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Abstract

Today’s data storage facilities allow recording of billions of transactions from

business applications, scientific sensor readings, monitoring systems etc. Sci-

entists developing new drugs, system administrators monitoring complex

technical processes, and decision makers being responsible for complex social

or technical systems require an overview and even a deeper understanding of

their respective data. The knowledge discovery in databases (KDD) process

has been designed to identify hidden patterns in large data resources. A

central step of the KDD process is the data mining task. Major data mining

tasks are clustering and classification. Density-based approaches have proven

to be very effective for many data mining methods. However, the good ef-

fectiveness often comes at the cost of a high runtime complexity. This thesis

presents new efficient density-based approaches for different data mining ap-

plications whereas the effectiveness of the new developed methods is always

kept in mind.

The first part of this thesis is concerned with new density-based cluster-

ing methods. Clustering is a data mining task for summarizing data such

that similar objects are grouped together while dissimilar ones are separated.

Density-based approaches have shown to successfully mine arbitrary shaped

clusters even in the presence of noise. In multi-dimensional or high dimen-

sional data, clusters are typically hidden by irrelevant attributes and do not

show across the full space. As relevance of attributes is not globally uniform

for all clusters, global dimensionality reduction approaches are not adequate.

Subspace clustering aims at automatically detecting clusters and their rele-

vant attribute projections. This work presents a new clustering model DUSC

which guarantees a comparable and redundancy free subspace clustering re-

sult. As the number of possible subspaces is exponential in the number of

dimensions subspace clustering is a computationally challenging task. The

algorithm eDUSC developed in this work is based on a filter-and-refinement
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architecture which avoids repeated database scans. Further on, this work

proposes a new visualization technique for subspace clusters and a special-

ized clustering technique for multi-dimensional sequence databases.

The second part of this thesis proposes new density-based methods for

classification. Classification aims at assigning a class label to unknown ob-

jects. Various approaches for classifying objects have been investigated in

the last decades. Classifiers based on statistical approaches have been most

intensively studied in the literature and results like asymptotical behavior

and classification bias have been derived. To apply statistical classifiers the

density of objects has to be estimated. In this work, a hierarchy of density

estimators is proposed which makes the classification of objects possible any-

time. Additionally, a new classification method using subspace clusters for

higher dimensionalities is developed in this thesis.

The proposed density-based clustering and classification methods are

evaluated in terms of both efficiency and effectiveness in thorough experi-

ments on real world and synthetic data.



Zusammenfassung

Moderne Datenspeicheranlagen ermöglichen die Erfassung von Billionen von

Geschäftstransaktionen, wissenschaftlichen Sensormessungen, Meldungen von

Überwachungssystemen etc. Verantwortliche Wissenschaftler in der Arznei-

mittelentwicklung, Systemadministratoren, die komplizierte technische Pro-

zesse überwachen und Entscheidungsträger komplexer sozialer oder techni-

scher Systeme benötigen eine Übersicht über bzw. einen tieferen Einblick in

ihre erfassten Daten. Der “Knowledge discovery in databases” (KDD) Pro-

zess wurde entwickelt, um versteckte Muster innerhalb großer Datenbanken

ausfindig zu machen. Ein zentraler Schritt des KDD Prozesses ist das Da-

ta Mining. Hauptaufgaben des Data Minings sind das Clustering und die

Klassifikation von Daten. Dichtebasierte Ansätze haben sich als sehr effekti-

ve Data Mining Methoden bewährt. Jedoch bringt die hohe Effektivität eine

hohe Laufzeitkomplexität mit sich. In dieser Doktorarbeit werden neue, ef-

fiziente, dichtebasierte Ansätze für verschiedene Datenanalyseanwendungen

vorgestellt, wobei die Effektivität nicht außer Acht gelassen wird.

Der erste Teil dieser Arbeit befasst sich mit neuen dichtebasierten Clus-

tering Methoden. Clustering ist eine Data Mining Aufgabe, welche Daten

so zusammenfasst, dass Gruppen ähnlicher Objekte von unähnlichen sepa-

riert werden. Dichtebasierte Ansätze haben sich als erfolgreich bei der Su-

che beliebig geformter Cluster innerhalb verrauschter Datensätze herausge-

stellt. In mehr- oder hochdimensionalen Daten werden Cluster normalerweise

durch irrelevante Attribute versteckt und sind daher im vollen Datenraum

nicht zu erkennen. Da die Relevanz von Attributen nicht für alle Cluster

global einheitlich ist, können globale Dimensionsreduktionstechniken nicht

sinnvoll eingesetzt werden. Die Zielsetzung von Subspace Clustering Algo-

rithmen ist das automatische Auffinden von Clustern mit der zugehörigen

Attributprojektion. Diese Arbeit präsentiert DUSC, ein neues Clustering Mo-

dell, das vergleichbare und redundanzfreie Clustering Ergebnisse garantiert.
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Aus Sicht des Berechnungsaufwandes stellt Subspace Clustering, wegen der

exponentiellen Abhängigkeit der Anzahl möglicher Teilräume von der An-

zahl Dimensionen, eine Herausforderung dar. Der Algorithmus eDUSC, wel-

cher im Rahmen dieser Arbeit entwickelt wurde, basiert auf einer Filter-und-

Verfeinerungsmethode, wodurch das wiederholte Durchsuchen der Datenbank

vermieden wird. Weiterhin werden in dieser Arbeit Visualisierungstechniken

für Subspace Cluster vorgestellt, sowie eine spezialisierte Clustering Technik

für mehrdimensionale Sequenzdatenbanken.

Im zweiten Teil dieser Doktorarbeit werden neue dichtebasierte Methoden

zur Klassifikation vorgestellt. Das Ziel der Klassifikation ist die Bestimmung

eines Klassenlabels für unbekannte Objekte. In den letzen Jahrzehnten wur-

den verschiedene Ansätze für die Klassifikation von Objekten vorgestellt.

Klassifikatoren, welche auf statistischen Ansätzen basieren, wurden in der

Literatur sehr intensiv untersucht und Ergebnisse über das asymptotische

Verhalten und die Klassifikationstendenz wurden hergeleitet. Zur Anwendung

statistischer Verfahren ist das Schätzen der Dichte für Objekte notwendig. In

dieser Arbeit wird eine Hierarchie von Dichteschätzern vorgestellt, die Klassi-

fikation von Objekten zu jedem Zeitpunkt möglich macht. Weiterhin wird in

dieser Doktorarbeit ein neuer Klassifikator für hochdimensionale Daten auf

Basis von Subspace Clusterings entwickelt. In umfangreichen Experimenten

wird mit Hilfe von synthetischen und realen Daten sowohl die Effizienz als

auch die Effektivität der vorgestellten dichtebasierten Clustering- und Klas-

sifikationsmethoden untersucht.
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databases



Knowledge discovery in

databases

Increasingly large data resources in life sciences, mobile information and com-

munication, e-commerce, and other application domains require computer-

based techniques for gaining knowledge. More and more data are produced

by sensor networks, technical or financial monitoring systems, scientific ex-

periments, or telecommunication networks. For decision makers, scientists

and other data analysts unknown dependencies in the observed measure-

ments are crucial for development of new models that detect and explain

causalities. Knowledge discovery in databases aims at generating novel and

interesting information hidden in the data [HK01]. To find interesting pat-

terns in a data set a knowledge discovery process is typically divided into

four steps (see also Figure 1). The first step creates a consistent view on

the data by integrating and cleaning data stored in different sources. The

combined data is often managed in a data warehouses. Depending on the

desired analysis the task relevant data is selected from the data warehouse or

?data selection ?

…

data 
mining

selection
transfor. visualize

data

integrated
view

task relevant
data pattern

data
source

Figure 1: Knowledge Discovery in Databases (KDD) process
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Clustering

clustered data setunlabeled data set

Figure 2: Clustering a data set

transformations and projections are calculated. Subsequently the data min-

ing step extracts patterns from the task relevant data. Finally visualization

techniques are used to present the extracted patterns to the user.

As a central step of the KDD process the data mining step has attracted

much attention from scientific research. Typical data mining approaches are

association rule mining, clustering and classification methods. Clustering and

classification methods are often used to analyze multi-dimensional real valued

data sets. Common subtasks of many clustering or classification algorithms

are density-based (i.e. they rely on densities of regions or objects). Since

databases tremendously grow in size classification and clustering algorithms

have a special need for efficient density-based methods.

Density-based methods for clustering

Clustering aims at grouping data into similarity-based subgroups. Typically

clustering methods do not assume any prior knowledge, i.e. the number of

groups contained in the data or the type of clusters is unknown. Consequently

clustering methods are often called unsupervised. Figure 2 gives an abstract

example for a clustering. In this example the given data set is grouped into

three regions.

In the literature, several clustering paradigms exist [HK01]. Density-

based clustering defines clusters as dense areas separated by sparsely pop-

ulated areas. It has been shown to successfully detect clusters of arbitrary

shape in many settings [EKSX96, HK98]. Density of an object is measured

either by mere counting of objects or by more complex functions on the

number and location of objects in the neighborhood. The underlying den-
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sity model, from mere counting of objects in a neighborhood range to local

density attractors, has great impact on the clustering result.

For any paradigm, clustering in high dimensional spaces is obstructed by

the noise of irrelevant attributes. The “curse of dimensionality” describes

the effect that distances become more and more similar as dimensionality

increases. Consequently, meaningful clusters no longer exist [BGRS99].

One solution for clustering data in multi-dimensional or high dimensional

spaces is subspace clustering. In scenarios with many attributes or with

noise, clusters are often hidden in subspaces of the data and do not show

up in the full dimensional space. A global reduction to relevant attributes is

often infeasible, as relevance of attributes is not necessarily globally uniform.

Varying relevance of attributes for individual clusters requires clustering over

any possible subset of the attributes.

Subspace clustering therefore aims at detecting clusters in any possible

attribute combination. Density-based approaches are very popular to deter-

mine clusters in subspace. As the number of subspace projections is exponen-

tial ly with the number of dimensions, subspace clustering methods have a

tremendous need for efficient density-based methods. We will go into details

of subspace clustering in Part I.

Density-based methods for classification

Classification methods aim at assigning unlabeled objects to predefined groups.

As the number of groups are known in advance classification methods are

called supervised methods. Many applications have the need to predict class

labels for new objects like speech and image recognition systems, e-mail spam

and denial of service attacks detection systems etc. Since an a priori knowl-

edge about the classes is given the goal of a classifier is to learn the structure

of the predefined groups from a given labeled data set (the training data).

Figure 3 illustrates an abstract concept for a classifier which learns the prede-

fined classes from dense regions (different classes are represented by different

colors).

Using statistical classifiers is a popular approach in pattern recognition

system [DHS01]. Many of these methods are based on density estimations

(e.g. the Bayes classifier). As the density distribution of the data is typically

not known in advance densities are estimated from the training set. A typical
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Classification

learned classifier labeled data set

Figure 3: Classifier learned from data set

approach is to estimate the missing parameters of a density model from the

training set (e.g. estimate mean and variance for a Gaussian distribution).

However, assuming a concrete model is often not appropriate as many density

models are unimodal which is a too strong constraint especially for multi-

dimensional data sets. Mixture models relax the assumption of one concrete

model by using a multimodal mixture of densities. A popular solution is

to use an expectation maximization (EM) algorithm to learn a mixture of

Gaussian densities from the training set.

Nonparametric functions on the other hand can be used for arbitrary dis-

tributions as they make no assumption about the form of the distribution.

Kernel densities (or parzen windows) are nonparametric functions which es-

timate the density of a query object directly from the distribution of the

objects contained in the surrounding region. Kernel densities have proven to

be an effective method for many applications. However, as the distribution

for each query-region has to be determined from the training objects the effi-

ciency of kernel estimators is often poor. In Part II we present details about

efficient density-based methods used for classification.

Outline of this work

In this work we present new efficient density-based methods for various clus-

tering and classification applications. The thesis is divided into two major

parts:

Part I is concerned with new density-based clustering methods.

In Chapter 1 we discuss clustering of multi-dimensional data. We further

on give an overview over existing clustering methods and discuss problems oc-
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curring in multi-dimensional or high dimensional data sets. We then present

existing solutions for finding clusters in projections of the data and present

preliminary definitions for density-based clustering in subspaces.

Existing subspace clustering methods ignore an effect we call dimension-

ality bias. Chapter 2 formalizes this effect and proposes a new subspace

clustering model DUSC which solves this problem. Additionally to dimen-

sionality bias the redundancy of clusters is evaluated in thorough experiments

on synthetic and real world data sets.

As the number of possible subspaces is exponential in the number of

dimensions, subspace clustering is a computationally challenging task. In

Chapter 3 we develop an efficient method eDSUC for our DUSC subspace

clustering method. eDUSC achieves a high efficiency by using a filter-and-

refinement architecture for avoiding computational intensive database scans.

Based on a depth-first algorithm eDUSC exploits in-process redundancy

pruning as well as indexing dense regions. Comparing eDUSC with state-of-

the-art subspace clustering methods proves the efficiency and effectiveness of

this approach.

An important step of the KDD process is to visualize the result of the

data mining method to the user. Visualizing the result of subspace cluster-

ing algorithms is no trivial task as structures contained in different possible

overlapping subspaces have to be presented to the user. The VISA approach

presented in Chapter 4 proposes two new visualization techniques for sub-

space clusterings.

Chapter 5 proposes a specialized subspace clustering technique for an-

alyzing databases of multi-dimensional sequences which was developed in

collaborations with hydrologists. In a current project of the German govern-

ment different structural quality measures for more than hundred thousand

river segments have been recorded. The special challenge in this project

was to develop a subspace clustering method for finding clusters of arbitrary

sequence length and in any subset of the attributes. The efficiency of the

new clustering model is guaranteed by using a two phase approach utilizing

different monotonicity properties.

Part II is concerned with new density-based classification methods:

In Chapter 6 we give a brief review over existing classification algorithms

proposed in the literature. Further more the basic notations of the Bayes

and nearest neighbor classifier are presented in this chapter.

Based on the Bayesian decision theory an efficient classifier for classifying
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objects at any point in time is developed in Chapter 7. A novel hierarchy

of densities for different classes (the Bayes tree) is exploited for efficient

classification. We evaluate the accuracy of our Bayes tree for varying stream

inter-arrival rates on synthetic and real world data sets.

Chapter 8 proposes a new classification technique which incorporates the

information the class distribution into a specialized subspaces clustering al-

gorithm. Classification based on these classifying subspace clusters exploits

both class and local correlation information. In collaboration with a local

company optimizing airport scheduling purposes we investigate the classifi-

cation accuracy of flight delays.

Finally we summarize the major contributions of this work and give an

outlook on future research direction.



Part I

Efficient density-based methods

for clustering



Chapter 1

Clustering multi-dimensional

data

To gain insight into large data resources, data mining provides automatic

techniques to extract information from large databases. One of the major

tasks for knowledge discovery in databases is clustering. Clustering aims at

grouping data such that objects within groups are similar while objects in

different groups are dissimilar.

Many different paradigms for clustering data sets have been proposed

in the last decades. We first give a brief overview over traditional cluster-

ing methods in Section 1.1 before we discuss challenges in clustering multi-

dimensional and high dimensional data (see Section 1.2). We then review

existing solutions for clustering multi-dimensional data in Section 1.3. Sub-

sequently we give the basic definitions for density-based subspace clustering.

As clusters in higher dimensional spaces are often blurred by noise subspace

clustering algorithms identify clusters in any possible subspace. In the fol-

lowing chapters of this part we will discuss different aspects of density-based

subspaces clustering.

1.1 Full-space clustering

Traditional clustering methods use all attributes available to identify clusters

contained in the data. Hence, we refer to traditional clustering methods

which do not consider lower dimensional projections of the data as full-spaces

clustering methods.
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One of the first approaches proposed in the literature to cluster a data

set is partitioning clustering. As their name suggests, partitioning clustering

methods create a disjoint grouping of the data. Typically they iteratively

improve an initial partition of the data until a cost function converges. A

well-known example is the k-means algorithm [Mac67], or more statistically

founded, EM (Expectation Maximization) [Lau95]. Partitioning algorithms

are limited to the detection of convex clusters in data without noise where

the number of clusters is known in advance.

As the number of clusters is often not known, hierarchical clustering meth-

ods do not determine one unique clustering structure but a hierarchy of clus-

ters. Two different approaches for hierarchical clustering methods can be

distinguished: divisive (top-down) and agglomerative (bottom-up) methods.

Divisive methods start with a single cluster that contains all objects and

recursively pick one cluster for splitting [JD88]. Agglomerative methods first

assign each object to an individual cluster and then respectively link the

two closest clusters together w.r.t. a chosen distance function. Different

distance functions for agglomerative clusterings have been proposed in the

literature [Sib73, Def77]. To visualize a hierarchical clustering, dendrograms

represent the clustering in a tree-based organization. Each leaf node of the

dendrogram corresponds to one object. Inner nodes represent clusters which

contain all objects of the leaf nodes of the respective subtree. In each level

the two closest clusters are linked together. By choosing different levels in the

dendrogram users obtain different groupings of the objects. As no concrete

clustering is mined by hierarchical clustering algorithm it is often difficult to

extract hidden structures contained in the data based on the clustering result.

Hence, visualization techniques like dendrograms are crucial to comprehend

the hierarchy of clusters mined by hierarchical clustering algorithms.

Density-based algorithms are capable of detecting arbitrarily shaped clus-

ters and have proven to work remarkably well in noisy settings. The basic

idea is that clusters are dense areas separated by sparsely populated areas as

defined in DBSCAN (Density-Based Spatial Clustering of Applications with

Noise) [EKSX96, HK98]. The initial definition of density has been shown to

oversimplify the model of the real density distribution. Fixed neighborhoods

of a pre-given ε-range are checked whether or not they contain the defined

minimum number of points, thus the distribution of objects is ignored and

sensitivity to parameter settings is a challenge. DENCLUE (Density Cluster-

ing) thus extends DBSCAN using influence functions to model local densities
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of objects [HK98]. Due to efficiency considerations, an approximate compu-

tation of density is used. The recent approach of DENCLU2 speeds up the

density estimation by a hill-climbing approach with an adjustable step size

[HG07]. A hierarchical clustering based on densities instead of distances has

been proposed by OPTICS [ABKS99]. OPTICS visualizes a hierarchy of

density-connected clusters by computing a density plot. We extend density-

based clustering methods to subspace projections in the next sections.

1.2 Problems for clustering multi-dimensional

data

For any clustering paradigm, full space clustering algorithms do not scale

to higher dimensional spaces. They suffer from the so called “curse of di-

mensionality”. For clustering this means that clusters do not show across all

attributes as they are hidden by irrelevant attributes or blurred by noise.

Clustering methods are typically either based on distances (like partition-

ing and hierarchical clustering) or on densities (like density-based methods).

The effects of higher dimensional spaces on distances and density distribu-

tions have been widely studied in the literature. In [BGRS99] the authors

study the effects of high dimensions on the nearest neighbor dmin(o) and the

farthest neighbor dmax(o) of an object o in detail. They have proven the

following equation for different distributions:

∀ε ≥ 0 : limdim→∞P (dmax(o) < (1 + ε) dmin(o)) = 1

This statement formalizes that with growing dimensionalities (dim) the

distance to the nearest neighbor is nearly equal to the distance to the farthest

neighbor (distances become more and more similar). Consequently, cluster-

ing methods based on distance functions have problems to extract meaningful

patterns in high dimensional spaces as they either cluster only one object (the

nearest neighbor) or nearly the complete data set (the farthest neighbor).

Densities also suffer from the “curse of dimensionality”. In [Sil86] the au-

thors describe an effect of higher dimensions on density distributions: 99% of

the mass of a ten-dimensional normal distribution is at points whose distance

from the origin is greater than 1.6. This effect is directly opposite in lower

dimensional spaces: 90% of the objects have a distance of less than 1.6 from
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Figure 1.1: Probability of different standard normal distributions

the origin regarding a one-dimensional distribution.

We additionally illustrate the behavior of higher dimensional standard

normal distributions in Figure 1.1. For different dimensionalities we mea-

sured the probability of an object to be contained in a sphere positioned at

the origin w.r.t. the radius of the sphere. On the right part of the figure

the probability is graphically illustrated for a sphere of radius 1.6 for a one

and two-dimensional standard normal distribution (the corresponding prob-

abilities are marked by red points in the graph). Please recall that density

functions are normalized to one and hence the volume of a region under a

density function corresponds to the probability of that region. As we can see

the probability for an object to be contained in the center of a space is drop-

ping extremely for higher dimensions. In a 20-dimensional space most of the

objects have a distance of more than four times the variance per dimension.

Consequently nearly every point is positioned at the border of the data space

even though the highest density of a high dimensional normal distribution is

still at the origin. Density-based clustering methods hence have problems to

determine the density of a region as the objects are scattered over the data

space.

One possible approach to clustering high dimensional data sets is to apply

dimensionality reduction techniques in advance. After reducing the dimen-

sionality clusters can be identified. Dimensionality reduction techniques like

PCA (principle components analysis) aim at discarding irrelevant dimensions

[Jol86]. However, in many practical applications, no globally irrelevant di-
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Figure 1.2: Problems of dimensionality reduction and projected clustering

techniques

mensions exist. Thus, for these settings, dimensionality reduction can only

discover a subset of the actual clusters as some of the original dimensions are

ignored.

Figure 1.2 gives an example for a 4-dimensional data set containing clus-

ters in different projections. We illustrate four different projections of the

data set in Figure 1.2 (to dimensions x1x2, x1x3, x2x3 and x3x4). As de-

picted clusters are clearly visible in two different projection (x1x2 and x3x4).

Since each of the four dimensions is relevant for some clusters globally ir-

relevant dimensions do not exist. Hence, removing dimensions will discard
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some cluster: e.g. if dimension x3 and x4 are removed in advance the four

clusters contained in the projection x1x2 can be identified by a clustering

algorithm (upper left part of Figure 1.2). As we can see dimension x3 is

irrelevant for this clustering as both projections to dimensions x1x3 and x2x3

does not contain any clusters (see upper right and lower left part of Figure

1.2). However, if dimension x3 is removed the clustering structure obtained

by projecting the data to the dimensions x3x4 is lost. Hence, dimensionality

reduction techniques can not be applied without loss of clusters. Further

on, both clustering structures contained in this example are distorted if all

four dimensions are considered. Consequently using a full-space clustering

method is also not appropriate for this example data set.

1.3 Solutions for clustering multi-dimensional

data

As discussed in the last section finding structures in multi-dimensional to

high dimensional spaces is problematic due to the curse of dimensionality.

However, clusters still exist in lower dimensional projections. Specialized

clustering algorithms have been developed in the last decade which identify

clusters in subspaces of the data space. Many traditional clustering algo-

rithms have been extended to projected or subspace clustering algorithms.

Methods for identifying clusters in subspaces can be categorized into top-

down and bottom-up methods or into projected and subspace methods. We

discuss the two algorithmic concepts of top-down and bottom-up methods

before we present different projected and subspace clustering models in the

next section. In this thesis we will concentrate on subspace clustering meth-

ods.

The “top” and “bottom” of top-down and bottom-up methods refer to

the lattice of subspaces. Figure 1.3 presents the lattice for a five-dimensional

space. At the top the full-dimensional space containing all for dimensions

is illustrated (using the index set (1, 2, 3, 4, 5)) and the empty space at the

bottom, accordingly. Each level in the lattice contains all subspaces of a

specific dimensionality. Two subspaces are connected if they only differ in

one dimension. Bottom-up methods start at the bottom of the lattice (with

one-dimensional spaces) and iteratively join subspaces to higher 3dimensional

subspace. To prune the search space bottom-up methods typically use clus-
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Figure 1.3: Lattice of subspace clusters

tering models which implement the downward closure property [KKZ07].

For density-based methods the density threshold has to be fixed to ensure

the downward closure of clusters or subspaces. This assumption is often a

problem as it leads to incomparable clustering results. We will discuss these

effects in Chapter 2 in detail.

Top-down methods start by evaluating the full-dimensional space. In

each step the current clustering result is refined by projecting individual

clusters to lower dimensional spaces. The local neighborhood of a cluster in

the high dimensional space is commonly used to determine the lower dimen-

sional projection [KKZ07]. The quality of top-down methods often depends

on the quality of the initial clustering in the full-dimensional space. Since

clustering multi-dimensional data sets is often problematic projected clus-

tering algorithms do not scale well to higher dimensional data. Further on,

starting in high dimensional spaces is also not unproblematic as we discussed

in the last chapter (see “curse of dimensionality”).

1.3.1 Projected clustering

One approach to find clusters in multi-dimensional data sets is projected

clustering. Projected clustering methods identify projections of the data into

lower dimensional spaces where disjoint clusters may be identified. Projected

clustering algorithms try to identify the relevant dimensions for each cluster

individually. Typical projected clustering approaches extend partitioning
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clustering methods by computing the relevant dimensions for each cluster.

PROCLUS (PROjected CLUStering) [AWY+99] extends the k-medoid

algorithm by iteratively refining a full-space k-medoid clustering. Hence,

PROCLUS works in a top-down manner. In each iteration the clusters are

projected to a lower dimensional axis-parallel subspace and the data points

are reassigned to their closest medoid.

ORCLUS (arbitrarily ORiented projected CLUSter generation) extends

PROCLUS by using arbitrary projections for each cluster [AY00]. Both

algorithms need the number of clusters and the (average) dimensionality of

the clusters as input parameter.

LAC (Locally Adaptive Clustering) [DPGM04] weights the dimensions

for each cluster by measuring the variance. The reassignment of points is

based on the k-means approach and like ORCLUS and PROCLUS LAC

starts with an initial full-space clustering before the individual weights per

dimension are computed. The influence of the variance on the weight of a

dimension is controlled by a user specified parameter.

Recently P3C (Projected Clustering via Cluster Cores) has been proposed

[MSE06]. P3C works in a bottom-up manner by combining one-dimensional

cluster cores to higher dimensional clusters. By using these cluster cores

as an initialization for the EM algorithm, a partitioning is computed. As

discussed before, clusters may overlap in different projections, and hence

these approaches cannot detect all clusters.

Projected clustering algorithms are not able to find different clustering in

overlapping subspaces. Reconsider the example data set presented in Figure

1.2. Since projected clustering algorithms only detect one clustering one of

the two structures contained in this example would not be found. Hence,

projected clusterings also lose some clusters if clusters are hidden in different

projections.

1.3.2 Subspace clustering

To identify clusters in different projections subspace clustering methods aim

at detecting clusters in any subspace. In principle, any clustering algorithm

could be used to mine clusters in all subspaces of the data. This naive ap-

proach is of very high complexity as the number of subspaces is exponential

in the number of dimensions and the result size is typically overwhelming.

Consequently, subspace clustering approaches have largely focused on reduc-
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ing the search space via heuristics, discretization of the data space via grids,

etc. Another approach to efficiently compute subspace clusters is to search

for relevant subspaces prior to clustering. A categorization of the different

approaches is given in Figure 1.4.

Grid-based

CLIQUE (Clustering In QUEst) is the first subspace clustering method pro-

posed in the literature. CLIQUE uses a grid to discretize the search space

[AGGR98]. Monotonicity on the density of grid cells is used for pruning the

search space in a bottom-up algorithm. Grids greatly reduce the compu-

tational complexity, yet clusters which spread across several cells might be

missed. Moreover, CLIQUE measures density via simple counting of objects

per cell. MAFIA [NGC99] extends CLIQUE via a data-adapted grid to re-

duce the number of clusters lost in discretization. Density is then computed

depending on the size of a cell.

DOC and its variant FastDOC [PJAM02] are not directly based on a

grid like discretization but define subspace clusters as dense hypercubes of a

user defined size. The relevant dimensions for a subspace cluster are selected

by using a Monte Carlo algorithm. An optimal subspace cluster is then

defined by taking the number of points and the dimensionality of the subspace

into account. Since clusters are defined using cells, clusters might also be

cut apart. Further on, the density of arbitrarily shaped clusters is only
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approximated by the hypercube as the actual distribution of points is not

considered.

SCHISM (Support and Chernoff-Hoeffding bound-based Interesting Sub-

space Miner) [SZ04] extends CLIQUE using a variable threshold to cope with

different dimensionalities, yet relies on heuristics and a grid-based discretiza-

tion for pruning. Consequently, completeness is lost as in all grid-based

approaches.

Density-based

Density-based clustering has been extended to subspace clustering in previous

works. SUBCLU (density-connected Subspace Clustering) uses a gridless

approach for effective subspace cluster mining [KKK04]. Using the earlier

DBSCAN density notion, a density monotonicity property is used to prune

subspaces. The algorithm uses an apriori like scheme (discussed first in

association rule mining [AS94]) to detect subspace clusters in a bottom-up

fashion. As dimensionality is ignored, it suffers from dimensionality bias, i.e.

clusters cannot be separated from noise across subspaces (see also Chapter

2).

FIRES [KKRW05] is a generic framework for subspace clustering which

allows using different clustering notions. It relies on approximative tech-

niques in a filter-refinement scheme to scale to high dimensional spaces.

Subspace search

As mentioned above, faced with the huge number of subspace clusters differ-

ent heuristics are used to efficiently determine subspace clusters. Subspace

search methods use a two step approach. The first step searches for subspaces

having a high cluster tendency. These subspaces are typically ranked using

a scoring function. Actual subspace clusters are determined in a second step

using traditional clustering methods.

ENCLUS [CWZZ99] (Entropy-Based Subspace Clustering) discretizes the

data to compute the entropy and information gain of a subspace. Working

bottom-up one-dimensional subspaces are evaluated first and then combined

to higher dimensional subspaces. Entropy and information gain thresholds

are used to prune the search space. The result is then clustered using a

grid-based method like CLIQUE. An extended version of ENCLUS uses a



24 CHAPTER 1. CLUSTERING MULTI-DIMENSIONAL DATA

normalized entropy measure and an evolutionary approach to identify sub-

spaces having a high cluster tendency [AKSS06].

RIS [KKKW03] (Ranking Interesting Subspaces) uses a density-based

method to determine the interestingness of a subspace. Subspaces are ranked

according to their ratio of actual and expected number of dense objects (core

objects). Clusters are then mined using a density-based algorithm.

As subspace search methods do not mine the actual subspace clusters,

the scoring function for subspaces does not necessarily reflect the differences

in clusters contained:

1.4 Basic notions

In this section, we give the formal definitions for density-based subspace clus-

tering as used in our algorithmic concepts. Density-based subspace clustering

algorithms identify arbitrarily shaped clusters in multi-dimensional feature

databases. For notational convenience let us first introduce some basic no-

tions:

Definition 1.1 Preliminary Definitions

We assume mining clusters in a data set based on the following definitions.

Given:

• a d-dimensional feature space with the corresponding index set D =

{1, . . . , d}

• a universal domain U = [0,v] for all dimensions

• a database DB ⊆ U|D| containing |DB| = n objects o = (ν1 . . . νd)

we define projections of data objects onto different subspaces based on:

• the index set of a subspace as S = {s1, . . . , sr} ⊆ D

• a subspace U|S| as the projection of U|D| to the r dimensions specified

by the index set S

• DB|S| as the projection of DB|D| to the dimensions in S

• a projection of object o = (ν1 . . . νd) to the subspace U|S| as oS =

(νs1 . . . νsr)
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In density-based clustering, clusters are defined as dense areas separated

by sparsely populated areas. Hence, a basic definition for density-based

clustering is a density measure which can be evaluated for every object.

Usually the density value is determined by considering an area of influence

surrounding the data object. This area of influence is specified using a norm

‖.‖ and a parameter ε which defines the radius of the area:

Definition 1.2 Area of influence

The area of influence Aε for a given norm ‖.‖

‖o‖ : U|D| → R

and a parameter ε is defined as:

Aε(o) = {p | p ∈ DB, ‖p− o‖ ≤ ε}

As mentioned before, in many applications clusters are hidden in sub-

spaces and cannot be revealed by any cluster analysis that mines all dimen-

sions simultaneously. Subspace clustering methods, on the other hand, aim

at detecting clusters by automatically focusing to the respectively relevant

subsets of the dimensions.

Hence, for subspace clustering it is essential that the density measure is

capable of handling objects of different dimensionalities (see also Figure 1.5).

In [KKK04] the standard notion of density is extended for the evaluation of

subspaces. Following the paradigms of subspace clustering we extend ‖.‖ to

‖.‖S by restricting the norm ‖.‖ : U|D| → R to the dimensions in subspace

S. For ease of notation, we refer to a subspace U|S| only by its index set

S. As a result, we obtain an adapted notion of the area of influence as the

(S, ε)-neighborhood. Figure 1.5 illustrates the projection of the area of in-

fluence for object o onto two different subspaces (S = {1, 2} and S = {3}).

Definition 1.3 Subspace area of influence

The area of influence AS
ε in a subspace S and the respective norm ‖.‖S

‖o‖S =
∥∥oS∥∥ : U|S| → R

is defined as:

AS
ε (o) = {p | p ∈ DB, ‖p− o‖S ≤ ε}

with ε the influence parameter.
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In density-based clustering, an object o is defined as dense if its density

exceeds a threshold τ . Typically, density of an object o is determined by

simply counting the number of objects in AS
ε (o). We generalize this idea

by assigning weights to each object contained in AS
ε (o). This is depicted in

Figure 1.6: the left neighborhood range shows a different distribution than

the one on the right, even though both contain the same number of objects.

By assigning less weight to objects further away, this effect is modeled in

the density definition. Based on a monotonously falling weighting function

W : R → R we define a density measure as:

Definition 1.4 Generalized Density Measure

Let W be an arbitrary weighting function W : R → R. Based on W a

generalized density measure ϕS
ε (o) for an object o in subspace S is defined as:

ϕS
ε (o) =

∑
p∈AS

ε (o)

W
(
‖p− o‖S

)
Using a weighting function W a density measure ϕS

ε (o) weights the ob-

jects within the neighborhood according to their distance from the object
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Figure 1.6: Density distribution within neighborhood

o. Consequently, an object o in subspace S is called dense if the weighted

objects contained in its area of influence sum up to more than a given den-

sity threshold τ . The weight of an object contained in the area of influence

is determined by a norm which reflects the distance of the object from the

point of evaluation.

Definition 1.5 Subspace Density-Connected.

An object o is dense in subspace S (S-dense) with respect to the area of

influence ε if its density exceeds the density-threshold τ :

S-denseτε(o) ⇔ ϕS
ε (o) ≥ τ

A subset C ⊆ DB is connected with respect to a subspace S (S-connectedC) if

there is a chain of neighboring objects between all pairs of objects (p, q) ∈ C:

∀(p, q) ∈ C : S-connectedC(p, q) ⇔
∃ o1 . . . on ∈ C :

o1 = p, on = q ∧
∀ i = 1 . . . n− 1 : ‖oi − oi+1‖S ≤ ε.

A density-based cluster is then defined as the transitive closure of all

dense connected objects, i.e. the maximal set of objects which are density-

connected. Clusters thus are elements of chains of objects which are mutually

included in one another‘s neighborhoods. Consequently, arbitrarily shaped

clusters can be successfully detected even in noisy settings [EKSX96].

Definition 1.6 Density-based Subspace Cluster

Let U be a domain, S ⊆ D be an index set denoting a subspace US of UD.

A subspace cluster (C,S) is a set of objects C ⊆ DB for which the following

holds:
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Figure 1.7: Density-based clustering

• All objects in C are S-dense:

∀o ∈ C : S-denseτε(o)

• All objects in C are S-connected

∀p, q ∈ C : S-connectedC(p, q)

• Cluster S is maximal in subspace S

∀p ∈ DB : S-denseτε(p) ∧ (∃q ∈ C : S-connectedC(p, q))⇒ p ∈ C

Definition 1.6 introduces subspace clusters as maximal density-connected

sets of objects with respect to a subspace S of the universe US. Let us note

that an individual object o may belong to different subspace clusters (C1,S1)

and (C2,S2). This does not contradict maximality as long as the clusters

focus on different subspaces S1 6= S2. If an object is not contained in any

subspace cluster (Ci,Si) the object is termed noise.

SUBCLU [KKK04] first introduced the extension of the density-based

clustering model of DBSCAN [EKSX96] to subspaces. In each subspace,

objects must contain a minimal number of objects in its area of influence

to be defined as core objects (to be dense). Similar to DBSCAN, SUBCLU

distinguishes between core objects and border objects. Border objects may

belong to multiple clusters, even in the same subspace, while core objects

define the area belonging to a cluster.

Our definition of density generalizes the idea of core objects to dense

objects with respect to a subspace S and a threshold τ . In SUBCLU all
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Figure 1.8: Density-based Subspace Clusters

objects in AS
ε (o) are assigned the same weight: W(x) = 1,∀x ∈ R. Hence,

to determine the density of an object the number of points contained in the

area of influence is counted. Thus an object is termed dense if more than

τ = minPoints objects are contained in area of influence. To determine the

area of influence SUBCLU uses the Euclidean distance. As this is a common

approach we also focus on the Euclidean norm, but other norms could be

used as well:

‖p− o‖S =

√∑
i∈S

(pi − oi)2

Figure 1.8 illustrates a basic subspace clustering scenario. Clusters i.e.

dense regions are identified in all possible subspace. In this example four

different subspace clusters are identified. The area of influence surrounding

an object is determined by a norm. E.g. in SUBCLU object o would be

determined as dense in subspace S = {1, 2} if the density threshold τ is set

to 5 or less (see Figure 1.8). Table 1.1 summarizes our notations.
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v the maximal possible value for all domains

U a universal domain U = [0,v] for all dimensions

D the complete data space D = {1, . . . , d}
S a index set of a subspace S = {s1, . . . , sr} ⊆ D

DB the database containing n objects: DB ⊆ U|D|

o an objects o ∈ DB with d attributes o = (o1, . . .d)

oS projection of objects o to subspace S : o = (o1, . . . , od)

‖o‖S the norm of an object o in subspace S

W(x) a weighting function for x ∈ R
ε the parameter specifying the size of the area of influence

AS
ε (o) the objects contained in the area of influence of object o

in subspace S

ϕS
ε (o) a density measure for an object o based on a weighting function W ,

a norm ‖.‖ and the respective area of influence AS
ε (o)

τ the threshold parameter for the density measure: gd(o) ≥ τ

Table 1.1: Notation for subspace clustering



Chapter 2

Unbiased density-based

subspace clustering

As discussed in the last chapter, in scenarios with many attributes or noise,

clusters are often hidden in subspaces of the data and do not show up in the

full dimensional space. For these applications, subspace clustering methods

aim at detecting clusters in any subspace. Existing subspace clustering ap-

proaches fall prey to an effect we call dimensionality bias. As dimensionality

of subspaces varies, approaches which do not take this effect into account fail

to separate clusters from noise.

In this chapter, we focus on eliminating the dimensionality bias. We give

a formal definition of dimensionality bias and analyze consequences for sub-

space clustering. A new density-based subspace clustering approach (DUSC)

based on statistical foundations is proposed which takes the dimensionality

of the respective subspace into account. We show that this method elimi-

nates dimensionality bias and leads to comparable clustering results between

subspaces of different dimensionalities. In thorough experiments on syn-

thetic and real world data sets, we demonstrate that our new dimensionality

unbiased subspace clustering models clearly outperforms existing subspace

clusterings in terms of accuracy.

2.1 Introduction

Density-based clustering algorithms are capable of detecting meaningful pat-

terns in many applications. As described in the last chapter the density-based
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clustering paradigm has been extended to subspaces clustering in previous

work. However, the straight forward extension of density estimators to sub-

spaces ignores the dimensionality of the investigated subspace.

In this chapter, we prove that density measures which ignore the dimen-

sionality of the subspace are biased. Assuming a simple setup of uniformly

distributed data, we show that biased density measures cannot distinguish

this pseudo-cluster scenario from true clusters in all subspaces. As a conse-

quence, dimensionality bias means failing at the very core of density-based

subspace clustering. We demonstrate that existing dimensionality indepen-

dent approaches check incomparable density values against the same constant

threshold. Hence, these approaches fail from separating clusters from noise.

Depending on the setting of the fixed density threshold existing subspace

clustering algorithms either lose clusters or detect numerous pseudo-clusters.

These effects have serious consequences for the quality of the result.

Summing up, our contributions include:

• definition and analysis of dimensionality bias and its consequences for

subspace clustering

• definition of density-based clustering on statistical foundations

• dimensionality unbiased subspace clustering model

This chapter is structured as follows: we shortly review density measures

of existing subspace clustering algorithms in the following section. Then, in

Section 2.3, we discuss dimensionality bias. A novel model of density-based

subspace clusters is defined. We demonstrate that this definition perfectly

eliminates dimensionality bias. Analysis of our model is exploited to derive

powerful pruning properties which do not jeopardize accuracy. We demon-

strate the usefulness and effectiveness of our approach in thorough experi-

ments on both synthetic and real world data sets in the experiments Section

2.7.

2.2 Related work

In this section we shortly review the density measures of exiting cluster-

ing methods. Many existing subspace clustering algorithms do not adapt

the density model to the dimensionality. For example, CLIQUE [AGGR98]
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partitions the data space into equi-width cells and computes the number of

objects per cell. A cell is dense if it contains more than a specified number of

objects. This is biased as the ratio of the volume of cells to the overall vol-

ume decreases exponentially with the dimensionality. Similar cluster models

have been used in MAFIA [NGC99], CBF [CJ02] and DOC [PJAM02]. All

methods use a dimensionality independent threshold to determine if a cell is

dense.

As mentioned in the last chapter, SUBCLU [KKK04] determines the

density of an object by counting the number of objects contained in the

ε-neighborhood. As objects in higher dimensional spaces are more spread

out, virtually no high dimensional clusters are found.

Simply comparing the density of subspaces of different dimensionalities

according to the same density measure ignores the effect of dimensionalities

on density. The higher dimensional the subspace, the lower its expected

density. More precisely, evaluating a set of objects in a higher dimensional

subspace far less likely to be found a density-based cluster. This must be

taken into account when defining a density measure for subspace. Two recent

approaches, FIRES [KKRW05] and SCHISM [SZ04] use dimensionality de-

pendent density measures, yet do not overcome dimensionality bias. FIRES

uses an approximation to combine one dimensional clusters to high dimen-

sional clusters. SCHISM uses heuristics to prune low dimensional subspace

clusters and computes approximate densities on a per-cell basis.

Projected clustering algorithms typically take the dimensionality of the

subspace into account but do not analyze the effect of different dimension-

alities on the clustering result. PROCLUS [AWY+99] for example measures

the segmental Manhattan distance (the distance relative to the number of

dimensions) between an object and the center of a cluster. ORCLUS [AY00]

measures the projected energy of a clustering which also considers the dimen-

sionality of a subspace. P3C [MSE06] uses a Poisson threshold which depends

on the dimensionality of the investigated subspace. However, no clustering

algorithms investigate if the clusterings from different dimensionalities are

comparable.
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2.3 Dimensionality bias

Subspace clustering methods analyze data spaces of different dimensionali-

ties. Consequently, avoiding an effect which we call dimensionality bias is

an important issue. Dimensionality bias refers to a dependency of density

on the dimensionality of the subspace: as dimensionality increases, average

distances between objects increase and cluster radii grow. At the same time,

the expected density within the area of influence drops accordingly. Thus,

ignoring the dependency of density on the dimensionality of the subspace

leads to incomparable density values.

Incomparable density values pose the following problem: the high dis-

crepancy in density scales of low dimensional or high dimensional subspaces

makes it impossible to find a suitable parameter for a fixed density threshold

τ . If on the one hand τ is parameterized such that high dimensional clusters

with low expected density are detected then numerous excess pseudoclusters

are generated in low dimensional spaces where expected density is high. On

the other hand, a parameterization of τ which separates clusters from noise

in low dimensional spaces loses clusters in high dimensional spaces.

We call a density measure to be dimensionality unbiased if the expected

density value of the density measure is independent of the dimensionality

of the subspace. Statistically speaking, this corresponds to the same ex-

pected density value regardless of the dimensionality of the subspace. For a

generalized density measure as proposed in Definition 1.4 this statement is

formalized as:

Definition 2.1 Dimensionality Unbiased Density Measure

A density measure ϕS
ε is dimensionality unbiased if its expected density is the

same for any two subspaces S1 and S2 ⊆ D:

∀ S1,S2 : E
[
ϕS1
ε

]
= E

[
ϕS2
ε

]
i.e. the expected density is varying over subspaces of different dimension-

alities.

Definition 2.1 formalizes the notion of dimensionality unbiased density

measures. It states that bias leads to different expected densities for the
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same object depending on the subspace. It is crucial for density-based ap-

proaches to separate dense from sparse regions. This is infeasible using a

biased density measure. For example, uniformly distributed data does not

contain any dense or sparse regions as all regions have the same density.

Hence, it does not contain any cluster. The density value computed by a

biased density measure for a uniformly distributed space varies for different

dimensionalities. Consequently, for a biased density measure it is not clear

how to specify the density threshold for separating dense regions from noise.

An unbiased density measure does not consider a uniformly distributed re-

gion as dense if the density threshold is above the expected density value.

Thus an unbiased density measure is capable of distinguishing dense and

sparse regions in subspaces of different dimensionalities.

We now show how dimensionality bias can be eliminated for any density

estimator. As the expected density should be the same for any two subspaces,

we normalize density estimators with their expected density.

Theorem 2.1 Eliminating dimensionality bias.

For any density measure ϕS
ε , the weighted density measure:

1

E[ϕS
ε ]
ϕS
ε

is dimensionality unbiased.

Proof. With linearity property of the expectation value, the proof is

straightforward:

∀ S ⊆ D : E

[
1

E [ϕS
ε ]
ϕS
ε

]
=

1

E [ϕS
ε ]
E
[
ϕS
ε

]
= 1

Thus, for any two subspaces, normalizing the density measure by the

expected value of the subspace yields comparable density values for any two

subspaces S1 and S2. Normalization could be achieved by other means such

as subtracting the expected value, but, as we will see later, dividing by

the expected value simplifies the choice of density parameters in subspace

clustering.



36
CHAPTER 2. UNBIASED DENSITY-BASED SUBSPACE

CLUSTERING

Figure 2.1: Gauss, Rectangular, Epanechnikov and Triangular Kernel (from

left to right)

2.4 An unbiased density estimator

In this section we use statistical analysis to develop an unbiased density

measure for subspace clustering. In statistics, kernel estimators are used to

estimate density functions from a set of data objects. A kernel weights the

observations in the data set to compute the density value at any position

in the data space. Kernel estimators are used to estimate a probabilistic

density function and hence the weighting function (called kernel function

K) satisfies the condition
∫ +∞
−∞ K(x)dx = 1. Different kernel functions cor-

respond to differently shaped curves, resulting in slightly different density

assessments. Using a rectangular kernel objects within the area of influence

are just counted which would correspond to the SUBCLU approach. Hence

the density computation tends to be overly sensitive to the choice of the area

of influence. Using a kernel function which assigns higher values to closer

objects and lower values to objects further away, density is more accurately

measured for many applications than by mere counting of objects within the

ε-neighborhood [HK98, Sil86].

The most commonly used ones are Gauss, Epanechnikov, Bisquare and

Triangular kernels (see also Figure 2.1). Please note that the volume of

statistical kernels is normalized to one and consequently the kernels depicted

in Figure 2.1 have a different height. Any of these kernels could be used in

principle for density estimation. Gauss, however, assigns non-zero values to

all objects in the database. This makes it is a poor density estimator in terms
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of efficiency as the area of influence always contains the entire database.

Silverman et al. also prove that the Gauss kernel is also less effective for

density estimation than other kernels [Sil86].

The Epanechnikov kernel is both an efficient and effective choice, since

it is computationally efficient and minimizes the mean integrated squared

error [Sil86]. Thus, we use Epanechnikov kernel in the following, but in

principle any kernel could be used as well. Within an area of influence, the

Epanechnikov kernel assigns decreasing weights to objects with increasing

distance.

For a subspace S, the Epanechnikov kernel function KS is defined as:

KS(x) =

 |S|+2
2c|S|

(
1−

(
‖x‖S

)2
)
, ‖x‖S ≤ 1

0, else.
(2.1)

where |S| denotes the dimensionality of the subspace and c|S| =
π|S|/2

Γ(|S|/2+1)

is the volume of the |S|-dimensional unit sphere and the gamma function is

defined by Γ(n+ 1) = n ∗ Γ(n),Γ(1) = 1,Γ(1/2) =
√
π.

Each kernel is scaled in width according to a bandwidth ε which corre-

sponds to the area of influence of a density-based subspace clustering al-

gorithm. For subspace clustering, we need only the Epanechnikov kernel

weights

(
1−

(
‖x‖S

)2
)

to obtain the following density measure with its re-

spective weighting function (see Definition 1.4):

Definition 2.2 Epanechnikov Density Measure

Let W(t) = 1 − t2 be the Epanechnikov weighting function. We define the

Epanechnikov density measure for an area of influence given by ε as:

ϕS
ε (o) =

∑
p∈AS

ε (o)

(
1−

(
‖o− p‖S

ε

)2
)

Following Theorem 2.1, we can remove dimensionality bias by taking the

expected density for subspaces into account. As clustering aims at detecting

dense regions in a given data set, clusters should have higher density values
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than data without any clusters. A data set without clusters corresponds to

uniformly distributed data, i.e. all values are taken with the same probability.

By requiring that density should exceed the expected density of uniformly

distributed subspaces, we ensure that no pseudo-clusters are “detected”.

To remove dimensionality bias we examine a database containing n ob-

jects which are uniformly distributed in space. Following the definition of

a uniform distribution each position in space has the same density. Thus

the density f for an object in a uniform and identical distributed space is

independent and equal for each point with: f(x) = 1
v|S|

.

Hence, the expected density for ϕS
ε (o) can be computed by integrating

over the weighting function for all possible positions in all dimensions mul-

tiplied by their probability density. From statistics, we have that any kernel

function is normalized to one:
∫

x∈R|S|
KS(x)dx = 1. Hence, for the Epanech-

nikov Density measure we can derive (compare Equation 2.1):

∫
x∈R|S|
‖x‖≤1

(
1−

(
‖x‖S

)2
)
dx =

2c|S|
|S|+ 2

(2.2)

For a given database containing n uniformly distributed objects (f(x) =
1

v|S|
) the expected density E

[
ϕS
ε (o)

]
for an object o can be computed by:

E
[
ϕS
ε (o)

]
=

∫
x∈R|S|,
‖o−x‖≤ε

n∑
i=1

1−

(
‖o− x‖

ε

S
)2
 · f(x) dx

= n ·
∫

x∈R|S|,
‖o−x‖≤ε

1−

(
‖o− x‖

ε

S
)2
 · 1

v|S|
dx

(2.3)

To solve the integral we substitute ‖o−x‖
S

ε
by ‖t‖. Since t is a multivariate

|S|-dimensional variable we have to substitute dx = ε|S|dt. After substitution,

we can apply Equation 2.2 from above to solve the integral.
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E
[
ϕS
ε (o)

]
= n ·

∫
t∈R|S|,
‖t‖≤1

(
1− ‖t‖2) · ε|S|

v|S|
dt

= n ·
ε|S| ·

(
2c|S|

)
v|S| (|S|+ 2)

Note that since in (subspace) clustering prior knowledge about the data

distribution is typically not available and not reasonable, assuming uniform

data distribution as a baseline comparison is reasonable. The above reason-

ing, however, holds for other density distributions as well.

By applying Theorem 2.1 on the Epanechnikov density measure ϕS
ε we

obtain the unbiased Epanechnikov density measure 1
E[ϕS

ε ]
ϕS
ε :

Definition 2.3 Unbiased Epanechnikov Density Measure

The unbiased density measure for the Epanechnikov influence function ϕS
ε is

given by
1

α(S, ε)
ϕS
ε (o) with

α(S, ε) = ES

[
ϕS
ε (o)

]
=

2nε|S|c|S|
v|S|(|S|+ 2)

Dimensionality bias can be removed for other kernel density estimators

as well by normalizing the density measure with the reciprocal expected

density. We briefly illustrate how to remove the dimensionality bias from the

rectangular kernel in Chapter 3.3. Using kernels known from statistics has

two advantages: the effectiveness of kernel estimators has been studied in

theoretical and practical settings, and computation of the expected density

for probability density functions follows standard methods.

2.5 DUSC subspace clustering

We introduced an unbiased density measure for subspace clustering. In this

section, we define our subspace clustering model DUSC (dimensionality un-

biased subspace clustering) based on three important properties. First, since

the number of possible subspace projections is exponential in the number of
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dimensions subspace clustering algorithms often produce numerous redun-

dant subspace clusters. To avoid excessive cluster outputs which contain

essentially the same information repeated in different dimensionalities, we

restrict the result to subspace clusters of the highest possible dimensional-

ity. Second, the so-called “empty space” effect in high dimensional spaces

means that objects are spread out extremely, leading to useless expected

density values. This could result in single objects being detected as pseudo-

clusters. And third, parameters should be intuitive in the sense that their

effect on the result can be clearly stated.

Intuitive density threshold

The density threshold is a core parameter since it sets the dividing line be-

tween dense objects and noise. As this parameter has to be set by the user it

is important for users to have an intuitive understanding of this parameter.

Commonly, users do not know density distribution apriori, which makes the

choice of a density value difficult. We exploit the fact that in our approach

density is measured with respect to the expected density as discussed before.

Consequently, users do not need to specify absolute density thresholds, but

only a factor by which the expected density has to be exceeded. Following

the definition in the previous section, an object o is dense in subspace S

according to the expected density α(S, ε) iff:

1

α(S, ε)
ϕS
ε (o) ≥ F (2.4)

where F denotes the density threshold. As the density factor F is inde-

pendent of the dimensionality and data set size, it is much easier to specify

than traditional density thresholds. Moreover, we demonstrate in the ex-

periments that this parameter is robust with a setting of F > 50 for many

applications.
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Empty space problem.

With increasing dimensionality the expected density and hence the expected

number of objects contained in an area of influence drops exponentially

[BGRS99]. This effect is termed “empty space problem” in statistics [Sil86].

For subspace clustering this means that compared to the expected density

an object may be determined as dense even if the area of influence is nearly

devoid of observations, resulting in pseudo-dense single objects.

To remove pseudo-dense objects we introduce a specific density con-

straint. This constraint ensures that the density value of a dense object

is not only F times more dense than expected, but additionally exceeds the

expected density of η objects in the area of influence. The expected density

value Eη

[
1

α(S,ε)
ϕS
ε (o)

]
of an object o which contains η objects in the area of

influence can be derived in a manner similar to the reasoning in the previous

section. The probability of an object x at an arbitrary position within the

area of influence of o is f(x) = 1
c|S|ε

|S| . Hence the density constraint remov-

ing pseudo-dense objects can be formalized for the Epanechnikov kernel as

follows:

1

α(S, ε)
ϕS
ε (o) ≥ Eη

[
1

α(S, ε)
ϕS
ε (o)

]
ϕS
ε (o) ≥ Eη

[
ϕS
ε (o)

]
ϕS
ε (o) ≥ η

∫
o∈R|S|
‖o−x‖≤ε

f(x)

(
1−

(
‖o− x‖S

ε

)2
)
dx

ϕS
ε (o) ≥ η · 1

c|S| · ε|S|
·

2 · c|S| · ε|S|

|S|+ 2

ϕS
ε (o) ≥ η · 2

|S|+ 2

Hence, let us introduce the pseudo density factor ω by the following def-

inition:

⇒ ω(S) :=
2

|S|+ 2
(2.5)
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Figure 2.2: Density thresholds α and ω

To guarantee that objects are not considered dense if the ε sphere is

virtually empty, a very small value for η is sufficient (generally two or three).

Users typically do not need to change this value. Our new density-based

subspace clustering model below combines the density constraints α and ω

given in formula 2.4 and 2.5.

Figure 2.2 illustrates the effect of increasing dimensionality on the two

density thresholds α and ω [for parameter setting η = 2; ε = 0.2; v = 1;n =

100000]. The expected density α decreases exponentially with the dimension-

ality, while ω (the expected density of η objects) only depends linearly on

the dimensionality of the subspace (please note the logarithmic scale). The

very low value for α in higher dimensions confirms the empty space problem.

The α threshold thus applies to most dimensionalities, while ω concerns only

very high dimensional spaces. The parameters α and ω combined ensure an

unbiased density notion without defining objects in nearly empty regions as

dense.

Redundancy

Subspace clustering algorithms search for clusters in all possible projections

of the data. As lower dimensional projections of a subspace cluster often

exhibit additional clusters in the respective subspace the number of sub-

space clusters is often huge (typically even more subspace clusters exist than
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Figure 2.3: Redundancy in subspace clusterings

objects). However, the lower dimensional projections of a cluster typically

reflect the same correlation and hence do not contain any additional infor-

mation. We call lower dimensional projections of a density-connected set

redundant if (nearly) the same object set is clustered again.

Figure 2.3 illustrates a possible subspace clustering result for a two-dimen-

sional data set. In this example one projection of the two-dimensional cluster

(illustrated by the red points) is completely redundant as the same objects

are clustered.

To obtain non-redundant result sets we propose to remove redundant

clusters. Hence, a cluster in subspace S is removed if the respective set of

objects C is already clustered in a higher dimensional projection S′ (S ⊆ S′).

By projecting a cluster to a lower dimensional space some noise objects may

intersperse with the cluster objects (see also Figure 2.3). To control the

degree of noise which may be assigned to a lower dimensional redundant

cluster we introduce a redundancy parameter δ. Depending on the setting

of the parameter δ the one-dimensional projection to the y-axis of the two-

dimensional cluster depicted in Figure 2.3 is also redundant.

We studied redundant subspace clusters using different real world data

sets. Figure 2.4 presents the objects and relevant dimensions of two clusters
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Figure 2.4: Redundant clustering result (Same objects representing the same

structure clustered in two different subspaces; left part using 7 dimensions,

right part using 8 dimensions)

obtained by clustering the pendigits data set (see also Chapter 2.7). The

pendigit data set contains information about the pen movement of hand-

written digits. At 8 different time points the (x, y) position of the pen is

recorded, creating a 16-dimensional data set. The upper part of Figure 2.4

illustrates the graphical representation of the clustered objects in the geo-

metric space as they were actually drawn on the pen tablet.

Parallel coordinates [Ins85], a more generally applicable technique for

visualizing high dimensional data, are used in the lower part of Figure 2.4 to

illustrate the clusters. Each d-dimensional point is represented by a polyline

which intersects d parallel axes. The position where the polyline intersects

the i-axes correspond to the value of the point in the i-dimension. The

dashed black line represents the mean value of the cluster. The coordinates

of the relevant dimensions belonging to the subspace cluster are marked by

green boxes.

In the geometric space (upper parts of Figure 2.4) we mark the relevant

dimensions by green ellipses. If one dimension of a (x, y) coordinate is not

constrained a box is used to represent the relevant dimension (objects may

differ in the other dimension).

According to the definition of traditional subspace clustering models as
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SUBCLU [KKK04] both object sets presented in Figure 2.4 are defined as

clusters. Both clusters only contain objects representing the digit “1” which

can also be seen in the visual representation (e.g. the dashed black line indi-

cating the mean value). The left cluster is using a subspace of 7 dimensions

(illustrated by the green boxes). The right cluster uses one additional dimen-

sion (the x-value of the first point). As we can see nearly the same cluster is

found if 8 instead of 7 dimensions are used for clustering. Since both clusters

describe the same correlation users are typically only interested in one of the

two clusters. We define the most descriptive one (the right one) as relevant

and the other one as redundant. The following redundancy definition solves

this problem by removing redundant cluster (as the left cluster in Figure 2.4)

from the result:

Definition 2.4 Redundancy

A clustered set of objects C ⊆ DB in subspace S ⊆ D is redundant w.r.t.

the redundancy parameter δ if there

exists a higher dimensional subspace cluster (C′,S′) with:

(S ⊂ S′) ∧ C′ ⊆ C ∧
(
|C′|
|C|
≥ δ

)

Following Definition 2.4 we define a cluster as redundant if (most of) the

objects contained in the cluster are also contained in a higher dimensional

cluster. We use a parameter δ to specify the degree of redundancy accept-

able to the user. A redundancy parameter of δ = 0 specifies a clusters as

redundant if at least one object contained in the cluster is part of a higher

dimensional cluster (please note, that we will demand clusters to contain a

minimum number of objects and hence at least this number of objects has

to be contained in a higher dimensional cluster). Using a value of δ = 1 only

defines a cluster as redundant if the objects are completely contained in a

higher dimensional subspace cluster.

How redundancy should be defined often depends on the application and

the kind of information which is relevant for the user. The redundancy

parameter δ allows controlling which clusters are considered as redundant.

Using different parameter settings results in different cluster concepts mined

by our DUSC subspace clustering model. For example it may be interesting
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Pendigits „2“ clustered in 6 dimensions

Cluster of digit „7“ in 6 dimensions

Pendigits „2“ and „7“ clustered in 5 dimensions

Figure 2.5: Five-dimensional cluster splitting into two six-dimensional clus-

ters

for a user if a low dimensional cluster splits into two or more higher dimen-

sional clusters. In this case the lower dimensional cluster reflects a concept

which is contained in two or more other groups.

Figure 2.5 presents a pendigit cluster (left part) which splits up into two

different clusters (right part) if an additional dimension is considered. The

left part illustrates a five-dimensional cluster containing the digits two and

seven. As illustrated by the green marked areas the digit one and two have a

common concept. Both digits start in a similar way (the first two positions

of many handwritten twos and sevens start similar) and end with a similar

x-value. If the y-value of the last position is also considered the digits two

and seven are assigned to two different clusters (right part of Figure 2.5).

Depending on the application a user might only be interested in the two

right clusters. Using a redundancy parameter of δ < 0.5 defines the left

cluster as redundant and hence the cluster would be removed from the result
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set.

If a user is also interested in a concept which describes the similarity

between the digit two and seven the left cluster is not redundant. In this

case a redundancy of δ > 0.5 also identifies the left cluster and hence all

three clusters are mined.

DUSC subspace clustering model

So far, we have studied the density of individual objects and the redundancy

of clusters. Additionally to the extended density constraints we only define

object sets as a cluster if they contain a significant part of the data. This

constraint is implemented by a minSize parameter. The resulting subspace

cluster model taking these conclusions into account is formalized in the fol-

lowing:

Definition 2.5 DUSC Subspace Cluster

A set of objects C ⊆ DB in subspace S ⊆ D is a subspace cluster if:

• C is S-connected and maximal (Definition 1.6)

• ∀o ∈ C: ϕS
ε (o) ≥ max{F · α(S, ε), η · ω(S)}

(more dense than expected and not pseudo-dense)

• |C| ≥ minSize · |DB| (minimum cluster size)

• ¬∃(C′,S′) a subspace cluster with: (S ⊂ S′) ∧ C′ ⊆ C ∧
(
|C′|
|C| ≥ δ

)
(not redundant)

Following density-based clustering paradigm Definition 2.5 defines sub-

space clusters as maximal connected sets of dense objects. The DUSC sub-

space clustering model extends these notions with statistically sound density

computation via normalized Epanechnikov kernel and expected density. To

make sure that clusters reflect the inherent structure of the data, they should

contain a certain minimum number of objects (typically a certain percent-

age of the data). Consequently Definition 2.5 only defines larger density-

connected sets which reflect a general concept as a cluster.

To sum up, Definition 2.5 ensures that clusters contain a significant part

of the data, are not redundant and their elements are more dense than ex-

pected. The parameters minSize, δ and F introduced by the DUSC subspace
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clustering approach model these properties. We demonstrate the robustness

of these parameters in Section 2.7.

2.6 Apriori subspace clustering

As subspace clustering mines clusters in multidimensional and high dimen-

sional data spaces, evaluating the cluster model in a naive way is infeasible

as the number of possible subspaces (and subspace clusters) is exponential

with the dimensionality. One method used by many subspace clustering al-

gorithms for improving the runtime is to apply an apriori style algorithm.

Apriori algorithms evaluate the search space in a breadth-first approach (level

by level). After subspace clusters of a specific dimensionality are mined a can-

didate set for the next higher dimensionality is generated. If one projection of

a subspace cluster candidate does not contain any cluster the candidate and

all higher dimensional projections of the candidate are pruned from search

space.

Pruning requires a monotonicity on some property of subspace clusters.

If a region which does not form a subspace cluster in some dimensionality im-

plies that this region cannot be a subspace cluster in any higher dimensional

subspace, we may safely prune this region from further consideration.

2.6.1 Monotonicity

As the density definition given in Section 1.4 depends on the dimensionality

of the analyzed subspace, it is not monotonous in the above sense and thus

cannot directly be used for pruning. The higher dimensional a subspace, the

lower its expected density. Thus, a region which is not dense according to

a low dimensional subspace’s density threshold, may be dense with respect

to a higher dimensional subspace’s threshold. To overcome this problem, we

introduce the new concept of weakest density threshold.

Definition 2.6 Weak density.

An object o in a subspace S is defined as weakDense:

weakDenseS(o) if: ϕS
ε (o) ≥ max{F · α(D, ε), η · ω(D)}

The weak density definition uses the highest, |D|-dimensional threshold

max{F ·α(D, ε), η ·ω(D)} for the density of an object o in subspace S. Thus
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if an object o is not weakDense, o cannot be dense in any super subspace of

S.

Theorem 2.2 For all subspaces T with S ⊆ T ⊆ D:

¬weakDenseS(o)⇒ ¬(ϕT
ε (o) ≥ max{F · α(T, ε), η · ω(T)})

Proof : In inequality ϕS
ε (o) ≥ max{F ·α(D, ε), η ·ω(D)} of the weak density

definition, all variables depending on highest dimensionality |D| are on the

right hand side, whereas those depending on |S| are on the left. We derive

two conclusions.

(1): the left hand side decreases with growing dimensionality, as distances

between objects may only grow as more dimensions are considered. Density

decreases for increasing distances. Consequently, the density on the left de-

creases when subspace T, is used instead of subspace S:

(1) ϕT
ε (o) ≤ ϕS

ε (o)

(2): the right hand side increases with decreasing dimensionality, as both

α(D, ε) and ω(D) grow. Note that the ratio of a |T|-dimensional ε-sphere to

the |T|-dimensional data space decreases with growing dimensionality. Thus,

(2) max{F · α(D, ε), η · ω(D)} ≤ max{F · α(T, ε), η · ω(T)}

We conclude:

¬weakDenseS(o)

⇔ ϕS
ε (o) < max{F · α(D, ε), η · ω(D)}

(1)⇒ ϕT
ε (o) < max{F · α(D, ε), η · ω(D)}

(2)⇒ ϕT
ε (o) < max{F · α(T, ε), η · ω(T)}

�
Following Theorem 2.2, an object o can be pruned if it violates the weak

density condition, as o cannot be dense in any higher dimensional subspace.

Secondly, density-connected sets can be pruned if they contain less than

minSize objects. Pruning based on these two properties, called weak mono-

tonicity, is valid in the sense that no cluster is wrongfully dropped from

consideration.
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Figure 2.6: Concept of apriori algorithm for DUSC subspace cluster model

2.6.2 An apriori approach for DUSC

In this section we propose an apriori style algorithm for our DUSC sub-

space clustering model. Apriori based algorithm have been often used for

subspace clustering as in [KKK04, AGGR98]. In contrast to the clustering

model proposed in [KKK04] the DUSC clustering model additionally consid-

ers redundancy, expected density and a minimum required size for clusters.

Objects can only be pruned from search space using the weak density defini-

tion as described in the last section. Hence, our proposed algorithm uses a

filter-and-refinement architecture to prune the search space (see also Figure

2.6). Redundant clusters are finally removed from the result set.

Since the filter steps and the redundancy removal require additional com-

putational effort the apriori based DUSC approach needs even more time to

cluster a data set than SUBCLU [KKK04]. Please notice that the authors

of SUBLCU already reported runtimes from over one week. We introduce

an efficient algorithm for the DUSC subspace clustering model (eDUSC) in

Chapter 3. For completeness we include the apriori based DUSC algorithm

in this thesis. The apriori method for our DUSC subspace clustering method

consists of four parts: the main method, two methods which implement the

apriori properties and the density-based clustering method. The method for

finding dense clusters is although used in the following chapters.

Before we explain the algorithmic parts in detail we give a short overview:

• Algorithm 1 - AprioriDUSC: main method which iteratively generates

new subspace clusters level by level (breadth-first). Finally redundant
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clusters are removed.

• Algorithm 2 - AprioriGenerate: generates higher dimensional candidate

subspace clusters by joining existing subspace clusters using the apriori

principle.

• Algorithm 3 - CheckProjections: utilizes the monotonicity property of

weak dense subspace clusters to prune candidates.

• Algorithm 4 - DenseCluster: clustering method which identifies density-

based clusters according to a given density threshold.

Algorithm 1: AprioriDUSC is the main method of the apriori based DUSC

subspace clustering approach. Starting with one dimensional clusters candi-

dates (Line 4) weak dense clusters are identified in Line 8 with respect to the

weak density threshold (see Line 2). According to the apriori concept two

weak dense subspace clusters are joined to higher dimensional cluster candi-

dates in Line 9. Before higher dimensional weak dense clusters are mined the

unbiased clustering result is identified by the refinement step in Line 12 using

the expected density threshold (see Line 11). Candidate generation, weak

dense clustering and refinement are continued until no more cluster candi-

dates for the considered dimensionality k exist (Line 5). Finally redundant

clusters are removed from the result set in Line 17.

Algorithm 2: AprioriGenerate illustrates the apriori step of our subspace

clustering algorithm. The apriori method joins two subspace clusters of di-

mensionality k to a subspace cluster candidate of dimensionality k+1. A join

is only performed if the two subspace clusters overlap in the first k−1 dimen-

sions (see Line 6). This concept is described in [AS94, AGGR98, CWZZ99,

KKK04].

In [KKK04] the monotonicity of objects has been extended to clusters.

Hence, a projection of a density-connected cluster to a lower dimensional

subspace is again part of exactly one density-connected cluster in this sub-

space. Consequently objects belonging to a higher dimensional weak dense

cluster must be part of one lower dimensional weak dense cluster. Thus, a

candidate set for a higher dimensional weak dense cluster can be obtained
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Algorithm 1: AprioriDUSC(DB, D)

// apriori generation of cluster candidates

k = 11

τweak = max{F · α(D, ε), η · ω(D)}2

result = ∅3

aprioriSC[1] =
⋃
i∈D
{(DB, {i})}

4

while AprioriSC[k] 6= ∅ do5

// find weak dense clusters for each apriori candidate

weakSC[k] = ∅6

foreach (C,S) ∈ aprioriSC[k] do7

weakSC[k] = weakSC[k] ∪ DenseCluster(C,S, τweak)8

aprioriSC[k + 1] = AprioriGenerate(weakDensSC[k])9

// identify true unbiased subspace clusters

foreach (C,S) ∈ weakSC[k] do10

τexp = max{F · α(S, ε), η · ω(S)}11

result = result ∪ DenseCluster(C,S, τexp)12

k = k + 113

// check redundancy of the result set

foreach (C,S) ∈ result do14

foreach (C′,S′) ∈ result do15

if (C′ ⊆ C) ∧ (S ⊆ S′) ∧ (|C′| ≥ r · |C|) then16

result = result \ (C,S)17

return result18

by intersecting the objects belonging to the corresponding lower dimensional

clusters (see Line 7). If the candidate set is valid it is added to the result set.

Algorithm 3: As described above the method CheckProjections (Line 7)

verifies if each k-dimensional projection of a k + 1-dimensional cluster can-

didate exists. And if the cluster exists the object set is restricted to the

intersection of the two sets.
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Algorithm 2: AprioriGenerate(clusterSet)

// generate candidate clusters of dimensionality k + 1

// for a given clusterSet of dimensionality k

result = ∅ // clusters contained in C1

foreach (C,S) ∈ clusterSet do2

// consider a subspaces with ordered dimensions

Let S be s1, ..., sk with si < sj for i < j3

foreach (C′,S′) ∈ clusterSet do4

// join subspace S′ with dimensions in S

Let S′ be s′1, ..., s
′
k with s′i < s′j for i < j5

if (k = 1 ∨ s1 = s′1 ∧ . . . ∧ sk−1 = s′k−1) ∧ sk < s′k then6

Ccand =CheckProjections(C∩C′, S∪ S′) if Ccand 6= ∅ then7

result = result ∪ {(Ccand,S ∪ S′)}8

return result9

To check if a weak dense cluster of dimensionality k corresponds to a

lower dimensional projection of the k + 1-dimensional cluster candidate it is

sufficient to check if the cluster shares some objects with the candidate (Line

2 - part 1). As mentioned above, the monotonicity for weak dense objects

also holds for weak density-connected objects. Hence, a lower dimensional

cluster (C′,S′) which shares objects with a higher dimensional cluster (C,S)

corresponds to the projection of (C,S) to S′. Thus, we can restrict the

candidate set to the intersection C ∩C′ (see Line 2).

Finally we check if each lower dimensional projection of a cluster candi-

date has been found (Line 7) and the cluster has the minimal required size

(Line 5). Otherwise the candidate (C,S) is removed from further considera-

tion (Line 10 and 6).

Algorithm 4: For each cluster candidate DensCluster identifies density-

based clusters according to a given density threshold. The filter step inves-

tigates each cluster candidate for weak density-connected clusters using the

threshold τweak. Unbiased subspace clusters are then mined from weak dense

clusters using the threshold τexp.

As a cluster candidate may contain multiple density-connected subspace
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Algorithm 3: CheckProjections(C,S, clusterSet)

// check all projections for a given cluster candidate

numProj = 0 foreach (C′,S′) ∈ clusterSet do1

// check if C′,S′ is projection of C,S

if S ∩ S′ = S′ ∧ C ∩C′ 6= ∅ then2

C = C ∪C′3

numProj = numProj + 14

if |C| < minSize · |DB| then5

// cluster candidate is too small

return ∅6

// if all lower dimensional projections exist

if numProj = |S| then7

// return constrained data set

return C8

else9

// cluster is no candidate

return ∅10

return result11

clusters the algorithm returns a set of subspace clusters (Line 1). A density-

connected cluster is mined by calculating the transitive closure for each object

p in C (Line 2): Line 11 computes the density value density and the area

of influence A for each object. If the object is dense the object belongs to

a cluster (Line 15). Further on, all objects within the area of influence may

also belong to the cluster. To evaluate the density of these objects the area of

influence is added to the set set (Line 16). Next, this set is extended until all

density-connected connected objects have been picked up. If the identified

cluster is large enough (Line 18) the subspace cluster is added to the result set

(Line 19). As the objects belonging to one cluster cannot belong to another

cluster the objects are removed from the remaining object set C.
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Algorithm 4: DenseCluster(C, S, τ)

result = ∅ // clusters contained in C1

while C 6= ∅ do2

Let p be an object in C3

set = {p} // set of possible cluster objects4

cluster = ∅ // objects belonging to the cluster5

// calculate cluster for object p

while set 6= ∅ do6

Let o be an object in set7

A = ∅ // set of possible cluster objects8

density = 0 // and density for object o9

foreach q ∈ DB do10

if ‖o− q‖S ≤ ε then11

A = A ∪ {q}12

density =W(|o− q‖S)13

if density ≥ τ then14

cluster = cluster ∪ {o}15

set = set ∪ A16

set = set \ {o}17

if |cluster| ≥ minSize · |DB| then18

result = result ∪ {(cluster,S)}19

C = C \ cluster20

return result21
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2.7 Experiments

We ran extensive experiments on real world data to demonstrate the accuracy

of the DUSC subspace clustering model. We do not evaluate the runtime

behavior in this section as the apriori based DUSC approach is similar to

SUBCLU since both algorithm use the same algorithmic concept. In the next

chapter we present an efficient approach for mining subspace clusters. We

therefore evaluate the runtime behavior of the different subspace clustering

methods in the following chapters and concentrate on the accuracy evaluation

in this section.

Measurements

Efficiency is simply measured in terms of runtime, accuracy is determined as

quality and coverage. Corresponding roughly to the measures of precision and

recall, quality accounts for purity of the clustering, while coverage measures

the size of the clustering. We use two quality measures in this thesis. One

quality measure uses the entropy. I.e. for k class labels Classi (i = 1..k) and

a cluster C the entropy is calculated by

H(C) = −
k∑
i=1

p(Classi|C) · log(p(Classi|C))

with p(Classi|C) determines the relative frequency of the objects contained

in C belonging to Classi. Entropy is an information theoretic indicator

for the homogeneity of the data, which is used for evaluating the quality of

subspace clusterings [SZ04]. For readability, we take the inverse entropy and

normalize it to a range of 0% to 100% by dividing by the maximum entropy

log(k). More precisely, the quality of a set of clusters C = {C1, . . . ,Cn} is

given by:

Quality(C) = 1−

n∑
j=1

|Ci| ·H(Cj)

log(k)
n∑
j=1

|Cj|

Coverage is the percentage of objects of the complete data set which is con-

tained in any subspace cluster. It indicates the ratio of clustered objects to

noise. The amount of noise in a data set is typically not known apriori, but

noise is present in most real world data sets. As sparsely populated regions



2.7 Experiments 57

often exhibit a weak correlation to the class label, quality can be improved

if less objects belong to a cluster (coverage drops). Thus we always evaluate

quality and coverage in combination.

Another measure to determine the accuracy is the F1-value that is com-

monly used in evaluation of classifiers and recently also for subspace or pro-

jected clustering as well [WF05, MSE06]. It is computed as the harmonic

mean of recall (“are all classes detected?”) and precision (“are the classes

accurately detected?”) values, respectively. The F1-value of the whole clus-

tering is simply the average of all F1-values. The class label assigned to any

detected subspace cluster is its most frequent class label. The F1-value for a

cluster set containing n clusters with k classes is calculated by:

IsClass(C) := Classi : if C has maximal support for Classi

Clast(Classi) :=
n⋃
j=1

{C : IsClass(C) = Classi}

P :=
k∑
i=1

|{o∈Clast(Classi) : o has label Classi}|∣∣∣∣∣ k⋃j=1
Clast(Classj)

∣∣∣∣∣
R :=

k∑
i=1

|{o∈Clast(Classi) : o has label Classi}|
|DB|

F1 :=
2

1
P + 1

R

We use both quality measures the entropy and the F1 measure in our

experiments.

Parameters

Our algorithm has few and intuitive parameters. They can be easily un-

derstood by users and are very robust on different data sets. Recall that

minSize is the minimum number of objects required per subspace cluster.

Values around 1% of the data lead to manageable result sizes. Lower val-

ues produce more subspace clusters than users might want to study, whereas

higher values diminishes the output size. η is fixed to two to eliminate the
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empty-space problem. Obviously, at least two objects should be contained

even in very high dimensional subspace clusters.

The density-thresholds α and ω are directly computed from the expected

density. Users only provide a factor F which describes by how much the

expected density should be exceeded. This F is independent of the database

size and the dimensionality. Finally, the bandwidth ε regulates the density

measure. This parameter can be estimated using standard methods from

statistics [Sil86].

We demonstrate robustness of our DUSC algorithm on two real world

data sets with very different data distributions (Pendigits, Glass - see Table

2.1). The first experiment studies the effect of density threshold F on quality

and coverage. The results shown in Figure 2.7 confirm that F is independent

of the dimensionality and data size that DUSC is remarkably robust with

respect to F.

Similar effects can be observed for the redundancy parameter r (see Figure

2.8). The heuristic r = 5% works very well for both data sets. Varying

r has nearly no effect on the quality and coverage of the Glass data set.

The coverage of Pendigit data increases from 74% to 92% with increasing

redundancy while the quality only goes down by 5 percentage points. This

effect is due to the fact that lower dimensional clusters are more likely to

be removed if the tolerated redundancy is set to a very low value. Thus

allowing a certain amount of redundancy has a beneficial effect on coverage

while quality remains stable.

Accuracy

We evaluated the accuracy [quality (Q) and the coverage (C)] of DUSC

against SUBCLU and SCHISM using the data sets illustrated in Table 2.1.

For DUSC we used the default values for F according to the heuristic in

Objects Dimensions Classes Source

Pendigits 7494 16 10 [AN07]

Glass 214 9 6 [AN07]

Vowel 990 10 11 [AN07]

Shapes 160 17 9 [KWX+06]

Table 2.1: Real world data sets
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Figure 2.7: Quality vs. density threshold F

section 2.5. As SUBCLU and DUSC are both density-based clustering al-

gorithms we used the heuristic presented in [KKKW03] to determine ε.

SCHISM is a grid based approach. Its parameters ξ, τ are also determined

using the original heuristic in [SZ04]. For their third parameter u which cuts

off low dimensional clusters, we noticed that the heuristic does not yield good

results in terms of accuracy. To obtain better quality results for SCHISM that

explain more about the true differences between different density models, we

used an even lower value for u than suggested by the authors. However as

SCHISM is a grid based approach it still does not reach the quality of DUSC.

The first column in Figure 2.9 shows the quality results of DUSC with re-

dundancy set to zero which are the best measured qualities for all data sets.

Allowing more redundancy, coverage increases significantly and quality goes

only slightly down. However, even for r = 10% DUSC shows better quality

than the competing algorithms. The fact that coverage is not 100% indi-

cates that DUSC can distinguish between noise and clusters in subspaces

of varying dimensionalities. The pendigits data set, for example, contains

handwritten numbers, some of which are clearly different from the rest of

the data set. Biased algorithms like SCHISM and SUBCLU do not detect

noise, but assign all objects to clusters.

The last data set SHAPE contains rotated versions of 9 different shapes,

but only 3 of the shapes clearly form clusters. Thus most of the objects
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Figure 2.8: Quality vs. redundancy parameter r

DUSC 0% DUSC 5% DUSC 10%  SUBCLU  SCHISM
Q C Q C Q C Q C Q C

Pendigits 86 74 83 87 81 92 58 100 77 100
Glass 60 87 51 90 50 93 44 100 44 99
Vowel 82 70 79 100 74 100 10 100 42 100
Shape 100 31 100 31 100 31 98 82 100 1

Figure 2.9: Comparing accuracy of DUSC with other algorithms

have to be considered noise. DUSC detects the given clusters correctly while

SCHISM detects only a small part of the clusters and SUBCLU mixes up

clusters with noise (less than 100% quality).

In our last experiment we evaluate the quality of our Epanechnikov and

Rectangular density measure using the F1-value. For both density measures

we removed the dimensionality measure as discussed in Chapter 2.4. We

give details about the unbiased Rectangular density measure in the next

chapter. The F1-value directly combines accuracy and coverage measured by

precision and recall to one value. From the results presented in Figure 2.10

we can see that our DUSC subspace clustering model achieves a much better

accuracy for all three data set for both density measures. Further on, the

Epanechnikov density measure always performs better than the Rectangular
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density measure.

Please recall that SUBCLU is also based on a Rectangular density mea-

sure. However, for the pendigits data set DUSC with Rectangular density

measure nearly achieves a quality which is twice as good as SCHISM or SUB-

CLU (for the Epanechnikov measure DUSC beats both algorithms by more

than a factor of two). Since the normalized rectangular density measure

also performs very well this result indicates that removing dimensionality

bias is important to obtain a good accuracy for density-based clustering in

subspaces.

DUSC 0% DUSC 0% SCHISM SUBCLU
Epanechnikov Rectangular

F1-value F1-value F1-value F1-value
Pendigits 55% 48% 25% 24%
Glass 60% 57% 47% 52%
Vowel 38% 35% 21% 17%
Shape 52% 51% 2% 40%

Figure 2.10: F1-value on real world data using different density measures

Summing up, DUSC shows both very high quality results. Figure 2.9

and 2.10 shows that the quality of DUSC is always superior to SCHISM and

SUBCLU in all setups. Thus, our statistically sound density computation

indeed leads to a higher accuracy in real world applications. Approximating

by grids or pruning via fixed thresholds, as in the competing approaches,

leads to subspace cluster loss. DUSC clearly shows best accuracy.

2.8 Conclusion

We introduced DUSC, an efficient density-based subspace clustering algo-

rithm. Using both statistical density estimation and expected density in

varying subspaces, we are capable of accurately grasping the inherent data

structure without dimensionality bias. We proposed an algorithm which re-

lies on three pruning properties to reduce the search space. Our experiments

on large high dimensional synthetic and real world data sets show that DUSC

outperforms other subspace clustering algorithms in terms of accuracy and

runtimes.



Chapter 3

Efficient unbiased subspace

clustering

Subspace clustering algorithms search for clusters in all projections of the

data. An exhaustive search of all subspace clusters, however, entails runtimes

which are infeasible for large high dimensional data sets, since the number of

possible subspace projections is exponential in the dimensionality of the data.

Consequently, existing subspace clustering algorithms trade off efficiency for

accuracy. Heuristics or grid-based discretization provide efficiency benefits,

yet clusters cut apart by the grid or wrongfully pruned are lost in the process.

Moreover, the resulting subspace clusters are often highly redundant, i.e.

many clusters are detected multiply in several projections. Containing essen-

tially the same information, redundant subspace clusters have to be removed

to allow users to review the entire output. In addition, removal of redundancy

actually improves quality.

In this chapter, we propose lossless efficient detection of subspace clus-

ters. We define a new density-conserving grid for substantial efficiency gains

without losing any clusters. Based on this grid an efficient density unbiased

subspace clustering algorithm (eDUSC) is developed which uses a filter-

and-refinement architecture to determine dense regions. Additionally we

introduce the SC-tree used for efficient subspace indexing. eDUSC and the

SC-tree work in a depth-first fashion and hence make in-process-removal of

redundant clusters possible and allow merging of subspace cells.

In thorough experiments on synthetic and real world data sets, we demon-

strate that eDUSC supported by the SC-tree is faster than existing subspace
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clustering algorithms by orders of magnitude. Additionally we investigate

the effects of removing redundancy on the quality of the resulting subspace

clustering. Our results indicate that removing even improves the accuracy of

a subspace clustering.

3.1 Introduction

As discussed in the last chapters for high dimensional data clusters are typ-

ically hidden in noisy and irrelevant attributes. To detect clusters in any

possible subspace projection, subspace clustering seeks relevant attributes

for each individual subspace cluster. As the number of possible subspace

projections is exponential in the dimensionality of the data space, efficiency

is a crucial issue in subspace clustering [AGGR98, KKK04].

Naive re-running of full-space clustering algorithms for the exponentially

number of subspace projections is clearly infeasible. Hence, grid-based dis-

cretization of the space or other lossy approximations have been proposed

[AGGR98, NGC99, SZ04]. Whereas these algorithms show far better run-

times, they lose clusters which are cut apart by the grid or missed by the

heuristic strategy. Many subspace clustering algorithms as proposed in the

last chapter are based on the apriori principle: assuming monotonicity of clus-

ters with respect to the dimensionality of the subspace, higher dimensional

projections of sparse regions are discarded as sparse as well [AS94, KKK04].

The number of resulting subspace clusters is usually exponential as well.

Subspace clusters typically show in different projections of the space, gener-

ating redundant subspace clusters which contain essentially the same infor-

mation. To allow users to analyze reasonable result sizes, redundant subspace

clusters have to be removed. Pruning of redundant subspace clusters signifi-

cantly reduces the number of subspace regions that have to be mined. This

pruning is lossless, i.e. not based on approximations or heuristics.

As subspace clustering is extremely complex, many existing subspace

clustering algorithms focus on efficiency of mining. Apriori-based algorithms

work in a bottom-up fashion on the dimensionality of the subspaces. Starting

with one-dimensional subspace clusters, candidate subspace clusters are gen-

erated from the detected subspace clusters in smaller dimensionalities. These

bottom-up approaches suffer from two drawbacks in terms of efficiency: First,

they have to generate the entire set of one- and two-dimensional subspace
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clusters before any pruning can be performed. Second, the output is highly

redundant and can only be cleared out once all redundant subspace clusters

have been generated in a costly process. Immediate pruning of redundant

subspace clusters is thus infeasible. Consequently, runtimes of several weeks

for density-based subspace clustering are reported in the literature [KKK04].

Further on, indexing is a challenge. As subspace clusters are mined in

different dimensionalities, indexing other than by inverted lists on the indi-

vidual dimensions is inapplicable as the number of subspaces is exponential

in the number of dimensions. Consequently many subspace clustering algo-

rithms do not scale well in terms of dimensionality. Faced with the huge

number of subspace projections existing subspace clustering algorithms re-

sort to approximations and are thus lossy. Non-approximative approaches

do not scale to these high dimensions and are thus intractable for real world

applications.

In this chapter, we propose a new concept for overcoming the existing

trade-off between accuracy and efficiency. We present a novel efficient sub-

space clustering algorithm for our dimensionality unbiased subspace cluster-

ing model (eDUSC). eDUSC is based on a multistep filter-and-refinement

architecture and hence is capable of mining results of high quality at far

better runtimes. We achieve substantial efficiency gains by a novel density-

conserving grid with new density conserving borders that guarantee com-

pleteness. Our lossless subspace clustering algorithm mines subspace clusters

of arbitrary dimensionality.

The high efficiency of eDUSC is additionally based on a depth-first con-

cept. Existing approaches as CLIQUE or SUBCLU [AGGR98, KKK04] are

similar to the apriori algorithm [AS94] originally introduced in frequent item-

set mining in that they work their way bottom up and breadth first on the

subspace lattice. Starting from one dimensional results, all subspace clusters

of dimensionality k are mined, before candidates of dimensionality k + 1 are

generated, and so on. For example, in Figure 3.1 (left part), all the subspaces

clusters in the first ({1}, {2}, {3} . . . ) and second ({1, 2}, {1, 3}, . . . ) level are

mined before reaching the three-dimensional subspaces.

We identify three problems of breadth-first mining: first, large sets of

candidates in low-dimensional projections, second, no in-process-removal of

redundant subspace clusters, and third, repeated density computations due

to lack of index support. All of these problems contribute to high runtimes

of breadth-first algorithms.
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Figure 3.1: Example for a breadth first (top) and depth first (bottom) prun-

ing of subspace clusters in a five dimensional lattice

Our depth first approach overcomes these drawbacks and reduce runtimes

substantially by in-process-removal of redundant subspace clusters. In Figure

3.1 (right part) we assume a cluster found in subspace {1, 2, 5}. During

the depth-first processing the shaded subspaces are recursively restricted to

{1, 2, 5}. In contrast to breadth-first approaches {1}, {2}, {5}, {1, 2}, {1, 5}
and {2, 5} do not have to be clustered to get to this subspace, if a cluster

found in {1, 2, 5} is the only non-redundant result. In this case we avoid the

costly density computations by our filter-and-refinement architecture for all

of the lower dimensional projections of the subspace cluster {1, 2, 5}. By our

novel in-process removal we focus on new subspace clusters not yet found in

higher dimensional projections.

Moreover the density conserving grid of eDUSC makes a meaningful in-
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dex support for potential subspace cluster regions possible. We introduce the

SC-tree for indexing of grid cells which supports the depth-first approach of

eDUSC. To the best of our knowledge, this is the first index for subspace clus-

ters in the literature. The SC-tree is a compact representation of potential

subspace cluster regions which greatly reduces database scans for subspace

clustering. In-process redundancy pruning as well as pruning based on the

density of regions is integrated.

The contributions of this chapter yield substantial efficiency improve-

ments for the unbiased density-based subspace clustering model described in

the last chapter by including:

• Accuracy: unbiased lossless non-redundant density-based subspace

clustering

• Efficiency: an efficient filter-and-refinement subspace clustering algo-

rithm

• Indexing: a novel powerful index for density-connected subspace clus-

ters

• Pruning: pruning the search space and automatic in-process-removal

of redundancy

Accuracy is achieved through a novel lossless density-conserving grid.

Unlike traditional grid based discretization, our approach guarantees detec-

tion of all subspace clusters. Efficiency is ensured by our novel filter-and-

refinement architecture which mines density-connected regions without scan-

ning the complete database. The compact density-conserving grid structure

makes indexing possible and since eDUSC works depth-first powerful sub-

space cluster pruning is possible without apriori-based candidate generation.

This chapter is structured as follows: we discuss related work in the next

section. Section 3.3 reviews the density-based subspace clustering model

before we present our novel density-conserving grid in Section 3.4.1. Section

3.4.3 gives our new multistep algorithm, which quickly generates potential

subspace clusters without false dismissals, i.e. completeness is guaranteed.

We then discuss how to efficiently index potentially dense regions and how to

remove redundancy in process. We analyze our algorithm on both synthetic

and real world data sets in the experiments section 3.6. We demonstrate far

better runtimes than existing subspace clustering approaches.
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3.2 Related work

In this section we shortly review different approaches for efficiently finding

subspace clusters. Subspace clustering mines clusters in arbitrary, possibly

overlapping, subspaces. As the number of subspaces is exponential in the

number of dimensions, existing algorithms trade-off efficiency for accuracy:

CLIQUE (Clustering In QUEst) uses a grid to discretize the search space

and a bottom-up apriori-based algorithm [AGGR98]. Grids greatly reduce

the computational complexity, yet clusters which spread across cells are

missed and results are sensitive to the position of the grid.

SCHISM (Support and Chernoff-Hoeffding bound-based Interesting Sub-

space Miner) extends CLIQUE using a variable threshold adapted to the

dimensionality of subspaces [SZ04]. As the apriori property does not hold

for variable thresholds, heuristics and a grid-based discretization are used for

pruning. Consequently, clusters are lost as well.

ENCLUS (Entropy-Based Subspace Clustering) and RIS (Ranking In-

teresting Subspaces) search for subspaces which might potentially contain

clusters [CWZZ99, KKKW03]. Clusters are mined in a second step using

any traditional full space clustering algorithm. As there is no connection

between these two steps, they suffer from repeated cluster property com-

putations in all subspaces which result in intractable runtimes and loss of

subspace clusters in other projections. Redundant projections of clusters are

not identified by both algorithms.

SUBCLU (density-connected SUBspace CLUstering) extends DBSCAN

to subspace clustering via an apriori-based algorithm [KKK04]. Runtimes are

better than for naive re-runs of DBSCAN, yet still not feasible for practical

applications.

Recently some approaches have been developed to identify redundant

subspace clusters. FIRES uses one-dimensional clusters to anticipate a set

of potential high dimensional subspace cluster candidates [KKRW05]. This

step tries to avoid redundancy as intermediate subspaces are not investigated.

One problem of FIRES is that high dimensional clusters often do not induce

one-dimensional clusters. Hence, high dimensional clusters may be missed

which makes FIRES an approximative clustering algorithm.

Jinze et al. propose an ontology-driven subspace clusters method [LWY04].

Using the information from the ontology redundant clusters can be identified

and removed from the result set. Since the redundancy definition is based on
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an ontology this method is not applicable to settings without ontologies. In

[AHLP06] Agarwal et al. developed a recommender system for research pa-

pers based on a subspace clustering method. Redundant clusters are removed

from the result set in a post processing step.

In this work, we show how incorporating redundancy removal into the

mining process allows for more efficient and accurate subspace clustering.

Immediate removal of repetitive patterns is exploited for our novel SC-tree

index. Existing approaches cannot benefit from indexing of high dimensional

data for subspace clustering as apriori based algorithms are used, as noted

also in [KKK04]. In apriori based bottom-up mining, redundant clusters can

only be detected once the entire low dimensional projection has been pro-

cessed. In contrast, our depth-first eDUSC technique is capable of immediate

removal of these redundant clusters, allowing for both better pruning and the

first indexing subspace clustering method to our knowledge.

3.3 Density-based subspace clusters

In the last chapter we proposed the DUSC subspace clustering model which

mines dimensionality unbiased subspace clusters. The basic idea is to nor-

malize the density in any subspace by the expected density of its dimension-

ality. In the DUSC subspace clustering model, an Epanechnikov kernel is

used (depicted on the right in Figure 3.2), whereas the SUBCLU approach

corresponds to the Rectangle kernel (depicted on the left in Figure 3.2). The

algorithm proposed in this chapter works for any of these weighting func-

tions. For simplicity of the presentation we use the rectangular weighting

function in this section. We shortly present how to remove dimensionality

bias for the rectangular density measure before we describe our algorithmic

concept in the next chapter.

Definition 3.1 Rectangular density measure

The rectangular density measure assigns each object within the respective

neighborhood the same weight (W(t) = 1). Based on this weighting function

we define the Rectangular density measure for an area of influence given by

ε as:

ϕ-RectSε (o) =
∣∣AS

ε (o)
∣∣
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Figure 3.2: Rectangle, Triangular, and Epanechnikov kernels

The rectangular density measure specializes the generalized density mea-

sures as given in Definition 1.4. Since all objects within the area of influence

are assigned the same weight the weighted sum over all objects simply cor-

responds to the number of objects contained in the area of influence.

To remove dimensionality bias the expected density of the density mea-

sure has to be taken into account. For the rectangular density measure the ex-

pected density is simply the average number of objects in the ε-neighborhood

w.r.t. the dimensionality. This can be computed as the ratio of the volume of

the ε-sphere to the volume of the subspace. Density in subspaces is thus nor-

malized with respect to the dimensionality simply by adapting the threshold

to the expected density.

Definition 3.2 Unbiased rectangular density measure.

An object o is dense in subspace S of dimensionality |S| if its ε neighborhood

in S, AS
ε (o) = {p ∈ DB | ‖o − p‖S ≤ ε}, contains more than minPoints

objects and exceeds the expected density in this subspace by a factor F :

o dense in S :⇔ |AS
ε (o)| ≥ max{minPoints, F · expDen(S)}

with expected density in the S-dimensional subspace:

expDen(S) = |DB| · cS · ε
|S|

v|S|

and cS =
π
|S|
2

Γ( |S|2 +1)
volume of the unit sphere with:

Γ(n+1)=n·Γ(n), Γ(1)=1, Γ( 1
2)=
√
π the gamma function,

and v|S| the volume of |S|-dimensional subspace .
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Please recall that the DUSC subspace clustering model defines subspace

clusters as sets of density-connected objects. These sets are maximal, i.e.

all density-connected objects are grouped together. Dimensionality bias is

removed from density measures by taken the dimensionality of the subspace

into account. Additionally, we do not consider one-dimensional clusters in

this chapter as they are typically uninteresting for the user. These clusters

reflect merely the distribution of individual attributes which is usually known

or analyzed using standard analytic methods. As finding clusters in one

dimension is not the goal of subspace clustering one dimensional clusters and

clusters containing less than minSize objects are excluded from the result

set.

Another contribution of the DUSC subspace clustering model is to re-

move redundant clusters. Lower dimensional projections of subspace clus-

ters typically do not differ much from their higher dimensional counterparts.

Additional correlations are typically considered interesting by the user and

hence lower dimensional projections which essentially cluster the same ob-

jects are irrelevant. As the number of projections is exponential, the number

of redundant subspace clusters is overwhelming and hinders analysis of the

mining result. Consequently, the output has to be filtered for user benefit.

We shortly recall the DUSC subspace clustering model (see also Definition

2.5) using the rectangular density measure:

Definition 3.3 DUSC subspace clusters using the rectangular den-

sity measure

A set of objects C ⊆ DB in subspace S ⊆ D is a subspace cluster if:

• C is S-connected and maximal (Definition 1.6)

• |C| is dense: ∀o ∈ C : |AS
ε (o)| ≥ max{minPoints, F · expDen(S)}

• |C| has a minimum support: |C| ≥ minSize · |DB|

• ¬∃(C′,S′) a subspace cluster with: (S ⊂ S′) ∧ C ⊆ C′ ∧
(
|C|
|C′| ≥ δ

)
(not redundant)

In the next section, we discuss our depth-first algorithm for efficient

dimensionality unbiased subspace clustering (eDUSC). Existing subspace

clustering methods which follow a breadth-first apriori like methods suffer
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from two major drawbacks: repeated density computations on potential sub-

space clustering regions and low pruning power as redundancy can only be

removed after all lower dimensional projections have been processed.

Thus, in-process-removal of redundancy in depth-first algorithms is a key

to efficient subspace clustering. Proceeding depth-first allows pruning of re-

dundant subspace cluster if there is a higher dimensional subspace cluster

that contains objects of the lower dimensional projection. Efficiency is not

only hindered by lack of redundancy pruning. Furthermore, repeated den-

sity computations on potential subspace clustering regions are computational

expensive. Using a filter-and-refinement architecture which prunes regions

without computing the actual density of individual objects greatly improves

efficiency. We additionally propose an index for subspace clusters which

supports the depth-first filter architecture or our eDUSC approach.

3.4 Depth-first multistep subspace clustering

Detecting all subspace clusters in any subspace is a highly complex task.

The number of possible subspaces is exponential in the number of attributes.

Naively searching all of these subspaces is hence not feasible in most appli-

cations and pruning the search space is crucial.

Existing subspace clustering algorithms use an apriori-based approach to

prune possible subspace clusters. These algorithms in general use a breadth-

first search to identify sparse regions in low dimensional spaces. Those regions

are then used to exclude higher dimensional projections of these regions from

search. As discussed in the last chapter, to identify higher dimensional clus-

ters the density threshold has to be decreased with respect to the expected

density in higher dimensions. Thus in practical settings nearly no low dimen-

sional subspace projection can be pruned as this threshold is almost always

exceeded. Consequently, in breadth-first traversal, nearly all low dimensional

subspaces are generated as candidate sets. This effect causes an extreme de-

generation of the runtime behavior as the complete candidate sets of lower

dimensions have to be held available in order to apply the apriori property

(see also Section 2.6.2). Further on, redundancy pruning is not possible as

information about higher dimensional clusters is only available after all low

dimensional projections have been processed.

In Chapter 2.6.2 we introduced an apriori based algorithm for the DUSC
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Figure 3.3: Multistep architecture

subspace clustering model. To identify clusters according to the unbiased

DUSC density measure a filter technique based on weak dense subspace clus-

ters is applied. Since the apriori method is applied on weak dense clusters the

apriori based DUSC subspace clustering approach suffers from the same run-

time problems as all apriori based algorithms. We tackle the runtime problem

of subspace clustering algorithms by developing a new subspace clustering

strategy.

To the best of our knowledge, we propose the first algorithm for subspace

clustering that proceeds in depth-first order. A cluster mined in a low dimen-

sional space is extended to the highest possible projection before the next low

dimensional subspace cluster is analyzed. As not all clusters in all projec-

tions of the same dimensionality have to be determined simultaneously our

algorithm overcomes the huge memory need of existing subspace clustering

algorithms. Moreover, the depth-first approach makes redundancy pruning

possible since information about high dimensional clusters is available before

the next low dimensional subspace cluster is investigated. In Section 3.5 we

will discuss an index structure which allows for efficient in-process-removal

of redundant clusters.

A time consuming task in density-based subspace clustering is to identify

density-connected regions. A neighborhood query is required to determine if

an object is dense. Consequently, the complexity for clustering a subspace

region in one subspace is quadratic in the number of data objects contained in

that region [EKSX96]. The number of subspaces which has to be investigated

is typically very high and, consequently, the number of regions which have

to be investigated is huge. Thus the computational cost of density-based

clustering is problematic for large high dimensional data sets.

We reduce the computational cost by a multistep algorithm for subspace

clustering with a filter step which efficiently determines regions potentially

containing density-connected clusters. Multistep query processing is an es-

tablished efficiency enhancement method in database retrieval. Approxima-
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tion filters are used to efficiently determine candidate sets. By ensuring that

each approximative step is optimistic, no true result is dropped. This guar-

antees completeness of the result. In the last step, candidate sets are refined

to obtain the final result. Thus, the accuracy is preserved [FRM94, SK98].

This architecture of multistep algorithms is illustrated in Figure 3.3.

We propose a filter step for subspace clustering based on a novel density

conserving grid. Traditional grid based clustering methods lose accuracy

as the result is influenced by the position and resolution of the grid [Sil86].

Moreover, dense regions might be cut apart. The density conserving grid does

not lose any density-connected cluster but reduces the number of necessary

scans for density-connected regions. Hence, the good runtime performance

of grid based algorithms is preserved.

In our multistep depth-first search we combine the following three meth-

ods to an efficient Dimensionality Unbiased Subspace Clustering (eDUSC)

algorithm:

(1) a density conserving grid which ensures completeness

(2) two effective filters for pruning the search space

(3) an in-process pruning of redundant subspace clusters

Next, we give the definition of a density conserving grid before we prove

monotonicity properties for pruning the search space. We then discuss the

eDSUC algorithm which efficiently mines density-connected subspace clusters

based on the density conserving grid.

3.4.1 Density conserving grid

Existing grid-based subspace clustering methods are sensitive to position and

resolution of the grid [AGGR98, NGC99, SZ04]. Subspace clusters might be

cut apart, and thus not be detected. This is illustrated in Figure 3.4 (left):

the highlighted cluster of eight objects is cut into two cells C1,2 and C1,3. By

counting the number of objects per cell and comparing it against a minimum

threshold of e.g. 5, neither cell would qualify. Consequently, the cluster is

missed. Cell C2,2, on the other hand, contains no actual cluster, even though

it contains more than 5 objects.
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Figure 3.4: Traditional grid discretization (left), with connectivity borders

(right)

Density-connected clusters might spread across multiple grid cells. To

detect these clusters, we introduce a novel density conserving grid by devising

connectivity borders. Subspace clusters which are density-connected across

cells can be detected along the connectivity borders between cells. As the

border between cells C1,2 and C1,3 in Figure 3.4 (right) contains objects, they

should not be discarded to ensure that no potential cluster is missed. In the

algorithm, these cells are merged until completely enclosing hypercubes for

each subspace cluster are found.

Definition 3.4 Density-conserving grid.

A density conserving grid is a regular grid with connectivity borders:

• A regular grid is a partition of the attribute range v into g = d v
w
e

intervals pi of equal width w and pi = [w · (i− 1) , w · i), i = 1 . . . g.

• Connectivity-borders are intervals of ε-width at the upper border of

each cell in each dimension bi = [w · i− ε, w · i), i = 1, . . . , g

• A s-dimensional subspace cell Cα1,...,αd
is given by an index vector

α1, . . . , αd of the corresponding intervals pαj , αj ∈ {1, . . . , g, ∗}, where

(d− s) stars denotes the unconstrained dimensions of the cell.

• A border Bα1,...,αk,...,αd
in dimension k is given by the index vector

α1, . . . , αk, . . . , αd of its cell Cα1,...,αd
, where the dash denotes the border

dimension k.
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Figure 3.5: Cells, connectivity borders and hypercubes projected to dimen-

sion 1 and 2

In Figure 3.5 we illustrate our approach by an example of a two-dimensional

space where each attribute range v is from 0 to 30. A regular grid parti-

tions the data space into equiwidth intervals pi = [5 (i− 1) , 5i), i = 1 . . . 6.

Connectivity-borders are areas of ε-width at the upper border of each

cell in each dimension. The regular grid cells and the connectivity borders

together form the density conserving grid. A subspace cell is given by

a d-dimensional vector of the d interval numbers. A star (∗) denotes that

the cell is not constrained in this dimension. We mark dimensions with “ ”

to denote connectivity borders for this dimension.

For example, cell C3,4 contains two connectivity borders B3,4 and B3,4.

In the example, C3,4 is a 2-dimensional cell which is restricted in interval 3

for dimension 1 and in interval 4 for dimension 2. C6,∗ is a 1-dimensional cell

restricted in interval 6 for dimension 1 and not constrained in dimension 2.

Hypercubes consist of merged cells are given by interval ranges per dimension.

H[2,3][1,1] is a 2-dimensional example hypercube.

|H[a1,b1]...[ad,bd]| denotes the number of objects o ∈ DB contained in a

hypercube. A full space hypercube H is projected to a subspace HS with

S = {k1, . . . , ks} by removing the restriction in all other dimensions (i.e.

setting the indices of i 6∈ S of H to “∗”). For example |H[2,3][1,1]| contains
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9 objects, while its less constrained projection (S = {1}) to dimension one

H[2,3][∗] contains 35 objects (all objects contained in the 2nd and 3rd interval).

3.4.2 Monotonicity properties

For good runtime performance it is important to prune regions from search

space. Safely pruning without jeopardizing completeness requires a mono-

tonicity on cluster properties (see also Section 2.6). Monotonicity ensures

that if a region which is not a subspace cluster in a subspace S implies that

this region cannot be a subspace cluster in any higher dimensional subspace

T (S ⊆ T ⊆ D), we may safely prune this region from further consideration.

We exploit two monotonicity properties in our eDUSC algorithm. The

first monotonicity property states that a higher dimensional projection of

any hypercube contains at most the same number of objects (e.g. minSize

objects).

(A) |HS
[a1,b1]...[ad,bd]| ≤ n ⇒ |HT

[a1,b1]...[ad,bd]| ≤ n

The monotonicity for hypercubes is used by grid-based subspace cluster-

ing algorithms to prune the search space. The proof for monotonicity (A) is

given in [AGGR98]. Our eDUSC algorithm uses this monotonicity property

in conjunction with the novel density conserving grid to prune spare regions.

The second monotonicity property is used by traditional density-based

subspace clustering algorithms to remove objects which violate the density

constraint. It states that the number of objects contained in a neighbor-

hood is monotonously decreasing with increasing dimensionality (see proof

in [KKK04]).

|NS
ε (o)| ≤ minPoints ⇒ |NT

ε (o)| ≤ minPoints

Monotonicity does not hold for |NS
ε (o)| w.r.t. normalized density as the

expected density expDen decreases with growing dimensionality (see Defini-

tion 3.2). In Section 2.6 we already proofed a weaker monotonicity criterion

for the Epanechnikov density measure (weak density). The same reasoning

can be applied on the rectangular kernel as used in this chapter. Conse-

quently we achieve the following monotonicity: if an object is not weak

dense in S it is not dense in T.
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(B) |NS
ε (o)| ≤ max{minPoints, F · expDen(D)} ⇒

|NT
ε (o)| ≤ max{minPoints, F · expDen(T)}

Based on monotonicity property (A) and (B) we derive the following two

pruning criteria: (1) a hypercube HS
[a1,b1]...[ad,bd] which completely encloses

a connected region can be pruned if the region contains less than minSize

objects and (2) an object o can be pruned if it violates the weak density

condition, as o is not dense in any higher dimensional subspace.

3.4.3 The eDUSC algorithm

In this chapter we propose our multistep eDSUC algorithm which uses two

filters based on the pruning criteria described in the last chapter (see Figure

3.6). The first filter step (hypercube approximation filter) approximates each

density-connected subspace cluster by a hypercube in the density conserving

grid. Using the monotonicity criterion for hypercubes (A), a hypercube en-

closing a density-connected set can be pruned if it contains less than minSize

objects. Due to the novel density conserving grid this pruning is performed

without losing any cluster. Consequently a hypercube can be pruned without

computing the density-connected sets contained in that region.

The second filter step (weak density filter) evaluates the hypercube ac-

cording to weak density. Following Monotonicity criteria (B), a region can

be pruned if the objects contained in that region violate the weak density

condition. Thus the multistep approach of the eDUSC algorithm extends the

pruning criterion of grid-based algorithms to density-based subspace cluster-

ing (see Figure 3.6). Pruning based on these two filter steps, is lossless in the

sense that no cluster is wrongfully dropped from consideration.

As mentioned above, density-connected clusters might extend into several

grid cells. The hypercube approximation filter thus merges adjacent cells

until an enclosing hypercube for each subspace cluster is found. For efficiency

reasons we process cells in lexicographical order to ensure that each cell has

to be processed only once. We mark future merges w.r.t lexicographic order

as induced merges ; when these marked cells are actually processed, performed

merges combine the cells. Lexicographically greater cells are processed in the

future, hence we denote them as future cells, and lexicographically smaller

cells as past cells. An enclosing hypercube is found if no more induced merges

and performed merges are necessary from the current cell.
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Figure 3.6: Multistep eDSUC algorithm

If a density-connected subspace cluster stretches from one cell into an-

other, the connectivity border contains at least one object. Otherwise, as we

set the border width exactly to the neighborhood range ε, objects in one cell

cannot be in the ε-neighborhood of the other (see Definition 1.5). When a

cell is processed, the connectivity borders of the cell are checked. For each

border which contains an object a merge is induced into the corresponding

adjacent cell. If both connectivity borders contain an object a cluster might

also extend into the diagonal cell, i.e. adjacent to the intersection of both

borders, ensuring an induced merge to this diagonal cell.

When processing a cell, first merges into future cells are induced and then

merges with past cells are performed. Hence, a merge is always performed

with a past cell which induced a merge into the cell. During a merge process

the number of objects (the objectCounter) and the number of merges induced

into future cells (the induceCounter) are aggregated. We use the concept

of induced merges to indicate whether an enclosing hypercube for a density-

connected region is found: if all induced merges of a hypercube are performed

(induceCounter = 0) a MICH (maximal induced cluster hypercube) is found.

Using the method of induced and performed merges guarantees that a

MICH does not cut a cluster into two parts and that each subspace cluster

induces exactly one MICH (see Theorem 3.1). The hypercube approximation

filter is an optimistic filter and hence a MICH is a conservative approximation

which does not always contain a cluster.

Figure 3.7 illustrates the merge steps performed to identify a MICH en-

closing the example cluster. We start by processing each cell of dimension-

ality two, beginning with cell C1,1. The number of objects is determined,
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Figure 3.7: Induced and performed merges

and if the cell is not empty, its connectivity borders are tested. Cell C1,1

is empty and hence no merge is induced. Next, cell C2,1 is processed. As

both connectivity borders contain an object, cell C2,1 induces a merge into

C3,1, C2,2 and into C3,2. Next, cell C3,1 performs the merge with C2,1, cre-

ating H[2,3][1,1]. When C2,2 is processed, it is merged with C1,2 to H[1,2][2,2].

After this, the next merge induced into C2,2 is performed (second part of

Figure 3.7). This merge step creates the hypercube H[1,3][1,2]. Finally, cell

C3,2 is processed. As C3,2 was already merged with both cells, only the

induceCounter is decremented. After this step, no more merges are neces-

sary and H[1,3][1,2] corresponds to a MICH.

After a MICH is found the eDUSC algorithm checks if the hypercube

contains more than a number of minSize objects. If the region does not

contain enough objects, the hypercube and all higher dimensional projections

of that hypercube are pruned (monotonicity property (A)). Thus the regions

identified by the density conserving grid are used to reduce the number of

time consuming scans for density-connected clusters and to prune the search

spaces.

Since hypercube approximation filter is a conservative approximation the

next filter steps remove all “false alarms”, i.e., all MICHs which do not

contain a cluster. First a MICH is scanned for weak density-connected regions

(using Algorithm 4). Based on monotonicity property (B) a MICH can be

pruned from search space if the MICH does not contain a weak density-

connected subspace cluster. To obtain the final result each weak dense cluster
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Figure 3.8: Extending a MICH to next dimension

is than rescanned w.r.t. the expected density of the subspace.

Working depth-first, our eDUSC analyzes only one MICH at a time by

successively extending the MICH in all dimensions (see Section 3.4.1). Hence

the eDUSC algorithm avoids generating more than one MICH at the same

time. When a MICH is extended to a new dimension it is iteratively restricted

to each grid cell. For example a two dimensional hypercube embedded in a

four dimensional space H[1,3][1,2][∗][∗] can be extended into dimensions three

and four. We first extended it in dimension three and restrict it to cell one

(H[1,3][1,2][1,1][∗]). Afterwards the merge procedure is applied recursively. As-

sume the merge step mines the MICH H[1,3][1,2][1,2][∗]. This MICH is next

restricted in dimension four: H[1,3][1,2][1,2][1,1]. After this step the next hy-

percube (H[1,3][1,2][∗][1,1]) is analyzed and processed accordingly.

For simplicity, we demonstrate the extension step using a one-dimensional

MICH H[1,3][∗] (see Figure 3.8). After extending the hypercube H[1,3][∗] to

dimensions two and restricting it to the first grid cell H[1,3][1,1] the merge

procedure is applied again. As the corresponding connectivity border is not

empty a merge is induced and performed directly afterwards, resulting in

hypercube H[1,3][1,2]. H[1,3][1,2] again corresponds to a MICH in subspace

S = {1, 2} as its connectivity border is empty. Next the extension step is

applied again, restricting the hypercube in the next dimension if available.

We now proof completeness by showing that each cluster induces exactly

one MICH.
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Theorem 3.1 eDUSC is complete:

For each subspace cluster the enclosing MICH is mined.

We sketch the proof below:

Proof: Each cluster induces exactly one MICH:

• Start with the lexicographically first cell C1 of a cluster. As C1 is the

first cell no past cell contains objects belonging to the cluster and hence

no merge with a past cell is necessary.

• If the cluster is density-connected to a future cell Cf , the corresponding

connectivity border contains at least one object. Thus the cell induces

a merge into Cf .

• As Cf is processed in the future, the induced merge is performed. After

the merge step, the hypercube encloses cell Cf . Thus after processing

a cell Cf no merge with a past cell is necessary.

• When the induceCounter is zero, the connectivity borders are all empty.

Consequently, no more future merges are necessary. Thus, the entire

MICH for the cluster is found. �

Figure 5 outlines the eDSUC algorithm. The first lines (Line 1-14) illus-

trate the hypercube approximation filter. This first filter step recursively

calls the other filter steps of our multistep eDUSC algorithm. Recall that

each MICH is a conservative approximation of a cluster (a cluster candidate).

Using monotonicity property (A) a MICH and all higher projections can be

pruned if the MICH does not contain at least minSize objects (see Line 16).

If a MICH is a cluster candidate, it is subsequently analyzed by the

second filter step (weak density filter) of the eDUSC algorithm (see Line

17). The second filter step uses the second monotonicity property (B) to

determine if a MICH contains a weak density-connected region analogously

to [EKSX96]. If the hypercube does not contain any weak density-connected

cluster the corresponding hypercube and all its higher dimensional hypercube

projections can be pruned. This is the second step of our multistep algorithm.

Following a depth-first approach redundant clusters can be pruned (see Line

19).
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Algorithm 5: eDUSC(H,S, dfirst)

minPointsweak = max{minPoints, F · expDen(d)}1

S = ∅2

for k = dfirst . . . d do // for each dimension and3

S = S ∪ {k} for i = 1 . . . g do // each cell4

H = restrictHypercube(H, [k, i]); // restrict H5

if |S| < 2 then // no testing for one-dimensional cells6

eDUSC(H,S, k + 1) ; // continue eDUSC recursion7

else8

if |S| == 2 then9

I = TestBorders(H) ; // test all borders10

else if |S| > 2 then11

I = TestNewBorder(H, [k, i]); // test new border12

InduceMerge(H, I) ; // for future neighbors of H13

H = PerformMerges(H) ; // for past neighbors of H14

if induceCounter(H)==0 then // MICH complete15

if objectCounter(H) ≥ minSize and16

isNotRedundant(H) then // 1st filter17

C = GetObjects(H)18

if DenseCluster(C,S,minPointsweak) then19

// 2nd filter

eDUSC(H,S, k + 1); // further restriction20

if isNonRedundant(C,S) then21

minPointsexp =22

max{minPoints, F · expDen(|S|)}
// 3rd filter

DenseCluster(C,S,minPointsexp);23

else24

PruneCluster(C,S) ; // C is redundant25

else26

Prune(C,S) ; // C and higher dim. proj.27

else28

Prune(C,S) ; // C and higher dim. proj.29
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The third step of the multistep algorithm can not be used for pruning but

is necessary to remove false alarms (see Line 20). If a region contains a weak

density-connected cluster it is still necessary to check if the region contains

a cluster w.r.t. the dimensionality of the subspace (see Definition 3.2). Thus

the method ExpDensityScan scans a region w.r.t. the expected density of a

subspace. If the region finally contains a cluster the result is stored.

The hypercube approximation filter also uses an additional heuristic to

avoid merging too many cells. Before large hypercubes (containing three or

more cells) are merged we check if at least one object in the respective con-

nectivity border is dense according to the weak density criterion. If not, the

merge can be safely omitted. Further on, we use inverted lists to efficiently

calculate the density of an object or to cluster a region (as in [KKK04]).

To extract the actual subspace cluster from dense hypercubes, the original

objects of the hypercube (plus an ε range) have to be investigated. Inverted

lists can be used to quickly retrieve all of these objects.

Using the filter-and-refinement step of the eDUSC approach allows for ef-

fective filtering of too small and redundant regions without losing any density-

connected subspace cluster. The second and third filter steps are using a tra-

ditional database scan to find dense regions. To avoid these time-consuming

database scan the first filter identifies possible dense regions (MICHs) in each

subspace. Depending on the distribution and the dimensionality of the num-

ber of MICHS is typically extremely high. Hence, an efficient implementation

of the hypercube approximation filter is important to obtain a good runtime

behavior for our eDUSC approach.

3.5 Indexing subspace clusters

In this section we demonstrate that indexing is indeed beneficial for a depth-

first mining approach as eDUSC, and especially for in-process-removal of

redundant subspace clusters. To index subspace regions as mined by the hy-

percube approximation filter, we utilize the transformation from the original

space to the representation given by the density-conserving grid (see Chapter

3.4.1). In the next section, we shortly describe the transformation of points

to cells and the basic idea underlying our index structure. This is followed by

a detailed description of the index itself. We then describe how the SC-tree

supports the individual steps of our eDUSC algorithm. Hence the SC-tree
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Figure 3.9: Example data set: transforming objects to cell representations

also supports an efficient way to implement the filter steps of the eDUSC

algorithm.

3.5.1 Transformation

To efficiently mine maximal induced cluster hypercubes (MICHs) in a novel

indexing structure, we utilize the compact representation of regions by cells.

The density conserving grid as proposed in Chapter 3.4.1, allows for trans-

formation of the data objects to cell memberships. Working on these cell

memberships, we propose a novel index structure for depth-first subspace

clustering in the next section.

Recall that density conserving grids contain additional connectivity bor-

ders to detect any subspace cluster. Subspace clusters which are density-

connected across individual grid cells are detected along the connectivity

borders between cells.

We use a three dimensional data set as a running example in this section.

Figure 3.9 illustrates the three dimensional representation in the right part

and a two dimensional projection of the data set to the subspace S = {2, 3}
in the left part. The attribute range is partitioned into two equiwidth in-
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tervals pi = [50(i − 1), 50i], i = 1, 2. Each subspace cell is identified by a

two-dimensional vector of the interval numbers. In the illustration, interval

numbers are illustrates using a blue color. We use the same notation for cells

and hypercubes as in the last chapter (see Definition 3.4).

To detect clusters across grid cells, connectivity borders provide addi-

tional information. Connectivity-borders are areas of ε-width at the upper

border of each cell in each dimension. If density-connected subspace clusters

stretch across the connectivity border, at least one object has to be contained

inside the border area. Otherwise, as the neighborhood range ε is exactly

the same as the border width, objects in either cell cannot be in the neigh-

borhood of each other (see Definition 3.3). Recall that we mark dimensions

with “ ” to denote connectivity borders for this dimension.

Based on the regular grid cells and the connectivity borders we define the

following transformation: any object o contained in a grid cell (or border)

Cα1,...,αd
is transformed from the original object representation to a set of

corresponding indexes per dimension.

Reconsidering Figure 3.9, we see that object o2 and o3 (illustrated by a

red color) are both positioned in cell C1,1,1 with connectivity border B1,1,1.

Hence, o2, o3 can be compactly represented as: {(1, 1), (2, 1), (3, 1)}, that is

grid cell interval one in dimension 1, interval two in dimension two and in-

terval one in dimension three. Since object o2 and o3 are contained in one

border, they are additionally represented as {(1, 1), (2, 1), (3, 1)}. Note that

objects in the same cell are transformed to the same representation: o2, o3 are

both transformed to {(1,1),(2,1),(3,1)}. Another example is given for object

o1 (colored green) which is positioned in cell C1,2,2 and border B1,2,2. Conse-

quently o1 is transformed to the cell representation {(1, 1), (2, 2), (3, 2)} and

the border representation {(1, 1), (2, 2), (3, 2)}. In this example the objects

(o1, o2, o3) are the only objects positioned in a connectivity border. Thus all

other objects are only transformed to one cell representation.

Definition 3.5 Transformation.

A transformation according to the density conserving grid (seen Definition

3.4) of a continuous object o = (o1, . . . , od) contained in cell Cα1,...,αd
is

defined as a mapping of o to a set of descriptors

o 7→ {descriptor1, . . . , descriptord} with descriptori = (i, αi),
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where αi denotes the interval in dimension i. Similarly, for each border j

that o is contained in (Bα1,...,αij
,...,αd

), o is mapped to a set of descriptors

o 7→ {descriptor1, . . . , descriptord} with descriptori = (i, αi), i 6= ij

descriptorij = (ij, αij)

Decomposition into interval indexes per dimension is a useful transfor-

mation for subspace clustering, where different combinations of dimensions

have to be mined. That is, each object is transformed to exactly one cell

descriptor, and to zero or at most d border descriptors, depending on the

number of borders it is contained in. This transformation from feature space

to grid cell memberships allows for compact indexing of subspace cluster-

ing information. Subspace clustering on the original database is reduced to

mining of membership counts in discrete cell intervals. We therefore propose

building a compact index on cells and borders and their respective object

counts.

3.5.2 SC-tree structure

Using a compact index structure we avoid repeated database scans. In a

single scan on the database, we retrieve all information necessary to compute

density information about grid cells and borders. This information is stored

in the tree to allow efficient mining without additional database scans. As

described in the last section each database object is transformed into a set of

descriptors {descriptor1, . . . , descriptord} and possibly more sets containing

information for each border an object is positioned in. Each descriptor set

representing a cell or border is next inserted into the SC-tree.

The nodes of a SC-tree are labeled with a tuple (descriptor, count). To

insert a descriptor set into the SC-tree, the descriptor set is ordered in a

lexicographical way. The descriptors (dimension, interval) are first ordered

according to their dimensions and then according to their interval number.

Beginning with the lexicographical first descriptor the SC-tree creates a path

for each descriptor set beginning from the root. If a corresponding node for

a descriptor already exists the SC-tree increments the count information for

this node (a newly created node always has a count 1). Hence, the first

inserted dimension is distinguished at the root and the last one at the leaf
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level. For each descriptor set which contains a border the count information

is not increased (new created nodes get a count of 0).

After all objects have been added to the SC-tree the initial SC-tree is com-

pleted. One path in the initial SC-tree describes a region of the discretized

data space. The count value in a node specifies the number of objects in the

region described by the path from the root to this node. Since all descriptors

have the same length (the dimensionality of the data space), all paths from

the root node to a leaf have the same length. As each object increases the

count of one node of each level by one, the sum of all counts of one level

corresponds to the size of the database (please note again, that border de-

scriptors do not increment any count information). Hence, the initial SC-tree

contains all information about the discretized regions but also about the bor-

ders, allowing a very compact representation of the total information needed

by the hypercube approximation filter of our eDUSC approach.

Figure 3.10 shows the initial SC-tree for our three dimensional example

database. For a better visualization the dimension part of a descriptor is

shown on each level and not in the nodes. As all objects have been trans-

formed to sets with one descriptor per dimension, every path from the root

to a leaf has length three. The border descriptors are represented by a dark

shaded node.

For example the green colored object is transformed to the descriptor

sets {(1, 1), (2, 2), (3, 2)}. The green marked path of the SC-tree depicted in

Figure 3.10 represents this descriptor set. The count information annotated

at the leaf node specifies that only one object is contained in cell C1,2,2.

Similar the two red colored objects (descriptor set {(1, 1), (2, 1), (3, 1)}) are

represented by the red path. As one additional object is contained in cell

(C1,1,1) the count information 3 is annotated at the leaf node. In this example

we colored inner nodes using the color of all objects represented by the node

(e.g. node 1 in dimension 1 is colored red and green). As mentioned before

border descriptors are illustrated by dark gray elliptical-shaped nodes, e.g.

the two red objects positioned in border 1 of dimension 1 are represented by

the by the red-gray shaded nodes. The green object contained in border 1 of

dimension 3 creates one single path (represented by the green-gray shaded

nodes). This path has no count information, because it is only an indicator

that there is an object in the respective border region. Summing up the

counts on one level we see that the example database consists of 8 objects.
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Figure 3.10: Creating the initial SC-tree for the example data set

3.5.3 Mining subspace clusters using the SC-tree

In this section we present how the SC-tree can be used for an efficient imple-

mentation of the eDUSC approach. Especially the hypercube approximation

filter benefits from using the SC-tree. Further more, the SC-tree makes in-

process pruning of regions during the mining procedure possible.

Algorithm 6 illustrates the integration of the SC-tree into the eDSUC

approach. The algorithm shortly sketches the main steps of the filter-and-

refinement architecture of eDUSC based on the SC-tree (see also Algorithm

5). Please note that as from this point of the chapter eDUSC is meant as

the integration of the SC-tree into the eDUSC algorithm.
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Following the eDUSC approach the initial SC-tree representing the entire

database is recursively restricted using each descriptor (each interval in each

dimension) (Line 2). This step corresponds to the restrictHypercube step

of the eDUSC algorithm presented in Chapter 3.4. The restricted SC-tree

only contains descriptor sets which contain the respective descriptor.

Next merges are detected and induced into future cells by restricting the

SC-tree to the corresponding border (Line 3). If the border descriptor exists

the connectivity border contains at least one object (see TestBorders of

eDUSC) and hence a merge is induced into the respective cell. In this case

the restricted SC-tree is stored for further use (Line 4). To ensure that no

clusters are cut apart by the used grid representation merges are performed

if necessary (Line 5). Next the monotonicity properties presented in Chapter

3.4.2 are used for pruning regions (Line 6). If a restricted region cannot be

pruned, the region is restricted in a further dimension through the recursive

calls (Line 7) of the eDUSC procedure. To ensure non-redundant clustering

in-process-removal of redundant clusters is performed in Line 8. Having

mined all higher dimensional subspaces by returning from the recursive call,

the redundancy properties are checked for the current SC-tree. This step

improves efficiency as pruning redundant SC-trees is possible without costly

access to the database and redundant clusters can be pruned during the

mining process. Only if a region cannot be pruned the density based filter

discussed in the last section computes the final result.

After having given this brief description of the SC-tree we next describe

the important parts of the mining method in detail. Therefore, for each

step an abstract description will be given followed by an example application

of the step on a running example. As parameters for the example we use

minSize = 3; δ = 50%.

Restricting the SC-tree

Starting from the initial SC-tree representing the entire database with no

restricted dimensions, the given SC-tree is restricted in further dimensions

through recursive calls. Each call restricts the current SC-tree for each de-

scriptor. The restrictions are done in lexicographical order of the descriptors

(dimi, intk) starting from the leaf nodes of the tree.

Restricting a SC-tree to a descriptor (dimi, intk) means that all paths

which do not contain the respective descriptor are removed from the SC-
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Algorithm 6: eDSUC(SC tree, result)

foreach descriptor in SC tree do1

// restrict given SC-Tree in a further dimension

SC tree restrict := restrict(SC tree, descriptor);2

// restrict given SC-Tree to corresponding border

SC tree border := restrict(SC tree, borderOf(descriptor));3

// induce merges into future cells

induce(SC tree border, SC tree restrict);4

// merge restricted tree with neighboring trees

merge(SC tree restrict);5

// pruning based on monotonicities

pruneRecursion(SC tree restrict);6

// recursive call of DUSC

eDUSC(SC tree restrict, result);7

// prune redundant clusters

pruneClustering(SC tree restrict);8

// get objects from tree

C = getObjects(SC tree restrict);9

// get subspace from tree

S = getSubspace(SC tree restrict);10

// density-based filtering

result := DensityBased Filter(C,S) ∪ result;11

tree. Hence, after the restriction only those objects that are positioned in

interval k of dimension i are represented by the restricted tree. Finally,

the subpaths which only represent the descriptor are removed from the SC-

tree. The restriction thereby can be interpreted as a projection of the data

to the descriptor (dimi, intk). As during recursion, one restricted SC-tree

is restricted in more and more dimensions, these restrictions are stored for

each SC-tree as {descriptor1× . . .×descriptorn} with n ≤ d. For a multiply

restricted SC-tree this means that it can be obtained starting from the initial

SC-tree and performing restrictions for the n descriptors it is restricted to.

Please note, that paths representing a border remain if they contain the

descriptor. This method can also be applied in the same way for border

descriptors. For efficiency considerations, all nodes labeled with the same
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Figure 3.11: Restricting the SC-tree

descriptor are part of a linked list. This step is similar in spirit to conditional

FP-growth steps in association rule mining that builds conditional subtrees

for frequency counts [HPY00].

Example: Figure 3.11 illustrates the restriction step for the descriptor (3, 1)

and the border descriptor (3, 1). For each node labeled with this descriptor

the paths to the root node are copied to the restricted SC-tree {(3, 1)} but

labeled with the count information of the restricted node. In our example

the only node corresponding to the descriptor (3, 1) is the first node from

the left annotated with 3 (see Figure 3.10). The corresponding 3 objects

that are contained in interval 1 of dimension 3 are yellow highlighted in the

corresponding graphical representation (upper part of Figure 3.11). The new

SC-tree therefore only contains one path labeled with count 3. Intuitively,

this restricted tree represents the three objects in the (3, 1) region and could
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also be achieved by inserting the descriptor-transformation of these three

objects {(1, 1), (2, 1)} into an empty SC-tree. As discussed above the same

method can be used to restrict a SC-tree to a border. Since the count in-

formation is not stored for border descriptors the resulting SC-tree does not

contain any count information (see also Figure 3.11). The objects contained

in the border are black encircled in the graphical representation.

Inducing merges

Following the eDUSC approach a merge is induced into a future cell if the

corresponding connectivity border contains at least one object. The SC-tree

includes special nodes to represent the connectivity borders. Hence, testing

if a border contains an object can be implemented by restricting the SC-tree

to the respective border descriptor. If the tree is not empty the connectivity

border contains an object. In this case a merge is induced as described in

the last section.

Example: Using our running example again, the SC-tree is first restricted

in a second dimension since one-dimensional cells do not induce merges (see

Algorithm 5). The obtained SC-tree which is restricted to the descriptors

{(3, 1), (2, 1)} is presented in Part A of Figure 3.12. In the upper part of

Figure 3.12 the area corresponding to the SC-tree is marked red and the

contained objects are colored yellow.

To detect necessary merges the two borders {(3, 1), (2, 1)}, {(3, 1), (2, 1)}
have to be checked. The SC-tree for {(3, 1), (2, 1)} can be computed from

the SC-tree {(3, 1)}. As the obtained SC-tree is empty no merge is induced

into the corresponding neighboring cell (Part B of Figure 3.12). The second

border is checked by restricting the SC-tree {(3, 1)} to the cell descriptor

{(2, 1)} (Part C of Figure 3.12). Since the SC-tree {(3, 1), (2, 1)} exists a

merge is induced into the upper cell. The two objects contained in the

connectivity border are black encircled in the graphical representation (upper

part of Figure 3.12). To perform merges the corresponding SC-tree is needed

and hence we store the SC-tree {(3, 1), (2, 1)} for further use.

Performing Merges

Merging two regions can be implemented by merging the SC-trees represent-

ing the regions. Merging means that each path of one tree is added to the

other tree. New nodes are created if parts of a path do not exist and the
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Figure 3.12: Inducing merges using the SC-tree

annotation of existing nodes is aggregated. The resulting SC-tree describes

all objects contained in the combined region and additionally contains the

information about the dimensions which are not restricted so far. Hence,

mining higher dimensional subspace cluster based on the merged SC-tree is

possible.
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Figure 3.13: Processing the next cell using the SC-tree

Example: As mentioned above a merge is performed if the corresponding

region is processed. In Figure 3.13 the restriction of the initial SC-tree to

the region {(3, 2), (2, 1)} is illustrated. After the two restriction steps the

SC-tree still contains two nodes describing the two cells in dimension one.

Next the merge with cell {(3, 1), (2, 1)} is performed which is illustrated in

Figure 3.14. In this example the second SC-tree already contains the nodes

of the merged region. Hence, the merged tree corresponds to the second tree

added the count information of the first tree. As depicted in the upper part

of Figure 3.14, the resulting SC-tree describes the objects contained in the

merged red marked region.

Pruning recursive calls

Two monotonicity properties have been introduced in the last section to

prune a region from further consideration. Pruning property (A) can di-

rectly be implemented using the SC-tree. If a MICH is found by a SC-tree



3.5 Indexing subspace clusters 95

1+2

dim 1 1:5

SC-tree { (3,1-2), (2,1) }

2:1

1

2

1

2

D
im

en
si

on
 3

  

Dim
en

sio
n 2

  

1

2

1

2

D
im

en
si

on
 3

  

Dim
en

sio
n 2

  

Dimension 1  

1 2

dim 1 1:2

SC-tree { (3,2), (2,1) }

2:1

2

dim 1 1:3

SC-tree { (3,1),(2,1) }

1

Figure 3.14: Merging cells using the SC-tree

(no more merges have been induced) the SC-tree completely encloses a pos-

sible density-connected region. According to monotonicity property (A) this

region can be pruned and hence the recursion of eDUSC is stopped if the

SC-tree contains less than minSize objects.

Example: Pruning according to the minSize parameter is illustrated in

Figure 3.15. The merged SC-tree contains 6 objects and hence can not be

pruned. Following the depth-first approach the SC-tree is next restricted to

interval 1 in dimension 1. The corresponding node (colored light blue) con-

tains 5 objects and can not be pruned, either. Since no object is contained in

the respective connectivity border the SC-tree is next restricted to descriptor

(1, 2). The SC-tree representing the cell {(3, 1-2), (2, 1), (1, 2)} only contains

1 object (green node in the SC-tree 1+2 depicted in Figure 3.15). The count

information of 1 means that only one object is contained in the corresponding

cell (green area in the upper part of Figure 3.15). Consequently the region

can be pruned and the time consuming database scan of this region is not

necessary.
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In-process redundancy pruning

If a region can not be pruned the last step in identifying a cluster is to find

density-based clusters. This step requires a database scan to identify the area

of influence for the objects contained in the restricted region (see Definition

3.3).

As mentioned in previous sections high-dimensional clusters typically

show up in lower-dimensional projections as well. These projections form

redundant subspace clusters which contain essentially the same informa-

tion. Before performing a density-based clustering the degree of redundancy

for a region is checked by eDUSC without accessing the original database.

This step greatly improves efficiency as time consuming clustering redun-

dant regions is avoided. To check if a region is redundant the method
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pruneClustering determines if a higher-dimensional cluster exists which con-

tains objects of the current region. While stepping back in recursion, only

SC-trees containing potentially non-redundant clusters (with respect to the

redundancy parameter δ) are mined with DenseCluster.

Example: By restricting the merged SC-tree {(3, 1-2), (2, 1)} to the first cell

in dimension 1 to {(3, 1-2), (2, 1), (1, 1)} (illustrated by the light blue node

in Figure 3.15) we obtain an SC-tree which contains 5 objects (more than

minSize). As the highest dimensionality is reached the region can not be

redundant and hence is clustered. In this example a dense cluster containing

all 5 objects is found (see also Figure 3.15).

Stepping back in the recursion, we already found one higher-dimensional

cluster. Redundancy pruning can be performed by checking the SC-tree

{(3, 1-2), (2, 1)}. This SC-tree contains 6 objects, the 5 objects belonging to

the 3-dimensional cluster and one additional object (the dark green object

contained in the red region of Figure 3.15). Using a redundancy parameter

of δ = 0.75 this cluster must at least have 5
0.5

= 10 objects to be non-

redundant. Thus, DenseCluster is not performed on the current region,

because these objects are totally redundant to the cluster found in the 3-

dimensional subspace.

Density-based scan are also not necessary for the other two regions as

the SC-tree for {(3, 1), (2, 2)} is empty and the SC-tree for {(3, 2), (2, 2)}
only contains two objects (which is less than minSize). Similarly, the other

regions can be pruned. Hence, eDUSC only needs one database scan on a

region containing 5 objects to cluster the example data set in all subspaces.

In-time-availability of SC-trees

In the last section we have discussed efficiency in terms of pruning the search

space and reducing the number of necessary database scans. Since we use the

SC-tree as an index structure to ensure faster mining, it is important that

SC-trees are are available if a restriction or merge step is necessary. Hence, in

this section we discuss frequently used operations like restrictions and merges

in more detail. We show that the process order of eDUSC approach ensures

that each SC-tree needed for the next step is already available. This can be

guaranteed as they have been created in an earlier step.

Recall the merge step explained in the example in Section 3.5.3. Starting

from a restricted SC-tree {(3, 1)}, one border which was checked is obtained
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Figure 3.16: SC-tree availability during mining

by restricting the tree to the border {(2, 1)}. The restricting is possibler by

using the SC-tree created in the first step. As a merge was induced, the

SC-tree is stored and merged with the SC-tree {(3, 2), (2, 1)}. The merged

SC-tree {(3, 1 − 2), (2, 1)} was then used for further restrictions. Figure

3.16 represents these steps by displaying the names of the used SC-trees.

Obviously all restrictions are performed in a hierarchical way on the given

initial SC-tree. Also, the detection of necessary merges is performed on these

trees. Only the resulting merged SC-tree is then needed for the recursive call

of eDUSC and which is then restricted in further dimensions.

As the index structure has been tuned with respect to the subspace min-

ing process, the information needed for the current and following steps is

available. Moreover, there is no irrelevant information for other subspaces

thatnare not mined in the current recursion path. This is automatically re-

alized by the restriction phase where only the information concerning the

current descriptor is transferred into the restricted SC-tree. This reflects the

general idea of the restricted index storing only the necessary information.

The initial SC-tree realizes this as well, so during mining, not only costly
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database scans, but also unnecessarily large trees are avoided.

Correctness of in-process removal

eDUSC removes redundant clusters in-process which implies that all clusters

necessary to identify a redundant cluster have been mined before. We proof

the correctness of this step by showing that first, all non-redundant clusters

are in the resulting list and second, that there are only non-redundant clusters

in the list. Bear in mind that a cluster is non-redundant if the objects have

not been found in a higher dimensional cluster with respect to the redundancy

parameter δ in Definition 3.3. Thus the first aspect is clear as an SC-tree is

only pruned if the region can only contain redundant clusters with respect to

the clusters already contained in the result list. Next we have to prove the

following theorem:

Theorem 3.2 The result set of eDUSC only contains non-redundant clus-

ters.

Proofing this theorem we mainly based on the fact that eDUSC mines in

a depth-first manner and hence higher dimensional clusters are mined first.

Proof : Assume eDUSC has a redundant cluster (Cl, Sl) in its output. As

it is redundant a higher dimensional cluster (Ch, Sh) exists with:

Ch ⊆ Cl ∧ Sl ⊂ Sh ∧ |Ch| ≥ δ · |Cl|.

We show that this assumption cannot be true in two cases:

1 (Ch is mined before Cl)

Before inserting Cl in the result list, the redundancy pruning (Line 8 of

the eDUSC algorithm) has to be performed. As the inequation above

is true, no DenseCluster is performed and thus Cl cannot have been

inserted into the result list.

2 (Ch is mined after Cl)

As Ch is a higher dimensional cluster of Cl, the subspace Sl consists of

all dimensions that are considered relevant for cluster Cl: Sl ⊃ Sh. Due

to the processing order of depth-first search, eDUSC had to further

restrict the subspace Sl to Sh before processing Sl with DenseCluster.

Thus case 2 cannot occur.
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As we showed, eDSUC mines all non-redundant subspace clusters with

respect to Definition 3.3. Furthermore, we show in Section 3.6 that the

removal of redundancy yields not just better runtimes but also better quality.

Using sort heuristics for efficient SC-tree construction

To further improve the efficiency of the eDUSC approach we developed dif-

ferent heuristic to construct the SC-tree. The order of the descriptors is

decisive for the creation of the initial SC-tree and the subsequent mining

procedure. For the eDUSC algorithm described in Section 3.5.3 the given

order of dimensions and intervals was used. This is the intuitive way of

sorting the descriptors as the first restriction is done on the leaf level using

the first dimension and so on (see example in Section 3.5.3). Aiming a more

efficient processing, this order can be changed by the heuristic discussed next.

Based on a heuristic used in the FP-tree [HPY00] from association rule

mining the size of a tree structure can be reduced by re-sorting the inserted

itemsets. In association rule mining FP-trees are only used for frequent item-

set mining, so FP-trees do not need to be merged to gain completeness and

the most expensive operation is the projection of the data to gain projected

FP-trees. For this kind of algorithm the size of the tree structure is the limit-

ing factor for efficient processing. Thus the sorting heuristic for the FP-tree

aims at reducing the tree size by sorting the items by their frequency. By

inserting the items first that occur very frequent these items create paths

that are most probably also used for other itemsets. This possible re-usage

of existing paths should lead to fewer nodes and thus to a more compact tree

representation of the data.

Adapting such a heuristic to the subspace clustering problem is not ap-

propriate. One main efficiency gain is achieved by the composite order on

the descriptors (dimension, interval) first ordered by the dimension and then

by the interval number. The mining process is directed by this composite

order, so for the SC-tree this order cannot be discarded. The main point for

the ordering as discussed previously is that each level of the SC-tree repre-

sents one dimension so that in one restriction step all irrelevant intervals of

the current dimension can be removed. Also, the border entries in the given

SC-tree can indicate merges with the successive interval on the same level.

It is clear that, the SC-tree needs a composite ordering of the descriptors

(dimension, interval) but there is no constrain given for the ordering of the
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two parts inside the composite order. As the ordering of the intervals is

naturally given by the starting point of the interval and a different order

could cause complications for region growing in the merge step, we focus our

sorting heuristic on re-sorting the dimensions. Using the same aim to reduce

the size of the tree, we sort dimensions with respect to their scattering. A

dimension in which the data is distributed over a wide range should not be

inserted first in the tree. Instead, a dimension in which the data is clustered

in one region can lead to many common paths in the tree when inserted first.

A second and more interesting aim for mining is the reduction of runtime,

which in our case is limited to the DenseCluster with database access and to

the merge operations that have to be performed on SC-trees. DenseCluster

is already pruned due to in-process-removal of redundancy. Merges cannot

be pruned as they are necessary to ensure the completeness of the eDSUC

approach. Yet many merges can be avoided with a different processing order.

Mining scattered dimensions with noisy data at first forces many merges on

big SC-trees as no other dimensions have been restricted yet. These merges

probably do not lead to subspace clusters at all. By mining the scattered

dimensions last, eDSUC needs to perform merges only on very small SC-

trees and this can be beneficial for the overall runtime.

For the SC-tree, aiming to avoid merges in the first steps of mining process

contradicts to the previous order with the scattering dimensions on the leaf

level. The dimensions that contain clustered data have to be inserted last,

because restriction starts with the leaves. Starting at the leaf-level, eDSUC

has the possibility to keep all other dimensions for further restrictions and

thus mine the highest dimensional clusters first.

Entropy is an information theoretic indicator for the homogeneity of the

data and can be used to measure the distribution in each dimension. Given

the discretized data space for each dimension and thus also the percentage

fi of objects in each interval i = 1 . . . g (intervals positioned as described in

Definition 3.4) entropy is calculated by:

E(f1, . . . , fg) = −
g∑
i=1

fi · log(fi)

Using entropy for each dimension, both aims discussed above can be

achieved. Inserting dimensions with low entropy values first (ascending order)

realizes the first sorting heuristic for small trees, while inserting dimensions
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with high entropy values (descending order) realizes the second heuristic for

fast subspace mining. Both ascending and descending order will be analyzed

in experiments in the following section.

3.6 Experiments

In thorough experiments we demonstrate the performance of the eDUSC

algorithm based on the SC-tree in terms of efficiency as well as in terms

of successful removal of redundant subspace clusters. eDUSC as the first

depth-first approach is compared to the apriori based breadth-first algorithm

SUBCLU [KKK04]. SUBCLU is the most recent approach to detect density-

based subspace clustering without approximation. To enhance neighborhood

queries and density computations SUBCLU uses inverted files on individual

dimensions. As discussed in the original paper, other indexing techniques are

not beneficial for breadth-first subspace clustering. To the best of our knowl-

edge, there is no other indexing approach for subspace clustering. Thus, we

additionally evaluate the overall runtime performance in comparison with an

approximative grid-based approach, SCHISM [SZ04]. SCHISM works in a

bottom-up manner and is tuned for efficiency at the cost of accuracy. Since

SCHISM loses clusters in grid discretization and pruning of potentially irrel-

evant grid cells, it is only included in the general performance experiments

as a baseline comparison. Its subspace clustering result set, however, is not

comparable. Experiments were run on Pentium 4 machines with 2.4 Ghz and

1 GB main memory.

3.6.1 Synthetic data set

Based on properties of real world data sets we generate synthetic data for

scalability experiments. We extend a method proposed in SUBCLU [KKK04]

to generate density-based clusters in arbitrary subspaces. Given the subspace

and the number of objects for each cluster, dense regions separated by noisy

regions are created. Objects can belong to multiple subspace clusters, just as

in most real world data sets. We generate data of different dimensionalities

and hide subspace clusters with a maximal dimensionality of 80% of the data

dimensionality. Four subspace clusters are hidden in the synthetic data with

two of them overlapping in 10% of their objects. The subspace clusters were
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Figure 3.17: Scalability vs. dimensions

generated in a normalized data space with an attribute range of 0 to 100 in

each dimension.

Scalability w.r.t. dimensionality

Scalability in terms of dimensionality is important, as subspace clustering

aims at clustering in high dimensional data where “full-space” clustering is

typically infeasible. As the number of possible subspace clusters depends

exponentially on the dimensionality of the subspace, clustering high dimen-

sional data sets is challenging for many subspace clustering algorithms.

As depicted in Figure 3.17, SUBCLU does not scale w.r.t. dimensionality.

For the 20-dimensional data set the algorithm did not even finish after six

days. The reason is the tremendous amount of 1 and 2-dimensional subspaces

that have to be clustered before processing any higher dimensional subspace.

SCHISM as a grid-based approach has better runtimes as SUBCLU but

also suffers from apriori-based candidate generation overhead. Surprisingly

at first glance, eDUSC scales better than the approximative grid based al-

gorithm SCHISM in terms of dimensionality. This is due to the fact that

SCHISM relies on a fixed pruning threshold u for lower dimensional sub-

spaces. In high dimensional subspaces, as the fixed threshold loses its power,

runtime of SCHISM goes up.

The eDUSC algorithm with its depth-first approach overcomes this prob-
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Figure 3.18: Scalability vs. database size

lem. eDUSC uses an efficient depth-first strategy and therefore scales remark-

ably well. Further on, in contrast to SCHISM eDUSC is lossless because of

its novel density conserving grid.

Scalability w.r.t. database size

In the next experiment we generate 15-dimensional data sets with different

numbers of objects. As we can see in Figure 3.18, eDUSC and SCHISM

scale well w.r.t. the number of objects. However eDUSC again outperforms

SCHISM due to the new depth-first approach without candidate generation.

SUBCLU also does not scale with increasing number of objects because of

the time consuming database scans needed for density-based clustering. In

contrast eDUSC uses the density conserving grid to avoid these scans and

thus is nearly not influenced by the database size.

Selectivity

To illustrate the efficiency of the hypercube approximation filter we analyze

its selectivity compared to the number of database scans in SUBCLU. Recall

that density-based clustering has quadratic complexity w.r.t. the number of

objects. Thus avoiding database scans contributes significantly to the per-

formance gains of eDUSC. Figure 3.19 shows the number of required density-

based clustering computations for the data from our first experiment with
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varying dimensionality. The highest dimensionality shown is 15-dimensional

because SUBCLU does not scale to higher dimensional data. We see that

indeed the main drawback of SUBCLU is the large number of regions that

have to be clustered. Multistep filtering in eDUSC substantially lowers the

number of density-based clustering computations. Many regions that have to

be processed by SUBCLU are pruned by eDSUC. Pruning is possible based

on the information of the grid and border cells without any database scans.

Parameters

Detecting clusters in arbitrary subspaces may require tedious parameter

tuning in some algorithms. We evaluate parameter setting for SUBCLU,

SCHISM and eDUSC to study their parameter sensitivity and demonstrate

that the eDUSC algorithm is quite robust in terms of parameter settings.

Fixed density thresholds. As already mentioned SUBCLU is dimen-

sionality biased due to a fixed density threshold MinPoints. For different

dimensional subspaces the measured density is not comparable. To find high

dimensional subspace clusters one has to use a lower value for MinPoints

in SUBCLU. In eDUSC this parameter is robust because of the normal-

ized density approach as defined in Section 3.3. Figure 3.20 illustrates that

with decreasing MinPoints the runtime of SUBCLU increases. Finding

high dimensional subspace clusters is virtually infeasible because already for
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MinPoints = 8 SUBCLU did not scale in the previous experiments.

Variable density thresholds

As eDUSC uses a variable threshold its density measure is comparable for

clusters in different subspaces. In Figure 3.20 we see that the choice of

MinPoints has almost no effect on the runtime of the eDUSC algorithm. As

we can see in Figure 3.21 the second parameter F has almost constant run-

times, too. Using a normalized density measure which automatically adapts

to the dimensionality of the subspace, the variable density threshold is simply

set with the fixed parameter F . F reflects the factor by which the variable

expected density should be exceeded. Thus eDUSC is easily parameterized

by a constant and thus robust factor, yet adapts to the dimensionality of the

subspace.

Gridsize

Grid-based algorithms like SCHISM suffer from sensitivity to the grid reso-

lution. In Figure 3.22, runtime of SCHISM and eDUSC for varying gridsizes

are shown. The performance of SCHISM depends largely on the grid struc-

ture not only in terms of runtime as shown in Figure 3.22, but also in terms

of accuracy as density assessment is for individual grid cells (see Chapter
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2.7). eDUSC is robust to positioning and resolution of the grid through its

grid cells merges.

Weighting functions

eDUSC uses a weighted density measure for density assessment in the neigh-

borhood of an object (see Section 3.3). We show that its runtime is in-

sensitive to the choice of kernels for weighting. Figure 3.23 illustrates the

runtimes for SUBCLU, SCHISM and eDUSC with the Rectangle (REC)
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Figure 3.23: Three kernels vs. SUBCLU and SCHISM

W (x) = 1, Epanechnikov (EPA) W (x) = 1− x2 and Bisquare kernels (BIS)

W (x) = (1− x2)2, respectively.

Sorting heuristics

We next evaluate the effect of different heuristics for constructing the SC-

tree. As mentioned, the SC-tree construction mainly depends on the order

of the dimensions. Two possible heuristics have been proposed in the last

section: creating compact trees using an ascending order of the dimensions

w.r.t. their entropy or avoiding early merges by sorting the dimensions in

descending order w.r.t. their entropy. We first evaluate the effect of the

different sorting heuristics on the runtime (see Figure 3.24). Clearly, avoiding

early merges improves the overall runtime of eDSUC. Sorting in descending

order almost halves the runtime.

On the other hand, by sorting in ascending order the size of the initial

SC-tree is reduced as presented in Figure 3.25. This shows that even with a

smaller initial SC-tree the mining algorithm cannot reach the good runtimes

of the descending order heuristic. For efficient mining it is thus essential to

have as few merges as possible in the first restrictions. This is achieved by

the descending order heuristic.
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Figure 3.24: Runtimes for sorting heuristic

Redundancy removal

We now demonstrate the effects of in-process-removal of redundancy. Figure

3.26 illustrates the effect of varying the degree of redundancy δ for subspace

clusters (see our subspace cluster Definition 3.3) for different database sizes.

The higher δ, the more redundant subspace clusters are included in the result

set. As we can see, performance depends largely on the degree of redundancy.

No redundancy, i.e. δ = 0% shows runtimes far lower than all other variants.

Even as little as δ = 20% redundancy in the result set leads to four times

slower runtimes (depending on the database size). Including all redundant

subspace clusters, i.e. δ = 100% shows exponential runtime behavior that

is only slightly better than SUBCLU. Thus, redundancy removal is clearly

important for runtime performance. As shown in the next experiment, re-

dundancy removal is also highly beneficial for quality of the result.

The F1-value is an improved measure in evaluating the quality of a clus-

tering if the hidden clusters are known (see also Chapter 2.7). For each

hidden cluster precision and recall are evaluated. Clusters hidden in high di-

mensional real world data sets typically spread over several subspaces. Thus,

for each hidden cluster Hi (i = 1...h), the found clusters Fi are determined by

joining all subspace clusters Ck detected that mainly represent Hi. Precision

measures the accuracy of detection of a hidden cluster, while recall measures

the coverage of the detection. The F1-value for one hidden cluster is then

defined by the harmonic mean of precision and recall. Finally the F1 value
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Figure 3.25: Tree size for sorting heuristic

for the complete clustering is determined by averaging all F1-values for all

hidden clusters [MSE06].

Fi := {o | ∃k : o ∈ Ck ∧ i = argmaxj |Ck ∩Hj|}

Precision :=
Fi ∩Hi

Fi

Recall :=
Fi ∩Hi

Hi

F1 :=
2 · Precision ·Recall
Precision+Recall

Figure 3.27 illustrates F1 quality measurements and the size of the out-

put for the same experiment as before. As we can see from the dark gray

bars, the number of subspace clusters increases exponentially (note that the

scale to the right is logarithmic). Thus, users would be overwhelmed by the

output size of traditional algorithms. The light gray bars indicate the F1

quality measurements. Clearly, removing redundancy leads to far better F1

values. Redundant subspace clusters thus obscure the information in max-

imal dimensionality subspace clusters. Thus, removing redundancy yields

better efficiency and effectiveness in subspace clustering. If no redundancy
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Figure 3.26: Redundancy

is removed like in SUBCLU the number of subspace clusters is tremendous.

The SUBCLU algorithm did not finish after more than 10 days. Hence we

were not able to evaluate the F1 value for SUBCLU.

3.6.2 Quality and runtimes on real world data

In Chapter 2.7 we already analyzed the quality of our DUSC subspace clus-

tering method. In this experiment we evaluate the effects of removing re-

dundancy on the runtime of eDSUC w.r.t. the quality of the result. Since

eDSUC is capable of removing redundant cluster during the mining process

removing redundancy greatly improves the runtime. As in the previous ex-

periment in Chapter 2.7 we use four real world data sets (see Table 3.1). To

measure F1 values on real world data where no ground truth on the number

and size of subspace clusters is known, we use class label information in the

data as ground truth.

For each data set F1 quality measurements are given in Figure 3.28 for

SUBCLU and for eDSUC with three different redundancy settings, δ =

0%, 2%, 5%. The bars nicely illustrate that removing redundancy is impor-

tant for all four real world data sets. This result is similar to the results pre-

sented in Chapter 2.7. Hence, the redundancy definition given in Definition

3.3 indeed removes those clusters which are blurred by noise. If clusters which

contain noise are removed from the result set, the precision is improved. For
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Objects Dimensions Classes Source

Pendigits 7494 16 10 [AN07]

Vowel 990 10 11 [AN07]

Glass 214 9 6 [AN07]

Shapes 160 17 9 [KWX+06]

Table 3.1: Real world data sets

example using δ = 0% results in a precision of 30% for the Vowel data while

using δ = 5% yields a precision of 24%. Removing all redundant subspace

clusters might miss a few cluster objects resulting in slightly lower recall. As

illustrated by Figure 3.28 allowing a very small amount of redundant clus-

ters is a good compromise between a high precision and recall. Consequently,

removing redundancy from real world subspace clusterings is an important

step not only for allowing users to inspect the result but also in improving

the quality.

Runtimes for all data sets are given in Figure 3.29. Comparing the run-

time and quality results we can see that the enormous efficiency gain of the

eDUSC algorithm is achieved for an even more effective density-based model

that outperforms competing approaches. As discussed, our proposed eDSUC

algorithm is the first algorithm which is able to speed up subspace clustering
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Figure 3.29: Runtime on real data

by in-process-removal of redundant clusters. The results demonstrate that

eDSUC outperforms SUBCLU, especially for settings which exploit the full

potential of redundancy pruning (δ = 0%). Thus, eDUSC is an algorithm

that shows significantly better runtimes for a subspace clustering model of

very high accuracy, in two datasets even better runtimes than the approxi-

mate SCHISM approach.

Summing up, eDSUC indeed outperforms existing subspace clustering

approaches on both synthetic and real world data. The filter-and-refinement
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architecture allows efficient in-process-removal of redundant subspace clus-

ters. The SC-tree support the eDSUC algorithm by indexing subspace re-

gions which yields superior runtime performance. Removing redundancy

actually improving the quality of the result and reduces the output to a

manageable size.

3.7 Conclusion

We introduced eDUSC, an efficient unbiased density-based subspace cluster-

ing algorithm. eDUSC uses a database inspired multistep approach which

allows powerful pruning of the search space by exploiting two monotonicity

properties. Based on a novel density-conserving grid a conservative approxi-

mation of density-connected regions by hypercubes ensures completeness. A

systematic processing order of the grid cells yields high efficiency.

Efficient implementation of the filter steps is achieved by using the SC-

tree. The SC-tree supports the depth-first approach of eDUSC and stores all

information necessary for in-process-pruning of clusters. Efficiency is clearly

achieved without jeopardizing accuracy, as eDUSC is capable of losslessly

detecting subspace clusters with respect to recent models incorporating nor-

malized density and different kernel weighting functions.

Our experiments on large and high dimensional synthetic and real world

data sets show that eDUSC outperforms recent subspace clustering algo-

rithms by orders of magnitude. Further on the depth-first approach of

eDUSC makes redundancy pruning and indexing of subspace regions pos-

sible. We analyzed how in-process removal of redundancy in a depth-first

approach permits powerful pruning of the subspace cluster search space.



Chapter 4

Visualization of subspace

clusters

Subspace clustering as described in the last chapters is capable to extract

interesting patterns from high dimensional data. To generate knowledge

from these patterns and benefit from human cognitive abilities, meaningful

visualization of patterns is crucial. Clustering is a data mining technique that

aims at grouping data to patterns based on mutual (dis-)similarity. For high

dimensional data, subspace clustering searches patterns in any subspace of

the attributes as patterns are typically obscured by many irrelevant attributes

in the full space. For visual analysis of subspace clusters, their comparability

has to be ensured. Existing subspace clustering approaches, however, lack

interactive visualization and show bias with respect to the dimensionality of

subspaces.

In this chapter, we propose a novel distance function for subspace cluster-

ings. We suggest two visualization techniques that allow users to browse the

entire subspace clustering, to zoom into individual objects, and to analyze

subspace cluster characteristics in-depth. Bracketing of different parameter

settings enable users to immediately see the effect of parameters on their data

and hence to choose the best clustering result for further analysis. Usage of

user analysis for feedback to the subspace clustering algorithm directly im-

proves the subspace clustering. We demonstrate our visualization techniques

on real world data and confirm results through additional accuracy measure-

ments and comparison with existing subspace clustering algorithms.
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4.1 Introduction

While computers efficiently support statistical and associative analysis of

large amounts of data, they do not reach the high cognitive abilities of hu-

man users. Human experts are able to quickly identify both correlations and

irregularities if data or results are appropriately visualized [Kei02]. As “visual

animals”, humans excel at expressing and analyzing visual entities [Luc94].

Tasks that are inherently difficult for computers such as parametrization,

or are subjective by their very nature such as redundancy or relevance to

a given task, can be effectively supported by human computer interaction.

Visualization plays a key role in interaction as it builds an interface between

an automated output and the human user. Visual data analysis allows com-

bining the efficiency of computers with the cognitive strength of human users

[Kei02]. For data analysis or mining tasks, visualization is the central step

from patterns to knowledge in the knowledge discovery process [HK01].

Subspace clustering, as introduced in the last chapters, aims at identifying

clusters in any possible attribute combination. So far we solved the efficiency

problems of subspace clustering algorithms and removed redundant clusters

to obtain reasonable result sets. As the identified patterns of subspace clus-

tering algorithms are represented in different subspaces visualizing subspace

clusterings is a challenging problem, as well.

For full-space clustering, different visualization techniques exist [FGW02,

SD02, FdOL03, KS04, KMSZ06]. In all these approaches the same fixed set of

dimensions is encoded in the visual model. These methods are thus as limited

as full-space clustering: clusters are detected only if visible in the chosen

mappings. As typically clusters are hidden in different subspace dimensions

they cannot be detected by globally defined projections and encodings.

Meaningful subspace cluster visualization requires aggregation of similar

results and occlusion of redundant information. Users need compact repre-

sentation of different subspace clusterings for visual analysis of relevant as-

pects and feedback to the algorithm. Visualization thus requires a measure

of similarity for the output, as well as techniques to reduce the overwhelming

number of (redundant) results common in subspace clustering. Exploiting

user feedback, subspace clustering algorithms may be focused to relevant

parts or subspaces of the data through explicit guidance.

In this chapter, we propose a novel distance measure for subspace clusters

that reflects their inherent connections or differences, respectively. Based on
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subspace clustering distance models, VISA (visual subspace clustering anal-

ysis) is able to produce expressive visual diagrams that allow for meaningful

user interaction.

The key properties of our density-based subspace clustering approach

DUSC (dimensionality unbiased subspace clustering) make reasonable brows-

ing of subspace clusterings possible. As DUSC takes the dimensionality

of clusterings into account and removes redundant clusters DUSC leads to

comparable clustering results between different subspaces. This allows for

meaningful analysis of visualized subspace clusters following our novel VISA

method.

In this chapter, we propose visualization techniques for subspace cluster-

ing. Our contributions include:

• unbiased, comparable results based on a statistically sound subspace

clustering model

• powerful yet compact visualization capable of dealing with clusters in

many different projections

• meaningful ranking of the most “interesting” results to guide analysis

of the output

• user interaction for parameter setting, exploration and feedback

• handling of redundant output

This chapter is structured as follows: we review related work on visual-

ization techniques in the following section. Novel visualization techniques for

subspace clustering results, including discussion of how to rate (dis-)similarity

and redundancy of the output, are presented in Section 4.3, before we con-

clude in Chapter 4.4.

4.2 Related work

Traditional clustering does not scale to high dimensional spaces. As clusters

do not show across all attributes, they are hidden by irrelevant attributes

[BGRS99]. Global dimensionality reduction techniques such as principal

component analysis are typically not appropriate, as relevance is not globally

uniform [DHS01].
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Visual data analysis techniques benefit from human cognitive abilities

in data mining through user interaction. For traditional clustering in gen-

eral, various visualization techniques have been proposed [FGW02, SD02,

FdOL03, KS04, KMSZ06]. In all these cases, the same dimensions of the

data space are encoded by the same projections or parameters in the visual

model. The methods thus behave as limited as full-space clustering does:

Clusters are only detected if they are visible in the respective chosen map-

pings. As typically clusters are hidden in different subspace dimensions they

cannot be detected by globally defined projections and encodings.

Additionally, subspace clustering visualization has to deal with the expo-

nential number of subspace projections and the typically enormous redun-

dancy of the result. As different projections contain different clusters, visual-

ization should provide an overall overview as well as means for in-depth anal-

ysis and interaction. Special cases like mosaic encodings in gene-expression

analysis [ESBB98] order clusters by biological properties like position of a

gene on the chromosomes. This underlying ordering does not extend to other

application domains. As there is no inherent ordering in general subspace

clustering applications, lack of (dis-)similarity measures and poor compara-

bility of results are major hindrances for visualization.

4.3 VISA

In the last sections we analyzed the result of the DUSC subspace clustering

model defined in Section 2.5 analytically. To gain knowledge from the re-

sulting patterns the clusters have to be analyzed by users. This analysis is

still challenging as there are many different subspace projections and possi-

bly redundant subspace clusters. We define the set of subspace clusters that

have to be analyzed:

Definition 4.1 Subspace Clustering

A subspace clustering is a set of clusters in their corresponding subspaces

{(C1,S1), . . . , (Cn,Sn)}, where Ci is a subspace cluster in subspace Si as

specified in Definition 2.5.

For user benefit, it is necessary to visualize subspace clusterings such

that the entire output can be browsed even for clusters in different subspace
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projections, and that detailed views into individual subspace clusters are pos-

sible. Moreover, feedback for subsequent guiding of subspace clustering runs

should be provided. This requires visual support for analysis of parameter

settings as well as a focus on the most “interesting” results.

We therefore define a set of criteria that should be included in visualiza-

tion:

Definition 4.2 Visual analysis criteria

The following properties characterize a subspace clustering:

• space overlap, i.e. the number of common subspaces for any two

cluster subspaces Si and Sj: S = |Si ∩ Sj|

• object overlap, i.e. the number of common objects in any two sub-

space clusters Ci and Cj: O = |Ci ∩Cj|

• interestingness, i.e. the factor I by which the expected density is

exceeded on average for any subspace cluster Ci in subspace Si:

I(Ci,Si) =

∑
o∈Ci

ϕSi(o)

|Ci| · α(Si)

The above aspects are crucial for our VISA approach, since they are

necessary for in-depth analysis of subspace clusterings, where large result

sizes easily occlude the most interesting, novel patterns. Next, we show how

compact representation and detail information on subspace clusters can be

combined for browsing. After this, we focus on bracketing and in-depth

analysis.

4.3.1 Browsing subspace clusterings

To give a general overview over the entire subspace clustering, basic structural

information of subspace clusters should be compactly represented. Interac-

tively, details should be provided for individual clusters during browsing.

The major challenge for any overview visualization of subspace cluster-

ings lies in the comparability of subspace clusters. As subspace clustering

algorithms may identify patterns in completely different or overlapping sub-

spaces, we have to define (dis-)similarity of subspace clusters on a general
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Figure 4.1: Subspace clustering overview: the diameter depicts the number

of objects in the cluster, the color denotes the dimensionality (the darker,

the more dimensions)

scale. We propose a distance function for comparing any two subspace clus-

ters that takes both the subspace overlap and the object overlap into account.

It is defined as a convex sum of the difference in subspaces and the difference

in cluster objects:

Definition 4.3 Subspace Cluster Distance

The distance between two subspace clusters Ci,Cj in subspaces Si,Sj, respec-

tively, is defined as the convex sum of subspace distance and object distance:

β

(
1− |Si ∩ Sj|
|Si ∪ Sj|

)
+ (1− β)

(
1− |Ci ∩Cj|

min{|Ci|, |Cj|}

)
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Figure 4.2: Detailed view for one subspace cluster: mean and variance for

each dimension of the subspace cluster

This distance function thus allows comparing subspace clusters for a gen-

eral overview. Independent of any application specific properties of the data,

similarity can be measured by incorporating the criteria presented in Defini-

tion 4.2.

Normalization of both subspace and object distance is to a range of zero

to one, respectively. We use two different normalizations for object and

subspace distances.

1.) Object distance: a fully redundant subspace cluster is a lower di-

mensional projection of an interesting subspace cluster (object overlap). For

visualization, interesting subspace clusters should be stacked upon their re-

dundant counterparts, i.e. the distance should be zero. This is achieved by

normalizing object distance by minimum cluster size. For redundant sub-

space clusters, the minimum in the denominator is the same as the intersec-

tion in the numerator, and object distance is indeed zero.

2.) For subspace distances, clusters in subsets of dimensions may very

well differ in all objects. They share subspace projections, yet do not actually

overlap. Their subspace distance should therefore still reflect the difference

in the remaining dimensions, and not be zero. To this end, normalization is

by the union of subspaces. For visualization, this means that sub-projections
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Figure 4.3: Bracketing redundancy in MDS images (from left to right δ =

0%, 2%, 5%, 7%, 10%): for each parameter setting, the output is illustrated,

allowing users to pick appropriate settings from the series of images easily

are located close to each other.

Object overlap can be further favored by choosing β smaller than 0.5 to

give more weight to object distance.

An overview over the distances of all subspace clusters can be achieved

by multidimensional scaling (MDS) [Kru64]. Simply put, it allows for non-

linear projection of objects from their original distance space to a 2D or

3D visualization space, preserving mutual distances as much as possible. In

our MDS image of the subspace clustering result, the distance information

is enriched by information on the size and the dimensionality of a subspace

clusters. For a general overview size and dimensionality of subspace clusters

can be visualized by the radius of the circles and their color, respectively (see

Figure 4.1). Consequently, browsing the entire output is possible. However,

this enriched MDS image by itself does not provide sufficient information for

user analysis. To get a better understanding of why subspace clusters are

similar or different and for browsing the actual objects in subspace clusters,



4.3 VISA 123

G2

G3

Dimension

G1

2 3 4 5 6 7 8 9 10

Figure 4.4: Matrix of subspace clusters groups. Rows represent the cluster

and columns the dimensions, groups are separated by white lines (see right

part). Color map HSV: hues represent the value in each dimension of the

subspace cluster; saturation and value represent the factor I of interesting-

ness.

detailed information should be available upon click on subspace cluster rep-

resentations. As individual objects in subspace clusters are typically more

than two-dimensional, we represent the distribution of objects in a subspace

cluster by a mean and variance plot for all dimensions. Additionally, we

highlight those dimensions that are relevant for the subspace cluster (see

Figure 4.2).

4.3.2 Bracketing

Bracketing refers to a technique originally from photography. Several differ-

ent camera settings are used to take a series of pictures of the same subject.

Photographers then pick the best setting among the resulting pictures. It

has been discussed in human computer interaction in [Rob04]. We propose

bracketing for subspace clustering visualization as a useful technique that

demonstrates the effects of any parameterization. It provides not just a sin-
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gle subspace clustering output, but a series to choose from. This allows users

to analyze the effect of different parameters at a single view.

As we have seen already in Figure 4.1, the clustering shows groups of

subspace clusters. In their center we have the desired high dimensional (red)

subspace clusters containing few objects (small circle). These high dimen-

sional clusters in lower projections again form clusters, which are depicted as

large yellow circles. This effect can be reduced by our redundancy parameter

δ, as we can see in Figure 4.3. The overwhelming result for δ = 10%, i.e.

redundancy of 10% is permitted, gives us evidence of poor cluster quality

as in large low dimensional clusters not only hidden clusters are found but

also noise. As we discussed in Chapter 2.5 removing such redundant clusters

leads to a significant quality improvement of the overall clustering result.

4.3.3 In-depth analysis

As illustrated in Section 4.3.1, subspace clusterings visualized in MDS images

typically form groups of similar subspace clusters. For in-depth analysis,

visualizing characteristics of each of these groups of subspace clusters in

a compact way is important. Characteristics are joint and distinguishing

properties of groups of subspace clusters. Properties of importance are the

interestingness I of a subspace cluster as well as the subspace and object

overlap. Visualizing these properties is necessary for in-depth analysis of the

overall subspace clustering.

Subspace clusters are grouped if they share dimensions or if they have

objects in common, as defined by our subspace cluster distance function.

To visualize these groupings such that similarities show up as clear visual

patterns, we propose to plot all groups of subspace clusters and the objects

contained in each group. Each group is defined as the set of all subspace

clusters similar to a subspace cluster of high interest (see Def. 4.2). We call

the most interesting subspace cluster of a group the anchor of the group. A

group is then defined as all subspace clusters of at most ϑ distance to the

anchor.

To visualize a group of subspace clusters we use a matrix representation.

We start with the subspace cluster having the highest interest. Hence this

cluster is the anchor of the first group. Starting with the anchor each sub-

space cluster of a group is represented by its objects. Each object is depicted

by one row whereas the columns illustrate the dimensions of the object. To
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allow an in-depth analysis we use different color codes to visualize all charac-

teristics of an object, that is its interestingness as well as the values in each

dimension. If a dimension is not part of a cluster the column is black.

To highlight subspace clusters of high interestingness we use the factor

I as saturation and value in HSV color space [FvDFH96]. Hence interest-

ing subspace clusters can be easily identified as the active dimensions are

represented by bright and intensive colors. To represent the value for each

Figure 4.5: User Interface for a Subspace Clusters Matrix: By pointing on

individual objects additional information about the cluster is visualized
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Figure 4.6: Bracketing Matrix for δ = 0%, 5%, 10%: for each parameter

setting, the output is illustrated, allowing users to pick appropriate settings

from the series of images easily

dimension we use the hue value according to the HSV space. By using all

possible hue values the complete color range is used to encode the value

of an object but other mappings can be used as well. Further on, objects

are ordered with descending interest. Redundant objects that are already

visualized in other clusters are omitted in order to obtain a compact and

descriptive representation of the complete clustering. Once all objects of a

subspace cluster have been presented the next subspace cluster with respect

to the next anchor is displayed.

Figure 4.4 illustrates the subspace cluster groups for the Pendigits data

set using δ = 0%. As discussed, a group of subspace clusters typically has

some dimensions in common (the core dimension of a group). Our proposed

subspace clustering matrix allows for visual recognition of core dimensions.

Consider the group G3 zoomed in on the right side of Figure 4.4, dimensions

2, 4 and 6 to 10 can be easily identified as core dimensions. By comparing

the different groups illustrated in Figure 4.4 we can see that many subspace

clusters identified correlations in dimension 12 to 16 (e.g. G1, G2, etc.), while

some other groups also have a core containing the dimensions 6 to 10 (e.g.

G3). Further on, a density-connected fullspace cluster (a cluster considering

all dimensions) is not found (no completely colored row contained in Figure

4.4). Additionally, detailed information about an object can be obtained by

moving the mouse over the object. Figure 4.5 illustrates a user interface for
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visualizing a subspace cluster matrix. Information about the interestingness

and the values of an object can be presented in a tool tip. Hence, details

about the center of a group (i.e. the objects of highest interest) can be easily

obtained by the user by moving the mouse over the first objects of a group.

For precise selection of individual objects the scroll bar can be used for an in-

teractive zoom of specific areas of the subspace clustering matrix (illustrated

in Figure 4.5 by the area surrounded by the yellow lines). The area above

and below the yellow lines shows the original compact representation as de-

picted in Figure 4.4. In-between the lines, rows are enlarged by a specified

factor. Scrolling up or down, the zoom area can be varied.

Bracketing as shown in Figure 4.6 illustrates the subspace cluster groups

for different redundancy setting (left part δ = 0%, middle δ = 5% and right

part δ = 10%). As can be easily seen, a clear clustering structure is obtained

if redundancy is removed (leftmost matrix). Small subspace groups are re-

moved if less redundancy is allowed. Hence, removing redundancy improves

the clustering structure. The visual result corresponds to our empirical result

presented in the last chapter.

4.4 Conclusion

We introduced the first subspace clustering visualization to the best of our

knowledge. Based on comparable results, i.e. unbiased subspace clustering,

browsing of the result is possible through a novel distance function that

reflects the subspace and the object overlap, respectively. Subspace clustering

interestingness is incorporated to show the most relevant results. Interaction

is possible through zooming in to objects in subspace clusters and through

choice of adequate subspace clustering settings and feedback.



Chapter 5

Efficient subspace clustering for

multidimensional sequence

databases

Many environmental, scientific, technical or medical database applications

require effective and efficient mining of time series, sequences or trajecto-

ries of measurements taken at different time points and positions forming

large temporal or spatial databases. Particularly the analysis of concurrent

and multidimensional time series poses new challenges in finding clusters of

arbitrary length and varying number of attributes.

We present a novel algorithm capable of finding subsequence clusters

in different subspaces and demonstrate our results for temporal and spa-

tial applications. Our analysis of structural quality parameters in rivers is

successfully used by hydrologists to develop measures for river quality im-

provements.

5.1 Introduction

Environmental sensors produce data streams at successive time points which

are often archived for further analysis. Applications like stock market anal-

ysis or weather stations gather ordered sequences of different values in large

temporal databases. Weather stations for example use multiple sensors to

measure e.g. barometric pressure, temperature, humidity, rainfall. Many

other scientific research fields like observatories and seismographic stations
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Figure 5.1: GIS illustration of eight out of 19 river attributes. Each attri-

bute is depicted as one of the parallel river sequences. Colors denote the

categorical values in each attribute in the respective subsequence, from blue

for “one” (best quality) to red for “seven” (worst quality).

archive similar spatial or spatial-temporal sequences.

As one application example, we focus on hydrological data. In a cur-

rent project of the European Union on renaturation of rivers, the structural

quality of river segments is analyzed. For a spatial database of German

rivers, about 120.000 one-hundred-meter segments were evaluated according

to 19 different structural criteria, e.g. quality of the riverbed [LUA03]. They

were mapped to quality categories, where a value of “one” indicates perfect

quality, while a value of “seven” indicates most severe damages. Figure 5.1

illustrates 8 of the 19 attributes of a sample river segment in GIS (geographic

information system) representation. The sequence order of the segments is

given by the flowing direction of the rivers.

As the project aims at a quality improvement over the next decades, pack-

ages of measures have been suggested for different structural damages. They

have been formalized in rules specifying the attribute value constraints and

the attributes influenced positively by execution of the respective measure.
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An example constraint might be that a certain segment has good quality

(categories one to three) riverbed and riverbanks and poor river bending

(categories five to seven). This could be improved by measures like adding

deadwood to positively influence river bending.

Finding and analyzing these patterns helps hydrologists summarize the

overall state of rivers, give compact representations of typical situations and

review the extent to which these situations are covered by measures envi-

sioned. They can identify those patterns which are problematic, i.e. have

low quality ratings, but are not yet covered by measures. In a follow-up step,

these measures are annotated by time and cost information. This is used to

generate an overview over the state of rivers as it might be in the near future

if the measures are put into action.

From a computer science point of view, finding the intrinsic structure of

these multidimensional sequences is a two-fold task:

• detect frequent patterns within sequences for all possible subsequence

lengths (note that we cannot know the pattern length a priori),

• then detect subspaces where patterns occur in combination.

Patterns are ranges of values (which correspond to several categories of

river quality structure) found in several (sub-)sequences. Pattern analysis has

to take into account that the data is subjective and fuzzy, because structural

quality of rivers was mapped by different individuals. Our approach extends

density-based clustering based on weighting functions to subsequences. This

approach effectively detects fuzzy subsequence patterns. These patterns are

clustered efficiently for arbitrary lengths using monotonicity properties. We

transform these subsequence pattern clusters into a cluster position space

such that mining parallel patterns in any subspace can be reduced to efficient

FP -tree frequent itemset mining.

This chapter is organized as follows: we review related work on sequence

mining in Section 5.2. Basic definitions in Section 5.3 lay a sound founda-

tion for the proposed clustering method in Section 5.4. We describe and

discuss our algorithmic concept in Section 5.5. The experimental evaluation

in Section 5.6 demonstrates the effectiveness of our approach on real world

and synthetic datasets. Efficiency is shown and parametrization is evalu-

ated. We conclude this chapter in Section 5.7, summarizing our results and

anticipating future work.
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5.2 Related work

As discussed in Chapter 1.3 numerous clustering methods have been pro-

posed in the literature, including partitioning clustering, e.g. the well-known

k-means algorithm [Mac67]. These algorithms require the specification of

the number of clusters to be found and can only detect convex cluster re-

gions. Categorical clustering methods work well for categorical data where

the notion of neighborhood is not meaningful [GRS99, ZPAS05].

We focus on density-based clustering as density-based methods are ro-

bust to noise since it clusters only those points or sequences above some

noise threshold as discussed in [Den04, AKMS07b]. Moreover, it naturally

incorporates neighboring objects into its cluster definition.

The analysis of sequence data has recently gained a lot of attention.

Recordings of data at successive time points have been studied in time se-

ries mining; e.g. [FRM94, KCMP01]. Most of these approaches, however,

aim at finding patterns of values which do not have to directly follow one

another, but may have other values in-between, as in sequential frequent

itemset mining [AS95, AFGY02].

Motif mining searches those patterns which have the highest count of

similar subsequences [PKLL02]. Matching within some range is used to de-

termine the frequency. However, neighbors are not weighted and the range is

fixed for all sequences. Moreover, parallel patterns are not discussed since the

application targeted is one-dimensional time series. While noise is removed in

motif discovery as well, we found density-based clustering to be more useful

in handling fuzzy data, because density-based clusters automatically adapt

to different ranges of fuzziness.

5.3 Subspace subsequence cluster model

In this section we formalize our notion of patterns in subsequences. We

define a suitable cluster notion which reflects that our database consists of

ordinal-valued sequences with some degree of noise. Since we are dealing

with clusters of sequences in this chapter we do not use the definitions for

objects and clusters given in Section 1.4.

Density-based clustering, which tries to separate dense areas (“clusters”)

from sparse ones (“noise”) reflects the requirements of applications such as
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the river data scenario in that arbitrary cluster shapes may be found, the

number of clusters does not need to be fixed a-priori and noise is labeled as

such, i.e. it does not have to be assigned to any cluster [EKSX96, KKK04].

5.3.1 Subsequence patterns and clusters in one attri-

bute

As noted before, it is crucial to determine subsequence clusters of arbitrary

sequence lengths. We define sequence patterns of arbitrary length in single

attributes and subsequently model subspace clusters by detecting parallelism

between these clusters.

Definition 5.1 Sequence pattern:

• A tuple S = (s1, . . . , sk) of k subsequent values at positions 1 through

k is called a sequence of length k in one attribute.

• A database DB is a set of sequences {S1, ..., Sz}.

• We denote a subsequence of S from position i to j by S[i, j] =

(si, . . . , sj).

• Whenever we are not interested in the concrete positions of a sequence,

but merely in its values, we call this a pattern P = 〈p1, . . . , pk〉 in one

attribute.

• A pattern P occurs in a database if there is a sequence S ∈ DB and

a position i ∈ IN with P = S[i, i+k-1].

• The support of a pattern P is the number of its occurrences in the

sequences of the database DB: sup(P) = |{i ∈ IN and S ∈ DB, where

P = S[i, i+k-1]}|

When searching for prevailing patterns, it is important to notice that

merely counting of sequence patterns is not sufficient in many scenarios. It

is crucial to account for two factors: first, mapping of river structures may

be blurred by people’s subjective decisions on unclear category boundaries.

Second, measures and their constraints may be applicable over several cat-

egories and cannot always be fitted exactly to these categorical boundaries.
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Moreover, small deviations in few segments may be tolerable for the appli-

cation of a certain measure if this results in longer river courses treatable

by a single measure. Hydrologists are thus interested in including “similar”

sequences in frequency notions.

Density-based clustering tries to separate dense areas (“clusters”) from

sparse ones (“noise”). The density of a pattern is determined by evaluating

its neighborhood according to some distance function.

Any Lp-Norm (Lp(Q,Q
′) = p

√∑k
i=1(qi − q′i)p) between patterns Q and Q′

can be used, yet the Manhattan norm (L1) has shown to work well in prelim-

inary experiments. We use a weighting function to ensure that with greater

distance to the pattern evaluated, the influence of neighbors decreases. As

discussed in Chapter 1.4 any series of monotonously decreasing values can be

used as a weighting function, since distances between nominal sequences are

always discrete. All kernel-estimators known from statistics [HK98] are con-

stantly falling functions. Experiments have shown that weighting functions

based on Gaussian kernels (WP
σ (Q) = exp (−dist(P,Q)2/2σ2)) perform well

for in many categorical applications. Using weighting functions provides us

with a natural way of defining the set of similar sequences to be included

in the density evaluation. Whenever the weights assigned drop below a cer-

tain significance threshold τ , these sequences should not be considered in

the density estimation. For example, Gaussian kernels assign (possibly very

small) density values to all patterns in the database, which can be cut off

below some tiny value, such as τ = 0.01 or less. This way, excess density

computations can be avoided.

Definition 5.2 Neighborhood and Density:

• The τ -neighborhood of a pattern in one attribute P, Nτ (P), is de-

fined as the set of all patterns Q which at least have the influence τ on

the pattern P evaluated: Nτ (P) = {Q,where WP
σ (Q) ≥ τ}.

• The density of P is the weighted sum of patterns in the neighborhood

density(P) =
∑

Q∈Nτ (P)

WP
σ (Q) ∗ sup(Q)

• P is dense with respect to a density threshold ρ iff density(P) ≥ ρ.
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We are now ready to formalize our cluster notion. As mentioned before,

clusters should consist of similar, dense sequences of the same length. Se-

quences within one cluster should therefore be within certain parameterizable

boundaries.

Definition 5.3 Cluster:

A set C = {P1, . . .Pm} of m patterns Pi is a cluster of length k with respect

to a density threshold ρ and a compactness parameter γ iff:

• for all patterns Pi ∈ C : density(Pi) ≥ ρ. (Density)

• for any patterns Pi,Pj ∈ C there is a chain of patterns (Q1, . . . ,Qv) ∈
C such that Q1 = Pi,Qv = Pj and ∀ r dist(Qr,Qr+1) ≤ γ.

(Compactness)

• for all patterns Q of length k with 3 Q 3 C: C∪{Q} is not a cluster.

(Maximality)

Put informally, we are thus looking for clusters of patterns which are as

large as possible (maximality), whose elements are all dense (density) and at

most γ apart from each other (compactness). We set γ to one in categorical

settings.

Example.

Figure 5.2 illustrates the definition of density and gives an example for a

density calculation of pattern P = 〈1, 2〉. The upper part visualizes two

sequences S and T with two exemplary attributes, the riverbed and the

bank. In the lower part of the figure the density-value for a pattern 〈1, 2〉 of

the riverbed attribute is calculated. We assume a significance threshold of

τ = 0.2. The Gaussian weighting function drops below τ = 0.2 for sequences

having a distance higher than 1.8 from the point evaluated. Thus in our

ordinal setting only subsequences with a distances of or less 1 have significant

influence: exp(−12/2) ≈ 0.6 > τ and exp(−22/2) ≈ 0.13 < τ . In our

example the τ -neighborhood of pattern 〈1, 2〉 contains the patterns 〈1, 2〉
itself starting at two positions S1 and S6 (distance zero) and 〈1, 3〉 starting

at four positions S3, S8 and T2, T5 (distance one). Thus the density-value for

〈1, 2〉 is 2 ∗W 〈1,2〉
σ (〈1, 2〉) + 4 ∗W 〈1,2〉

σ (〈1, 3〉) = 2 ∗ 1 + 4 ∗ 0.6 = 4.4. For a

density-threshold of e.g. ρ = 3 the pattern 〈1, 2〉 is considered dense.
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Figure 5.2: Example density calculation for a pattern contained in the river

database
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Figure 5.3: Example for a subspace subsequence cluster

5.3.2 Subspace subsequence clusters

Single sequence patterns give insight into the inherent structure in individual

attributes. In multidimensional sequence databases these clusters of patterns

have to be extended to subspace clusters (i.e. parallel patterns). River

measures may affect several structural properties, e.g. the river bank on the

left and the right as well as the river bending. Similarly, constraints are often

formulated for several attributes as well. Likewise, in other applications,

situations which require specific measures are typically described via several

sensor values.

We define subspace clusters of patterns as frequent parallel occurrences

of single attribute clusters. Frequency is measured in terms of simultaneous

occurrences, i.e. the number of positions in any sequence, where clusters are

detected in different attributes. We formalize our notion of parallel clusters

as follows:
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Definition 5.4 Subspace subsequence clusters:

A set of sequence clusters C1, . . . ,Cn of length k from n different attributes

is a subspace subsequence cluster SSC iff:

• C1, . . . ,Cn are parallel at some position i,

i.e. ∀j ∈ {1 . . . n} a pattern Pj ∈ Cj occurs at position i

• C1 . . .Cn occur frequently together,

i.e. |{i ∈ IN, C1, . . . ,Cn are parallel at position i}| ≥ φ.

Put informally, we are thus looking for those positions which show a

pattern contained in each attribute (subspace) and which have a count equal

to or greater than the threshold given (Frequency).

The frequency threshold φ reflects the number of positions where the sub-

space cluster is detected. It can be set in relation to the database size, i.e.

the overall number of multidimensional sequence segments (see Section 5.6).

Hence, φ corresponds to the relative frequency of a subspace subsequence

cluster (the support) and is a key parameter depending on the application.

In general, increasing φ decreases the number of identified subspace clusters,

as more occurrences of the pattern are required. Subspace clusters detected

using a higher φ are far more typical for the data set. Our experiments

suggest that an initial setting of about 1% of the data set serves as a good

starting point for analysis. As more or less patterns are desired, the thresh-

old is adapted accordingly.

Example.

In Figure 5.3 we present a subspace subsequence cluster in two attributes.

The subspace subsequence cluster SSC consists of two clusters C1 = {〈1, 2〉 ,
〈1, 3〉} in the riverbed attribute and C2 = {〈3, 4〉} in the bank attribute.

They occur in positions S1, S8, T5, thus three times. Assuming a frequency

threshold of φ = 2, SSC is a subspace subsequence cluster.

5.4 Efficient subsequence cluster mining

To detect subsequence clusters of arbitrary length, a naive approach might

be to simply re-run a density-based clustering algorithm for each length value

to detect all possible clusterings. Obviously, this leaves room for efficiency

improvement.
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5.4.1 Monotonicity

We avoid excess clustering steps by exploiting monotonicity properties of

clusters. We show that patterns which are not dense, cannot be part of

longer dense patterns. We may safely prune them from consideration in

longer pattern clustering. We formalize this monotonicity first for patterns

and then prove that this property holds for clusters themselves.

Theorem 5.1 Density Monotonicity:

For any two patterns P,Q of length k and their respective prefix/suffix P′,Q′

of length k − 1 holds:

(1) Q ∈ Nτ (P)⇒ Q′ ∈ Nτ (P
′)

(2) density(P) ≤ density(P′)

For (1) we note that an Lp norm, p ≥ 1 is the p-root of sum of absolute

differences in sequence values. This means that a reduced sum of k − 1 of

these differences is necessarily smaller than or at most equal to a sum of all

k differences.

Proof: For a prefix/suffix Q′,P′ of Q,P we first show: dist(P,Q) ≥ dist(P′,Q′).

Dropping the first or last summand in our distance sum for Q,P, we obtain

for the prefixes or suffixes Q,P:

p

√√√√ k∑
i=1

|pi − qi|p ≥ p

√√√√k−1∑
i=1

|pi − qi|p dropping the last summand: prefix

p

√√√√ k∑
i=1

|pi − qi|p ≥ p

√√√√ k∑
i=2

|pi − qi|p dropping the first summand: suffix

⇒ dist(P,Q) ≥ dist(P′,Q′)

Thus the distance between two patterns is greater than the distance be-

tween the respective prefix or suffix. Using this fact we can prove (1):
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dist(P,Q) ≥ dist(P′,Q′)

⇒ WP
σ (Q) ≤ WP′

σ (Q′)

(weighting functions are increasing with decreasing distance)

⇒ (WP
σ (Q) ≥ τ ⇒ WP′

σ (Q′) ≥ τ)

(using Definition of Nτ )

⇒ (Q ∈ Nτ (P)⇒ Q′ ∈ Nτ (P
′)).

Part(2) is proven using a similar argument: the density is defined as a

weighted sum of the support of patterns. Their shorter counterparts, prefix

or suffix, are assigned smaller distance values (part 1) and therefore larger

weights.

density(P) =
∑

Q∈Nτ (P)

WP
σ (Q) ∗ sup(Q) (Definition of density)

≤
∑

Q′∈Nτ (P′)

WP
σ (Q) ∗ sup(Q′)

(Part 1: sup(Q) ≤ sup(Q′) as a subsequence for Q also matches Q′)

≤
∑

Q′∈Nτ (P′)

WP′

σ (Q′) ∗ sup(Q′)

(Part 1: distance of shorter patterns is smaller, weights are larger)

= density(P′) (Definition of density) �

Since density and neighborship are monotonous, we can conclude that

clusters are monotonous as well:

Theorem 5.2 Cluster Monotonicity:

For any cluster C of length k, there is a cluster C′ of length k − 1 such that

for any pattern P and its prefix/suffix P′ holds:

P ∈ C⇒ P′ ∈ C′

Proof: For any P in C, we have that P′ is dense (Lemma 5.1), and since

the distance of shorter patterns is smaller (Proof of Lemma 5.1), there exists
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a chain of prefix/suffix patterns which guarantees compactness. This means

that all prefixes/suffixes are part of a cluster (which might contain additional

patterns due to the third requirement, completeness). �

Summing up, we know that any pattern or cluster which does not satisfy

the density criterion, can be safely pruned from the search for longer patterns

or clusters.

5.4.2 Indexing subsequence patterns and clusters

In order to efficiently calculate the density value for a pattern it is crucial

to quickly retrieve the neighborhood of a subsequence. We introduce an

index structure for patterns which supports neighborhood queries and density

estimators.

Since existing index structures do not work for patterns of different length,

the hierarchical index structure illustrated in Figure 5.4 was developed. The

index structure is tailored to the SSC algorithm (subspace subsequence clus-

tering algorithm) in that the bottom-up approach is supported: queried pat-

terns always grow in length.

The index is constructed by scanning once over each sequence. Each

pattern of a fixed starting length determined is added to the index structure.

A pattern is represented by a path of labeled nodes from the root to a leaf.

To later determine the density value of a pattern the support is annotated

at each corresponding leaf node. Further on the index structure stores the

position list (all starting points) for each pattern. For scalability purposes

the position list is stored on hard disk. In addition, a cluster identifier (e.g.

C1) or the flag unclassified (UC) is stored at each leaf node (Fig. 5.4). The

SSC algorithm uses this flag to efficiently calculate the transitive closure

(compactness in Def. 5.3) for a dense pattern. The density value for a

pattern can be calculated by summing up and weighting the support of all

patterns in the corresponding neighborhood. The index structure efficiently

supports neighborhood queries by selecting the appropriate node ranges while

descending the tree.

Example.

In Figure 5.4 we assume a parameter setting of τ = 0.2 with a weight of

1 for patterns having distance zero and a weight of 0.3 for patterns having

distance one. The density value for pattern 〈1, 3〉 can then be calculated in
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Figure 5.4: Hierarchical index structure for finding subsequence clusters
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the following way: Starting at the root node the node range (“1′′-′′2′′) must be

considered. When processing node “2”, for instance, all patterns containing

this node have a distance of at least one (distance from 〈1, 3〉 to 〈2, ∗〉 is

greater than or equal to one). Since the maximal distance according to τ is

bounded by 1, the only pattern which must be considered below node “2”

is the pattern 〈2, 3〉. In the same way all other patterns within the specified

range can be determined (in this example 〈1, 2〉, 〈1, 3〉 and 〈2, 3〉). Finally

the density value for the pattern 〈1, 3〉 can be calculated by summing up the

support of the leafs for each weighted subsequence:

density(〈1, 3〉) = W 〈1,3〉(〈1, 2〉) ∗ sup(〈1, 2〉) +W 〈1,3〉(〈1, 3〉) ∗ sup(〈1, 3〉) +

W 〈1,3〉(〈2, 3〉) ∗ sup(〈2, 3〉)
= 0.3 ∗ 2 + 1.0 ∗ 4 + 0.3 ∗ 0 = 4.6.

5.4.3 Clusters of arbitrary length

To identify clusters of arbitrary length the SSC algorithm works bottom-up

by first identifying short clusters and then successively searching for longer

clusters. This section proposes a method to generate new longer cluster

candidates by combining appropriate shorter clusters.

The SSC algorithm elongates the investigated patterns by one in each

step. Thus the index structure must be able to calculate the position list

and support for constantly growing patterns. This is achieved by the algo-

rithm: the position list for a pattern P of length k can be calculated by

using its k − 1 prefix and suffix. Intuitively, the pattern P can only occur

in a sequence if its prefix starts at exactly its starting position and its suffix

ends where P ends. This means that no extra database scans are necessary

to determine its occurrence - we simply take a look at all the starting po-

sitions of its prefix and determine its intersection with its suffix shifted by

one. Since both are shorter by one, they must have been processed earlier.

Example.

Figure 5.4 illustrates this algorithm for the pattern P = 〈3, 2, 1〉. Its prefix is

the pattern 〈3, 2〉, its suffix 〈2, 1〉. We can compute the positions of pattern

P simply by shifting the position list of the suffix one back and intersecting

it with the position list of its prefix. The prefix 〈3, 2〉 occurs in positions
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T3, T6, while its suffix 〈2, 1〉 is found at starting positions S2, S7, T1, T4. Any

sequence elongated by one which contains this suffix has to start one posi-

tion earlier to end with this suffix. Any occurrence of 〈3, 2, 1〉 will thus start

at {T3, T6} ∩ {S1, S6, T0, T3} = {T3}. And indeed 〈3, 2, 1〉 is found at this

position as we can verify in the illustration of T.

As we can see, patterns are efficiently extended on the fly when a longer

pattern is accessed for the first time.

5.5 A subspace subsequence clustering algo-

rithm

Our SSC algorithm exploits both monotonicity properties and density com-

putation on the index. Working in two steps, each monotonicity property

on subsequence patterns and clusters are used. The first step searches for

clusters of arbitrary length while the second step combines parallel clusters.

5.5.1 Step one: Subsequence clustering

The first step of the SSC algorithm is presented in Figure 5.5. First, the index

structure is created using a parameter lengthstart (can be set to one to mine

all patterns where desired). After the construction step the index structure

contains one entry for each pattern of length lengthstart. Next the first cluster

candidate is generated. The first candidate contains all patterns, since all

of them might be dense and hence could belong to a cluster. A depth-first

search on the index structure efficiently retrieves all different patterns stored

in the database (method queryAllEntries).

Next the clustering loop starts which discovers all clusters from lengthstart
to lengthmax (may be set to infinity). For every length all patterns of all

cluster candidates are tested if they satisfy the density property. Each un-

classified dense pattern is then expanded to a cluster by the method Expand-

ToCluster. This method creates a new cluster and assigns each dense pattern

within the transitive closure (w.r.t. γ) to this new cluster.

Neighborhood queries are necessary to determine the density value (method

isDense) and the transitive closure of a subsequence (method ExpandToClus-

ter). Since all patterns of shorter length are no longer necessary after each
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ClusterSet SSC-Phase1(Database db, int lengthstart, int lengthmax) 

Index index(db);
index.initialCreate(lengthstart);  // create the index using all lengthstart sequences
ClusterSet candidateSet    := { index.queryAllEntries() }; // all sequences are candidates
ClusterSet clustSetResult  := ;  // result set of subsequence clusters
foreach length from lengthstart to lengthmax do 

ClusterSet clustSet  := ; // store new cluster sets

/* Generate new clusters based on each candidate cluster */
foreach clustCand in candidateSet do

markUnclassified(clustCand); // marks all sequences unclassified
foreach seq in clustCand do

/* Check if sequence is dense and expand to Cluster */
if isUnclassified(seq) and isDense(seq, index) then

clustSet := clustSet ExpandToCluster(seq, clustCand, index);
end if;

end foreach;
end foreach;

index.prune(length); // discard unnecessary paths and position lists

clustSetResult := clustSetResult clustSet; // store cluster

/* Create new candidate clusters using monotonicity property  */
candidateSet := CreateCandidateCluster(clustSet, length+1, index);

end foreach;

return clustSetResult;

Figure 5.5: Subsequence clustering algorithm (Phase 1 of SCC)

ClusterSet CreateCandidateCluster(ClusterSet clustSet, int length, Index index) 

  ClusterSet resultSet := ;
  foreach clust in clustSet do
    foreach seq in clust do

/* query all sequences from index which start with Suffix(seq) */
SequenceSet extSeqSet := index.prefixQuery( Suffix(seq)
ClusterSet  clustCand := ;

foreach extSeq in extSeqSet do

/* if extension is dense then put the extended sequence into the result set */
if isDense(extSeq, index)) then

      clustCand := clustCand { seq[1] extSeq };
end if;

end foreach;

resultSet := resultSet  clustCand;

end foreach;

return resultSet ;

Figure 5.6: Creating Candidate Clusters
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clustering step the position lists and flags stored for these patterns can then

be released (method prune).

After a set of clusters is discovered for a specific length the cluster set is

stored in the result set clustSetResult and new cluster candidates are de-

termined (candidateSet) by using the old cluster set (clustSet). Figure 5.4

also illustrates the generation of a cluster candidate. This step utilizes the

monotonicity property of subsequence patterns in Lemma 5.2: Only subse-

quence patterns whose prefix and suffix are member of an already discovered

cluster (and hence are dense) must be considered as members of a new cluster

candidate.

The algorithm to calculate the corresponding cluster candidates is based

on the discovered clusters of the previous step (Fig. 5.6). The method Cre-

ateCandidateCluster loops over all patterns of all clusters and tries to extend

each pattern. For this purpose the suffix of length−1 is extracted from each

pattern and all patterns which start with the extracted suffix are queried

from the index (prefixQuery). Each queried pattern which satisfies the den-

sity property is then used to create an elongated pattern by concatenating

the appropriate prefix and suffix. These queries are also supported by the

proposed index structure. The elongated patterns are finally assigned to a

new cluster candidate.

Example.

Consider a cluster containing only one pattern P = 〈5, 1, 3, 7〉. This cluster

of length 4 is extended to a cluster candidate of length 5 in the following

way: First a query using the suffix of P, 〈1, 3, 7〉, is performed. We as-

sume that the intersection with all possible patterns of length 4 results in a

set {〈1, 3, 7, 3〉 , 〈1, 3, 7, 9〉}. Next the patterns are checked whether they are

dense or not. This can be achieved by simply evaluating the annotated clus-

ter flag (a dense pattern must belong to a cluster). Let’s assume 〈1, 3, 7, 9〉
is dense and 〈1, 3, 7, 3〉 is not dense. In this case the two patterns 〈5, 1, 3, 7〉
and 〈1, 3, 7, 9〉 are used to create the elongated pattern 〈5, 1, 3, 7, 9〉 of length

5. This pattern is assigned to a new cluster candidate and returned to the

SSC clustering algorithm.
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Figure 5.7: Transformation example
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5.5.2 Step two: Subspace subsequence clustering

Having discovered dense patterns and combined them to clusters, we identify

those clusters which occur parallel in a subspace of the dataset (see Def. 5.4).

Since for any cluster of length k all corresponding clusters of length k − 1

have previously been detected, we use the monotonicity property presented

in Lemma 5.2.

An important property of subspace subsequence clusters is that a subse-

quence of a specific length may belong to no more than one cluster. Hence

any position in a sequence is the starting point for at most one density-based

cluster of a fixed length. This property is used to transform the sequence

database from a value representation to a cluster representation. After this

transformation it is possible to discover subspace clusters by efficient frequent

itemset mining techniques.

We use the following representation to apply the frequent itemset mining:

clusters starting at the same position in different attributes are combined to

one itemset. The clusters are identified by their cluster-ids. A frequent item-

set contains often occurring subspace clusters in which each cluster belongs

to a different attribute.

Example.

Figure 5.7 illustrates the transformation process. In the upper part, three

attributes of sequence S are shown, with clusters highlighted in gray col-

ors. Assumed are the following sequence clusters: C1 = {〈1, 2〉 , 〈1, 3〉} in S1,

C2 = {〈3, 4〉} in S2, C3 = {〈2, 3〉} in S3. They are transformed according to

their positions as follows: Position 1 in the sequence S would yield a trans-

action {1, 2, 3} since a cluster occurs in each dimension. Position two has no

starting clusters, position three only cluster C1 and so on (lower part of Fig.

5.7). We can therefore immediately derive the frequency of itemsets from the

cluster information: the itemset {C1} occurs six times, {C2} four times, . . . ,

and finally {C1, C2, C3} two times.

We use the Frequent Pattern (FP) growth algorithm proposed by Han

et al. for the extraction of frequent itemsets [HPY00]. The tree represen-

tation is very suitable for our task since database scans are avoided. Recall

that the FP-tree builds a path annotated by support values for all frequent
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items. To obtain frequent itemsets conditional FP-trees are constructed it-

eratively for each frequent item. As mentioned above we use the following

representation to apply the FP-tree: one-dimensional subsequence clusters

starting at a certain position are itemsets containing cluster-ids (see Fig.

5.7). The FP-tree supports efficiently determining frequent patterns w.r.t.

φ. A frequent itemset contains often occurring correlated clusters in which

each subsequence cluster belongs to a different dimension. Thus the result of

the FP-tree algorithm contains subspace subsequence clusters as described

in Def. 5.4. In order to find subspace subsequence clusters of any length the

FP-tree algorithm is started for all different lengths for which clusters have

been found. Since the FP-tree works extremely fast, clustering arbitrary

lengths is efficient.

5.5.3 Analytical evaluation

Subspace clustering is a highly complex task, as the number of subspaces

is exponential in the number of attributes. Further on, detecting subspace

subsequence clusters of arbitrary length is quadratic in the sequence length.

Consequently, subspace subsequence clusters detection is a challenging prob-

lem. To ensure efficiency, our algorithmic approach therefore bears on each

of these aspects.

First, concerning arbitrary lengths of possible patterns, our index struc-

ture avoids re-building potentially frequent patterns from scratch. Only fre-

quent patterns, not the actual sequences nor the infrequent patterns, are

actually processed when elongating clusters. For each of these patterns,

compact representations are stored and position lists are kept on hard disk

to reduce main memory usage. Second, only subspaces which contain clus-

ters in single attributes are mined for subspace subsequence clusters. This

greatly reduces the number of potential combinations. Moreover, by mapping

sequences to cluster ids, the FP-growth algorithm allows for fast detection

of subspace subsequence clusters. Memory requirements could be further re-

duced by applying a secondary storage extension of the FP-tree method as

suggested e.g. in [GZ04].

We validate this analysis in the experiments which show that our algo-

rithm scales almost linearly in terms of both length and numbers of attributes

on different data sets.
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Figure 5.8: Influence of σ on density (σ = 0.75, 0.9, 1.0 from left to right)

5.6 Experimental evaluation

We ran experiments on synthetic and real world data to evaluate the quality

and performance. Synthetic data is used to evaluate different cluster param-

eters and to develop guidelines and heuristics for supporting users in setting

up parameters. It also evidences the algorithm’s scalability as well as its

quality in detecting all generated clusters. Real world data demonstrates the

usefulness of the results for domain experts. Our implementation is in Java,

and experiments were run on Pentium 4 machines with 2.4 Ghz and 1 GB

main memory.

5.6.1 Parameter Setup

Several parameters can be used to tune our algorithm to domain specific

needs. We therefore develop appropriate guidelines and heuristics for choos-

ing reasonable parameter settings. To study the effect of different parameter

setups on the clustering result we generated different synthetic data sets. For

each data set we varied the number of clusters per sequence and subspace

clusters contained in the data.

As suggested in Section 5.3 we use a Gaussian kernel as a weighting

function. Thus the first parameter to set is the value for σ. We propose

using a density plot to determine the effect of different σ values on the density

for length two patterns. The data set used to demonstrate this heuristic is

eight dimensional and contains four subspace clusters. Figure 5.8 illustrates

the density plot for one attribute of the synthetic dataset using σ = 0.75,

0.9, and 1.0, respectively. Four separate clusters can be seen, which mainly

consist of patterns of similar values (on the diagonal). Decreasing the value
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Param. Usage Setup Exp. 1

δ Density Threshold 
Separates noise from clusters. see Fig. 8 10 

σ 
Expected Blur (Fuzziness) 
Standard deviation in Gaussian 
Kernel. Value ~1 for categorical. 

0.75-1.25 0.9 

 

( )

τ 
Significance Threshold 
Cuts off insignificant weights. For 
very small value almost no error. 

<<1 0.005

γ 
Compactness Parameter 
Max. distance between patterns in 
cluster; ~1 for categorical. 

1 1 

φ 
Co-occurring Frequency 
Correlates to data coverage of 
multicluster. <1% uninteresting. 

1% of the 
dataset 30 

Figure 5.9: Parameter guidelines

of σ corresponds to splitting the rightmost cluster around coordinates (16,16)

into two separate clusters (leftmost illustration). As this would result in two

clusters which would be a lot less frequent and distinct from the remaining

three clusters, splitting is considered inappropriate and a higher value for

σ should be chosen. On the other hand, further increasing the value of σ

corresponds to merging the two clusters at the center into a single cluster

(rightmost illustration). This would create a larger and more frequent cluster

than the remaining two. Hence, a lower value for σ is needed to separate

these clusters.

These plots, as well as further experiments, suggest a choice for σ of

about one. This allows separation of clusters as well as aggregation of simi-

lar values. A choice of one for σ also reflects the fact that a deviation in one

value is generally deemed tolerable in many ordinal settings. An appropriate

minimum density value can also be derived from the density plot. The ordi-

nate value which separates the clusters from the “noise floor” can be visually

determined and extrapolated to longer patterns. This leads to appropriate

values for the density threshold ρ. (e.g. for this dataset ρ = 10). Note that

the density plot can be created easily during the initialization of the index

structure.
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Figure 5.10: Comparison with SUBCLU

The remaining parameters can be determined in a straightforward man-

ner. τ is set to very small values (0.01 or less) to cut off insignificant density

values. Similar patterns should be clustered together which leads to a com-

pactness threshold of one (γ = 1) in ordinal settings like the river dataset.

Finally, experts are only interested in subspace clusters which cover a signif-

icant part of the dataset (e.g. one percent minimum frequency). Figure 5.9

summarizes our heuristics and parameter settings for the experiments.

Using this parameter setting the SSC algorithm indeed finds all subspace

subsequence clusters hidden in the synthetic dataset. This first experiment

demonstrates the effectiveness of the SSC algorithm and indicates that the

developed heuristics help users find reasonable parameters.

5.6.2 Synthetic Data

As mentioned in Section 5.4.1, a naive approach for detecting clusters of arbi-

trary length would be to re-run a density-based subspace clustering algorithm

for all possible lengths. We compare the performance and the results of the

SSC algorithm with SUBCLU [KKK04], an extension of the density-based

DBSCAN [EKSX96] algorithm to subspace clustering. Since SUBCLU was

not developed to cluster subsequences we had to extend the original imple-

mentation by the density notion presented in Section 5.3.
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Figure 5.11: Scalability for number of attributes

To evaluate the scalability of our SSC algorithm in comparison with exist-

ing approaches, we varied the length of the data sequences and the number

of sequences contained in the database. Additionally we investigated the

influence of the number of different labels per sequence domain on the per-

formance of the SSC algorithm. For this purpose we implemented a data

generator which creates density-connected clusters in each sequence. The

data generator gets the number of clusters, and the size and length of the

database as input parameters. To parameterize the position and size of a

cluster, a starting sequence and the number of pattern belonging to the clus-

ter is specified for each cluster. To generate subspace clusters some of these

clusters are correlated to parallel subspace subsequence clusters. All values

not belonging to a sequence cluster are uniformly distributed based on the

size of the corresponding domain to generate noise.

In our first experiment we generated a data set consisting of eight at-

tributes with twenty different labels. We hid three to six clusters of length

five to ten in each sequence. Each hidden subspace cluster has a minimum

frequency of one percent and consists of three to six patterns. Figure 5.10

illustrates the runtime of both algorithms. Note that SSC is faster by an

order of magnitude. The runtime of both algorithms depends on the number

of subsequences belonging to a cluster. Since longer subsequences are less

often dense the time to investigate longer subspace subsequence clusters is
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Figure 5.12: Scalability for sequence length

nearly constant. As far as the quality of the result is concerned, both algo-

rithms discovered the main patterns of the six subspace clusters hidden in

the database.

In our second experiment we used the same hidden clusters as in our first

experiment but varied the number of sequences contained in the database.

Figure 5.11 shows the result for four different sequence lengths (from 30,000

to 150,000). Even in 48 attributes the SSC algorithm is capable to find

subspace clusters in reasonable time. Once again, we have only slightly more

than linear behavior for increasing number of sequences.

To evaluate the scalability in terms of sequence lengths we again used the

eight-dimensional data set from our first experiment and recorded the time

for sequence lengths from 100,000 to 500,000. Additionally three different

domains were used, depicted in Figure 5.12 as separate lines for 10, 20 and

40 ordinal values per sequence attribute. In order to keep the experiments

comparable we adjusted σ using our density plot heuristics from 0.6, 1.2, 2.4,

respectively. The SSC algorithm shows linear behavior for 10 labels and

slightly superlinear behavior for 20 and 40 labels. Even the largest setup

with 40 different categories and 500, 000 sequence segments takes less than

2, 800 seconds. This means that our algorithm is capable of handling very

large databases with large domains.
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5.6.3 Real world data

This section evaluates the effectiveness and efficiency of our algorithm on dif-

ferent real world datasets. Our analysis mainly focuses on the flowing water

renaturation project of the European Union mentioned before. Additionally,

we investigate the effectiveness of the SSC algorithm on temporal data sets,

using data from the “National Fire Danger Rating Retrieval System”.

River data

The river data set consists of 120,000 river segments describing the structural

properties of a river, such as the structure of the riverbed. Experts working on

renaturing rivers are interested in finding co-occurring clusters to determine

those subsequence patterns which occur repeatedly in the river database

and which allow to derive broad potential improvement through measures

designated. As a final result, experts should be capable of summarizing

river segments into measure packages, ranking them according to the quality

enhancements expected. This can then be used to create supra-regional

schedules for political decision-making.

For the river dataset a value for σ between 0.7 and 0.85 has shaped up as

a reasonable parameter. The SSC algorithm identifies more than a thousand

clusters of length four by using a value for σ of 0.7 with a corresponding value

for ρ. Many of those clusters do not show when mining clusters of length five.

By using a higher value for σ more patterns are considered similar and cluster

count drops between lengths five and six. For this dataset experiments have

shown that independent of the σ value, subspace clusters in many attributes

can be found only at length four to six. Beyond this length, parallel patterns

are rare. This is an interesting result for the hydrologists studying this data.

They find that they should develop sensible packages of measures in this range

and estimate costs for packages of about 500 meters river improvement.

Figure 5.13 illustrates the runtime of the SSC algorithm for phase one

(searching for clusters of arbitrary length) and for phase two (searching for

multiclusters) separately as well as for both. As we can see, the time require-

ments for mining all clusters of arbitrary length are distributed rather evenly

between the two phases. The total time for mining subspace clusters of arbi-

trary pattern length demonstrates the efficiency of our approach. Note that

with increasing maximal length, few additional dense patterns are detected

such that the increase in time consumption slows down. The steepest ascent
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Figure 5.13: Performance

is for lengths of up to six, which corresponds to our result findings.

Similar to the synthetic dataset, we also applied SUBCLU on this real

world dataset. However, even the first iteration of SUBCLU for subspace

clusters of length ten did not finished after ten hours. One reason why

SSC works extremely faster on the investigated dataset than SUBCLU are

the time consuming neighborhood queries on the nineteen-dimensional data

points. Even the use of index structures like the R-Tree does not speed up

these neighborhood queries in these high dimensionalities. Another reason is

the efficient combination of dimensions using an FP-tree as done by SSC.

For hydrologists to see how the detected subspace clusters are distributed

and check in which areas the designed measures are applicable or where

additional measure engineering is required, we visualize the subspace clusters

in a geographical information system. An example for a cluster visualization

is given in Figure 5.14. Those river segments which are part of the cluster

are marked by dark lines. The corresponding cluster summary is visualized

on the left side. It indicates the cluster length of five river sections (top to

bottom) as well as the cluster range of ten out of nineteen attributes (left to

right).

Additional tools for hydrologists give detailed information beyond this

summary. Experts may browse clusters for an overview of the attributes
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Figure 5.14: Cluster Visualization for river data

contained in clusters, their value distributions as well as their occurrence in

the rivers. Moreover, individual attributes and river values may be checked

for containment in clusters. By joining this information with the packages of

measures designed, field experts can easily identify areas which are not yet

met by measures.

Annotating the measures with cost and duration information, political

decision making is supported. Hydrologists used the information derived

from these clusters to build a decision support system [Bar05] that gives

concise summaries as well as detailed inspection of the state of the rivers

as it is now as well as a prognosis for future development depending on the

packages of measures chosen.

Weather data

The second real world dataset is retrieved from the “National Fire Danger

Rating Retrieval System” which provides senor data from various weather

stations. We use hourly weather variables from 1998 to 2005 about tem-

perature, relative humidity, wind speed and direction, weather status etc.

Overall the dataset contains fifteen variables measured at 27, 048 time points

[GFC05]. This weather dataset contains a mixture of real valued and cat-

egorical variables. The continuous attributes are transformed into ordered

categories using the transformation technique presented in [LKLC03]. After
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normalization we used ten symbols for the quantization.

The weather dataset allows us to determine the quality of the SSC al-

gorithm. Based on the weather variables the “National Fire Danger Rating

System” calculates some indices like the ”Ignition Component” which re-

lates the probability that a fire that requires suppression action will result

if a firebrand is introduced into a fine fuel complex. These indices are influ-

enced by many variables measured in the rating system. They form natural

co-occurring patterns in the data which we use to demonstrate that the SSC

algorithm does find these subspace clusters. By inspecting the result we in-

deed find the correlation between the index variables and all measured sensor

data. Figure 5.15 (right side) illustrates an example subspace cluster which

nearly contains all attributes. The cluster overview (Figure 5.15 left side)

shows many clusters containing nearly all attributes (13 and 14) with a length

of up to seven. Thus the SSC algorithm indeed finds the intrinsic structure

in a real valued dataset.
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5.7 Conclusion and further work

Domain experts are supported in their need for pattern detection in sequence

databases such as river quality records. The information derived using our

approach is incorporated in a decision support system devised by hydrolo-

gists. Future work will concentrate on integrating GIS information to handle

non-sequence spatial information as well and to extend the model to graph

structures [KKSS04].



Part II

Efficient density-based methods

for classification



Chapter 6

Classifying multi-dimensional

data

Classifiers are part of many complex pattern recognition systems like speech

recognition systems, image recognition systems, handwriting recognition sys-

tem or text recognition system. Given a set of class labels categorizing the

objects classifying an object means to predict the class label of unknown

objects. Typically the first step of a recognition system is to extract a multi-

dimensional feature from the original objects. Based on these features a

training set of labeled objects is used to build a classifier. Hence, the chal-

lenge in classification is to learn a classifier from the training data which

reflects the structure given by the classes.

6.1 Related Work

Classification is a field of extensive research. Several distinct branches of

classification techniques have been developed.

Neural networks imitate the brain’s parallel information processing by

weighted connections between individual units (the “neurons”) [CW02, MP43,

SdSA05]. Individual units are activated based on their input values and an

activation function. By adjusting weights during training, a discriminant

function between individual classes is learned. Output values of the units

generated on input data are then used for classification. Neural networks

have shown to be good classifiers in applications where no understanding of

the classification process is necessary, since no explication component is gen-
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erated. The neural network or its weights generated during training provide

no insight into the patterns learned.

Decision trees provide explanatory components by visualizing the deci-

sion taken during classification [Mur98, Qui86, Qui92]. The idea is to build a

model on training data by successively partitioning the data along some split-

ting attribute which best separates the data according to the given class label.

The resulting tree is then used to classify incoming data tuples by following

the branches corresponding to this tuple until a leaf containing class informa-

tion is found. An important question in this field is the choice of appropriate

splitting attributes. Several proposals have been made, based on informa-

tion gain, gini index or other specifically designed criteria [Qui86, Qui92]. In

general, decision trees have been successfully applied to predict class labels

in application domains where global patterns are present. However, when it

comes to noise and local patterns, decision trees fail to reflect class struc-

tures. This is due to the fact that decision trees are built level by level,

i.e. the choice of splitting attributes is based on a greedy-style evaluation

strategy.

Bayes classifiers follow a statistical approach [Bay63, DHS01]. Proba-

bilities of individual attribute values given a class, are used to classify new

objects. To apply Bayes classifiers, the data distribution has to be estimated

from the training data. A very simple approach is the naive Bayes classifier

which assumes strong independence between attributes. Density distribution

is determined for each class globally, thus local patterns are not identified.

Details about Bayes classification is given in Chapter 6.3.

Support vector machines (SVMs) proposed by Vladimir Vapnik and Alek-

sei Chervonenkis [VC74] classify objects based on separating hyperplanes be-

tween the classes. As linear separation of the classes is not always possible,

SVMs rely on two concepts: first they embed the input data into a higher

dimensional space and second, they use soft margins to find an adequate

separation hyperplane [Bur98]. Instead of embedding the data into a higher

dimension, it suffices to compute the inner product in the higher dimensional

space using a kernel function. As an optimization problem has to be solved

to find the separating hyperplane SVM large data sets with many classes

may lead to a high runtime complexity. Recent work has proven that the

classification complexity depends linearly on the size of the data set [Ste03].

Another prominent approach to classification is the “lazy” classification

by nearest neighbors [PF70]. The basic idea is not to build a model before-
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hand, but instead query classified data (training data) similar to the data set

to be classified as it comes in. Classifiers using this technique need to define

an appropriate similarity model to identify these “nearest neighbors” and a

voting criterion in case these neighbors belong to different classes. Popular

solutions include majority voting, inverse distance weighted aggregation, etc.

In Chapter 6.4 we discuss the nearest neighbor classifier in more detail.

6.2 Basic notations

For the rest of this chapter we use the following notation:

Definition 6.1 Class labels and training sets.

The set of class labels is defined as:

C = {c1, . . . , cn}.

A training set based on a d-dimensional continuous feature space containing

n labeled objects is defined by:

D = {(x1, y1), . . . , (xn, yn)} with xi = (xi1 , . . . , xid) ∈ Rd and yj ∈ C

We further select the set of objects from the training set belonging to a specific

class ci by:

Dci = {(xj, yj) ∈ D|ci = yj}.

Finally, a classifier can be defined as a mathematical function which maps

an object to label.

Definition 6.2 Classifier.

A classifier G maps a feature vector x to a class label ci:

G : Rd → C

To evaluate the performance of a classifier a test set of labeled objects is

often used. The test set is not used for training. A common way to obtain a

training and test set is to partition a set of labeled objects into m partitions

(folds) and to use one fold for testing and the other folds for training.



6.3 Bayes classification 163

Definition 6.3 Classification accuracy.

The classification accuracy A for a given classifier G and a test set of n′ la-

beled objects T = {(x′1, y′1), . . . , (x′n′ , y
′
n′)} is measured as the ratio of correctly

classified object to the total number of objects:

AG,T =
|{G(x′j) = y′j}|

n′

In this thesis, we focus on statistical and nearest neighbor classifiers.

Statistical classifiers use the Bayesian decision theory for classifying objects.

The fundamental theory of the Bayesian classifier provides a broad range of

theoretical analysis ranging from asymptotical behavior to mean error rates

for many applications. The well studied properties of Bayes classifiers make it

a widely used approach for classification. In practical applications the nearest

neighbor classifier is very popular as it is easy to implement, no assumption

about the data is made and it typically shows a good performance. Nearest

neighbor classifiers are also called lazy classifiers as they do not learn any

density distribution or other model from the training data. We go into detail

of statistical classifiers and nearest neighbor classifiers in the next section.

6.3 Bayes classification

Bayes classifiers constitute a statistical approach [Bay63, DHS01]. Condi-

tional probabilities of individual attribute values per class are used to classify

new objects. Bayesian classification has been successfully used in numerous

applications in different domains. To apply Bayes classifiers, the data distri-

bution is estimated from the training data. Different variants of classifiers

exist which are based on the Bayesian classification approach. The naive

Bayes classifier uses a simple model assuming strong independence of the

dimensions. Other models used for Bayes classification do not make this

strong independence assumption, e.g. dependencies between dimensions are

taken into account by considering covariances, or more complex structures

are represented by multi-modal densities.

The general idea of Bayesian classifier is to estimate the probabilistic

distribution for the different classes. Based on a statistical model of the

class labels, the Bayes classifier simply chooses the class with the highest

a posteriori probability P (ci|x) given x. To compute the class having the

highest a posteriori probability P (ci|x), the Bayes rule



164 CHAPTER 6. CLASSIFYING MULTI-DIMENSIONAL DATA

P (ci|x) =
P (ci) · p(x|ci)

p(x)

is used. Following this rule the a posteriori probabilities of a query object

can be estimated from the a priori probability P (ci) and the class conditional

density p(x|ci). Both the a priori probability and the class conditional density

are estimated from the training data for each class individually. Since the

Bayes classifier is only interested in the class having the highest probability

it is typically not necessary to compute the denominator p(x).

Definition 6.4 Bayes classification.

The Bayes classifier estimates the a priori probability P (ci) and the class-

conditional density p(x|ci) based on the training data D and assigns an object

x to the class with the highest a posteriori probability:

GBayes(x) = argmax
ci∈C

{P (ci|x)} = argmax
ci∈C

{P (ci) · p(x|ci)}

The a priori probability P (ci) can be easily estimated from the training

data as the relative frequency of each class P (ci) =
|Dci |
|D| . Since x is typically

multi-dimensional, the task of estimating the class-conditional density p(x|ci)
is much more complex. To estimate the class conditional probability density

functions only objects belonging to the respective class are considered.

Estimating probability densities from observations has been widely stud-

ied in statistics. A simple method for estimating the class-conditional densi-

ties is to use the naive Bayes approach which makes an independency assump-

tion of the dimensions. Using a normal (Gaussian) distribution to model each

dimension is a common approach. A multivariate normal distribution addi-

tionally considers dependencies between dimensions by using a covariance

matrix.

Any unimodal model assumption (e.g. a single Gaussian distribution)

may not reflect the true data distribution in real world data sets. Mixture

densities relax the assumption that the data follows an unimodal model.

Instead of using one model mixture densities a combination of probabil-

ity density functions to represent the data. Kernel densities do not make

any assumption about the underlying data distribution (thus often termed

“model-free” or “non-parameterized” density-estimation). We discuss the

three different ways to implement the Bayes classifier in the next sections.
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6.3.1 Naive Bayes

The basic idea of the naive Bayes classifier is to assume independent fea-

tures [DHS01]. More precisely for a multi-dimensional feature vector x =

(x1, . . . , xn) the class-conditional density p(x|ci) is calculated by:

p(x|ci) =
d∏
i=1

p(xi|ci)

Since this approach is very simple it is also sometime called “Idiot’s

Bayes” [HTF02]. Different distributions per dimension can be applied. In

this thesis we focus on normal distributions which is reasonable for many

applications. The naive Bayes approach for a Gaussian distribution is given

by:

Definition 6.5 The Gaussian naive Bayes classifier.

The naive Bayes classifier based on Gaussian distributions assumes an in-

dependent Gaussian distribution per dimension to determine the class condi-

tional density for an object x:

pGaussnaive (x|c) =
d∏
i=i

1

σi
√

2Π
e
− (xi−µi)

2σi =
1(

d∏
i=i

σi

)√
(2Π)d

e
−

d∑
i=1

(xi−µi)
2σi

with P (c) =
|Dci |
|D| , µi = 1

|Dci |
∑

x∈Dci

xi and σi = 1
|Dci |

∑
x∈Dci

(xi − µi)2.

Due to the independency assumption the naive Bayes classifier determines

the free parameters µi, σi for each dimension individually. Hence, implement-

ing the training phase of a naive Bayes classifiers can be done efficiently.

Using d independent Gaussian distributions corresponds to one multi-

variate (multi-dimensional) Gaussian distribution without covariances (see

second equation in Definition 6.5). This fact is also illustrated in Figure

6.1. For two different classes (blue, red) the class-conditional distribution is

illustrated using one multi-dimensional Gaussian per class. The objects con-

tained in the training set are depicted by blue and red points, respectively.

As we can see the multi-dimensional Gaussian corresponds to the multipli-

cation of two one-dimensional Gaussian distributions (illustrated by the red

and blue line).
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Figure 6.1: Class conditional density for two classes (blue and red) using

the naive Bayes approach (independency assumption illustrated by the one

dimensional normal distributions)

Considering the example depicted in 6.1 the naive Bayes classifier assigns

an object to that class which has the higher density for the depicted unimodal

Gaussian distributions. To determine the density for an object the naive

Bayes approach only evaluates d functions per class. This makes the naive

Bayes classifier a very efficient classifier in terms of classification runtime.

6.3.2 Mixture densities

Using an unimodal distribution (a distribution having only one maximum)

is often not appropriate to capture the intrinsic structure of a data set. A

very intuitive example for a distribution containing two modes is the body

height of men and women. A data set for the body height of a population

typically shows one mode for women and one mode for men. Consequently

such data sets are not well represented using an unimodal density.

The expectation maximization algorithm (EM algorithm) first introduced

by Dempster et al. [DLR+77] is a popular tool to learn a mixture of densities

from a given training set. Based on a maximum likelihood estimator the free

parameters of a mixture density are determined [HTF02]. The result of the

EM algorithm can be interpreted as a clustering as each density represents

one cluster (see also Chapter 1.1). A mixture of Gaussian densities is defined

as follows:
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Figure 6.2: Class conditional density for two classes (blue and red) using

Gaussian mixture densities with three components per class

Definition 6.6 Gaussian mixture densities.

A multivariate Gaussian mixture model combines k Gaussian probability

density functions g(x, µ, Cov) of the form

g(x, µ, Cov) =
1

(2π)d/2 · det(Cov)1/2
e(−

1
2

(x−µ)TCov−1(x−µ))

where Cov is a covariance matrix, det(Cov) the determinate of Cov and

Cov−1 the inverse. When combined, the functions are weighted with an in-

dividual weight wi with
∑k

i=1wi = 1. A Gaussian or normal mixture model

is than defined as:

pGaussMixtue(x|c) =
k∑
i=1

wi · g(x, µi, Covi)

In Figure 6.2 the EM algorithm was used to train a mixture of densities

using 3 components for each class. We used the same data set as in the

last example (see Figure 6.1). The blue class represented in the left part

consists of two Gaussian distributions having a high weight (w1 ≈ w2 ≈ 0.5)

and one Gaussian having a low weight (w3 < 0.1). Hence, the blue data set

mainly contains two clusters. For the red class (right part of the figure) three

different clusters can be clearly identified.

Mixture models show a good performance both in terms of efficiency and

effectiveness if a sufficient number of components is used to represent the
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data set [ALV03]. However, in practical applications, where the number of

components is not known in advance, using a fixed number of components is

often not adequate. Recent work has shown that the number of components

of a mixture model grow with the size of the database [GM03]. Hence, for

large data sets mixture models have a high runtime complexity for both

training and classifying objects.

6.3.3 Kernel density estimation

Density estimation using kernels is called nonparametric as no rigid assump-

tions about the density model is made nor are independent dimensions as-

sumed. The basic idea of kernel estimators is to let the data speak for

themselves [Sil86]. Kernel densities are a special case of mixture densities

where each data point induces its own component. Kernel density estima-

tion has been first introduced by Emanuel Parzen [Par62] for the univariate

case. Several later works extended the univariate kernel to the multivariate

case [Sil86, Epa69].

In this chapter we focus on radial symmetric kernel functions. Generally,

a kernel function K satisfies the following condition
∫

[0...1]d
K(x)dx = 1. Def-

inition 6.7 gives the definition for the class conditional probability density

function p(x|c) based on a kernel K with smoothing parameter (bandwidth)

h.

Definition 6.7 Kernel densities.

For a given kernel K with smoothing parameter hi, the class conditional

density probability is given by:

pkernel(x|c) =
1

|Dc| · hd
∑

xi∈Dc

K

(
‖x− xi‖

h

)
Kernel estimators can be seen as a sum of influence functions centered at

each data object. They can even be applied if the nature of the true density

model is not known. Thus, kernel estimators make no rigid assumption about

the density distribution. Figure 6.3 gives an example for the two classes

already depicted in the last two subsections. As we can see the density

model based on kernel densities automatically adapts to the training data.

For Bayes classification kernel densities has shown its usefulness in many

applications [JL95]. Especially for huge data sets the estimation error using
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Figure 6.3: Class conditional density for two classes (blue and red) using

kernel densities

kernel densities is known to be very low and even asymptotically optimal. A

thorough analysis of the naive Bayes compared with kernel estimate Bayes

showed that the kernel approach outperforms the normal naive Bayes on most

datasets and shows far better classification accuracy than other discretization

methods [Bou04]. One disadvantage of kernel densities is the high runtime

complexity. Compared to the naive Bayes and mixture model approach,

kernel densities have the highest computational cost for classifying an object.

6.4 Nearest neighbor classifiers

Another nonparametric classification method is the nearest neighbor ap-

proach. Instead of building a density model for the training data prior to the

actual classification process nearest neighbor approaches directly classify ob-

jects based on the training data only. Thus, prior to classification, no explicit

model has to be constructed, but access to the entire original data is neces-

sary. Since no training phase is needed nearest neighbor classification is also

called “lazy” classification. Even though no explicit training phase is needed

the efficiency of nearest neighbor classifiers can be improved by storing the

data in a multi-dimensional index structure like the R*-tree [AKKS99].

Nearest neighbor approaches rely on a distance function d (e.g. Euclidean

distance) to determine the nearest neighbors for an object x. The number

of objects to be considered is specified by a parameter k (e.g. k = 1). A
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Figure 6.4: Nearest neighbor classification based for two classes (blue and

red) using Euclidean distance

voting function (e.g. majority voting) is finally used to determine the class

label from the nearest neighbors.

Definition 6.8 Nearest neighbor classifier.

A nearest neighbor classifier for a given distance function d(x,o), a param-

eter k and a voting function vote is defined as:

GNN = vote{NNk(x)} with

NNk(x) ⊆ D, |NNk(x)| ≥ k, NNk minimal and

∀o ∈ NNk(x), ∀o′ ∈ (D \NNk(x)) : d(x,o) ≤ d(x,o′)

Figure 6.4 illustrates a nearest neighbor approach for the example data

set containing two classes (blue and red). For the yellow marked object the

3 nearest neighbors are evaluated using the Euclidean distance. As depicted

the nearest neighbor set NN3 contains two blue and one red object. Using

majority voting would classify the yellow object as blue.



Chapter 7

Anytime stream classification

using the Bayes tree

Anytime classification has gained importance with ubiquitous streams in

many mobile and monitoring applications. Under greatly varying time con-

straints of apriori unknown stream inter-arrival rates, anytime algorithms

provide the best classification up to a point of interruption dictated through

the arrival of the next stream element. Traditional Bayes classification on

kernel density estimators is known to provide good results, yet cannot be

interrupted in a meaningful manner.

To enable anytime interruptions, we propose a novel hierarchy of density

estimators. The density estimators are stored in our new Bayes tree for

fast access and adaptable refinement until interruption. Storing the coarsest

density model in the root node, our Bayes tree allows for direct classification.

We exploit the levels of granularity in our novel hierarchy by successively

refining an initial Bayes classification on coarse density estimates as long

as time permits. If not interrupted, ultimately the finest level is reached

on which the kernel densities are used for classification. Additionally, our

approach prioritizes refinement of those parts of the model that provide most

information to each probability density query. Thorough experiments on

synthetic and real world databases demonstrate that our anytime probability

density queries on the Bayes tree outperforms existing anytime classifiers.
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7.1 Introduction

Stream data is ubiquitous in applications ranging from sensor data in mon-

itoring systems to speech recognition. Stream mining aims at knowledge

extraction from stream data, i.e. ordered sequences of data objects arriving

continuously as time proceeds. The enormous amounts of data arriving in

streaming applications can neither be stored prior to classification nor can

classification of one item take longer than the time until the next item arrives.

Anytime classifiers are capable of dealing with these varying time constraints

and high data volumes [Zil96, YWKT07, UXKL06]. The streaming rate may

vary, thus the time for computation of class labels may vary greatly. As it is

desirable to achieve the best possible results w.r.t. the given time, classifiers

should flexibly exploit all available time to improve their results.

Further more, in monitoring systems, immediate reaction to specific events

for emergency detection is necessary. Likewise, interactive voice response in

telephony implies direct recognition of incoming speech signals. These tasks

thus call for classification, i.e. assigning of incoming data objects to a class

label under time constraints.

In a recent project we worked on a health application to remotely mon-

itor medical patients via body sensor networks [KDS+08]. The amount and

frequency of data sent by the patients depends on their condition as pre-

classified locally on the body sensor controller. The receiving server has to

classify all incoming patient data as accurate as possible. With many pa-

tients potentially sending aggregated or detailed data, the amount of data

and their arrival rate may vary widely. Hence, classification for each individ-

ual observation must be done quickly and improve as long as time permits.

Besides stream mining, other classification tasks require interactive re-

sponse times. Anytime classification allows for interruption of the classifier

at any given time point to provide such interactive responses or online clas-

sification of stream data.

Anytime classifiers have to be capable of dealing with these time con-

straints and data volumes [Zil96, YWKT07, UXKL06]. Anytime classifica-

tion applications have several characteristics in common. First, typically

large volumes of data need to be processed. Second, there is a varying flow

of more data. Third, immediate reaction is required. And finally, in many

applications the time allowance is not known in advance, but depends on

varying stream volume or user interruption.
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In contrast to anytime algorithms, so called budget or contract algorithms

[Zil96] use a fixed (budgeted) time limit for their calculation. If the available

time is less than the contracted budget, they cannot give any result. An-

other severe limitation is their inability to improve the result if more time is

available. Their only chance is to restart computation with a more detailed

model. This exhibits the major drawback, since they cannot use the results

they had so far, but have to start computation from scratch.

A good anytime classifier makes best use of the time allowance for clas-

sification. It can be interrupted at any time and still provide a good classifi-

cation estimate until then. This can be summarized in three quality criteria:

efficiency, effectiveness, and interruptibility of the classifier.

In terms of classification effectiveness, Bayes classifiers using kernel esti-

mates have shown to perform well in traditional classification tasks. They

provide a detailed model of the data on sound statistical foundations. In

terms of interruptibility or efficiency, however, this detailed model is disad-

vantageous, since classification is based on a computation that includes all

kernel estimates.

For anytime classification, we propose a hierarchy of mixture densities

that includes kernel densities as the most detailed level and successively

coarser mixture densities on upper levels. This organization of models al-

lows interruption at any level of the hierarchy, using as much detail as was

read until the point of interruption.

Kernel estimates are based on the actual data objects, and, therefore, they

are best organized by means of any multidimensional indexing structure like

the R-tree or R*-tree [Gut84, BKSS90]. They have shown to provide sub-

stantial efficiency gains in a number of applications on both point and spatial

data. For probability density queries required for Bayes kernel classification,

all kernels have to be examined. As minimum bounding rectangles in mul-

tidimensional indexes provide no information for classification, we propose

storing mixture density parameter information in directory nodes to allow

for anytime classification.

Our novel Bayes tree indexing structure provides model information about

the kernels in the subtree of any node at any hierarchy level of the tree. It

builds nodes in a bottom-up fashion that reflect density models in a compact

way at different granularities. For our new probability density query, descend-

ing the tree is based on strategies that favor classification accuracy. These

queries require aggregation of mixture densities at different granularities as
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opposed to localizing points or point neighborhoods.

Our tree provides a very coarse model in the root node, and successively

finer models on the lower levels of the tree. As different granularities are

available and compact models are located at the top levels, the probability

density query can be interrupted early on. As long as time permits, the

model is further refined. Our Bayes tree is an efficient indexing strategy for

the established effective Bayes classifier.

Our approach includes

• statistically sound mixture density classification

• hierarchy of mixture density models

• index-based anytime Bayes classification

• anytime probability density queries

This chapter is structured as follows: we review related work on anytime

algorithms, classification and indexing in Section 7.2. Anytime classification

prerequisites and quality criteria are discussed in Section 7.3. Our novel

Bayes tree indexing structure is defined in Section 7.4.2 along with differ-

ent descent strategies and model aggregation. Our thorough experiments in

Section 7.5 demonstrate on both synthetic and real world data that Bayes

tree classification is more efficient and effective than existing techniques. We

conclude this chapter in Section 7.6.

7.2 Related work

Anytime algorithms are used in robotics and other artificial intelligence sys-

tems where interruption is common [KS02]. In anytime learning, the focus

is on restrictions of the training phase [GR92, LMG03]. Other approaches

study monitoring of the performance of anytime algorithms [HZ96], or any-

time computation of top-k queries [ADGK07].

Anytime classification is classification up to a point of interruption

[MKSW00, EM05, UXKL06]. In addition to high classification accuracy as

in traditional classifiers, anytime classifiers have to be highly efficient to make

best use of the limited time available, and, most notably, they have to be

interruptible at any given time point. This time point is usually not known
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in advance and may vary greatly [Zil96]. Anytime classification has been

discussed for boosting techniques [MKSW00], decision trees [EM05], and

nearest neighbors [UXKL06]. For Bayesian networks, a sampling approach

for candidate selection has been suggested [HD02]. For naive Bayes, an

anytime algorithm that takes some dependencies into account using a weaker

attribute independence assumption is discussed in [YWKT07]. For Bayes

classifiers based on kernel densities that do not make the strong independence

assumption of naive Bayes no anytime algorithm exists to the best of our

knowledge.

Multidimensional indexing structures like the R-tree, R*-tree, X-

tree or Gauss-tree have been shown to provide substantial efficiency gains

in similarity search [Gut84, BKSS90, BKK96, BPS06]. The basic idea is to

organize the data such that only relevant parts of the database have to be ac-

cessed. This is based on the assumption that in traditional similarity search

or retrieval scenarios, query processing requires only a small portion of the

data. This assumption does not hold in Bayes kernel classification. As the

entire model may potentially contribute to the class label decision, probabil-

ity density queries are fundamentally different from similarity queries in that

the entire database has to be accessed in order to answer any query with-

out loss of accuracy (see Section 7.4 for details). Thus, approaches like the

Gauss-tree that store univariate probabilistic features for similarity search or

the R*-tree that store point or spatial data cannot provide the necessary den-

sity estimation for Bayes classification. Consequently, simply storing kernel

estimates in multidimensional indexes, does not suffice for anytime classifi-

cation. Thus, a meaningful hierarchy of model information is required that

allows classification based on partial information from the index. Conse-

quently, indexes have to provide information on the hierarchy of the models

as discussed in Section 7.4.

7.3 Anytime stream classification

In stream mining or other online mining tasks the incoming data flow exceeds

both the time and space limits of traditional algorithms. As large volumes

of data have to be processed while novel data is constantly arriving, anytime

algorithms have to provide good results in an efficient manner. Moreover,

these algorithms have to keep pace with constantly incoming data. As the
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Figure 7.1: Prototypical anytime classification accuracy: very small time

allowances typically lead to medium classification accuracy, greater time al-

lowances provide a rapid accuracy increase.

arrival rate may vary, interruptibility at any time point is a key requirement.

This is opposed to contract algorithms where time allowance is known in

advance [Zil96]. Besides stream mining, any application with interactive

response times requires anytime algorithms.

For classification, anytime classifiers are interruptible classifiers that pro-

vide the best quality for given time or page access constraints. For example,

in stream monitoring, events have to be classified with respect to action

required.

Accuracy in anytime classification denotes per time step the absolute

classification accuracy as in traditional classifiers as well as the relative clas-

sification accuracy with respect to traditional unbound time classification. In

stream classification the available computation time varies, therefore the ac-

curacy of an anytime classifier is given by the average classification accuracy

with respect to the inter-arrival rate (speed) of the data stream. We evalu-

ate this stream specific anytime classification accuracy in our experiments in

Section 7.5.

Obviously, the usefulness of an anytime classifier depends on its quality.

Quality can be determined with respect to efficiency, effectiveness, and the

accuracy increase. Efficiency refers to the speed at which classification deci-

sions are made. Effectiveness denotes the absolute classification accuracy as

in traditional classifiers as well as the relative classification accuracy with re-
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spect to traditional infinite time classification. Increasing quality means that

anytime classifiers should show rapid improvement of accuracy. Ideally, even

for little time, classification accuracy is close to the best answer. With more

time, classification accuracy should soon reach the classification accuracy of

the infinite time classifier [Zil96, UXKL06]. This is illustrated in Figure 7.1.

Early on, the ideal anytime classifier should provide high accuracy with rapid

increase. These requirements can be summarized as:

Anytime classifier quality criteria.

• efficiency, i.e. low runtime, is more important than in most traditional

classification scenarios as the overall time allowance is limited

• effectiveness, i.e. high classification accuracy, as in traditional classi-

fication refers to the quality of the resulting class label assignment

• accuracy increase, i.e. the greater the time allowance, the better

classification accuracy should be

In this chapter we propose a new anytime classifier based on both Gaus-

sian kernels and Gaussian mixture models (see also Chapter 6.3). We develop

a consistent model hierarchy which allows for easy mixing of models and ker-

nels. We store this model hierarchy in our new index structure the Bayes

tree. Details on updating of the model in our anytime classification scheme

are discussed in the next section.

7.4 The Bayes tree

We are now ready to propose our novel anytime approach based on the

Bayes decision theory using kernel density estimation. Our overall goal is

an efficient algorithm that can be interrupted at any given time point and

produces a meaningful classification result that improves with additional time

allowances. The main problem of anytime Bayes classifier is to obtain a good

approximation of the class conditional density p(x|ci) in reasonable time. A

Naive Bayes classifier or a mixture density approach with few components

is a very efficient way to determine the class conditional density p(x|ci) (see

also Chapter 6.3). However, an efficient refinement of the density model is

not possible.
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In the next section we give an overview of our technique for estimating the

class conditional density before giving the technical details in the following

sections. Finally we describe how the classification decision is made using

our novel index structure.

7.4.1 Outline

As discussed in Section 7.3, any anytime classifier has to meet three quality

criteria: it should be efficiently computable to ensure that the time allowance

is made good use of, it should be effective to ensure good classification accu-

racy, and finally, this accuracy should increase as time proceeds.

Effectiveness. Bayes classification using kernel densities is an effective

choice. However, it cannot be interrupted at will, as meaningful classification

is only possible once all density estimators have been read (see Chapter 6.3.3).

Consequently, it cannot be used in anytime classification scenarios as is.

Efficiency. Indexing provides means for efficiency in traditional query

processing. Grouping similar data on hard disk and providing directory in-

formation on disk page entries, only the relevant parts of the data have to be

accessed during query processing. Traditional queries are usually specified

via a query object and a similarity tolerance, given by a threshold range ε

or by a number of k nearest neighbors. Using this ε range or information

on the neighbors detected so far, irrelevant parts of the data may be pruned

during query processing based on directory information. Thus the amount

of data that has to be accessed is reduced, which in turn may greatly reduce

runtimes. This is illustrated in Figure 7.2. The query and the ε range allow

for straightforward pruning of database objects whose directory entries are

at more than ε distance.

However, this traditional pruning is infeasible when dealing with kernel

densities. The data objects could be stored at leaf level as in range query

applications. As classification requires reading all kernel estimators of the

entire model, accuracy would be lost if kernel densities were ignored. Conse-

quently, there is no irrelevant data, and hence no pruning. In Figure 7.2 this

scenario is illustrated. As the entire model is required for classification, no

pruning is possible. As illustrated, the upper levels of an index that supports

anytime classification would have to provide information that can be used

for assigning class labels even before the leaf level containing the kernels is

reached.
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Figure 7.2: Traditional pruning is not possible for probability density queries,

since all kernels have to be accessed to answer a q-probability density query.

Thus, accessing the entire kernel density model is clearly not efficient

and not interruptible. Moreover, kernel densities provide only a single model

of the data, i.e. no incremental improvement of classification is possible as

required for anytime classification.

Our goal is therefore a hierarchy of classifiers built on top of kernel den-

sities. Each hierarchy level should preserve as much information as possible

on the underlying observations, while allowing interruption and query-based

refinement as long as time permits.

Mixture densities naturally provide a way to summarize kernel density

information. A set of kernel densities can be represented as mixture densities

on a coarser level, i.e. a set of Gaussians. These Gaussians in turn, may be

represented at an even coarser level using fewer Gaussians, and so on. The

top level describes the entire data as a single Gaussian. These levels are

illustrated in Figure 7.3.

Moreover, the information on different granularity levels should be index-

able for greater efficiency, and should provide the means for refinement of

the query at runtime as long as time permits and in the most relevant parts

of the model depending on the query.
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Thus, our Bayes tree approach comprises:

• Bayes classification using kernel densities at the finest level if

time permits reading all kernel density estimators

• a hierarchy of mixture densities that allows for classification using the

currently read model

• indexing of mixture densities for efficient representation and page-

based access

• refinement of the most relevant parts of the model depending on the

individual query

7.4.2 Structure of the Bayes tree

In this section we describe how to obtain a good approximation of the class

conditional probability density-based on kernel densities for one given class

ci. Recall that kernel densities are based on the objects of the training data

belonging to a specific class. We store the objects belonging to one class

in one Bayes tree. The Bayes decision rule on multiple trees is discussed in

Section 7.4.4.

Figure 7.4 shows the general idea: a hierarchy of mixture densities is

stored in a multidimensional index. Each level of the tree stores a complete

model of the entire data at different levels of granularity. To this end, a

model
(parameterized)

mixture densitiy
(semi‐parameterized)

kernel
(non‐parameterized)(non‐parameterized)

Figure 7.3: Different density estimation approaches: model-based assuming

a single model (parametric), mixture densities using a combination of models

(semi-parametric), and kernels adapting to the data (non-parametric)
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R‐Tree

Bayes TreeBayes Tree

K K

… … …
K K K K K K K

Mixture densitiesMixture densities

Figure 7.4: R-tree, Bayes tree and mixture densities on three Bayes tree

levels: the R-tree encloses the objects by a hierarchy of minimum bound-

ing rectangles (left), the Bayes tree builds a hierarchy over kernel density

estimates at the leaf level (center) that correspond to the depicted mixture

densities per level (right).

balanced structure as in R-trees is used to store the kernels at leaf level. The

hierarchy on top is built in a bottom-up fashion, providing a hierarchy of

node entries, each of which is a Gaussian that represents the entire subtree

below it. The index is dynamic and easily adapts to novel data as not the

actual parameters of the Gaussian, its mean and its variance, are stored, but

easily maintainable information for their computation.

Multidimensional indexing structures from the R-tree family summarize

data recursively in minimum bounding rectangles (MBRs). Leafs store the

actual data objects and the subsequently higher levels provide directory in-
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formation via the lower and upper bounds of these MBRs. This approach has

been successfully used in a number of applications involving point or spatial

data objects.

For kernel densities storing the actual data objects is sufficient. To ap-

plicate the kernel density model on the actual objects requires setting the

smoothing parameter h (also called bandwidth - see also Chapter 6). We use

a common method proposed in [JL95], setting hi = 1/
√
|Dci |. This approach

has the advantage of allowing simple updates of our models in our Bayes tree

at low computational cost. Choosing the type of kernel itself depends on

the application requirements. In principle, our approach works for arbitrary

kernels. Throughout this work, we instantiate our approach by using the

Gaussian kernel KGauss(w) = 1
(2·π)d/2

e
− w2

2hi which is a very common choice for

mixture densities (see Chapter 6.3.2).

However, storing MBRs information on the upper levels in not sufficient

to determine the probability density distribution of subtrees. Consequently,

we propose storing more information than MBRs to provide the information

necessary to compute parameters of the mixture densities at any given level

of the hierarchy.

Naively, we could store the parameters of all Gaussians at the respective

level of the tree. For the first issue, recall that the parameters of mixture den-

sities are the mean and variance of Gaussians (wi, µi and Covi, respectively).

That is we could store these parameters of a subtree at the corresponding

node (see also Section 6.3.2). Please note if only variances (σ1, . . . , σd), but

no covariances are considered, the covariance matrix Cov degenerates to a

diagonal matrix and det(Cov) =
∏d

i=1 σ
2
i .

Storing this information directly would require accessing the actual ob-

jects on leaf level to generate any model on a higher level. For example,

assume we have two mixture densities. Building a coarser mixture density

that represents both is not possible without additional information. The

mean and variance are not distributive, i.e. from two means alone we cannot

infer the overall mean (see also Figure 7.5). Instead, the number of instances

is required to weight the two means accordingly. Mean and variance are thus

algebraic measures that require the number of instances, their linear sum

and quadratic sum.
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a) b)) )

Figure 7.5: Computing mean and variance: computation of the overall mean

in b) takes the number of objects (depicted as dots at the bottom) into

account to weight the two means in a).

Definition 7.1 Bayes tree node entry.

A subtree Ts of a d-dimensional Bayes tree is associated with the set of objects

stored in the leafs of the subtree: Ts = {t(s,1), . . . t(s,ns)}. An entry es then

stores the following information about the subtree Ts:

• The minimum bounding rectangle enclosing the objects stored in the

subtree Ts as MBRs = ((l1, u1), . . . , (ld, ud))

• A pointer ptrs to the subtree Ts

• The number ns of objects in Ts

• The linear sum
ns∑
j=1

(
t(s,j)

)
of all objects in Ts

• The quadratic sum
ns∑
j=1

(
t(s,j)

2
)

of all objects in Ts

Please note that all objects stored in the Bayes tree are d-dimensional kernels.

A normalization to the unit hypercube [0 . . . 1]d can be achieved by using the

minimum bounding rectangle enclosing the root.

Figure 7.6 illustrates the structure of a Bayes tree entry. In the following

we also use the word entry for a node entry according to Definition 7.1.

From the information stored according to Definition 7.1, mean and variance

are computed as follows [HTF07]:
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Lemma 7.1 Computing mean and variance.

The mean point µs and the variance vector σ2
s for a subtree Ts can be com-

puted by the stored values of the respective entry es with:

µs =
1

ns

ns∑
j=1

(
t(s,j)

)
σ2
s =

1

ns

ns∑
j=1

(
t(s,j)

2
)
−

(
1

ns

ns∑
j=1

(
t(s,j)

))2

We therefore extend multidimensional indexing from the R-tree family to

store model specific information. Our Bayes tree extends the R*-tree in the

following manner:

Definition 7.2 Bayes tree.

A Bayes tree with fanout parameters m,M and leaf node capacity parame-

ters l, L is a balanced multidimensional indexing structure with the following

properties:

• Each inner node nodes contains between m and M entries (see Defini-

tion 7.1). The root has at least 1 entry.

• Each inner node with νs entries has exactly νs child nodes (see Figure

7.6: nodes has two entries es◦1 and es◦2 with their child nodes nodes◦1
and nodes◦2).

• Leaf nodes store between l and L observations

(d-dimensional objects).

• A path from the root to any leaf nodes has always the same length

(balanced).

This structure has some very nice and intuitive benefits: since the number

of entries, their linear sum as well as their quadratic sum are all distributive

measures, the information stored in any node of our Bayes tree may be used

to build the same, yet more coarser level, information in nodes on higher

levels. More precisely, we may simply use the built procedure of any standard

R*-tree to create our mixture densities.

Recall that R*-trees, or any other tree from the B-tree or R-tree family,

grows in a bottom-up fashion. Whenever there are more entries assigned to
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Figure 7.6: Nodes and Entries in the Bayes tree (here: above the kernel

estimate level). Entries store minimum bounding rectangles (MBR) and ad-

ditionally information to compute mean and variance, i.e. number of objects

(ns), linear sum (
∑
xi), quadratic sum (

∑
x2
i ), and child pointers (pi). Ker-

nel positions are depicted as dots, higher level mixture density representation

as density curves (bottom right).

any node than allowed by the fanout parameters M , which in turn reflects

the page size on hard disk, an overflow occurs. This overflow leads to a

node split, i.e. the entries of this overfull node are separated onto two new

nodes. Their ancestor node then stores aggregate information on these two

nodes. In the R*-tree case, this was simply the MBR of the two nodes, for

the Bayes tree additionally, the overall number, linear and quadratic sum

have to be computed and stored in the ancestor node. This way, in a very

straightforward manner, coarser mixture density models are created.

Consequently, building Bayes-trees is a simple procedure that starts from

the original kernel density estimates that are stored at leaf level until a split is

necessary. This first split leads to creation of a second level in the tree, with a

coarser mixture density model derived through R*-tree-style split. Successive

splitting of nodes as more kernel densities are inserted, leads to additional

growth of the tree, eventually yielding a hierarchy of mixture density models

as coarser representations of the kernel densities (see Figure 7.7).
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… …

K K K K K K K K K

……

Before split After split

Figure 7.7: Split in the Bayes tree: to the left a completely filled leaf node

with four kernel estimates is depicted. Additional kernel densities for new

observations may be dynamically inserted, leading to a split of the leaf with

automatic generation of new mixture density representations at higher levels.

7.4.3 Query processing

In the following we first elaborate strategies to answer probability density

queries on a Bayes tree and then describe our approaches for classification

refinement in Section 7.4.4.

Probability density queries

Recall that an entry es represents all objects in its corresponding subtree by

storing the necessary information to calculate its mean and variance. Hence,

a set E = {e1 . . . ek} of entries defines a Gaussian mixture model pGaussMixtue

according to Definition 6.6.

Definition 7.3 Probability density query pdq.

Let E = {e1 . . . ek} be a set of entries and n =
∑k

i=1 nei the total number of

object represented by E. A probability density query pdq returns the density

for an object x using the Gaussian mixture model given by E:

pdq(x|E) =
k∑
i=1

ns
n
· g(x, µei , σei)
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where µei and σei are calculated according to Lemma 7.1. For a leaf entry a

kernel estimator as discussed in Section 6.3 is used and obviously µei is the

object itself.

Before we can go into detail on our query processing strategies, we need

a clear definition for the enumeration of nodes and entries.

Definition 7.4 Enumeration of nodes and entries.

To address each entry stored in the Bayes tree we use a label s with the

following properties:

• The (virtual) entry pointing to the root node is labeled e∅ with T∅ the

complete set of objects stored in the Bayes tree.

• The child node of an entry es has the same label as its parent entry,

i.e. the child of es is nodes. Ts denotes the set of objects stored in the

respective subtree of es.

• The νs objects stored in nodes are labeled {es◦1 . . . es◦νs}, i.e. the label

s of the predecessor concatenated with the entry’s number in the node

(recall Figure 7.6).

A set of nodes which can be reached from the root is defined by a prefix-

closed subset. The assumption of prefx-closed merely formalizes that a node

can only be read if the node containing its parent entry has also been read.

Definition 7.5 Prefix-closed subset and frontier.

A set of nodes N is prefix-closed iff:

• node∅ ∈ N (the root is always contained in a prefix-closed subset)

• nodes◦i ∈ N ⇒ nodes ∈ N (prefix-closed)

Let E(N ) be the set of entries stored on the nodes contained in a prefix-closed

node set N : E(N ) =
⋃

node∈N
(e ∈ node). The frontier F(N ) ⊆ E(N ) contains

all entries e ∈ E(N ) that satisfy

• es◦i ∈ E(N ) ⇒ es /∈ F(N ): all of its predecessors are not in F(N )

(predecessor-free)
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• es ∈ F(N ) ⇒6 ∃i ∈ IN with es◦i ∈ F(N ): all successors of a frontier

entry are not in F(N ) (successor-free)

Figure 7.8 a) illustrates both a prefix-closed subset of nodes and the cor-

responding frontier. The subset, separated by the curved red line, contains

the root, node2 and node23, hence it is prefix-closed. Its corresponding fron-

tier (highlighted in white) contains the entries e1, e21, e23, e221, e222 and

e223 where the last three represent kernels. Note that the frontier is both

predecessor-free and successor-free.

Using the above definitions we now define the processing of a probability

density query on the Bayes tree.

Definition 7.6 Anytime pdq processing.

Let T∅ be the set of objects stored in a Bayes tree containing tmax nodes.

Anytime pdq processing for an object x processes a prefix-closed subset Nt in

each time step t with:

• N0 = {node∅}: the processing starts with the root node

• |Nt|+ 1 = |Nt+1|: in each time step one more node is read

The probability density for the query object x at time step t is then calculated

using the mixture model corresponding to the frontier F(Nt) of the current

prefix-closed subset Nt as in Definition 7.3, that is pdq(x|F(Nt)).

Note that
∑

es∈F(Nt) nes = |T∅|.

The costs for calculating the new probability density for x after reading

one additional node is very low due to the algebraic nature of mean and

variance. From time step t to t + 1 Nt becomes Nt+1 by adding the child

node nodes from one frontier entry es ∈ F(Nt). If nodes has νs entries, then

the frontier F(Nt) changes to F(Nt+1) by

F(Nt+1) = (F(Nt) \ {es}) ∪ {es◦1, . . . , es◦νs}

Hence, the probability density for x in time step t+1 can simply be calculated

by

pdq(x|F(Nt+1)) = pdq(x|F(Nt))
− ns
|T∅|
· g(x, µes , σes)

+
νs∑
i=1

ns◦i
|T∅|
· g(x, µes◦i , σes◦i)
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Figure 7.8: Tree frontier: a) depicts an exemplary frontier in a Bayes tree

that corresponds to a model with mixed levels of granularity: nodes 2 (root

level) and 22 (inner level) are refined, yielding 1 (root level), 21 (inner level),

221, 222, 223 (all leaf level), 23 (inner level). The resulting mixture density

model is depicted in b), the actual kernel positions and the hierarchy are

depicted in c).

Note that after reading all tmax nodes pdq(x|F(Ntmax)) is a full kernel density

estimation taking all kernels at leaf level into account.

Answering a probability density query requires a complete model as found

at each level of the tree. Besides these full models, local refinement of the

model to adapt flexibly to the query provides models composed of coarser

and finer representations. More precisely, in any model, each node represents

its subtree. This node representation may be replaced by the finer represen-

tation at any level below it. This idea leads to query-based refinement in our

anytime algorithm. Each mixed granularity model corresponds to a frontier

in the tree, i.e. a set of entries in the tree such that each kernel estimate

is represented exactly once. Taking a complete subtree of all nodes starting
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from the root, the frontier describes a non-redundant model that combines

mixture densities at different levels of granularity.

Figure 7.8 b) shows the resulting mixture density for the example frontier

from part a). The leftmost Gaussian stems from the entry e1 which is located

at root level. The rightmost Gaussian and the one in the back correspond

to entries e23 and e21 respectively, the remaining represent kernel densities

at leaf level. Part c) of the image depicts the underlying R*-tree MBRs and

the kernels as dots. The bigger blue dot and the vertical line represent the

query object from which the above frontier originated.

A frontier is thus a model representation that consists of node entries

such that each kernel estimate contributes (prefix-closed subtree) and such

that no kernel estimate is represented redundantly (predecessor-free). Each

possible frontier represents a possible model for our anytime algorithm. The

number of possible models in any Bayes tree depends on the actual usage

of the tree, i.e. the degree to which it is filled and the height of the tree.

Figure 7.9 illustrates the four possible models for a Bayes tree of height two

and fanout two. For realistic trees, with increasing height and fanout, the

number of possible models is enormous.

a) b)
1 2 1 2

K

1 2

K K K K K

1 2

K K K K

c) d)

11 12 13 21 22 11 12 13 21 22

c) d)
1 2 1 2

K
11

K
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K
13

K
21

K
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K
11

K
12

K
13

K
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22

Figure 7.9: A tree of height 2 and fanout 2 yields four possible models: a)

root level model, b) and c) mixed root and leaf level model, and d) leaf level

model.
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Choosing among all these models is crucial for anytime algorithms, where

the time available (typically unknown a priori) should be spend such that the

most promising model information is used first. For tree traversal we propose

three different descent approaches to answer probability density queries on a

Bayes tree. First, we could descend in a breadth-first (bft) fashion, refining

each model level completely before descending down to the next level. Al-

ternatively, we could descent the tree in a depth-first (dft) manner, refining

a single subtree entirely down to the actual kernel estimates before refining

the next subtree below the root. The choice of the subtree to refine is made

according to a priority measure. The third approach, which we call best first,

orders nodes globally with respect to a priority measure and refines nodes in

this ordering.

As for the priority measures we use a geometric approach and a proba-

bilistic approach. The geometric approach gives highest priority to the node

with the smallest distance based on its minimum bounding rectangle as in

traditional R-trees, that is dist(x,MBR) = p

√∑d
i=1 dist(xi, (li, ui))

p with

dist(xi, (li, ui)) =


xi − ui , if xi > ui
li − xi , if xi < li
0 , otherwise

where d is the dimensionality, x = (x1, . . . , xd) is the query object and

MBR = ((l1, u1), . . . , (ld, ud)) as defined in Definition 7.1. p stems from the

Lp norm, where we use the Euclidean distance (p = 2) for our computations.

The probabilistic priority measure exploits the statistical information

stored in each node and awards priority with respect to the actual density

value for the current query object. More specifically, at time step t, having

read the prefix-closed set of nodes Nt, the probabilistic approach descends at

the next time step t+ 1 into the subtree Tŝ belonging to the entry eŝ with

eŝ = argmax
es∈F(Nt)

{g(x, µes , σes)}

where x is the current query object, µes and σes are the mean and vari-

ance of Tŝ as derived from the information stored in es and g is a Gaussian

probability density function as in Definition 6.6.

In our experiments we demonstrate the outcome of all combinations be-

tween the three descent strategies and the two priority measures, where the

priority measure determines for the breadth-first approach the order of nodes

per level.
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7.4.4 Classification refinement

So far we described in the last section different strategies how to descend

in one Bayes tree, i.e. how to improve the class conditional density for one

class using increasingly finer mixture models. Now we still have to define

refinement strategies for classification with respect to several classes, i.e.

how to divide or spend the time given on descending several Bayes trees, one

per class (see Section 7.4.2). For classification purpose optimally each tree

should be refined. One question is having read m nodes so far, i.e. being at

time step tm, which of the n trees representing the different classed should

be refined in the following time step tm+1?

Initializing our classifier we evaluate the coarsest model for each class

ci ∈ C, i.e. the model consisting of only one Gaussian probability density

function representing all objects of ci. For initialization we refer to these n

Gaussians as the virtual root. Please recall that the model represented by

the virtual root corresponds to the naive Bayes classifier 6.3.1.

For classification refinement we propose two different approaches. The

first approach uses a simple strategy which refines the next node in turn to

all trees in their natural order and start over again each time every tree was

accounted for. We refer to this refinement strategy as order. The second

refinement approach gives permission to read the next node to the Bayes

tree whose class has the maximal probability for the current query at that

time. More precisely, at time step t, the next node is read in the Bayes Tree

of class cî with

cî = argmax
ci∈C

{pdq(x|F(Nt,ci))}

where x is the present query object, C the set of class labels and pdq(x|F(Nt,ci))
is the density value for x in the current mixture model for class ci at time

step t (recall Definition 6.6). We therefore refer to the second refinement

approach as maximal.

Summary. The Bayes tree is a general indexing structure for answering

probability density queries. By storing the number of objects, their linear and

quadratic sums, respectively, it easily adapts to new observations by inserting

the corresponding kernel estimates and updating the algebraic measures.

Using the R*-tree split, the tree grows in a natural fashion and generates

additional levels of granularity as the tree grows. Arbitrary prefix-closed cuts

can be processed resulting in a predecessor- and successor-free frontier and its
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corresponding mixture density, which allows the desired anytime behavior.

Different descent strategies, priority measures and refinement approaches

can be employed. In the next section we demonstrate the performance of

probability density queries on the Bayes tree, analyzing the above mentioned

strategies and their combinations in detail.

7.5 Experiments

We ran extensive experiments on real world and synthetic data to evaluate

our anytime classifier. After each time step t we interrupted the Bayes tree

classification and measured the classification accuracy. For secondary storage

index structures a time step corresponds to a page access. Experiments were

run using 2KB page sizes on Pentium 4 machines with 2.4 Ghz and 1 GB

main memory.

7.5.1 Experimental setup

The performance of our anytime classifier is evaluated using both synthetic

and real world data sets. We generated different synthetic data sets con-

taining two classes. For each class, the data objects are randomly generated

from a random Gaussian mixture model as in [HTF02]. Generation is in

three steps. First we use one Gaussian distribution for class one with mean

µ1 = (0 . . . 0) and one Gaussian for class two with mean µ2 = (v . . . v);

‖µ2 − µ1‖ =
√
d · v2 = 4.0. Variance for each dimension was set to 4.0. In

the second step we randomly generated nmix = 55 means from each Gaus-

sian distribution. These 55 mean values are used as mean values for the

components of the mixture model and the variance is uniformly distributed

between 0.1 to 1.0. Finally, we generated 100 objects for each Gaussian in

the third step, thus in total the data set contains 5, 500 objects per class.

We randomly picked 1, 000 objects for testing and 10, 000 for training. We

varied the dimensionality between d = 4, d = 8 and d = 12 dimensions.

Further on we use continuous valued attributes from three different real

world data sets (see Table 7.1). The USPS data set is first transformed and

reduced to 10 dimensions using linear discriminant analysis [DHS01].

In all experiments we use a 4 fold cross validation and study the achieved

classification accuracy for different time allowance. We compare the Bayes
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Name size classes features reference

Vowel 990 11 10 [HB99]

USPS (LDA) 8,772 10 10 [HTF07]

Gender 189,961 2 9 [AS04]

Table 7.1: Data sets used in our experiments

tree with a recent anytime nearest neighbor classifier (Anytime NN) [UXKL06].

The Anytime NN approach sorts the data according to a discriminant func-

tion and always determines the nearest neighbor w.r.t. the data read to the

point of interruption (see also Chapter 6.4 for details on the nearest neigbor

classifier).

Both anytime classifiers need a short setup for evaluating the virtual root

or for calculating the distance to one representative per class. After this

initialization phase more and more details are used for classification. For

both approaches we start with time point zero after this initialization step.

We additionally show the classification accuracy of the naive Bayes clas-

sifier as a base line comparison (see CHapter 6.3.1). The Naive Bayes clas-

sifier assumes independence of dimensions. As Naive Bayes only evaluates

one Gaussian probability per class, it needs the same time for classifying an

object as the setup phase of the anytime classifiers. Since it is not an any-

time classifier, its classification accuracy is depicted as a flat line over time.

Further on we report the classification accuracy of the Bayes classifier based

on kernel densities as a second baseline of the maximal accuracy reachable

by the Bayes tree.

7.5.2 Evaluating the strategy

First, we study the effects of the different query strategies on the classification

accuracy using the 4-dimensional data set. Figure 7.10 (left part) presents

the results using probabilistic descent strategies (Section 7.4.3). The best first

strategy clearly outperforms the other two approaches (depth and breadth-

first). The depth-first approach refines the same densities as the priority first

approach for the first four time steps. After this the locality assumption of

this approach fails to identify the most relevant refinements.

The breadth-first strategy achieves a similar classification accuracy as the
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Figure 7.10: Probabilistic descent (top) and geometric descent (bottom) on

synthetic data

other methods for the first two steps. After this its processing of complete

levels before descending only slightly increases accuracy. At time point six the

first level of the Bayes tree is completely read and the method continues with

the next level. At time point four the component with highest probability

at level 2 is refined which drastically increases breadth-first accuracy. The

first levels of a tree do not contain many nodes and hence the breadth-first

approach quickly achieves a better classification accuracy than the depth-first

approach. The best first strategy globally selects the subtree with highest

probability density for descent, resulting in better classification accuracy after

a few steps only (time step four).

The same experiment with geometric descent (Section 7.4.3) again shows

that the best first approach performs better than the other two methods (see

Figure 7.10 - right part). The depth-first approach shows a lower overall

performance compared to the probability depth-first approach (nearly 0.07).
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In this experiment, the depth-first approach does not even achieve a better

results if more time is available. This result indicates that the geometric

depth-first approach does not choose a good subtree for refinement in the first

steps. A similar result can be seen for the breadth-first approach. Compared

with the probability breadth-first the geometric breadth-first approach shows

slow improvement after a complete level of the tree has been read (time step

three to four and seven to eight). Overall the probability descent strategies

show a better performance than the geometric approaches. Similar results

were obtained for other data sets. Thus, from now on, we focus on the

probability best first strategy only.
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Figure 7.11: Refinement strategies Order vs. Maximal

Finally, we evaluate the effect of our classification refinement methods:

order of the classes or maximal class conditional density. Recall that the

order method refines each individual Bayes tree (each class) once before con-

tinuing with the first one again. In contrast the maximal method always

refines the class with the highest posteriori probability and hence may refine

one class multiple times. The vowel data set (see Table 7.1) results are illus-

trated in Figure 7.11. The maximal order clearly performs better than the

arbitrary class order as classification accuracy increases dramatically at the

beginning. For this data set the maximal order typically also refines each

class in the first 11 steps. After this point, the classification accuracy for

the maximal order again increases steeply and converges after 13 time steps.

The class order does not converge until time step 22, i.e. after refining all
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classes again. Thus, for the remaining experiments we use maximal order

with probability best first traversal.

7.5.3 Evaluating the scalability and accuracy

In this section we evaluate the performance and scalability of the Bayes tree.

Scalability in terms of dimensionality is studied on 4, 8 and 12-dimensional

data sets in comparison with anytime nearest neighbor classification [UXKL06]

(see Figure 7.12). As we can see, the Bayes tree clearly outperforms the Any-

time NN approach on all three data sets. With increasing dimensionality the

two classes are more easily separated and hence the overall classification ac-

curacy increases. The Bayes tree scales very well and improvement of the

classification accuracy is nearly optimal. At the beginning, the classification

accuracy improves dramatically and converges after a few time steps only

(reaching the classification accuracy of the kernel densities). Since the classi-

fication model of the Bayes tree at time point zero already uses a well defined

model the Bayes tree starts with a high classification accuracy. The Anytime

NN approach always starts with a lower accuracy and even looses quality in

some cases if not interrupted.

In Figure 7.13 we present the results for all three real world data for

different time allowance. As in the last experiment we compare our approach

with the Anytime NN approach and additionally report the results of the

Naive Bayes approach and the Bayes classifier based on Kernel densities.

On the real world data sets all methods perform very similarly. As de-

picted, the Bayes tree always starts with a high classification accuracy. With

more time allowance the classification accuracy of the Bayes tree increases.

For the Vowel data set the accuracy of the Bayes tree reaches a high ac-

curacy after 3 time steps only. As discussed in the last section the Bayes tree

converges after 13 steps and nearly reaches the accuracy of Kernel densities

at this point. The Anytime NN approach starts with a very low accuracy

of 0.37. The good result of the Bayes tree is due to the fact that the coarse

density model in the virtual root of the Bayes tree contains more information

about the class distribution than individual objects. After 14 steps the Any-

time NN also converges for the time being but does not reach the accuracy

of the Bayes tree. Overall, the anytime kernel density model of the Bayes

tree clearly outperforms the Anytime NN approach.

Next we evaluate the performance of the Bayes tree on LDA (linear dis-
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Figure 7.12: Comparing Bayes tree to Anytime NN on synthetic data of

dimensionality 4,8 and 12 (top to bottom)
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Gender data set (from top to bottom)
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criminant analysis) pre-processed data from machine learning [HTF07] (mid-

dle part of Figure 7.13). In this case the mixture model of the root is very

close to convergence as classes are well separated through LDA analysis.

Hence the Bayes tree starts with a classification accuracy of about 0.92. Af-

ter a few time steps only the Bayes tree has reached the classification accuracy

of the Kernel densities. For this data set the Anytime NN only reaches the

performance of the Naive Bayes after 15 time steps.

For the last data set in Figure 7.13 the gender data set, the accuracy of

the Anytime NN even shows non-monotonic behavior. The accuracy of the

Bayes tree in contrast monotonically increases and clearly performs better

than Anytime NN. The gender data set is the largest data set investigated

by our experiments. As we can see if more objects are available the Bayes

tree also needs more time for reaching the accuracy of the Kernel densities

(after 15 time steps an improvement of 0.1 is still possible). Nevertheless the

first steps show a great classification improvement.

7.5.4 Evaluating Poisson streams

To evaluate anytime classification under variable stream scenarios, we reca-

pitulate a stochastic model that is widely used to model random arrivals. A

Poisson process describes streams where the inter-arrivals are independently

exponentially distributed. Poisson processes are parameterized by an arrival

rate parameter λ:

Definition 7.7 Poisson stream.

The probability density function for the inter-arrival time of a Poisson process

is exponentially distributed with parameter λ:

p(t) = λ · e−λt.

The expected inter-arrival time of an exponentially distributed random vari-

able with parameter λ is E[t] = 1
λ

.

We use a Poisson distribution to model random stream arrivals for each

fold of the cross validation. We randomly generate exponentially distributed

inter-arrival times for different λ. If a new object arrives (the time between

two objects has passed) we stop our anytime classifier and measure the clas-

sification accuracy. We repeat this experiment using different inter-arrival
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times 1
λ
. As the Bayes tree and the Anytime NN [UXKL06] both need an

initialization phase prior to anytime classification, we assume that any object

arrives after the initialization phase at the earliest.

The Naive Bayes classifier could also be applied to this stream scenario

as Naive Bayes only needs a very small time budget for classifying an object

(equal to the initialization phase of the anytime classifiers). As Naive Bayes

cannot make use of additional time available the classification accuracy does

not change for different inter-time arrivals. The performance of Kernel densi-

ties are again only reported as additional information as evaluating all Kernel

densities for each object is not practical in stream scenario.

In Figure 7.14 we illustrate the results for different Poisson streams. We

varied λ from 0.1 to 0.3 and hence achieved different inter-arrival times for

the stream with an average of 10 to 3.3. As we can see if inter-arrival times

increases the classification accuracy also increases for both anytime classifiers

(the Bayes tree and Anytime NN).

For nearly all settings of λ the Anytime NN shows a worse performance

than the Naive Bayes approach. The Bayes tree in contrast is capable of

using the additional time to achieve a good average classification accuracy.

The major reasons for the good results of the Bayes tree are the high initial

accuracy and the rapid improvements of the accuracy during the first steps

(compare Figure 7.13). These results indicate that the Bayes tree is a well

designed anytime classifier for stream applications.

7.6 Conclusion

Anytime classification requires classifiers that can be interrupted at will and

still deliver good classification results. In this work, we propose a novel

index-based technique that allows the established Bayes classifier on effec-

tive kernel density estimation to be used in anytime classification. The Bayes

tree automatically generates a data adaptable hierarchy of mixture densities

that represent kernel density estimates at successively coarser levels. Our ef-

ficient probability density queries provide the necessary information for very

effective classification at any point of interruption. Our extensive experi-

ments on synthetic and real world data sets demonstrate that our anytime

classification approach delivers high classification accuracy at any time.



Chapter 8

Classification using subspace

clusters

Classification has been widely studied and successfully employed in various

application domains. In multidimensional noisy settings, however, classifica-

tion accuracy may be unsatisfactory. Locally irrelevant attributes often oc-

clude class-relevant information. A global reduction to relevant attributes is

often infeasible, as relevance of attributes is not necessarily a globally uniform

property. In a current project with an airport scheduling software company,

locally varying attributes in the data indicate whether flights will be on time,

delayed or ahead of schedule. To detect locally relevant information, we pro-

pose combining classification with subspace clustering (SubClass). Subspace

clustering aims at detecting clusters in arbitrary subspaces of the attributes.

It has proved to work well in multidimensional and noisy domains. How-

ever, it does not utilize class label information and thus does not necessarily

provide appropriate groupings for classification. We propose incorporating

class label information into subspace search. As a result we obtain locally

relevant attribute combinations for classification. We present the SubClass

classifier that successfully exploits classifying subspace cluster information.

Experiments on both synthetic and real world datasets demonstrate that clas-

sification accuracy is clearly improved for noisy multidimensional settings.
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8.1 Introduction

Data produced in application domains like life sciences, meteorology, telecom-

munication, and multimedia entertainment is rapidly growing, increasing the

demand for data mining techniques which help users generate knowledge

from data. Many applications require incoming data to be classified accord-

ing to models derived from labeled historic data. In a current project, we

investigate flight delays for airport scheduling purposes. The significance of

flight delays can e.g. be studied in reports of the Bureau of Transportation

Statistics in the U.S. [Bur05] and the Central Office for Delay Analysis of

Eurocontrol [Eur05]. Extensive flight data is recorded by flight information

systems at all major airports. Using such databases, we classify flights as on

time, delayed or ahead of schedule. This classification is essential in refining

robust scheduling methods for airport resources and ground staff (like the

one presented in [Bol00]).

For classification, numerous techniques exist. For our noisy database that

contains nominal attributes, numerical classifiers are not applicable. Neural

networks or support vector machines do not allow users to easily understand

the decision model for flight classification [SdSA05, Pla98] (see also Chapter

6.1). Bayes classifiers, decision trees, and nearest neighbor classifiers provide

explanatory information, yet assume globally uniform relevance of attributes

[SdSA05, Qui92, AKA91]. It has been shown that each type of classifier has

its merit; there is no inherent superiority of any classifier [DHS01].

However, classification is difficult in the presence of noise. Moreover,

patterns may not show across all data attributes for all classes to be learned.

In multidimensional data only a subgroup of attributes may be relevant for

classification. This relevance is not globally uniform, but differs from class

to class and from instance to instance.

We have validated the assumption of local relevance of attributes for the

flight classification project by training several types of classifiers. When us-

ing only attributes which are determined as relevant by standard statistical

tests, classification accuracy actually drops. This suggests that globally ir-

relevant attributes are nonetheless locally relevant for individual patterns.

We therefore target at grouping flights with similar characteristics and iden-

tifying structure on the attribute level. In the flight domain, several aspects

support the locality of flight delay structures. As an example, passenger

figures may only influence departure delays when the aircraft is parked at
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a remote stand, i.e. when bus transportation is required. At some times of

the day, these effects may be superposed by other factors like runway con-

gestion. Weather conditions and other influences not recorded in the data

cause significant noise.

Recent classification approaches like [DPG02], use local weighting in near-

est neighbor classification to overcome this drawback. In this work, we take

a different approach to identify locally relevant attributes by subspace clus-

tering. Note that our approach is different from semi-supervised learning

where unlabeled data is used for training [Zhu05]. Our approach assumes

class labels that are directly incorporated into subspace clustering. Cluster-

ing is helpful for understanding the overall structure of a data set. Its aim

is automatic grouping of the data in absence of any known class labels in

historic data [HK01]. Since class labels are not known in advance (“unsuper-

vised learning”), they are not used to classify according to given groupings

(“supervised learning”). Hence clustering is not appropriate for classification

purposes by its very nature [HK01]. However, the structures detected by clus-

tering may be helpful for detecting local relevance of attributes. For noisy and

high dimensional data, clustering is often infeasible as clusters are hidden by

irrelevant attributes. Different attribute combinations might show different

clustering structures, thus the aim of subspace clustering is to detect clusters

in arbitrary projections (“subspaces”) of the attributes. As the number of

subspaces is exponential in the number of attributes, most approaches try to

prune the subspace search space [AGGR98, CWZZ99, AKGS06]. Subspace

clustering has been shown to successfully detect locally relevant attribute

combinations [KKK04, AKMS07b].

We propose combining both worlds, supervised learning and unsupervised

learning by incorporating class label information into subspace search and

clustering. Classification based on these classifying subspace clusters exploits

both class and local correlation information. The flight classification problem

is used to evaluate our model. Its applicability, however, goes beyond this

scenario. In fact, there are many more application areas where classification

has to handle noisy multidimensional data with locally relevant attributes.
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8.2 Subspace classification

Subspace clustering is a recent research area which tries to detect local struc-

tures in the presence of noise or high dimensional data where meaningful clus-

ters can no longer be detected in all attributes [AGGR98, CWZZ99, KKK04].

As searching all possible subspaces is usually intractable, subspace clustering

algorithms try to focus on promising subspace regions. The challenge is a

suitable notion of interestingness for subspaces to find all relevant clusters.

Subspace clustering is a technique well-suited to identify relevant regions of

historic data, however, it is not suited for classification “as is”. Our clas-

sification approach is capable of exploiting local patterns in the data for

classification. This requires detecting subspaces and subspace clusters that

are also based on class structure. Our SubClass model thus comprises three

steps:

• step 1: interesting subspaces for classifying clusters: Section 8.2.1

• step 2: classifying subspace clusters: Section 8.2.2

• step 3: a classification scheme: Section 8.2.3

8.2.1 Step 1: Interesting Subspaces

Interesting subspaces for classifying clusters exhibit a clustering structure in

their attributes as well as coherent class label information. Such a structure

is reflected by homogeneity in the attribute values or class labels of that

subspace. Homogeneity can be measured using Shannon Entropy [SW49],

or entropy for short. From an information theoretic perspective, Shannon

entropy is the minimum number of bits required for encoding information.

More frequently occurring events are encoded with fewer bits than less fre-

quent ones. The sum over logarithmic probabilities weighted by their prob-

ability, measures the amount of information, i.e. the heterogeneity of the

data.

Definition 8.1 Shannon Entropy. Given a random variable X and its

possible events v1, .., vm the Shannon Entropy H(X) is defined as:

H(X) = −
m∑
i=1

p(vi) · log2 p(vi)
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Transferring the entropy notion to the clustering or classification domain,

an attribute can be seen as a random variable whose domain is the set of

all possible events. In case of continuous domains, the entropy requires dis-

cretization of attributes. Entropy according to a set of attributes with respect

to a set of class labels is then:

Definition 8.2 Attribute Entropy. Given a set of attributes X1, . . . , Xm,

their possible values v1, . . . , vm, and class labels C = {c1, . . . , cn}, attribute

entropy is defined as:

H(X1, . . . , Xm|C) = −
∑
ci∈C

∑
v1∈X1

· · ·
∑

vm∈Xm

p(ci) ·H(X1, . . . , Xm|C = ci)

Attribute entropy is thus the sum over all conditional attribute entropy value

combinations weighted by the class label probabilities. It is a measure for

the clustering tendency for all class labels ci of a subspace in terms of the

attributes. To measure the clustering tendency in terms of individual class

labels, we define class entropy according to conditional entropy H(C|X) (as

e.g. in [Qui92]).

Definition 8.3 Class Entropy. Given a set of attributes X1, . . . , Xm,

their possible values v1, . . . , vm, and class label C the conditional entropy

of a segmentation along these attribute values is defined as:

H(C|X1, . . . , Xm) = −
∑
v1∈X1

· · ·
∑

vm∈Xm

p(v1, .., vm)·H(C|X1 = v1, . . . , Xm = vm)

Class entropy is thus the sum over all conditional class entropy value combi-

nations for individual class labels C. It corresponds to investigating the data

for individual classes instead of aggregated as for attribute entropy.

We are interested in subspaces that exhibit both a distinct class structure

as well as a clear clustering structure. Since entropy measures homogeneity,

we are interested in low entropy values that reflect a non-uniform distribution

of class or attribute values.

However, comparing subspaces using entropy is clearly biased with respect

to the number of attributes. Subspaces with more attributes typically have

lower entropy values. This is due to the fact that with increasing attribute

number, objects tend to be less similar: each attribute contributes potential

dissimilarity [AKMS07b]. Thus, we have to normalize entropy with respect to

the number of attributes. Normalization to a range of [0,1] can be achieved by
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taking the maximum possible entropy value for a given number of attributes

into account. Maximum entropy means all values are equally likely, i.e. a

uniform distribution. Huniform(X1, .., Xm|C) for d = |X1×· · ·×Xm| possible

attribute combinations is determined as: Huniform(X1, .., Xm|C) = −d · 1
d
·

log2
1
d

= − log2
1
d

= log2 d, since in uniform distribution, each attribute value

occurs 1/d times. For larger numbers of attributes, the theoretical upper

bound of log2 d cannot be reached, as the actual number of instances is

smaller than the number of possible attribute value combinations d. To

account for this, we the number of instances |I| is used in this case:

HN(X1, .., Xm|C) =
H(X1, .., Xm|C)

min{log2|I|, log2 d}

In a similar spirit, we use the overall class distribution to normalize class

entropy:

HN(C|X1, .., Xm) =
H(C|X1, .., Xm)

H(C)

Since those subspaces are interesting that cover both aspects, we define inter-

estingness as a convex combination of attribute and class entropy, provided

that each of the two is within reasonable bounds:

Definition 8.4 Subspace Interestingness. Given attributes X1, . . . , Xm,

a class attribute C, and a weighting factor 0 ≤ w ≤ 1, a subspace is inter-

esting with respect to thresholds β, λ iff:

w ·HN(X1, .., Xm|C) + (1− w) ·HN(C|X1, .., Xm) ≤ β

∧ HN(X1, .., Xm|C) ≤ λ ∧ HN(C|X1, .., Xm) ≤ λ

Thus, a subspace is interesting for subspace classification if it shows low

normalized class and attribute entropy as an indication of class and cluster

structure. w allows assigning different weights to these two aspects for dif-

ferent applications, while λ is set to fairly relaxed threshold values to ensure

that both aspects fulfill minimum entropy requirements.
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8.2.2 Step 2: Classifying Subspace Clusters

Having defined interesting subspaces, the next step is detecting classifying

subspace clusters. On discretized data, clusters can be defined as frequent

attribute value combinations. To incorporate class information, these group-

ings should be homogeneous with respect to class label. We defined the

absolute frequency

AbsFreq(v1, . . . , vm) = |{o, o|S = (v1, . . . , vm)|

as the number of objects o which exhibit the attribute values (v1, . . . , vm) in

subspace S (projection o|S contains those attribute values vi from o where

Xi ∈ S).

To ensure that non-trivial clusters are mined, we normalize frequency

with respect to the expected frequency of uniformly distributed subspaces.

The expected frequency

ExpFreq(v1, . . . , vm) = AbsFreq(v1, . . . , vm) ∗ d/|I|

is the number of cluster objects in comparison to the number of instances |I|
per attribute combination under uniform distribution. Classifying subspace

clusters exceed minimum frequency for both absolute and relative (expected)

frequency. Note that minimum absolute frequency simply ensures that a

cluster exceeds a minimum size even for very small expected frequency values:

Definition 8.5 Classifying Subspace Cluster. Given a subspace S of

attributes X1, . . . , Xm, a classifying subspace cluster SC with respect to attri-

bute values v1, . . . , vm, minimum frequency thresholds φ1, φ2, and maximum

entropy γ is defined as follows:

• HN(C|X1 = v1, . . . , Xm = vm) ≤ γ

• AbsFreq(v1, . . . , vm) ≥ φ1

• ExpFreq(v1, . . . , vm) ≥ φ2

Classifying subspace clusters have low normalized class entropy, as well as

high frequency in terms of attribute values. Thus, they are homogeneous in

terms of class and show local attribute correlations.
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8.2.3 Step 3: Classification

Classification of a given object o is based on the class label distribution of

similar classifying subspace clusters. For nominal values as they occur in our

flight data, an object o is typically contained in several subspace clusters and

similarity is reduced to containment. Let CSC(o) = {SCi|vk = ok∀vk ∈ SCi}
denote the set of all classifying subspace clusters containing object o. Sim-

ply assigning the majority class label from this set CSC(o) would be biased

with respect to very large and redundant subspace clusters, where redun-

dancy means similar clusters in slightly varying projections [AKMS07b]. We

therefore propose an iterative procedure that takes the information gain into

account to build the decision set DSk(o).

Just as in the subspace clustering step we measure class homogeneity

using the conditional class entropy. Starting with an empty decision set and

apriori knowledge about class distribution H(C) we select up to k subspace

clusters with maximal information gain on the class label as long as more

than φ1 objects are contained in the decision space, i.e. the projection to the

union of dimensions of the subspace clusters in the decision set.

Definition 8.6 Classification. Given a dataset D, parameter k, an object

o = (o1, . . . , od) is classified to the majority class label of decision set DSk.

DSk is iteratively constructed from DS0 = ∅ by selecting the subspace cluster

SCj ∈ CSC(o) which maximizes the information gain about the class label:

DSj = DSj−1 ∪ SCj,

SCj =

{
argmax
SCi∈CSC(o)

{H(C|DSj−1)−H(C|DSj−1 ∪ SCi)}

}

under the constraints that the decision space contains at least φ1 objects:

|{v ∈ D, v|DSk = o|DSk}| ≥ φ1

and that the information gain is positive

H(C|DSj−1)−H(C|DSj−1 ∪ SCi) > 0

Hence, the decision set of an object o is created by choosing those k subspace

clusters containing o that provide most information on the class label, as

long as more than a minimum number of objects are in the decision space.
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o is then classified according to the majority in the decision set DSk. The

decision set is then the set of locally relevant attributes that were used to

classify object o. The attributes in the decision set are helpful for users

wishing to understand the information that led to classification.

8.3 Algorithmic concept

Our algorithmic concept focuses on step 1 that is the computationally most

complex. A simple brute-force search would require evaluating all 2N sub-

spaces which is not acceptable for high dimensionality N . We thus propose

lossless pruning of subspaces based on two entropy monotonicities.

Theorem 8.1 Upward Monotony of the Class Entropy. Given a set

of m attributes, subspace S = {X1, .., Xm}, e ∈ R+ and T ⊆ S, the class

entropy in subspace T is less than or at most equal to the class entropy of its

superspace S:

H(C|T ) < e ⇒ H(C|S) < e

Proof. The theorem follows immediately from H(X|Xi, Xj) ≤ H(X|Xi)

[Gra90].

This theorem states that the class entropy decreases monotonically with

growing number of attributes. Conversely, attribute entropy increases mono-

tonically with the number of attributes.

Theorem 8.2 Downward Monotony of the Attribute Entropy. Given

a set of m attributes, subspace S = {X1, .., Xm}, e ∈ R+ and T ⊆ S, the

attribute entropy in subspace T is greater than or at most equal to the class

entropy of its superspace S:

H(S|C) < e ⇒ H(T |C) < e

Proof. The theorem follows immediately from H(Xi, Xj|C) ≥ H(Xi|C)

[Gra90].

We exploit monotonicity by pruning

• all those subspaces T whose superspaces S ⊃ T fail the class entropy

threshold. This is correct since the normalization factor H(C) is inde-

pendent of the subspace.
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Figure 8.1: Lattice of subspaces and their projections used for up- and down-

ward pruning

• Prune all those superspaces T whose subspaces S ⊂ T fail the attribute

entropy threshold if log2|I| ≥ log2|S|. This is correct since the normal-

ization factor is independent of the subspace if min{log2|I|, log2|S|} =

log2|I|.

Our proposed algorithm alternately determines lower dimensional and

higher dimensional one-sided homogeneous subspaces, i.e. subspaces that are

homogeneous w.r.t. to class or attribute entropy, respectively. In each step

new candidates are created from the set of one-sided homogeneous subspaces

mined in the last step.

Figure 8.1 illustrates pruning in a subspace lattice of four attributes. The

solid line is the boundary for pruning according to attribute entropy and the

dashed line according to class entropy. Each subspace below the attribute

boundary and above the class boundary is homogeneous with respect to the

entropy considered. The subspaces between both boundaries are interesting

subspace candidates, whose combined entropy has to be computed in the

next step.

For the bottom up case, the apriori property, originally from association

rule mining, can be used to create new candidates [AS94, CWZZ99, KKK04].

Following the apriori approach, we join two attribute homogeneous subspaces

of size m with identical prefixes (e.g. in lexicographic ordering) to create a

candidate subspace of size m+ 1. After this, each new candidate is checked

for entropy validity, i.e. if all of its possible subspace of cardinality m are

contained in the set of attribute homogeneous candidate subspaces.
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We suggest a similar method for top down candidate generation using

class monotonicity. From the set of class homogeneous subspaces of dimen-

sionality m, we generate all subspace candidates of dimensionality m−1. We

develop a method that ensures that each subspace candidate is only gener-

ated once. Based on the lexicographic order, our method uniquely generates

a subspace of dimensionality m− 1 from its smallest superspace. Note that

this guarantees that all candidates but no superfluous candidates are gener-

ated (see example below). After this, just as with apriori, we check whether

all superspaces containing the newly generated candidates are class homo-

geneous subspaces. Otherwise the new generated subspace is removed from

the candidate set.

X1X2X3 X1X2X4 X2X3X4

X1X2 X1X3 X1X4 X2X3 X2X4

Figure 8.2: Example top down generation

Example. Assume four attributes X1, . . . , X4 from the previous step

subspaces X1X2X3, X1X2X4, and X2X3X4 that satisfy the class entropy

criterion. In order to generate candidates, we iterate over these subspaces in

lexicographic order. The first three-dimensional subspace X1X2X3 generates

the two-dimensional subspaces X1X2 (drop X3), X1X3 (drop X2), X2X3

(drop X1). Next, X1X2X4 generates X1X4 and X2X4. X1X2 is not generated

by X1X2X4 again, because dropping X4 is not possible, as it is preceded

by X3 which is not contained in this subspace. The last three-dimensional

subspace X2X3X4 does not generate any two-dimensional subspace since the

leading X1 is not contained; its subsets X2X3 and X2X4 have been generated

by other three- dimensional subspaces. After candidate generation, we check

their respective supersets. For example, for X1X2, its supersets X1X2X3

and X1X2X4 exist. For X1X3, its superset X1X2X3 exists, but X1X3X4

does not, so it is removed from further consideration following monotony

pruning. Likewise, X1X4 is removed as X1X3X4 is missing, but X2X3 and

X2X4 are kept.
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As we use two entropies, one with downward, one with upward pruning,

subspaces may need to be considered twice. Minimizing computations is

thus a trade-off. Figure 8.3 illustrates these effects. A missing candidate in

SDown (e.g. X1X2) means that this candidate has an attribute entropy above

β. According to the attribute monotony, superspaces (e.g. X1X2X3) have

an attribute entropy above β and thus the combined entropy is also greater

than β. Even though the subspace could be pruned according to combined

entropy, it is still required for valid class entropy candidate generation. There

X1X2 X1X3 X2X3

X1X2X3  
Class-

Entropy
Attribute-
Entropy

X1X2 X1X3 X2X3

X1X2X3  

B
ot
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m
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p

Top D
ow

n

Combined 
Entropy

+

Figure 8.3: Pruning of subspace X1X2X3

is thus a trade off between avoiding computations and reducing the search

space by pruning high entropy subspaces. A good heuristic is to evaluate

the entropy of those subspaces for which larger subspaces already had a high

entropy. Randomly picking subspaces for additional evaluation also performs

quite well in practice.

If the bottom up approach has not pruned the investigated subspace, the

top down approach computes the entropy of the subspace. If the weighted

normalized entropy is below β the subspaces is added to the result set and

marked as one-sided homogeneous. The algorithm finally computes the com-

bined entropy of all subspaces for which both subspaces are marked one-sided

homogeneous in the result sets.

Once subspaces have been evaluated for step 1, the most complex al-

gorithmic task has been solved. Having reduced the potentially exponential

number of subspaces to the interesting ones, the actual clustering (step 2)

is performed for each of these subspaces. This is done by computing the

frequency and class entropy for all attribute value combinations in these sub-

spaces. The resulting classifying subspace clusters then provide the model

that is used for the actual classification (step 3). For incoming objects,
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compute the most similar classifying subspace clusters according to relative

Hamming distance. If tied, compute reverse class entropy. The decision is

then based on their class label distribution.

8.4 Experiments

Experiments were run on both synthetic and real world data. Synthetic data

is used to show the correctness of our approach. Local patterns are hidden in

a data set of 7.000 objects and eight attributes. As background noise, each

attribute of the synthetic data set is uniformly distributed over ten values.

On top of this, 16 different local patterns (subspace clusters) with different

dimensionalities and different numbers of objects are hidden in the data set.

Each local pattern contains two or three class labels among which one class

label is dominating. We randomly picked 7.000 objects for training and 1.000

objects for testing.

The flight data contains historic data from a large European airport. For

a three-month period, we trained the classifier on arrivals of two consecutive

months and tested on the following month. Outliers with delays outside [-

60, 120] minutes have been eliminated. In total, 11.072 flights have been

used for training and 5.720 flights for testing. Each flight has a total of 13

attributes, including e.g. the airline, flight number, aircraft type, routing,

and the scheduled arrival time within the day. The class labels are “ahead

of schedule”, “on time” and “delayed”. Finally we use two well-known real

world data sets from the UCI KDD archive (Glass and Iris [HB99]), as a

general benchmark.

As mentioned before, preliminary experiments on the flight data indicate

that no global relevance of attributes exist. Moreover, the data is inherently

noisy, and important influences like weather conditions are not collected from

scheduling. For realistic testing as in practical application, classifiers can only

draw from existing attributes. Missing or not collected parameters are not

available for training or testing neither in our experiments nor during the

actual scheduling process.

We have conducted prior experiments to evaluate the effect of φ and γ

for minimum frequency and maximum entropy thresholds, respectively. For

each data set we used a cross validation to chose φ1 (absolute frequency), φ2

(relative frequency) and γ. For λ we have chosen 0.9. This value corresponds
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Figure 8.4: Varying β on synthetic data

to a rather relaxed setting as we only want to remove completely inhomoge-

neous subspaces from consideration. To restrict the search space β can be

set to a low value.

In our first experiments we develop a heuristic to set up reasonable pa-

rameters for the threshold β of the interestingness and the weight w of the

class and attribute entropy, respectively.

Figure 8.4 illustrates varying β from 0.45 to 0.95 on the synthetic data,

measuring classification accuracy and the number of classifying subspaces.

The weight w for interestingness was set to 0.5. As expected, the number of

classifying subspaces (CSS) decreases when lowering the threshold β. At the

same time, the classification accuracy does not change substantially or even

increases slightly when less subspaces are used. This effect may be related

to the effect of overfitting. Using too many subspaces patterns are not suf-

ficiently generalized, and noise is not removed. To set up the threshold β,

slowly increasing β until the number of classifying subspace clusters shows

a rapid rise, allows adjusting β to a point between generalization and over-

fitting. For both our data sets, a value around 0.65 obtains produces good

results.

The effect of slightly increasing classification accuracy when reducing the

number of subspaces can also be observed on the flight delay data (see Figure

8.4). This confirms that the flight data contains local patterns for classifica-
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Figure 8.5: Varying β on flight delay data

tion.

Varying parameter w yields the results depicted in the left part of Figure

8.4 and 8.4. The number of classifying subspaces decreases when giving more

weight to attribute entropy. At the same time, classification accuracy does

not change significantly. This robustness is due to the ensuing subspace

clustering phase. As classification accuracy does not change this confirms

that our classifying subspace cluster definition selects the relevant patterns.

Setting w = 0.5 gives equivalent weight to the class and attribute entropy

and hence is a good choice for pruning subspaces.

Next, we evaluate classification accuracy by comparing SubClass with

other well-established classifiers that are applicable on nominal attributes:

the k-NN classifier with Manhattan distance, the C4.5 decision tree that also

uses a class and attribute entropy model [Qui92], and a Naive Bayes classifier,

a probabilistic classifier that assumes independence of attributes. Parameter

settings use the best values from the preceding experiments.

Figure 8.8 illustrates the classification accuracy using four different data

sets. In the noisy synthetic data set, our SubClass approach outperforms

other classifiers. The large degree of noise and the varying class label distri-

bution within the subspace clusters make this a challenging task. From the

real world experiment on the flight data, depicted in Figure 8.8, we see that

the situation is even more complex. Still, our SubClass method performs
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Figure 8.6: Varying w on synthetic data
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Figure 8.7: Varying w on flight delay data
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  Flight  Data  Synthetic Data Iris  Glass 

SubClass  45.4%  65.9%  96.27%  70.9% 

C4.5  43.9%  58.0%  95.94%  66.8% 

K‐NN  42.4%  54.3%  93.91%  71.1% 

Naive Bayes  42.8%  64.1%  95.27%  46.7% 

 

Figure 8.8: Classification accuracy on four data sets

better than its competitors. This result supports our analysis that locally

relevant information for classification exists that should be used for model

building. Experts from flight scheduling confirm that additional information

on further parameters, e.g. weather conditions, is likely to boost classifi-

cation. This information is inexistent in the current scheduling data that is

collected routinely. SubClass exploits all the information available, especially

locally relevant attribute and value combinations, for the best classification

in this noisy scenario. Finally we evaluated the performance of SubClass on

Glass and Iris [HB99]. The results indicate that even in settings containing

no or little noise SubClass performs well.

8.5 Conclusion

Classification in noisy data with locally varying attribute relevance, as for

our project in scheduling at airports, requires an approach that detects local

patterns. Our SubClass method automatically detects classifying subspace

clusters by incorporating class structure into the subspace search and the sub-

space clustering process. Our experiments demonstrate that local structures

are successfully detected and employed for classification, even in extremely

noisy data.



Conclusion and future research

directions
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Conclusion

The knowledge discovery process aims at finding patterns in large databases.

Clustering and classification are important subtasks of the KDD process.

Since databases grow tremendously in size efficient methods for clustering

and classification are required. In this thesis we proposed efficient density-

based methods for both clustering and classification. While improving effi-

ciency we always made sure that it was not detrimental for the effectiveness.

Consequently, we always discussed both efficiency and effectiveness for the

new methods proposed in this work. In the following two sections we sum-

marize the main contributions of this thesis.

Contributions in efficient density-based clustering

In the first part of this thesis we proposed new density-based methods for

clustering multi-dimensional data. After discussing some aspects of the so

called “curse of dimensionality” which are relevant for clustering higher di-

mensional data, we presented a possible solution: density-based subspace

clustering.

Based on the definitions of subspace clustering we formalized the so called

“dimensionality bias” in Chapter 2 and analyzed the consequences for sub-

space clusters. We developed a dimensionality unbiased density measure

based on statistical foundations. Further more, we discussed redundancy

effects and the empty space problem for subspace clusters. The main contri-

bution of this chapter is the DUSC subspace clustering model. The DUSC

model extends traditional density-based subspace clustering models by an

unbiased density measure and a definition for non-redundant clusters. We

have proven the high effectiveness of the DUSC model in various experiments

on different real world data sets. The DUSC model and parts of the discus-

sion presented in this chapter were also presented at 2007 IEEE international

conference on data mining [AKMS07b].

Next we proposed an efficient and complete algorithm for our DUSC

subspace clustering model in Chapter 3. To ensure efficient mining of density-

based subspace clusters, we derived powerful pruning properties. Based on

these pruning properties and a novel density conserving grid we developed

a filter-and-refinement architecture to prune the search space. Further on,

we explained how to index dense subspace regions and proposed an method
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for in-process removal of redundant subspace clusters. We evaluated the

efficiency of eDUSC in thorough experiments.

Visualization techniques are essential to present a clustering result to

users. This thesis proposed the first method to visualize subspace clusters.

Our VISA technique allows for both getting an overview of a subspace clus-

tering and an indepth-analysis of the result set. Excerpts of this chapter

were also published in the 2007 special issue on visual analytics of the ACM

SIGKDD Explorations [AKMS07a].

The last subspace clustering method proposed in this thesis is moti-

vated by collaborations with researchers from hydrology. A subspace subse-

quence clustering model has been developed for finding clusters in a multi-

dimensional sequence database. Scalability to large databases like the river

database from hydrology is guaranteed by our novel index structure for dense

sequences. Based on the clustering results hydrologists developed a decision

support system for the renaturation of rivers. Parts of this work are accepted

for publication in the international journal on knowledge and information

systems [AKGS08]. A presentation on this topic was also given at the inter-

national workshop on spatial and spatio-temporal data mining [AKGS06].

Summary for efficient density-based classification

In the second part of this thesis two different density-based classification

methods are discussed. After introducing preliminary definitions for Bayes

and nearest neighbor classification we presented the special requirements of

anytime classifiers in Chapter 7. We proposed a novel hierarchy of densities

(the BayesTree) and presented different search strategies for efficient anytime

classification. For streams of variable inter-arrival we discussed the advan-

tages of anytime classifiers and evaluated the accuracy of our approach in

various settings.

Last but not least, we proposed a new classification technique based on

classifying subspace clusters. We developed a subspace clustering algorithm

which considers information about the class distribution during mining of

clusters. The efficiency and effectiveness of our new classification approach

is evaluated in collaboration with a local company for operations research.

Parts of this work will be presented at the 12th Pacific-Asia Conference on

Knowledge Discovery and Data Mining [AKW+08].
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Future research directions

The results presented in this work open various directions for future research:

Subspace clustering

The DUSC subspace clustering model proposed in this thesis has proven to be

a very effective method for subspace clustering. The two aspects responsible

for the high quality results are an unbiased density measure and the definition

of redundant subspace clusters. Both concepts solve a specific problem but

leave room for further research.

Redundancy definitions

The redundancy definition presented in this thesis defines subspace clusters

as redundant if a similar higher dimensional cluster exists in the data set.

An advantage of this redundancy is its simplicity: for users the definition is

easy to understand and the effect of different redundancy parameters on the

mined cluster result is comprehensible.

However, more complex redundancy definitions may further improve the

quality of the clustering result and reduce the number of identified clusters.

We plan to examine different extended redundancy definitions. A first pos-

sible extension of our redundancy definition denotes a cluster as redundant

if it is represented by a set of higher dimensional clusters. Following this

redundancy definition a cluster which splits up into multiple higher dimen-

sional clusters would hence be removed from the result set. Depending on

the application such a redundancy definition may be more appropriate.

Moreover, we are working on a redundancy definition inspired by the set

covering problem. We plan to generalize the definition of redundancy from

subspaces to object sets. An “optimal” redundancy free subspace cluster

is then defined as a set of clusters which covers all objects. Optimality

can be defined in different ways. The expected density, the size and the

dimensionality of a cluster are parameters which should be considered to

determine clusters of high quality. As the set covering problem is NP-hard a

major challenge will be to develop an efficient algorithm which approximates

this redundancy definition as good as possible.
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Unbiased density assessment

The DUSC subspace clustering model formalizes the requirements for finding

comparable subspace clusters which separate clusters from noise. An addi-

tional important aspect clustering higher dimensional spaces is to correctly

assess the density of objects. As discussed under the name of empty space

problem, the area of influence for higher dimensional spaces is often devoid

of observations.

One solution for estimating the density of objects in higher dimensions

is to extend the area of influence (i.e. to adapt ε). For this approach the

weak monotonicity property proposed in Section 2.6 does not hold anymore.

Further on, the size of the connectivity border would also depend on the

dimensionality of the subspace (see Section 3.4). The development of efficient

algorithms for subspace clusters based on an adaptive area of influence is an

interesting area of research. Without any monotonicity property for pruning

the search space heuristics for finding subspace clusters might be a promising

approach.

Subspace outliers

In this thesis we discussed the effectiveness of subspace clustering methods in

high-dimensional spaces. Outlier detection in high-dimensional spaces also

suffer from the “curse of dimensioanlity”. Typical approaches for outlier

detection are often based on clustering methods, e.g. objects which do not

belong to a cluster or are far away from a cluster center are very likely outliers.

Since subspace clusters are capable of identifying locally relevant patterns, a

promising approach is to use subspace clusters for outlier mining.

Open questions are how to handle overlapping clusters (e.g. objects be-

longing to multiple clusters) or contradictory evidences (e.g. an object may

belong to a subspace cluster and at the same time be an outlier w.r.t. another

cluster). Mining outliers is clearly influenced by the quality and degree of

redundancy of a clustering result. Hence, detecting subspace outliers could

be an interesting field of research.

Anytime classification

This thesis presented an anytime classification approach using a hierarchy

of densities (the Bayes tree). First results indicate the usefulness of this
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approach especially for stream classification. The performance of the Bayes

tree depends on the quality of the mixture densities stored in the tree. In

this thesis the dynamic insertion strategy of the R*-tree is used which makes

efficient learning of new objects possible.

Evaluating the effects of different bulkloading techniques on the quality

of the mixture models could be an interesting approach for future work.

Bulkloading techniques analyze the data before the hierarchy is created. The

development of bulkloading techniques based on hierarchical mixture models

could further improve the classification performance of the Bayes tree.

Another interesting research direction is to develop a Bayes tree which

does not separate the classes at root level. For a Bayes tree containing

multiple classes different questions have to be investigated.

• Which information about the class distribution should be stored in the

inner nodes of the Bayes tree? Detailed information about the classes

decreases the branching factor and hence the query performance. The

classification accuracy on the other hand also depends on information

given about the classes (more details typically increase the classification

accuracy).

• How should the Bayes tree organize multiple classes? Mixture densi-

ties which reflect the data distribution very well may not necessarily

separate the classes. However, separating the classes on a higher level

of the tree would allow for an early class decision.

• Which anytime classification strategy is reasonable for a Bayes tree

containing multiple classes? Global best first methods may only refine

one class over and over again. However, detailed information about

other classes is also necessary for an effective classification decision.

Further on, developing a method for streams with constant inter-arrival times

is be a challenging task. One possibility is to derive a confidence measure for

a classification decision at any time point. The overall classification perfor-

mance of a stream with constant inter-arrival times could then be improved

by optimizing the overall confidence.
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