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Pitfalls in fast numerial solvers for frationaldi�erential equationsKai Diethelm 1 and Judith M. Ford 2 and Neville J. Ford 3 andMar Weilbeer 1AbstratWe onsider the problem of implementing fast algorithms for the numerial solutionof initial value problems of the form x(�)(t) = f(t; x(t)), x(0) = x0, where x(�) isthe derivative of x of order � in the sense of Caputo and 0 < � < 1. We review someof the existing methods and explain their respetive strengths and weaknesses. Weidentify and disuss potential problems in the development of generally appliableshemes.Keywords: frational di�erential equation, high order method, bakward di�erenti-ation method.AMS Subjet Classi�ations: Primary 65L05; seondary 65L06, 65R20, 26A33.
1 IntrodutionThis paper onsiders the properties of high order methods for the solution of frationaldi�erential equations. There is a growing demand for suh methods from modellers whosework leads to linear and nonlinear equations involving derivatives of frational order andyet there seems to be no well-understood method of reasonably high order that an beused to generate a reliable approximate solution.1 Institut f�ur Angewandte Mathematik, Tehnishe Universit�at Braunshweig, Pokelsstra�e14, 38106 Braunshweig, Germany (fk.diethelm, m.weilbeerg�tu-bs.de). Supported by USArmy Medial Researh and Material Command Grant No. DAMD-17-01-1-0673 to the Cleve-land Clini. Current address for KD: GNS Gesellshaft f�ur Numerishe Simulation mbH, AmGau�berg 2, 38114 Braunshweig, Germany (diethelm�gns-mbh.om)2 Department of Mathematis, UMIST, PO Box 88, Manhester M60 1QD, United Kingdom(j.ford�umist.a.uk). EPSRC Researh Fellow supported by grant ref: GR/R95982/01. Cur-rent address: Royal Liverpool Children's NHS Trust, Eaton Road, Liverpool L12 2AP, UK3 Corresponding author, Department of Mathematis, University College Chester, ParkgateRoad, Chester CH1 4BJ, United Kingdom (njford�hester.a.uk).Preprint submitted to Elsevier Preprint 9 September 2004



Our investigations are motivated by a few lassial and many very reent appliations offrational di�erential equations. Among the lassial problems we mention areas like themodelling of the behaviour of visoelasti materials in mehanis (studied sine the 1980s[35℄) and appliations of Abel-Volterra equations in superuidity [24℄. More reently fra-tional alulus has been applied to ontinuum and statistial mehanis for visoelastiityproblems, Brownian motion and frational di�usion-wave equations [27℄ and the desrip-tion of the propagation of a ame [21,23℄. Newer studies are also done, among others, inthe area of modelling of soft tissues like mitral valves or the aorta in the human heart[15℄. It is evident that these appliations require not only fast but in partiular reliablenumerial methods.In our earlier work we have presented (see [5,9,10,12,14℄) several methods for the approx-imate solution of di�erential equations of frational order. In the main these have beenof low order, but they have nevertheless attrated interest beause of the relative easeof appliation and the reliable results that we have been able to give relating to onver-gene and stability of the methods. We have also shown (see, for example, [10,13,14℄) thatthe underlying order of our methods may be improved (through extrapolation shemes)leading to methods of higher order.In the 1980s there was a surge of interest in developing higher order numerial methodsfor Abel-Volterra integral equations (of whih frational di�erential equations form a sub-lass) and detailed theoretial results were given for these methods at that time. Howeverthese so-alled frational multistep methods have proved to be of more theoretial thanpratial use over the intervening two deades (although they have been inluded in theNAG Fortran Library as a method to solve ertain Abel-Volterra equations). One purposeof this paper is to assess why this has been the ase, and to give a lear diretion to furtherresearh that will lead to more pratial methods for today's appliations.This paper is strutured as follows: �rst we desribe in greater detail the lass of problemsthat we seek to solve and we set out lear objetives for a well-behaved numerial sheme,then we review the available algorithms for the solution of these equations against theobjetives we have set. We onsider the work published in the 1980s on frational multistepmethods and review its strengths from a theoretial viewpoint and show how the methodsan be applied very e�etively to the types of problems prevalent at that time. We onsidermore reent model equations and highlight some of the pitfalls in trying to implementfrational multistep methods in this ase.We onlude with some advie to users on the hoie of numerial shemes for the solutionof partiular types of equation. We also give a statement of the issues that we regard asthe most important for algorithm developers who wish to produe useful higher ordermethods for pratial appliation. 2



2 ObjetivesWe onsider the solution of frational di�erential equations of the formx(�)(t) = f(t; x(t)); x(k)(x0) = x(k)0 (k = 0; 1; : : : ; d�e � 1); (1)where � is some positive non-integer number. Here the notation x(�) is used for the Caputotype frational derivative, de�ned byx(�)(t) := 1�(m� �) Z t0 (t� �)m���1x(m)(�) d�where m := d�e.One an also de�ne the Caputo frational derivative based on lassial Riemann-Liouvilledi�erential operators of frational order � > 0 whih are de�ned by,D�x(t) := 1�(m� �) dmdtm Z t0 x(u)(t� u)��m+1duwhere m is the integer de�ned by m� 1 < � < m (see [28,34℄). The standard (Riemann-Liouville) approah [34, x42℄, is then to de�ne the initial onditions for solving the fra-tional di�erential equation in the formd��kdt��kx(t)jt=0+ = bk; k = 1; 2; : : : ; m = b� + 1;with given values bk. In other words we would need to speify some values of the frationalderivatives of the funtion x. In pratial appliations, these values are frequently notavailable, and it may not even be lear what their physial meaning is. By ontrastCaputo [4℄ suggested that one should inorporate the lassial derivatives (of integerorder) of the funtion x, as they are ommonly used in initial value problems with integer-order equations, into the frational-order equation, giving the alternative (equivalent)formulation of the Caputo frational di�erential equation asx(�)(t) := D�(x� Tm�1[x℄)(t) = f(t; x(t)); (2a)where Tm�1[x℄ is the Taylor polynomial of order (m� 1) for x, entered at 0. For � 2 N,one simply de�nes x(�)(t) to be the usual di�erential operator of order �. Then, one anspeify the initial onditions in the lassial formx(k)(0) = x(k)0 ; k = 0; 1; : : : ; m� 1: (2b)For more details of the relationship between Caputo and Riemann-Liouville frationaldi�erential operators see [29℄.In the ommon ases (whih we shall mainly be onerned with here), we have � 2 (0; 1).The funtions x and f may in general be vetors but for our purposes here we shall gain all3



the appropriate insights by onsidering the salar ase. As we saw in our papers [7,8℄ thevetor ase permits us to analyze also approximate methods for the solution of multi-termfrational di�erential equations of the formx(�k)(t) = f(t; x(t); x(�1)(t); : : : ; x(�k�1)(t)) (3)(in ombination with appropriate initial onditions), and for this reason we an regard theinsights presented in the urrent work as having wide appliation to linear and non-linearfrational di�erential equations of both single and multiple orders.The existing literature on frational di�erential equations (and indeed on Abel-Volterraintegral equations) tends to fous on partiular values for the order �. The value � = 12is espeially popular. This is beause in lassial frational alulus, many of the modelequations developed used these partiular orders of derivatives. In modern appliations(see, for example, [16℄) muh more general values of the order � appear in the equationsand therefore one needs to onsider a little more arefully how methods an be hosen tosolve equations of more or less arbitrary order.Perhaps the best way to set out our objetives for a good numerial sheme for frationaldi�erential equations is to base them on the well-established desirable harateristisof solution methods for ordinary (integer-order) di�erential equations (see, for example,[19,22℄). Considerable researh e�ort has been invested in shemes for ordinary di�erentialequations over many years and therefore to set our sights on the best features of existingshemes for ordinary di�erential equations sets hallenging targets for the solution offrational order equations where the underlying problems are less well understood andthe exat solution that we are attempting to approximate is typially less well-behavedthan in the integer order ase.Thus we desire numerial shemes that are onvergent, onsistent and stable (see, forexample, [22, pp. 21�.℄ or [19, pp. 391�.℄). We also desire that our sheme should bereasonably easy to program on a omputer and that the resulting omputer ode shouldexeute reliably and reasonably quikly.Most elementary numerial shemes are based on the use of a time step of �xed length.Here the order of onvergene of the numerial sheme is partiularly important in thatit helps us to know how quikly the approximate solution at some �xed point in time twill approah the exat solution as h ! 0. To be preise: a numerial sheme with �xedstep length h > 0 has order p 2 N ifE(T ) := supt2[0;T ℄ j~xh(t)� x(t)j = O(hp) as h! 0 (4)where ~xh(t) represents the approximate solution at t 2 [0; T ℄ evaluated using the steplength h.In pratie we an expet there to be some restrition on the order of onvergene ofmethods if we insist that they also exhibit the required stability properties (see, for ex-ample, [19℄). This is well doumented. However the behaviour of the error in (4) is not4



so often made preise although it is well understood. The expression (4) means that theerror E(T ) has an expansion whose dominant term has the form AThp. Now until we knowsomething about the value of the onstant AT we annot predit the size of the atualerror. Typially the value of AT grows as T inreases and one an use a Gronwall-typeinequality to estimate this value (see [19, p. 395℄). In the ase of an integer order equationthis leads to an estimate of the form AT � �e�T (5)illustrating the fat that the growth in the error as T inreases is at an exponential rateeven though the atual error at any �xed point T will have an O(hp) onvergene to zeroas h ! 0. One an derive a orresponding Gronwall-type lemma for a frational orderequation (see for example [8℄) and in this ase we have the relationAT � �E�(�T �) (6)where � is the frational order of the equation and where E� represents the Mittag-Le�erfuntion with parameter �.One onludes from this overview that order alone does not neessarily give a good guideto the atual size of the error in a numerial approximation. Indeed, for some �xed h > 0it an turn out that a lower order method gives a better approximation than a higherorder method. This would be the ase, for example, when the respetive values of ATwere quite di�erent in magnitude. The order of the method tells us rather how the errorwill improve as suessively smaller values of h > 0 are used. We should note also thatthe theoretial order of the method is given only in the limit as h! 0 and therefore thismight not be seen in the values of h hosen for any spei� experiment. Moreover we willdemonstrate that ertain other e�ets play a signi�ant role in this ontext. As we shallsee below, it is sometimes very diÆult to alulate the weights of a numerial methodwith high auray, and then it may happen that the errors introdued in this way spoilthe entire alulation. In partiular it is possible that | in ontradition to what onewould expet | the results get signi�antly worse as we let h ! 0 beause the numberof steps inreases, and sine suh errors are aumulated over the number of steps, thee�et is magni�ed.Later on in this paper we shall onsider also the expeted exeution time of a numerialmethod. This is typially expressed in terms of the expeted number of alulations in-volved in running the algorithm to ompletion. We often therefore refer to a method asbeing of order Nk where we are using the value N = T=h for some �xed T > 0. Now oneagain we tend to assume that the time taken to ompute the solution using a partiularmethod is dependent on the value of k and easily forget to mention that the onstantmultiplying the value Nk may well di�er signi�antly between di�erent methods.We are now in a position to de�ne our objetives. We seek a numerial sheme that is(1) onvergent,(2) onsistent of some reasonable order hp,(3) stable, 5



(4) reasonably inexpensive to run,(5) reasonably easy to program.In fat this last objetive has been largely disregarded by previous authors. As we shallsee, it turns out to have a key role to play in this partiular paper.3 Frational multistep methodsHistorially, the frational multistep methods of Lubih [25,26℄ were among the �rst meth-ods to be introdued. We will reall their derivation and state some important propertiesand then be onerned with their numerial implementation.3.1 Analytial bakgroundWe �rst use the fat [6℄ that the initial value problemx(�)(t) = f(t; x(t)); x(0) = x0; (7)with 0 < � < 1 (we shall from now on restrit our attention to this partiularly importantspeial ase) is equivalent to the weakly singular Volterra equationx(t) = x0 + 1�(�) Z t0 (t� �)��1f(�; x(�)) d�: (8)Therefore, we will �rst look at a lass of methods for the numerial approximation foronvolution integrals of the form 1�(�) Z t0 (t� �)��1g(�) d�: (9)The onstrution of these methods (see [26℄) is based on the well known onept of linearmultistep methods for �rst order equations, whih we assume to be given in terms oftheir harateristi polynomials � and �. Using these two polynomials in z (the bakwarddi�erene operator) we an onstrut the generating funtion !(z) := �(1=z)=�(1=z) andlook at the Taylor expansion of its �th power,(!(z))� =  �(1=z)�(1=z)!� = 1Xj=0!jzj; (10)thus de�ning (in an impliit way) the values !j, j = 0; 1; 2; : : :; it is evident from eq. (10)that they depend on the hoie of �, but sine � is onstant, we have deided not todenote this expliitly in order to keep the notation simple.6



The oeÆients !j are alled onvolution weights. They an be used to onstrut a quadra-ture formula 1�(�) Z nh0 (nh� �)��1g(�) d� � h� nXj=0!n�jg(jh);and it an be shown that this method gives O(hp) auray if the underlying multistepmethod is of the order p and the funtion g is suÆiently smooth. However, in the ap-pliation that we have in mind the integrand funtion g is typially not smooth. To bepreise, if f is a smooth funtion then the solution of the frational di�erential equation(7) will have an asymptoti expansion of the formx(t) = X2A t + o(tmaxA) (11)as t! 0 where A := f = j + `� : j; ` 2 f0; 1; 2; : : :g;  � p� 1gwith some suitable p > 0. Therefore, in order to onstrut a reasonable numerial methodfor our problem, it is not suÆient only to look at the onvolution weights. Rather weneed a seond set of weights wnj, known as starting weights, whih take into aount theasymptoti behaviour of the exat solution x near the origin (whih is more ompliatedthan in the ase of a �rst order equation), and are hosen in suh a way that the quadraturerule 1�(�) Z nh0 (nh� �)��1g(�) d� � h� nXj=0!n�jg(jh) + h� sXj=0wnjg(jh); (12)(with some �xed s and n � s) is exat whenever g(t) = t with  2 A. Evidently, thisis (for �xed n) a linear system of equations that an be used to determine the startingweights wnj, j = 0; 1; : : : ; s, sine all the other quantities appearing in the equations areknown. The total number of equations is equal to the ardinality of the setA, and thereforeit is evident that the (as yet unspei�ed) parameter s must be hosen as s = ardA. Wethus �nd that the starting weights wnj are obtained by solving the linear systemh� sXj=0wnj(jh) = 1�(�) Z nh0 (nh� �)��1�  d� � h� nXj=0!n�j(jh) ;  2 A: (13)The matrix of oeÆients (aij) = (h�(jh)i) of this system is an exponential Vandermondematrix (whih is a generalized Vandermonde matrix with real exponents, see [31℄) andhene regular but not well onditioned. Its preise ondition number depends on the valueof � in a very subtle way. For example, if � = 1=M with some integer M then it an berewritten by an obvious hange of variables in the form of a lassial Vandermonde matrixwhih is mildly ill-onditioned. If, however, � = 1=M � � with some small j�j and p � 2,then the set A will ontain the elements 1 and M� = 1�M�, and hene the matrix willhave two almost idential olumns and therefore an extremely bad ondition number. Anadditional aspet of this system is that, as already remarked in [26, x4.2℄, the evaluationof the right-hand side of (13) su�ers from anellation of digits. As we shall see in thelater setions, the ombination of these two problems may have serious adverse e�ets forthe entire sheme. 7



Assuming that we have alulated the starting weights in some way, we an use theresulting quadrature formula as given in (12) to onstrut a sheme for the approximatesolution of the Volterra equation (8) aording to (see [25℄)xn = x0 + h� nXj=0!n�jf(jh; xj) + h� sXj=0wnjf(jh; xj) (n = 1; 2; : : : ; N): (14)It is evident from eq. (14) that the entire alulation proess an be deomposed into twophases, the starting phase n � s and the main phase n > s.The s equations of the starting phase all ontain the unknown approximations x1; x2; : : : ; xs,and so we are dealing with a fully oupled nonlinear system of s equations in s unknowns.There are essentially two di�erent ways to get hold of the values x1; x2; : : : ; xs: We an ei-ther try to solve the nonlinear system by a suitable algorithm (typially a Newton method,assuming that proper starting values an be determined), or we an revert to a di�erentnumerial sheme for the solution of the given frational di�erential equation (19), usethis for the approximation of the solution at the points h, 2h, . . . , sh and proeed to themain phase with these instead of the solutions of the nonlinear system.For the main phase, we an proeed in the usual step by step manner beause the equationsare now unoupled. That is, the nth equation ontains xn as the only unknown quantitybeause we have omputed x1; x2; : : : ; xn�1 in the previous alulations. Of ourse, inthe general ase the equations will still be nonlinear, and so we will have to use a (one-dimensional) Newton method to solve eah of them individually.Realling our objetives 4 and 5 from x2 we next point out how the above theoretialsheme was used to onstrut the fast algorithm in [18℄ for the ase � = 12 and how it anbe transferred for other hoies of �. We fous on the omputation of the onvolution andstarting weights sine those are the parts where most problems arise.3.2 Computation of quadrature weightsIn [18℄ fast algorithms are developed for the omputation of the onvolution and startingweights in the ase � = 12 . These methods are based in part on the Fast Fourier Transformwhih will only perform well if the number of weights is hosen aordingly. While this isnot a major drawbak, the use of Newton's method for formal power series in [18, x3℄ forthe omputation of the onvolution weights is only appliable for the speial ases where� is a unit fration. Thus for general hoies of � 2 (0; 1) a di�erent method needs to bedeveloped.Assuming that the generating funtion !(z) = �(1=z)=�(1=z) of the underlying non-frational linear multistep method is analyti (whih is true for the bakward di�erentia-tion formulae (BDF) methods) one an prove using automati di�erentiation tehniques(we refer to [30, x5℄ for some basi priniples) that the onvolution weights of the fra-tional linear multistep method (i.e. the Taylor oeÆients of the generating funtion !(z)8



to its �th power) an be omputed by!j = 1ju0 j�1Xi=0[�(j � i)� i℄!iuj�i: (15)Here the values uj, j = 0; 1; 2; : : : denote the Taylor expansion oeÆients of the generatingfuntion !(z) of the underlying non-frational linear multistep method. In the ase of thelassial (integer) BDF method of order p the generating funtion !(z) is a polynomial oforder p, given by pXj=1 1j (1� z)j :Formula (15) works equally well for all hoies of �. In partiular the evaluation of formula(15) is fast sine all values uj, j = p+ 2; p+ 3; p+ 4; : : : are zero for a given order p andtherefore the sum in (15) onsists of only p+ 1 non-zero summands. Thus we have a fastand easily implementable formula for the omputation of the onvolution weights. Wenext fous on the omputation of starting weights.Exept for the remarks in [18, x3℄ and [26, x4.2℄ about the ill-onditioning and anellationof digits in the equation system (13) not muh is said about the omputation of the startingweights. The reason for this is the fat that even though the system (13) is ill-onditionedand anellation of digits ours for larger numbers of mesh points, in the ase � = 12a simple linear system solver produes starting weights for whih the residual, given by(18), is small. We shall see in x5 that even the ase � = 12 exhibits some problems, and forhoies of � di�erent from 12 the problem of solving the system (13) so that the residualstays small beomes more diÆult. One therefore might try espeially adapted algorithmsfor the omputation of the starting weights.The equation system (13) is ill-onditioned in general but it also exhibits a speialVandermonde-type struture. In the ases of � being a unit fration the oeÆient ma-trix is a lassial Vandermonde matrix. Hene an algorithm exploiting this struture mayprove useful. Given the fat that we have to solve the system (13) for as many right-handsides as mesh points in our quadrature, the use of the algorithm by Bj�ork and Pereyra[3℄ to obtain the inverse of the matrix seems well suited for ases where � is a unit fra-tion: Their algorithm is fast, requiring only O(n2) arithmeti operations to solve a linearequation system with n variables. More importantly Higham showed in [20℄ that if theBj�ork-Pereyra algorithm is used to invert a lassial Vandermonde matrix for whih thede�ning elements are positive and monotonially ordered (whih is true for our system(13)) the estimate jV̂ �1 � V �1j � 5n�MjV �1j+O(�2M) (16)holds, where �M is the mahine preision and V̂ �1 is the inverse of the Vandermonde matrixV omputed by the algorithm. The estimate (16) has to be understood omponentwiseusing the modulus of matries, de�ned by jAj = (jaijj). Even though O(n3) arithmetioperations are required for the omputation of the inverse using the Bj�ork-Pereyra al-gorithm, the method seems advantageous sine the error bound (16) is independent ofthe ondition number of the Vandermonde matrix V . However, while theoretially the9



Bj�ork-Pereyra algorithm seems to be well �tted for our problem, the pratial implemen-tation fails beause the estimate (16) is dependent on the entries of the exat inverse V �1whose absolute values are getting exeedingly large in our ases due to the struture ofthe exponential Vandermonde system.A di�erent approah to takle the ill-onditioned equation system is the use of a non-stationary iterative solver suited for our problem. The Generalized Minimum Residualmethod (GMRES) by Saad and Shultz [33℄ seems to be the most promising (for furtherreading we refer to the book [32℄ by Saad). Our hoie is based on the fat that we areprimarily onerned with obtaining an approximate solution to (13) for whih the residualis small (see x5). GMRES has the property that the norm of the residual is minimized overthe urrent Krylov subspae at eah iteration. In addition, the non-Hermitian nature ofthe system rules out many of the heaper alternatives and its denseness means that GM-RES will be less expensive to apply than methods, suh as Conjugate Gradient Squared(CGS), that require more than one matrix-vetor multipliation at eah step (see [17,x5.7℄). In exat arithmeti GMRES will onverge to the exat solution in no more thann iterations, but its onvergene behaviour in a �nite-preision implementation is ur-rently not well-understood, partiularly for ill-onditioned problems, so we annot preditin advane whether or not the method will provide solutions to (13) with suitably smallresiduals. A disadvantage of this approah ompared with either diret solution by LU de-omposition or omputation of the inverse matrix is that the iteration has to be repeatedfor eah di�erent right-hand-side, rather than using the ready-omputed LU fators orinverse matrix to solve eah system. Thus we expet this method to be onsiderably moreexpensive in terms of omputer time.We investigated both standard GMRES and the slightly modi�ed GMRES solver byWalker [36℄ where the Householder transformation is used for the omputation of theKrylov spae instead of the modi�ed Gram-Shmidt orthonormalization. The justi�ationof this onept lies in the fat that the modi�ed Gram-Shmidt orthonormalization anfail to perform well if the vetors of the Krylov spae are not suÆiently independent (asthey are espeially in ases where the hoie of � results in two almost idential olumns).Indeed, if Q = fq0; q1; : : : ; qk�1g denotes the orthonormalized basis of the Krylov spaeS omputed by the modi�ed Gram-Shmidt method with oating point arithmeti ofpreision �M, then the following estimate holds (see Bj�ork [2℄):QTQ = I + E; kEk2 � �M�2(S); (17)where �2(S) denotes the (2-norm) ondition number of the matrix S. However usingthe Householder transformations yields under the same notation as in (17) the followingestimate (see Bj�ork [2℄): QTQ = I + E; kEk2 � �M;whih is independent of the ondition number �2(S) of the original basis of the Krylovspae and thus it may give better results for our system.We did an experiment for the alulation of starting weights using the four methodsdesribed above. All alulations were done in Matlab Version 6.5 in double preision. First10



we used a simple linear equation system solver (denoted by \lu" in the tables below) for theomputation of the starting weights. The Matlab bakslash operator \n" was used, whihapplies an LU deomposition on the oeÆient matrix and then solves the orrespondingsystems. Seondly a Matlab implementation of the the Bj�ork-Pereyra algorithm (\bp")for inverting the Vandermonde matrix was tested for the ases where � was a unit fration.Last we did two tests using the GMRES algorithm: (a) we used the Matlab gmres funtion(\gmres"), whih uses the Gram-Shmidt orthonormalization; and (b) we implementedthe method of [36, Algorithm 2.2℄ (\gmresh") in Matlab to hek the GMRES algorithmwith Householder transformation. In both ases we used full (i.e. not re-started) GMRESwithout preonditioning and with a stopping tolerane of 1e�16 (whih was never, inpratie, ahieved).The following tables give the results of these experiments. The average residuals of the�rst 1000 starting weights for the di�erent methods are given for various hoies of �.The best value for eah hoie of � is marked in bold.� 110 15 14 13 12lu 1.02e-04 5.61e-06 2.59e-07 3.66e-11 2.31e-14bp 1.34e+33 9.79e+02 5.00e-03 9.59e-08 4.95e-12gmres 1.01e-05 2.57e-06 4.39e-07 3.75e-11 1.56e-14gmresh 3.85e-06 2.63e-06 1.33e-07 2.26e-11 1.27e-13Table 1Average residuals for various numerial methods for the exponential Vandermonde system (13)with � being a unit fration.� 0:49 0:51 23 45 910lu 1.12e-05 1.38e-08 9.87e-13 1.43e-11 5.98e-12gmres 1.75e-06 6.92e-09 7.82e-13 5.04e-12 8.66e-12gmresh 1.76e-06 6.93e-09 3.11e-12 2.76e-11 4.01e-11Table 2Average residuals for various numerial methods for the exponential Vandermonde system (13)with � not being a unit fration.Another important di�erene between using a standard solver or a GMRES method forthe starting weight omputation is the atual distribution of the residual over the di�erentstarting weights. We present a �gure (Figure 1) showing the starting weights as well astheir residuals for the ase � = 110 and 10000 nodes for the two di�erent system solvers.On the basis of experiments that we have onduted with a number of di�erent values for� for whih the above tables are just an extrat, the following onlusions an be drawn:� The Bj�ork-Pereyra algorithm should not be used for the omputation of the startingweights. However, a di�erent algorithm exploiting the speial struture of the exponen-tial Vandermonde matrix may give better results in the future.11



Fig. 1. Starting weights and residuals for � = 110 and N = 10000 omputed by LU deompositionand GMRES method, respetively. Eah dot represents one starting weight or residual. All 31starting weights for the nodes N = 1; 2; : : : ; 10000 are shown.� The LU deomposition method gives a slightly worse result for the starting weightsthan either of the GMRES methods. However, the omputational time of the LU de-omposition is far below that of the GMRES methods. Therefore it has advantageswhen attempting to implement a fast sheme.� Both GMRES methods perform equally well. Eah one has ertain values of � where itis advantageous ompared to the other one. However, the Householder transformationneeds more omputation time than the Gram-Shmidt orthonormalization. In aseswhere the \best" results are needed and omputation time is not the most importantfator, the GMRES method should be used.� For almost all hoies of �, none of the four methods produes starting weights whihare exat to mahine preision. Therefore, in general, problems will arise in using anyof those weights in the quadrature as we will desribe in more detail in Setions 5 and6.It is possible that the solution ost and/or the auray of the residuals omputed usingthe GMRES iterations ould be improved by using a preonditioner. However, our (so farrather limited) experiments using standard preonditioning tehniques for dense matries(e.g. inomplete LU deomposition, diagonal and band approximation, wavelet ompres-sion) have been unsuessful and in some ases have inreased both the residual norm andthe omputation time. DiÆulties in designing an e�etive preonditioner for this systemare to be expeted, sine most standard preonditioners are based on approximating theinverse of the system matrix, whih we know annot be done aurately in this ase.12



Moreover, although theoretial results are not available for GMRES, it is known that, forill-onditioned systems, preonditioning is ine�etive in improving the auray of otherKrylov subspae methods, suh as Conjugate Gradients (see [17℄).4 Review of other existing algorithmsA number of other shemes for the approximate solution of the initial value problem (7)has been proposed in the literature. In this setion we shall briey review those algorithmsand identify their strengths and weaknesses. In partiular we will see that the performaneof most methods does not depend strongly on the preise hoie of the order �; smallhanges in this parameter will usually give rise to insigni�ant hanges in the behaviourof the algorithm. This observation is in striking ontrast to what we will see below for themultistep methods.As a �rst algorithm we mention the Adams-Bashforth-Moulton method introdued in[11,12℄ and investigated in a more detailed way in [10,9℄. The method is a general purposealgorithm that is apable of handling any sort of funtion f on the right-hand side of eq.(7). As desribed in [9℄ it typially exhibits O(h1+�) onvergene (as above, h denotesthe step size of the algorithm under onsideration). Therefore this algorithm annot beonsidered to be partiularly fast (espeially if � is lose to 0), but it has its advantages inbeing very simple to implement (both for linear and for nonlinear equations) and reliable.An alternative is the bakward di�erentiation formula of [5℄. Notie that this method isbased on the idea of disretizing the di�erential operator in the given equation (7) by aertain �nite di�erene. If we apply Lubih's approah desribed above to a generate thefrational version of a lassial BDF (for �rst-order equations), then this amounts to usinga di�erent disretization of the di�erential operator, and so the two approahes are in e�etnot equivalent. The approah of [5℄ has been investigated very thoroughly. In partiular,the main result of [5℄ was that under suitable assumptions we an expet an O(h2��)onvergene behaviour (at least for linear problems, but the extension to the nonlinearase an be done along the usual lines). Thus we do not have very fast onvergene hereeither, but now the most diÆult ase is if � is lose to 1. In [13℄ we have seen how toimprove the performane of the method by an appliation of extrapolation priniples. Themethod itself has a simple struture (fully desribed in [5℄) but it is impliit; thereforeits appliation to nonlinear problems requires the use of an algorithm for the solution ofnonlinear equations (suh as, e.g., Newton's algorithm ombined with a suitable tehniqueto determine starting values for the iterative proess).5 Implementation of frational multistep methods and examplesWe now turn to the question of the e�etive pratial implementation of the methodsdesribed in x3. It has long been reognised that the key problem in their implementation13



is the alulation of the starting weights by solving the Vandermonde system (13) (see forexample, [1,18,26℄) sine the Vandermonde matrix is notoriously ill-onditioned. However,the authors of previous works highlight that it is not the aurate alulation of the weightsthat is important, but rather the value of the residualsh� nXj=0!n�j(jh) + h� nXj=0wn;j(jh) � 1�(�) Z t0 (t� s)��1s ds;  2 A; (18)whih orrespond to the errors in alulating the values of the integrals of the funtionsgiven in (11). To make this point lear, the Vandermonde system is ill-onditioned beauseit is nearly a matrix of de�ient rank. Now any errors in the solution (the starting weights)that orrespond to vetors in the kernel of the nearby matrix of de�ient rank will leadto very small errors in the alulation of the integral. Therefore, it is argued, errors in thestarting weights an be tolerated if the values of the residuals are small (i.e. to mahinepreision) (see [18,26℄). In fat the authors of the earlier works indiate that the residualsmay reasonably be assumed always to be small.5.1 Two examplesWe an see how this works quite e�etively by means of the example problemx(�)(t)= 40320�(9� �)t8�� � 3�(5 + �=2)�(5� �=2)t4��=2 + 94�(� + 1) (19)+ �32t�=2 � t4�3 � x(t)3=2with initial ondition x(0) = 0. We hose this equation as our test problem for this paperbeause it is a nonlinear equation that nevertheless has a known exat analytial solutionof the form x(t) = t8 � 3t4+�=2 + 94t� (20)for every � 2 (0; 1).In the �rst speial ase we solved (19) with � = 12 . This is the type of problem dealtwith in the earlier literature and so we would hope that the frational linear multistepmethod would be e�etive. We used a 4th order BDF method as the basis for the frationalmultistep method. We used Matlab Version 6.5 in double preision for the alulationsand ompared the approximate and exat solutions over various numbers (N) of gridpoints on the interval [0; 1℄. The starting values were obtained by iteration and an beassumed to ontain small errors. We tabulated the absolute errors at t = 1 in eah aseand estimated the order of onvergene of the method. For referene purposes later, anupper bound on the residuals (18) in this ase was 2:3e�14 and so the residuals an beregarded as being to mahine preision. The numerial results are given in the left part ofTable 3. We an see immediately that the behaviour of the numerial method is exatly14



what we would want. The estimated order of onvergene is as lose to 4 as ould beexpeted and the method appears to perform well.N error onvergene order40 4.1127e-0580 2.6325e-06 3.97160 1.6624e-07 3.99320 1.0435e-08 3.99640 6.5334e-10 4.00
N error onvergene order80 2.5000e-01160 7.4594e-02 1.74320 4.6450e-02 0.68640 9.9320e-03 2.231280 1.9078e-04 5.702560 3.8214e-04 �1:00Table 3Errors at t = 1 for example problem (19) with � = 1=2 (left) and � = 1=10 (right).In the seond example we repeated the alulations, this time for � = 110 . Now the residualsare roughly 1:1e�04 whih is not to mahine preision. Of ourse the earlier authors hadno reason to hek the situation for � = 110 sine it was not at that time onsideredimportant for alulations.We an see immediately from the numerial data presented in the right part of Table 3that the method has lost its order 4. In fat this is hardly surprising beause the errors inthe integrals (represented by the residual values) are large ompared to the overall errorof the method.This example gives us the �rst indiation that the residuals in (18) annot in general berelied upon to be small when we use values of � other than � = 12 .5.2 Investigating the magnitude of the starting weightsIn the earlier papers the ondition jwnjj = O(n��1) is given as an important onditionon the starting weights for stability of the numerial sheme. Baker and Derakhshan ([1℄,for example) point out that the starting weights will satisfy this ondition for a range ofnumerial shemes, inluding the BDF methods that we have been using. However theyassume that the Vandermonde system has been solved exatly. Therefore it is reasonablefor us to onsider the values of jwnjj as n varies as one way of testing the likely performaneof our numerial shemes.We present �rst a �gure (Figure 2) showing how the alulated starting weights vary forup to 60 grid points and � = 12 . This illustrates the phenomenon that we would hope tosee and reets the good performane of the BDF method in this ase.More surprising is the next �gure (Figure 3). Here we present the starting weights for� = 12 but for muh larger numbers of grid points. We draw attention to the way in whihsuddenly the method that is known to perform really well for small numbers of grid points15
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Fig. 3. Starting weights for � = 12 and n = 1; 2; : : : ; 100000. Eah line represents one olumn ofstarting weights.exhibits behaviour that would suggest a poor approximate solution for a larger numberof grid points. We shall see below that this is indeed what will happen.Now we present a �gure similar to Figure 2 for � = 110 (Figure 4). This time we knowthat the sheme performs badly and this is again reeted in the �gure, whih showsthe behaviour of a single starting weight. While the magnitude of the starting weightdereases in the beginning as one would expet from the theory, the explosion we haveseen for the ase � = 12 ours for � = 110 muh sooner. In addition the behaviour itselfbeomes haoti. Similar behaviour is observed for all 31 starting weights.Finally we want to draw attention to the fat that there is some interation between16
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Fig. 4. Starting weight for � = 110 and n = 10; 11; : : : ; 2500. Only the graph of the 15th startingweight is drawn. The behaviour is typial of all 31 starting weights.errors in the starting values and the errors in the starting weights whih may be worthyof further investigation. We solved equation (19) with � = 110 �rst using starting valuesobtained in the usual iterative way and then we ompared our solution with one alulatedusing exat starting values. The results (shown in Figure 5) indiate what we have foundin several examples we tried, namely that a solution based on exat starting values maynot display the same tendeny to errors beause of inorret starting weights as wouldone based on inexat starting values. Furthermore the error at t = 1 produed by usingexat starting values is 4:52e�7. This is about as good as the error produed by using theseond order method with the same number of mesh points whih is 6:05e�7 and thusthe seond order method would have been the more reasonable hoie for this problem.Another important drawbak in the ase where the starting values were obtained in theusual iterative way is that the algorithm stopped after 9850 steps sine it returned anegative value at this step and thus the evaluation of the right-hand side in the nextstep would produe an imaginary number. The omputation of the starting weights weredone using the Matlab bakslash operator \n". The GMRES method produed similarbehaviour when we inreased the number of mesh points. For N = 10240 however, thealgorithm �nished and produed an error of 2:29e�6 at t = 1 using starting weightsomputed by the Matlab \gmres" funtion.A similar e�et has been observed even in the muh more well-behaved ase � = 12 (seeFig. 6): Here we have used the starting values obtained by perturbing the exat data bya small amount (1e�4). The number of grid points was 100000. It turns out that in thisase the numerial solution beomes negative at t � 0:8, and so the algorithm breaksdown at this point.We return to these drawbaks in our theoretial disussions of the next setion.17
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Fig. 5. Plot of the numerial solution (white line, dotted line) of example (19) with exat startingvalues against the numerial solution (blak funnel) with omputed starting values and � = 110 ,p = 4 and N = 10240.
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Fig. 6. Plot of the true solution (solid line) of example (19) against the numerial solution(dashed line) with parameters � = 12 , p = 4 and N = 100000 and small (10�4) perturbations instarting values.6 Analysis of errors arising from starting weights and starting valuesIn this setion we ontinue our disussion of errors in solutions based on errors in thestarting weights and starting values. This time we approah the problem from a moretheoretial viewpoint.For the sake of simpliity we shall onentrate on the approximation of the onvolutionintegral (9). This is in essene equivalent to solving a linear frational di�erential equation.18



As we disussed earlier, in the ase of nonlinear frational di�erential equations we needto employ, in addition, a nonlinear solver at eah step. We do not onern ourselves withthese details here.We assume a frational linear multistep method with s starting values. We propose tosolve the equation over the interval [0; T ℄ where T = Nh for some �xed h > 0.The basi idea is as follows: we assume that the exat starting weights wnj and onvolutionweights !n�j would be reorded in an (N + 1)� (N + 1) matrix A aording toA = 0B� Is 0A21 A22 1CA (21)where Is is an s � s identity matrix, A21 is the (N + 1 � s) � s matrix with (A21)i;j =ws+i;j + !s+i�j and A22 is the square (N + 1 � s) matrix with (A22)i;j = !i�j for j � iand 0 otherwise. In pratie we have perturbed weights leading to a matrix of the formA+B where B takes the speial formB = 0B� 0 0B21 01CA (22)where B21 is the (N + 1 � s) � s matrix ontaining the errors in the starting weights(B21)i;j = (ws+i;j� ~ws+i;j). This highlights the fat that only the starting weights ontainerrors.The exat starting values are assumed to be stored as the �rst s elements in a solutionvetor x 2 RN+1 and the errors in the starting values are assumed to be stored in the �rsts elements of the vetor e 2 RN+1 .Now we are in a position to formulate our alulations in terms of the matries A;Band the vetors x; e: the approximate solution desribed in [25℄ is given by suessivemultipliation of vetor x by the matrix h�A. Eah suessive multipliation by the matrixh�A orresponds to evaluation of the next step in the onvolution integral (starting fromstep s). In total we need to pre-multiply by h�A a total of N � s + 1 times to ompletethe solution over [0; T ℄. Thus we wish to alulateJ = (h�A)N+1�sx: (23)In fat, when we take the inevitable errors into aount, we will atually evaluate~J = (h�(A+B))N+1�s(x + e) (24)so the errors introdued by the starting values and starting weights we alulated aregiven by the expression ~J � J:Lubih [25,26℄ de�ned the starting weights in A in suh a way that the method integratesexatly a set of s funtions (see also x3 above). Eah of these funtions an be sampled at19



the values 0; h; 2h; 3h; : : : ; (s�1)h to give a vetor in Rs . It is simple to see that the set of svetors of dimension s de�ned in this way spans Rs . We extend eah of these s-dimensionalvetors to an (N + 1)-dimensional vetor by onatenating N + 1 � s zeros in the lastomponents to give us s linearly independent vetors that we shall all v1; v2; : : : vs.By onstrution of the vetors vi, we an see that onstants �j; �j an be found so thatx = �1v1 + : : :+ �svs and e = 1v1 + : : : svs:This shows (by linearity) that suessive multipliation by the matrix h�A evaluatesexatly both the propagation of the values in x (whih we want) and the propagation ofthe values in e (whih we do not want).Now we an turn our attention to the e�et of multipliation by the matrix h�B. Aswe onstruted B it onsists of the errors in the starting weights whih we evaluatedin aordane with the methods of x3.2. In their paper [18℄, the authors say that theresiduals in the alulation ofh� nXj=0!n�j(jh) + h� sXj=0wnj(jh) � 1�(�) Z t0 (t� s)��1s ds;  2 A (25)need to be small. They assert (see also [26℄) that this an happen even when the errorsin the starting weights themselves are not very small.Now we an see that the residuals to whih they refer are the same as the values obtainedby multiplying rows of B by vetors vj. Therefore the auray of the approximation ofAN+1�sx by (A+B)N+1�s(x+ e) hinges on the values of B`vj for eah vetor vj.We reall that Baker and Derakhshan [1℄ have shown that, for the numerial methods ofinterest to us, the weights wnj satisfysup0�j�n jwnjj = O(n��1) as n!1: (26)It follows that kAk1 = O(N�) and kh�Ak1 = O(1). Thus we see that the alulation ofthe solution using the exat starting weights is stable with respet to small errors in thestarting values.We an readily obtain an estimate for the worst ase behaviour by evaluating (estimating)kBk1. We know that kA + Bk + kAk � kBk � kA + Bk � kAk (for any norm) and thatkAk1 = O(N�) . We have the matrix A + B and so we an evaluate kA + Bk1 exatly.If kBk1 is large then we know that ertain ombinations of vj will be magni�ed by thatfator. It is lear that kBk1 will be small if and only if all the residuals are small.The above disussion shows us that if the value kBk1 is not small then the values h�`B`xand h�`B`e may beome large. We wish to know whether they will in fat do this. Forinsight we turn to the power method for alulating eigenvalues of a square matrix basedon repeatedly multiplying a starting vetor by the given matrix. For the power methodwe see that if the starting vetor is hosen randomly, there is a probability unity that the20



dominant eigenvalue will be found. However if the starting vetor is hosen so that thereis no omponent in the diretion of the eigenvetor with dominant eigenvalue then someless prominent eigenvalue will be found. The situation in our problem is exatly parallelwith this. If the vetor x (the starting vetor) is hosen so that there is no omponent inthe diretion along whih the matrix B exhibits its dominant behaviour, then the errorprodued by the dominant behaviour will not be visible in the solution. On the otherhand, the starting errors e are likely to be random and therefore with probability unitywill show up the dominant behaviour of the matrix B. In general, in the examples wehave been working with, h�(A + B) leads to an unstable solution operator with respetto small hanges in the starting values. As the reader will observe, we have been unableto implement the stable BDFp method (at least for 4 � p � 6) developed theoretiallyby Lubih, but have been fored instead to implement an unstable approximation to it.In the examples of x5.1 we saw a ase where putting in the starting vetor with exatinitial values of the solution led to a good aurate solution, while putting in randomstarting errors destroyed auray (reall Figure 6). We an see how this an happenwhen we look at a setion of the matrix of residuals. Almost all the residuals are quitesmall and therefore it is omparatively easy to �nd starting values that do not pik upthe dominant (bad) behaviour. The random starting errors introdue all the dynamis ofthe solution.
7 ConlusionsWe disussed at the start of the paper what we required of a good numerial sheme forfrational di�erential equations. The disussions of the two previous setions illustratethe pitfalls that an arise when we implement frational multistep methods in pratie,even though their good behaviour has been proved in theory. We have onentrated onBDF methods here as the basis for our investigations following the advie of Baker andDerakhshan [1℄ who indiated that they had not found any bene�t in attempting to useother possible linear multistep formulas. It is known that BDFs of order up to 6 areA(�)-stable for some � > 0 and so these methods are the basis for our alulations here.In the following diagrams we onsider the omputational ost of alulating the solutionto equation (19) in terms of the time taken for the total alulation, ompared with theerror of the solution obtained. We present graphs for eah of the methods BDF 1-6. Inall ases we reorded the respetive error at the point t = 1. The lines always displaythe orrelation between the omputation time (horizontal axis) and the numerial error(vertial axis; note the logarithmi sale). As an be expeted the results of our previousdisussion show up in some untypial shapes in the graphs.The left part of Figure 7 shows that for � = 12 and a reasonably small number of nodes,BDF 1-4 methods are e�etive but BDF 5-6 show problems. The right part illustrateshow even BDF 4 begins to lose auray as the number of nodes used inreases.21
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