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Abstract

Non-intrusive load monitoring (NILM) is the process in
which a household’s total power consumption is used to
determine the power consumption of household appliances.
Previous work has shown that sequence-to-point (seq2point)
learning is one of the most promising methods for tackling
NILM. This process uses a sequence of aggregate power
data to map a target appliance’s power consumption at the
midpoint of that window of power data. However, models
produced using this method contain upwards of thirty mil-
lion weights, meaning that the models require large volumes
of resources to perform disaggregation. This paper addresses
this problem by pruning the weights learned by such a model,
which results in a lightweight NILM algorithm for the pur-
pose of being deployed on mobile devices such as smart me-
ters. The pruned seq2point learning algorithm was applied
to the REFIT data, experimentally showing that the perfor-
mance was retained comparing to the original seq2point
learning whilst the number of weights was reduced by 87%.
Code:https://github.com/JackBarber98/pruned-nilm
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1 Introduction

The purpose of NILM is to break down the household’s total
power consumption into individual appliance power lev-
els. When NILM is applied, the smart meter could provide
feedback to the users informing the power consumption of
appliances and consequently help householders to reduce the
energy consumption. Research has shown that NILM could
help household users to reduce energy consumption by 15%
[12]. Additionally, smart meters integrated with NILM could
help energy providers to optimise their smart grid operations
and as well as propose specific tariffs for users according to
their energy consumption habits, e.g. NILM could be used to
learn the appliance usage patterns [14].

Contemporary solutions using deep neural nets (DNN5s)
are the state-of-the-art approaches to NILM, arguably com-
paring to other statistical and signal processing methods
[4, 5, 7, 17, 30-33]. Various DNN architectures have been
investigated for NILM, which include convolutional neural
networks (CNNs) [3, 8, 10, 11, 18, 23, 29], recurrent neural net-
works (RNNs) [18, 21], denoising autoencoders [6, 18], gen-
erative adversarial networks [2], residual attention networks
[28], dilated networks [13, 16, 28], and gated networks [25].
These learning algorithms require large amounts of time and
hardware resources when training and making inferences.
This limitation currently makes domestic energy disaggre-
gation systems for home smart meters largely unavailable.
For example, the seq2point learning model contains approx-
imately thirty million weights. Techniques are required to
minimise this number as much as possible to deliver a mo-
bile energy disaggregation system. For mitigating this limi-
tation, this paper proposes to inspect pruning the network
to minimise both the size and inference time of such neural
network algorithms. Four pruning techniques are studied:
structured probabilistic pruning [27], entropy-based pruning
[15], relative threshold pruning [1], and constant sparsity
low magnitude pruning [26]. The purposes of these pruning
techniques are to remove any weights from the networks
that do not contribute significantly to the networks’ output
and thus do not affect the performance of the algorithm.


https://core.ac.uk/display/363627855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5th International Workshop on Non-Intrusive Load Monitoring, November 18, 2020, Online

In addition, the architecture of seq2point learning could be
made lighter by reducing the number of filters of CNNs and
as well as the number of neurons. This paper applies the
seq2point learning algorithm with pruning and a reduced
architecture to a real-world household energy data. Experi-
mental results show that the performance of the pruned and
reduced model was similar to the original model whilst the
number of weights was reduced by 87%.

2 Sequence-to-Point Learning

The sequence-to-point model was proposed in [29] for use in
the context of NILM. It slides a window over the electricity
main readings in a household, which is used as the input to a
CNN with five layers followed by two fully connected layers
(see the architecture). Correspondingly, a single midpoint
at the centre of the window of an appliance is used as the
target of the network. A similar scheme has been used for the
spectral analysis of speech. For example, seq2point models
have been used to infer a single value from a sequence of
time ordered data [24].

e Seq2point Architecture [29]
— Input sequence with length W: Y;.; v
1D Convolution: {# filters: 30; filter size: 10}
1D Convolution: {# filters: 30; filter size: 8}
1D Convolution: {# filters: 40; filter size: 6}
1D Convolution: {# filters: 50; filter size: 5}
1D Convolution: {# filters: 50; filter size: 5}
— Fully connected: {# units: 1024}
— Output: {Number of units:1, activation: linear}

Recent deep learning approaches to NILM have been largely
developed over the seq2point approach, showing that it
would be one of the most promising approaches to ultimate
NILM. Most of previous works have attempted to improve
the performance of seq2point by using various variants of ar-
chitectures including gated CNN and RNNs, very deep CNNs,
fast sequence-to-point learning with CNN/RNN/WaveNet,
and dilated residual attention networks [38, 9, 16, 21, 23, 25,
28]. These models require an enormous number of weights
to represent the networks and thus need large amounts of
memory for deployment. Little work has been devoted to
lightweight nets for NILM, which require less parameters and
memory for the purpose of deployment on mobile devices.
In the following section, methods including reduced and
pruned networks are proposed as preliminary approaches to
lightweight NILM. Although this architecture was used in
this paper, these pruning algorithms could also be applied
to other DNN models.

3 Pruning Methods

There are two approaches to reduce the number of weights
in seq2point learning whilst preserving their performance.
Whilst the first approach uses dropout and a reduced number
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of CNN filters to reduce the size of the networks, the second
uses pruning methods to prune the learned weights.

3.1 Reducing Network Architectures

3.1.1 Dropout. One aspect of the seq2point model that
has potential to be improved is the structure of the net itself.
Dropout has traditionally been used to enhance the gener-
alisability of an ANN, but as dropout randomly removes
("drops") a specified percentage of weights from a neural net-
work, it has the side-effect of increasing a model’s sparsity
by a controllable amount. We therefore applied dropout into
the seq2point architecture.

3.1.2 Reduced Architecture. One the easiest ways to re-
duce the number of neurons and weights in a seq2point
architecture is to reduce the network size by making its
layers smaller. Naturally, a CNN that contains too few con-
volutional filters or dense layer weights will never be able
to make accurate predictions or classifications — a balance
must be found between performance and model size. There
are no rules and guidelines to determine the optimal num-
ber of neurons and weights. The required number depends
upon parameters such as the data being used and the task
a network is being trained to complete. We propose to re-
duce the number of filters in each convolutional layer by ten,
and also to reduce the number of neurons in the net’s dense
layer from 2'° to 2° neurons. In the following we investigate
pruning algorithms to further reduce the number of weights.

3.2 Pruning Network Weights

3.2.1 Structured Probabilistic Pruning. Pruning weights
of networks is to shrink the number of weights in order to re-
duce the size of the network whilst their performance is pre-
served. For this purpose, unlike other pruning algorithms—
typically designed for CNNs—the structured probabilistic
pruning (SPP) algorithm [27] groups weights by filters in-
stead of by layers. This means that 2D convolutional layers
like those seen in the seq2point model are less prone to being
heavily pruned compared to fully connected layers. Further
details of this method can be found in [27].

3.2.2 Entropy-Based Pruning. An entropy-based approach
to pruning (EBP) [15] uses the information contribution of a
weight to determine whether it should be pruned. It aimed
to reduce the loss in inference accuracy that occurs when
performing sparsification on a network. The method prunes
the network layer-wise under the assumption that the distri-
bution of weights in a layer is quasi-Gaussian, see [15].

3.2.3 Relative Threshold Pruning. Relative threshold
pruning (RTP) has been proposed by [1], where a threshold
value below which pruning occurs is identified and enforced
by the algorithms. The best performing algorithm demon-
strated determines pruning thresholds for each layer relative
to the size of each layer. The value of the threshold, denoted
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by 7, is set such that 7; = percentile(d;, w;), where J; is a
desired percentile of the layer’s weights, wy, to obtain. Thus,
the number of weights pruned becomes entirely dependent
on the distribution of a layer’s weights. §; values for the
upper and lower thresholds of a layer must be individually
selected, and the thresholds for convolutional layers must
have a smaller range to ensure models can still converge.

3.2.4 Constant Sparsity Low Magnitude Pruning. Ten-
sorFlow’s Model Optimisation library [26] provides a simple
low magnitude pruning algorithm. This algorithm removes
a fixed, pre-defined proportion of weights with the lowest
absolute values from a neural network model during train-
ing. Two variants of this algorithm—herein referred to as
TFMOT (TensorFlow Model Optimisation Toolkit) pruning—
are available for use: (1) polynomial decay low-magnitude
pruning, and (2) constant sparsity low-magnitude pruning
(LMP). The former reduces the number of weights gradually
until the target sparsity is reached, whereas the constant
sparsity approach immediately produces a model with the
target sparsity and adjusts the weights that have been re-
moved to enhance accuracy during each pruning iteration.

4 Experimental Setup
4.1 Data Sets

The most used datasets in recent NILM-based research in-
clude UK-DALE [19], REDD [20], and REFIT [22]. They all
allow for the power consumption of the device to be cal-
culated or used directly. The REFIT dataset is larger than
others, so it will be utilised in the experiments presented
here. This dataset contains data gathered from various ap-
pliances from twenty different properties at eight second
intervals. The dataset contains 6.46GB of power readings,
and therefore should be suitable for producing models gen-
eralised to their appliance domain. As training a model for
each available target appliance would require considerable
computing resources, two appliances will be used: the kettle
and dishwasher. These have been selected to demonstrate
performance with devices with energy signatures of varying
complexities; the kettle can either be ON or OFF, whereas
the dishwasher can have a wide range of states and can be
operational for highly variable periods of time. A sliding
window containing 599 data points, i.e., 4792 seconds, will
be used. Note that this number of data points is identical to
the original seq2point paper [29].

4.2 Metrics

Two common error metrics will be used to evaluate the per-
formance of our regression models: mean absolute error
(MAE), and mean squared error (MSE). As these do not pro-
vide any indication of how effective the pruning process
was, the number of non-zero weights present in a model will
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len(w;=0)

be recorded to produce the sparsity measure S = TenCwp)

where wj is a layer I’s weight matrix.

4.3 Network and Algorithm Parameters

The network settings specified by D’Incecco et al. [10] will
be used when defining models. Where it is possible to set
the target sparsity ratio of a pruning algorithm, it will be
set to 0.7 in an effort to ensure that only the process by
which weights are chosen for pruning by an algorithm are
responsible for a model’s relative performance. However,
this target sparsity may not be achieved in all instances due
to the deployment of early stopping.

5 Results
5.1 Pruning Algorithms

We evaluate the pruning algorithms described in Section 3,
and apply them to kettle and dishwasher appliances to choose
the best pruning algorithm for seq2point learning.

5.1.1 Kettle. The SPP algorithm produced a model with
the lowest errors compared to other models trained to dis-
aggregate kettle energy values. See the results in the Table
1. SPP yielded a MAE 11.6% smaller than LMP which was
the next best pruning algorithm and was 9.8% smaller than
that of the control model. However, although SPP removed
23% of weights from the model’s convolutional layers, the
overall sparsity ratio of the model was negligible as SPP only
prunes weights from a model’s convolutional layers.

The next-best pruning algorithm was LMP with a MAE of
2.0% greater than the control model, and shows that seq2point
models can indeed be pruned with a minimal negative impact
on inference capability. LMP also has the highest sparsity
ratio of all kettle models at 70%, meaning that the number of
non-zero weights the model contains was reduced from 30
million to 9.2 million. This is an extremely significant reduc-
tion with minimal performance degradation and appears to
offer the optimal balance between sparsity ratio and error.

Both MSE and MAE of EBP were similar to that of LMP.
However, the model pruned using EBP had a sparsity ratio
39% less than the LMP model. This model still shows potential
as a significant level of pruning occurred whilst maintaining
good inference ability compared to the control model.

Whilst a high sparsity ratio of 40% was achieved by the
model trained using the relative threshold pruning approach,
this was the worst-performing model. The significant degra-
dation in MAE and MSE leads to the conclusion that this
algorithm is not suitable for pruning seq2point models for
use in energy disaggregation.

5.1.2 Dishwasher. None of the pruning algorithms per-
formed better than the control model when models were
trained to infer values for dishwashers. While SPP yielded
the lowest MSE, the EBP algorithm resulted in the lowest
MAE. SPP produced a model with an MSE 4.6% greater than
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Table 1. Four pruning methods applied to seq2point model. The LMP achieved the similar performance comparing to the
seq2point without pruning (control) with the best sparsity 70%. (Best results are in bold.)

Control Low Magnitude | Relative Threshold | Structured Probabilistic | Entropy-Based
Pruning (LMP) Pruning (RTP) Pruning (SPP) Pruning (EBP)
f
Number o 30,707,024 9,212,107 18,424,214 30,636,624 21,187,847
Weights
MAE MSE [MAE MSE |MAE MSE MAE  MSE MAE  MSE
Kettle 00712 0.1102 | 0.0726 0.1151 | 0.0819 0.1269 0.0642 0.0990 0.0766  0.1150
Dishwasher | 0.0878 0.1642 | 0.1011 0.1814 | 0.1072 0.2033 0.0824 0.1717 0.0799 0.1797
Mean [ 0.0795 0.1372 [ 0.0869 0.1483 | 0.0946 0.1651 | 0.0733 0.1354 [ 0.0783  0.1474

Table 2. Reduced and dropout methods applied to LMP. The LMP with reduced and dropout methods achieved even better
performance comparing to seq2point (control) whilst the sparsity achieved 87%.

LMP Reduced LMP | Dropout LMP | Reduced + Dropout LMP
Number of Weights | 9,212,107 3,685,637 9,212,107 3,685,637
MAE MSE [MAE MSE |[MAE MSE |[MAE MSE
Kettle 0.0726 0.1151 | 0.0756 0.1174 | 0.0745 0.0420 | 0.0650 0.0335
Dishwasher 0.1011 0.1814 | 0.0558 0.0649 | 0.0862 0.0911 | 0.0401 0.0487
Mean [ 0.0869 0.1483 [ 0.0657 0.0912 | 0.0804 0.1331 | 0.0525 0.0411

the control model’s, which is an acceptable increase in error
as it less than 5%. The MAE of this model was smaller than
the control model’s, and whilst the compression ratio yielded
by this model was insignificant it should not be disregarded
as it may be possible to use this algorithm in conjunction
with others to prune a model to a higher standard.

The model trained using the EBP had a MAE 7.9x10™* less
than the control model, whilst its MSE was 1.55x 107 greater.
This implies that individual errors experiences were more
likely to be large in absolute value compared to the control.
However, this algorithm caused little net performance loss
whilst pruning 23% of weights present in the model. The
worst-performing algorithm was once again the RTP. The
MAE of the model produced saw an increase in MAE of 22.1%
versus the control, whilst the MSE saw a similar increase of
23.8%. The MAE of this algorithm’s model is 34.2% greater
than that of the model produced via EBP. Regardless of the
model’s 40% sparsity, this large increase in error makes the
RTP unsuitable for energy disaggregation.

LMP was the second-best performing algorithm in terms
of sparsity ratio. The dramatic number of weights this al-
gorithm appears to remove from models arguably offsets
the fact that it does not cause the least degradation infer-
ence performance. As this algorithm produced high-quality
models for both the kettle and dishwasher devices, it can be
concluded that this is the most suitable pruning algorithm
evaluated.

5.2 Reduced and Dropout Models

Results show that LMP was the optimal pruning algorithm
used. Thus, a reduced seq2point model with LMP and dropout

was trained. The results are shown in the Table 2. The last col-
umn of Table 2 shows that when both reduced architecture
and dropout along with LMP were used, the MSE produced
were only one third of the control model. The MAE of these
models were also significantly smaller, suggesting at a sur-
face level that this composition is optimal and importantly
the sparsity achieved 87%. Applying just dropout alongside
pruning yields models with very small error metrics com-
pared to the control architecture, out-performed only by the
models with dropout and a reduced number of weights and
filters. Combing reduced and LMP reached sparsity by 87%,
but the performance in terms MAE and MSE was not better
than LMP with reduced and dropout model.

6 Conclusions

This work demonstrates that seq2point models can be pruned
to remove unnecessary weights with minimal performance
degradation. LMP was the optimal algorithm among those
pruning algorithms, and that this can successfully be applied
to a reduced seq2point architecture with dropout. The results
show that the LMP with reduced and dropout model outper-
formed the original seq2point model and as well as reduced
the number of weights by 87%. Future research could focus
on finding an optimal network architecture that balances
performance with network size and applying them to other
NILM approaches. It is hoped that this may aid in the devel-
opment of an oracle energy disaggregation system that is
lightweight and capable of performing real-time disaggre-
gation on extremely low-power computing devices such as
smart meters.
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