

Numeric Simulation of Glider Winch Launches

Andreas Gäb, Christoph Santel

Communicated by Prof. Dr.-Ing. D. Moormann Institute of Flight System Dynamics RWTH Aachen University

Jul. 28-Aug. 4, 2010

XXX OSTIV Congress, Szeged, Hungary

Contents

- Simulation tool
 - Overview
 - Main components
- Simulated procedure
- Results of analyses
 - Reference case
 - Effect of wind
 - Kavalierstart
- Summary/Outlook

Simulation Tool: Framework

- Main simulation as block diagram in Simulink
- Matlab GUI for easy access

- Realized as a student's thesis
- Several extensions since then

Jul. 28-Aug. 4, 2010

XXX OSTIV Congress, Szeged, Hungary

Simulation Tool: Building Blocks

- Interaction of six main components:
 - Aircraft
 - Pilot
 - Cable
 - Winch
 - Winch operator
 - Atmosphere
- Each component as a subsystem

- Atmosphere included in aircraft and cable

Simulation Tool: Aircraft

- 6 degree of freedom, rigid body
- Flat, non-rotating earth
- Forces and moments arising from
 - Aerodynamics
 - Gravity
 - Cable
 - Ground reaction
- Aerodynamics formulated as lookup tables, including ground effect
- Model corresponds to a training two-seater (simplified ASK 21 data); different aircraft possible

Simulation Tool: Glider Pilot

- Approximation of human behavior by linear control theory
- Three separate channels:
 - Maintain airspeed with elevator
 - Maintain bank angle/ground track with aileron
 - Minimize angle of sideslip with rudder
- Gains scheduled by scaling with inverse dynamic pressure
- Human factors (neuro-muscular delay, reaction time)

Aileron controller channel

CONTREMENTED A CHEN UNIVERSITY

Simulation Tool: Winch/Winch Operator

- Winch: Simple drive train model
- 400 hp Diesel engine simulated
- Operator controls force with the engine throttle
 - Measurement of cable force assumed
- Linear control theory, analogous to pilot model

Simulation Tool: Cable

- Cable discretized into finite mass points, connected by massless cylinders
- Subject to weight, aerodynamic drag, ground reaction forces and internal cable tension
- Integration of equations of motion for all mass points
- Different types of cable (steel, synthetic) modeled by mechanic properties (mass, E modulus, ...)

Finite cable element with acting forces

Lehrstuhl für Flugdynamik

Simulation Tool: Ground Reaction Forces

- Spring/damper combination at predefined contact points
 - Wheels, skids
 - Exposed structure elements (wing tips)
 - Finite cable elements
- Spring deflection and deflection speed calculated from equations of motion
- Vertical reaction force (spring force) produces horizontal friction force

Simulated Procedure

- Launch with constant cable force during main climb phase
- Pilot controls airspeed, climb angle as result
- Recent discussion in Germany¹ indicates possible safety benefits with this procedure
- Winch operator needs to know actual cable force
 - Readily available with electric winches
 - Diesel winch: constant throttle, but operator experience required to find optimal setting
- Initial force low (~0.5×glider weight), increase to 1.5×weight after liftoff

¹Eppler, R.: "Windenschlepp und optimale Ausklinkhöhe", Draft available from: www.daec.de/se/downfiles/2010/Windenstart_Prof_Eppler20100301.pdf

Reference Case

- 1000 m synthetic cable
- No wind
- Target airspeed
 30 m/s (110 km/h)
- Glider weight ~5 kN
- Cable force as above
- Reaches 431 m after
 35 s of winching

Time history of winch forces during reference launch

Reference Case: Flight Path

• Cable sag illustrated by difference between FEM and secant cables

Reference Case: Airspeed

- Airspeed safety margin is at least 25% during initial phase
- Drops to 18% shortly before force reduction
- Airspeed controller (pilot) gains authority at ca. t=10 s

Safety margin defined as

$$S = \frac{V_{TAS} - V_{stall}}{V_{stall}} \cdot 100\%$$

Reference Case: Load Factors

- Aerodynamic load factor ^{2.5} (lift/weight) well above 2
- But canceled by cable force: vertical acceleration perceived by pilot is close to 1g
- Stalling speed increases with square root of aerodynamic load factor!

CARCHEN UNIVERSITY Lehrstuhl für Flugdynamik

Wind Effects

- Constant longitudinal wind
- About 5 m altitude gain per km/h headwind
- Controller maintains speed margin from reference case even with tailwinds
- Real life pilot has to consciously disregard groundspeed when controlling airspeed

Kavalierstart

- Kavalierstart: excessively steep initial launch attitude
- May be caused by pilot (pulling too early) or winch operator (initial winch force too high for given glider) <u>E</u>
- Altitude gain with Kavalier winch operator (more energy added to system), but reduced safety
- Kavalier pilot alone can only marginally increase altitude

Flight paths for Kavalierstart cases

Kavalierstart: Safety

- avalierstart: Safety Safety margin to stalling speed significantly reduced in all cases
- Kavalier winch operator causes overshoot of allowable speed
- Pilot + operator both have responsibility for safe launch procedure

Summary

- Simulation framework realized for analysis of winch launches
 - Comprises aircraft, winch, pilot and winch operator as linear control theory models, cable as FEM model
- Reference launch with constant cable force
 - Safety of this procedure illustrated
- Safety reduction during Kavalierstart shown
 - Winch operator and pilot both take part in ensuring a safe launch

Outlook

- "Blade Element" aerodynamics model being realized to allow varying airflow in spanwise direction
 - Background: simulate roll-over accidents during early launch phase
- More sophisticated winch models to allow comparison of Diesel and electric winches

Thank you for your attention!

y [m]

Jul. 28-Aug. 4, 2010

XXX OSTIV Congress, Szeged, Hungary