KONTAKTLOSE ÜBERWACHUNG VON ATEMTÄTIGKEIT UND HERZAKTION MITTELS MAGNETISCHER BIOIMPEDANZMESSUNG IM NEONATALEN TIERMODELL

Von der Medizinischen Fakultät
der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades einer Doktorin der Medizin
genehmigte Dissertation

vorgelegt von

Nora Katharina Heerich
aus Düsseldorf

Berichter: Herr Universitätsprofessor Dr. med. Thorsten Orlikowsky
Herr Universitätsprofessor Dr.-Ing. Dr. med. Steffen Leonhardt

Tag der mündlichen Prüfung: 25. Januar 2010

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.
Inhaltsverzeichnis

1 Einleitung ... 1
 1.1 Begriff des Monitorings... 1
 1.2 Methoden des Monitorings in der Neonatologie... 2
 1.2.1 Monitoring der Atemtätigkeit.. 2
 1.2.2 Monitoring der Herzaktion.. 5
 1.3 Spezifische Anforderungen an die kardiorespiratorische Überwachung in der
 Neonatologie ... 6
 1.4 Einführung in die Fragestellung.. 7

2 Zielsetzung der Studie ... 9

3 Materialien und Methodik .. 10
 3.1 Tiermodell zur Überwachung von Atemtätigkeit und Herzaktion..................... 10
 3.2 Theoretische Grundlagen der magnetischen Bioimpedanz 11
 3.3 Stand der Forschung.. 12
 3.4 Versuchsaufbau.. 13
 3.5 Versuchsablauf... 18
 3.6 Auswertung der Messdaten.. 20
 3.6.1 Atemtätigkeit... 20
 3.6.2 Herzaktion... 20
 3.7 Statistische Auswertung .. 21

4 Ergebnisse .. 22
 4.1 Messdaten der konventionellen Vitalparameterüberwachung.......................... 22
 4.2 Messdaten der magnetischen Bioimpedanzmessung.. 27
 4.2.1 Atemtätigkeit... 27
 4.2.2 Herzaktion... 30
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO₂</td>
<td>Sauerstoffpartialdruck</td>
</tr>
<tr>
<td>PCO₂</td>
<td>Kohlendioxydpartialdruck</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>MBM</td>
<td>Magnetische Bioimpedanzmessung</td>
</tr>
<tr>
<td>CPAP</td>
<td>Continuous Positive Airway Pressure</td>
</tr>
<tr>
<td>HFOV</td>
<td>High Frequency Oscillation Ventilation</td>
</tr>
<tr>
<td>ARDS</td>
<td>Acute Respiratory Distress Syndrome</td>
</tr>
<tr>
<td>MUSIMITOS</td>
<td>Multichannel Simultaneous Magnetic Induction Measurement System</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>PEEP</td>
<td>Positive end-expiratory pressure</td>
</tr>
<tr>
<td>KI</td>
<td>Konfidenzintervall</td>
</tr>
<tr>
<td>KKK</td>
<td>Konkordanzkorrelationskoeffizient</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sauerstoffsättigung</td>
</tr>
<tr>
<td>HF</td>
<td>Herzfrequenz</td>
</tr>
<tr>
<td>RR</td>
<td>Arterieller Blutdruck</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Begriff des Monitorings

1.2 Methoden des Monitorings in der Neonatologie

1.2.1 Monitoring der Atemtätigkeit

Zunächst beinhaltet jedes Monitoring der Atemtätigkeit des Neugeborenen unerlässlich die nichtapparativen Standardmaßnahmen, zu denen die Beurteilung der Atemfunktion (Frequenz, Tiefe, Muster), die Beurteilung der Hautfarbe und die Auskultation mittels Stethoskop gehören [Brömme W 2003]. An diesen orientierenden Überblick über die Atemfunktion des Neugeborenen schließt sich das apparative Basismonitoring an. In der Neonatologie gehören dazu zurzeit standardmäßig:

1.2.1.1 Pulsoxymetrie

Beim einen beatmeten Neu- oder Frühgeborenen ist die Pulsoxymetrie allein nicht ausreichend zur Beurteilung der Respiratoreinstellungen, da es gemäß der Sauerstoffbindungskurve in verschiedenen Höhen des Sauerstoffpartialdruckes unterschiedlich starke Sättigungsänderungen anzeigt.
Das Pulsoxymeter wird bei Früh- und Neugeborenen an die Hand oder den Fuß mittels eines größenadaptierten Sensors zirkulär angebracht und ist somit durch Bewegungen des Kindes beeinflussbar [Pettersson et al. 2007].

1.2.1.2 Transkutane \(pO_2 \) und \(pCO_2 \)-Messung

Der Nachteil der transkutanen Blutgasmessung liegt in der Nebenwirkung der lokalen Gewebeüberwärmung. Um Verbrennungen höheren Grades zu vermeiden, muss der Ort der Messelektrode in regelmäßigen Abständen von 2-4 Stunden gewechselt werden [Obladen M 2006], was jedes Mal eine Belastung für das Kind darstellt.

1.2.1.3 Blutgasanalyse

Sie kann bei Neonaten, die unter einer Sauerstofftherapie stehen, auch bei vorhandener transkutaner Blutgasmessung und Pulsoxymetrie in bestimmten Abständen zur Validierung der respiratorischen Situation angewendet werden.

Moderne Blutgasanalysegeräte berechnen neben den Blutgasen den pH, Standardbikarbonat, Basendefizit, O₂-Sättigung, Laktat, Blutzucker und Elektrolyte [Obladen M 2006].

1.2.1.4 Erweitertes Monitoring der Atmung

1.2.2 Monitoring der Herzaktion

1.2.2.1 EKG-Monitoring

1.3 Spezifische Anforderungen an die kardiorespiratorische Überwachung in der Neonatologie

Zurzeit kann man durch Kombination der verschiedenen vorhandenen Messmethoden alle diese für Neugeborene typischen Vorkommnisse zuverlässig erkennen und dadurch meist eine konkrete Aussage zum Zustand des Patienten treffen.
1.4 Einführung in die Fragestellung

Eine optimale Methode zur Überwachung von Früh- und Neugeborenen ist ein wichtiger Gegenstand der Forschung in der Neonatologie [Hornchen et al. 1983] [Hornchen et al. 1983] [Merz et al. 1995] [Merz et al. 1999]. Die Ansprüche an die Überwachungsmethode sind aufgrund der besonderen Gegebenheiten beim Früh- und Neugeborenen hoch und weichen zum Teil von denen an das Erwachsenenmonitoring ab. Grundsätzlich sind folgende Forderungen an ein optimales Messinstrument in der Neonatologie zu stellen:

Die Messmethode muss:

1. genau sein
2. schnell auf Zustandsänderungen reagieren
3. möglichst in Echtzeit die Messdaten darstellen
4. nicht-invasiv sein
5. das Kind so wenig wie möglich beeinflussen bzw. belasten

Des Weiteren werden auch, aufgrund ihrer Größe vor allem bei sehr unreifen Frühgeborenen, großflächigere Areale, die eine wichtige Rolle im Bereich des Wasser- und Wärmehaushaltes des Kindes spielen, durch die Elektroden bedeckt. Auch werden die Kinder durch wiederholtes Wechseln von Klebeelektroden physisch und psychisch belastet.

Der Lehrstuhl für Medizinische Informationstechnik des Helmholtz-Institutes für Biomedizinische Technik der RWTH Aachen hat nun erstmalig ein neues Messsystem
vorgestellt, welches die kontaktlose Überwachung der Herzaktion und Atemtätigkeit mittels magnetischer Bioimpedanzmessung (MBM) ermöglicht.

Die Basis magnetischer Bioimpedanzmessung sind magnetische Wechselfelder, d.h. sich zeitlich ändernde Magnetfelder, mit denen der Widerstand in biologischen Geweben bestimmt werden kann. Aufgrund unterschiedlich leitender Stoffe ändern sich die Widerstände. Blut beispielsweise ist ein gut, Luft eine schlecht leitender Stoff; beide werden im Oberkörper im Rahmen der Herzaktion und Atemtätigkeit verschoben. Als Folge davon ändern sich die Widerstandsverteilung im Thorax und auch sein Gesamtwiderstand. Um diese Änderungen zu registrieren und somit einen Rückschluss auf Atem- und Herzaktion zu erhalten, wird eine Spule in der Nähe des zu messenden Areals angebracht, die die gemessenen Änderungen aufzeichnet. Die Registrierung bedarf keiner Elektroden, die Werte werden somit kontaktlos aufgezeichnet.

2 Zielsetzung der Studie

Diese Arbeit sollte zunächst eine grundsätzliche Aussage zur Funktionalität der Bioimpedanzmessung im neugeborenen Tiermodell treffen. Sie sollte eine Basis für nachfolgende Studien zum Einsatz der kontaktlosen Vitalparameterüberwachung schaffen, deren letztendliches Ziel die eventuelle Etablierung und Einführung der Messmethode in die Neonatologie sein wird. Im Mittelpunkt stehen die Weiterentwicklung und Optimierung der Überwachung des Neugeborenen, die den Schwerpunkt auf minimale Invasivität und Belastung setzt.
3 Materialien und Methodik

3.1 Tiermodell zur Überwachung von Atemtätigkeit und Herzaktion

3.2 Theoretische Grundlagen der magnetischen Bioimpedanz

Das Messverfahren mittels magnetischer Bioimpedanz beruht auf der Tatsache, dass schlecht leitende Stoffe, wie in unserem Falle Luft, eine hohe, gut leitende Stoffe, wie z.B. Blut, eine geringe Impedanz besitzen. Somit ergeben sich bei Verschiebungen dieser Stoffe, wie sie beispielsweise innerhalb des menschlichen Körpers stattfinden, Veränderungen der Impedanzzusammensetzung, die man messen kann.

Abb. 1: Messkonzept
3.3 Stand der Forschung

3.4 Versuchsaufbau

Der bisher an gesunden Erwachsenen und im adulten Tiermodell erprobte Versuchsaufbau der magnetischen Bioimpedanzmessung (MUSIMITOS) [Steffen et al. 2008] wurde zunächst in seinen Grundzügen übernommen.

Abb. 2: Generelle Messanordnung magnetische Bioimpedanzmessung

Das Messsystem mit mehreren Erreger- und Empfängerspulen muss sich in unmittelbarer Nähe des zu untersuchenden Patienten befinden. Da die Versuchsanordnung in besonderem Maße den Umständen auf der Neugeborenenintensivstation entsprechen sollte, musste die Messapparatur diesem angepasst werden. So wurde von den Beteiligten des Lehrstuhles für Medizinische Informationstechnik des Helmholtz-Institutes für Biomedizinische Technik der RWTH Aachen die Empfängerspule unter der Matratze des Inkubators und somit unmittelbar unter dem zu messenden Versuchstier platziert (siehe Abb. 3 und 4).

Die Messsignale wurden mittels zweier Analog-Digital-Messkarten aufgenommen. Deren Verarbeitung, Filterung und Speicherung erfolgte mithilfe einer Demodulations-Software. Anschließend wurden die Signale mittels einer weiteren Software online visualisiert. Beide Softwarepakete wurden eigenständig durch den Lehrstuhl für Medizinische Informationstechnik des Helmholtz-Institutes für Biomedizinische Technik der RWTH Aachen entwickelt. Auch die Daten der Referenzmessung, die durch einen Pulsoxymeter (Sirecust 404N [Siemens AG, Erlangen, Deutschland]) und einen Atemflussmesser (siehe Abb. 5) (Strömungswiderstand und Differenzdrucksensor) erhoben wurden, wurden so analysiert. Atemtätigkeit und

Abb. 3: Platzierung der Messspulen im Inkubator

Abb. 4: Anordnung des Messsystems im Inkubatorboden. Der Sensorkopf oder Spulenarray besteht aus:
1: Verstärker um das Erregerfeld an den Spulen zu generieren, 2: Erregerspulen und 3: Messspulen
Das Ferkel befand sich während aller Messungen im Inkubator und wurde nur für spezielle Maßnahmen (Legen der venösen und arteriellen Zugänge, Intubation; siehe Kapitel 2.5) kurzfristig umgelagert und dann wieder im Inkubator platziert (siehe Abb. 6 und 7). Dort wurden die von den Messspulen empfangenen Signale unter den verschiedenen Beatmungssituationen (Spontanatmung, CPAP, konventionelle Beatmung, Hochfrequenzoszillation) kontinuierlich aufgezeichnet.
Die mit den konventionellen Messmethoden gemessenen Werte wurden zusätzlich manuell in einem Überwachungsbogen (siehe Abb. 8) dokumentiert, um den Zustand des Versuchstieres im Verlauf zu kontrollieren.

Überwachungsbogen

<table>
<thead>
<tr>
<th>Ferkel Nr.</th>
<th>Datum</th>
<th>Geb.</th>
<th>Herzfrequenz</th>
<th>RR</th>
<th>RR Mittelwert</th>
<th>O₂ Sättigung</th>
<th>BGA (art)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td>Uhrzeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 8: Auszug aus einem Überwachungsbogen zur Überwachung der konventionell gemessenen Vitalparameter
Außerdem wurden im Überwachungsbogen die jeweiligen Wechsel zwischen den verschiedenen Beatmungsmodi (Spontanatmung, CPAP, konventionelle Beatmung und Hochfrequenzoszillation [HFOV]) festgehalten, um später die jeweilige Beatmungssituation nachvollziehen zu können.

3.5 Versuchsablauf

Bei Ankunft eines neugeborenen Versuchstieres wurde bei diesem zunächst eine Inhalationsnarkose mit 2-prozentigem Isofluran eingeleitet. Sobald das Tier ausreichend narkotisiert war, wurden ihm 2 venöse periphere Zugänge in die Venen der beiden Ohren gelegt. Zur weiteren Sedierung wurde ein Bolus Midazolam 0,1 mg/kgKG appliziert. Der eine Zugang diente der Dauerinfusion von Ketamin 0,5ml/h zur Aufrechthaltung der Narkose während des ganzen Versuches, über den zweiten Zugang wurde das Tier mit Pädiafusin® I (Firma Baxter Deutschland GmbH, 85716 Unterschleißheim, Deutschland), einer Elektrolytlösung mit 5% Glucose, parenteral ernährt und mit genügend Flüssigkeit versorgt. Die Applikation von Medikamenten als Bolus erfolgte je nach Situation und Bedarf über einen der beiden venösen Schenkel.

Zur Überwachung der Vitalparameter wurde dem Ferkel zunächst das Pulsoxymeter am Hinterlauf angelegt und so die Sauerstoffsättigung und die Herzfrequenz kontrolliert. Danach wurde ein arterieller Zugang mittels Punktion medial am Hinterlauf in die Arteria saphena gelegt. Bei denjenigen Tieren, bei denen es zu technischen Schwierigkeiten bzw. Undurchführbarkeit der direkten arteriellen Punktion am Hinterlauf kam, wurde der arterielle Zugang mittels Präparation der Halsgefäße direkt in die Arteria carotis externa gelegt. Über den arteriellen Zugang wurde der Blutdruck des Versuchstieres invasiv kontinuierlich überwacht.

Anschließend wurde das Ferkel im Inkubator gelagert, die Vitalparameter wurden mit konventionellen Überwachungsmethoden und nun auch mittels der im Inkubator installierten magnetischen Bioimpedanzmessung überwacht und viertelstündlich bzw. für die Bioimpedanz kontinuierlich aufgezeichnet. Nach zunächst spontaner Atmung über insgesamt 30 Minuten wurde das Ferkel weitere 60 Minuten unter CPAP-Ventilation (mit Flow 8 l/min und PEEP 5 mbar) beobachtet. In den Beatmungsschlauch wurde der Referenzdruckmesser integriert, der seine Messung an den Computer der Bioimpedanzmessung sendete und diesem somit einen Referenzwert lieferte. Nach kontinuierlicher Aufzeichnung der Werte wurde das Ferkel wieder auf eine Liege zur Intubation umgelagert. Die Intubation wurde zunächst mit 10 mg Pentobarbital i.v. und Fentanyl 10µg i.v. vorbereitet und das Ferkel dann mit einem 3,5er Tubus mit Surfactant-Kanal bis zur Marke 11 intubiert. Daraufhin wurde das Versuchstier wieder in den Inkubator zur erneuten Überwachung umgelagert. Die Beatmung erfolgte zunächst mit einem Handbeutel, dann wurde auf maschinelle Beatmung mit STEPHAN Respirator (Firma Stephan GmbH, 56412 Gackenbach,
Deutschland) mit den Einstellungen Frequenz 40, pmax 15 mbar, Flow 8 l/min, PEEP 3 mbar umgestellt. Nach 10 Minuten wurde die Beatmung mit pmax 10 mbar weitere 60 Minuten fortgeführt.

Das Versuchstier wurde nun weiterhin mittels konventioneller Messmethoden und magnetischer Bioimpedanzmessung überwacht und die Daten protokolliert. Außerdem wurden über arterielle Blutgasanalysen die Respiratoreinstellungen kontrolliert und der Blutdruck wurde über den arteriellen Zugang überwacht. Im folgenden Versuchsablauf wurde die Beatmung auf Hochfrequenzoszillation (HFOV; Amplituden zwischen 1 und 2, pmittel 10 mmHg) umgestellt und die Vitalparameter wurden unter diesen Einstellungen ca. 15 min lang aufgezeichnet.

Im Anschluss daran wurde die Beatmung erneut auf konventionelle Beatmung über 20 Minuten umgestellt. Innerhalb dieses Abschnittes indizierten wir 3 Apnoephasen über jeweils 1 Minute.

Im Anschluss daran wurde der Versuch mit Pentobarbital 70 mg i.v. finalisiert. Die Vitalparameterüberwachung endete mit Feststellung des Todes (Asystolie) des Versuchstieres mittels Auskultation.
3.6 Auswertung der Messdaten

3.6.1 Atemtätigkeit

Um die Übereinstimmung der mit der magnetischen Bioimpedanzmessung erhaltenen Messwerte mit denen der Referenzmessung zu beurteilen, wurde das jeweilige erhaltene Signal zunächst einer so genannten Nulldurchgangsdetektion unterzogen (siehe Abb. 9 A-C, Kapitel 3.1). Somit wurde im Signal jeder Atemzug vom nächsten abgegrenzt und das Referenz- und Impedanzsignal zu jedem Zeitpunkt der Messung direkt vergleichbar gemacht. Die registrierten Atemzüge wurden nun miteinander verglichen und die Bioimpedanzmessung folgenden Kriterien im Bezug auf das Referenzsignal unterzogen:

- Atemzug detektiert, oder
- Atemzug verpasst, oder
- Zusätzlichen Atemzug aufgezeichnet

3.6.2 Herzaktion

20
wurden, sodass ein direkter Vergleich nicht möglich war. Um die Daten dieser Herzaktionsphasen auszuwerten, entschieden wir uns, die MBM- bzw. Referenzsignale in 10-Sekunden-Blöcke einzuteilen. Über diese Blöcke wurde dann gemittelt und die Herzfrequenz kalkuliert, welche so für Referenzsignal und magnetische Bioimpedanzmessung gegenüber gestellt werden konnte.

3.7 Statistische Auswertung

Die statistische Auswertung erfolgte in Kooperation mit dem Institut für Medizinische Statistik des Universitätsklinikums der RWTH Aachen (Direktor: Prof. Dr. rer. nat. Ralf-Dieter Hilgers).

4 Ergebnisse

Wir untersuchten insgesamt 16 Ferkel mit einem mittleren Alter von 1 d (SD: 1 d) und einem mittleren Gewicht von 1700 g (SD: 200 g). Dieses entspricht in etwa dem eines normgewichtigen Frühgeborenen der 32. Schwangerschaftswoche. Ein Ferkel (Tier Nr. 5) war bereits wenige Minuten nach Beginn des Versuchsablaufes in einem kritischen klinischen Zustand. Das Tier wurde im Inkubator versorgt und behandelt, dort wurde durchgehend das magnetische Bioimpedanzsignal abgeleitet. Die Messungen konnten aufgrund der klinischen Situation nicht anhand des Versuchsablaufes Punkt für Punkt durchgeführt werden, sodass der Versuch lediglich einer Verbesserung der Messmethodik dienen konnte.

Bei Versuchstier Nr. 13 erwies sich die Intubation nach Ablauf der Überwachungsphase unter CPAP als schwierig und das Ferkel konnte nicht wie im Versuchsablauf vorgesehen weiter beatmet werden, daher wurden hier keine Vitalparameterdaten unter konventioneller Beatmung oder HFOV aufgezeichnet.

4.1 Messdaten der konventionellen Vitalparameterüberwachung

Um eine Übersicht über die physiologischen Parameter der untersuchten Tiere zu erhalten, sind die Vitalparameter der Ferkel in den folgenden Tabellen zusammengefasst. Dargestellt werden in Abhängigkeit von der Beatmungssituation jeweils der am höchsten gemessene Wert (max. HF, SO2, RR), der am niedrigsten gemessene Wert (min. HF, SO2, RR) und der Mittelwert (mittlere HF, SO2, RR) eines jeden Tieres. Bei den im Anschluss dargestellten Blutgasparametern handelt es sich um Mittelwerte aller Versuchstiere während des jeweiligen Beatmungsmodus.
Tabelle 1: Blutdruck-, Herzfrequenz- und Sättigungsparameter der untersuchten Ferkel unter CPAP-Beatmung

<table>
<thead>
<tr>
<th>Tier Nr.</th>
<th>max. RR (in mmHg)</th>
<th>min RR (in mmHg)</th>
<th>mittlerer RR (in mmHg)</th>
<th>max. HF (bpm)</th>
<th>min. HF (bpm)</th>
<th>mittlere HF (bpm)</th>
<th>max. SO2 (%)</th>
<th>min. SO2 (%)</th>
<th>mittlere SO2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>22</td>
<td>33</td>
<td>192</td>
<td>182</td>
<td>187</td>
<td>99</td>
<td>94</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>88</td>
<td>80</td>
<td>204</td>
<td>108</td>
<td>163</td>
<td>100</td>
<td>95</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>62</td>
<td>87</td>
<td>161</td>
<td>134</td>
<td>151</td>
<td>100</td>
<td>93</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>93</td>
<td>60</td>
<td>88</td>
<td>162</td>
<td>142</td>
<td>151</td>
<td>100</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>52</td>
<td>50</td>
<td>145</td>
<td>86</td>
<td>114</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>103</td>
<td>64</td>
<td>51</td>
<td>164</td>
<td>100</td>
<td>135</td>
<td>100</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>98</td>
<td>77</td>
<td>85</td>
<td>152</td>
<td>119</td>
<td>136</td>
<td>100</td>
<td>93</td>
<td>97</td>
</tr>
<tr>
<td>9</td>
<td>96</td>
<td>55</td>
<td>95</td>
<td>126</td>
<td>126</td>
<td>126</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>60</td>
<td>54</td>
<td>169</td>
<td>150</td>
<td>163</td>
<td>100</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td>11</td>
<td>77</td>
<td>63</td>
<td>60</td>
<td>134</td>
<td>119</td>
<td>127</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>98</td>
<td>81</td>
<td>72</td>
<td>188</td>
<td>125</td>
<td>161</td>
<td>99</td>
<td>90</td>
<td>94</td>
</tr>
<tr>
<td>13</td>
<td>101</td>
<td>75</td>
<td>60</td>
<td>140</td>
<td>114</td>
<td>128</td>
<td>100</td>
<td>93</td>
<td>97</td>
</tr>
<tr>
<td>14</td>
<td>90</td>
<td>64</td>
<td>63</td>
<td>176</td>
<td>176</td>
<td>176</td>
<td>98</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>15</td>
<td>95</td>
<td>68</td>
<td>59</td>
<td>130</td>
<td>118</td>
<td>124</td>
<td>100</td>
<td>95</td>
<td>98</td>
</tr>
<tr>
<td>16</td>
<td>92</td>
<td>48</td>
<td>48</td>
<td>79</td>
<td>78</td>
<td>79</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Tabelle 2: Blutdruck-, Herzfrequenz- und Sättigungsparameter der untersuchten Ferkel unter konventioneller Beatmung

<table>
<thead>
<tr>
<th>Tier Nr.</th>
<th>max. RR</th>
<th>min RR</th>
<th>mittlerer RR</th>
<th>max. HF</th>
<th>min. HF</th>
<th>mittlere HF</th>
<th>max. SO2</th>
<th>min. SO2</th>
<th>mittlere SO2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(in mmHg)</td>
<td>(in mmHg)</td>
<td>(in mmHg)</td>
<td>(bpm)</td>
<td>(bpm)</td>
<td>(bpm)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>1</td>
<td>28</td>
<td>12</td>
<td>21</td>
<td>9</td>
<td>24</td>
<td>10</td>
<td>176</td>
<td>100</td>
<td>128</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
<td>79</td>
<td>75</td>
<td>38</td>
<td>81</td>
<td>49</td>
<td>120</td>
<td>108</td>
<td>113</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>53</td>
<td>64</td>
<td>47</td>
<td>84</td>
<td>45</td>
<td>144</td>
<td>128</td>
<td>137</td>
</tr>
<tr>
<td>4</td>
<td>106</td>
<td>65</td>
<td>90</td>
<td>52</td>
<td>96</td>
<td>59</td>
<td>151</td>
<td>122</td>
<td>135</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>126</td>
<td>81</td>
<td>96</td>
<td>48</td>
<td>110</td>
<td>62</td>
<td>163</td>
<td>110</td>
<td>143</td>
</tr>
<tr>
<td>7</td>
<td>89</td>
<td>45</td>
<td>81</td>
<td>42</td>
<td>85</td>
<td>44</td>
<td>132</td>
<td>102</td>
<td>121</td>
</tr>
<tr>
<td>8</td>
<td>115</td>
<td>83</td>
<td>65</td>
<td>27</td>
<td>84</td>
<td>67</td>
<td>158</td>
<td>98</td>
<td>123</td>
</tr>
<tr>
<td>9</td>
<td>110</td>
<td>60</td>
<td>110</td>
<td>60</td>
<td>110</td>
<td>60</td>
<td>194</td>
<td>194</td>
<td>194</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>78</td>
<td>100</td>
<td>75</td>
<td>111</td>
<td>77</td>
<td>188</td>
<td>150</td>
<td>173</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>80</td>
<td>85</td>
<td>65</td>
<td>93</td>
<td>73</td>
<td>143</td>
<td>128</td>
<td>138</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>76</td>
<td>77</td>
<td>55</td>
<td>90</td>
<td>67</td>
<td>166</td>
<td>112</td>
<td>143</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>100</td>
<td>72</td>
<td>88</td>
<td>58</td>
<td>95</td>
<td>66</td>
<td>182</td>
<td>110</td>
<td>139</td>
</tr>
<tr>
<td>15</td>
<td>81</td>
<td>66</td>
<td>79</td>
<td>53</td>
<td>80</td>
<td>60</td>
<td>108</td>
<td>107</td>
<td>108</td>
</tr>
<tr>
<td>16</td>
<td>83</td>
<td>45</td>
<td>92</td>
<td>44</td>
<td>81</td>
<td>45</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
</tbody>
</table>
Tabelle 3: Blutdruck-, Herzfrequenz- und Sättigungsparameter der untersuchten Ferkel unter HFO-Beatmung

<table>
<thead>
<tr>
<th>Tier Nr.</th>
<th>max. RR (in mmHg)</th>
<th>min. RR (in mmHg)</th>
<th>mittlerer RR (in mmHg)</th>
<th>max. HF (bpm)</th>
<th>min. HF (bpm)</th>
<th>mittlere HF (bpm)</th>
<th>max. SO2 (%)</th>
<th>min. SO2 (%)</th>
<th>mittlere SO2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>38</td>
<td>38</td>
<td>26</td>
<td>44</td>
<td>32</td>
<td>200</td>
<td>188</td>
<td>194</td>
</tr>
<tr>
<td>2</td>
<td>88</td>
<td>44</td>
<td>80</td>
<td>41</td>
<td>82</td>
<td>43</td>
<td>208</td>
<td>97</td>
<td>140</td>
</tr>
<tr>
<td>3</td>
<td>118</td>
<td>66</td>
<td>29</td>
<td>22</td>
<td>80</td>
<td>45</td>
<td>143</td>
<td>130</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>46</td>
<td>79</td>
<td>43</td>
<td>82</td>
<td>45</td>
<td>135</td>
<td>114</td>
<td>123</td>
</tr>
<tr>
<td>5</td>
<td>106</td>
<td>58</td>
<td>105</td>
<td>52</td>
<td>105</td>
<td>55</td>
<td>152</td>
<td>114</td>
<td>133</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
<td>58</td>
<td>95</td>
<td>47</td>
<td>99</td>
<td>52</td>
<td>121</td>
<td>99</td>
<td>107</td>
</tr>
<tr>
<td>7</td>
<td>101</td>
<td>55</td>
<td>68</td>
<td>30</td>
<td>81</td>
<td>40</td>
<td>114</td>
<td>102</td>
<td>110</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>80</td>
<td>32</td>
<td>178</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>9</td>
<td>126</td>
<td>73</td>
<td>97</td>
<td>55</td>
<td>113</td>
<td>65</td>
<td>170</td>
<td>144</td>
<td>159</td>
</tr>
<tr>
<td>10</td>
<td>135</td>
<td>95</td>
<td>124</td>
<td>91</td>
<td>130</td>
<td>93</td>
<td>178</td>
<td>167</td>
<td>173</td>
</tr>
<tr>
<td>11</td>
<td>97</td>
<td>72</td>
<td>85</td>
<td>60</td>
<td>90</td>
<td>65</td>
<td>115</td>
<td>109</td>
<td>113</td>
</tr>
<tr>
<td>12</td>
<td>102</td>
<td>70</td>
<td>98</td>
<td>66</td>
<td>100</td>
<td>68</td>
<td>127</td>
<td>113</td>
<td>120</td>
</tr>
<tr>
<td>13</td>
<td>84</td>
<td>60</td>
<td>67</td>
<td>51</td>
<td>76</td>
<td>56</td>
<td>100</td>
<td>95</td>
<td>98</td>
</tr>
<tr>
<td>14</td>
<td>103</td>
<td>57</td>
<td>103</td>
<td>57</td>
<td>103</td>
<td>85</td>
<td>100</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>84</td>
<td>60</td>
<td>67</td>
<td>51</td>
<td>76</td>
<td>56</td>
<td>100</td>
<td>95</td>
<td>98</td>
</tr>
<tr>
<td>16</td>
<td>103</td>
<td>57</td>
<td>103</td>
<td>57</td>
<td>103</td>
<td>85</td>
<td>100</td>
<td>85</td>
<td>100</td>
</tr>
</tbody>
</table>
Für die Gruppe der untersuchten Versuchstiere ergaben sich folgende durchschnittliche Vitalparameter und Parameter des Säure/Base-Status:

Tabelle 4: Daten (Mittelwert, SD) der Parameter des Säure-Basen-Haushaltes der Versuchstiere unter CPAP, konventioneller Beatmung und HFOV

<table>
<thead>
<tr>
<th></th>
<th>CPAP</th>
<th>Konventionelle Beatmung</th>
<th>HFOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-Wert</td>
<td>7,45</td>
<td>7,48</td>
<td>7,23</td>
</tr>
<tr>
<td>pO2 (mmHg)</td>
<td>114,1</td>
<td>120,4</td>
<td>120,4</td>
</tr>
<tr>
<td>pCO2 (mmHg)</td>
<td>39,6</td>
<td>34,5</td>
<td>68,2</td>
</tr>
<tr>
<td>Base Excess (mol/l)</td>
<td>3,4</td>
<td>8,4</td>
<td>23,9</td>
</tr>
</tbody>
</table>

Tabelle 5: Daten (Mittelwert, SD) der Vitalparameter der Versuchstiere unter CPAP, konventioneller Beatmung und HFOV

<table>
<thead>
<tr>
<th></th>
<th>CPAP</th>
<th>Konventionelle Beatmung</th>
<th>HFOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolischer Blutdruck (mmHg)</td>
<td>87,6</td>
<td>87,4</td>
<td>90,4</td>
</tr>
<tr>
<td>Diastolischer Blutdruck (mmHg)</td>
<td>57,2</td>
<td>56</td>
<td>53,4</td>
</tr>
<tr>
<td>Herzfrequenz (Schläge/min)</td>
<td>141,4</td>
<td>134,6</td>
<td>132,7</td>
</tr>
<tr>
<td>Sauerstoffsättigung (%)</td>
<td>98</td>
<td>98,6</td>
<td>93,3</td>
</tr>
</tbody>
</table>
4.2 Messdaten der magnetischen Bioimpedanzmessung

4.2.1 Atemtätigkeit

Abb. 9 A-C: Vergleich Atemtätigkeit zwischen MBM (oben) und Referenzsignal (unten) A unter CPAP, B unter konventioneller Beatmung und C unter HFOV.
Markiert sind im Messsignal jeweils die Nulldurchgänge, die zum späteren Vergleich der beiden Signale und der Bestimmung der Detektionsrate der Bioimpedanzmessung dienten.

Das Signal der Atemtätigkeit konnte wie in Kapitel 2.6 beschrieben nur unter CPAP-Beatmung, konventioneller Beatmung und Hochfrequenzoszillation ausgewertet werden.

Nach Auswertung der erhaltenen Messdaten mittels der in Kapitel 2 beschriebenen Verfahren ergaben sich für die einzelnen Beatmungsmodi die in der folgenden Abbildung (Abb. 10) dargestellten prozentualen Detektionsraten „korrekt registrierter Atemzüge“.

![Abb. 10 Graphische Darstellung der unter CPAP, konventioneller Beatmung und HFOV ermittelten Detektionsraten „korrekt registrierter Atemzüge“ [%] (jeweils mit zugehörigem 95%-KI).](image)

Unter CPAP-Beatmung wurden 87,8% (95%-KI: [87,1%; 88,5%]) der Atemzüge korrekt durch die Bioimpedanzmessung erkannt. Unter konventioneller Beatmung waren es 90,8% (95%-KI: [90,3%; 91,2%]) und unter Beatmung durch Hochfrequenzoszillation 94,8% (95%-KI: [94,7%; 94,9%]). Dies ergibt eine prozentuale Erfassungsmöglichkeit zwischen 87% und 95%. Daraus folgt, dass die Funktionalität der Bioimpedanzmessung zur Beurteilung der Atemtätigkeit im neugeborenen Tiermodell für oben genannte Beatmungssituationen nachgewiesen wurde.
4.2.2 Herzaktion

Abb. 11: Exemplarischer Vergleich der Herzaktion MBM und Referenzmessung A während Apnoe (Versuchstier Nr. 15) und B während HFOV (Versuchstier Nr. 10)
Nach Auswertung der während Apnoe und unter HFOV erhaltenen Daten (siehe auch Kapitel 2.4) ergaben sich für die Detektion der Herzaktion mittels MBM folgende Ergebnisse:

In dem in Abb. 12 dargestellten Bland-Altman-Plot sind die Messwerte während Apnoe aufgetragen. Hieraus ergibt sich für die Detektion der Herzaktion:

Betrachtet man die Differenz der jeweils gemessenen Herzfrequenzen (MBM – Referenz), so lag diese im Mittel bei -1,1 Schlägen/min (SD: 11,3 Schläge/min). Alle gemessenen Werte befanden sich innerhalb der beiden Limits of Agreement (± 1,96SD) von 21,1 Schläge/min und -23,2 Schläge/min. Der Grad der Übereinstimmung der beiden Messmethoden, ausgedrückt durch den Konkordanzkorrelationskoeffizienten nach Lin, betrug für die Apnoephase 0,8520 (95%-KI: [0,7465 ; 0,9157]). Dies stellte die höchste Übereinstimmung in Herzaktivität zwischen MBM und Referenzmessung dar.

Abb. 12: Graphische Darstellung des Grades der Übereinstimmung in den gemessenen Herzfrequenzen [Schläge/min] zwischen MBM und Referenzmessung während Apnoe. Bland-Altman-Plot (KKG=0,8520; 95%-KI: [0,7465 ; 0,9157]).
In einem Streudiagramm stellen sich die Daten für die Apnoe wie folgt dar

Die statistische Analyse wurde in gleichem Maße für die Phasen unter Hochfrequenzoszillation angewendet und ergab folgende Ergebnisse:

Der Mittelwert der Differenz aus Impedanz- und Referenzmessung lag bei 5,3 Schlägen/min (SD: 26,4 Schläge/min). Alle gemessenen Werte befanden sich innerhalb der beiden Limits of Agreement (± 1,96SD) von 57,0 und −46,3. Der Konkordanzkorrelationskoeffizient nach Lin betrug hier 0,6766 (95%-KI: [0,3806 ; 0,8469]. Hieraus ergibt sich eine schlechtere Übereinstimmung in der Detektion der Herzaktion zwischen MBM und Referenzmethode.
Abb. 14: Graphische Darstellung des Grades der Übereinstimmung in den gemessenen Herzfrequenzen [Schläge/min] zwischen MBM und Referenzmessung unter HFOV. Bland-Altman-Plot (KKK=0,6766; 95%-KI: [0,3806; 0,8469])

Abb. 15: Graphische Darstellung des Grades der Übereinstimmung in den gemessenen Herzfrequenzen [Schläge/min] zwischen MBM und Referenzmessung während HFOV. Punktwolke (Korrelationskoeffizient nach Pearson: r=0,7970)
5 Diskussion

5.1 Fragestellung und Zielsetzung der Studie:

5.1.1 Technische Voraussetzungen:

5.1.2 Versuchstiere

5.2 Ergebnisse der Studie

Zur generellen Aussage über die Funktionalität der Bioimpedanzmessung im Neugeborenenmodell lässt sich anhand der Ergebnisse zunächst Folgendes sagen:

1. Die Atemtätigkeit im Sinne einer Atemfrequenzmessung konnte unter unterstützter Atmung und künstlicher Beatmung abgeleitet werden.

2. Die Herzaktion lies sich nur im Falle von induzierten Apnoen und unter Hochfrequenzoszillationsbeatmung nachweisen.
Eine kontaktlose Erfassung der Atemtätigkeit und Herzaktion mittels MBM bei neugeborenen Ferkeln ist unter geeigneten Umständen also möglich.

5.2.1 Atemtätigkeit

5.2.2 Herzaktion

notwendig, um eine störungsfreie Registrierung der MBM, entfernt von den Messspulen zu ermöglichen.

Die Registrierung der Pulswelle erfolgt bei gesunden Erwachsenen während der Diastole [Vlachopoulos & O'Rourke 2000], wobei sich gegenüber der Systole eine zeitliche Latenz ergibt, was bei Herzfrequenzen von 80 Schlägen/min kein messtechnisches Problem darstellt. Bei unseren Versuchstieren lag die durchschnittliche Herzfrequenz bei 136,2 Schlägen/min, d.h. 2,3 Schläge/s. Möglicherweise ergab sich hier eine Differenz zwischen Referenzsignal und MBM, bei der die Messspulen auf Herzhöhe angebracht sind. Bei der Registrierung der Herzaktion unter Apnoe bzw. HFOV unterschied sich die Anzahl der abgeleiteten Schläge/min im Mittel nur um 1,1 bzw. 5,8 Schläge/min. Bei einer durchschnittlichen Herzfrequenz der Versuchstiergruppe von 137 Schlägen/min macht diese Differenz weniger als 10% aus, dieses ist klinisch bei Herzfrequenzen > 100 Schlägen/min tolerabel. Allerdings ergab sich bei der Analyse der Differenzen zwischen MBM und Referenzmessung eine Standardabweichung von 11,3 Schlägen/min unter Apnoe und sogar 26,4 Schlägen/min unter HFOV. In der Neonatologie wäre diese Abweichung vom reellen Wert der Herzfrequenz vor allem bei Herzfrequenzen unter 100 Schlägen/min für die Klinik inakzeptabel, da somit lebensbedrohliche Herzfrequenzen < 80 Schläge/min nicht erkannt würden. Die Signalerfassung muss für die klinische Anwendung noch verbessert werden, um am Patienten für eine Überwachung der Herzaktion einsetzbar zu sein.

5.3 Nebenwirkungen

In allen bisher durchgeführten Versuchsaufbauten war praktisch keine Wärmeentwicklung nachweisbar [Steffen & Leonhardt 2005] [Steffen et al. 2008]. Bei unserer Messmethode liegt die gesamte Energieeinspeisung theoretisch berechnet bei ungefähr 200 mW [Steffen et al. 2008], damit liegt sie um den Faktor 10 unter der gesetzlich zulässigen maximalen Belastung [Steffen et al. 2008]. Prospektiv wurde bei

5.4 Methodische Probleme

Im Laufe der durchgeführten Versuche ergab sich, dass der ursprünglich ausgearbeitete Versuchsaufbau noch modifiziert werden musste. Vor dem Beginn der Versuche konnten wir nur auf Erfahrungen mit Versuchen im Erwachsenenbereich zurückgreifen. Um die Versuche im Neugeborenenbereich zu planen, zogen wir auf die Größe von Früh- und Neugeborenen abgestimmte Dummies heran, mit deren Hilfe die Messapparatur installiert wurde. Mit dem Beginn der Versuche am neugeborenen Versuchstier zeigten sich dann weitere Stellen, an denen der Versuchsaufbau durch die Mitarbeiter des Lehrstuhles für Medizinische Informationstechnik des Helmholtz-Institutes für Biomedizinische Technik der RWTH Aachen weiter angepasst werden musste, um die Signalverarbeitung zu verbessern. Hierbei handelte es sich z.B. um die Beschaffenheit der Spulen, deren Platzierung oder auch die Lokalisation des Versuchstiers im Inkubator. Hieraus ergab sich, dass viele Datensätze der ersten untersuchten Ferkel zur Optimierung des Messaufbaus genutzt und nicht regulär zu Auswertung herangezogen wurden.

Auch die niedrige Signalqualität der mittels MBM aufgezeichneten Herzaktion stellte ein methodisches Problem dar. Als Konsequenz dessen liefert unsere Studie keinerlei Aussage über die Erfassung der Herzaktion durch MBM unter physiologischer Atemtätigkeit.

5.5 Ausblick und Anwendbarkeit

Die Ergebnisse der vorliegenden Studie bezüglich Erfassung der Atemtätigkeit und Herzaktion mittels magnetischer Bioimpedanzmessung legen eine Basis für die weitere Entwicklung von wenig bzw. nicht-invasiven Vitalparameterüberwachungsmethoden in der Neonatologie. Unsere Versuchsreihe stellt zunächst eine Grundlagenarbeit für die Weiterentwicklung der magnetischen Bioimpedanzmessung in der Neonatologie dar.

Für die klinische Anwendung der magnetischen Bioimpedanzmessung zur Überwachung der Atemtätigkeit muss die Messtechnik noch für die Spontanatmung validiert werden, was in der vorliegenden Studie nicht möglich war. Ein Messinstrument der Atemtätigkeit muss universal unter jeder Beatmungssituation am Patienten anwendbar sein. Da die fehlende Validierung der Funktionalität unter Spontanatmung vor allem ein Problem der Methodik war und bei Einsatz entsprechender Referenzmessung durchzuführen wäre, wird diese Gegenstand nachfolgender Studien mit modifizierter Technik sein. Unter Einschluss der Spontanatmung kann die magnetische Bioimpedanz dann in weiteren, vor allem auch klinischen Studien geprüft und eine etablierte Messmethode zur Überwachung der Atemtätigkeit werden.

Bezüglich der Registrierung der Herzaktion mittels magnetischer Bioimpedanzmessung liefert diese Arbeit lediglich grundsätzliche Aussagen zu deren Funktionalität. Ziel
weiterer Untersuchungen muss die verbesserte Signalerfassung sein. Gleichzeitig sollte dann auch unter Spontanatmung, CPAP und konventioneller Beatmung die Herzaktion mittels MBM erfasst werden.

6 Zusammenfassung

Die Entwicklung nicht-invasiver Messverfahren zur Überwachung der Vitaparameter ist Gegenstand aktueller Forschung. Vor allem im Bereich der Neonatologie ist eine solche Überwachung von großem Interesse, um eine möglichst niedrige Belastung des Patienten durch Messapparaturen zu erreichen.

In unsere Studie überwachten wir 16 Ferkel im Alter von bis zu 2 Tagen mittels MBM (Messspulen im Boden eines Experimentalinkubators) und etablierter Referenzmethoden (Pulsoxymeter und Atemfluss-Detektor). Die Vitalparameter der neugeborenen Ferkel wurden unter verschiedenen Beatmungsmodi (Spontanatmung, CPAP, konventionelle Beatmung und HFOV) aufgezeichnet.

Unsere Ergebnisse ergaben eine Detektionsrate der Atemtätigkeit für MBM im Vergleich zum Referenzsignal unter CPAP von 88% (95%-KI: [87,1%;88,5%]), bei konventioneller Beatmung von 91% (95%-KI: [90,3%;91,2%]) und unter HFOV von 95% (95%-KI: [94,7%;94,9%]); Bei der Herzaktion lag während den Apnoephase die Differenz bei 1,1 Schlägen/min (SD: 11,3 Schläge/min) und unter HFOV bei 5,3 Schlägen/min (SD: 26,4 Schläge/min).

Die Versuche konnten zeigen, dass eine Überwachung der Atemtätigkeit und der Herzaktion im neugeborenen Tiermodell grundsätzlich möglich ist.

Die in unserer Studie erhaltenen Ergebnisse zur Erfassung der Atemtätigkeit und Herzaktion mittels MBM sind eine Basis für die Weiterentwicklung von wenig- bzw. nicht-invasiven Parametern in der Neonatologie. Einen weiteren Ansatzpunkt zur fortführenden Forschung bildet die Erfassung qualitativer Eigenschaften der Atemtätigkeit mittels MBM. Auch könnte die Methodik in Zukunft auf andere Patientengruppen erweitert werden.
Literaturverzeichnis

32 Obladen M Maier RF: "Neugeborenenintensivmedizin."(2006)Springer Medizin Verlag Heidelberg.

8 Anhang

8.1 Abbildungsverzeichnis

Abb. 1: Messkonzept 11
Abb. 2: Generelle Messanordnung magnetische Bioimpedanzmessung 13
Abb. 3: Platzierung der Messspulen im Inkubator 14
Abb. 4: Anordnung des Messsystems im Inkubatorboden 14
Abb. 5: Atemflussmesser 15
Abb. 6: Ferkel im Inkubator 15
Abb. 7: Versuchsaufbau im Institut für Versuchstierkunde des UK Aachen 16
Abb. 8: Auszug aus einem Überwachungsbogen zur Überwachung der konventionell gemessenen Vitalparameter 16
Abb. 9 A-C: Vergleich Atemtätigkeit zwischen MBM (oben) und Referenzsignal (unten) A unter CPAP, B unter konventioneller Beatmung und C unter HFOV. 27
Abb. 10: Graphische Darstellung der unter CPAP, konventioneller Beatmung und HFOV ermittelten Detektionsraten „korrekt registrierter Atemzüge“ [%] (jeweils mit zugehörigem 95%-KI). 29
Abb. 11: Exemplarischer Vergleich der Herzaktion MBM und Referenzmessung A während Apnoe (Versuchstier Nr. 15) und B während HFOV (Versuchstier Nr. 10) 30
Abb. 12: Graphische Darstellung des Grades der Übereinstimmung in den gemessenen Herzfrequenzen [Schläge/min] zwischen MBM und Referenzmessung während Apnoe. Bland-Altman-Plot (KKK=0,8520; 95%-KI: [0,7465 ; 0,9157]). 31
Abb. 14: Graphische Darstellung des Grades der Übereinstimmung in den gemessenen Herzfrequenzen [Schläge/min] zwischen MBM und Referenzmessung unter HFOV. Bland-Altman-Plot (KKK=0,6766; 95%-KI: [0,3806 ; 0,8469]) 33
Abb. 15: Graphische Darstellung des Grades der Übereinstimmung in den gemessenen Herzfrequenzen [Schläge/min] zwischen MBM und Referenzmessung während HFOV. Punktwolke (Korrelationskoeffizient nach Pearson: r=0,7970)

8.2 Tabellenverzeichnis

Tabelle 1: Blutdruck-, Herzfrequenz- und Sättigungsparameter der untersuchten Ferkel unter CPAP-Beatmung

Tabelle 2: Blutdruck-, Herzfrequenz- und Sättigungsparameter der untersuchten Ferkel unter konventioneller Beatmung

Tabelle 3: Blutdruck-, Herzfrequenz- und Sättigungsparameter der untersuchten Ferkel unter HFO-Beatmung

Tabelle 4: Daten (Mittelwert, SD) der Parameter des Säure-Basen-Haushaltes der Versuchstiere unter CPAP, konventioneller Beatmung und HFOV

Tabelle 5: Daten (Mittelwert, SD) der Vitalparameter der Versuchstiere unter CPAP, konventioneller Beatmung und HFOV
Auflistung der eigenen Publikationen

10 Danksagung

An erster Stelle möchte ich mich bei Herrn Dr. med. Konrad Heimann bedanken, der mich in dieses hochinteressante Projekt aufgenommen hat. Er ermöglichte mir mit seiner stets freundlichen und konstruktiven Unterstützung einen besonderen Einblick in die wissenschaftliche Forschung und das Fach Neonatologie.

Ich danke sehr Herrn Univ.-Prof. Dr. med. Thorsten Orlikowsky, Leiter der Sektion Neonatologie der Klinik für Kinder- und Jugendmedizin RWTH Aachen, für seine kompetente Betreuung und Unterstützung des Projekts.

Auch Herrn Univ.-Prof. Dr. med. Helmut Hörnchen als ehemaligem Leiter der Sektion Neonatologie RWTH Aachen und Herrn PD Dr. med. Tobias Wenzl als zwischenzeitlich kommissarisiertem Leiter der Abteilung möchte ich ganz herzlich für ihre Unterstützung danken.

Einen großen Anteil am Erfolg des ganzen Projektes hatte außerdem das Team des Zentrallaboratoriums für Versuchstierkunde des Universitätsklinikums der RWTH Aachen unter der Leitung von Univ.-Prof. Dr. med. Renè H. Tolba, ohne dessen Bereitschaft und Unterstützung die praktische Umsetzung des Projekts nicht möglich gewesen wäre. Vor allem möchte ich mich bei Frau Dr. med. vet. Nina Gronloh bedanken, die mit ihrem ausgeprägten Engagement eine große Stütze des Projekts war. Nur mit ihrer Hilfe und derer aller Tierpflegerinnen und Tierpfleger des Institutes konnten so die komplexen Anforderungen an ein neonatales Tiermodell erfüllt werden. Genannt sei auch Frau Dr. med. vet. Kira Scherer, die u.a. als Tierschutzbeauftragte und erfahrene Veterinärin bei der Planung und Durchführung des Projektes unentbehrlich war.
Meinen Dank spreche ich ebenfalls Herrn Dr. rer. nat. Sven Stanzel aus dem Institut für Medizinische Statistik aus, der mir bei der statistischen Auswertung hilfreich zur Seite stand.

Nicht zuletzt möchte ich meiner Familie und meinem Partner Stefano Bordignon danken, die mich zu jeder Zeit mit großem persönlichem Rückhalt unterstützt haben und immer einen Rat für mich bereithielten. Ein besonders herzlicher Dank gilt an dieser Stelle Antje Ballauff für ihre langjährige Hilfe und Unterstützung.

Förderung des Projektes: START-Programm der Medizinischen Fakultät der RWTH-Aachen (AZ 14/06), 2. DFG-Exzellenzakademie Medizintechnik „Monitoring und Computing in der perioperativen Medizin“ (STE 1811/1-1)
Erklärung § 5 Abs. 1 zur Datenaufbewahrung

Hiermit erkläre ich, dass die dieser Dissertation zu Grunde liegenden Originaldaten bei mir, Nora Katharina Heerich, Sonderburgstr. 19, 40545 Düsseldorf, hinterlegt sind.
CURRICULUM VITAE

Name: Nora Katharina Heerich
Geburtsdatum und -ort: 02.06.1984 in Düsseldorf
Adresse: Sonderburgstr. 19, 40545 Düsseldorf, Deutschland
Email: nora.heerich@gmail.com
Eltern: Dipl.-Ing. Martin Heerich
Dr. med. Birgit Notholt-Heerich
Staatsangehörigkeit: deutsch
Familienstand: ledig

BILDUNGSGANG:
2000 – 2001: Vancouver Highschool, Vancouver, Canada, Auslandsschuljahr
2003 - 2009: RWTH Universität Aachen
 Studium der Humanmedizin, Abschluss am 03.12.2009 in Aachen
2007: Università degli Studi di Padova (Italien), 6-monatiges Auslandsstudium der Humanmedizin im Rahmen des Socrates/Erasmus-Programmes

BERUFSERFAHRUNG:
2005: Famulatur in der Klinik und Poliklinik für Psychiatrie und Psychotherapie des Universitätsklinikums Hamburg-Eppendorf
2006: Famulatur in der Praxis für ambulante Kinderchirurgie, Dr. med. Mokhaberi, Düsseldorf
2007: Famulatur in der Klinik für Chirurgie (Chirurgia generale) der Azienda Ospedaliera di Padova (Italien)
2007: Famulatur in der Klinik für Pädiatrie (Pediatría) der Azienda Ospedaliera di Padova (Italien)
2008-2009: Praktisches Jahr (PJ) am Bethlehem-Krankenhaus Stolberg, Bezirksspital Zweisimmen (Schweiz) und der Azienda Ospedaliera di Padova (Italien)