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Abstract

In this thesis, we presented numerical methods for discretizing and solving
the mass transport problem in two-phase flows. The level set method is
used for capturing the time-dependent interface. The motion of the fluid
is described by the two-phase Navier-Stokes equations. For the spatial dis-
cretization of these equations we use the known methods in the literature,
namely the improved Laplace-Beltrami discretization for the surface force
and the extended finite element (XFEM) for the pressure approximation.
The combination of these methods delivers optimal error bounds when the
surface tension coefficient is constant. For the general case with a variable
surface tension coefficient, we introduce a new discretization of the localized
surface force term.

The solution of the mass transport equation must satisfy certain inter-
face conditions, which imply that in general both the concentration and its
derivatives are discontinuous across the interface. A simple transformation
is often used in the literature to eliminate the discontinuity of the solution,
which, however, results in a suboptimal approximation error bound O(h

1

2 ) in
the L2 norm for the finite element discretization. We use the Nitsche-XFEM
method to handle the Henry condition and obtain an optimal error estimate
O(h2) in the L2-norm for the spatial discretization in the case of a stationary
interface. The semi-discretization resulting from the Nitsche-XFEM method
is combined with the standard θ-scheme and an optimal time discretization
error bound is also obtained. This method can also be applied for problem
with moving interface but a full error analysis is not available.

Finally, we performed numerical simulations of the coupled two-phase
Navier-Stokes and mass transport equations for rising droplet problems for
both cases of constant and concentration-dependent surface tension coeffi-
cients. For the latter case, different phenomena were observed, such as the
occurrence of the so-called stagnant cap in the velocity field and a significant
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change in the droplet rising velocity. Due to the absence of a stabilization
method for the discretization of the mass transport problem, we restrict
ourselves to the case of medium diffusivity instead of the physically correct
(much smaller) diffusivity. Effects of the initial concentration and the size of
the convection (relative to the diffusion) on the droplet rising velocity and
the droplet concentration at steady state are investigated.



Zusammenfassung

In der vorliegenden Doktorarbeit präsentieren wir numerische Methoden, um
das Stofftransportproblems bei Zweiphasenströmungen zu diskretisieren und
zu lösen. Zur Beschreibung der zeitabhängigen Grenzfläche wird die Levelset-
methode verwendet. Die Bewegung des Fluids wird mit Hilfe der zweiphasi-
gen Navier-Stokes-Gleichungen beschrieben. Für die räumliche Diskretisie-
rung benutzen wir in der Literatur bekannte Methoden aus verbesserter
Laplace-Beltrami-Diskretisierung der Grenzflächenspannung und erweiterten
finiten Elementen (XFEM) für den Druck. Diese Kombination liefert im Fall
eines konstanten Grenzflächenspannungkoeffizienten optimale Fehlerschranken.
Im allgemeinen Fall eines variablen Grenzflächenspannungkoeffizienten stellen
wir eine neue Diskretisierung des lokalen Grenzflächenkraftterms vor.

Die Lösung der Stofftransportgleichung genügt zwei Bedingungen, die
dazu führen, dass im allgemeinen sowohl die Konzentration als auch ihre
Ableitung an der Grenzfläche unstetig sind. In Methoden aus der Literatur
wird häufig eine einfache Transformation verwendet, um die Unstetigkeit zu
eliminieren. Diese Transformation führt bei der Finite-Elemente-Diskretisie-
rung zu einer suboptimalen Approximationsfehlerschranke O(h

1

2 ) in der L2-
Norm. Wir setzen die Nitsche-XFEM-Methode ein, um die Henry-Bedingung
zu erfüllen. Deshalb erhalten wir im Fall einer stationären Grenzfläche für
die räumliche Diskretisierung eine optimale Fehlerschranke O(h2) in der L2-
Norm. Die aus der Nitsche-XFEM-Methode resultierende Semidiskretisierung
wird mit einem Standard-θ-Schema kombiniert. Wir zeigen eine optimale
Fehlerschranke für die Zeitdiskretisierung. Die Methode kann auf Probleme
mit beweglicher Grenzfläche angewendet werden, jedoch ist in diesem Fall
keine vollständige Fehleranalyse verfügbar.

Abschließend führen wir numerische Simulationen mit den gekoppelten
zweiphasigen Navier-Stokes- und Stofftransportgleichungen durch. Ein auf-
steigender Tropfen wird sowohl mit konstantem als auch mit konzentrations-
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abhängigem Grenzflächenspannungskoeffizienten simuliert. Im letzteren Fall
treten im Vergleich zum ersteren neue Phänomene auf, zum Beispiel eine
starre Kappe im Geschwindigkeitsfeld und eine signifikante Änderung der
Aufstiegsgeschwindigkeit des Tropfens. Da keine Stabilisierung für die Dis-
kretisierung des Stofftransportproblems implementiert wurde, beschränken
wir uns auf den Fall mittlerer Diffusivität. Die physikalisch korrekte Diffu-
sivität ist viel kleiner. In weiteren Simulationen wird der Effekt der An-
fangskonzentration und der Konvektionsstärke (relativ zur Diffusion) auf
die Aufstiegsgeschwindigkeit des Tropfens und auf die Stoffkonzentration im
Tropfen im Gleichgewichtszustand untersucht.
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Chapter 1

Introduction

In recent years, the numerical simulation of two-phase flows, in which two
immiscible fluids with different physical properties are separated by an in-
terface, is a topic of growing interest in computational fluid dynamics. The
motion of the flows is governed by the incompressible Navier-Stokes equa-
tions combined with coupling conditions at the interface. Several difficulties,
which are absent in one-phase flows, arise when solving the two-phase flow
problem, for example:

• The interface, which defines the two phases, is unknown and must be
determined together with the flow variables.

• The surface tension force only acts at the interface.

• Due to the surface tension, the pressure usually has a jump at the
interface, which requires special treatment.

• The coefficients of the Navier-Stokes (viscosity and density) are discon-
tinuous across the interface.

As a consequence, numerical algorithms developed for one-phase flows cannot
be directly applied for the simulation of two-phase flow problems.

Many methods have been used to describe the moving interface, most
of which can be classified as either front-tracking or front-capturing tech-
niques. In the front-tracking approach, the interface is often described ex-
plicitly, using a global moving grid or an additional mesh for the interface.
Although the interface can be represented very accurately, this approach is
ineffective for problems with large topological changes (break up or merging).
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Frequent remeshing is also required to prevent deterioration of the moving
mesh. Therefore, this approach is mainly used for one-phase flows with a
slowly varying free boundary, cf. [Smo01]. In the front-capturing approach
the interface is implicitly described by some phase indicator function. In
this approach, a fixed unfitted mesh is used and the interface can be recon-
structed from the indicator function if needed. The most popular methods
are the volume-of-fluids (VOF) cf. [HN81, GW01] and the level set method
cf. [OS88, Set96b]. The VOF method characterizes the interface using a
volume fraction function of one certain phase in a volume cell. An nice
property of this method is, that if it is combined with a conservative finite
volume method, then mass is conserved. In the level set method, which is
used in this thesis, the interface is determined by the zero level of a contin-
uous scalar function in the computational domain. This method, as well as
the VOF method, is capable of handling complicated topological changes.
Disadvantages of the level set method are the deterioration of shape of the
level set function during the advection of the interface and the relatively
poor (compared to VOF) mass conservation properties. These require addi-
tional techniques such as, for example, reparametrization, to obtain a good
approximation of the interface cf. [Set99, SSO94, KS98].

The local surface tension force depends on the curvature of the interface,
and this involves second order derivatives. An accurate discretization of this
force term using the finite element method is not straightforward. In the
literature [Dzi91, GRR06, GR07a], a variational Laplace-Beltrami method
has been presented in which only (tangential) first derivatives are required for
the representation of the surface tension force. This representation requires
a careful discretization as is shown in [GR07a]. The combination of the
improved Laplace-Beltrami discretization for the surface force in [GR07a]
and the extended finite element (XFEM) for the pressure approximation in
[GR07b] delivers optimal error bound for the case of constant surface tension
coefficient. Numerical simulations in [BGG+08, EGR08] show the superiority
of the XFEM method to the standard finite element one. For an overview of
the finite element discretizations for the two-phase Navier-Stokes equations
using level set methods, we refer to [GRR06, Gro08, Reu09].

In this thesis, we study the instationary two-phase Navier-Stokes equa-
tions combined with mass transport due to diffusion and convection of a third
component between the two phases. One typical example is the mass trans-
port from a droplet in the ambient fluid, which has many applications in
chemical engineering, cf. [Gro08]. In the fluid dynamics combined with mass
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transport model additional difficulties occur, such as

• the discontinuity of the diffusion coefficients in the mass transport equa-
tion due to the different phases,

• the solution of the mass transport equation must satisfy certain inter-
face conditions, which imply that in general both the concentration and
its derivatives are discontinuous across the interface,

• in many applications, the mass transport is dominated by convection,
which requires stabilization techniques. Moreover, small values of the
diffusion coefficients lead to very thin boundary layers. Thus a high
resolution near the interface is needed.

• the surface tension coefficient may depend on the mass concentration
in the vicinity of the interface, cf. [MBS85], which in turn affects the
flow and the shape of the interface, resulting in a strongly nonlinear
coupling between the Navier-Stokes and the mass transport equations
in both directions.

A common technique to handle the jump of the concentration due to
the so-called Henry’s condition is to use a transformation, using the Henry’s
constant [YM05, WLW+08, BKWW03, KAT07, WFW+07] such that, a con-
tinuous transformed concentration is obtained. Then, however, the corre-
sponding transformed velocity is discontinuous across the interface and a
subdomain-dependent coefficient in front of the time derivative appears. The
transformed problem is often discretized using a finite volume or finite differ-
ence method combined with some stabilization method such as e. g. WENO,
Power-law methods. . . , cf. [YM05, WLW+08]. In [KAT07], a standard finite
element method is used to discretize the transformed problem. When the
discrete solution of the derived problem is transformed back to the original
variable, a suboptimal approximation error bound O(h

1

2 ) in the L2 norm is
obtained. Thus there is a demand for improved finite element discretiza-
tion methods for this type of problems. In this thesis such methods will be
presented.

Simulations for static or moving droplets with mass transport can be
found in the literature, e. g.[BKWW03, YM05, PW06, WFW+07, WLW+08].
However, most of these simulations use strongly simplifying assumptions.
In [YM05], the mass transfer is only considered when the droplet already
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reaches the steady state, i. e. the transport in the deformation stage is not
considered. In [PW06, WFW+07], the droplet is assumed to be spherical,
which is only reasonable for sufficiently small droplets.

In [JL04, MC04, WFW+07], simulations of two-phase flow problems with
a concentration-dependent surface tension coefficient are carried out and
Marangoni effects are investigated. Effects of the variable surface tension
on the droplet terminal velocity and mass transport are investigated using
numerical simulations and qualitatively validated by experiments. To our
knowledge, numerical simulations with a variable surface tension coefficient
based on finite element techniques are not known in the literature.

In this thesis, we focus on the following topics:

• The finite element discretization of the surface tension force with a
variable surface tension coefficient.

• The Nitsche-XFEM discretization of the two-phase mass transport prob-
lem.

Starting from the improved Laplace-Beltrami technique presented in [GR07a]
for the case of constant surface tension we develop a discretization of the lo-
calized surface force for the general case. Although no error analysis of the
discretization has been obtained, the simulation in [EGR08] with a simple
model of the variable surface tension coefficient using our implementation
shows good agreement with experimental data from [ASB05].

The main topic of this thesis is a detailed study of the Nitsche-XFEM
method for the discretization of the mass transport equation. Both theoreti-
cal analysis and applications of this method will be presented. The extended
finite element method (cf. [MDB99, BMUP01]) is used to represent the dis-
continuity of the concentration while interface conditions are weakly enforced
in the weak formulation using Nitsche’s method. The Nitsche-XFEM com-
bination has been used in [HH02] for a stationary pure diffusion problem in
which the solution is continuous but has a kink at the interface. We extend
the results in this paper for an instationary convection-diffusion problem
with a discontinuous solution at the interface. For the case of a stationary
interface, we obtain an optimal spatial discretization error bound O(h2), cf.
[RN09]. The semi-discretization resulting from the Nitsche-XFEM method is
combined with the standard θ-scheme and an optimal time discretization er-
ror bound is also obtained. When applied to the reaction-convection-diffusion
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problem resulting from the Rothe approach (time discretization before spa-
tial discretization) for the case of a moving interface, the Nitsche-XFEM
discretization results in a spatial discretization error bound which is only op-
timal in the H1-norm. An error analysis for the full discretization is a topic
of future research. In this thesis we study a Nitsche-XFEM method that is
suitable for diffusion-dominated problems. When the diffusivity is very small
(relative to the convection), as in many real processes, a stabilization tech-
nique is needed. For the Nitsche-XFEM discretization, such a stabilization
is not available, yet.

The thesis is organized as follows. In Chapter 2, we introduce the gov-
erning equations for the two-phase flow and mass transport problems. The
level set technique for capturing the interface is discussed. Spatial and time
discretizations for the two-phase Navier-Stokes and level set equations are
addressed in Chapter 3. In Chapter 4 we collect some main results from
[GR07a] and present the new discretization for the surface tension force with
a variable surface tension coefficient. The main results of the thesis are pre-
sented in Chapter 5, in which the mass transport problem with a stationary
interface is analyzed. An error analysis for the full discretization (method of
lines: semi-discretization combined with a θ-scheme time discretization) is
obtained, with optimal bounds both for the spatial and time discretization
error. The case of a moving interface is considered in Chapter 6. An analysis
for the spatial discretization of a time-discretized problem (Rothe method) is
given. In Chapter 7 we conduct several numerical simulations of the coupled
two-phase Navier-Stokes and mass transport problem for rising droplet prob-
lems. Due to the absence of a stabilization method for the discretization of
the mass transport problem and the limitations of memory and computation
time, we restrict ourselves to the case of medium diffusivity instead of the
physically correct (much smaller) diffusivity. Simulations with both constant
and variable surface tension coefficients are considered to qualitatively inves-
tigate the Marangoni effect. A summary and outlook is presented in Chapter
8.





Chapter 2

Model for two-phase flow with

mass transport

2.1 Two-phase flow Navier-Stokes equations

Let Ω ⊂ R
d, d = 2, 3, be a polygonal domain that contains two different

immiscible incompressible phases. The (in general time dependent) subdo-
mains containing the two phases are denoted by Ω1, Ω2, with Ω̄ = Ω̄1 ∪ Ω̄2.
The interface Γ = Γ(t) between the two phases (∂Ω1 ∩ ∂Ω2) is assumed to
be sufficiently smooth. We assume that the density ρi and the viscosity µi,
i = 1, 2 are constant in each phase.

Let u(x, t) and p(x, t) be the velocity and pressure. The conservation
of mass and momentum leads to the Navier-Stokes equations in each phase
Ωi, i = 1, 2







ρi

(

∂u

∂t
+ (u · ∇)u

)

= −∇p + ρig + div(µiD(u)) in Ωi

div u = 0 in Ωi

for i = 1, 2,

where g is an external force and D(u) = ∇u + (∇u)T is the deformation
tensor.

We define the jump [f ]Γ of a function f over the interface Γ by

[f ]Γ(x) = lim
h↓0

(

f(x− hn) − f(x+ hn)
)

x ∈ Γ

with n = nΓ the unit normal at the interface (pointing from Ω1 in Ω2). To
model the forces at the interface we make the standard assumption that the
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surface tension balances the jump of the normal stress on the interface, i. e.,
we have a free boundary condition

[σn]Γ = τκn −∇Γτ,

with τ the surface tension coefficient , κ = −∇ · n the curvature of Γ and
σ the stress tensor, i. e., σ = −pI + µD(u). The notation ∇Γ = P∇, with
P = I − nnT , is used for the tangential gradient. If the surface tension
coefficient τ is assumed to be constant, the second term in the right hand
side vanishes. In each phase Ωi, i = 1, 2 the Navier-Stokes equations are
obtained from the conservations of mass and momentum.

The continuum surface force (CSF) model [BKZ92, OS88] expresses the
free boundary condition for the surface tension as a localized volume force
fΓ at the interface

fΓ = τκδΓnΓ .

Here δΓ is a Dirac δ-function with support on Γ. Its action on a smooth test
function ψ is given by

∫

Ω

δΓ(x)ψ(x) dx =

∫

Γ

ψ(s) ds .

Using this approach, we can derive the Navier-Stokes equations in the whole
domain Ω.

Let the density ρ and viscosity µ be the piecewise constant coefficients,
which equal ρi and µi in Ωi, i = 1, 2, respectively. The Navier-Stokes equa-
tions can be written as follows

ρ
(∂u

∂t
+ (u · ∇)u

)

= −∇p+ ρg + div(µD(u)) + fΓ in Ω

(2.1)

div u = 0 in Ω

This model should be interpreted in a suitable weak sense, cf. [Reu09]. In
[Gro08], it is shown that the CSF model can be derived from conservation of
momentum and mass in Ω.

Furthermore, we need boundary conditions on the boundary ∂Ω and an
initial condition at t = 0. We assume that ∂Ω consists of two separated parts
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∂Ω = ∂ΩD ∪ ∂ΩN with ∂ΩD ∩ ∂ΩN = ∅. On the Dirichlet boundary ∂ΩD we
have the essential condition u(x, t) = uD(x, t). On the Neumann part ∂ΩN

the natural boundary condition has the form σnΩ = −pextnΩ, with nΩ the
outward pointing normal vector on ∂Ω and pext a given external pressure. If
pext = 0 we have a homogeneous Neumann boundary condition on ∂ΩN .

2.2 Mass transport of a dissolved species

In this section, we consider a model for the transport of a dissolved species
in the two-phase flow. Let c(x, t) denote the concentration of the species.
In each phase the concentration is the solution of a standard parabolic
convection-diffusion equation of the form:

∂ci
∂t

+ u · ∇ci − div(αi∇ci) = 0 in Ωi,

where u is the velocity field resulting from the two-phase flow problem and
αi denotes the diffusion coefficient in Ωi, i = 1, 2.

At the interface, the mass flux is assumed to be continuous. According
to Fick’s law, we have the first interface condition

[α∇c · n]Γ = 0.

The diffusion coefficient α is assumed to be piecewise constant:

α = αi > 0 in Ωi.

In general we have α1 6= α2.
The second condition comes from continuity of chemical potentials at the

interface and is known as the Henry condition, cf. [Ish75, Sla99, SAC97,
BKWW03, BKW+04]:

[βc]Γ = 0

In this condition the coefficient β is strictly positive and piecewise constant:

β = βi > 0 in Ωi.

In general we have β1 6= β2, since species concentration usually has a jump
discontinuity at the interface due to different solubility within the respective
fluid phases. Hence, the solution c is discontinuous across the interface.

We obtain the two-phase mass transport equations in the following form
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∂c

∂t
+ u · ∇c− div(α∇c) = 0 in Ω, for t ∈ [0, T ], (2.2)

[α∇c · n]Γ = 0, (2.3)

[βc]Γ = 0, (2.4)

with suitable initial and boundary conditions.

2.3 Level set function

In the above-mentioned models it is necessary that the (generally) time-
dependent interface Γ can be determined at any time t. Different methods to
describe the moving interface are available in the literature, most of which can
be classified as either front-tracking, cf. [UT92, Bän01], or front-capturing
techniques, cf. [HN81, GW01, OS88, Set96b]. The level set method, intro-
duced by Sethian and Osher [OS88], is a very popular the numerical technique
for capturing the interface.

In this method, the interface is implicitly represented as the zero level of
a scalar function φ(x, t), i. e.

Γ(t) = {x ∈ Ω|φ(x, t) = 0},

while the phases are indicated by the sign of this function. We make the
convention that

φ(x, t) =











< 0 for x in Ω1,

> 0 for x in Ω2,

= 0 at the interface

Assume that at t = 0, the interface and the two phases are described by the
initial value of the level set φ(x, 0) = φ0(x). We consider a single particle at
the position x(0) = x0 on the interface Γ(0). As the interface evolves, at time
t > 0, the particle still remains on the interface Γ(t) and has the new position
x(t) . Thus we have φ(x(t), t) = φ(x(0), 0) = 0 for all t ≥ 0. We extent this
condition to the whole domain, i. e. φ(x(t), t) = φ(x(0), 0) = const for all x
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in Ω and all t ≥ 0. Differentiation yields

0 =
d

dt
φ(x(t), t)

=
∂φ

∂t
(x(t), t) + ∇φ(x, t) ·

dx

dt
(t).

As dx
dt

(t) = u(x(t), t), the velocity of the particle at (x, t), we obtain the
following level set equation

∂φ

∂t
+ u · ∇φ = 0 in Ω, (2.5)

with initial condition φ(x, 0) = φ0(x).
Note that the level set function φ is introduced for numerical purposes

and has no physical meaning. Ideally, φ should be a signed distance function,
i. e.

|φ(x, t)| = dist(x,Γ(t))

which has the property ||∇φ(x, t)|| = 1. However, a feasible form for such
a function is not always available for a smooth initial interface Γ(0). Hence,
an approximation of the signed distance function will be used instead.

When the level set function is advanced, it will in general not remain
close to the signed distance function and the norm of its gradient may be-
come (very) different from 1. In this case, the level set function must be
(frequently) replaced by a new approximate signed distance function with
approximately the same zero level set. Different reparametrization methods
can be used to stabilize the level set equation, for example the re-initialization
method in [SSO94] and the Fast Marching Method, cf. [KS98, Set99]. Due
to the reparametrization, the advection of the level set function according
to (2.5) is used only in a short time interval. Thus, we can use the level set
equation without any boundary condition. The finite element discretization
of the level set equation is not mass-conserving. Additional techniques must
be used to improve the mass conservation of the level set method.





Chapter 3

Discretization of the two-phase

flow Navier-Stokes equations

In this chapter we present a discretization of the two-phase flow Navier-Stokes
equations (2.1) combined with the level set equation (2.5), which is used to
describe the interface. In Section 3.2 we consider the spatial discretization
using the finite element method. Due to the discontinuity of the pressure
across the interface, a special finite element space has to be employed to
obtain an optimal approximation property. The hyperbolic level set equation
is stabilized by the streamline diffusion technique. The discretization of the
localized surface force is discussed in Chapter 4. The discretization methods
in this chapter can be found in the literature [Gro08, RFG+, Reu09].

3.1 Weak formulations

We consider the combination of the two-phase flow Navier-Stokes equations
(2.1) and the level set equation (2.5) in Chapter 2

ρ(φ)
(∂u

∂t
+ (u · ∇)u

)

= −∇p + ρ(φ)g + div(µ(φ)D(u)) + fΓ

div u = 0 (3.1)

∂φ

∂t
+ u · ∇φ = 0
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with suitable boundary conditions and an initial condition for the Navier-
Stokes equations and the level set equation. The coefficients ρ and µ are
defined as

ρ(φ) := ρ1 + (ρ2 − ρ1)H(φ),

µ(φ) := µ1 + (µ2 − µ1)H(φ),
(3.2)

with H : R → R is the Heaviside function:

H(ζ) = 0 for ζ < 0 , H(ζ) = 1 for ζ > 0 ,

and H(0) = 1
2

for convenience.

We introduce the following Hilbert spaces

V := (H1(Ω))3,

V0 := {v ∈ V : v = 0 on ∂ΩD },

VD := {v ∈ V : v = uD on ∂ΩD },

Q := L2
0(Ω) = { q ∈ L2(Ω) :

∫

Ω

q dx = 0 },

V := {v ∈ L2(Ω) : u · ∇v ∈ L2(Ω)}

and define the bilinear forms

m : L2(Ω)3 × L2(Ω)3 → R : m(u,v) =

∫

Ω

ρ(φ)u · v dx,

a : V × V → R : a(u,v) =
1

2

∫

Ω

µ(φ) tr
(

D(u)D(v)
)

dx,

b : V ×Q→ R : b(u, q) =

∫

Ω

q div u dx,

and the trilinear form

c : V ×V ×V → R : c(u;v,w) =

∫

Ω

ρ(φ) (u · ∇v) · w dx.

We consider the following weak formulation of (3.1):
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Find u(t) ∈ VD, p(t) ∈ Q and φ(t) ∈ V such that

m(
∂u(t)

∂t
,v) + a(u(t),v) + c(u(t);u(t),v) − b(v, p(t))

= m(g,v) + fΓ(v) for all v ∈ V0

b(u(t), q) = 0 for all q ∈ Q (3.3)

(
∂φ(t)

∂t
, v)0 + (u(t) · ∇φ(t), v)0 = 0 for all v ∈ L2(Ω)

with

fΓ(v) =

∫

Ω

(

τκδΓnΓ −∇ΓτδΓ
)

· v dx =

∫

Γ

(

τκnΓ −∇Γτ
)

· v ds. (3.4)

The time derivatives ∂u

∂t
and ∂φ

∂t
should be interpreted in a suitable weak

sense, cf. [Reu09]. Here δΓ denotes a Dirac distribution and ∇Γ denotes the
tangential gradient.

3.2 Spatial discretization

3.2.1 Multilevel triangulation

The finite element discretization of the Navier-Stokes and level set equations
(3.1) in this section is based on a multilevel grid hierarchy, which is convenient
for local refinement and coarsening as well as for multigrid methods to solve
the resulting linear system. Below we present some basic definitions from
[GR05]. For more details on multilevel refinement (and coarsening) strate-
gies, we refer to the literature [BSW83, Bas96, BBJ+97, Bey95, GR05]. We
assume that the domain Ω is polyhedral.

Definition 3.1 (Triangulation). A finite collection T = {T} of tetrahedra
T ⊂ Ω is called a triangulation of Ω if the following holds:

1. vol(T ) > 0 for all T ∈ T ,

2.
⋃

T∈T T = Ω,

3. int(S) ∩ int(T ) = ∅ for all S, T ∈ T with S 6= T .
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Definition 3.2 (Consistency). A triangulation T is called consistent if the
intersection of any two tetrahedra in T is either empty, a common face, a
common edge or a common vertex.

Definition 3.3 (Stability). A sequence of triangulations T0, T1, T2, . . . is
called stable if all angles of all tetrahedra in this sequence are uniformly
bounded away from zero.

Definition 3.4 (Refinement). For a given tetrahedron T a triangulation
K(T ) of T is called a refinement of T if |K(T )| ≥ 2 and any vertex of any
tetrahedron T ′ ∈ K(T ) is either a vertex or an edge midpoint of T . In this
case T ′ is called a child of T and T is called the parent of T ′. A triangulation
Tk+1 is called refinement of a triangulation Tk 6= Tk+1 if for every T ∈ Tk

either T ∈ Tk+1 or K(T ) ⊂ Tk+1 for some refinement K(T ) of T .

Definition 3.5 (Multilevel triangulation). A sequence of consistent trian-
gulations M = (T0, . . . , TJ) is called a multilevel triangulation of Ω if the
following holds:

1. For 0 ≤ k < J : Tk+1 is a refinement of Tk.

2. For 0 ≤ k < J : T ∈ Tk ∩ Tk+1 ⇒ T ∈ TJ .

3.2.2 Galerkin finite element discretization

Let M = (T0, . . . , TJ) be a multilevel triangulation of Ω. With each trian-
gulation Tk (0 ≤ k ≤ J) we associate a mesh size parameter h = hk. Let
Vh ⊂ V0, VD

h ⊂ VD, Qh ⊂ L2
0(Ω) and Vh ⊂ V be finite element spaces

corresponding to the triangulation Tk. The pair (Vh, Qh) is assumed to be
LBB stable, i. e. the following Ladyshenskaja-Babuska-Brezzi condition is
fulfilled

∃ β̂ > 0 : sup
uh∈Vh

b(uh, qh)

‖uh‖1

≥ β̂‖qh‖L2 for all qh ∈ Qh, (3.5)

with β̂ independent of h.

The Galerkin discretization of (3.1) is as follows:
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Find uh(t) ∈ VD
h , ph(t) ∈ Qh and φh(t) ∈ Vh such that for t ∈ [0, T ]:

m(
∂uh(t)

∂t
,vh) + a(uh(t),vh)+c(uh(t);uh(t),vh) − b(vh, ph(t))

=m(g,vh) + fΓh
(vh) ∀vh ∈ Vh (3.6)

b(uh(t), qh) = 0 ∀qh ∈ Qh (3.7)

(
∂φh(t)

∂t
, vh)0 + (uh(t) · ∇φh(t), vh)0 =0 ∀vh ∈ Vh. (3.8)

Here fΓh
(vh) is a suitable approximation of the surface force fΓ(vh), cf. Sec-

tion 4.
The discretization (3.8) of the hyperbolic level set equation is unstable.

In [Reu09], an analysis for a simple one-dimensional problem shows that
the inf-sup constant of the corresponding bilinear form tends to 0 when the
mesh size h decreases. We consider the streamline diffusion stabilization to
improve the stability of (3.8), cf. [Reu09]. For each tetrahedron T ∈ Tk and
each vh ∈ Vh we define a test function v̂h ∈ L2(Ω) as follows

v̂h(x) = vh(x) + δTuh(x, t) · ∇vh(x), x ∈ T, T ∈ Th.

where δT ≥ 0 is a stabilization parameter, which depends on the mesh size
h and the local velocity uh on T . An analysis of the streamline diffusion
method and reasonable choices for the stabilization parameter δT can be
found in [Reu09]. This leads to the stabilized variant of (3.8):

∑

T∈Tk

(
∂φh

∂t
(t) + uh(t) · ∇φh(t), vh + δTuh(t) · ∇vh)T = 0 ∀vh ∈ Vh. (3.9)

Here (·, ·)T denotes the L2-scalar product over the domain T .
Let {ξj}1≤j≤N , {ψj}1≤j≤K and {χj}1≤j≤L be (nodal) bases of Vh, Qh and

Vh, respectively. Then we can represent the solutions uh(t) ∈ VD
h , ph(t) ∈ Qh

and φh(t) ∈ Vh in these bases as:

uh(t) =

N
∑

j=1

uj(t)ξj, ~u(t) := (u1(t), . . . , uN(t))

ph(t) =

K
∑

j=1

pj(t)ψj , ~p(t) := (p1(t), . . . , pK(t))

φh(t) =
L

∑

j=1

φj(t)χj , ~φ(t) := (φ1(t), . . . , φL(t)).
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For φh ∈ Vh and uh ∈ Vh we introduce the following matrices:

M(φh) ∈ R
N×N , M(φh)ij =

∫

Ω

ρ(φh)ξi · ξj dx

A(φh) ∈ R
N×N , A(φh)ij =

1

2

∫

Ω

µ(φh) tr
(

D(ξi)D(ξj)
)

dx

B ∈ R
K×N , Bij = −

∫

Ω

ψi div ξj dx

N(φh,uh) ∈ R
N×N , N(φh,uh)ij =

∫

Ω

ρ(φh)(uh · ∇ξj) · ξi dx

E(uh) ∈ R
L×L, E(uh)ij =

∑

T∈Tk

∫

T

χj(χi + δTuh · ∇χi) dx

H(uh) ∈ R
L×L, H(uh)ij =

∑

T∈Tk

∫

T

(uh · ∇χj)(χi + δTuh · ∇χi) dx.

We also use the following notations

M(~φ(t)) = M(φh)

A(~φ(t)) = A(φh)

N(~φ(t), ~u(t)) = N(φh,uh)

E(~u(t)) = E(uh)

H(~u(t)) = H(uh).

to emphasize the dependence of these matrices on the time-dependent vectors
~u(t) and ~φ(t).

Using this notation we obtain the following equivalent formulation of the
coupled system of ordinary differential equations (3.6), (3.7), (3.9): Find

~u(t) ∈ R
N , ~p(t) ∈ R

K and ~φ(t) ∈ R
L such that for all t ∈ [0, T ]

M(~φ(t))
d~u

dt
(t) + A(~φ(t))~u(t) + N(~φ(t), ~u(t))~u(t) + BT~p(t)

= ~g(~φ(t)) +~fΓh
(~φ(t)) (3.10)

B~u(t) = 0 (3.11)

E(~u(t))
d~φ

dt
(t) + H(~u(t))~φ(t) = 0. (3.12)
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The vectors in the right-hand side are defined as

~g(φh) ∈ R
N , ~g(φh)i =

∫

Ω

ρ(φh)g · ξi dx,

~fΓh
(φh) ∈ R

N , ~fΓh
(φh)i = fΓh

(ξi).

3.2.3 Extended finite element space for the pressure

We introduce the spaces of piecewise polynomial functions of degree k ∈ N

on the triangulation Th

X
k
h := { v ∈ C(Ω̄) | v|T ∈ Pk for all T ∈ Th }, k ≥ 1, (3.13a)

X
k
h,0 := X

k
h ∩H

1
0 (Ω), k ≥ 1. (3.13b)

In the Galerkin discretization for the one-phase flow Navier-Stokes equations,
the Hood-Taylor P2−P1 finite element pair (Vh, Qh) :=

(

(X2
h,0)

3 , X
1
h∩L

2
0(Ω)

)

is a standard choice because of its LBB-stability and optimal approximation
properties, cf. [GR86]. For the two-phase flow problem, due to the appear-
ance of the surface tension, the pressure p has a jump across the interface
Γ. As the interface Γ is in general not aligned with the grid, the discontinu-
ity of p lies inside the elements which contain Γ. Hence the standard finite
element space Qh := X

1
h ∩ L2

0(Ω) is no longer suitable to approximate the
discontinuous pressure p. In practice, a piecewise planar approximation Γh

is used for the reconstruction of the interface Γ. We refer to Section 3.2.4
for the definition of Γh. Thus, the subdomains Ω1 and Ω2 are approximated
by two polyhedral subdomains Ω1,h and Ω2,h with respect to Γh. We define
in these polyhedral subdomains the piecewise constant density ρh, such that
ρh = ρi in Ωi,h. In [GR07a], an approximation error bound for the numeri-
cal solution of a stationary two-phase flow Stokes equation (with a constant
viscosity µ > 0 in Ω) is derived. As a consequence of Strang’s lemma, this
error bound is of the form

µ‖u− uh‖1 + ‖p− ph‖L2 ≤ c
(

µ inf
vh∈Vh

‖u − vh‖1 + inf
qh∈Qh

‖qh − p‖L2

+ sup
vh∈Vh

|(ρg,vh) − (ρhg,vh)|

‖vh‖1

+ sup
vh∈Vh

|fΓ(vh) − fΓh
(vh)|

‖vh‖1

)

(3.14)
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It is shown that, cf. [GR07a], the quantity infqh∈Qh
‖qh−p‖L2 has no better

upper bound than ch
1

2 . Thus, the best one can obtain are sub-optimal error
bounds for the velocity ‖u− uh‖1 ≤ ch

1

2 and the pressure ‖p− ph‖L2 ≤ ch
1

2

respectively.
A much better approximation of the pressure is obtained by using the

extended finite element method (XFEM), introduced by Belytschko et al.
cf. [MDB99, BMUP01]. The idea of this method is that the standard finite
element space is enriched by certain functions which can represent disconti-
nuities across the interface

QΓ
h := { v ∈ H1(Ω1 ∪ Ω2) : v|Ti

is linear for all T ∈ Th, i = 1, 2. }, (3.15)

where Ti = T ∩ Ωi.
We define the index set I = {1, . . . , K}, where K = dim X

1
h, and let

(ψi)i∈I be the nodal basis in X
1
h. Let IΓ := { i ∈ I : |Γ ∩ supp(ψi)| > 0 }

be the index set of those basis functions the support of which is intersected
by Γ. The Heaviside function HΓ has the values HΓ(x) = 0 for x ∈ Ω1,
HΓ(x) = 1 for x ∈ Ω2. Using this, for i ∈ IΓ we introduce a so-called
enrichment function

Φi(x) := HΓ(x) −HΓ(xi),

where xi is the vertex with index i. We introduce a new basis function

ψΓ
i := ψiΦi, i ∈ IΓ

and define the space

QΓ
h := Qh ⊕ span{ψΓ

i | i ∈ IΓ }.

An illustration of the enrichment basis functions in the one-dimensional case
is shown in Figure 3.1.

The following theorem from [Reu08] proves the optimal approximation
property of the XFEM space QΓ

h

Theorem 3.1. For an integer k ≥ 0 we define the space

Hk(Ω1 ∪ Ω2) := { p ∈ L2(Ω) : p|Ωi
∈ Hk(Ωi), i = 1, 2 }

with the norm ‖p‖2
k,Ω1∪Ω2

:= ‖p‖2
k,Ω1

+ ‖p‖2
k,Ω2

. Then for integer l, m with
0 ≤ l < m ≤ 2 the following holds:

inf
v∈QΓ

h

‖u− v‖l,Ω1∪Ω2
≤ c hm−l‖u‖m,Ω1∪Ω2

(3.16)

for all u ∈ Hm(Ω1 ∪ Ω2).
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Γ

Ω2 Ω1

1

xi xj

qi qj

qΓ
j

qΓ
i

Figure 3.1: Extended finite element basis functions qi, q
Γ
i (dashed) and qj , q

Γ
j

(solid) for 1D case.

In general, as the evolving interface is not aligned with the fixed grid,
there are basis functions ψi ∈ QΓ

h with very small support in the sense that

|supp(ψΓ
i )|

|supp(ψi)|
≪ 1.

Such basis functions may lead to instability, for example if their contributions
are dominated by rounding errors. In [Reu08] a modified XFEM space is
introduced, in which basis functions from QΓ

h with very small support are
deleted. Let α > 0, c̃ ≥ 0 be given parameters. We denote by ΩΓ the set of
all tetrahedra intersected by Γ. Let Iγ ⊂ IΓ be the index set such that for
all i ∈ IΓ \ Iγ :

‖ψi‖l,T∩Ωi

‖ψi‖l,T
≤ c̃ hα

T for all T ⊂
(

supp(ψi) ∩ ΩΓ

)

. (3.17)

The values of c̃ is used to determine which basis functions are deleted. If
c̃ = 0, all the enrichment functions are included while a large value of c̃
would give the standard finite element space. In practice we choose l = 0.
The choice of α will be addressed below.
The modified XFEM spaces Qγ

h is defined by

Qγ
h := Qh ⊕ span{ψΓ

i | i ∈ Iγ }.

For this space the following approximation property holds, cf. [Reu08]:
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Theorem 3.2. We assume {Th}h>0 to be quasi-uniform. For 0 ≤ l < m ≤ 2
the following holds:

inf
v∈Qγ

h

‖u− v‖l,Ω1∪Ω2
≤ c

(

hm−l + hα−l
)

‖u‖m,Ω1∪Ω2
for all u ∈ Hm(Ω1 ∪ Ω2).

This means that the order of approximation of the modified space Qγ
h is

the same as that of Qγ
h if we take α = m. From the definition of QΓ

h , we
choose α = m = 1.

3.2.4 Implementation issues

We use the finite element pair (Vh, Q
γ
h) for the spatial discretization of

the Navier-Stokes equations. For the discrete level set equation, piecewise
quadratic finite elements with streamline diffusion stabilization are used to
provide a good approximation φh of φ. We explain how a piecewise planar
approximation Γh of Γ is reconstructed.

Let Th be a shape regular tetrahedral triangulation of Ω. We introduce
one further regular refinement of Th denoted by T ′

h . Let Ih(φh) be the continu-
ous piecewise linear function on T ′

h which interpolates the piecewise quadratic
function φh at the vertices of each tetrahedron in T ′

h , i. e.:

∀ vertices ν of T ′ : Ih(φh)(ν) = φh(ν).

Then Γh is defined as

Γh := { x ∈ Ω | Ih(φh)(x) = 0 }. (3.18)

Note that Γh is easy to construct, since Ih(φh) is piecewise linear. Once
Γh is known, we obtain the two polyhedral subdomains Ω1,h and Ω2,h as
approximations for Ω1 and Ω2.

Let TΓh
:= {T ∈ Th | T∩Γh 6= ∅} denote the set of all tetrahedra which are

intersected by the approximate interface Γh. For each T ∈ TΓh
, let T ′ ∈ T ′

h

be one of the 8 regular children of T . We introduce the notations T ′
i :=

T ′ ∩ Ωi,h, i = 1, 2 , and Γh,T ′ = T ′ ∩ Γh, the restrictions of the subdomains
and interface in T ′. Then T ′

i is either a tetrahedron or a prism, which can
be subdivided into 3 subtetrahedra. The planar segment Γh,T ′ is either a
triangle or a quadrilateral, which can be subdivided into 2 triangles. Thus
integrals over T ′

i or Γh,T ′ of smooth functions can be easily determined with
high accuracy using standard (Gauss) quadrature.
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Th

T ′
h

Γ
Γh

Figure 3.2: Construction of a piecewise linear interface for 2D case.

The matrices and vectors in (3.10)-(3.12) are assembled element-wise by
summing the contributions from all tetrahedra T in Th. A Gauss quadrature
of degree five in a tetrahedron is used to compute the local integrals. Note
that the coefficients ρ and µ, appearing in M,A,B and ~g, are discontinuous
in each tetrahedron T ∈ TΓh

. In this case, as mentioned above, each regular
child T ′ of T is partitioned into two polyhedral parts T ′

1 and T ′
2, in which the

coefficients ρ and µ are constant. Then the same Gauss quadrature can be
applied in the (at most three) subtetrahedra of T ′

i . The sums of the results
from all subtetrahedra give the local integrals of M,A,B and ~g in T .

For the pressure we use the extended finite element space Qγ
h, which con-

tains discontinuous basis functions at the interface. Hence the local integrals
∫

T∈TΓh

ψΓ
i div ξj dx that arise in the assembling process for the matrix B are

treated in a similar way. From the definition of ψΓ
i we have

supp(ψΓ
i )|T′ =

{

T ′
2 if xi ∈ Ω1

T ′
1 if xi ∈ Ω2,

which can be determined from the sign of the level set function at the vertices.
Thus we have

∫

T ′

ψΓ
i div ξj dx =

{

∫

T ′

2

ψi div ξj dx if xi ∈ Ω1,

−
∫

T ′

1

ψi div ξj dx if xi ∈ Ω2,

which can be computed by applying the Gauss quadrature in the subtetra-
hedra of T ′

1 or T ′
2 and summing the results. If both T ′

1 and T ′
2 are non-

tetrahedral, the integration in each part involves three subtetrahedra. In
case one of these two parts is a tetrahedron, say T ′

1, it is more efficient to
compute the integral in this tetrahedral part, since the integral in T ′

2 (for the
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case xi ∈ Ω1) can be deduced from

∫

T ′

2

ψi div ξj dx =

∫

T ′

ψi div ξj dx−

∫

T ′

1

ψi div ξj dx.

3.3 Time discretization

In the spatial discretization of the two-phase Navier-Stokes equations in Sec-
tion 3.2.2, the mass matrix M (scaled by the discontinuous density ρ(φh(t))
is in general time-dependent. If the extended finite element method is used
for the pressure, the matrix B depends also on time, as the XFEM space
changes with the evolution of the interface. In this section, we present the
time integration for the Navier-Sokes equations (3.11) and the level set equa-
tion (3.12) from [Reu09] using the generalized θ-scheme. In subsection 3.3.2,
a simple variant of the implicit Euler method cf. [Gro08] is discussed.

3.3.1 The generalized θ-scheme

For simplicity, we first restrict to the case with the matrix B independent
of t. We consider the Navier-Stokes part in (3.10)-(3.11). We introduce the
notation

G(~u, ~φ, ~g,~fΓh
) = ~g(~φ(t)) +~fΓh

(~φ(t)) −A(~φ(t))~u(t) − N(~φ(t), ~u(t))~u(t).

For simplicity, we use the notations

M(t) = M(~φ(t)) and G(~u, t) = G(~u, ~φ, ~g,~fΓh
).

Then the Navier-Stokes equations can be written as

M(t)
d~u

dt
(t) + BT~p(t) = G(~u, t)

B~u(t) = 0,
(3.19)

or, equivalently,

d~u

dt
(t) + M(t)−1BT~p(t) = M(t)−1G(~u, t)

B~u(t) = 0.
(3.20)
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We define the projection Q(t) = I − M(t)−1BTS(t)−1B, where S(t) :=
BM(t)−1BT . From Bd~u

dt
(t) = 0 and substitution of d~u

dt
(t) from the first

equation we obtain

S(t)~p(t) = BM(t)−1G(~u, t), S(t) := BM(t)−1BT . (3.21)

Using (3.21) we can eliminate ~p(t) from the first equation in (3.20) resulting
in

d~u

dt
(t) =

[

I− M(t)−1BTS(t)−1B
]

M(t)−1G(~u, t)

=: Q(t)M(t)−1G(~u, t).
(3.22)

The projection Q(t) = I − M(t)−1BTS(t)−1B satisfies BQ(t) = 0. Given
the initial condition B~u(0) = 0, the solution ~u(t) of the ordinary differential
equation (3.22) remains in the subspace Ker(B). The θ-scheme applied to
(3.22) yields

~un+1 − ~un

∆t
= θQ(tn+1)M(tn+1)

−1G(~un+1, tn+1)

+ (1 − θ)Q(tn)M(tn)−1G(~un, tn). (3.23)

We assume that for each n this system has a unique solution ~un+1 (which is
the case for ∆t sufficiently small). If B~u0 = 0 then B~un = 0 for all n ≥ 1. For
implementation it is convenient to eliminate the projection Q by introducing
a suitable Lagrange multiplier. Define ~pk := S(tk)

−1BM(tk)
−1G(~uk, tk).

Then (3.23) takes the form

~un+1 − ~un

∆t
= θM(tn+1)

−1
(

G(~un+1, tn+1) − BT~pn+1
)

+ (1 − θ)M(tn)−1
(

G(~un, tn) − BT~pn
)

.
(3.24)

Assume that ~u0 is such that B~u0 = 0. The sequence (~un)n≥0 defined by the
θ-scheme (3.23) satisfies (3.24) and also B~un = 0 for all n. We use ~pk as a
Lagrange multiplier to enforce B~uk = 0 as follows. Given ~u0 with B~u0 = 0
define

~p0 := S(t0)
−1BM(t0)

−1G(~u0, t0),

and for n ≥ 0 let ~un+1, ~pn+1 be such that

~un+1 − ~un

∆t
= θM(tn+1)

−1
(

G(~un+1, tn+1) −BT~pn+1
)

+ (1 − θ)M(tn)−1
(

G(~un, tn) −BT~pn
)

(3.25)

B~un+1 = 0 (3.26)
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holds. Due to (3.24) this system has a solution. If we assume that for each n
the saddle point problem (3.25) has a unique solution (which is true for ∆t
sufficiently small) then this yields the solution of the θ-scheme in (3.23).

We consider θ 6= 0, as the explicit Euler method (θ = 0) is not stable.
If we also have θ 6= 1, in (3.25) inverses of both M(tn+1) and M(tn) occur.
Using an additional variable, we can avoid the inverse of M(tn). Define

~zk := M(tk)
−1

(

G(~uk, tk) − BT~pk
)

, k ≥ 0,

i.e.

M(t0)~z
0 = G(~u0, t0) − BT~p0

θ~zk+1 =
~uk+1 − ~uk

∆t
− (1 − θ)~zk, k ≥ 0.

Using this, (3.25) can be reformulated as

M(tn+1)
~un+1 − ~un

∆t
+ θBT~pn+1 = θG(~un+1, tn+1) + (1 − θ)M(tn+1)~z

n

B~un+1 = 0

θ~zn+1 =
~un+1 − ~un

∆t
− (1 − θ)~zn,

(3.27)

for n ≥ 0 and a starting value ~z0 as defined above.
Application of the θ-scheme to the level set equation (3.12) results in

~φ
n+1

− ~φ
n

∆t
= −θE(~un+1)−1H(~un+1)~φ

n+1
− (1 − θ)E(~un)−1H(~un)~φ

n
.

This can be reformulated using a new variable

~wk = −E(~uk)−1H(~uk),

which satisfies (for θ 6= 0)

θ~wn+1 =
~φ

n+1
− ~φ

n

∆t
− (1 − θ)~wn,

resulting in

E(~un+1)
~φ

n+1
− ~φ

n

∆t
= −θH(~un+1)~φ

n+1
+ (1 − θ)E(~un+1)~wn. (3.28)
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Combining these results we obtain, for θ 6= 0, the following coupled nonlinear

system for (~un, ~pn, ~φ
n
) → (~un+1, ~pn+1, ~φ

n+1
):

Given ~u0, ~φ
0
, determine ~z0 and ~w0 as follows:

G(~u0, ~φ
0
, ~g,~fΓh

) = ~g(~φ
0
) +~fΓh

(~φ
0
) − A(~φ

0
)~u0 −N(~φ

0
, ~u0)~u0

BM(~φ
0
)−1BT~p0 = BM(~φ

0
)−1G(~u0, ~φ

0
, ~g,~fΓh

)

M(~φ
0
)~z0 = G(~u0, ~φ

0
, ~g,~fΓh

) −BT~p0

E(~u0)~w0 = H(~u0)~φ
0

(3.29)

For n ≥ 0:

M(~φ
n+1

)
~un+1

∆t
+ θ

[

A(~φ
n+1

)~un+1 + N(~φ
n+1

, ~un+1)~un+1 − ~g(~φ
n+1

)

−~fΓh
(~φ

n+1
)
]

+ θBT~pn+1

= M(~φ
n+1

)
~un

∆t
+ (1 − θ)M(~φ

n+1
)~zn,

B~un+1 = 0

E(~un+1)
~φ

n+1

∆t
+ θH(~un+1)~φ

n+1
= E(~un+1)

~φ
n

∆t
+ (1 − θ)E(~un+1)~wn

θ~zn+1 =
~un+1 − ~un

∆t
− (1 − θ)~zn

θ~wn+1 =
~φ

n+1
− ~φ

n

∆t
− (1 − θ)~wn.

(3.30)

Remark 3.1. For the case θ = 1 the scheme takes a much simpler form. In
particular the sequences for ~zn and ~wn are not needed. The resulting method
is as follows:
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Given ~u0, ~φ
0
, determine for n ≥ 0:

M(~φ
n+1

)
~un+1

∆t
+

[

A(~φ
n+1

)~un+1 + N(~φ
n+1

, ~un+1)~un+1 − ~g(~φ
n+1

)

−~fΓh
(~φ

n+1
)
]

+ BT~pn+1

= M(~φ
n+1

)
~un

∆t
B~un+1 = 0

E(~un+1)
~φ

n+1

∆t
+ H(~un+1)~φ

n+1
= E(~un+1)

~φ
n

∆t
.

(3.31)

3.3.2 An implicit Euler type of method

We present a variant of an implicit Euler method from [RFG+, Gro08] which
is used in our experiments in Chapter 7 due to its simplicity. Starting point
is the ODE system for the Navier-Stokes part in (3.22):

d~u

dt
(t) = Q(t)M(t)−1G(~u, t).

For the discretization the projection operator Q(t) is treated explicitly, whereas
the operator G(~u, t) is treated semi-implicitly. Applying an implicit Euler
method for the latter, we obtain the discretization

~un+1 − ~un

∆t
= Q(tn)M(tn)−1G(~un+1, tn).

Using a Lagrange multiplier ~pk+1 := S(tk)
−1BM(tk)

−1G(~uk+1, tk) we obtain
the saddle point form

~un+1 − ~un

∆t
= M(tn)−1

(

G(~un+1, tn) −BT~pn+1
)

B~un+1 = 0.
(3.32)

The same idea is applied to the level set equation and thus we get the fol-
lowing time integration scheme for the coupled problem
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Given ~u0, ~φ
0
, determine for n ≥ 0:

M(~φ
n
)
~un+1

∆t
+

[

A(~φ
n
)~un+1 + N(~φ

n
, ~un+1)~un+1 − ~g(~φ

n
)

−~fΓh
(~φ

n
)
]

+ BT~pn+1

= M(~φ
n
)
~un

∆t
B~un+1 = 0

E(~un)
~φ

n+1

∆t
+ H(~un)~φ

n+1
= E(~un)

~φ
n

∆t
.

(3.33)

This scheme is similar to the one in Remark 3.1, but now the mass matrices
M and E are treated explicitly (i.e. evaluated at tn instead of tn+1). Thus
per time step there is a decoupling between the Navier-Stokes and level set
equation.

Remark 3.2. In section 7.2.1 we will briefly discuss iterative methods for
solving the nonlinear systems resulting from the time discretization schemes
3.3.1 and 3.33. The reparametrization method for maintaining the level set
function is addressed in section 7.2.2.





Chapter 4

Treatment of variable surface

tension

In this chapter we present the Laplace-Beltrami method for approximation of
the localized surface tension force fΓ. In section 4.1 we recall the discretiza-
tion methods and results in [Bän01, Dzi91, GRR06, GR07b] for the case of
a constant surface tension coefficient τ . For this case, an analysis of the
Laplace-Beltrami discretization is given in [GR07b]. The new discretization
for the case with variable surface tension coefficient is presented in Section
4.2.

4.1 Laplace-Beltrami method for discretiza-

tion of the surface tension force

Let the interface Γ be defined on an open subset U of R
3. We define the

signed distance function

d : U → R, |d(x)| := dist(x,Γ) for all x ∈ U.

Thus Γ is the zero level set of d. We assume d < 0 in Ω1 and d > 0 in Ω2.
We define n(x) := ∇d(x) for all x ∈ U . Thus n = nΓ on Γ and ‖n(x)‖ = 1
for all x ∈ U . We define the orthogonal projection on Γ

P(x) := I − n(x)n(x)T , x ∈ Γ,

and also the orthogonal projection on Γh, with Γh as in 3.2.4

Ph(x) := I − nh(x)nh(x)
T , x ∈ Γh, x not on an edge,
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where nh denotes the unit normal on Γh.
For a sufficiently smooth function u : U → R the tangential derivative of

u is defined by projecting the derivative to the tangent space of Γ, i. e.

∇Γu := P(x)∇u. (4.1)

Similarly, we have the tangential derivative along Γh

∇Γu := Ph(x)∇u. (4.2)

We define the Laplace-Beltrami operator of f on Γ by

∆Γf(x) := ∇Γ · ∇Γf(x).

For vector valued functions f , g : Γ → R
3 we have

∆Γf := (∆Γf1,∆Γf2,∆Γf3)
T , ∇Γf · ∇Γg :=

3
∑

i=1

∇Γfi · ∇Γgi .

The following basic result from differential geometry shows how curvature
can be related to the Laplace-Beltrami operator and how partial integration
can be applied.

Theorem 4.1. Let idΓ : Γ → R
3 be the identity on Γ, κ = κ1 + κ2 the sum

of the principal curvatures, and n the outward unit normal on Γ. Then for
all sufficiently smooth vector functions v on Γ the following holds:

∫

Γ

κn · v ds = −

∫

Γ

(∆Γ idΓ) · v ds =

∫

Γ

∇Γ idΓ ·∇Γv ds .

We construct a polygonal approximation Γh of the interface Γ as the
approximate zero level of the piecewise quadratic discrete level set function
φh.. The localized force term fΓ(vh) is approximated by

fΓh
(vh) := τ

∫

Γh

∇Γh
idΓh

·∇Γh
vh ds, vh ∈ Vh (4.3)

where Vh is the finite element space defined in Section 3.2.2.
From the identity

∇Γh
idΓh

= Ph∇ idΓh
= (Phe1,Phe2,Phe3)

T
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with ei the i-th standard basis vector in R
3, we obtain

fΓh
(vh) = τ

∫

Γh

Ph∇ idΓh
·∇Γh

vh ds

= τ
3

∑

i=1

∫

Γh

Phei · ∇Γh
(vh)i ds.

(4.4)

The analysis in [GR07b] yields the following error bound

sup
vh∈Vh

|fΓ(vh) − fΓh
(vh)|

‖vh‖1

≤ c
√

hΓ. (4.5)

As mentioned in Section 3.2.3, the term supvh∈Vh

|fΓ(vh)−fΓh
(vh)|

‖vh‖1
contributes

to the upper bound for the discretization error. The estimate (4.5) states
that the discretization (4.4) results in suboptimal bounds for ‖u− uh‖1 and
‖p − ph‖L2. The numerical results in [GR07b, GMT07] also show that the
bound in (4.5) is sharp.

The improved Laplace-Beltrami discretization in [GR07b] is introduced
to overcome the poor approximation error bound (4.5) using the following
improved projection P̃h

P̃h(x) := I − ñh(x)ñh(x)
T , x ∈ Γh

where

ñh(x) :=
∇φh(x)

‖∇φh(x)‖
.

The modified localized force term f̃Γh
(vh) is defined as follows

f̃Γh
(vh) := τ

∫

Γh

P̃h∇ idΓh
·∇Γh

vh ds = τ

3
∑

i=1

∫

Γh

P̃hei · ∇Γh
(vh)i ds (4.6)

for all vh ∈ Vh.
The analysis in [GR07b] gives the estimate

sup
vh∈Vh

|fΓ(vh) − f̃Γh
(vh)|

‖vh‖1
≤ c hΓ.
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4.2 Discretization of fΓ(v) with variable sur-

face tension coefficient

We consider the case where the surface tension coefficient τ is not necessarily
constant. The localized surface force fΓ(v) then has the form

fΓ(v) =

∫

Γ

(τκn −∇Γτ) · vds. (4.7)

Using the result from Theorem 4.1 and integration by part, we rewrite (4.7)
for all vh ∈ Vh as follows

fΓ(vh) =

∫

Γ

(τκn −∇Γτ) · vhds

=

∫

Γ

(τ(−∆Γ idΓ) −∇Γτ) · vhds

=

∫

Γ

(−∆Γ idΓ) · (τvh) ds−

∫

Γ

∇Γτ · vh ds

=

∫

Γ

∇Γ idΓ ·∇Γ(τvh) ds−

∫

Γ

∇Γτ · vh ds

=
3

∑

i=1

∫

Γ

∇Γ(idΓ)i ∇Γ(τ · (vh)i) ds−

∫

Γ

∇Γτ · vh ds

=
3

∑

i=1

(

∫

Γ

∇Γ(idΓ)i [(∇Γτ) (vh)i + τ (∇Γ(vh)i)] ds
)

−

∫

Γ

∇Γτ · vh ds

=

3
∑

i=1

(

∫

Γ

τ∇Γ(idΓ)i ∇Γ(vh)i ds+

3
∑

i=1

∫

Γ

(vh)i ∇Γ(idΓ)i ∇Γτ ds
)

−

∫

Γ

∇Γτ · vh ds. (4.8)

We assume that τ = τ(x), which is defined for x ∈ Γ, has an extension to
x ∈ Γh. Applying the improved Laplace-Beltrami discretization in Section
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4.1 to the last expression in (4.8), we obtain the approximation

f̃Γh
(vh) ≈

3
∑

i=1

(

∫

Γh

τ P̃hei · ∇Γh
(vh)i ds+

∫

Γh

(vh)i P̃hei · ∇Γh
τ ds

)

−

∫

Γh

P̃h∇τ · vh ds. (4.9)

Note that if τ is constant, the approximations in (4.9) and (4.6) are identical.
An error analysis of this discretization scheme is not available, yet.

4.3 Implementation issues

In our implementation, we consider a model in which a smooth extensions τ e

of the surface tension coefficient τ is given in a (small) neighbourhood of Γ.
The piecewise polygonal approximation Γh of the interface Γ is constructed
as in section 3.2.4. For each tetrahedron T which is intersected by Γh, let T ′

be one of the 8 regular children of T . The planar segment Γh,T ′ = T ′ ∩ Γh

is either a triangle or a quadrilateral, the latter can be subdivided into 2
triangles. Without loss of generality, we can assume that Γh,T ′ is a triangle.
Thus local integrals over Γh,T ′ of smooth functions can be computed with
high accuracy using a Gauss quadrature rule on a triangle. We construct
a data structure which allows fast evaluations of the approximate level set
function φh on the tetrahedron T . With this structure, the normal vector ñh,
and thus the projection P̃h, at the Gauss quadrature nodes (in barycentric
coordinates) on Γh,T ′ can be easily determined.

In chapter 7 we consider a model in which the surface tension coefficient
τ depends on the restriction to the interface of the concentration c of a
dissolved species in the continuous phase Ω2, cf. (7.2). In this model, the
concentration is discontinuous across the interface and is approximated by a
function in the XFEM space QΓ

h. Let T be a tetrahedron defined as above.
We determine the linear extension ce2 of c2 in T and evaluate the extension
τ e of τ at the Gauss quadrature nodes on Γh,T ′ using (7.2). The gradient of
τ e on T is computed by the chain rule

∇τ e =
∂τ e

∂ce2
· ∇ce2.

The term ∇ce2 is easy to determine, since ce2 is a linear function in T , while
∂τe

∂ce
2

is derived from (7.2).
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4.4 Numerical experiment

In this section, we present results of numerical simulations for problems with
a variable surface tension coefficient. These simulations are performed by
the research group at the Chair of Thermal Process Engineering (RWTH
Aachen), cf. [BKP09, BP09], using the DROPS package. In this package
we implemented the discretization method for the localized surface tension
force as discussed in Sections 4.2 and 4.3. A similar simulation has been
addressed in [EGR08], which describes the dynamics of a levitated toluene
droplet in a downward going water flow using a simple model for the variable
surface tension τ . The simulation is motivated by a measurement using
the fast NMR (nuclear magnetic resonance) technique, cf. [ASB05], which
is displayed in Figure 4.1. In this NMR image, a velocity field inside the
droplet at the equilibrium state is shown and a so-called “stagnant cap” can
be recognized, with very low velocity in the lower half of the droplet. This
effect is considered to be a consequence of the variable surface tension due
to the appearance of surfactants. The “stagnant cap” occurs in the region
where the contaminant tends to accumulate, cf. [Ama06], i. e. where the
surface tension coefficient is lower.

Figure 4.1: Stagnant cap in experiment.

As the exact surface tension coefficient τ is not known, we construct a
model in which the value of τ in the lower part of the droplet is smaller than
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that in the upper part. A smoothed piecewise constant function τ which
depends on the height of the droplet is considered for simplicity. First we
map the current vertical coordinate of the droplet to the interval [0, 2], with
0 corresponding to the highest point and 2 to the lowest point of the droplet.
For all z ∈ [0, 2], we define a piecewise constant function which has a jump
at zjump ∈ (0, 2)

t(z) =

{

τ0 if 0 ≤ z < zjump,

a · τ0 if zjump ≤ z ≤ 2.

with some value τ0 > 0 and a factor a ∈ (0, 1], and regularize this function
in the neighbourhood of the jump position as follows:

τ(z) =











τ0 if 0 ≤ z < zjump − ǫ,

s(z) if zjump − ǫ ≤ z ≤ zjump + ǫ,

a · τ0 if zjump + ǫ < z ≤ 2.

The function s(z) is chosen such that τ(z) is smooth in the interval [0, 2].
Thus, the surface tension coefficient is determined by three parameters:

• A factor a ∈ (0, 1],

• The jump position zjump ∈ (0, 2),

• The width ǫ of the region in which the function t is smoothed.

In Figure 4.2 the colour coding indicates the magnitude of the surface tension
coefficient. The material coefficients are given in Table 4.1. The diameter of
the droplet is d = 4 mm. The surface tension in the upper part of the droplet
is τ0 = 34.31 · 10−3 N/m. The jump position zjump = 0.5 and the jump width
2 · 10−3 are used in the simulations.

For the spatial discretization, the finite element pair (Vh, Q
γ
h) for the ve-

locity and pressure is used. For the level set equation, the piecewise quadratic
finite elements are used. The surface force fΓ is approximated by (4.9). The
problem is discretized in time using the linearized θ-scheme (3.33) (θ = 1) in
Section 3.3.2 with the time step size ∆t = 2 · 10−4 s.

In the first simulation, the factor a = 0.95 is used. The constant down-
ward inflow velocity is 80 mm/s. In Figure 4.3, the velocity distribution at
t = 0.1 is shown, which exhibits a similar “stagnant cap” as in the exper-
imental one in Figure 4.1. Small counter vortices below the jump position
can also be seen.
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Figure 4.2: Distribution of the variable surface tension τ on the interface.

toluene-water
µ[Pa · s] ρ[kg/m3]

Ω1 5.96e-4 867
Ω2 1.03e-3 999

Table 4.1: Material properties

In the second simulation, a small change of the surface tension in the
lower part is considered, with a = 0.94. The downward inflow velocity for
this case is 83 mm/s, which is chosen such that the droplet quickly reaches its
equilibrium position. The velocity distribution for this simulation is shown
in Figure 4.4. In this case, the influence of Marangoni convection due to the
concentration difference is significantly larger: the vortices in the upper part
almost disappear while the counter vortices are dominant. In reality, the
assumption that the ratio of the surface tension coefficient between the lower
and upper parts of the droplet remains unchanged is not valid, since the sur-
factant in the lower part will be transported upwards due to the Marangoni
convection, and thus the difference of the surfactant concentration will be
reduced. Hence, such a velocity field can not be observed in experiments.
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Figure 4.3: Stagnant cap in simulation for a = 0.95.

Figure 4.4: Velocity field in simulation for a = 0.94.





Chapter 5

Two-phase mass transport

problem with a stationary

interface

The results in this chapter are new and were recently published in [RN09].
We consider the mass transport equation (2.2)-(2.4) in the stationary case,
in which the interface Γ does not depend on time. A model example is a
droplet at a stationary position in a flow field. For simplicity, we assume
that the surface tension coefficient τ in the two-phase flow Navier-Stokes
equations (3.1) is independent of the concentration of the dissolved species.
Hence the mass transport equations have no effect upon the two-phase flow
problem. For the sake of convenience, in this chapter as well as in Chapter 6,
we rewrite the equations (2.2)-(2.4) using some new notations, with u(x, t)
denoting the concentration and w the divergence-free velocity field resulting
from (3.1). The Dirichlet boundary condition on ∂Ω is taken to simplify the
analysis.

∂u

∂t
+ w · ∇u− div(α∇u) = f in Ωi, i = 1, 2, t ∈ [0, T ], (5.1)

[α∇u · n]Γ = 0, (5.2)

[βu]Γ = 0, (5.3)

u(·, 0) = u0 in Ωi, i = 1, 2, (5.4)

u(·, t) = 0 on ∂Ω, t ∈ (0, T ]. (5.5)

For the special case β1 = β2 (no discontinuity) and with a triangulation
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which is fitted to the interface, standard finite element spaces have (close to)
optimal approximation properties. In [CZ98] it is proved that in this special
case for standard linear finite elements an L2-discretization error bound of
the order h2 log h holds.

We allow β1 6= β2 and use triangulations that are unfitted (as in level set
or VOF approaches), i.e. the interface crosses the elements. We will analyze
a variant of Nitsche’s method [Nit71] for the spatial discretization of this
problem. From this semi-discrete problem a full discretization is obtained by
using a standard θ-scheme for time discretization. We use the same Nitsche
method as presented and analyzed in [HH02], cf. also [HH04, HHL03, Han05].
In that paper this method is applied to a stationary heat conduction problem
with a conductivity that is discontinuous across the interface (α1 6= α2) but
with a solution that is continuous across the interface (β1 = β2). We apply
this method to the instationary problem described above, with β1 6= β2

(discontinuous solution), and furthermore allow a convection term in (2.2)
(in [HH02] only pure diffusion is considered). We consider, however, only
the diffusion dominated case. For convection dominated problems additional
stabilization terms in the Nitsche method are needed, which will be studied
in future work. In the error analysis that we present some key results from
[HH02] are used.

We also mention the papers [HJ07a, HJ07b, HN03, HP02, HP05] in which
a similar Nitsche method is applied and analyzed in a different setting,
namely as a mortar method, which allows the use of non-matching meshes, for
the discretization of elliptic and parabolic problems with smooth solutions.

Remark 5.1. The discontinuity of u across the interface can be avoided by
introducing transformed quantities ũ := βu, α̃ := α/β, w̃ := w/β. Then
(2.2)-(2.4) can be reformulated as

β−1∂ũ

∂t
+ w̃ · ∇ũ− div(α̃∇ũ) = f in Ωi, i = 1, 2, t ∈ [0, T ], (5.6)

[α̃∇ũ · n]Γ = 0, (5.7)

[ũ]Γ = 0. (5.8)

In this formulation we have continuity of ũ across Γ but, compared to (2.2),
a subdomain dependent scaling factor β−1 in front of the time derivative.
The scaled velocity w̃ is also discontinuous across the interface.

We will consider the model in the formulation (5.1)-(5.5). The discretiza-
tion method obtained for this model immediately yields an analogon for the
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transformed model (5.6)-(5.8), cf. remark 5.5.

The chapter is organized as follows. In Section 5.1 we discuss a weak
formulation of the problem (5.1)-(5.5). Nitsche’s finite element method for
the spatial discretization is presented in Section 5.2 . In Section 5.3 optimal
discretization error bounds are derived. In Section 5.4 the issue of time
discretization is briefly addressed. Finally, in section 5.5 we present results
of numerical experiments with a three-dimensional transport problem of the
form (5.1)-(5.5).

5.1 Weak formulation

In this section we give a weak formulation of the problem (5.1)-(5.5) which,
under reasonable assumptions on the data f , u0 (and w), has a unique so-
lution. We assume that for the function u0 in the initial condition (5.4) the
conditions in (5.2), (5.3) are satisfied. For simplicity we only consider ho-
mogeneous Dirichlet boundary conditions in (5.5). Note that this boundary
condition is given (only) on ∂Ω and thus if ∂Ω1 ∩ ∂Ω = ∅, then it does not
prescribe values for u1 = u|Ω1

.

Due to the fact that the underlying two-phase fluid dynamics concerns
two incompressible immiscible phases it is reasonable to make the following
assumption about the velocity field w:

div w = 0 in Ωi, i = 1, 2, and w · n = 0 at Γ, ‖w‖L∞(Ω) ≤ c <∞.
(5.9)

In the remainder of the chapter we assume that (5.9) holds.

For a weak formulation we introduce suitable Hilbert spaces. We define
H1

0 (Ω1 ∪ Ω2) := { v ∈ L2(Ω) : vi ∈ H1(Ωi), i = 1, 2, v|∂Ω = 0 }, where
vi := v|Ωi

, and

H := L2(Ω), V := { v ∈ H1
0(Ω1 ∪ Ω2) : [βv]Γ = 0 }.

On H we use the scalar product

(u, v)0 :=

∫

Ω

βuv dx,
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which clearly is equivalent to the standard scalar product on L2(Ω). The
corresponding norm on H is denoted by ‖ · ‖0. For u, v ∈ H1(Ω1 ∪ Ω2) we
define (ui, vi)1,Ωi

:= βi

∫

Ωi
∇ui · ∇vi dx and

(u, v)1,Ω1∪Ω2
:= (u, v)1,Ω1

+ (u, v)1,Ω2
, u, v ∈ V.

The corresponding norm on V is denoted by | · |1,Ω1∪Ω2
. This norm is equiv-

alent with
(

‖ · ‖2
0 + | · |21,Ω1∪Ω2

)
1

2 =: ‖ · ‖1,Ω1∪Ω2
.

The space
(

V, (·, ·)1,Ω1∪Ω2

)

is a Hilbert space. We obtain a Gelfand triple
V →֒ H ≡ H ′ →֒ V ′, with dense and continuous embeddings →֒.

We now introduce the bilinear form

a(u, v) := (αu, v)1,Ω1∪Ω2
+ (w · ∇u, v)0, u, v ∈ V.

This bilinear form is continuous on V and using (5.9) we get, for u ∈ V ,

(w · ∇u, u)0 =
∑

i=1,2

βi

∫

Ωi

w · ∇ui ui dx

=

∫

Γ

w · n[βu2]|Γ ds−
∑

i=1,2

βi

∫

Ωi

div w u2
i dx− (w · ∇u, u)0

= −(w · ∇u, u)0.

(5.10)

Hence, (w · ∇u, u)0 = 0 holds. This yields ellipticity of a(·, ·):

a(u, u) ≥
(

min
i=1,2

αi

)

|u|21,Ω1∪Ω2
for all u ∈ V. (5.11)

We introduce some further standard notation. If X is a Banach space then
L2(0, T ;X) is the space of L2 functions from (0, T ) into X, which is a Banach
space for the norm

‖f‖L2(0,T ;X) =
(

∫ T

0

‖f(t)‖2
X dt

)
1

2

.

Furthermore C([0, T ];X) denotes the space of continuous functions from
[0, T ] into X, which is a Banach space for the norm

‖f‖C([0,T ];X) = sup
t∈[0,T ]

‖f(t)‖X .
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Now consider the following weak formulation of (5.1)-(5.5). Given f ∈ V ′,
u0 ∈ H , determine u ∈ L2(0, T ;V ) such that

u(0) = u0, 〈
∂u

∂t
, v〉 + a(u, v) = 〈f, v〉 for all v ∈ V. (5.12)

Here 〈·, ·〉 denotes the duality pairing on V ′×V . The derivative ∂u
∂t

is defined
in a distributional sense, cf. for example [LM72, Tem84]. In particular
∂u
∂t

∈ L2(0, T ;V ′). It can be shown ([LM72, Tem84]) that u ∈ C([0, T ];H)
holds and thus the initial condition u(0) = u0 is well-defined. It is proved in
[LM72, Tem84] that the weak formulation (5.12) has a unique solution.

Remark 5.2. This existence and uniqueness result still holds (cf. [Tho97,
EG04]) if instead of ellipticity of the bilinear form a(·, ·), cf. (5.11), one has
the weaker property

a(u, u) ≥ c0|u|
2
1,Ω1∪Ω2

− c1‖u‖
2
0 for all u ∈ V,

with constants c0 > 0 and c1 independent of u. Using

|(w · ∇u, u)0| ≤ c|u|1,Ω1∪Ω2
‖u‖0

it easily follows that this property holds without using the first two assump-
tions in (5.9). We introduce these assumptions because they simplify the
presentation of the analysis for the continuous problem and we need them in
our analysis of Nitsche’s method in Section 5.3.

The duality pairing in (5.12) can be replaced by the scalar product (·, ·)0 on
H if one assumes additional regularity of the data f and u0. Related to this
regularity issue we first consider the stationary problem: for f ∈ H ,

find w ∈ V such that a(w, v) = (f, v)0 for all v ∈ V. (5.13)

The unique solution w of this problem satisfies

w ∈ Vreg := { v ∈ V : vi ∈ H2(Ωi), i = 1, 2. }, (5.14)

and
‖w‖2,Ω1∪Ω2

:=
(

‖w‖2
1,Ω1∪Ω2

+ |w|22,Ω1∪Ω2

)
1

2 ≤ c ‖f‖0 (5.15)
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holds, with a constant c independent of f . For the stationary problem it is
no restriction to assume β1 = β2, since the general case can be reduced to
that by a transformation as in (5.6)-(5.8). For the symmetric case w = 0,
this regularity result is given in [CZ98]. For the general case such regularity
results are derived in Chapter 3 of [LU68] (cf. also [LRU66]). The space Vreg

is a Banach space with respect to the norm ‖ · ‖2,Ω1∪Ω2
. Using this regularity

result it follows from Theorem 3.2 in [Tem88] that the following holds:

Lemma 5.1. Take f ∈ H, u0 ∈ Vreg There exists a unique u ∈ C([0, T ];Vreg)
such that u(0) = u0 and

(
∂u

∂t
, v)0 + a(u, v) = (f, v)0 for all v ∈ V. (5.16)

Moreover, the distributional time derivative satisfies

∂u

∂t
∈ L2(0, T ;V ) ∩ C([0, T ];H). (5.17)

We now show that the variational problem (5.16) is indeed a correct weak
formulation of the problem (5.1)-(5.5).

Lemma 5.2. Take f ∈ H, u0 ∈ Vreg. Assume that (5.1)-(5.5) has a so-
lution u(x, t) which is sufficiently smooth such that for u : t → u(·, t) we
have u ∈ C([0, T ];Vreg) and ∂u

∂t
∈ L2(0, T ;H). This u solves the variational

problem (5.16).
Conversely, if u ∈ C([0, T ];Vreg) with u(0) = u0 solves the variational prob-
lem (5.16) then u satisfies (5.1) in a weak L2(Ωi) sense and (5.2), (5.3),
(5.5) in trace sense.

Proof. Take u ∈ C([0, T ];Vreg) with ∂u
∂t

∈ L2(0, T ;H), and v ∈ V . Using
[βv] = 0 we get

[α∇u · nβv]Γ = [α∇u · n]Γ
1

2

(

(β1v1)|Γ + (β2v2)|Γ
)

+
1

2

(

(α1∇u1 · n)|Γ + (α2∇u2 · n)|Γ
)

[βv]|Γ

= [α∇u · n]Γ
1

2

(

(β1v1)|Γ + (β2v2)|Γ
)

.
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Using this we obtain

(
∂u

∂t
, v)0 + a(u, v)

= (
∂u

∂t
, v)0 + (w · ∇u, v)0 −

∑

i=1,2

∫

Ωi

div(αi∇u)βiv dx+

∫

Γ

[α∇u · nβv]Γ ds

=
∑

i=1,2

∫

Ωi

(∂u

∂t
+ w · ∇u− div(αi∇u)

)

βiv dx

+

∫

Γ

[α∇u · n]Γ
1

2

(

(β1v1)|Γ + (β2v2)|Γ
)

ds.

(5.18)

If u satisfies (5.1), (5.2) we thus obtain

(
∂u

∂t
, v)0 + a(u, v) = (f, v)0 for all v ∈ V,

i.e., (5.16) holds. Conversely, if u ∈ C([0, T ];Vreg) with u(0) = u0 solves the
variational problem (5.16) we obtain

∑

i=1,2

∫

Ωi

(∂u

∂t
+ w · ∇u− div(αi∇u) − f

)

βiv dx

+

∫

Γ

[α∇u · n]Γ
1

2

(

(β1v1)|Γ + (β2v2)|Γ
)

ds = 0

for all v ∈ V . This implies that ∂u
∂t

+w ·∇u−div(αi∇u) = f in L2(Ωi) sense
and [α∇u ·n]Γ = 0 in trace sense. The properties in (5.3) and (5.5) hold due
to u ∈ V .

For the result in (5.18) it is essential that we multiply the equation (2.2)
by βv and not by v. This explains why in the scalar products (·, ·)0 and
(·, ·)1,Ω1∪Ω2

we use the weighting with the (piecewise constant) function β.

5.2 Nitsche’s method

We present Nitsche’s method for the two-dimensional case, Ω ⊂ R
2, along

the same lines as in [HH02]. Both the method and its convergence analysis
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can be extended to the three-dimensional case, cf. Remark 5.4 below. For
ease of presentation we decided to consider the 2D case. In our numerical
experiments in Section 5.5.3 we consider three-dimensional problems.

Let {Th}h>0 be a family of shape regular triangulations of Ω. A triangu-
lation Th consists of triangles T , with hT := diam(T ) and h := max{ hT | T ∈
Th}. For any triangle T ∈ Th let Ti := T ∩Ωi be the part of T in Ωi. For any
T with T ∩ Γ 6= ∅ we define ΓT := T ∩ Γ. Related to the triangulation we
formulate the same assumptions as in [HH02]:

Assumption 1. Consider a T with T ∩Γ 6= ∅. We assume that the interface
Γ intersects ∂T exactly twice and each edge of T at most once. Let ΓT,h be
the straight line connecting the points of intersection between Γ and ∂T . We
assume that ΓT is a function of length on ΓT,h:

ΓT,h = { (ξ, η) : 0 < ξ < |ΓT,h|, η = 0 },

ΓT = { (ξ, η) : 0 < ξ < |ΓT,h|, η = δ(ξ) }.

The assumptions formulated in Assumption 1 are satisfied on sufficiently
fine meshes. We now introduce the finite element space

V Γ
h := { v ∈ H1

0 (Ω1 ∪ Ω2) : v|Ti
is linear for all T ∈ Th, i = 1, 2. } (5.19)

Note that V Γ
h ⊂ H1

0 (Ω1∪Ω2), but V Γ
h 6⊂ V , since the Henry interface condition

[βvh] = 0 does not necessarily hold for vh ∈ V Γ
h .

Define

(κi)|T =
|Ti|

|T |
, T ∈ Th, i = 1, 2,

hence, κ1 + κ2 = 1. For v sufficiently smooth such that (vi)|Γ, i = 1, 2, are
well-defined, we define the weighted average

{v} := κ1(v1)|Γ + κ2(v2)|Γ.

For the average and jump operators the following identity holds for all f, g
such that these operators are well-defined:

[fg] = {f}[g] + [f ]{g} − (κ1 − κ2)[f ][g]. (5.20)

Let (f, g)Γ :=
∫

Γ
fg ds be the L2(Γ) scalar product. We introduce the bilinear

form

ah(u, v) := (αu, v)1,Ω1∪Ω2
+ (w · ∇u, v)0 − ([βu], {α∇v · n})Γ

− ({α∇u · n}, [βv])Γ + λh−1([βu], [βv])Γ,
(5.21)
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with λ > 0 a parameter. This bilinear form is well-defined on the space V Γ
h

but also on

Wreg := { v ∈ H1
0 (Ω1 ∪ Ω2) : vi ∈ H2(Ωi), i = 1, 2. }.

The space Wreg is larger than the space Vreg in (5.14). The interface condition
[βv] = 0 is fulfilled for all v ∈ Vreg but not necessarily for v ∈Wreg.

Using this bilinear form we define a method of lines discretization of
(5.16). Let u0,h ∈ V Γ

h be an approximation of u0. For t ∈ [0, T ] let uh(t) ∈ V Γ
h

be such that uh(0) = u0,h and

(
∂uh

∂t
, vh)0 + ah(uh, vh) = (f, vh)0 for all vh ∈ V Γ

h . (5.22)

Opposite to the weak formulation in (5.16), in this discretization method the
Henry interface condition [βuh] = 0 is not treated as an “essential” interface
condition in the finite element space V Γ

h . The discrete problem is consistent
(cf. Lemma 5.3 below) and the bilinear form ah(·, ·) is stable. For the discrete
solution the Henry interface condition is satisfied only approximately. As we
will show in the following sections, this approach leads to optimal order
error bounds (Section 5.3) and satisfactory results in numerical experiments
(Section 5.5).

5.3 Analysis of Nitsche’s method

In this section we present an error analysis of the method of lines discretiza-
tion given in (5.22). We start with a consistency result:

Lemma 5.3. Let u = u(t) ∈ Vreg be the solution defined in Lemma 5.1.
Then u(t) satisfies

(
∂u

∂t
, vh)0 + ah(u, vh) = (f, vh) for all vh ∈ V Γ

h , t ∈ [0, T ]. (5.23)

Proof. From Lemma 5.2 we have that u = u(t) satisfies [α∇u ·n] = 0, [βu] =
0. Using this and (5.20) we obtain:

−
∑

i=1,2

∫

Ωi

div(αi∇u)βvh dx+ (w · ∇u, vh)0

= −

∫

Γ

[α∇u · nβvh] ds+ (αu, vh)1,Ω1∪Ω2
+ (w · ∇u, vh)0

= −({α∇u · n}, [βvh])Γ + (αu, vh)1,Ω1∪Ω2
+ (w · ∇u, vh)0 = ah(u, vh).
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Furthermore, u solves (5.1) (in the sense as in Lemma 5.2). Multiplication
of (5.1) by βvh and integration over Ω results in

(f, vh)0 = (
∂u

∂t
, vh)0 + (w · ∇u, vh)0 −

∑

i=1,2

∫

Ωi

div(αi∇u)βvh dx

= (
∂u

∂t
, vh)0 + ah(u, vh),

and thus the consistency result holds.

For the error analysis we introduce a suitable norm, as in [HH02]. Let Gh

denote the set of all triangles that are intersected by Γ. We define

‖v‖2
1/2,h,Γ :=

∑

T∈Gh

h−1
T ‖v‖2

L2(ΓT ), (5.24)

‖v‖2
−1/2,h,Γ :=

∑

T∈Gh

hT‖v‖
2
L2(ΓT ), (5.25)

|||v|||2 := |v|21,Ω1∪Ω2
+ ‖{∇v · n}‖2

−1/2,h,Γ + ‖[βv]‖2
1/2,h,Γ. (5.26)

Note that different from [HH02] we have a scaling with β in the terms
|v|1,Ω1∪Ω2

and ‖[βv]‖1/2,h,Γ. The bilinear form ah(·, ·) has the following conti-
nuity and ellipticity properties with respect to the norm ||| · |||.

Lemma 5.4. There exist constants c1, c2 > 0 such that for λ sufficiently
large (independent of h) the following holds:

|ah(u, v)| ≤ c1|||u||| |||v||| for all u, v ∈ V Γ
h +Wreg, (5.27)

ah(vh, vh) ≥ c2|||vh|||
2 for all vh ∈ V Γ

h . (5.28)

Proof. First note that |(f, g)Γ| ≤ ‖f‖1/2,h,Γ‖g‖−1/2,h,Γ holds. Take u, v ∈
V Γ

h + Wreg. Using the Cauchy-Schwarz inequality and the definitions of the
norms we obtain

|ah(u, v)| ≤ c |u|1,Ω1∪Ω2
|v|1,Ω1∪Ω2

+ c |u|1,Ω1∪Ω2
‖v‖0

+ ‖[βu]‖1/2,h,Γ‖{α∇v · n}‖−1/2,h,Γ + ‖{α∇u · n}‖−1/2,h,Γ‖[βv]‖1/2,h,Γ

+ λ‖[βu]‖1/2,h,Γ‖[βv]‖1/2,h,Γ ≤ c |||u||||||v|||,
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which proves the continuity. Using the assumptions (5.9) we obtain for vh ∈
V Γ

h , cf. (5.10), (w · ∇vh, vh)0 = 0. Hence,

ah(vh, vh) ≥ |α
1

2vh|
2
1,Ω1∪Ω2

− 2|({α∇vh · n}, [βvh], )Γ| + λc‖[βvh]‖
2
1/2,h,Γ

≥ |α
1

2vh|
2
1,Ω1∪Ω2

− 2‖{α∇vh · n}‖−1/2,h,Γ‖[βv]‖1/2,h,Γ + λc‖[βvh]‖
2
1/2,h,Γ,

with c > 0 independent of h. From Lemma 4 in [HH02] we have

‖{α∇vh · n}‖−1/2,h,Γ ≤ c |α
1

2 vh|1,Ω1∪Ω2
for all vh ∈ V Γ

h .

Using this we obtain the ellipticity result in (5.28), provided the parameter
λ is chosen sufficiently large.

In [HH02] an interpolation operator I∗h : H1
0 (Ω) ∩ H2(Ω1 ∪ Ω2) → V Γ

h is
introduced and an interpolation error bound is proved. This interpolation
operator is defined as follows.

Let Ei : H2(Ωi) → H2(Ω), i = 1, 2, be bounded extension operators
and Ih the standard nodal linear interpolation operator corresponding to the
triangulation Th. Define

I∗hv :=
(

(IhE1v1)|Ω1
, (IhE1v2)|Ω2

)

.

This is well-defined not only for v ∈ H1
0 (Ω)∩H2(Ω1∪Ω2) but also for v from

the larger space Wreg. Moreover, the analysis in [HH02] (Theorem 2) does
not use the fact that v ∈ H1

0 (Ω) ∩H2(Ω1 ∪Ω2) is continuous across Γ and it
applies without changes to v ∈ Wreg. The analysis of the interpolation error
in [HH02] applies, with only minor changes, if in the norm ||| · ||| we use a
scaling with β, cf.(5.26). Thus Theorem 2 in [HH02] yields the following.

Theorem 5.1. Let I∗h : Wreg → V Γ
h be the interpolation operator defined

above. There exists a constant c such that

|||v − I∗hv||| ≤ c h‖v‖2,Ω1∪Ω2
for all v ∈Wreg (5.29)

holds.

In the error analysis we use the elliptic projection Rh : Wreg + V Γ
h → V Γ

h ,
defined by

ah(Rhv, wh) = ah(v, wh) for all wh ∈ V Γ
h .

In the following two lemmas we derive error bounds for this projection.
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Lemma 5.5. The following holds:

|||Rhv − v||| ≤ c h‖v‖2,Ω1∪Ω2
for all v ∈Wreg.

Proof. For v ∈ Wreg define χh := Rhv − I∗hv ∈ V Γ
h . Using Lemma 5.4 and

Theorem 5.1 we get, with c2 > 0:

c2|||χh|||
2 ≤ ah(χh, χh) = ah(Rhv − I∗hv, χh)

= ah(v − I∗hv, χh) ≤ c1|||v − I∗hv||||||χh||| ≤ ch‖v‖2,Ω1∪Ω2
|||χh|||.

Hence, |||χh||| ≤ c h‖v‖2,Ω1∪Ω2
holds and thus

|||Rhv − v||| ≤ |||χh||| + |||v − I∗hv||| ≤ c h‖v‖2,Ω1∪Ω2

holds.

Remark 5.3. The constants c1 and c2 in the inequalities (5.27) and (5.28)
are independent of the mesh size h. However, c1 < max(‖w‖∞, λ) and c2
depends on the diffusion coefficient α. If max(α1, α2) ≪ ‖w‖∞, i. e. the
mass transport problem is strongly convection dominated, the discretization
in this chapter is not stable.

Lemma 5.6. The following holds:

‖Rhv − v‖0 ≤ c h2‖v‖2,Ω1∪Ω2
for all v ∈Wreg.

Proof. For v ∈Wreg define eh := Rhv−v ∈ V Γ
h +Wreg. Introduce the bilinear

form

ã(u, v) = (αu, v)1,Ω1∪Ω2
− (w · ∇u, v)0, u, v ∈ H1

0 (Ω1 ∪ Ω2).

Using w ·n = 0 on Γ and div w = 0 in Ωi we get −(w ·∇u, v)0 = (w ·∇v, u)0

and thus ã(u, v) = a(v, u) for u, v ∈ H1
0 (Ω1 ∪ Ω2). Let ũ ∈ V be the unique

solution of

ã(ũ, v) = (eh, v)0 for all v ∈ V.

This dual problem has the same regularity properties as the one in (5.13),
i.e., ũ ∈ H2(Ω1 ∪ Ω2) and

‖ũ‖2,Ω1∪Ω2
≤ c‖eh‖0,
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with a constant c independent of eh. Using this regularity property, combined
with [βũ] = 0 (since ũ ∈ V ) it follows that ũ solves the following problem:

− div(α∇ũ) −w · ∇ũ = eh in Ωi, i = 1, 2, (in L2 sense), (5.30)

[α∇ũ · n]Γ = 0, (5.31)

[βũ]Γ = 0. (5.32)

Multiplication of (5.30) with βeh, integration over Ωi and applying partial
integration we obtain, using (5.31),(5.32):

(eh, eh)0 = (αũ, eh)1,Ω1∪Ω2
− (w · ∇ũ, eh)0 −

∫

Γ

[α∇ũ · nβeh] ds

= (αeh, ũ)1,Ω1∪Ω2
+ (w · ∇eh, ũ)0 − ([βeh], {α∇ũ · n})Γ

− ({α∇eh · n}, [βũ])Γ + λh−1([βeh], [βũ])Γ

= ah(eh, ũ).

Using this in combination with Theorem 5.1 and Lemma 5.5 we get

(eh, eh)0 = ah(eh, ũ) = ah(eh, ũ− I∗hũ) ≤ c1|||eh||||||ũ− I∗hũ|||

≤ c h2‖v‖2,Ω1∪Ω2
‖ũ‖2,Ω1∪Ω2

≤ c h2‖v‖2,Ω1∪Ω2
‖eh‖0,

which completes the proof.

We now derive an error bound for the semi-discretization by Nitsche’s method
in (5.22). We require that the solution u = u(t) ∈ Vreg as defined in
Lemma 5.1 has sufficient regularity, in particular ∂u

∂t
∈ L1

(

0, T ;Wreg). The
analysis uses standard arguments as in, for example, [Tho97].

Theorem 5.2. Let u = u(t) ∈ Vreg be the solution defined in Lemma 5.1
and uh = uh(t) ∈ V Γ

h the solution of (5.22) with uh(0) = u0,h. The following
holds

‖uh(t) − u(t)‖0 ≤‖u0,h −Rhu0‖0 + c h2
{

‖u0‖2,Ω1∪Ω2

+

∫ t

0

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

dτ
}

, 0 ≤ t ≤ T.
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Proof. Introduce the splitting uh(t)−u(t) = θ(t) + ρ(t), with θ := uh −Rhu,
ρ := Rhu− u. From Lemma 5.6 we have

‖ρ(t)‖0 ≤ ch2‖u(t)‖2,Ω1∪Ω2
≤ c h2

(

‖u0‖2,Ω1∪Ω2
+

∫ t

0

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

dτ
)

. (5.33)

For θ = θ(t) ∈ V Γ
h we have, using Lemma 5.3:

‖θ‖0
d

dt
‖θ‖0 =

1

2

d

dt
‖θ‖2

0 =
(∂θ

∂t
, θ

)

0
≤

(∂θ

∂t
, θ

)

0
+ ah(θ, θ)

=
(∂uh

∂t
, θ

)

0
+ ah(uh, θ) −

(∂Rhu

∂t
, θ

)

0
− ah(Rhu, θ)

= (f, θ)0 − ah(u, θ) −
(∂Rhu

∂t
, θ

)

0

=
(∂u

∂t
, θ

)

0
−

(∂Rhu

∂t
, θ

)

0
= (w − Rhw, θ

)

0
,

with w = ∂u
∂t

. We assumed sufficient regularity, in particular w ∈Wreg. Using
Lemma 5.6 we get

(w − Rhw, θ
)

0
≤ c h2

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

‖θ‖0.

Thus we have
d

dt
‖θ‖0 ≤ c h2

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

.

Integration over [0, t] and using ‖θ(0)‖0 = ‖u0,h −Rhu0‖0 proves the desired
result.

Remark 5.4. We comment on the error analysis for the three-dimensional
case. The Nitsche method given in (5.22) has an obvious analogon if we
consider a problem as in (5.1)-(5.5) with Ω ⊂ R

3 and use the extended
finite element space on a family of shape regular tetrahedral triangulations.
The arguments to derive the consistency result in Lemma 5.3 are dimension
independent. Results as in Lemma 5.4, Lemma 5.5 and Lemma 5.6 can
be proved using results from [HH04]. In particular the key Lemma 3 from
[HH02] is proved for the 3D case in Lemma 3 in [HH04]. The regularity
results in (5.14), (5.15) also hold for the 3D case, cf. [LU68].
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5.4 Time discretization

The semi-discretization (5.22), resulting from Nitsche’s method, can be com-
bined with standard time discretization methods. For example, the θ-scheme
takes the following form. For n = 0, 1, . . . , N − 1, with N∆t = T , set
u0

h := u0,h ∈ V Γ
h , and determine un+1

h ∈ V Γ
h such that for all vh ∈ V Γ

h

(

un+1
h − un

h

∆t
, vh

)

0

+ah(θu
n+1
h +(1− θ)un

h, vh) = (θf(tn+1)+ (1− θ)f(tn), vh)0

(5.34)
holds. In practice almost always either θ = 0.5 (Crank-Nicolson) or θ = 1
(implicit Euler) is used. The error analysis of this full (i.e. space and time)
discretization method can be performed using standard arguments, as in
[Tho97]. For completeness we derive an error bound for the implicit Euler
method. Again we require that the solution u = u(t) ∈ Vreg as defined in
Lemma 5.1 has sufficient regularity, in particular ∂u

∂t
∈ L1

(

0, T ;Wreg

)

and
∂2u
∂t2

∈ L1
(

0, T ;L2(Ω)
)

.

Theorem 5.3. Let u = u(t) ∈ Vreg be the solution defined in Lemma 5.1 and
un

h ∈ V Γ
h , n = 0, 1, . . . , N the solution of the θ-scheme (5.34) for θ = 1. The

following holds:

‖un
h − u(tn)‖0 ≤ ‖u0,h − Rhu0‖0 + c h2

{

‖u0‖2,Ω1∪Ω2
+

∫ tn

0

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

dτ
}

+ ∆t

∫ tn

0

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

0

dτ.

Proof. We use the splitting un
h−u(tn) =

(

un
h−Rhu(tn)

)

+
(

Rhu(tn)−u(tn)
)

=:
θn+ρn. For ‖ρn‖0 = ‖ρ(tn)‖0 we have a bound as in (5.33). For the backward
difference quotient we introduce the notation ∂̄nw := (wn−wn−1)/∆t. Using
the definition of un

h in (5.34), the definition of the semi-discretization in (5.22)
and the consistency result in Lemma 5.3 we obtain

(∂̄θn, vh)0 + ah(θ
n, vh) =

1

∆t
(un

h − un−1
h , vh)0 + ah(u

n
h, vh)

− (∂̄Rhu(tn), vh)0 − ah(Rhu(tn), vh)

= (f(tn), vh)0 − ah(u(tn), vh) − (∂̄Rhu(tn), vh)0

=
(∂u(tn)

∂t
, vh

)

0
− (Rh∂̄u(tn), vh)0 =: (ωn, vh)0,
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with

ωn =
∂u(tn)

∂t
− Rh∂̄u(tn)

=
[

(I − Rh)∂̄u(tn)
]

−

[

∂̄u(tn) −
∂u(tn)

∂t

]

=: ωn
1 − ωn

2 .

Taking vh = θn ∈ V Γ
h and using ah(θ

n, θn) ≥ 0 we get

‖θn‖2
0 − (θn−1, θn) ≤ ∆t‖ωn‖0‖θ

n‖0.

Hence,

‖θn‖0 ≤ ‖θn−1‖0 + ∆t‖ωn‖0,

and

‖θn‖0 ≤ ‖θ0‖0 + ∆t

n
∑

j=1

‖ωj‖0

≤ ‖u0,h − Rhu0‖0 + ∆t
n

∑

j=1

‖ωj
1‖0 + ∆t

n
∑

j=1

‖ωj
2‖0. (5.35)

For ‖ωj
1‖0 we obtain with Lemma 5.6

‖ωj
1‖0 =

∥

∥

∥

∥

∥

1

∆t
(I −Rh)

∫ tj

tj−1

∂u

∂t
dτ

∥

∥

∥

∥

∥

0

≤
1

∆t

∫ tj

tj−1

∥

∥

∥

∥

(I − Rh)
∂u

∂t

∥

∥

∥

∥

0

dτ

≤ c
h2

∆t

∫ tj

tj−1

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

dτ,

and thus

∆t
n

∑

j=1

‖ωj
1‖0 ≤ ch2

∫ tn

0

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2,Ω1∪Ω2

dτ. (5.36)

For ωj
2 we have

∆t ωj
2 = u(tj) − u(tj−1) − ∆t

∂u(tj)

∂t
= −

∫ tj

tj−1

(τ − tj−1)
∂2u(τ)

∂t2
dτ,
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and thus

∆t

n
∑

j=1

‖ωj
2‖0 ≤

n
∑

j=1

∫ tj

tj−1

(τ − tj−1)

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

0

dτ ≤ ∆t

∫ tn

0

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

0

dτ. (5.37)

Using the results from (5.36), (5.37) in (5.35) in combination with the bound
for ‖ρn‖0 from (5.33) we obtain the result.

The analysis of the time discretization given in this section is essentially
dimension independent. Key ingredients are sufficient smoothness of the
solution u and the results in Lemma 5.4 and Lemma 5.6, cf. Remark 5.4.

Remark 5.5. Introducing the transformed variable ũn
h := βun

h ∈ V Γ
h the dis-

cretization in (5.34) immediately results in a discretization of the transformed
equations (5.6)-(5.8), cf. Remark 5.1.

5.5 Numerical experiments

In subsection 5.5.1 we present two three-dimensional test problems of the
form (5.1)-(5.5) on Ω = (0, 1)3 with different interfaces Γ. In the first test
we take a simple planar interface. Thus we avoid errors due to numerical
interface approximation. In the second experiment we consider a cylindrical
interface, which has to be approximated on the unfitted tetrahedral meshes
that we use. In both cases, the exact solution u is smooth, known and
satisfies the interface conditions (5.2)-(5.3). The velocity field w satisfies the
assumptions (5.9).

5.5.1 Test problems

Case 1: Planar interface

The domain Ω contains two subdomains Ω1 := {(x, y, z) ∈ Ω | z < 0.34113}
and Ω2 := Ω \ Ω1, which are separated by the interface Γ := {(x, y, z) ∈
Ω | z = 0.34113}. The position of the interface is chosen to avoid grid
matching.
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We choose the coefficients (α1, α2) = (1, 2), (β1, β2) = (2, 1) and a sta-
tionary velocity w := (y(1 − z), x, 0)T . The right hand side f is taken such
that the exact solution is

u(x, y, z, t) :=

{

e−t cos(πx) cos(2πy)az(z + b) for x in Ω1,

e−t cos(πx) cos(2πy)z(z − 1) for x in Ω2,
(5.38)

where the parameters a and b are determined from the interface conditions
(5.2)-(5.3). We take homogeneous Dirichlet boundary conditions on the seg-
ments z = 0 and z = 1 and homogeneous Neumann boundary conditions on
the other boundary segments.

Case 2: Cylindrical interface

In this experiment, the domain Ω is subdivided into

Ω1 = {(x, y, z) ∈ Ω | x2 + y2 < R2}, Ω2 = Ω \ Ω1,

with R = 0.1. We take a constant velocity field w = (0, 0, 1)T and coefficients
(α1, α2) = (1, 5), (β1, β2) = (2, 1). The exact solution is given by

u(x, y, z, t) :=

{

α2

(

x2 + y2 − R2
)

+ β2 in Ω1,

α1

(

x2 + y2 − R2
)

+ β1 in Ω2.
(5.39)

We take homogeneous Neumann conditions on the boundary segments z = 0
and z = 1. On the remaining part of the boundary the values of u are used
as inhomogeneous Dirichlet conditions.

5.5.2 Implementation issues

Let Th be a shape regular tetrahedral triangulation of Ω. On this triangu-
lation we want to implement the Euler-Nitsche discretization as in (5.22),
(5.34). For the finite element spaces and the bilinear form ah(·, ·) we need an
approximation of the interface Γ. We assume that we have a (level set) func-
tion d available such that its zero level is a sufficiently good approximation of
Γ. In our second test problem, we use for d the signed distance function to Γ,
for which it is easy to give an explicit formula using cylindrical coordinates.
d
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Let {ψk}k∈I be the nodal basis functions of the standard linear finite
element space Vh. Then the basis functions of V Γ

h are {ψk}k∈I ∪ {ψΓ
l }l∈IΓ

.
The dimension of V Γ

h is denoted by NΓ = |I| + |IΓ|. For convenience, the
basis functions of Vh are indexed such that all basis functions which have the
enriched counterparts are numbered first. Thus the index set IΓ contains
consecutive numbers from 1 to |IΓ|.

The solution uh has the following representation in V Γ
h

uh =
∑

k∈I

ukψk +
∑

l∈IΓ

uΓ
l ψ

Γ
l , ~u := (u1, . . . , u|I|, u

Γ
1 , . . . , u

Γ
|IΓ|

).

With these basis functions, we define the matrices M, A and C in R
NΓ×NΓ

which correspond to the reaction, diffusion, convection terms, respectively.
A matrix N in R

NΓ×NΓ

is used for the other terms on the interface from the
bilinear form ah(·, ·). We use a 2 × 2-block structure for these matrices. For
example, the mass matrix M is defined as

M =

[

M11 M12

M21 M22

]

,

where

(M11)i,j = (ψi, ψj)0, i, j ∈ I,

(M12)i,j = (ψi, ψ
Γ
j )0, i ∈ I, j ∈ IΓ,

(M21)i,j = (ψΓ
i , ψj)0, i ∈ IΓ, j ∈ I,

(M22)i,j = (ψΓ
i , ψ

Γ
j )0, i, j ∈ IΓ.

In Section 3.2.4, we discuss the assembling of the matrices for the two-
phase Navier-Stokes equations, in which the discontinuities of either the co-
efficients or the basis functions across the interface are present. The compu-
tations of quantities like (φΓh

i , ψh)0 and (φΓh

i , ψh)1,Ω1∪Ω2
, with ψh ∈ {φj , φ

Γ
j }

deal with both kinds of discontinuities.
Let xi, xj be two vertices of a tetrahedron T in TΓh

; assume that xi ∈ Ω1,h.
A local integral on T is assembled over all children T ′ ∈ T as follows. Using
supp(φΓh

i ) ∩ T ′ = T ′
2 we obtain

∫

T ′

βφΓh

i ψhdx =

∫

T ′

2

β2 φ
Γh

i ψhdx. (5.40)
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The latter integral is easy to determine. The other volume integrals in
ah(φ

Γ
i , ψh) can be computed in a similar way. In our test problems a Gauss

quadrature rule of degree three on a tetrahedron is sufficient to compute the
volume integrals in the bilinear form ah(·, ·), with Γ replaced by Γh, exactly.
The scalar product (f, ψh)0 in the right hand side of (5.22) is approximated
with high accuracy (using the same assembling process as described above)
by a Gauss quadrature rule of degree five on tetrahedra. The interfacial inte-
grals over Γh (instead of Γ) in ah(φ

Γh

i , ψh) are approximated by summing the
local integrals on each planar segment Γh,T ′ of Γh using a Gauss quadrature
rule of degree five on a triangle.

5.5.3 Numerical results

Case 1

For the spatial discretization, we first create a uniform grid with mesh size
h = 1

N
, where N = 8, 16, 32. Starting from this uniform grid the elements

near the interface are refined two times further, i. e. the local mesh size close
to the interface is hΓ = 1

4N
. For the case N = 32 this results in a problem

with 1293754 tetrahedra and 226087 unknowns. The approximation of the
initial value u0,h is chosen as I∗h(u(·, 0)), with I∗h the interpolation operator as
in Theorem 5.1. For the parameter λ in the bilinear form ah(·, ·) we take the
value λ = 100. This choice is based on numerical experiments. It turns out
that the error behaviour is not very sensitive with respect to the choice of the
parameter value. The results are essentially the same for all 101 ≤ λ ≤ 103.

The semi-discretization uh(t) is not known. We computed an accurate
approximation of uh(t) using the implicit Euler time-stepping scheme with a
time step size ∆t which is sufficiently small (in our experiments: ∆t = 10−4)
such that the error due to the time discretization is negligible compared to
the space discretization error. The resulting reference solution is denoted
by u∗h(t). In Table 5.1, the errors ‖u∗h(T ) − u(T )‖L2 at T = 0.15 are dis-
played. These results are consistent with the theoretical bound O(h2) given
in Theorem 5.2.

The exact solution satisfies [βu]Γ = 0. In the Nitsche discretization this
interface condition is satisfied only approximately. For a stationary elliptic
problem it is shown in [HH02] that for the discretization uh the error in

this interface condition is bounded by ‖[βuh]‖L2(Γ) ≤ ch
3

2‖u‖2,Ω1∪Ω2
. For the

instationary case we were not able to derive a theoretical bound for this error
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Figure 5.1: Case 1: A slice of the tetrahedral mesh at x = 0.25, for the case
N = 16.

N ‖u∗h(T ) − u(T )‖L2 order
8 0.00738506 -
16 0.00202308 1.87
32 0.0005228 1.95

Table 5.1: Case 1: Spatial discretization error in L2-norm and convergence
order at T = 0.15

quantity. We computed the errors ‖[βu∗h]‖L2(Γ) for our problem; the results
are given in Table 5.2. It can be observed that the interface condition (5.3) is
satisfied only approximately and the error ‖[βu∗h]‖L2(Γ) seems to behave like
O(h).

N ‖[βu∗h(T )]‖L2(Γ) order
8 1.565e− 4 -
16 7.975e− 05 0.972
32 3.900e− 05 1.03

Table 5.2: Case 1: L2-norm of the jump [βu∗h(T )]Γ and convergence order at
T = 0.15

The numerical solution for N = 16 at T = 0.15 on the plane x = 0.25 is
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shown in Figure 5.2.

Figure 5.2: Case 1: Numerical solution at T = 0.15 in the plane x = 0.25.

Now we study the time discretization error bound for the implicit Euler
method in Theorem 5.3. We use the fixed mesh with N = 16 as described
above and compute a reference solution with ∆t = 10−4 in the time interval
[0, T ], T = 0.2, which is denoted by u∗h(t). The Euler discretization, i.e.
(5.34) with θ = 1, with time step ∆t = T

n
results in approximations un

h(T )
of u∗h(T ). For the cases n = 5, 10, 20 the temporal errors in the L2-norm, i.e.
‖un

h(0.2) − u∗h(0.2)‖L2, are given in Table 5.3. We observe the expected first
order of convergence in ∆t.

n ‖un
h − u∗h(0.2)‖L2 order

5 1.254e− 05 -
10 6.092e− 06 1.04
20 3.011e− 06 1.02

Table 5.3: Case 1: Time discretization error in L2 norm and convergence
order at T = 0.2 (implicit Euler).
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The time discretization errors ‖un
h(0.2)−u∗h(0.2)‖L2 for the Crank-Nicolson

method are presented in Table 5.4. The second order of convergence is ob-
tained for smaller time steps sizes w. r. t. n = 40, 80, 160. However, since the
factor between the time step size 1.25 · 10−4 w. r. t. to n = 160 and the time
step size ∆t = 10−4 for the reference solution is not large, it is difficult to
determine the correct order of convergence for the Crank-Nicolson method.

n ‖un
h − u∗h(0.2)‖L2 order

40 7.21e− 05 -
80 1.864e− 05 1.95
160 3.77e− 06 2.29

Table 5.4: Case 1: Time discretization error in L2 norm and convergence
order at T = 0.2 (Crank-Nicolson).

Case 2

For the spatial discretization we proceed as in case 1. A difference is that
we now have an approximation Γh of Γ which is constructed as explained in
subsection 5.5.2. We use uniform grids with mesh size h = 1

N
, N = 10, 20, 40,

and refine the elements near the interface (only) one time further, due to the
memory limitation. For the case N = 40, the grid already contains 1043040
tetrahedra which leads to a problem with 166059 unknowns. The implicit
Euler method with ∆t = 10−4 is used to compute the reference solution u∗h(t)
for t ∈ [0, 0.1]. The error ‖u∗h(T ) − u(T )‖L2 at T = 0.1 given in Table 5.5
is in good agreement with the O(h2) error bound derived in Theorem 5.2.
The L2(Γh)-norm of the jump [βun

h] at the approximated interface Γh again
appears to have a numerical convergence order 1, cf. Table 5.6.

N ‖u∗h(T ) − u(T )‖L2 order
10 0.00327273 -
20 0.00080687 2.02
40 0.000206194 1.968

Table 5.5: Case 2: Spatial discretization error in L2-norm and convergence
order at T = 0.1

Figure 5.3 shows the numerical solution on the plane z = 0.5 at T = 0.1.
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N ‖[βun
h]‖L2(Γh) order

10 0.00103106 -
20 0.000500593 1.04
40 0.00022014 1.185

Table 5.6: Case 2: L2(Γh)-norm of the jump [βun
h] and convergence order at

T = 0.1

Figure 5.3: Case 2: Numerical solution at T = 0.1 in the plane z = 0.5.



Chapter 6

Two-phase mass transport

problem with a moving

interface

In Chapter 5 we analyzed the discretization of the mass transport equa-
tions (5.1)-(5.5) with a stationary interface. We employed the “method of
lines” approach, in which the spatial discretization by Nitsche’s finite ele-
ment method is done first. After that, a standard time stepping θ-scheme
was applied to the semi-discrete problem. This approach uses the fact that,
if the interface is stationary, the XFEM space V Γ

h is time-independent. This
approach is not applicable in the case of a moving interface Γ(t). Even when
a fixed mesh is used and the standard finite element basis functions are un-
changed, the extended finite element basis functions are defined depending on
the position of the interface. In the setting of the moving interface, it is more
natural to apply the time discretization first, cf. [FZ09]. This is the so-called
Rothe method. In each time step, the reaction-convection-diffusion problem
obtained from the θ-scheme is discretized in space by Nitsche’s method.

6.1 Time discretization

The equation (5.1) can be written as

∂u

∂t
= F (u, t), (6.1)

where F (u, t) = ∇ · (α∇u) + f(t) − w · ∇u.
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For θ ∈ [0, 1], the θ-scheme for (6.1) gives

un+1 − un

∆t
= θF (un+1, tn+1) + (1 − θ)F (un, tn). (6.2)

The stationary PDE in (6.2) is a reaction-convection-diffusion equation. Note
that, in the strong form, ∇u and ∇ · (α∇u) in F (u, t) are well-defined only
in two separate subdomains (Ω1(t) and Ω2(t)), due to the discontinuities of
u and of the diffusion coefficient α across Γ(t). If θ ∈ (0, 1), both terms
F (un, tn) and F (un+1, tn+1) appear in (6.2). As the interface evolves, the
terms ∇u and ∇ · (α∇u) at two different time levels tn and tn+1 are well-
defined in different subdomains. Hence the right hand side of (6.2) is only
well-defined in each part of the intersections Ωi(tn) ∩ Ωj(tn+1), (i, j = 1, 2),
which makes the spatial discretization more complicated. A space-time vari-
ational approach would be more appropriate and does not have this difficulty
for θ 6= 1.

We want to avoid the space-time formulation and restrict ourselves to the
(simpler) Rothe approach. The difficulty outlined above does not occur if we
take θ = 1 (implicit Euler). Therefore, in the remainder of this chapter, we
restrict ourselves to the case θ = 1. We then obtain the following problem
for the numerical solution at the time level tn+1

1

∆t
un+1 −∇ · (αn+1∇un+1) + wn+1 · ∇un+1

=
1

∆t
un + f(tn+1). (6.3)

6.2 Nitsche’s method for spatial discretiza-

tion

We consider the time discretization (6.3) of (5.1)-(5.5) at one fixed time
level tk = k∆t (k > 0). Here the notation k is used instead of n + 1 for
convenience. The fixed subdomains and the interface at this time level are
denoted by Ω1 = Ω1(tk), Ω2 = Ω2(tk) and Γ = Γ(tk), respectively. We define
σ = (∆t)−1, gk := 1

∆t
uk−1 + f(tk) and drop the superscript k. We rewrite

(6.3) in the form of a stationary reaction-convection-diffusion problem as
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follows:

σu+ w · ∇u−∇ · (α∇u) = g in Ω,

[α∇u · n] = 0 on Γ,

[βu] = 0 on Γ, (6.4)

u = 0 in ∂Ω.

Note that σ is a constant in the problem (6.4) but is a parameter in the time
discretization (6.3).

We assume that the velocity w is divergence-free and bounded, namely

div w = 0 in Ωi, i = 1, 2, and ‖w‖L∞(Ω) ≤ c <∞. (6.5)

The assumption w · n = 0, however, is not satisfied any more.
Corresponding to the subdomains Ω1 and Ω2, the Hilbert spaces H , V

and Vreg and their norms are defined similarly to those in Chapter 5. Using
the extended finite element space V Γ

h , we define the bilinear form

ah(u, v) := (σu, v)0 + (αu, v)1,Ω1∪Ω2
+ (w · ∇u, v)0 − ([βu], {α∇v · n})Γ

− ({α∇u · n}, [βv])Γ + λh−1([βu], [βv])Γ, u, v ∈ V Γ
h .

(6.6)

The Nitsche discretization of (6.4) reads: Find uh ∈ V Γ
h such that

ah(uh, vh) = (g, vh)0 for all vh ∈ V Γ
h . (6.7)

The following consistency property of the problem (6.7) is a consequence
of Lemma 5.3.

Lemma 6.1. Let u ∈ Vreg be the solution of the problem (6.4). Then u
satisfies

ah(u, vh) = (g, vh) for all vh ∈ V Γ
h , t ∈ [0, T ]. (6.8)

Thus we have the Galerkin orthogonality

ah(u− uh, v) = 0, ∀ v ∈ V Γ
h . (6.9)

Note that uh is only consistent with the solution of (6.4), i. e. the time ap-
proximation u := uk of the exact solution u(tk) in (5.1)-(5.5) at t = tk.
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To obtain the continuity and coercivity of ah(·, ·) we define the following
norm in V Γ

h

|||v|||2 := ‖v‖2
0 + |v|21,Ω1∪Ω2

+ ‖{∇v · n}‖2
−1/2,h,Γ + ‖[βv]‖2

1/2,h,Γ (6.10)

using the same definitions for ‖ · ‖− 1

2
,h,Γ and ‖ · ‖ 1

2
,h,Γ as in (5.24) and (5.25).

Below we derive optimal approximation property of V Γ
h w. r. t. the ||| · |||

norm, using arguments similar to those in [HH02].

Theorem 6.1. Let I∗h : Wreg → V Γ
h be the interpolation operator defined in

section 5.3. There exists a constant c such that

|||v − I∗hv||| ≤ c h‖v‖2,Ω1∪Ω2
for all v ∈Wreg (6.11)

holds.

In the following lemma, we show the continuity and coercivity of the
bilinear form ah(·, ·) w. r. t. the |||·||| norm. Unlike the case with the stationary
interface, the assumption w · n = 0 at Γ does not hold. Due to this, the
parameters λ and σ must be chosen sufficiently large to obtain the coercivity.
For convenience, we introduce the notations αmax = max(α1, α2) and αmin =
min(α1, α2).

Lemma 6.2. There exist constants c1, c2 > 0 such that for λ and σ suffi-
ciently large (independent of h) the following holds:

|ah(u, v)| ≤ c1|||u||| |||v||| for all u, v ∈ V Γ
h +Wreg, (6.12)

ah(vh, vh) ≥ c2|||vh|||
2 for all vh ∈ V Γ

h . (6.13)

Proof. The continuity can be proven from the definitions of the norms and
the Cauchy-Schwarz inequality as in Lemma 5.4. We have

|ah(u, v)| ≤ σ‖u‖0‖v‖0 + αmax |u|1,Ω1∪Ω2
|v|1,Ω1∪Ω2

+ ‖w‖∞ |u|1,Ω1∪Ω2
‖v‖0 + ‖[βu]‖1/2,h,Γ‖{α∇v · n}‖−1/2,h,Γ

+ ‖{α∇u · n}‖−1/2,h,Γ‖[βv]‖1/2,h,Γ

+ cλ‖[βu]‖1/2,h,Γ‖[βv]‖1/2,h,Γ ≤ c1 |||u||||||v|||,

Then we obtain (6.12) using the same arguments as in the proof of Lemma
5.4 and by choosing c1 > 2 max(σ, αmax, ‖w‖∞, cλ), with a constant c > 0
independent of h.
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The difference to the proof of the coercivity in Lemma 5.4 is that we need
an upper bound for |(w·∇u, u)0|, which vanishes when w·n = 0 at Γ. Indeed,
for sufficiently large σ, this term is bounded by the sum of the reaction and
diffusion terms. Using the Cauchy-Schwarz inequality, we obtain

|(w · ∇vh, vh)0| ≤ ‖w‖∞|vh|1,Ω1∪Ω2
‖vh‖0

≤
1

2

(

α|vh|
2
1,Ω1∪Ω2

+
‖w‖2

∞

α
‖vh‖

2
0

)

≤
1

2

(

α|vh|
2
1,Ω1∪Ω2

+ σ‖vh‖
2
0

)

,

provided σ ≥ ‖w‖2
∞

α
.

With this result, we have

ah(vh, vh) ≥ σ‖vh‖
2
0 + |α

1

2 vh|
2
1,Ω1∪Ω2

+ (w · ∇vh, vh)0

− 2([βvh], {α∇vh · n})Γ + λh−1‖[βvh]‖
2
0,Γ

≥ σ‖vh‖
2
0 + |α

1

2∇vh|
2
1,Ω1∪Ω2

− |(w · ∇vh, vh)0|

− 2‖{α∇vh · n}‖−1/2,h,Γ‖[βv]‖1/2,h,Γ + cλ‖[βvh]‖
2
1/2,h,Γ

≥
σ

2
‖vh‖

2
0 +

1

2
|α

1

2∇vh|
2
1,Ω1∪Ω2

− 2‖{α∇vh · n}‖−1/2,h,Γ‖[βv]‖1/2,h,Γ + cλ‖[βvh]‖
2
1/2,h,Γ

with a constant c independent of h. From Lemma 4 in [HH02] we have

‖{α∇vh · n}‖−1/2,h,Γ ≤ cI |α
1

2 vh|1,Ω1∪Ω2
for all vh ∈ V Γ

h .
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Thus, we obtain

ah(vh, vh) ≥
σ

2
‖vh‖

2
0 +

1

4
|α

1

2∇vh|
2
1,Ω1∪Ω2

+
1

4c2I
‖{α∇vh · n}‖

2
−1/2,h,Γ

+
cλ

2
‖[βvh]‖

2
0,Γ − 2‖{α∇vh · n}‖−1/2,h,Γ‖[βv]‖1/2,h,Γ

+
cλ

2
‖[βvh]‖

2
1/2,h,Γ

≥
(σ

2
‖vh‖

2
0 +

1

8
|α

1

2∇vh|
2
1,Ω1∪Ω2

+
1

4c2I
‖{α∇vh · n}‖

2
−1/2,h,Γ

+
cλ

2
‖[βvh]‖

2
0,Γ

)

+
1

8
|α

1

2∇vh|
2
1,Ω1∪Ω2

+
cλ

2
‖[βvh]‖

2
1/2,h,Γ

− 2‖{α∇vh · n}‖−1/2,h,Γ‖[βv]‖1/2,h,Γ

≥ c2|||vh|||
2 +

(1

8
|α

1

2∇vh|
2
1,Ω1∪Ω2

+
cλ

2
‖[βvh]‖

2
1/2,h,Γ

−
2

cI
|α

1

2∇vh|1,Ω1∪Ω2
‖[βv]‖1/2,h,Γ

)

,

with a positive constant c2 independent of h such that

c2 < min(
σ

2
,
αmin

8
,
α2

min

4c2I
,
cλ

2
).

Using again the Cauchy-Schwarz inequality, we obtain

ah(vh, vh) ≥ c2|||vh|||
2 for all vh ∈ V Γ

h ,

provided the parameters σ and λ are sufficiently large, namely σ ≥ ‖w‖2
∞

α
and

λ > 16
c·c2

I

.

Remark 6.1. The value of the parameter λ must be chosen sufficiently large,
but is independent of σ, the inverse of the time step size ∆t.

We obtain the following error estimate:

Lemma 6.3. Let u ∈ Vreg solve the problem (6.4) and uh ∈ V Γ
h solve (6.7).

The following holds:

|||u− uh||| ≤ c h‖u‖2,Ω1∪Ω2
.
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Proof. Define χh := uh − I∗hu ∈ V Γ
h . Combining the Galerkin orthogonality

(6.9), the interpolation property (6.11) and the results of Lemma 6.2 with
c1, c2 > 0, we have:

c2|||χh|||
2 ≤ ah(χh, χh) = ah(uh − I∗hu, χh)

= ah(u− I∗hu, χh) ≤ c1|||u− I∗hu||||||χh||| ≤ ch‖u‖2,Ω1∪Ω2
|||χh|||.

Hence, |||χh||| ≤ c h‖v‖2,Ω1∪Ω2
holds and thus

|||u− uh||| ≤ |||χh||| + |||u− I∗hu||| ≤ c h‖u‖2,Ω1∪Ω2
.

holds.

Note that without assumption w · n = 0, the relation

−(w · ∇u, v)0 = (w · ∇v, u)0

does not hold. Hence we cannot use the duality argument to obtain a bound
in the L2-norm as in Chapter 5.

6.3 Implementation issues

In this section, we combine the time integration and spatial discretization in
Sections 6.1 and 6.2. Let Γk denote the interface at the time level tk (k =
1, 2, . . .) and V Γk

h be the XFEM space in the corresponding subdomains. Note
that at different time levels, we have different XFEM spaces depending on
the positions of the moving interface. The dimensions of these XFEM spaces
are in general different.

We use the notations as in Section 5.5.2. Let {ψl}l∈I be the nodal basis
functions of the standard linear finite element space Vh. Then the basis
functions of V Γk

h are {ψl}l∈I ∪ {ψΓk

m }m∈I
Γk

. The dimension of V Γk

h is NΓk

=
|I| + |IΓk |.

The solution uk
h has the following representation in V Γk

h

uk
h =

∑

l∈I

uk
l ψl +

∑

m∈I
Γk

uΓk

m ψΓk

m .

We introduce the vector

~uk := (uk
1, . . . , u

k
|I|, u

Γk

1 , . . . , uΓk

|I
Γk |

).
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The matrices M, A, C and N in R
NΓ

k
×NΓ

k

for the reaction, diffusion,
convection terms and the Nitsche’s term w. r. t. the XFEM space V Γk

h are
also defined and assembled similar to those in section 5.5.2. However, in the
right hand side of (6.7) we have the term σ · (uk−1

h , vh)0. This term needs an
additional treatment, since the numerical solution uk−1

h at tk−1 belongs to the

XFEM space V Γk−1

h , while the test function vh belongs to V Γk

h . In general,
the elements of the index sets IΓk and IΓk−1 are not consecutive. For k ≥ 1
we introduce the bijective mapping

πk : IΓk 7→ {1, . . . , |IΓk |}

and define another matrix M̃ ∈ R
NΓ

k
×NΓ

k−1

for the scalar products relating
the basis functions in both spaces V Γk−1

h and V Γk

h as follows:

M̃ =

[

M̃11 M̃12

M̃21 M̃22

]

,

where

(M̃11)i,j = (ψi, ψj)0, i, j ∈ I,

(M̃12)i,πk−1(j) = (ψi, ψ
Γk−1

j )0, i ∈ I, j ∈ IΓk−1 ,

(M̃21)πk(i),j = (ψΓk

i , ψj)0, i ∈ IΓk , j ∈ I,

(M̃22)πk(i),πk−1(j) = (ψΓk

i , ψΓk−1

j )0, i ∈ IΓk , j ∈ IΓk−1 .

The blocks M̃11 and M̃21 are the same as the counter parts in the mass
matrix M. The computations of M̃12 can be done in a similar way, using
the XFEM space corresponding to the subdomains at t = tk−1. The local
integrals of M̃22 in an element T is more complicated. For simplicity, we
consider a two-dimensional case, as illustrated in Figure 6.2. In this case,
the element T , which is a triangle with vertices xi, xj and xl, is intersected

by both interfaces Γk−1 and Γk. The extended basis functions ψΓk

i and ψΓk−1

j

are discontinuous in T . Moreover, the positions of the discontinuities of ψΓk

i

and ψΓk−1

j are different. The domain of integration, which is the intersection

of supp(ψΓk

i ) and supp(ψΓk−1

j ), is determined as follows. (Note that if T /∈
TΓk

h
∩ TΓk−1

h
, this intersection is an empty set). Firstly, each regular child T ′

of T is divided into two polygonal parts T ′
1,k and T ′

2,k w. r. t. the interface
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Γk at tk. We assume that xi ∈ Ωk
1 and thus supp(ψΓk

i )|T′ = T′
2,k, which can

be partitioned into at most 2 triangles. Then the support of ψΓk−1

j in each
triangle of T ′

2 can be determined w. r. t. the interface Γk−1 at tk−1. This
implementation can be applied also for the three-dimensional case.

Γk
h

Γk−1
h

xi

xj xl

supp(ψΓk

i ) ∩ supp(ψΓk−1

i )

Figure 6.1: Domain of integration.

We also need the vector

~f = (fk
1 , . . . , f

k
|I|, f

Γk

1 , . . . , fΓk

|I
Γk |

),

where

fk
i = (ψi, f)0, i ∈ I,

fΓk

j = (ψΓk

j , f)0, j ∈ IΓk .

With the above notations, the Galerkin discretization (6.7) leads to the
following linear system:

[

M + ∆t(A + C + N)
]

~uk = M̃~uk−1 + ∆t~fk. (6.14)

6.4 Numerical experiment

We consider the problem (5.1)-(5.3) in the unit cube Ω and with Ω1(0) a
sphere of radius R = 0.2 centered at the barycenter of Ω. This sphere is
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moving with a constant velocity w = (0, 1, 0)T , i.e. Ω1(t) = Ω1(0) + tw. Let
d(x, t) be the distance from the point x ∈ Ω to the center of Ω1(t). We take
the piecewise quadratic solution

u(x, t) :=

{

α2

(

d(x, t)2 − R2
)

+ 0.1 · β2 in Ω1,

α1

(

d(x, t)2 − R2
)

+ 0.1 · β1 in Ω2,
(6.15)

with coefficients (α1, α2) := (1, 5), (β1, β2) := (2, 1). The values of u on ∂Ω
are used as inhomogeneous Dirichlet conditions. We discretize the problem
first in time using the implicit Euler method with the time step size ∆t =
10−4. The resulting convection-diffusion-reaction problem is discretized with
the Nitsche method. We first create a uniform grid with the mesh size h = 1

N
,

where N = 8, 16, 32, then locally refine the elements near the interface two
times further. After 1000 time steps, we obtain the approximation u1000

h

of u(0.1). The errors ‖u1000
h − u(0.1)‖L2 for N = 8, 16, 32 are displayed in

Table 6.1. The results show the expected convergence order 2. Note that
‖u1000

h −u(0.1)‖L2 contain both time and spatial discretization errors, but for
coarser grids, the spatial discretization error is dominant.

N ‖u1000
h − u(0.1)‖L2 order

8 0.007896 -
16 0.001995 1.984
32 0.0005002 1.996

Table 6.1: Spatial discretization error in L2-norm and convergence order at
T = 0.1.

Remark 6.2. Since the interface evolves and adaptive grids are used, the
XFEM space V Γ

h (t) is in general time-dependent. Hence a reference solution
is not available and we cannot obtain the order of convergence for the time
discretization.
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Z
Y

X

Figure 6.2: Numerical solution for N = 16 at T = 0.1 on the plane x = 0.5.





Chapter 7

Numerical simulations of

two-phase flow with mass

transport

7.1 Numerical simulations

In this chapter we study the numerical simulations of a single butanol droplet
rising in water due to gravity. At the initial time, the water phase contains
a dissolved species. We assume isothermal conditions and no surfactant
transport on the interface. The dynamics of the droplet is determined by
the Navier-Stokes equations (3.1). The transport of the mass concentration
is described by the equations (2.2)-(2.4).

The model is as follows

ρ(φ)
(∂u

∂t
+ (u · ∇)u

)

− div(µ(φ)D(u)) + ∇p = ρ(φ)g + fΓ

div u = 0

φt + u · ∇φ = 0 (7.1)

∂c

∂t
+ u · ∇c− div(α∇c) = 0

[α∇c · n]Γ = 0,

[βc]Γ = 0,
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with suitable boundary conditions and initial conditions for the velocity and
mass concentration, which will be discussed later.

We conduct simulations with two different assumptions on the surface
tension coefficient τ :

• In the first case, we assume that the surface tension coefficient τ is con-
stant and is independent of the mass concentration of the solute. Thus
there is only the coupling in one direction between the Navier-Stokes
problem and the mass transport problem. In each time step, after the
level set and Navier-Stokes equations are solved, we use the velocity
and the level set function as input for the mass transport equation. In
fact, the dynamics of the droplet can be determined once and be used
for different numerical simulations of the mass transport problem.

• In the second case, we use a model from [MBS85], where the surface
tension coefficient depends on the mass concentration of the dissolved
component in the continuous phase. With this assumption, the flow
variables, the level set function and the mass concentration are fully
coupled.

In both cases, we consider the n-butanol - water - succinic acid system,
in which an n-butanol droplet is rising in water due to the gravity. The
computational domain is Ω = [0, 0.02]× [0, 0.04]× [0, 0.02] m3. The dispersed
phase (droplet) and continuous phase are contained in the subdomains Ω1

and Ω2, respectively. At t = 0, the droplet is at rest and has a spherical shape,
with a diameter 2mm and centered at (0.001, 0.001, 0.001)T m. The size and
the initial position of the droplet are chosen such that its dynamics is not
affected by the wall. We take a homogeneous Dirichlet boundary condition
for the velocity and a homogeneous Neumann boundary condition for the
concentration. The right hand side function g is taken as g = (0,−g, 0)T ,
with g = 9.81 m/s2. The viscosity µ and density ρ for each phase at 20◦C
are given in Table 7.1.

butanol-water
µ[Pa · s] ρ[kg/m3]

Ω1 3.28e-3 845
Ω2 1.39e-3 987

Table 7.1: Material properties
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xCP C0 C1 C2 C3 C4

0 1.625 28.078 222.786 0 0

Table 7.2: Model parameters for the variable surface tension (n-butanol -
water - succinic acid).

The concentrations in Ω1 and Ω2 are denoted by c1 and c2, respectively.
At t = 0, the water phase contains a solute of succinic acid with initial con-
centration c2(0) > 0 while the dispersed phase is clean. The initial condition
for the mass transport problem is

c(x, 0) := c0 =

{

0 in Ω1,

c2(0) in Ω2.

Thus, this initial condition doesn’t satisfy the Henry condition.
The Henry constant for the system at 20◦C is β = (1.2143, 1). The real

diffusion coefficient αr = (2.29 · 10−10, 5.8345 · 10−10) m2/s is extremely small
and the mass transport equation is strongly convection dominated. In this
case, Nitsche’s discretization of the mass transport in Chapter 6 is not suit-
able for a stable discretization of this problem. A suitable stabilization for
the Nitsche’s discretization is not available, yet. Moreover, the thin concen-
tration boundary layer requires a very high resolution at the interface, which
leads to high computational cost. Thus, in our simulation, we use the (much)
larger values αF = F · αr with different large factors F ≫ 1 for the diffusion
coefficient in order to obtain reliable numerical results, which are however
not physically realistic and thus cannot be verified by experiments.

In [MBS85] the surface tension coefficient τ based on the experimental
data for different systems has the form

τ =
1

1 − C4xC

3
∑

n=0

Cn(xC − xCP )n [10−3 N/m], (7.2)

where xC = c2|Γ is the restriction to the interface of the weight fraction of
the solute in the continuous phase. The coefficients xCP and Ci(i = 1, . . . , 4)
depend on the specific system. For the n-butanol - water - succinic acid
system, these coefficients (at 20◦C) are given in Table 7.2. In this case,
τ is a quadratic function of xC . For other systems, for example toluene-
water - acetone, the coefficients C2, C3, C4 and xCP are non-zero. Due to
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the limited solubility of succinic acid in water, which is 5.8% at 20◦C , the
model (7.2) for the surface tension coefficient τ is valid for xC in the interval
[0, 0.058], as shown in Figure 7.1. In simulations with a constant τ , we take
τ = 1.625 · 10−3 N/m.

Figure 7.1: Surface tension coefficient τ vs. xC .

In our simulations, we study the effects of the initial concentration c2(0)
and the size of the convection (relative to the diffusion) on the rising velocity
of the droplet and the steady state concentration. For the first case, we
choose a fixed diffusion coefficient αF with F = 105 and perform simulations
with different values of the initial concentration c2(0). Numerical results for
c2(0) = 1%, 2.5% and 5% will be presented.

Since the real diffusion coefficient cannot be used, we also perform simu-
lations with different values of the diffusion coefficient αF for the same initial
concentration c2(0) = 1%. The smaller the diffusion coefficient is, the more
convection dominated the mass transport problem becomes.
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7.2 Numerical methods

In this section we briefly discuss important methods needed for numerically
solving systems resulting from the discretization of the Navier-Stokes and
mass transport equations and for maintaining the level set function. We give
an overview of the methods used for our simulations.

7.2.1 Iterative solvers

Decoupling and linearization

In the time discretization of the Navier-Stokes and level set equations, if the
generalized θ-scheme in Section 3.3.1 is used, we have a nonlinear coupling
between the flow variables and the level set function. In [RFG+, Reu09], a
fixed point iteration method is used for the decoupling of the flow variables
and the level set function. This technique can also be applied for the case of
a mass concentration dependent surface tension coefficient.

However, we take a simpler approach, although in general less accurate,
using the linearized θ-scheme time integration presented in section 3.3.2. As
discussed in Section 3.3.2, in this time-stepping scheme, the Navier-Stokes
and the level set equations are decoupled. Moreover, since the surface force
fΓ in the right-hand side of the Navier-Stokes equations (cf. (3.33)) is only
evaluated at the old time step (using the old concentration), the mass trans-
port can be solved after the Navier-Stokes equations. Hence, the fixed point
iteration to linearize the couplings between the Navier-Stokes, level set and
mass transport equations can be avoided.

In both cases, we obtain a nonlinear system resulting from the Navier-
Stokes equations, which has the form

Ax + N(x)x + BTy = b

Bx = c.
(7.3)

Using an adaptive fixed point defect correction method from cf. [Tur99], the
nonlinear system can be linearized. In each iteration, we obtain a discrete
Oseen problem of the form:

K

(

x

y

)

:=

(

Â BT

B 0

) (

x

y

)

=

(

f1
f2

)

, Â := A + N(xold) + βM . (7.4)

This linear system can be solved by the iterative linear solvers presented in
the next subsection.
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Iterative linear solvers

The large, sparse linear systems resulting from the discretization and lin-
earization of the Navier-Stokes, level set and mass transport equations are in
general non-symmetric and will be solved by iterative methods. In our sim-
ulations we use preconditioned Krylov subspace methods, cf. [Saa03]. For
systems obtained from the level set and mass transport problems, the GM-
RES method is used.

The saddle point system (7.4) is solved by preconditioned GCR (Gen-
eralized Conjugate Residual) or FGMRES (Flexible GMRES) methods , cf.
[Saa03]. The main reason for using these methods is that they can be used
with a variable preconditioner. We use a block-preconditioner in [EHS+06]
of the form

(

QA BT

0 −QS

)

. (7.5)

Here QA and QS are preconditioners of the matrix A and the Schur comple-
ment S = BA−1BT , respectively. These preconditioners are briefly addressed
below.

7.2.2 Reparametrization and mass conservation

Reparametrization

During the evolution of the level set function φ, its shape may become dis-
torted. Thus, a reinitialization of the level set function is needed to keep it
close to an approximate signed distance function. The new level set function
should satisfy following properties, cf. [Gro08, Reu09]:

• The zero level of φ should be preserved.

• The norm of its gradient should be close to 1.

• The reparametrization can be used to smooth φ (close to the interface)
and thus stabilize the evolution of the level set function.

Popular reparametrization methods are the re-initialization based on a pseudo
time-stepping scheme for the Eikonal equation ‖∇ψ‖ = 1, cf. [SSO94, SF99]
and the Fast Marching method, cf. [Set96a, KS98, Set99].

In our simulations we use the Fast Marching method. For discussion of
the method, we refer to [Hup06, RFG+, Gro08].
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Mass conservation

The loss of mass by discretizations of the level set function can be reduced
if the grid is refined. However, this will lead to higher computational costs.
We use another method, cf. [RFG+, Gro08], in which the level set method
is shifted over a distance δ in the normal direction, such that the volumes of
both phases remain unchanged. Since the level set function is close to the
signed distance function, it can be done by subtracting δ from the level set
function.

7.2.3 Overview of numerical methods

We summarize the main components used in our numerical simulations:

• A multilevel triangulation is used for the spatial discretization, cf. Sec-
tion 3.2.1. For the initial triangulation, we partition the domain into
10× 20× 10 cubes and then each of them is subdivided into six tetra-
hedra. The grid is then refined three times further near the interface,
which results in the smallest mesh size about 2.5 · 10−4 m. When the
interface evolves, the grid will be adaptively refined and coarsened. In
Figure 7.2 the grid on the plane x = 0.01 and the interface at t = 0
and t = 0.4 s is shown.

• The finite element pair (Vh, Q
γ
h) for velocity and pressure in the Navier-

Stokes equations. For the level set, we use piecewise quadratics with
SDFEM stabilization, cf. section 3.2.4. The XFEM space Qγ

h is also use
for the mass concentration. The cut-off parameter c̃ = 0.1 is chosen.

• The improved Laplace-Beltrami discretization (4.6) is used for the sur-
face force fΓ for the case τ is constant. In the variable surface tension
coefficient case, the generalized Laplace-Beltrami discretization (4.9) is
used.

• The Fast Marching Method and a volume correction technique in Sec-
tion 7.2.2 are used to correct the level set function.

• The mass transport equation is discretized first in time using the im-
plicit Euler scheme. The obtained problem is discretized in space using
the Nitsche’s method cf. Chapter 6. We choose the parameter λ = 100.
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• The linearized θ-scheme (3.33) for the time integration for the Navier-
Stokes and level set equation is used to avoid the nonlinear coupling
between the variables. The time step size ∆t = 5 · 10−4 s is used.

• In each time step, we use the adaptive fixed point defect correction
method cf. [Tur99] for the linearization of the Navier-Stokes equations.

• The linear system

(

Â BT

B 0

) (

v

q

)

=

(

r1

r2

)

.

of the Oseen problem is solved by the GCR method with a block pre-
conditioner of the form

P =

(

QA 0
B −QS

)

Here QA and QS are the preconditioners of the matrix A and the Schur
complement S = BA−1BT , respectively. An application of Q−1

A to a
vector b is done by one multigrid V -cycle iteration to approximate
A−1b. For QS the BFBT -preconditioner in [Elm99, EHS+06] is used.

All of the above-mentioned components have been implemented in the soft-
ware package DROPS, cf. [DRO, GPRR02, RFG+].

7.3 Numerical results

7.3.1 Effects of the initial concentration

First we present numerical results for the case c2(0) = 1%. The mean con-
centration c̄ in the droplet is shown in Figure 7.3. From t ≥ 0.3, the value of
c̄ is almost constant and steady state concentration is obtained. We obtain
c̄ = 1.215%, which is approximately equal to β1 · c2(0), where c2(0) is the
value of the initial concentration in the water phase. This value seems to be
reasonable, since the volume of the droplet is very small in comparison to the
volume of water and the problem is not strongly convection dominated. Note
that if the convection is absent, the concentration at steady state is piecewise
constant, with the droplet concentration approximate c̄∗ = β1 · c2(0).
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Figure 7.2: Part of the grid on the plane x = 0.01 at t = 0 (left) and t = 0.4
(right).
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Figure 7.3: Mean concentration in the droplet: c2(0) = 1%, F = 105.
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The concentrations on the plane x = 0.01 inside and outside of the droplet
at different time steps are displayed in Figure 7.4 for constant τ , and in Fig-
ure 7.5 for variable τ . The values of the concentrations are not very different
in these two cases. At the first stage, the velocity is very low and the mass
transport is mainly due to diffusion. At the interface the concentration sat-
isfies the Henry condition instantaneously, but in the middle of the droplet,
the concentration is still very low due to the small diffusivity. After a short
time (t = 0.05 s), as the droplet is accelerated, the role of the convection be-
comes larger. Then the concentration profile in the droplet is almost linear,
cf. Figures 7.6. The maximal and minimal values are attained at the lower
and upper part of the droplet, respectively. At the interface a boundary layer
appears inside the elements intersected by the interface, since the numerical
solution weakly satisfies the interface condition [α∇c ·n]Γ = 0. These bound-
ary layer are visualized in Figure 7.6. The width of the boundary layer may
vary, depending on the position of the interface with respect to the grid. The
concentration difference becomes larger until the steady state of the vertical
velocity is obtained. Due to large diffusion, the concentration in the con-
tinuous phase far from the droplet remains approximately constant with the
value of c2(0).

For the cases with larger initial concentrations, c2(0) = 2.5% and c2(0) =
5%, we obtain similar behaviour of the concentration. The mean concen-
trations are displayed in Figures 7.7 and 7.8 while the concentration on the
plane x = 0.01 are shown in Figure 7.9. The larger the initial concentra-
tion c2(0) is, the steeper the slope of the steady state droplet concentration
becomes. Note that the high value of the slope is due to the small size of
the droplet in comparison to the values of the concentration. However, for
all cases we have approximately the same ratio max(c1)

min(c1)
= 1.15 on the plane

x = 0.01. For higher initial concentrations, the mean concentration in case
of variable τ is slightly higher than that for constant τ , cf. Figure 7.8. This
concentration difference might be the netto result of the following two phe-
nomena which have opposite effects. On the one hand, the rising velocity
in case of variable τ becomes smaller, which reduces the mass transport by
convection in each phase. On the other hand, however, for higher concentra-
tions, the corresponding variable surface tension coefficient is smaller (e. g.
for the case c2(0) = 5%, τc ≈ τc(5%) = 0.778 · 10−3 N/m) than the constant
value τ = 1.625 · 10−3 N/m and (due to this) the droplet becomes flatter.
As the consequence, the interfacial area becomes larger, which increases the
diffusive mass transport between two phases. The netto effect of these two
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t = 0.005 t = 0.05

t = 0.1 t = 0.2

t = 0.3 t = 0.4

Figure 7.4: Concentration distribution around the droplet with constant τ
on plane x = 0.01: c2(0) = 1%, F = 105.

phenomena may lead to a slightly higher transport rate for the case of vari-
able τ .

Although the variable surface tension coefficient appears to have little
effect on the concentration in droplet it does have a significant effect on the
dynamics of the droplet. In Figure 7.10, the vertical velocity of the droplet
with respect to different initial concentrations is plotted over the time. Note
that for constant τ , the dynamics of the droplet is independent of the mass
transport. After the same initial phase, due to Marangoni effects, the droplet
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t = 0.005 t = 0.05

t = 0.1 t = 0.2

t = 0.3 t = 0.4

Figure 7.5: Concentration distribution around the droplet with variable τ on
plane x = 0.01: c2(0) = 1%, F = 105.

velocity with variable τ is lower than the one with constant τ . Note that the
variable surface tension τ is monotone decreasing in the interval [0, 5.8%].
At the lower part of the interface, the higher concentration results in a lower
value of the surface tension coefficient. Marangoni convection occurs, which
retards the motion of the droplet. The larger the initial concentration c2(0)
is, the stronger the Marangoni convection becomes. As a consequence, a
lower value of the terminal droplet velocity is obtained. The values of the
terminal velocity vsed with respect to different initial concentrations are given
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Figure 7.6: Concentration profile in the vicinity of the droplet along the
symmetry axis at t = 0.4 in the water phase (left) and in the droplet (right):
c2(0) = 1%, F = 105. Note that different scales are used for each picture and
each axis.

in Table 7.3, which qualitatively agree with the results in [PW06, WFW+07].
Moreover, for higher initial concentrations, the droplet becomes flatter, which
also results in a slower rising velocity.

τ = const c2(0) = 1% c2(0) = 2.5% c2(0) = 5%
0.0532 0.0512 0.0488 0.0460

Table 7.3: Terminal velocity (m/s) of the droplet (F = 105).

In Figure 7.12 we show the vector fields of the relative velocity vrel :=
v − vsed with respect to the barycenter of the droplet (i. e. velocity in a
Lagrangian reference system attached to the droplet) at steady state for the
case c2(0) = 5%.

7.3.2 Effects of the convection term

In Section 7.3.1, we have shown results for simulations with c2(0) = 1% for
the case F = 105. In this section, we perform simulations using this initial
concentration but with different diffusion coefficients to study the effects of
the size of the convection term on the terminal velocity of the droplet and the
steady state concentration. First we take a larger diffusion coefficient αF with
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Figure 7.7: Mean concentration in the droplet: c2(0) = 2.5%, F = 105.
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Figure 7.8: Mean concentration in the droplet: c2(0) = 5%, F = 105.
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F = 106. Results for the concentration on the plane x = 0.01 are displayed
in Figure 7.13. In this case, the diffusion dominates the mass transport.
The steady state concentration is reached in a very short time, before the
steady state velocity. In both cases, the steady state is obtained after less
than 0.1 s, which is not very different from the concentration at t = 0.01 s.
The steady state concentrations in both cases are almost identical. Due to
convection, the concentration in the lower part of the droplet is still slightly
higher than that in the upper one, but the slope of the droplet concentration
is much smaller than that in the case with F = 105. In this case we have
max(c1)
min(c1)

= 1.015 on x = 0.01.

Simulations with a smaller diffusion coefficient αF (F = 104) is also con-
sidered. In this case, the mass transport process is more dominated by con-
vection. We use a finer grid in order to obtain a good approximation of the
concentration. The domain is partitioned into 8 × 16 × 8 cubes and then
the grid near the interface is refined four times further. Since a different
grid is used, the results for this case should be qualitatively (rather than
quantitatively) compared with the ones in other cases. The distribution of
the droplet concentration (shown in Figures 7.14-7.15) is very much different
from those with higher diffusivities (i. e. F = 105 and F = 106). Since
the diffusion is much weaker, the difference in concentration is not reduced
as fast as in the case of larger diffusivities. Thus, the concentration below
the droplet is much higher (compared to the case of larger diffusivity) than
that in the upper part. At t = 0.5 s, the steady state concentration is not
obtained, yet. The ratio max(c1)

min(c1)
(on x = 0.01) is 3.508 (constant τ) and 3.095

(variable τ), respectively. In a relatively large region below the droplet, the
value of the concentration is not constant. The droplet mean concentration
c̄ is also larger than the value c̄∗, as shown in Figure 7.16. At t = 0.5, the
value of c̄ is equal to 1.57% for constant τ , which is larger than the droplet
mean concentration 1.538% for variable τ .

In Figure 7.17, the rising velocity of the droplet over time for different
values of the diffusion coefficient is displayed. In the case of variable τ ,
Marangoni convection reduces the droplet velocity. For smaller diffusivity
(i. e. larger Marangoni convection), the value of the velocity is also lower.
The difference between the velocities in the cases of F = 106 and F = 105,
however, is not noticeable. In contrast, the droplet velocity with respect
to F = 104 is relatively smaller, due to large Marangoni convection. The
corresponding terminal velocities are given in Table 7.4.
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τ = const F = 106 F = 105 F = 104

0.0532 0.0515 0.0512 0.0486

Table 7.4: Terminal velocity (m/s) of the droplet for different diffusion coef-
ficients.

The vector fields of the velocity in the Lagrangian reference system at
steady state is shown in Figure 7.18. For variable τ , the high concentration
gradient on the interface results in a stagnant cap, as discussed in Section
4.4. However, the shapes of the droplet in both cases are similar.

We summarize the main physical phenomena that we observed in our
numerical experiments:

• Rising velocity: If the surface tension coefficient is variable, Marangoni
effect occurs, which slows down the droplet. The higher the initial
concentration is, the stronger the Marangoni convection becomes and
thus, the slower the droplet velocity is. This is also observed in other
literature [PW06, WFW+07]. Note that in these papers, the direction
of mass transport is from the droplet to the continuous phase, and the
initial concentration c2(0) is equal to 0. When the time is sufficiently
large, due to the small size of the droplet, the concentration in the
continuous phase around the interface becomes very small and a re-
acceleration of the droplet is observed, which is not the case in our
simulation.

Moreover, by higher initial concentration, the surface tension coefficient
is reduced and the droplet becomes flatter, which also decreases the
rising velocity. For convection dominated problems, the velocity field
in the Lagrangian reference system attached to the droplet at steady
state presents a stagnant cap, due to high concentration gradient on
the interface.

• Profile of the droplet concentration: Due to convection, the concentra-
tion at the lower part of the droplet is higher than that in the upper
part. For diffusion dominated problems, the droplet concentration pro-
file at steady state is almost linear and the difference between the cases
of constant τ and variable τ is not noticeable. The higher the initial
concentration is, the steeper the slope of the droplet concentration pro-
file becomes. For convection dominated problems, the concentration at
the lower part of the droplet is much higher.
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• Mean concentration in the droplet: For diffusion dominated problems,
the mean concentration in the droplet at steady state is approximately
equal to the mean concentration c̄∗ = β1 · c2(0) of the pure diffusion
problem, since the volume of the droplet is very small in comparison
to that of the water phase. For convection dominated problems, the
mean concentration is relatively higher than c̄∗.

• Boundary layer: At the interface, a boundary layer appears such that
the interface condition [α∇c · n]Γ = 0 is satisfied. For convection dom-
inated problems, a steep boundary layer in the water phase presents
below the droplet.
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t = 0.025 t = 0.025

t = 0.05 t = 0.05

t = 0.2 t = 0.2

t = 0.4 t = 0.4

Figure 7.9: Concentration distribution with variable τ on plane x = 0.01:
c2(0) = 2.5% (left) and c2(0) = 5% (right), F = 105.
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Figure 7.10: Rising velocity of the droplet (F = 105).
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Figure 7.11: Dynamics of the rising droplet at t = 0.05, 0.2, 0.4, colour
coding indicates velocity magnitude: c2(0) = 1%, F = 105.

Figure 7.12: Velocity field in Lagrangian reference system at steady state :
constant τ (left) and variable τ (right), c2(0) = 5%, F = 105.
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t = 0.005 t = 0.005

t = 0.01 t = 0.01

t = 0.1 t = 0.1

t = 0.4 t = 0.4

Figure 7.13: Concentration distribution around the droplet with constant τ
on plane x = 0.01: c2(0) = 1%, F = 105 (left) and F = 106 (right).
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t = 0.05 t = 0.05

t = 0.1 t = 0.1

t = 0.2 t = 0.2

t = 0.4 t = 0.4

Figure 7.14: Concentration distribution in the water phase (left) and in the
droplet (right) with constant τ on plane x = 0.01: c2(0) = 1%, F = 104.
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t = 0.05 t = 0.05

t = 0.1 t = 0.1

t = 0.2 t = 0.2

t = 0.4 t = 0.4

Figure 7.15: Concentration distribution in the water phase (left) and in the
droplet (right) with variable τ on plane x = 0.01: c2(0) = 1%, F = 104.
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Figure 7.16: Mean concentration in the droplet: c2(0) = 1%, F = 104.
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Figure 7.17: Rising velocity of the droplet for different diffusion coefficients.
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Figure 7.18: Velocity field in the Lagrangian reference system at steady state:
constant τ (left) and variable τ (right), c2(0) = 1%, F = 104.





Chapter 8

Summary and Outlook

In this thesis, we presented numerical methods for discretizing and solving the
mass transport problem in two-phase flows. For the two-phase Navier-Stokes
equations, which model the motion of the fluid, we used known methods
introduced in [Gro08, Reu09], which include

• The level set method for capturing the (in general) moving interface.

• Finite element methods for the spatial discretizations of the Navier-
Stokes and the level set equations. Key components are the improved
Laplace-Beltrami technique in [GR07a] for discretizing the localized
surface force term and the extended finite element method for the ap-
proximation of the discontinuous pressure in [GR07b]. For the case of a
constant surface tension coefficient, the combination of these two meth-
ods results in an optimal discretization error bound for the solution of
a model two-phase Stokes equations.

• The θ-scheme for the time discretization of the ODE problem resulting
from the spatial discretization.

For mass transport problems, however, the surface tension coefficient of-
ten depends on the mass concentration, which causes Marangoni effects. In
Chapter 4 we presented a new discretization of the localized surface force term
for the case of a variable surface tension coefficient based on the improved
Laplace-Beltrami method in [GR07a]. Numerical simulations in Chapter 4
and Chapter 7 using this discretization showed that different phenomena
were observed when the surface tension coefficient is variable, such as the
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occurrence of the so-called stagnant cap in the velocity field and a significant
change in the droplet rising velocity. The results are qualitatively in agree-
ment with the results from experiments in [ASB05] and numerical simulations
in [PW06, WFW+07].

The discretization of the mass transport equations treated in this thesis
is new. The Henry’s condition at the interface implies that the concentration
is discontinuous across the interface. In the literature often a transformation
technique is used that eliminates this discontinuity of the solution but leads to
a suboptimal spatial discretization error bound. We used the Nitsche-XFEM
method introduced in [HH02] to handle the Henry condition and obtained
an optimal error estimate O(h2) in the L2-norm for the spatial discretiza-
tion in the case of a stationary interface. This method can also be applied
for problem with moving interface but a full error analysis is not available.
In Chapter 7, we performed numerical simulations of a rising droplet prob-
lem for both cases of constant and concentration-dependent surface tension
coefficients. For the latter case, Marangoni effects appear and the flow is
also affected by the mass transport. Since the Nitsche-XFEM method pre-
sented in this thesis is not suitable for convection-dominated problems and
the real diffusion coefficient for the considered system is extremely small, we
used (much) larger diffusion coefficients and the numerical results cannot be
compared to experiments.

We mention several open problems, which are necessary for the effective-
ness and the improvements of the presented methods:

• An error analysis for the discretization of the localized surface force
term for the case of a variable surface tension coefficient is not available,
yet. Similar to the case of a constant surface tension coefficient, an error

bound O(h) for the term sup
vh∈Vh

|fΓ(vh)−f̃Γh
(vh)|

‖vh‖1
is expected to hold.

• The Nitsche-XFEM discretization is not stable for convection-dominated
mass transport problems. In this case, a stabilization technique is
needed in order to obtain reliable numerical solution.

• For the case of moving interfaces, a full error analysis of the Nitsche-
XFEM is not known, yet.

• In our simulations, a simple variant of the θ-scheme is used to avoid the
complicated couplings between the flow variables, the level set function
and the solution of the mass transport equations. The method has,
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however, only first order of accuracy. Higher order time discretizations
are desirable.

• If a stabilization of the Nitsche-XFEM method has been developed and
implemented then a system with physically correct diffusion coefficient
can be simulated. The results of these simulations should be compared
with experimental results in order to validate these simulations.

• Although the simulations in [BGG+08, EGR08] have shown the supe-
riority of XFEM method to the standard finite element discretization
of the two-phase Navier-Stokes equations, the analysis of the LBB-
stability for the P2 − P1X pair is still an open question.
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