des 14C-markierten Maisstrohes in geglühtem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg$^{-1}$) (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung; a.R. = applizierte Radioaktivität = 100%)

4.2.2 Mikrobielle Aktivität (DMSO-Reduktase-Raten)

Neben der Mineralisierung des zugegebenen 14C-markierten Strohs wurde die mikrobielle Aktivität im Boden analysiert. Diese wurde über die Bestimmung von DMSO (Dimethylsulfoxid)-Reduktase-Raten über den gesamten Inkubationszeitraum kontrolliert. Innerhalb der ersten zwei Wochen wurde im Vergleich zu anderen Versuchsansätzen mit Maisstroh-Zugabe die niedrigste mikrobielle Aktivität im Boden mit 200 mg kg$^{-1}$ Benazolin beobachtet (Abbildung 4-9). Die Bedeutung der Unterschiede konnte statistisch auf dem Signifikanzniveau von 0,05 (Ein-Wege-ANOVA) bestätigt werden. Danach stieg die DMSO-Reduktase-Rate in diesen Versuchsansätzen rasch an und erreichte am 21. Tag ähnliche Werte wie in der Kontrolle mit Maisstroh ohne Wirkstoff-Zugabe, von 1,55 µg DMS g$^{-1}$ (Trockenmasse) h$^{-1}$. Ein hemmender Benazolin-Effekt wurde zu diesem Zeitpunkt im Boden mit 50 mg kg$^{-1}$ Benazolin beobachtet. In diesen Ansätzen erreichte die DMS-Bildung lediglich 1,31 µg DMS g$^{-1}$ h$^{-1}$. Zwischen dem 21. und 49. Tag wurde ein schwacher Anstieg der mikrobiellen Aktivität in allen Versuchsansätzen festgestellt. Die höchste DMSO-Reduktase-Rate von 1,71 µg DMS g$^{-1}$ h$^{-1}$ wurde am 49. Tag in der Kontrolle gemessen. Gleichzeitig betrug die DMS-Bildung im Boden mit 200 mg kg$^{-1}$ Benazolin 1,66 µg DMS g$^{-1}$ h$^{-1}$. Im Boden mit 50 mg kg$^{-1}$ wurde im Vergleich zu anderen Ansätzen, ähnlich wie am 21. Tag, die niedrigste DMS-Menge von 1,56 µg DMS g$^{-1}$ h$^{-1}$ produziert. Nach 49 Tagen sanken
Ergebnisse

die mikrobiellen Aktivitäten in allen Versuchsansätzen bis auf 1,50 µg DMS g⁻¹ h⁻¹ in der Kontrolle und 1,42 µg DMS g⁻¹ h⁻¹ in Böden mit 50 bzw. 200 mg kg⁻¹ Benazolin am 90. Tag. Die mikrobielle Aktivität in den Versuchsansätzen mit Benazolin und in der Kontrolle mit Maisstroh ohne Benazolin-Zugabe war am Versuchsende bedeutend unterschiedlich (Signifikanzniveau von 0,05; Ein-Wege-ANOVA).

Die mikrobielle Aktivität wurde ebenfalls in den Kontrollansätzen ohne Xenobiotika- und ohne Maisstroh-Zugabe über die 90 Tage untersucht. Nach einem Anstieg der mikrobiellen Aktivität innerhalb der ersten vier Tage wurde am 4. Tag ein maximaler Wert von 0,73 µg DMS g⁻¹ h⁻¹ erreicht. Anschließend sank die DMS-Bildung, im Gegensatz zu anderen Versuchsansätzen mit Maisstroh, auf 0,52 µg DMS g⁻¹ h⁻¹ am 49. Tag und blieb unverändert bis zum 90. Tag.

Abbildung 4-9 Mikrobielle Aktivität in nativem Boden nach Applikation von Benazolin in zwei Konzentrationen (50 und 200 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen jeweils in dreifacher Bestimmung)

In geglühtem Boden wurde über die ersten zwei Wochen in Versuchsansätzen mit 50 bzw 200 mg kg⁻¹ eine höhere mikrobielle Aktivität als in der Kontrolle ohne Benazolin-Zugabe festgestellt. Danach wurde ein hemmender Benazolin-Effekt auf die DMS-Bildung im Boden mit 200 mg kg⁻¹ beobachtet. Am 21. Tag sank die DMSO-Reduktase-Rate in diesem Boden auf 0,22 µg (DMS) g⁻¹ h⁻¹ und erreichte bis zum 90. Tag niedrigere Werte als in den anderen Versuchsansätzen. In der Kontrolle stieg sie dagegen an und erreichte dann, ähnlich wie im Boden mit 50 mg kg⁻¹, 0,3 µg (DMS) g⁻¹ h⁻¹. Bis zum 49. war ein Anstieg der DMSO-Reduktase-Raten in allen Versuchsansätzen zu verzeichnen. Die DMS-Bildung betrug am 49.
Ergebnisse

Tag 0,45 µg (DMS) g⁻¹ h⁻¹ in der Kontrolle und 0,47 µg (DMS) g⁻¹ h⁻¹ im Boden mit 50 mg kg⁻¹ Benazolin bzw. 0,41 µg (DMS) g⁻¹ h⁻¹ in den Ansätzen mit 200 mg kg⁻¹ Benazolin. Anschließend wurde ein schwacher Rückgang der mikrobiellen Aktivität in allen Ansätzen festgestellt. Am Versuchsende wurde im Boden mit 200 mg kg⁻¹ Benazolin lediglich 0,31 µg (DMS) g⁻¹ h⁻¹ produziert. In der Kontrolle und in den Ansätzen mit 50 mg kg⁻¹ Benazolin wurden dagegen vergleichbare mikrobielle Aktivitäten von 0,4 bzw. 0,41 µg (DMS) g⁻¹ h⁻¹ festgestellt (Abbildung 4-10).

Abbildung 4-10 Mikrobielle Aktivität in geglühtem Boden nach der Applikation von Benazolin in zwei Konzentrationen (50 und 200 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen jeweils in dreifacher Bestimmung)

Im nativen Boden mit der zweiten Modellsubstanz Benzo[a]pyren wurde über den gesamten Versuchszeitraum ein Konzentrations-abhängiger Benzo[a]pyren-Effekt festgestellt. Bereits innerhalb der ersten zwei Wochen wurde der stärkste Anstieg der mikrobiellen Aktivitäten in den Versuchsansätzen mit 200 mg kg⁻¹ Benzo[a]pyren verzeichnet. Im Boden mit 50 mg kg⁻¹ Benzo[a]pyren wurde am 14. Tag eine Verminderung der DMS-Bildung festgestellt. Innerhalb der nächsten sieben Tage war diese Senkung viel stärker zu sehen. Bis zum 49. Tag stieg die mikrobielle Aktivität in allen Versuchsansätzen wieder an und erreichte dann die maximalen Werte. In den Kontrollansätzen wurden nur an diesem Tag die höchsten DMS-Werte von durchschnittlich 1,95 µg DMS g⁻¹ h⁻¹ gemessen. Zu diesem Zeitpunkt betrug die DMS-Bildung in den Versuchsansätzen mit 200 mg kg⁻¹ Benzo[a]pyren 1,68 µg DMS g⁻¹ h⁻¹, in Böden mit 1 bzw. 50 mg kg⁻¹ Benzo[a]pyren entsprechend 1,52 und 1,44 µg DMS g⁻¹ h⁻¹. Danach sanken die DMSO-Reduktase-Raten in allen Versuchsansätzen wieder ab. Die
niedrigste mikrobielle Aktivität am 90. Tag wurde in der Kontrolle festgestellt, in der lediglich 1,14 µg DMS g⁻¹ h⁻¹ produziert wurde. Im Boden mit 200 mg kg⁻¹ Benzo[a]pyren betrug die DMS-Bildung dagegen 1,53 µg DMS g⁻¹ h⁻¹. Im Boden mit 1 bzw. 50 mg kg⁻¹ Benzo[a]pyren wurde deutlich weniger DMS produziert. Im Boden mit 1 mg kg⁻¹ erreichte die DMSO-Reduktase-Rate 1,24 µg DMS g⁻¹ h⁻¹ und in den Ansätzen mit 50 mg kg⁻¹ Benzo[a]pyren 1,20 µg DMS g⁻¹ h⁻¹ (Abbildung 4-11).

Nach der Auswertung der Daten mit Hilfe der statistischen Ein-Wege-ANOVA-Analyse war nach 90 Tagen ein signifikanter Unterschied auf dem Signifikanzniveau von 0,05 zwischen den Ansätzen mit 200 mg kg⁻¹ und allen anderen feststellbar.

Abbildung 4-11 Mikrobielle Aktivität in nativem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg⁻¹) (Mittelwerte aus 2 Parallelansätzen jeweils in dreifacher Bestimmung)

Ergebnisse

4.2.3 Einfluss von Benazolin und Benzo[a]pyren auf die Ergosterolgehalte (pilzliche Biomasse) im Boden

Nach einem Anstieg der Ergosterolgehalte innerhalb der ersten Woche wurde bis zum 21. Tag in allen Versuchsansätzen mit nativem Boden und Maisstroh-Zugabe ein schwacher Rückgang des Pilzwachstums festgestellt. Ab dem 21. Inkubationstag war eine signifikante Veränderung der pilzlichen Biomasse zu sehen. In den Versuchsansätzen mit 200 mg kg\(^{-1}\) Benazolin wurde bis zum 49. Tag im Vergleich zu den anderen Ansätzen die Entstehung pilzlicher Biomasse weitgehend gehemmt. Gleichzeitig stieg das Pilzwachstum im Boden mit 50 mg kg\(^{-1}\) Benazolin und in der Kontrolle mit Maisstroh ohne Herbizid-Zugabe an. Während die Ergosterolgehalte in den Versuchsansätzen mit 50 mg kg\(^{-1}\) Benazolin und in der Kontrolle mit Maisstroh ohne Herbizid-Zugabe an. Währing die Ergosterolgehalte in den Versuchsansätzen mit 50 mg kg\(^{-1}\) Benazolin und in der Kontrolle am 49. Tag die Werte über 3,0 µg Ergosterol g\(^{-1}\) Boden (Trockensubstanz) erreichten, wurde in Ansätzen mit 200 mg kg\(^{-1}\) lediglich 1,72 µg Ergosterol g\(^{-1}\) Boden gemessen. Danach veränderten sich die pilzlichen Biomassen in allen Versuchsansätzen bis zum 90. Tag kaum (Abbildung 4-13).

Die pilzliche Biomasse wurde ebenfalls in der Kontrolle ohne Xenobiotika- und ohne Maisstroh-Zugabe bis zum 90. Tag verfolgt. Nach einer Senkung auf 0,59 µg Ergosterol g\(^{-1}\) Boden am 21. Tag blieb der Ergosterolgehalt bis zum Versuchsende auf vergleichbarem, sehr niedrigem Niveau.

Abbildung 4-12 Mikrobielle Aktivität in geglühtem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg\(^{-1}\)) (Mittelwerte aus 2 Parallelansätzen jeweils in dreifacher Bestimmung)
In allen Versuchsansätzen mit gegliedtem Boden wurden über den gesamten Versuchszeitraum sehr niedrige Ergosterolgehalte gemessen (vgl. Tabelle 8-16 im Anhang). Die pilzliche Biomasse nahm in allen Ansätzen erst ab dem 49. Tag zu und am Ende des Versuches erreichte sie ein Maximum von durchschnittlich 0,8 µg Ergosterol g⁻¹ Boden (Trockensubstanz). Es wurde bis zum letzten Inkubationstag keine Wirkung des applizierten Herbizides auf die pilzliche Biomasse festgestellt (Abbildung 4-14).
Nach einer Senkung der Ergosterolgehalte innerhalb der ersten 21 Tage in allen Versuchsansätzen mit nativen Boden und Strohzugabe, sowohl mit Benzo[a]pyren als auch in der Kontrolle ohne Benzo[a]pyren, auf durchschnittlich 1,40 µg Ergosterol g⁻¹ Boden (Trockensubstanz), nahm die pilzliche Biomasse rasch zu und erreichte am 49. Tag in der Kontrolle im Vergleich zu anderen Ansätzen die höchsten Werte von 4,03 µg Ergosterol g⁻¹ Boden. Zu diesem Zeitpunkt betrugen die Ergosterolgehalte in den Ansätzen mit 1 bzw. 50 mg kg⁻¹ Benzo[a]pyren entsprechend 3,27 bzw. 3,29 µg Ergosterol g⁻¹ Boden. Im Boden mit 200 mg kg⁻¹ Benzo[a]pyren wurde dagegen der schwächste Anstieg der pilzlichen Biomasse festgestellt, sodass am 49. Tag lediglich 2,01 µg Ergosterol g⁻¹ Boden gemessen wurde. Danach sanken die Ergosterolgehalte in der Kontrolle mit Maisstroh ohne Xenobiotika auf 3,31 µg Ergosterol g⁻¹ Boden und in den Versuchsansätzen mit 1 mg kg⁻¹ Benzo[a]pyren auf 2,86 µg Ergosterol g⁻¹ Boden. Im Boden mit 50 mg kg⁻¹ Benzo[a]pyren blieb die pilzliche Biomasse bis zum 90. Tag auf einem vergleichbaren Niveau von durchschnittlich 3,24 µg Ergosterol g⁻¹ Boden. In den Ansätzen mit 200 mg kg⁻¹ wurde dagegen ein weiterer Anstieg der Ergosterolgehalte bis auf 2,29 µg Ergosterol g⁻¹ Boden am 90. Tag zu verzeichnen (Abbildung 4-15). Diese pilzliche Biomasse überschritt jedoch nicht die Pilz-Entwicklung in anderen Versuchsansätzen am Versuchsende.
Im geglühten Boden wurden innerhalb der gesamten Inkubationszeit sehr niedrige Ergosterolgehalte im Vergleich zu Versuchsansätzen mit nativem Boden gemessen. Die höchsten Ergosterol-Mengen wurden in diesem Fall in Ansätzen mit 200 mg kg⁻¹ Benzo[a]pyren festgestellt. Während in den Böden mit 1 bzw. 50 mg kg⁻¹ Benzo[a]pyren und in der Kontrolle am 49. Tag eine Senkung der pilzlichen Biomasse auf durchschnittlich 0,22 µg Ergosterol g⁻¹ Boden beobachtet wurde, blieb der Ergosterolgehalt im Boden mit 200 mg kg⁻¹ fast unverändert auf einem höheren Niveau von durchschnittlich 0,48 µg Ergosterol g⁻¹ Boden. Danach stieg das Pilzwachstum in allen Versuchsansätzen bis zum 90. Tag an. Die höchste pilzliche Biomasse wurde weiterhin im Boden mit 200 mg kg⁻¹ festgestellt. Der Ergosterolgehalt betrug in diesen Ansätzen 1,55 µg Ergosterol g⁻¹ Boden. Zu diesem Zeitpunkt wurde in Böden mit 1 bzw. 50 mg kg⁻¹ Benzo[a]pyren entsprechend 0,97 und 0,85 µg Ergosterol g⁻¹ Boden gemessen. Die schwächste Zunahme des Ergosterolgehalts (auf 0,33 µg Ergosterol g⁻¹ Boden) wurde am Versuchsende in den Kontrollansätzen mit Stroh aber ohne Benzo[a]pyren festgestellt (Abbildung 4-16).

Abbildung 4-15 Ergosterolgehalt in nativem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg⁻¹) in µg g⁻¹ Boden (Trockenmasse; Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen)
Ergebnisse

Abbildung 4-16 Ergosterolgehalt in geglühtem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg\(^{-1}\)) in µg g\(^{-1}\) Boden (Trockenmasse; Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen)

4.2.4 Analyse der mikrobiellen Gemeinschaften mittels DGGE von amplifizierten 16S rDNA-Fragmenten

Neben der Mineralisierung von organischem Material und der Bestimmung der mikrobiellen Aktivität zur Aufklärung des Einflusses von Benazolin und Benzo[a]pyren auf die Funktion mikrobieller Gemeinschaften im Boden wurde mit Hilfe der denaturierenden Gradienten-Gelelektrophorese der Einfluss von applizierten Xenobiotika auf die Zusammensetzung der mikrobiellen Gemeinschaften im Boden untersucht. Darüber hinaus wurden die abschließenden DGGE-Gele zum Vergleichen der Bandenmuster in nativem Boden nach 0 und 90 Tagen bzw. in geglühtem Boden nach 14 und 90 Tagen jeweils mit der gleichen Menge von 20 ng DNA beladen.

Die erstellten DGGE-Gele deuteten, unabhängig von der applizierten Benazolin- bzw. Benzo[a]pyren-Konzentration, auf eine zeitliche Veränderung der mikrobiellen Gemeinschaften, sowohl in nativem als auch in geglühtem Boden, hin (vgl. Abbildungen 4-17, 4-18 und Abbildungen 8-7 bzw. 8-8 im Anhang).
Ergebnisse

Abbildung 4-17 Zeitliche Veränderung der DGGE-Bandenmuster in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren am 0. und 90. Tag;

(BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, B50: Ansatz mit 50 mg kg⁻¹ Benazolin, B200, B200/1: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP K1, BaP K2: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, BaP 200/1, BaP200/2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)

Abbildung 4-18 Zeitliche Veränderung der DGGE-Bandenmuster in geglühtem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren nach 14 und 90 Tagen;

(BK, BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, B50: Ansatz mit 50 mg kg⁻¹ Benazolin, B200, B200/1, B200/2: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP K, BaP K1, BaP K2: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, BaP50, BaP50/1, BaP50/2: Ansätze mit 50 mg kg⁻¹ Benzo[a]pyren, BaP 200/1, BaP200/2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Eine Wirkung der applizierten Xenobiotika auf die mikrobielle Diversität wurde erst am 90. Tag festgestellt. Eine Benazolin-Konzentration von 200 mg kg$^{-1}$ rief eine Verminderung der mikrobiellen Vielfalt sowohl in nativem als auch in geglühtem Boden hervor (Abbildung 4-19, 4-20).

Im nativen Boden wurde die Übereinstimmung der erstellten Bandenmuster für den Boden mit 200 mg kg$^{-1}$ (Spure B 200/1 im Abbildung 4-19) mit den Bandenmustern anderer Versuchsansätze kleiner als 80 %. Im Gegensatz dazu verursachte eine Benzo[a]pyren-Konzentration von 200 mg kg$^{-1}$ eine schwache Steigerung der mikrobiellen Diversität. Da diese lediglich in einzelnen neuen Banden zu erkennen war (vgl. Spuren BaP 200/1, BaP 200/2 im Abbildung 4-19), wurde die Übereinstimmung mit anderen Versuchsansätzen zu über 90% gemessen (Abbildung 4-19B).

Im geglühten Boden war der Einfluss der eingesetzten Fremdstoffe auf die mikrobielle Diversität nach 90 Tagen noch stärker ausgeprägt als im nativen Boden (Abbildung 4-20). Die mikrobielle Zusammensetzung im Boden mit 200 mg kg$^{-1}$ (Spure B 200 im Abbildung 4-20) stimmte zu 81 % mit den anderen Versuchsansätzen überein. Auch die mit 50 und 200 mg kg$^{-1}$ Benzo[a]pyren behandelten Böden (Spuren BaP 50/1, BaP 50/2, BaP 200/1 und BaP 200/2
Ergebnisse

im Abbildung 4-20) wiesen eine schwache Übereinstimmung von 85% und weniger zueinander und zu anderen Versuchsansätzen auf.

Abbildung 4-20 (A) DGGE-Bandenmuster in geglühtem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren nach 90 Tagen (90T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(BK: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe
B 50: Ansatz mit 50 mg kg⁻¹ Benazolin,
B200: Ansatz mit 200 mg kg⁻¹ Benazolin,
BaP K: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
BaP 50/1, BaP 50/2: Ansatz mit 50 mg kg⁻¹ Benzo[a]pyren,
BaP 200/1, BaP200/2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)

4.2.5 Amplifikation von 18S rDNA-Abschnitten mit pilzspezifischen Primern

Obwohl die Amplifikation von pilzlicher 18S rDNA mit allen fünf getesteten Primer-Paaren erfolgreich durchgeführt wurde, konnten nicht alle PCR-Produkte mit Hilfe der DGGE aufgetrennt werden.

Die elektrophoretische Auftrennung der DNA-Abschnitte, die mit dem Primer-Paar FF2/FR1 (ZHOU et al., 2000) amplifiziert wurden, resultierte in Bandenmustern, die mit sehr starkem Hintergrund belastet waren, was die weitere Bearbeitung des Gels verhinderte. Die nach der PCR mit den Primern NS1/FR1-1 (VAINIO und HANTULA, 2000) erstellten DNA-Fingerprints bestanden, unabhängig von den eingesetzten Bedingungen, aus sehr schwachen Bandenmustern, was eine objektive Auswertung des Gels störte. Eine Auftrennung der PCR-Produkte, die mittels nested PCR mit den Primern EF4f/Fung5r und NS2f/Fung5rGC nach ELSAS VAN et al. (2000) gebildet wurden, führte zu einem unscharfen Bandenmuster. Die PCR mit den Primern NS1/GCFung nach MAY et al. (2001) führte hingegen zu einem Fingerprint mit optimaler Qualität (Abbildung 4-21 B) und wurde für die weiteren Analysen der pilzlichen DNA verwendet.

Abbildung 4-21 (A) Agarose-Gel der amplifizierten 18S rDNA-Fragmenten von 350 bp Länge mit dem pilzspezifischen Primer-Paar NS1/GCFung; (B) ein Beispiel für die gelektrophoretische Auftrennung (DGGE) der PCR-Produkte;

(MM – EZ Load Precision Molecular Mass Ruler von Bio Rad
M2 – Supperladder-Mid 200 bp Ladder von ABgene)
4.2.6 Analyse der Bodenpilze mittels DGGE von amplifizierten 18S rDNA-Fragmenten

Mit Hilfe der denaturierenden Gradienten-Gelelektrophorese von PCR-Produkten der Boden-Proben wurde der Einfluss von Benazolin und Benzo[a]pyren auf die Zusammensetzung der Bodenpilze untersucht.

Anhand der gewonnenen Bandenmuster für Versuchsansätze mit gegliedtem und nativem Boden nach 90 Tagen konnte kein Einfluss der Xenobiotika auf die Bodenpilze festgestellt werden. In nativem Boden mit 200 mg kg⁻¹ Benazolin (Abbildung 4-22 B, Spure BF 200/2) bzw. 200 mg kg⁻¹ Benzo[a]pyren (Spur BaP F 200/2) war ähnliche Struktur der Bodenpilze wie in der Kontrolle mit Maisstroh, ohne Xenobiotika-Zugabe (K2F) erkennbar.

In gegliedtem Boden waren die Bandenmuster in der Kontrolle mit Maisstroh ohne Xenobiotika-Zugabe (Abbildung 4-22 A, Spuren K1, K2) mit den Banden der Ansätze mit 200 mg kg⁻¹ Benazolin (B 200/1) vergleichbar. In den Parallelansätzen mit 200 mg kg⁻¹ Benazolin (B 200/2) und mit 200 mg kg⁻¹ Benzo[a]pyren (BaP 200/1) waren einige Banden besonders ausgeprägt im Vergleich zu anderen Versuchsansätzen, jedoch eine eindeutige Veränderung der Diversität der Bodenpilze konnte dabei nicht festgestellt werden.

Abbildung 4-22 DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in gegliedtem (A) und nativem (B) Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren nach 90 Tagen (90T):

(K1, K2: Kontrolle mit Maisstroh- und ohne Xenobiotika-Zugabe in gegliedtem Boden, B G 200/1, B G 200/2: Ansatz mit 200 mg kg⁻¹ Benazolin in gegliedtem Boden, BaP G 200/1: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren in gegliedtem Boden, BaP 200/1, BaP200/2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren, K1F, K2F: Kontrolle mit Maisstroh- und ohne Xenobiotika-Zugabe in nativem Boden, B F 200/1, B F 200/2: Ansatz mit 200 mg kg⁻¹ Benazolin in nativem Boden, BaP F 200/1, BaP F 200/2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren in nativem Boden)
Ein Vergleich der Bandenmuster nach 0 und 90 Tagen zeigte eine sehr schwache Veränderung der pilzlichen Struktur über die Zeit. Die gewonnenen Bandenmuster nach 90 Tagen waren im Vergleich zu den Bandenmustern am Tag 0 in einzelne neue Bande angereichert (grüne Pfeile in Abbildung 4-23 A). Nur eine Bande, die in allen Versuchsansätzen am Tag 0 zu sehen war, wurde nach 90 Tagen nicht mehr gefunden (die erste grüne Pfeile in Abbildung 4-23 A). Darüber hinaus waren die Banden nach 90 Tagen mit anderer Intensität als zum Beginn des Versuches ausgeprägt, was vermutlich durch eine größere DNA-Menge verursacht wurde. Die Übereinstimmung der Bandenmuster am 0. und 90. Tag betrug ca. 88% (Abbildung 4-23 B).
Ergebnisse

Abbildung 4-23 (A) Zeitliche Veränderung der DGGE-Bandenmuster der amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren nach 0 (0T) und 90 Tagen (90T); (grüne Pfeile markieren Bandenveränderungen zwischen den 0. und 90. Tag; rote Pfeile markieren neue Bande innerhalb der Bandenmuster nach 90 Tagen); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(K1, K2: Kontrolle mit Maisstroh- und ohne Xenobiotika-Zugabe, B50/1: Ansatz mit 50 mg kg⁻¹ Benazolin, B200/1, B200/2: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP 50/1: Ansatz mit 50 mg kg⁻¹ Benzo[a]pyren, BaP 200/1, BaP200/2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
4.3 Einfluss von Benazolin und Benzo[a]pyren auf die an den Umsatz-Prozessen von Maisstroh beteiligten mikrobiellen Gemeinschaften über 150 Tage

4.3.1 Einfluss von 200 mg kg\(^{-1}\) Benazolin und Benzo[a]pyren auf die Ergosterolgehalte im Boden in einem Zeitraum von 150 Tagen

Der Ergosterolgehalt als Indikator für die Pilzbio masse im Boden wurde in insgesamt sieben Versuchsansätzen untersucht (vgl. Kapitel 3.3.3). Davon waren vier mit Xenobiotika (Benazolin und Benzo[a]pyren, in Parallelansätzen) behandelt, zwei dienten als Kontrolle ohne Xenobiotika aber mit Maisstroh-Zugabe und eine als zusätzliche Kontrolle (nativ), die weder Maisstroh noch Xenobiotika enthielt.

Der Ergosterolgehalt stieg direkt nach Beginn der Inkubation in allen Versuchsansätzen mit Maisstroh an und erreichte nach 49 Tagen einen Maximalwert von ca. 3,7 µg g\(^{-1}\) Boden. Innerhalb der ersten 14 Tage wurde der stärkste Anstieg in den Ansätzen mit Benazolin beobachtet. In diesen Versuchsansätzen wurde bereits am 14. Tag eine Ergosterol-Menge von 3,6 µg g\(^{-1}\) erreicht, die sich bis zum 49. Tag kaum veränderte. In den Ansätzen mit Benzo[a]pyren entwickelte sich die Pilzbio masse innerhalb der ersten zwei Wochen langsamer als in der Kontrolle mit Maisstroh ohne Xenobiotika-Zugabe bzw. in den Ansätzen mit Benazolin. Der Ergosterolgehalt betrug in diesen Mikrokosmen nach 14 Tagen 2,96 µg Ergosterol g\(^{-1}\) Boden. Am 49. Tag wurde jedoch auch in diesem Boden eine mit anderen Versuchsansätzen vergleichbare Ergosterol-Menge festgestellt. Nach 49 Tagen nahm die Pilzbio masse in allen Versuchsansätzen bis zum letzten Inkubationstag kontinuierlich ab. Am 90. Tag waren die Ergosterolgehalte in allen Mikrokosmen noch ähnlich. Danach sank die pilzliche Biomasse am stärksten in den Versuchsansätzen mit Xenobiotika-Zugabe (sowohl mit Benazolin als auch mit Benzo[a]pyren) in denen der Ergosterolgehalt nach 150 Tage einen Wert von 1,4 µg Ergosterol g\(^{-1}\) Boden erreichte. Zu diesem Zeitpunkt wurden in
der Kontrolle mit Maisstroh, ohne Xenobiotika-Zugabe 2,0 µg Ergosterol g\(^{-1}\) Boden gemessen (Abbildung 4-24).

Der Ergosterolgehalt in der zweiten Kontrolle (nativ) ohne Maisstroh- und Xenobiotika-Zugabe veränderte sich kaum über die gesamte Inkubationszeit und blieb durchschnittlich auf dem Anfangsniveau von 0,5 µg g\(^{-1}\) (± ca. 0,1 - 0,2 µg Ergosterol g\(^{-1}\) Boden).

Abbildung 4-24 Ergosterolgehalt in nativem Boden nach Applikation von Benazolin und Benzo[a]pyren jeweils in einer Konzentration von 200 mg kg\(^{-1}\) über 150 Tage; (Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen)

4.3.2 Molekularbiologische Analyse mikrobieller Gemeinschaften im Boden mittels denaturierender Gradienten-Gelelektrophorese (DGGE)

4.3.2.1 *Molekularbiologische Analyse der amplifizierten 16S rDNA-Fragmente*

Abschließend wurden die erstellten Bandenmuster für alle Versuchsansätze nach 90 bzw. 150 Tagen mittels der „Pearson correlation“ (GelCompare-Software) ausgewertet. Da die Bandenmuster sich lediglich in einzelnen Banden unterschieden, wurde eine hohe Übereinstimmung der mikrobiellen Diversität in allen Versuchsansätzen gemessen (Abbildung 4-25 B und 4-26 B). Auf der Abbildung 4-27 wurde die Zusammensetzung der Bodenbakterien nach 90 und 150 Tagen miteinander verglichen, um ihre zeitliche Veränderungen zu erfassen. Da die Ähnlichkeit der Bandenmuster sehr hoch war (über 98%), ließ sich daraus schließen, dass die Entwicklung der Bodenbakterien bereits am 90. Tag einen stabilen Zustand erreichte.
Abbildung 4-25 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentrationen von 200 mg kg⁻¹ nach 90 Tagen (90T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(F1, F2, F3: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 1,2,3; B200/2 1,2,3: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1 1,2,3; BaP200/2 1,2,3: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Ergebnisse

Abbildung 4-26 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentrationen von 200 mg kg⁻¹ nach 150 Tagen (150T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(F1, F2: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 1,2,3; B200/2 1,2,3: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1 1,2,3; BaP200/2 1,2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Abbildung 4-27 (A) Zeitliche Veränderung der DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentration von 200 mg kg⁻¹ nach 90 (90T) und 150 Tagen (150T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(F1: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1, B200/2: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1, BaP200/2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
4.3.2.2 Molekularbiologische Analyse der amplifizierten 18S rDNA-Fragmente

Neben dem Einfluss von Xenobiotika auf die Diversität der Bodenpilze wurde ihre zeitliche Veränderung kontrolliert. Auf der Abbildung 4-30 wurde die Zusammensetzung der Bodenpilze in den Versuchsansätzen nach 90 und 150 Tagen miteinander verglichen. Es wurde dabei festgestellt, dass sich die erstellten Bandenmuster in diesem Fall vor allem in der Intensität der Banden-Muster unterschieden, was vermutlich durch eine größere DNA-Menge am 90. Tag hervorgerufen wurde. Zugleich traten in den Versuchsansätzen nach 90 Tagen nur einzelne Bande auf, die nicht in den Versuchsböden nach 150 Tagen erkennbar waren.
Ergebnisse

Abbildung 4-28 (A) DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentrationen von 200 mg kg\(^{-1}\) nach 90 Tagen (90T); (die aufgetragenen Pfeile bezeichnen Banden mit stärkerer Intensität), (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(F1, F2, F3: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 1,2,3; B200/2 1,2,3: Ansatz mit 200 mg kg\(^{-1}\) Benazolin, BaP200/1 1,2,3; BaP200/2 1,2: Ansatz mit 200 mg kg\(^{-1}\) Benzo[a]pyren)
Ergebnisse

Abbildung 4-29 (A) DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentration von 200 mg kg⁻¹ nach 150 Tagen (150T); (die aufgetragenen Pfeile bezeichnen Banden mit stärkerer Intensität); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(F1, F2: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 1,2,3; B200/2 1,2,3: Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1 1,2,3; BaP200/2 1,2,3: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Ergebnisse

Abbildung 4-30 (A) Zeitliche Veränderung der DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentration von 200 mg kg⁻¹ nach 90 (90T) und 150 Tagen (150T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(F1: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe,
BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
BaPK1, BaPK2: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
B200/1, B200/2: Ansatz mit 200 mg kg⁻¹ Benazolin,
BaP200/1, BaP200/2: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
4.4 Phylogenetische Zuordnung einzelner an Umsatz-Prozessen von Ernterückständen beteiligter Mikroorganismen unter einem Einfluss von Benazolin und Benzo[a]pyren

Mit Hilfe der PCR/DGGE-Analytik wurde festgestellt, dass sich die bakteriellen Gemeinschaften in den Versuchsansätzen mit Xenobiotika nach 90 Tagen Inkubationszeit von den Kontrollansätzen in ihrer Zusammensetzung unterschieden (vgl. Kapitel 4.2.4 und Kapitel 4.3.2.1). Einzelne neue Banden wurden aus den entsprechenden DGGE-Gelen eluiert und nach der DNA-Reamplifikation entweder kloniert und sequenziert oder nur sequenziert.

Im Gegensatz dazu war die Struktur der Bodenpilze in allen Versuchsansätzen mit Maisstroh-Zugabe, unabhängig von den applizierten Xenobiotika-Konzentrationen vergleichbar (vgl. Kapitel 4.2.6 und Kapitel 4.3.2.2). Repräsentative Banden für alle Versuchsansätze mit Maisstroh wurden ebenfalls aus den DGGE-Gelen eluiert und sequenziert. Anschließend wurden die untersuchten Sequenzen mit der NCBI (National Center for Biotechnology Information)-Datenbank (BLAST-N in NCBI, WI; ALTSCHUL et al., 1997) verglichen.

4.4.1 Sequenzanalyse von 16S rDNA-Fragmenten aus Xenobiotika-belastetem Boden nach 90 Tagen Inkubationszeit

Die erstellten Bandenmuster für die Versuchsansätze mit 200 mg kg\(^{-1}\) Benazolin und Benzo[a]pyren nach 90 Tagen der Inkubationszeit deutenen im Vergleich zu anderen Ansätzen auf eine Veränderung der Struktur mikrobieller Gemeinschaften hin. Nach der Reamplifikation der eluierten DNA aus einigen neuen Banden (Abbildung 4-31) wurden die Reamplifikaten mit Hilfe der DGGE erneut aufgetrennt. Dabei wurden entsprechend der Position der Bande im ersten Gel sehr enge denaturierende Gradienten eingesetzt (40 – 50%). Es ergab sich, dass jede ausgeschnittene Bande aus dem ersten DGGE-Gel mit den 30-70% denaturierenden Gradienten neue Bandenmuster bildete (vgl. Abbildung 8-14 im Anhang).

Die aus diesen Gelen eluierten DNA-Fragmente, die positive PCR-Ergebnisse lieferten, wurden weiter bearbeitet und schließlich entweder direkt sequenziert oder bei gemischten Sequenzen zuerst in Plasmide eingebaut (vgl. Kapitel 3.5.2.3) und anschließend sequenziert.

Aus den Bandenmustern für die Parallelansätze mit 200 mg kg\(^{-1}\) Benzo[a]pyren (Spuren BaP 200/1 und BaP 200/2 in der Abbildung 4-31) wurden zuerst jeweils drei Banden ausgeschnitten (BaP1, BaP2, BaP3). Nach der DNA-Elution und DGGE-Auftrennung der Reamplifikaten wurden die dominierenden Banden weiter bearbeitet.
Abbildung 4-31 Ausgeschnittene Banden aus dem erstellten DGGE-Bandenmuster für amplifizierte 16S rDNA-Fragmente nach 90 Tagen Inkubationszeit;

Spurenbezeichnung:
BK: Boden mit Maisstroh, ohne Benazolin-Zugabe (Kontrolle),
BaPK: Boden mit Maisstroh, ohne Benzo[a]pyren (Kontrolle),
B 50: Boden mit 50 mg kg⁻¹ Benazolin,
B 200: Boden mit 200 mg kg⁻¹ Benazolin,
BaP 50/1, BaP 50/2: Boden mit 50 mg kg⁻¹ Benzo[a]pyren,
BaP 200/1, BaP 200/2: Boden mit 200 mg kg⁻¹ Benzo[a]pyren;

Bandenbezeichnung:
BaP1, BaP2, BaP3: ausgeschnittene neue Banden aus den DGGE-Spuren für Versuchsansätzen mit 200 mg kg⁻¹ Benzo[a]pyren,
B1, B2, B3: ausgeschnittene neue Banden aus den DGGE-Spuren für Versuchsansätzen mit 200 mg kg⁻¹ Benazolin

Für die Versuchsansätze mit 200 mg kg⁻¹ Benazolin (B 200) wurden zuerst DNA-Fragmente aus drei Banden (B1, B2, B3) eluiert. Nach einer zweiten gelelektrophoretischen Auftrennung

90
ließen sich jedoch nur vier Banden innerhalb der B1 weiter bearbeiten und sequenzieren. Diese DNA-Fragmente zeigten eine Ähnlichkeit mit den Sequenzen der α- und γ-Proteobacteria. Davon stimmte ein DNA-Fragment (B1.F) zu 99% mit den 16S rRNA-Sequenzen der Gattung *Caulobacter* und *Brevundimonas*, die anderen (Fragment B1.H und B1.I in der Tabelle 4-1) zu 99% bzw. 98% mit den entsprechenden Sequenzen der Gattung *Pseudomonas* und zu maximal 95% mit der Gattung *Xanthomonas* überein.

Tabelle 4-1 Phylogenetische Zuordnung einiger Mikroorganismen, die in Xenobiotika-belastetem Boden nach 90 Tagen Inkubationszeit auftreten. Die analysierten 16S rDNA-Fragmente wurden mit öffentlich verfügbaren Referenzdaten in der NCBI-Datenbank verglichen und dementsprechend zugeordnet (BLAST-N in NCBI, WI; Altschul et al., 1997; Sim=Übereinstimmung der analysierten ribosomalen 16S DNA-Fragmente mit den entsprechenden Sequenzen in der Datenbank in [%]; bp=Länge der sequenzierten DNA-Abschnitten, in Basenpaaren ausgedrückt)

<table>
<thead>
<tr>
<th>Banden-Bezeichnung (erste DGGE, Gradient: 30-70%)</th>
<th>DNA-Fragment-Bezeichnung (zweite DGGE, Gradient: 40-50%)</th>
<th>Klassifikation</th>
<th>Taxon</th>
<th>Accession No. (GenBank*)</th>
<th>Sim [%]</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaP1</td>
<td>A</td>
<td>γ-Proteobacteria</td>
<td>Stenotrophomonas sp. LUP
unclassified Xanthomonadaceae
Stenotrophomonas maltophilia
Stamm: 6B2-1</td>
<td>AY307922
AF513452
A¥445079</td>
<td>97</td>
<td>141</td>
</tr>
<tr>
<td>B</td>
<td>γ-Proteobacteria</td>
<td>uncultured Pseudomonas sp. FTL16
Pseudomonas sp. SV5
Pseudomonas agarici</td>
<td>AF529090
AF251335
DB44005</td>
<td>99
98
98</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>γ-Proteobacteria</td>
<td>γ-Proteobacterium
Stamm: PII GH4.2.G5</td>
<td>A¥162068</td>
<td>97</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>BaP2</td>
<td>D</td>
<td>γ-Proteobacteria</td>
<td>Stenotrophomonas maltophilia
Stamm: e-a1
Stenotrophomonas maltophilia
Stamm: 6B2-1</td>
<td>A¥293471
A¥513452
A¥445079</td>
<td>98
98
98</td>
<td>242</td>
</tr>
<tr>
<td>BaP3</td>
<td>E</td>
<td>β-Proteobacteria</td>
<td>Burkholderia glathei
Burkholderiaceae
Burkholderia sp.
Stamm: LMG1490T
Stamm: GR34</td>
<td>U96935
AJ300694</td>
<td>99
98</td>
<td>431</td>
</tr>
</tbody>
</table>
Ergebnisse

<table>
<thead>
<tr>
<th>Versuchsansatz (nach 90 Tagen)</th>
<th>Banden- Bezeichnung (erste DGGE, Gradient: 30-70%)</th>
<th>DNA-Fragment- Bezeichnung (zweite DGGE, Gradient: 40-50%)</th>
<th>Klassifikation</th>
<th>Taxon</th>
<th>Accession No. (GenBank*)</th>
<th>Sim [%]</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benazolin</td>
<td>B1</td>
<td>F</td>
<td>α-Proteobacteria</td>
<td>unclassified Caulobacteraceae/ Caulobacteraceae/</td>
<td>Bacterium 172-1-3 environmental samples</td>
<td>AJ404648</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brevundimonas nasdae</td>
<td>AB071954</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Caulobacter sp.</td>
<td>AJ227791</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brevundimonas intermedia Stamm: ATCC15262(T)</td>
<td>AJ227786</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td>Bacteria</td>
<td>unclassified Bacteria</td>
<td>unclassified bacterium SM-OTU62 unclassified soil bacterium SO173</td>
<td>AY321266</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td></td>
<td>γ-Proteobacteria</td>
<td>unclassified Pseudomonas sp. FTI216</td>
<td>Pseudomonas sp. SV5</td>
<td>AF529090</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pseudomonas sp. agargici</td>
<td>AF251335</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td></td>
<td>γ-Proteobacteria</td>
<td>unclassified Xanthomonadaceae/ Xanthomonadaceae/</td>
<td>unclassified Xanthomonas group Bacterium LA37</td>
<td>AF513452</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stenotrophomonas maltophilia Stamm: 682-1</td>
<td>AY445079</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stenotrophomonas sp. AHL1</td>
<td>AY379973</td>
<td>95</td>
</tr>
</tbody>
</table>

4.4.2 Sequenzanalyse von 16S rDNA-Fragmenten aus Xenobiotika-belastetem Boden nach 150 Tagen Inkubationszeit

 Auf Grund der erstellten DNA-Fingerprints wurde festgestellt, dass sich die mikrobiellen Gemeinschaften in den Versuchsansätzen mit Benazolin und Benzo[a]pyren zum Versuchsende, ähnlich wie im ersten Experiment, das über 90 Tage dauerte, voneinander sowie von den Kontrollansätzen ohne Xenobiotika in ihrer Zusammensetzung unterschieden. Repräsentative Banden, die diese Veränderungen zeigten, wurden aus den entsprechenden DGGE-Gelen ausgeschnitten (Abbildung 4-32). Nach der DNA-Elution und Reamplifikation wurden diese DNA-Fragmente gelektrophoretisch bei sehr engen denaturierenden Gradienten (45 – 55 %) aufgetrennt, die entsprechend der Position der ausgeschnittenen Banden im ersten Gel (Gradient: 40-70%) eingesetzt wurden. Aus diesen neuen Banden (vgl. Abbildung 8-15 im Anhang) wurden die DNA-Fragmente erneut eluiert und reamplifiziert, wonach die positiven Reamplifikate sequenziert wurden. Die durchgeführte Sequenzanalyse zeigte jedoch, dass alle PCR-Produkte, trotz zusätzlicher gelektrophoretischer Auftrennung...
der 16S rDNA-Fragmente, weiterhin aus gemischten Sequenzen bestanden. Deshalb wurden anschließend die untersuchten DNA-Abschnitte vor dem Sequenzieren erst kloniert. Allerdings ließen sich nur einige davon klonieren und anschließend sequenzieren.

Aus vier spezifischen Banden für die Versuchsansätze mit 200 mg kg⁻¹ Benzo[a]pyren ließ sich nur eine (Bande K, Abbildung 4-32) erfolgreich bearbeiten. Das sequenzierte DNA-Fragment aus dieser Bande stimmte nach dem Vergleich mit der NCBI-Sequenzen-Datenbank zu 99% mit 16S rDNA-Sequenzen der Gattung *Xanthomomas* (γ-Proteobacteria) überein.

In den erstellten DGGE-Bandenmustern für die Versuchsansätze mit 200 mg kg⁻¹ Benazolin waren ebenfalls vier für diese Ansätze spezifische Banden erkennbar. Auch in diesem Fall ließ sich nur eine Bande vollständig bearbeiten. Innerhalb dieser Bande wurden zwei unterschiedliche Sequenzen identifiziert, die der Gattung *Actinobacteria* zugeordnet wurden.

<table>
<thead>
<tr>
<th>Versuchsansatz (nach 150 Tagen)</th>
<th>Banden-Bezeichnung (DGGE-Gradient: 30-70%)</th>
<th>Klassifikation</th>
<th>Taxon</th>
<th>GenBank Accession No.</th>
<th>Sim [%]</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boden (Kontrolle) ohne Xenobiotika, mit Maisstroh-Zugabe und Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>J</td>
<td>Eubacteria</td>
<td>uncultured Eubacterium WD2124 (Umweltpoppen)</td>
<td>AJ292676</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>γ-Proteobacteria</td>
<td>Bacterium Ellin5280</td>
<td>AY234631</td>
<td>97</td>
<td>374</td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>γ-Proteobacteria</td>
<td>uncultured γ-Proteobacterium</td>
<td>AF465652</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>γ-Proteobacteria</td>
<td>Xanthomonadaceae/Xanthomonadales</td>
<td>AY367030</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>γ-Proteobacteria</td>
<td>Stenotrophomonas sp. B50</td>
<td>AY128871</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>γ-Proteobacteria</td>
<td>Stenotrophomonas maltophilia Es2-5</td>
<td>AY408330</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>γ-Proteobacteria</td>
<td>unclassified Stenotrophomonas sp. KL-15-2-22 environmental samples</td>
<td>AY293462</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>γ-Proteobacteria</td>
<td>Stenotrophomonas rhizophila Stamm: e-p17</td>
<td>AY167852</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>Actinobacteria</td>
<td>Microbacterium phyllosphaerae Stamm: SAFR-012</td>
<td>AF423215</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>Bacteria</td>
<td>unclassified soil bacterium 1245-2 environmental samples</td>
<td>AJ177374</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>Actinobacteria</td>
<td>Nocardioideae/uncultured Nocardioideae sp. V46 environmental samples</td>
<td>AJ082063</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>K</td>
<td>Bacteria</td>
<td>unclassified Nocardioideae/phenanthrene-degrading bacterium L31B</td>
<td>AJ009714</td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>
4.4.3 Sequenzanalyse von 18S rDNA-Fragmenten aus Xenobiotika-belastetem Boden nach 150 Tagen Inkubationszeit

Nach einem Vergleich der untersuchten Sequenzen mit den verfügbaren in NCBI-Datenbank wurde festgestellt, dass fast alle 18S rDNA-Abschnitte der Gruppe *Basidiomycota* zugeordnet wurden. Nur vier aus achtzehn möglichen Sequenzen wurden den ribosomalen 18S RNA-Sequenzen der Pilzgruppe *Ascomycota* zugeordnet. Innerhalb der ersten intensiven Bande P1 (vgl. Abbildung 4-34) ließen sich drei DNA-Fragmente (P1.a, P1.b, P1.c) erfolgreich...

Innerhalb der Bande P5 ließen sich vier DNA-Fragmente sequenzieren. Alle vier Sequenzen (P5.a, P5.b, P5.c, P5.d) waren eng verwandt (vgl. Abbildung 4-35) und stimmten zu 100% bzw. 99% mit dem entsprechenden Abschnitt der 18S rDNA der Gattung Cryptococcus (Filobasidiales) und zu 98% vor allem mit den Sequenzen der Gattung Bullera (Tremellales).

97
Ergebnisse

Die zwei eluierten DNA-Fragmente aus der Bande P2.1 unterschieden sich, trotz vergleichbarem Verlauf im DGGE-Gel, in ihrer phylogenetischen Zuordnung von den Sequenzen der Bande P2. Die Übereinstimmung der DNA-Fragmente mit den verfügbaren Sequenzen in NCBI-Datenbank Sequenzen wurde sehr niedrig und erreichte lediglich 97% bzw. 96%. Das Fragment P2.1.a stimmte zu 96% mit dem entsprechenden Fragment der 18S rRNA der Gattung *Rhizoctonia* (*Ceratobasidiaceae*) und das Fragment P2.1.b zu 97% mit den Sequenzen der Gattung *Xerocomus* (*Boletaceae*) bzw. zu 96% mit den Sequenzen der nicht-kultivierbaren *Nidulariales* überein.

Alle Ergebnisse sind ausführlich in der Tabelle 4-3 dargestellt.

Abschließend wurden alle untersuchten Pilz-Sequenzen zusätzlich mit Hilfe der RDP (Ribosomal Database Project)-Datenbank phylogenetisch zugeordnet. Die Resultate sind in der Abbildung 4-34 dargestellt.
<table>
<thead>
<tr>
<th>Banden-Bezeichnung (erste DGGE, Gradient: 10-35%)</th>
<th>DNA-Fragment-Bezeichnung (zweite DGGE, Gradient: 20-30%)</th>
<th>Klassifikation</th>
<th>Taxon</th>
<th>Accession No. (GenBank*)</th>
<th>Sim [%]</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>P1.a</td>
<td>Basidiomycota</td>
<td>unclassified Tremellomycetidae</td>
<td>AY379102</td>
<td>100</td>
<td>288</td>
</tr>
<tr>
<td>Hymenomycetes</td>
<td>Heterobasidiomycetes</td>
<td></td>
<td>uncultured tremellomycete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tremellomycetidae</td>
<td></td>
<td></td>
<td>environmental samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td>AB 001766</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichosporon pullulans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stamm: JCM9886</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td>D12801</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. capitatum</td>
<td></td>
<td>AB072226</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. tafro-miniata</td>
<td></td>
<td>AB072225</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. bisporidii</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td>AB032642</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptococcus macerans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td>AB032628</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptococcus teraeugula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cryptococcus teraeugula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Udeniomyces pannonicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stamm: JCM11145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4-3 Phylogenetische Zuordnung einiger Pilze, die in Xenobiotika-belastetem Boden nach 150 Tagen Inkubationszeit auftraten. Die analysierten 18S rDNA-Fragmente wurden mit öffentlich verfügbaren Referenzdaten in der NCBI-Datenbank verglichen und dementsprechend zugeordnet (BLAST-N in NCBI, WI; Altschul et al., 1997; Sim=Übereinstimmung der analysierten ribosomalen 18S DNA-Fragmente mit den entsprechenden Sequenzen in der Datenbank in [%]; bp=Länge der sequenzierten DNA-Abschnitten, in Basenpaaren ausgedrückt)
<table>
<thead>
<tr>
<th>Banden-Bezeichnung</th>
<th>DNA-Fragment-Bezeichnung</th>
<th>Klassifikation</th>
<th>Taxon</th>
<th>Accession No. (GenBank*)</th>
<th>Sim [%]</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>P1.c</td>
<td>Basidiomycota</td>
<td>Cystofilobasidiales/ mitosporic Cystofilobasidiales/ Lentinomyces pannonicus</td>
<td>AB 072227</td>
<td>98</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heterobasidiomycetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tremellomycetidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Basidiomycota</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hymenomycetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heterobasidiomycetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tremellomycetidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P1.c</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unclassified Tremellomycetidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>un cultured tremellomycete SK2-3 environmental samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tremellomycetidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basidiomycota</td>
<td>Cystofilobasidiales</td>
<td>AY379102</td>
<td>100</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichosporon pullulans</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stamm: JCM9886</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cryptococcus macerans</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. capitatum</td>
<td>D12801</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. infirmominiatum</td>
<td>AB072226</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. bisporidi</td>
<td>AB072225</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cryptococcus feraegula</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unclassified Tremellomycetidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>un cultured tremellomycete SK2-3 environmental samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Udeniomyces pannonicus</td>
<td>AB 072227</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tremellomycetidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2.a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basidiomycota</td>
<td>Cystofilobasidiales</td>
<td>AB 001766</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichodermus pullulans</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stamm: JCM11145</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mrakia frigida</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tremellalese</td>
<td>D12802</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Tremellalese</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bullera grandispora</td>
<td>D78324</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tremellomycetidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2.a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basidiomycota</td>
<td>Cystofilobasidiales</td>
<td>AY379102</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trichosporon pullulans</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stamm: JCM9886</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cryptococcus macerans</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. capitatum</td>
<td>D12801</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. infirmominiatum</td>
<td>AB072226</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. bisporidi</td>
<td>AB072225</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mitosporic Cystofilobasidiales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cryptococcus feraegula</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ergebnisse
<table>
<thead>
<tr>
<th>Banden-Bezeichnung (erste DGGE, Gradient: 10-35%)</th>
<th>DNA-Fragment-Bezeichnung (zweite DGGE, Gradient: 20-30%)</th>
<th>Klassifikation</th>
<th>Taxon</th>
<th>Accession No. (GenBank*)</th>
<th>Sim [%]</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>P3.a</td>
<td>Basidiomycota</td>
<td>unclassified Tremellomycetidae uncultured tremellomycete environmental samples</td>
<td>AY379102</td>
<td>100</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hymenomycetes</td>
<td>Cystofilobasidiales mitosporic Cystofilobasidiales</td>
<td>AB 001766</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterobasidiomycetes</td>
<td>Trichosporon pullulans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tremellomycetidae</td>
<td>Stamm: JCM9886</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales Cystofilobasidiaceae Cystofilobastidium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. capitatum</td>
<td>D12801</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. infirmominutum</td>
<td>AB072226</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C. bisporidii</td>
<td>AB072225</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales mitosporic Cystofilobasidiales</td>
<td>AB072228</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Itersonilia perplexans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales mitosporic Cystofilobasidiales</td>
<td>D31659</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Edentomycetes piricola</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tremellales mitosporic Tremellales</td>
<td>D78324</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bullera grandispora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cystofilobasidiales mitosporic Cystofilobasidiales</td>
<td>AB032642</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cryptococcus macerans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filobasidiales/ mitosporic Filobasidiales/</td>
<td>Cryptococcus terreus</td>
<td>AB 032649</td>
<td>100</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hymenomycetes</td>
<td>Cryptococcus aerius</td>
<td>AB032614</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterobasidiomycetes</td>
<td>Cryptococcus fusceceens</td>
<td>AB032631</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tremellomycetidae</td>
<td>Trichosporonales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cryptococcus fragicola</td>
<td>AB035588</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cryptococcus sp. HB 82</td>
<td>AJ496261</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cryptococcus sp. HB 81</td>
<td>AJ496260</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tremellales mitosporic Tremellales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bullera sp. TY 279</td>
<td>AY313034</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bullera sp. TY 254</td>
<td>AY313033</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Banden-Bezeichnung (erste DGGE, Gradient: 10-35%)</td>
<td>DNA-Fragment-Bezeichnung (zweite DGGE, Gradient: 20-30%)</td>
<td>Klassifikation</td>
<td>Taxon</td>
<td>Accession No. (GenBank*)</td>
<td>Sim [%]</td>
<td>bp</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P3</td>
<td>P3.c</td>
<td>Ascomycota</td>
<td>uncultured Ascomycete environmental samples</td>
<td>AB 074653</td>
<td>97</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mitosporic Ascomycota Hyphozyma variabilis var. odora</td>
<td>AJ496240</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>uncultured soil Ascomycete environmental samples</td>
<td>AJ515948</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>uncultured soil Ascomycete</td>
<td>AJ515936</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>uncultured soil Ascomycete</td>
<td>AJ515165</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fungi</td>
<td>uncultured fungus environmental samples</td>
<td>AJ311482</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>P5.a</td>
<td>Basidiomycota</td>
<td>Filibasidiales/mitosporic Filibasidiales/ Cryptococcus terreus</td>
<td>AB 032649</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hymenomycetes</td>
<td>Cryptococcus terreus</td>
<td>AB 032614</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterobasidiomycetes</td>
<td>Cryptococcus fuscescens</td>
<td>AB032631</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tremellomycetidae</td>
<td>Tremella mitosporic Tremella Bullera sp., TY 279</td>
<td>AY313034</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bullera sp., TY 254</td>
<td>AY313033</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichosporonales</td>
<td>Cryptococcus fragicola</td>
<td>AB035588</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>P5.b</td>
<td>Basidiomycota</td>
<td>Filibasidiales/mitosporic Filibasidiales/ Cryptococcus terreus</td>
<td>AB 032649</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hymenomycetes</td>
<td>Cryptococcus terreus</td>
<td>AB 032614</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterobasidiomycetes</td>
<td>Cryptococcus fuscescens</td>
<td>AB032631</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tremellomycetidae</td>
<td>Trichosporonales Cryptococcus fragicola</td>
<td>AB035588</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tremella mitosporic Tremella Bullera sp., TY 279</td>
<td>AY313034</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bullera sp., TY 254</td>
<td>AY313033</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bullera sp., TY 244</td>
<td>AY313031</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>P5.c</td>
<td>Basidiomycota</td>
<td>Filibasidiales/mitosporic Filibasidiales/ Cryptococcus terreus</td>
<td>AB 032649</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hymenomycetes</td>
<td>Cryptococcus terreus</td>
<td>AB 032614</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterobasidiomycetes</td>
<td>Cryptococcus fuscescens</td>
<td>AB032631</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tremellomycetidae</td>
<td>Trichosporonales Cryptococcus fragicola</td>
<td>AB035588</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tremella mitosporic Tremella Bullera sp., TY 279</td>
<td>AY313034</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bullera sp., TY 254</td>
<td>AY313033</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bullera sp., TY 244</td>
<td>AY313031</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bullera anomala</td>
<td></td>
<td>AF453291</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Banden-Bezeichnung (erste DGGE, Gradient: 10-35%)</td>
<td>DNA-Fragment-Bezeichnung (zweite DGGE, Gradient: 20-30%)</td>
<td>Klassifikation</td>
<td>Taxon</td>
<td>Accession No. (GenBank*)</td>
<td>Sim [%]</td>
<td>bp</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P5</td>
<td>P5.d</td>
<td>Basidiomycota</td>
<td>Filobasidiales mitosporic Filobasidiales</td>
<td>Cryptococcus terreus</td>
<td>AB 032649</td>
<td>100</td>
</tr>
<tr>
<td>Hymenomycetes</td>
<td>Cryptococcus aerius</td>
<td>AB 032614</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterobasidiomycetes</td>
<td>Cryptococcus fuscescens</td>
<td>AB032631</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tremellomycetidae</td>
<td>Trichosporonales</td>
<td>Cryptococcus fragicola</td>
<td>AB035588</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tremellales mitosporic Tremellales</td>
<td>Bullera sp. TY 279</td>
<td>AY313034</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bullera sp. TY 254</td>
<td>AY313033</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bullera sp. TY 244</td>
<td>AY313031</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1.1</td>
<td>P1.1.a</td>
<td>Fungi</td>
<td>unclassified Fungi</td>
<td>SM-FG-OTU14</td>
<td>AY321702</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>unclassified Pleosporales</td>
<td>environmental samples</td>
<td>AY379109</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ascomycota</td>
<td>Pleosporales</td>
<td>unclassified Pleosporales SK4-9</td>
<td>AY392129</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pezizomycotina</td>
<td>unclassified Dothideomycetes</td>
<td>environmental samples</td>
<td>AY392129</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dothideomycetes</td>
<td>Pleosporales</td>
<td>Pleosporaceae</td>
<td>AY293776</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pleospora sp.</td>
<td>Fh4</td>
<td>AY293774</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>unclassified Dothideomycetes</td>
<td>Dothideomycte sp. G6IC406</td>
<td>AY293772</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ascomycota</td>
<td>mitosporic Ascomycota</td>
<td>Phoma</td>
<td>AY293783</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P. glomerata, Stamm: ATCC 36804</td>
<td>AY293778</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P. herbarum, Stamm: ATCC 12569</td>
<td>AY293776</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phoma sp. 203</td>
<td>AY293773</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phoma sp. 201</td>
<td>AY293774</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>P1.1.b</td>
<td>Ascomycota</td>
<td>Endomycetaceae</td>
<td>Endomyces spongolarum</td>
<td>AF 267227</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saccharomycotina</td>
<td>Saccharomycetales</td>
<td>Stamm: NRRL Y-117633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ascomycota</td>
<td>mitosporic Coniochaetaeae</td>
<td>Lecythophora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pezizomycotina</td>
<td>L. mutabilis</td>
<td>CBS157.44T</td>
<td>AJ496247</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sordariomycetes</td>
<td>L. lignicola</td>
<td>CBS245.38T</td>
<td>AJ496246</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sordariomycetidae</td>
<td>L. hoffmannii</td>
<td>CBS245.38T</td>
<td>AJ496245</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sordariales</td>
<td>Coniochaetaeae</td>
<td>Coniochaeta vellutina MA 3370</td>
<td>AJ496244</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coniochaeta ligniaria</td>
<td>AY198389</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Banden- Bezeichnung (erste DGGE, Gradient: 10-35%)</td>
<td>DNA-Fragment- Bezeichnung (zweite DGGE, Gradient: 20-30%)</td>
<td>Klassifikation</td>
<td>Taxon</td>
<td>Accession No. (GenBank*)</td>
<td>Sim [%]</td>
<td>bp</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P1.1</td>
<td>P1.1.c</td>
<td>Ascomycota</td>
<td>uncultured soil Ascomycetes s20-62</td>
<td>AJ515946</td>
<td>99</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ascomycota</td>
<td>Endomycetaceae</td>
<td>AF267227</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saccharomycotina</td>
<td>Endomyces scopularum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saccharomycetes</td>
<td>Stamm: NRRL Y-17633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ascomycota</td>
<td>Coniochaetaceae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pezizomycotina</td>
<td>L. holmii</td>
<td>AJ496244</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sordariomycetes</td>
<td>L. mutabilis</td>
<td>AJ496246</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sordariomycetidae</td>
<td>L. lignicola</td>
<td>AJ496246</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS267.33T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coniochaetales</td>
<td>Coniochaeta velutina</td>
<td>MA3370</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3369</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chaetomiaceae</td>
<td>L. lignicola</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3368</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS157.33T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496246</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AJ496244</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MA3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CBS245.38T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abbildung 4-34 Phylogenetische Zuordnung der Teilsequenzen der Bodenpilze, die in Xenobiotika-belastetem Boden nach 150 Tagen Inkubationszeit auftraten (RDP-Datenbank).
5 Diskussion

5.1 Diskussion der einzelnen Versuchsabschnitte

5.1.1 Einfluss der unterschiedlichen Wirkstoffkonzentrationen des Herbizids Benazolin auf den Umsatz von Maisstroh durch mikrobielle Gemeinschaften im Boden

Neben dem kontinuierlichen Anstiegs der ¹⁴CO₂-Entwicklung in allen Versuchsansätzen über die gesamte Inkubationszeit, wurde eine konzentrationsabhängige Wirkung des Benazolins
Diskussion

Die mikrobielle Aktivität erreichte in allen Versuchsansätzen mit Benazolin bis zum Versuchsende höhere Werte im Vergleich zu Kontrolle. Dabei wurden im Boden mit 1 mg kg⁻¹ Benazolin höhere DMSO-Reduktase-Raten als in den Ansätzen mit 10 mg kg⁻¹ Benazolin ermittelt, obwohl in den letzten die stärkste Maisstroh-Mineralisierung festgestellt wurde. Interessanterweise wurden die mikrobiellen Aktivitäten in den Ansätzen mit 10 bzw. 50 mg kg⁻¹ Benazolin nach drei Wochen deutlich gehemmt im Vergleich zu den anderen Versuchsansätzen. Diese Herbizid-Effekte können auf einen Biomasse-Verlust zurückgeführt werden (MALKOMES, 1988; MALKOMES, 1999; BERGER und HEITEFUSS, 1991) und bestätigten hiermit die Rückschlüsse aus dem Mineralisierungsverlauf. In geglühtem Boden wurde neben einer Zunahme der mikrobiellen Aktivität in den Ansätzen mit 1 mg kg⁻¹ Benazolin innerhalb der ersten Woche kein weiterer Effekt erkannt.

Aus den durchgeführten Analysen lässt sich schließen, dass die Wirkung des Benazolins vor allem konzentrationsabhängig war. Während die niedrigen Konzentrationen die Mineralisierungsprozesse von Maisstroh sowie die mikrobielle Aktivität im Boden
stimulierten, beeinträchtigten hohe Konzentrationen vor allem die Mineralisierungsprozesse im Boden. Der vergleichbare Verlauf der Mineralisierung in nativem und geglühtem Boden unterstrich noch diese beschriebene Wirkung des Benazolins.

5.1.2 Einfluss von verschiedenen Benazolin und Benzo[a]pyren Konzentrationen auf die Mineralisierung von \(^{14} \text{C} \)-markiertem Maisstroh und die daran beteiligten mikrobiellen Gemeinschaften über 90 Tage

In diesem Experiment wurde der Einfluss von zwei Modellsubstanzen (Benazolin und Benzo[a]pyren) in verschiedenen Konzentrationen auf die mikrobiellen Gemeinschaften untersucht, die am Umsatz von Maisstroh über einen Zeitraum von 90 Tagen beteiligt waren. Die Mineralisierung des Maisstrohs im nativen Boden mit Benazolin bestätigte die Ergebnisse aus dem Vorversuch (vgl. Kapitel 3.1). Die Tendenz zum verringerten Abbau in den Ansätzen mit hohen Benazolin-Konzentrationen wurde ebenfalls in diesem Experiment aufgezeichnet. Im Gegensatz zu ANDERSON (1978), der eine Beeinträchtigung des Abbau organischer Materials nur durch sehr hohe Herbizid-Konzentrationen (über 100 mg kg\(^{-1}\)) feststellte, wurde allerdings in diesem Versuch zum Maisstroh-Abbau eine Beeinträchtigung der Prozesse sowohl durch eine Konzentration von 200 mg kg\(^{-1}\) als auch durch 50 mg kg\(^{-1}\) Benazolin beobachtet. In den Versuchsansätzen mit Benzo[a]pyren-Konzentrationen von 50 bzw. 200 mg kg\(^{-1}\) wurden dagegen die mikrobiellen Gemeinschaften zur intensiveren Mineralisierung des Pflanzenmaterials angeregt. Zugleich wurde es nicht möglich, einen eindeutigen Rückschluss aus den Abbau-Verläufen in der Kontrolle und in den Ansätzen mit 1 mg kg\(^{-1}\) Benzo[a]pyren zu ziehen, da die unterschiedliche Entwicklung der Bodenmikroorganismen in den Parallelansätzen starke Standardabweichungen der Messwerte verursachte.

In allen Versuchsansätzen mit geglühtem Boden, sowohl mit Benazolin als auch mit Benzo[a]pyren, wurde ähnlich wie in nativem Boden ein kontinuierlicher Anstieg der Mineralisierungsraten beobachtet. Die \(^{14} \text{CO}_2 \)-Bildung war jedoch in allen Versuchsansätzen mit geglühtem Boden vergleichbar, sodass eine Wirkung der eingesetzten Xenobiotika auf die Maisstroh-Mineralisierung in diesem Boden nicht festgestellt werden konnte (vgl. Abbildung 4-6 und 4-8).

Die DMSO-Reduktase-Rate wurde im nativen Boden mit 50 mg kg⁻¹ Benazolin über den gesamten Versuchszeitraum im Vergleich zu Kontrolle gehemmt, was sich mit der niedrigen Mineralisierungsrate in diesem Boden deckte. In den Ansätzen mit 200 mg kg⁻¹ wurden vor allem über die ersten zwei Wochen ein hemmender Effekt des Benazolins auf die mikrobielle Aktivität beobachtet. Nach einem Anstieg der DMSO-Reduktase-Rate auf mit der Kontrolle vergleichbare Werte, wurde ab dem 21. Tag wieder ein Rückgang der mikrobiellen Aktivität bis zum Versuchsende festgestellt. Die kurz dauernde starke Zunahme der DMS-Bildung bis zum 21. Tag beeinflusste jedoch nicht die ¹⁴CO₂-Entwicklung aus dem Maisstroh-Abbau.

Im Gegensatz zu nativem Boden wurde über die gesamte Inkubationszeit in allen Versuchsansätzen mit geglähtem Boden eine vergleichbare DMS-Menge gemessen, sodass eine Wirkung der Xenobiotika auf die mikrobielle Aktivität, ähnlich wie bei der Mineralisierungs­raten, nicht festgestellt werden konnte.
Der stärkste Einfluss der unterschiedlichen Xenobiotika-Konzentrationen war bei den Ergosterolgehalten im nativen Boden nach 21 Tagen zu verzeichnen (vgl. Abbildung 4-13 und 4-16). Bis dahin wurde in allen Versuchsansätzen, unabhängig von der Xenobiotika-Zugabe, eine Verminderung der Pilz-Biomasse festgestellt. Dieses könnte durch eine, im Vergleich zu Prokaryoten längere Generationszeit der Eukaryoten hervorgerufen wurden. Da zugleich die mikrobielle Aktivität und die Mineralisierungsraten in diesen Versuchsansätzen stiegen, lässt sich daraus schließen, dass die Bodenpilze erst in späteren Stadien des Maisstroh-Abbaus wegen ihrer enzymatischen Fähigkeiten eine wesentliche Rolle spielten (GISI, 1990; BRODER und WAGNER, 1988). Während der Ergosterolgehalt nach 21 Tagen in den Versuchsansätzen mit 50 mg kg⁻¹ Benazolin und in der Kontrolle auf durchschnittlich 3,2 µg g⁻¹ Boden (Trockensubstanz) am 49. Tag anstieg, wurde im Boden mit 200 mg kg⁻¹ Benazolin eine starke Abnahme der pilzlichen Biomasse mit einem minimalen Wert von ca. 1,75 µg Ergosterol g⁻¹ Boden am 49. Tag festgestellt. Bis zum Versuchsende blieben die Ergosterolgehalte in diesem Boden auf dem niedrigsten Niveau im Vergleich zu den anderen Versuchsansätzen. Der Anstieg der mikrobiellen Biomasse nach 21 Tagen wurde ebenfalls in den Ansätzen mit Benzo[a]pyren beobachtet. Dabei wurde eine Abhängigkeit von der applizierten Benzo[a]pyren-Konzentration festgestellt. Die stärkste Zunahme der pilzlichen Biomasse war bis zum 49. Tag in den Kontrollansätzen zu sehen. Zu diesem Zeitpunkt wurden in Böden mit 1 und 50 mg kg⁻¹ Benzo[a]pyren vergleichbare Ergosterolgehalte und zugleich deutlich niedrigere (um ca. 1,5 µg Ergosterol g⁻¹ Boden) im Vergleich zu der Kontrolle gemessen. Im Boden mit 200 mg kg⁻¹ Benzo[a]pyren stieg der Ergosterolgehalt viel langsamer als in den anderen Ansätzen an und erreichte am 49. Tag lediglich 2,0 µg g⁻¹ Boden, während in der Kontrolle 4,0 µg Ergosterol g⁻¹ Boden gemessen wurde.

Die analysierten Summenparameter gaben einen Überblick über die Wirkung der applizierten Xenobiotika auf die Funktion der mikrobiellen Gemeinschaften im Boden. Zusammenfassend wurde in diesem Experiment eine Hemmwirkung des Benazolins sowohl auf die mikrobielle Aktivität und die Mineralisierung des zugegebenen Maisstrohs als auch auf die pilzliche Biomasse im Boden festgestellt. Dagegen wirkte das Benzo[a]pyren in hohen Konzentrationen stimulierend auf die mikrobielle Aktivität sowie auf den Maisstroh-Abbau. Die pilzliche Biomasse wurde dagegen im Vergleich zur Kontrolle gehemmt.

Der applizierte Benzo[a]pyren in der Konzentration von 200 mg kg⁻¹ rief dagegen eine Steigerung der mikrobiellen Diversität hervor. Hiermit waren die Rückschlüsse aus den Analysen der bodenbiologischen Summenparameter bestätigt.

Die Veränderungen der mikrobiellen Diversität zeigten, dass in den nachfolgenden Experimenten eine Sequenzanalyse der analysierten 16S bzw. 18S rDNA-Fragmente eingesetzt werden sollte, um die Bedeutung der dominierenden Glieder mikrobieller Gemeinschaften für die Umsatz-Prozesse unter einer Beeinflussung von Xenobiotika besser beurteilen zu können.

5.1.3 Einfluss von Benazolin und Benzo[a]pyren auf die an den Umsatz-Prozessen von Ernterückständen beteiligten mikrobiellen Gemeinschaften über 150 Tage

Wie bereits im vorherigen Kapitel erwähnt, beeinflussten die applizierten Xenobiotika die Struktur der mikrobiellen Gemeinschaften erst gegen Versuchsende. Die Veränderungen der DGGE-Bandenmuster wurden nur durch die hochkonzentrierten Xenobiotika (200 mg kg⁻¹ Boden) hervorgerufen. Dabei entstand die Frage, ob die mikrobiellen Gemeinschaften unter diesen Bedingungen nach 90 Tagen auf die Dauer verändert wurden oder basierend auf der Regenerations- und Anpassungsfähigkeit nach gewisser Zeit den alten Zustand erreichten. Da

Die Analyse der Struktur der Bodenbakterien mittels DGGE deutete auf eine zeitliche Steigerung der mikrobiellen Diversität hin, wobei bis zum 49. Tag keine Wirkung der eingesetzten Xenobiotika festgestellt werden konnte. Danach veränderte sich die mikrobielle Zusammensetzung in den Ansätzen mit Benazolin und Benzo[a]pyren. Die für diese Ansätze erstellten Bandenmuster waren nach 90 und 150 Tagen diverser im Vergleich zu den Kontrollansätzen und zeichneten sich durch einige neue und einzelne deutlich geschwächte
Banden aus, wobei der letzte Effekt nur den Boden mit Benazolin betraf (vgl. Abbildungen 4-25 bis 4-27).

Die in diesem Versuch anhand der 16S rDNA-Fingerprints festgestellten Veränderungen der mikrobiellen Struktur in Xenobiotika-belasteten Böden bestätigten die im vorherigen Experiment beobachtete Tendenz einer hemmenden Wirkung von Benazolin und einem stimulierenden Einfluss von Benzo[a]pyren auf die mikrobiellen Gemeinschaften. Zu welchen phylogenetischen und funktionalen Gruppen die repräsentativen für diese Veränderungen der mikrobiellen Diversität Mikroorganismen gehören, konnte mittels einer Sequenzanalyse festgestellt werden (Abschnitt 5.1.4).

5.1.4 Phylogenetische Zuordnung der an den Umsatz-Prozessen von Ernterückständen beteiligten Mikroorganismen unter dem Einfluss von Benazolin und Benzo[a]pyren

Die DGGE-Analyse der 16S rDNA-Fragmente für die Versuchsansätze mit applizierten Xenobiotika deutete auf eine Veränderung der mikrobiellen Gemeinschaften hin, die durch die applizierten Xenobiotika hervorgerufen wurden. Eine Sequenzanalyse kann die am Umsatz von pflanzlichem Material beteiligten Mikroorganismen phylogenetisch zuordnen und dadurch zu einem besseren Verständnis ihrer Funktion bei diesen Prozessen führen. Die durchgeführte Sequenzanalyse der 16S bzw. 18S rDNA-Fragmente war jedoch mit mehreren Beschränkungen verbunden. Durch die Überlagerung verschiedener DNA-Fragmente unter einer DGGE-Bande waren häufig keine positive Reamplifikation der DNA oder Identifikation der sequenzierten DNA-Fragmente möglich. Darüber hinaus waren mehrere analysierten Sequenzen wegen ihrer niedrigen Übereinstimmung mit entsprechenden Sequenzen der nächsten Taxon in der phylogenetischen Zuordnung nicht berücksichtigt.

Nach einer Elution der DNA aus den DGGE-Gelen, Reamplifikation und erneuter elektrophoretischer Auftrennung der Reamplifikate, bildeten mehrere der ausgeschnittenen Banden neue Bandenmuster (vgl. Abbildungen 8-14, 8-15 und 8-16 im Anhang), was darauf hindeutete, dass verschiedene Bodenorganismen auf Grund ihrer DNA-Struktur im amplifizierten Fragment ein ähnliches Laufverhalten in den Gelen zeigten. MUYZER et al. (1993) schrieb, dass mittels DGGE nur die dominierenden Glieder einer mikrobiellen Gemeinschaft erfasst werden können. In Wirklichkeit bedeuteten die beschriebenen Ergebnisse allerdings, dass nicht nur die dominierenden Mikroorganismen in einem Gel sichtbar gemacht werden können. Eine deutliche Bande besteht unter bestimmten DGGE-Laufbedingungen im entsprechenden Gel aus mehreren schwachen Banden. SMALLA et al.

Wie schon erwähnt, wird auch die Reamplifikation der eluierten DNA nicht für alle ausgeschnittenen Banden positiv durchgeführt. Möglicherweise ist die angewendete Elutions-Methode nicht für alle DNA-Fragmente geeignet, besonders wenn die DNA aus feinen Banden eluiert wurde (SCHMALENBERG und TEBBE, 2002; SCHMALENBERG und TEBBE, 2003). Insbesondere die mechanische Behandlung könnte für die DNA-Fragmente schädlich sein.

Nach der positiven Reamplifikation und anschließenden Sequenzierung zeigten mehrere untersuchte Fragmente eine Übereinstimmung mit den entsprechenden Sequenzen des nächsten Taxons, die unter 90% lag. Da es sich bei den Sequenzen um einen 16S rDNA-Abschnitt von 433 bp (von durchschnittlich 1500 bp) bzw. einen 18S rDNA-Abschnitt von 350 bp (von durchschnittlich 2000 bp) handelte, wurden die Sequenzen nicht in der Arbeit berücksichtigt.

Stoffwechselleistungen wie die Transformation organischer Xenobiotika sowie Abbau komplexer organischer Substrate, einschließlich Cellulose und Chitin aus (SCHINNER und SONNLEITNER, 1996; BODOUR et al., 2003).

Diskussion

ribosomalen 18S RNA-Sequenzen der *Udeniomyces* und *Phlebia* überein. Die DNA-Fragmente, die mit den entsprechenden Abschnitten der Gensequenzen der *Ascomycota* übereinstimmten, zeigten eine enge Verwandtschaft vor allem mit *Pleosporales, Phoma, Endomyces* aber auch mit *Chaetomium*.

Cryptococcus sp. wurde in Wiesenböden (ANDERSON et al., 2003; VALINSKY et al., 2002) und zusammen mit *Trichosporon* sp. in landwirtschaftlich benutzten Böden gefunden (KVASNIKOV et al., 1975). Dabei weist der letzte Stamm eine Lignin-Peroxisidase und Mn(II)-Peroxidase-Aktivität auf, was eine wesentliche Rolle bei der Biodegradation von abbaureistenten Substanzen spielt (SLAVIKOVA et al., 2002). Ebenso baut *Endomyces* sp. und *Chaetomium* Lignin und Cellulose ab (PAVARINA et al., 2002; PAUL und CLARK, 1989).

5.2 Zusammenfassende Bewertung

5.2.1 Einfluss von Xenobiotika auf den mikrobiellen Umsatz von Ernterückständen im Boden

Im Vorversuch mit Benazolin in drei Konzentrationen (1, 10 und 50 mg kg⁻¹) wurde über 42 Tage eine konzentrationsabhängige Wirkung des untersuchten Herbizides auf die mikrobiellen Gemeinschaften festgestellt. Während die Konzentrationen von 1 und 10 mg kg⁻¹ eine stimulierende Wirkung aufwiesen, wurde in den Versuchsansätzen mit 50 mg kg⁻¹ Benazolin eine Hemmung der Mineralisierung von¹⁴C-markiertem Maisstroh und der mikrobiellen Aktivität beobachtet.
Die Ergebnisse aus dem Umsatz-Versuch mit Benazolin und Benzo[a]pyren, der über 90 Tage dauerte, wiesen ebenfalls auf eine schwache Hemmwirkung des Benazolins in Konzentrationen von 50 und 200 mg kg⁻¹ auf die bodenbiologischen Summenparameter hin. Dank des Einsatzes molekularbiologischer Methoden wurde gegen Versuchsende eine Abnahme der mikrobiellen Diversität in den Versuchsansätzen mit 200 mg kg⁻¹ Benazolin beobachtet, was die hemmende Wirkung des Herbizids auf die mikrobiellen Gemeinschaften bestätigte. Die Wirkung der zweiten Modellsubstanz, Benzo[a]pyren, auf die am Umsatz von pflanzlichem Material beteiligten mikrobiellen Gemeinschaften war ebenfalls von der eingesetzten Konzentration abhängig. In den Ansätzen mit 200 mg kg⁻¹ bzw. 50 mg kg⁻¹ Benzo[a]pyren wurde eine stärkere Mineralisierung von Maisstroh als in den Versuchsansätzen mit 1 mg kg⁻¹ Benzo[a]pyren und in der Kontrolle beobachtet. Die mikrobielle Aktivität wurde jedoch nur bei der höchsten Konzentration eindeutig stimuliert. In diesen Bodenproben wurde gegen Versuchsende eine erhöhte mikrobielle Diversität mit Hilfe der DGGE-Analytik festgestellt.

Die gleichzeitig untersuchte Entwicklung der pilzlichen Biomasse wurde in Abhängigkeit von der eingesetzten Konzentration der beiden Xenobiotika inhibiert. Eine Wirkung des Benazolins bzw. des Benzo[a]pyrens auf die pilzlichen Struktur war allerdings nicht erkennbar. Zusammenfassend sollte dabei hervorgehoben werden, dass die eingesetzten molekularbiologischen Methoden, wie die DGGE-Analyse der mittels PCR amplifizierten 16S und 18S rDNA-Fragmente, eine wertvolle Ergänzung zu den traditionellen Methoden bilden, um die Veränderungen der mikrobiellen Diversität unter Einfluss von Fremdstoffen analysieren zu können.

Während die pilzliche Struktur bis zum Versuchsende in diesen Versuchsansätzen vergleichbar war, wurde die pilzliche Biomasse in den Böden mit Benazolin bzw. Benzo[a]pyren vor allem gegen Versuchsende schwach gehemmt.

5.2.2 Schlussfolgerungen

Die vorliegende Arbeit stellt einen Beitrag dar, die Wirkung von Xenobiotika auf die Struktur und Funktion der am Umsatz von abgestorbem pflanzlichen Material beteiligten mikrobiellen Gemeinschaften aufzuklären. Dabei dienten die eingesetzten Methoden, insbesondere der Einsatz der Polymerase-Kettenreaktion (PCR), der denaturierenden Gradienten-Gelelektrophorese (DGGE) und der Sequenzanalyse von 16S und 18S rDNA-Abschnitten zur Beschreibung der phylogenetischen Zuordnung der Bodenmikroorganismen als wertvolle Techniken für die Bearbeitung der Fragestellung.

Diskussion

6 Zusammenfassung

Die mikrobiellen Gemeinschaften stellen einen wesentlichen Bestandteil des Bodens dar und sorgen für die Erhaltung des Gleichgewichts der Stoffumsätze in der Natur. Sie sind gleichermaßen zum Abbau natürlicher und anthropogener organischer Substanzen fähig und tragen wesentlich zur Erhaltung der Bodenfruchtbarkeit bei.

Die durchgeführten Experimente lassen sich wie folgt zusammenfassen:

- Die Applikation von Benazolin in drei Konzentrationen (1, 10 und 50 mg kg$^{-1}$) rief eine konzentrationsabhängige Wirkung auf die Mineralisierung von Maisstroh und die DMSO-Reduktase-Raten hervor. Bei der höchsten Konzentration wurde eine Verminderung der Maisstroh-Mineralisierung im Vergleich zu den Kontrollansätzen mit einer Verzögerung des Abbaus innerhalb der ersten Versuchstage festgestellt. Im Gegensatz dazu stimulierten die zwei übrigen Konzentrationen (1 und 10 mg kg$^{-1}$) die 14CO$_2$-Freisetzung. In allen belasteten Böden wurde eine höhere mikrobielle Aktivität im Vergleich zur Kontrolle gemessen, wobei die aktivsten mikrobiellen Gemeinschaften in den Versuchsansätzen mit 1 und 10 mg kg$^{-1}$ Benazolin beobachtet wurden.

- Im Umsatz-Versuch mit Maisstroh, der über 90 Tage dauerte, wurde neben Benazolin in zwei Wirkstoffkonzentrationen (50 und 200 mg kg$^{-1}$), ein PAK-Vertreter Benzo[a]pyren in drei Konzentrationen (1, 50 und 200 mg kg$^{-1}$) dem Boden zugegeben. Es wurde eine Verminderung der Maisstroh-Mineralisierung und mikrobiellen Aktivität in mit Benazolin belasteten Böden festgestellt. Benzo[a]pyren in den Konzentrationen von 50 und 200 mg kg$^{-1}$ stimulierte dagegen den Umsatz von Pflanzenmaterial. Diese Effekte wurden jedoch nur teilweise durch die Entwicklung der mikrobiellen Aktivität bestätigt. Gleichzeitig wurde eine konzentrationsabhängige

Im abschließenden Experiment wurde die Wirkung von Benazolin und Benzo[a]pyren jeweils in einer Konzentration von 200 mg kg⁻¹ auf die Zusammensetzung der mikrobiellen Gemeinschaften über 150 Tage analysiert. Die DGGE-Analyse der 16S DNA bestätigte die vorherigen Ergebnisse, die auf einen Einfluss der beiden Xenobiotika auf die Struktur der Bodenbakterien hindeuteten. In allen Versuchsansätzen mit zugegebenem Maisstroh, unabhängig von den eingesetzten Xenobiotika, entwickelten sich dagegen ähnliche pilzliche Gemeinschaften. Gegen Versuchsende wurde eine schwache Hemmwirkung der eingesetzten Xenobiotika auf die pilzliche Biomasse beobachtet.

7 Literatur

GRANT W.D. und WEST A.W. (1986): Measurement of ergosterol, diaminopimelic acid and
-glucosamine in soil: evaluation as indicators of microbial biomass. Journal of

GRINNER G., BRUNE H., DETTBARN G., JACOB J., MISFELD J., MOHR U., NAUJACK K.-W.,

mineralization of pyrene, benzo[a]pyrene, and carbazole in soil. Applied and
Environmental Microbiology 57: 3462-3469.

N-heterocyclic aromatic compounds in hydrocarbon-contaminated soil. Environ.

reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial

ihren Inhaltsstoffen durch die Mikroflora des Bodens. Z. Pflanzenernähr. Bodenkld. 142:
456-475.

1-224.

and formation of soil microbial biomass in a soil treated with simazine and dinoterb. Soil

on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and

8 Anhang

Tabelle 8-1 Zusammensetzung der denaturierenden Lösungen

<table>
<thead>
<tr>
<th>Arbeitslösung in %</th>
<th>0 % denat. Lösung in mL</th>
<th>100 % denat. Lösung in mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>13,50</td>
<td>1,50</td>
</tr>
<tr>
<td>15</td>
<td>12,75</td>
<td>2,25</td>
</tr>
<tr>
<td>20</td>
<td>12,00</td>
<td>3,00</td>
</tr>
<tr>
<td>30</td>
<td>10,50</td>
<td>4,50</td>
</tr>
<tr>
<td>35</td>
<td>9,75</td>
<td>5,25</td>
</tr>
<tr>
<td>40</td>
<td>9,00</td>
<td>6,00</td>
</tr>
<tr>
<td>45</td>
<td>8,25</td>
<td>6,75</td>
</tr>
<tr>
<td>50</td>
<td>7,50</td>
<td>7,50</td>
</tr>
<tr>
<td>55</td>
<td>6,75</td>
<td>8,25</td>
</tr>
<tr>
<td>60</td>
<td>6,00</td>
<td>9,00</td>
</tr>
<tr>
<td>65</td>
<td>5,25</td>
<td>9,75</td>
</tr>
<tr>
<td>70</td>
<td>4,50</td>
<td>10,50</td>
</tr>
</tbody>
</table>

Zu jeder Arbeitslösung wurde gegeben:
140 µL 10% APS
15 µL TEMED
Tabelle 8-2 Medien und Lösungen zur Minipräparation von Plasmid-DNA

<table>
<thead>
<tr>
<th>Medien/Lösungen</th>
<th>Bestandteile</th>
<th>Herstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB-Medium</td>
<td>10,0 g Bacto Tryptone</td>
<td>1,0 L H₂O, autoklavieren</td>
</tr>
<tr>
<td></td>
<td>10,0 g NaCl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5,0 g Yeast Extract</td>
<td></td>
</tr>
<tr>
<td>LB-Agar</td>
<td>10,0 g Bacto Tryptone</td>
<td>20,0 g Agar</td>
</tr>
<tr>
<td></td>
<td>10,0 g NaCl</td>
<td>1,0 L H₂O, autoklavieren</td>
</tr>
<tr>
<td></td>
<td>5,0 g Yeast Extract</td>
<td></td>
</tr>
<tr>
<td>Antibiotikum Ampicillin</td>
<td>Stammlösung 100 mg mL⁻¹ in TE-Puffer</td>
<td>Endkonzentration: 100 µg mL⁻¹ Medium</td>
</tr>
<tr>
<td>Lösung I</td>
<td>50 mM Glukose (kann entfallen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 mM Tris-HCl, pH 8,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 mM EDTA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>autoklavieren</td>
<td></td>
</tr>
<tr>
<td>Lösung II</td>
<td>0,2 M NaOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 % SDS</td>
<td></td>
</tr>
<tr>
<td>Lösung III</td>
<td>60 mL KAc (5M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11,5 mL Essigsäure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mit HCl (konz.) auf pH 4,8 einstellen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mit H₂O auf 100 mL auffüllen</td>
<td></td>
</tr>
<tr>
<td>TE-Puffer</td>
<td>10 mM Tris-HCl, pH 7,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 mM EDTA</td>
<td></td>
</tr>
</tbody>
</table>
Tabelle 8-3 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in nativem Boden nach Applikation von Benazolin in drei Konzentrationen über 42 Tage (a.R. = applizierte Radioaktivität = 100%)

<table>
<thead>
<tr>
<th>Mineralisierung von 14C-Maisstroh</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>nativer Boden mit 1 mg kg$^{-1}$ Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>nativer Boden mit 10 mg kg$^{-1}$ Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>nativer Boden mit 50 mg kg$^{-1}$ Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>nativer Boden ohne Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
</tbody>
</table>

Tabelle 8-4 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in geglühtem Boden nach Applikation von Benazolin in drei Konzentrationen über 42 Tage (a.R. = applizierte Radioaktivität = 100%)

<table>
<thead>
<tr>
<th>Mineralisierung von 14C-Maisstroh</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>geglühter Boden mit 1 mg kg$^{-1}$ Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>geglühter Boden mit 10 mg kg$^{-1}$ Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>geglühter Boden mit 50 mg kg$^{-1}$ Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>geglühter Boden ohne Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
</tbody>
</table>
Tabelle 8-5 DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in nativem Boden nach Applikation des Herbizids Benazolin in drei Konzentrationen über 42 Tage (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)

<table>
<thead>
<tr>
<th>DMSO-Reduktase-Rate</th>
<th>Inkubationsdauer (Tage)</th>
<th>0</th>
<th>1</th>
<th>7</th>
<th>14</th>
<th>21</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>nativer Boden mit 1 mg kg⁻¹ Benazolin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,67</td>
<td>0,57</td>
<td>0,71</td>
<td>0,88</td>
<td>0,77</td>
<td>0,97</td>
</tr>
<tr>
<td>Standardabweichung (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,00</td>
<td>0,01</td>
<td>0,02</td>
<td>0,01</td>
<td>0,07</td>
<td>0,09</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td></td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>nativer Boden mit 10 mg kg⁻¹ Benazolin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,64</td>
<td>0,44</td>
<td>0,58</td>
<td>0,79</td>
<td>0,84</td>
<td>0,86</td>
</tr>
<tr>
<td>Standardabweichung (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,05</td>
<td>0,03</td>
<td>0,03</td>
<td>0,06</td>
<td>0,15</td>
<td>0,16</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td></td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>nativer Boden mit 50 mg kg⁻¹ Benazolin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,59</td>
<td>0,42</td>
<td>0,52</td>
<td>0,71</td>
<td>0,72</td>
<td>0,71</td>
</tr>
<tr>
<td>Standardabweichung (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,01</td>
<td>0,01</td>
<td>0,03</td>
<td>0,02</td>
<td>0,03</td>
<td>0</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td></td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>nativer Boden ohne Benazolin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,69</td>
<td>0,47</td>
<td>0,47</td>
<td>0,66</td>
<td>0,58</td>
<td>0,75</td>
</tr>
<tr>
<td>Standardabweichung (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,00</td>
<td>0,03</td>
<td>0,03</td>
<td>0,09</td>
<td>0,04</td>
<td>0,03</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td></td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>14</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabelle 8-6 DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in geglähtem Boden nach Applikation des Benazolins in drei Konzentrationen über 42 Tage (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung)

<table>
<thead>
<tr>
<th>DMSO-Reduktase-Rate</th>
<th>Inkubationsdauer (Tage)</th>
<th>0</th>
<th>1</th>
<th>7</th>
<th>14</th>
<th>21</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>geglähter Boden mit 1 mg kg⁻¹ Benazolin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,00</td>
<td>0,05</td>
<td>0,09</td>
<td>0,11</td>
<td>0,19</td>
<td>0,17</td>
</tr>
<tr>
<td>Standardabweichung (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,00</td>
<td>0,01</td>
<td>0,02</td>
<td>0,04</td>
<td>0,08</td>
<td>0,08</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td></td>
<td>0</td>
<td>22</td>
<td>22</td>
<td>40</td>
<td>40</td>
<td>46</td>
</tr>
<tr>
<td>geglähter Boden mit 10 mg kg⁻¹ Benazolin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,00</td>
<td>0,05</td>
<td>0,04</td>
<td>0,15</td>
<td>0,2</td>
<td>0,14</td>
</tr>
<tr>
<td>Standardabweichung (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,04</td>
<td>0,08</td>
<td>0,03</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td></td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>29</td>
<td>41</td>
<td>23</td>
</tr>
<tr>
<td>geglähter Boden mit 50 mg kg⁻¹ Benazolin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,00</td>
<td>0,04</td>
<td>0,05</td>
<td>0,12</td>
<td>0,2</td>
<td>0,17</td>
</tr>
<tr>
<td>Standardabweichung (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,00</td>
<td>0,01</td>
<td>0,00</td>
<td>0,04</td>
<td>0,08</td>
<td>0,04</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td></td>
<td>0</td>
<td>27</td>
<td>6</td>
<td>31</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>geglähter Boden ohne Benazolin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,00</td>
<td>0,04</td>
<td>0,05</td>
<td>0,16</td>
<td>0,19</td>
<td>0,13</td>
</tr>
<tr>
<td>Standardabweichung (µg DMS g⁻¹ h⁻¹)</td>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,05</td>
<td>0,06</td>
<td>0,00</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td></td>
<td>0</td>
<td>9</td>
<td>7</td>
<td>29</td>
<td>30</td>
<td>3</td>
</tr>
</tbody>
</table>
Tabelle 8-7 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in nativem Boden nach Applikation von Benazolin in zwei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung); a.R. = applizierte Radioaktivität = 100%

<table>
<thead>
<tr>
<th>Mineralisierung von 14C-Maisstroh</th>
<th>Inkubationsdauer (Tage)</th>
<th>0</th>
<th>4</th>
<th>7</th>
<th>14</th>
<th>21</th>
<th>49</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle ohne Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
<td>17,5</td>
<td>22,0</td>
<td>26,4</td>
<td>29,1</td>
<td>32,3</td>
<td>36,2</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
<td>0,9</td>
<td>1,2</td>
<td>1,4</td>
<td>1,4</td>
<td>1,7</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>nativer Boden mit 50 mg kg$^{-1}$ Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
<td>15,0</td>
<td>17,6</td>
<td>21,5</td>
<td>24,1</td>
<td>28,2</td>
<td>31,1</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
<td>1,6</td>
<td>1,3</td>
<td>1,1</td>
<td>1,8</td>
<td>1,0</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
<td>0</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>nativer Boden mit 200 mg kg$^{-1}$ Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
<td>17,3</td>
<td>19,6</td>
<td>24,6</td>
<td>26,4</td>
<td>31,2</td>
<td>34,4</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
<td>0,5</td>
<td>1,0</td>
<td>0,8</td>
<td>0,6</td>
<td>1,3</td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Tabelle 8-8 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in geglihtem Boden nach Applikation von Benazolin in zwei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung); a.R. = applizierte Radioaktivität = 100%

<table>
<thead>
<tr>
<th>Mineralisierung von 14C-Maisstroh</th>
<th>Inkubationsdauer (Tage)</th>
<th>0</th>
<th>4</th>
<th>7</th>
<th>14</th>
<th>21</th>
<th>49</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle ohne Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
<td>9,3</td>
<td>12,9</td>
<td>17,8</td>
<td>19,8</td>
<td>23,4</td>
<td>25,7</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
<td>0,3</td>
<td>0,7</td>
<td>0,6</td>
<td>0,3</td>
<td>0,3</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>geglihter Boden mit 50 mg kg$^{-1}$ Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
<td>9,5</td>
<td>14,0</td>
<td>19,0</td>
<td>20,7</td>
<td>24,4</td>
<td>27,2</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
<td>0,7</td>
<td>0,6</td>
<td>1,0</td>
<td>1,0</td>
<td>1,2</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>geglihter Boden mit 200 mg kg$^{-1}$ Benazolin</td>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
<td>10,5</td>
<td>13,7</td>
<td>18,9</td>
<td>21,0</td>
<td>24,4</td>
<td>27,0</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
<td>0,2</td>
<td>1,0</td>
<td>0,7</td>
<td>0,6</td>
<td>0,5</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Tabelle 8-9 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in nativem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung); a.R. = applizierte Radioaktivität = 100%

<table>
<thead>
<tr>
<th>Mineralisierung von 14C-Maisstroh</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Kontrolle ohne Benzo[a]pyren</td>
<td></td>
</tr>
<tr>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nativer Boden mit 1 mg kg$^{-1}$ Benzo[a]pyren</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nativer Boden mit 50 mg kg$^{-1}$ Benzo[a]pyren</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nativer Boden mit 200 mg kg$^{-1}$ Benzo[a]pyren</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 8-10 Verlauf der Mineralisierung von 14C-markiertem Maisstroh in gegläutem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelansätzen in dreifacher Bestimmung); a.R. = applizierte Radioaktivität = 100%

<table>
<thead>
<tr>
<th>Mineralisierung von 14C-Maisstroh</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Kontrolle ohne Benzo[a]pyren</td>
<td></td>
</tr>
<tr>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>gegläuter Boden mit 1 mg kg$^{-1}$ Benzo[a]pyren</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>gegläuter Boden mit 50 mg kg$^{-1}$ Benzo[a]pyren</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>gegläuter Boden mit 200 mg kg$^{-1}$ Benzo[a]pyren</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14CO$_2$, gesamt (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Standardabweichung (% a.R.)</td>
<td>0,0</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabelle 8-11 DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in nativem Boden nach Applikation des Herbizids Benazolin in zwei Konzentrationen über 90 Tage

<table>
<thead>
<tr>
<th>DMSO-Reduktase-Rate</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Kontrolle ohne Benazolin, ohne Maisstroh</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>Kontrolle mit Maisstroh, ohne Benazolin</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>nativer Boden mit 50 mg kg⁻¹ Benazolin</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>nativer Boden mit 200 mg kg⁻¹ Benazolin</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
</tbody>
</table>

Tabelle 8-12 DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in geglühtem Boden nach Applikation des Herbizids Benazolin in zwei Konzentrationen über 90 Tage

<table>
<thead>
<tr>
<th>DMSO-Reduktase-Rate</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Kontrolle ohne Benazolin</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>geglühter Boden mit 50 mg kg⁻¹ Benazolin</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>geglühter Boden mit 200 mg kg⁻¹ Benazolin</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
</tbody>
</table>
Tabelle 8-13
DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in nativem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage

<table>
<thead>
<tr>
<th>DMSO-Reduktase-Rate</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Kontrolle ohne Benzo[a]pyren, ohne Maisstroh</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>Kontrolle ohne Benzo[a]pyren</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>nativer Boden mit 1 mg kg⁻¹ Benzo[a]pyren</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>nativer Boden mit 50 mg kg⁻¹ Benzo[a]pyren</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>nativer Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
</tbody>
</table>

Tabelle 8-14
DMSO-Reduktase-Raten als Indikator für die mikrobielle Aktivität in geglühtem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage

<table>
<thead>
<tr>
<th>DMSO-Reduktase-Rate</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Kontrolle ohne Benzo[a]pyren</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>geglühter Boden mit 1 mg kg⁻¹ Benzo[a]pyren</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>geglühter Boden mit 50 mg kg⁻¹ Benzo[a]pyren</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>geglühter Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td>Mittelwerte (µg DMS g⁻¹ h⁻¹)</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
</tr>
<tr>
<td></td>
<td>Variationskoeffizient</td>
</tr>
</tbody>
</table>
Tabelle 8-15 Ergosterolgehalt in nativem Boden nach Applikation von Benazolin in zwei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen, TM-Trockenmasse des Bodens)

<table>
<thead>
<tr>
<th>Ergosterolgehalt in nativem Boden</th>
<th>Inkubationsdauer (Tage)</th>
<th>0</th>
<th>4</th>
<th>21</th>
<th>49</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle ohne Maisstroh, ohne Xenobiotika</td>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>0,88</td>
<td>0,90</td>
<td>0,59</td>
<td>_</td>
<td>0,57</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
<td>0,22</td>
<td>0,15</td>
<td>0,12</td>
<td>_</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>Variationsskoeffizient</td>
<td>25</td>
<td>17</td>
<td>20</td>
<td>_</td>
<td>7</td>
</tr>
<tr>
<td>Kontrolle mit Maisstroh, ohne Benazolin</td>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>1,31</td>
<td>2,85</td>
<td>2,15</td>
<td>3,27</td>
<td>3,51</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
<td>0,21</td>
<td>0,53</td>
<td>0,15</td>
<td>1,03</td>
<td>0,78</td>
</tr>
<tr>
<td></td>
<td>Variationsskoeffizient</td>
<td>16</td>
<td>19</td>
<td>7</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>Boden mit 50 mg kg⁻¹ Benazolin</td>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>1,20</td>
<td>2,38</td>
<td>2,13</td>
<td>3,11</td>
<td>3,15</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
<td>0,22</td>
<td>0,26</td>
<td>0,81</td>
<td>0,39</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td>Variationsskoeffizient</td>
<td>18</td>
<td>11</td>
<td>38</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benazolin</td>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>0,95</td>
<td>2,68</td>
<td>2,20</td>
<td>1,72</td>
<td>1,90</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
<td>0,06</td>
<td>0,56</td>
<td>0,50</td>
<td>0,47</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>Variationsskoeffizient</td>
<td>6</td>
<td>21</td>
<td>23</td>
<td>27</td>
<td>22</td>
</tr>
</tbody>
</table>

Tabelle 8-16 Ergosterolgehalt in geglühtem Boden nach Applikation von Benazolin in zwei Konzentrationen über 90 Tage (Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen, TM-Trockenmasse des Bodens)

<table>
<thead>
<tr>
<th>Ergosterolgehalt in geglühtem Boden</th>
<th>Inkubationsdauer (Tage)</th>
<th>4</th>
<th>21</th>
<th>49</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle mit Maisstroh, ohne Benazolin</td>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>0,54</td>
<td>0,25</td>
<td>0,27</td>
<td>0,77</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
<td>0,18</td>
<td>0,05</td>
<td>0,07</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td>Variationsskoeffizient</td>
<td>33</td>
<td>20</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>Boden mit 50 mg kg⁻¹ Benazolin</td>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>0,54</td>
<td>0,27</td>
<td>0,30</td>
<td>0,96</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
<td>0,18</td>
<td>0,08</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>Variationsskoeffizient</td>
<td>33</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benazolin</td>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>0,65</td>
<td>0,23</td>
<td>0,30</td>
<td>0,73</td>
</tr>
<tr>
<td></td>
<td>Standardabweichung</td>
<td>0,11</td>
<td>0,04</td>
<td>0,00</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>Variationsskoeffizient</td>
<td>17</td>
<td>17</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>
Tabelle 8-17: Ergosterolgehalt in nativem Boden nach Applikation von Benzo[a]pyren in drei Konzentrationen über 90 Tage
(Mittelwerte aus 2 Parallelen mit jeweils 3 unabhängigen Aufarbeitungen, TM-Trockenmasse des Bodens)

<table>
<thead>
<tr>
<th>Ergosterolgehalt in nativem Boden</th>
<th>Inkubationsdauer (Tage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Kontrolle ohne Maisstroh, ohne Xenobiotika</td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>0,88</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,22</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>25</td>
</tr>
<tr>
<td>Kontrolle mit Maisstroh, ohne Benzo[a]pyren</td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>1,21</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,29</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>24</td>
</tr>
<tr>
<td>Boden mit 1 mg kg⁻¹ Benzo[a]pyren</td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>1,36</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,25</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>18</td>
</tr>
<tr>
<td>Boden mit 50 mg kg⁻¹ Benzo[a]pyren</td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>0,86</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,05</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>6</td>
</tr>
<tr>
<td>Boden mit 200 mg kg⁻¹ Benzo[a]pyren</td>
<td></td>
</tr>
<tr>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>0,82</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>0,12</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td>15</td>
</tr>
</tbody>
</table>
Ergosterolgehalt in geglühtem Boden

<table>
<thead>
<tr>
<th>Inkubationsdauer (Tage)</th>
<th>4</th>
<th>21</th>
<th>49</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle mit Maisstroh, ohne Benzo[a]pyren</td>
<td>0,59</td>
<td>0,26</td>
<td>0,24</td>
<td>0,33</td>
</tr>
<tr>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>0,08</td>
<td>0,06</td>
<td>0,07</td>
<td>0,10</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>14</td>
<td>23</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boden mit 1 mg kg⁻¹ Benzo[a]pyren	0,58	0,28	0,22	0,97
Mittelwerte (µg g⁻¹ TM Boden)	0,11	0,06	0,02	0,12
Standardabweichung	19	21	9	12
Variationskoeffizient				

Boden mit 50 mg kg⁻¹ Benzo[a]pyren	0,63	0,31	0,22	0,85
Mittelwerte (µg g⁻¹ TM Boden)	0,11	0,00	0,06	0,25
Standardabweichung	17	0	27	29
Variationskoeffizient				

Boden mit 200 mg kg⁻¹ Benzo[a]pyren	0,51	0,43	0,50	1,55
Mittelwerte (µg g⁻¹ TM Boden)	0,12	0,08	0,07	0,06
Standardabweichung	24	19	14	4
Variationskoeffizient				

Ergosterolgehalt in nativem Boden

<table>
<thead>
<tr>
<th>Inkubationsdauer (Tage)</th>
<th>0</th>
<th>14</th>
<th>49</th>
<th>90</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle ohne Maisstroh, ohne Xenobiotika</td>
<td>0,53</td>
<td>0,40</td>
<td>0,54</td>
<td>0,44</td>
<td>0,37</td>
</tr>
<tr>
<td>Mittelwerte (µg g⁻¹ TM Boden)</td>
<td>0,01</td>
<td>0,03</td>
<td>0,03</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Standardabweichung</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Variationskoeffizient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kontrolle mit Maisstroh, ohne Xenobiotika	0,60	2,96	3,67	2,71	1,96
Mittelwerte (µg g⁻¹ TM Boden)	0,06	0,32	0,37	0,22	0,38
Standardabweichung	10	11	19	8	19
Variationskoeffizient					

Boden mit 200 mg kg⁻¹ Benazolin	0,57	3,59	3,65	2,73	1,39
Mittelwerte (µg g⁻¹ TM Boden)	0,04	0,36	0,63	0,28	0,24
Standardabweichung	7	10	17	10	17
Variationskoeffizient					

Boden mit 200 mg kg⁻¹ Benzo[a]pyren	0,65	2,66	3,68	2,64	1,39
Mittelwerte (µg g⁻¹ TM Boden)	0,03	0,77	0,55	0,10	0,26
Standardabweichung	5	29	15	4	19
Variationskoeffizient					
Abbildung 8-1 Veränderung des pH-Wertes in nativem Boden mit 14C-markiertem Maisstroh nach Applikation von Benazolin in drei Konzentrationen (1, 10, 50 mg kg⁻¹) über 42 Tage (Mittelwerte aus 2 Parallelansätzen in jeweils fünffacher Bestimmung)

Abbildung 8-2 Veränderung des pH-Wertes in geglühtem Boden mit 14C-markiertem Maisstroh nach Applikation von Benazolin in drei Konzentrationen (1, 10, 50 mg kg⁻¹) über 42 Tage (Mittelwerte aus 2 Parallelansätzen in jeweils fünffacher Bestimmung)
Abbildung 8-3 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin in zwei Konzentrationen (50, 200 mg kg⁻¹) nach 14 Tagen (14T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, B50/1, B50/2: Ansätze mit 50 mg kg⁻¹ Benazolin, B200/1, B200/2: Ansätze mit 200 mg kg⁻¹ Benazolin)

Abbildung 8-4 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benzo[a]pyren in drei Konzentrationen (1, 50, 200 mg kg⁻¹) nach 14 Tagen (14T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(BaP K: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, BaP 1: Ansatz mit 1 mg kg⁻¹ Benzo[a]pyren, BaP 50: Ansatz mit 50 mg kg⁻¹ Benzo[a]pyren, BaP 200: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Abbildung 8-5 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin in zwei Konzentrationen (50, 200 mg kg⁻¹) nach 49 Tagen (49T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software

(BK: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, B50: Ansatz mit 50 mg kg⁻¹ Benazolin, B200: Ansatz mit 200 mg kg⁻¹ Benazolin)

Abbildung 8-6 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benzo[a]pyren in drei Konzentrationen (1, 50, 200 mg kg⁻¹) nach 49 Tagen (49T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software

(BaP K: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, BaP 1: Ansatz mit 1 mg kg⁻¹ Benzo[a]pyren, BaP 50: Ansatz mit 50 mg kg⁻¹ Benzo[a]pyren, BaP 200: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Abbildung 8-7 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in geglühtem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin in zwei Konzentrationen (50, 200 mg kg\(^{-1}\)) nach 14 (14T) und 49 Tagen (49T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(NB: Nativer Boden ohne Maisstroh- und Benazolin-Zugabe, BKG: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, B50G: Ansatz mit 50 mg kg\(^{-1}\) Benazolin, B200G: Ansatz mit 200 mg kg\(^{-1}\) Benazolin)
Abbildung 8-8 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in geglühtem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benzo[a]pyren in drei Konzentrationen (1, 50, 200 mg kg⁻¹) nach 14 (14T) und 49 Tagen (49T); (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(BaP K: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
BaP 1: Ansatz mit 1 mg kg⁻¹ Benzo[a]pyren,
BaP 50: Ansatz mit 50 mg kg⁻¹ Benzo[a]pyren,
BaP 200: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)

Abbildung 8-9 DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren jeweils in einer Konzentration von 200 mg kg⁻¹ am Tag 0;

(F: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe,
BK: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
BaPK: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
B200: Ansatz mit 200 mg kg⁻¹ Benazolin,
BaP200: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Abbildung 8-10 DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren jeweils in einer Konzentration von 200 mg kg⁻¹ nach 14 Tagen;

(F: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe,
BK: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe,
BaPK: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe,
B200: Ansatz mit 200 mg kg⁻¹ Benazolin,
BaP200: Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Abbildung 8-11 (A) DGGE-Bandenmuster von amplifizierten 16S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren in einer Konzentrationen von 200 mg kg⁻¹ nach 49 Tagen; (B) digitale Image-Analyse des DGGE-Gels mit GelCompare-Software;

(F1, F2: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 (1, 2, 3), B200/2 (1, 2, 3): Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1 (1, 2, 3), BaP200/2 (1, 2, 3): Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Abbildung 8-12 (A) DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren nach 14 Tagen; (B) digitale Image-Analyse des Gels mit GelCompare-Software;

(F1, F2: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1, B200/2, B200/2': Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1, BaP200/1', BaP200/2, BaP200/2': Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Abbildung 8-13 (A) DGGE-Bandenmuster von amplifizierten 18S rDNA-Fragmenten in nativem Boden bei der Humifizierung von Ernterückständen unter einem Einfluss von Benazolin und Benzo[a]pyren nach 49 Tagen; (B) digitale Image-Analyse des Gels mit GelCompare-Software;

(F1, F2: Kontrolle ohne Maisstroh und ohne Xenobiotika-Zugabe, BK1, BK2, BK3: Kontrolle mit Maisstroh- und ohne Benazolin-Zugabe, BaPK1, BaPK2, BaPK3: Kontrolle mit Maisstroh- und ohne Benzo[a]pyren-Zugabe, B200/1 (1, 2, 3), B200/2 (1, 2, 3): Ansatz mit 200 mg kg⁻¹ Benazolin, BaP200/1 (1, 2, 3), BaP200/2 (1, 2, 3): Ansatz mit 200 mg kg⁻¹ Benzo[a]pyren)
Abbildung 8-14 (A) Ausgeschnittene, repräsentative Banden für die Versuchsansätze mit 200 mg kg⁻¹ Benazolin und 200 mg kg⁻¹ Benzo[a]pyren nach 90 Tagen zum Eluieren von DNA; (B) zweite gelektrophoretische Auftrennung der Banden BaP1, BaP2, BaP3 (spezifisch für die Ansätze mit Benzo[a]pyren) bzw. B1 (spezifisch für die Ansätze mit Benazolin)

Abbildung 8-15 (A) Ausgeschnittene, repräsentative Banden für die Versuchsansätze mit 200 mg kg⁻¹ Benazolin (B200), 200 mg kg⁻¹ Benzo[a]pyren (BaP200) und Kontrolle nach 150 Tagen zum Eluieren von DNA; (B) zweite gelektrophoretische Auftrennung der Banden K (spezifisch für die Ansätze mit Benzo[a]pyren), L (spezifisch für die Ansätze mit Benazolin) und J (spezifisch für die Kontrolle und die Ansätze mit Benzo[a]pyren)
Abbildung 8-16 (A) Ausgeschnittene, repräsentative für die Versuchsansätze mit 200 mg kg⁻¹ Benazolin (B200), 200 mg kg⁻¹ Benzo[a]pyren (BaP200) und Kontrolle (BaPK) Banden nach 150 Tagen zum Eluieren von 18S DNA; (B) zweite gelektrophoretische Auftrennung der für alle Versuchsansätze spezifischen Banden P1, P2, P3, P1.1; P2.1 und P4.1
Danksagung

Herrn Prof. Dr. Andreas Schäffer (RWTH Aachen) danke ich sehr herzlich für die Betreuung der Arbeit, für seine Diskussionsbereitschaft und seinen fachlichen Rat.

Herrn Prof. Dr. Harry Vereecken danke ich sehr für die Möglichkeit der Durchführung dieser Arbeit an seinem Institut und für die Übernahme des Korreferates.

Mein Dank gilt Herrn Dr. Peter Burauel für die Bereitstellung des Themas im Rahmen des HGF-Strategiefondprojekts „Bodenfunktionen“, für die im Verlauf dieser Arbeit gewährte Unterstützung und die kritische Durchsicht des Manuskriptes.

Mein besonderer Dank gilt Herrn Dr. Jost Liebich, der mich äußerst freundschaftlich und partnerschaftlich betreute und für seine wissenschaftliche Unterstützung und Diskussionsbereitschaft. Weiterhin möchte ich mich für die sorgfältige und kritische Durchsicht des Manuskriptes bedanken.

Herrn Dr. Arnd Baumann und Frau Sabine Balfanz (Institut für Biologische Informationsverarbeitung am Forschungszentrum Jülich) bin ich sehr dankbar für die Möglichkeit, an ihrem Institut und mit ihrer Mithilfe die DNA-Klonierung und Sequenzierung durchzuführen.

Bei Herrn Dr. Jürgen Prell (Institut für Biologie I, RWTH Aachen) bedanke ich mich für die Unterstützung bei der Auswertung der DGGE-Gele.

Frau Dr. Anne Berns gilt mein besonderer Dank für das sorgfältige Korrekturlesen des Manuskriptes und Herrn Dr. Wolfgang Tappe für den intensiven Erfahrungsaustausch.

Bei Herrn Stephan Köppchen bedanke ich mich sehr herzlich für die Durchführung der HPLC-Analytik, bei Frau Anita Steffen, Herrn Joseph Noël und Frau Martina Kreutzer für ihre stete Unterstützung bei allen Problemen des Laboralltags.

Allen Mitarbeiterinnen und Mitarbeitern des Instituts Agrosphäre danke ich für die Hilfsbereitschaft und die gute Zusammenarbeit.

Einen ganz besonderen Dank gilt meinem Mann Andreas Bulawa für seine fast schon unendliche Geduld und Unterstützung sowie dafür, dass er nie an dem Gelingen dieser Arbeit gezweifelt hat. Hierfür möchte ich Dir, Andreas, von ganzem Herzen danken.
Lebenslauf

Persönliche Daten
Name: Beata (Lech) Bulawa
Geboren: 16.10.1971 in Stettin (Polen)

Berufstätigkeit
2000-2003 wissenschaftliche Mitarbeiterin am Institut Agrosphäre, Forschungszentrum Jülich GmbH (Promotionsarbeit)
1999-2000 Gastmitarbeiter am Institut für Radioagronomie, Forschungszentrum Jülich GmbH
1997-1998 wissenschaftlich-didaktische Assistentin am Institut für Biochemie an der Landwirtschaftsakademie in Stettin
1990-1991 Referentin in Stettiner Staatsamt

Studium
1991-1996 Landwirtschaftsakademie in Stettin
Hauptstudium: Hochseefischerei und Nahrungsmitteltechnologie,
Fachrichtung: Meeresschutz und Fischerei
Studienschwerpunkt: Meeresökologie, Umweltschutz
1993-1996 Nebenstudium: Umweltschutz an der Technischen Universität in Stettin,
Schwerpunkt: Instrumentalanalyse im Bereich Umweltschutz
1996 Diplomarbeit: im Bereich Meeresökologie

Schulausbildung
1989-1990 Gymnasium mit Abitur in Stettin

Weitere Qualifikationen
Sprachen: zertifizierte Teilnahme an einem Intensivkurs „Englisch für das Management“ vom 01.09. bis 24.10.2003, Berlitz-Center Aachen