
Birational Geometry of Cyclic

Covers

Thesis submitted in accordance with the requirements of the

University of Liverpool for the degree of Doctor in Philosophy

by

Dominic Robert Foord

Department of Mathematics

University of Liverpool

United Kingdom

September 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/363627421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Page 2



Birational Geometry of Cyclic Covers Dominic Robert Foord

Abstract

This thesis concerns the Birational geometry of Fano varieties. The first two

chapters are an introduction to Birational geometry, and then specifically the

theory of Birational rigidity developed by Pukhlikov and others, as well as an

exposition of the method of hypertangent divisors. Using these ideas, we prove two

separate results, namely the Birational rigidity of a generic singular cyclic cover,

and further show that a generic smooth cyclic cover admits a Kähler-Einstein

metric. We finish with a chapter linking our work to previous results, explaining

how they link to previous results on fibre spaces, as well as providing some possible

areas of future research.
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Introduction

0.0.1. Rational varieties and the Lüroth Problem — Algebraic geometry,

the field in which this thesis is located, is concerned with the study of zeros of poly-

nomial equations, or alternatively the study of varieties. One main aim is to find

a classification of all such objects up to some sort of equivalence relation. Unfor-

tunately, classifying varieties up to biregular isomorphism is a hopelessly thankless

task, and so we rely on weaker notions instead. One way to answer this question

is by using the notion of birational equivalence, which leads us to the subfield of

Birational geometry. The task can be simply summed up as follows: find invariants

under birational maps, which typically consist of both continuous and discrete in-

variants. One such invariant is the so-called virtual canonical threshold - this thesis

will discuss this as well as the implications that knowledge of this invariant implies,

leading to the theory of Birational rigidity.

We however begin by considering a different related question, the so-called unira-

tionality problem: we let X be a variety, then the problem asks whether there exists

a rational dominant map ψ : Pn 99K X. The question whether unirationality implies

rationality is known as the Lüroth problem. In dimensions 1 and 2, this problem has

a positive solution. We use following theorems:
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Theorem 0.0.2 (Rationality criterion in dimension 1). — A curve C is rational if

and only if its genus gC = h0(C,Ω1
C) = 0, where Ω1

C is the sheaf of 1-forms.

Theorem 0.0.3 (Rationality criterion in dimension 2 (Castelnuovo’s Criterion)). —

Let S be a smooth projective surface satisfying

H0(S,Ω1
S) = H0(S, ω⊗4

S ) = H0(S, ω⊗6
S ) = {0}

where ωS = Λ2 ΩS is the sheaf of 2-forms. Then S is rational.

On the other hand, for a unirational variety we have the following:

Theorem 0.0.4. — Let X be a unirational variety defined over the complex num-

bers. Then H0(X, Ω⊗kX ) = 0 for k > 0.

One would therefore hope that we could generalise these to higher dimensions.

Unfortunately, this is not the case as we will see. One way of disproving the Lüroth

problem in this case is by asking whether a variety is birationally rigid or not.

Roughly speaking, a variety is birationally rigid if it cannot be transformed into

a different variety which is ”minimal”. We will make this notion precise, and will

concern ourselves with the history of this idea in the following.

The origins of the theory of Birational rigidity trace themselves to the work of Fano

on algebraic threefolds in the papers [27] and [28]. This was an attempt to expand

the Castelnuovo rationality criterion for surfaces to the case of higher dimensions

(there is an exposition of this story in [77]). Whilst to modern eyes these papers are

riddled with errors, and in particular he was only successful in dealing with partic-

ular examples rather than a class of varieties, the ideas contained within them were

sound, and certainly generated many advances in the field of Birational geometry.

Inspired by this work, Iskovskikh and Manin wrote the famous paper [35] on the non-

rationality of the smooth quartic threefold V4 ⊂ P4, implied by the equality of the au-

tomorphism group and the group of birational self-maps, that is, Bir(V4) = Aut(V4).

Since Segre had constructed a smooth unirational quartic threefold in the paper [71],
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this gave a counterexample to the Lüroth problem in dimension three, i.e. that a

unirational variety is always rational.

This was one of three successful attempts to disprove the Lüroth problem that ap-

peared in 1970-1971; the other two are the method of the intermediate Jacobian, by

Clemens and Griffiths in the paper [14], and the method of studying the torsion of

the third cohomology group, by Artin and Mumford in the paper [2].

0.0.5. The Minimal Model Program — Aside from questions of rationality,

another main area of research in Birational geometry since the 1980’s has been in

the Minimal Model Program (MMP). Heuristically speaking, the aim is to start with

a given variety, and birationally transform it into one of three ”types”, with an out-

put consisting of a variety with canonical class either positive, trivial, or negative.

From the point of view of rationality questions, it is very easy to show that all vari-

eties with positive canonical class are non-rational. With a little more work we can

show the same for varieties with trivial canonical class. The question, however, for

varieties whose output has negative trivial class is far more involved.

The output in the third case is what is known as a Mori fibre space - we give the

definition:

Definition 0.0.6. — A Mori fibre space is a Q-factorial projective variety X with

at worst terminal singularities and a surjective morphism φ : X → Z with connected

fibres, such that

� The anticanonical class −KX is φ-ample;

� The relative Picard number ρ(X/Z) is 1;

� dimZ < dimX.

Unfortunately, in general the output of MMP, assuming it is a Mori fibre space,

is not unique. However, in the first case, we can (hopefully) apply the theory of

Birational rigidity to ascertain some of its properties. We will give a brief overview

of this program in Chapter 2.
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As of 2020, this theory has been realised in many different contexts, though not

in full generality, in particular it has not been proved in every dimension greater

than 3. However, the author has no reason to doubt its falsehood, and in any case

does not invalidate the utility of the study of Mori fibre spaces in higher dimensions.

A very good exposition of the ideas of the MMP is found in the book [21].

0.0.7. The history of Birational Rigidity — The idea of Birational rigidity

was then first defined rigorously by Pukhlikov in the paper [51], which grew out of

an attempt to refine the methods of the aforementioned Iskovskikh-Manin paper (in

particular, any smooth quartic threefold is birationally superrigid, a stronger notion

than rigidity). Several closely related definitions have since made their way into

the literature - we use the definition given in Chapter 2. Birationally rigid varieties

are special in that they cannot be birationally transformed into any other Mori

fibre space. Since projective space has infinitely many such transformations, it is in

particular not rational.

The first variety to be shown to be birationally rigid, though not superrigid, was

the quartic threefold with a single non-degenerate singular point; this was proved in

the paper [50]. Around the same time, it was shown that the generic intersection of

a quadric and a cubic embedded in P5 was also birationally rigid but not superrigid

in the paper [37] - these were papers of Pukhlikov. Cheltsov and Grinenko were able

to show in the paper [10] that specific intersections of a cubic and a quadric with

a double point were birationally rigid, whilst general such intersections failed to be

so. This importantly showed that the property of Birational rigidity is not open in

moduli.

Generic Fano hypersurfaces of degree n ≥ 5 were first studied in [60] - this is where

the concept of the technique of hypertangent divisors first made its appearance. The

results here were generalised to the case of index 1 complete intersections in the

papers [53] and [63], and then to the case of a cyclic cover; an exposition of these

ideas can be found in the paper [55], and indeed this thesis improves some of the

results contained within. Birational rigidity of arbitrary covers of projective space

was then proved in the paper [66]. It should also be mentioned that Johnstone proved

the Birational rigidity of singular double quadrics and double cubics in the paper
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[38] without the need for hypertangent divisors.

In the field of the classification of threefolds, it was shown that a general member

of the famous 95 families of quasi-smooth index one hypersurfaces was birationally

rigid in the paper [18] - the genericity condition was later confirmed to be superfluous

in [12].

In some cases, it has been shown to be possible to change the genericity condition

to one of smoothness, originally conjectured to be the case by Pukhlikov; it was

finally proven that every smooth Fano hypersurface of arbitrary dimension n ≥ 4

is birationally superrigid in the paper [20]. The methods of this paper, involving a

extension of the classical inversion of adjunction using multiplier ideal sheaves, was

extended further to some smooth and mildly singular complete intersections; see [41,

Main Theorem 2] and [45, Theorem 1.1] for proofs of these statements.

The main tool for proving most of these results is the so-called 4n2-inequality

which was first used indirectly in the (again aforementioned) paper [35], but was

codified in the paper [61]. This was recently generalised to the case of a complete

intersection singularity, giving much stronger bounds on the multiplicities involved

in the paper [65]. Some recent examples of papers making use of this result can be

seen in [26], [23] and [57].

Further, it is possible to use the methods to study what happens in the case

where the index of the variety is greater than 1. We no longer have the notion

of Birational rigidity, as we can always find differing Fano fibre spaces induced by

projections. However, we can go some way to describing the possible structures of

a rationally connected fibre space using methods from this thesis - see [64] and [19]

for some discussion in this area.

Finally we mention the theory of the Birational rigidity of Fano fibre spaces. The

origins of the study are difficult to trace, though a good starting point is the paper

[52] where the K2-condition was defined and Del Pezzo fibrations of low degree were

studied. As mentioned there is also the paper [55] where pencils of cyclic covers were

studied. Most of the papers in this section were written by Pukhlikov, but there are

also contributions by Cheltsov, Grinenko, Corti, Reid and de Fernex.
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0.0.8. Overview of the Thesis — In Chapter 1 we give a brief review of termi-

nology and results used throughout the thesis, culminating in an introduction to the

rationality problem from our point of view. In particular, we begin by giving a de-

scription of the setting of the varieties we mostly work with, complete intersections,

as well as our chosen form of the notion of multiplicity of a point on a variety. We

give a brief discussion on the notion of the index of a Fano variety, and how it relates

to the birational classification of Fano varieties, as well as a brief introduction to the

Minimal Model Programme (abbreviated to MMP), and how Birational rigidity ap-

plies to the case where we finish with a variety with negative Kodaira dimension,

whilst also remarking that we can and should study varieties in dimensions 4 and

higher where MMP is not currently known (but is expected) to work. This sets us

up with the techniques required to understand Birational rigidity in the context of

the thesis.

The second chapter contains a survey on Birational rigidity, going into detail re-

garding the methods used later on in the thesis. We begin with an overview of

Birational (super)rigidity from the point of view of the threshold of canonical ad-

junction, before describing the method of maximal singularities, and how it contrasts

with ”untwisting” as a method to prove the Birational rigidity of a variety. Following

the paper [65], we then give a proof based on that of Pukhlikov of the generalised

4n2-inequality, which is one of the main tools used to prove Birational rigidity of

singular varieties, and how it relates to the original 4n2-inequality, also proved by

Pukhlikov. Following this we give a recap of the proof of the inversion of adjunction,

before we talk about the main method used in this thesis, the method of hypertan-

gent divisors. Throughout we give examples where our methods can be easily applied.

In Chapter 3 we move onto one of the two main results of this thesis, a proof of

the Birational superrigidity of a general cyclic cover containing a point of high mul-

tiplicity. To do this, we exclude possible maximal centres in turn, depending on their

codimension. The hardest case is that when the maximal singularity is a singular

point - this is where we use the generalised 4n2-inequality in full. We then talk about

the regularity conditions required for the use of the method of hypertangent divisors,
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and prove that the space of parametrising polynomials which are regular is open in

the total space. This markedly improves the previous situation where we were only

able to allow very simple singularities on such a variety. This result is contained in

the paper [29], written by the author of this thesis. We finish with a brief discussion

of how this result can be further generalised, to the case where the dimension of

singular points on the variety is strictly positive.

In Chapter 4, we discuss the alternate point of view, by which we wish to study

the Birational geometry of a cyclic cover, not through its embedding in weighted

projective space but instead through projection to a lower dimensional ”honest”

projective space. For the second main original result of this thesis, we show that

the canonical threshold of a general smooth cyclic cover is bounded below by 1, and

discuss the implications of this result in the wider context of K-stability in com-

plex geometry, and give an introduction to this topic. We show this again using

the method of hypertangent divisors, and prove that the space of regular defining

polynomials is open in the total space.

In the final chapter, we give a brief introduction to the Birational rigidity of Mori

fibre spaces, and show how the main result of Chapter 3 has implications for the

Birational rigidity of a pencil of cyclic covers. We further discuss possible avenues of

research to continue possible applications of hypertangent divisors. In particular, we

highlight the efforts to apply the methods in this thesis to higher index situations,

as well as further examples of index 1 varieties.



1.

Background Information

In this chapter, we will give an introduction to some of the key concepts from bi-

rational geometry. We assume that the reader has knowledge of basic algebraic

geometry, for example found in the books [33], [72] and [48]. We will also use the

books [30], [36], [43] and [44] for a few technical results, though as before the informa-

tion contained within these is widely available. We focus on complete intersections

and more general Fano varieties, especially concentrating on the distinction between

singular and non-singular varieties and the problems they may pose - these are the

main objects of study in this thesis.

All varieties will be assumed to be integral and defined over the complex numbers

unless otherwise stated. It may well be the case that some of these results do indeed

hold over a base of positive characteristic, however we require the use of resolution

of singularities throughout this thesis, so we keep things as simple as possible by

restricting to the complex case.

1.1. Complete Intersections

Definition 1.1.1. — A projective variety X = Xd1,d2,...,dk ⊂ Pn is called a com-

plete intersection if the ideal of X is generated by exactly codimX = k elements
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fi(z0, . . . , zn), i = 1, . . . , k, each of degree di. We may similarly define X embedded

in weighted projective space and can also subsequently restrict to affine space; in all

of these settings we refer to X as a complete intersection.

We will focus on varieties of this type during this thesis. The reason for this is

the following: complete intersection varieties are all Gorenstein, and hence have a

canonical divisor that is Cartier.

Definition 1.1.2. — Let X be a projective variety. Let p ∈ X be a (closed) point,

and let OX,p be the local ring of functions regular at p, with residue field κ and

maximal ideal m. Then we say that X is non-singular at p if dimκOX,p = dimm/m2,

whilst we say p is singular if this is not the case. Further we say that X is non-singular

if it is non-singular at every point p ∈ X.

It is then natural to pick a choice of multiplicity of a singular point. Since we

will only ever work with complete intersections, we will use the following point of

view:

Let p ∈ X ⊂ Pn be a point on a complete intersection X, where codimX = k. Since

X is a complete intersection, we may locally at a point p write it as the vanishing of

k polynomials f1, . . . , fk. We say that p has multiplicity type |µ| = {µ1, µ2, . . . , µk} if

locally the polynomials f1, f2 . . . , fk can be decomposed into a sum of homogeneous

polynomials as
f1 = f1,µ1 + f1,µ1+1 + . . .+ f1,d1

f2 = f2,µ2 + f2,µ2+1 + . . .+ f2,d2

...

fk = fk,µk + fk,µk+1 + . . .+ fk,dk

If it is possible to have a small enough open neighbourhood around p such that p

is the only singular point within it, we say that p is an isolated singularity. The

multiplicity at the point p can easily be seen to be µ =
∏k

i=1 µi.
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Moving on, from a topological point of view, the singular cohomology of a non-

singular complete intersection X can be described by the following theorem, [30,

Example 19.3.10].

Theorem 1.1.3. — Let X be an n-dimensional non-singular complete intersection

embedded in Pm. Then H i(X,Z) = H i(Pm,Z) for i < n. The singular cohomology

groups of Pm are well-known to be equal to Z for 0 ≤ i ≤ m for i even, and zero

otherwise, and this gives us the cohomology groups of X.

This gives us the most basic properties of complete intersections that we will

need. Note however that in general the varieties under study will have singularities,

necessitating care when we refer to related definitions and theorems.

1.2. Divisors and Linear Systems

In this section, we will describe divisors and linear systems on a projective variety.

Studying the Birational geometry of a variety can very frequently be reduced to

studying the behaviour of such objects.

Definition 1.2.1. — Let X be a projective variety. A prime divisor on X is a closed

subvariety of codimension one. A Weil divisor is an element of the free abelian group

DivX generated by the prime divisors. We write a divisor D as a sum

D =
∑

niYi

where the Yi are prime divisors and the ni are integers, where only finitely many ni

are non-zero. We say a divisor D is effective if all the integers ni are positive.

Definition 1.2.2. — We say two divisors D and D′ are linearly equivalent, and

write D ∼ D′ if D −D′ is a principal divisor. The group DivX/ ∼, where ∼ is the

equivalence relation defined by linear equivalence is the divisor class group of X, and

is denoted by ClX.

Definition 1.2.3. — A Cartier divisor on a variety X is defined to be a global

section of the sheaf K∗X/O∗X over X. A principal divisor is a Cartier divisor defined
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by a single rational function f ∈ C(X), denoted by (f). We say two Cartier divisors

are linearly equivalent if their difference in the group H0(X,K∗X/O∗X) is a principal

divisor. The Picard group is defined to be the group of all Cartier divisors modulo

linear equivalence and is denoted by PicX.

Definition 1.2.4. — The linear equivalence class of Weil divisors (ωX) where ωX

is a rational n-form on X is called the canonical divisor class. Any member of

this divisor class will be denoted by KX and is called the canonical divisor of the

variety X. We can expand this definition to a normal potentially singular variety X;

the easiest way is to realise ωX as the double dual of the sheaf Ωn
X ; we ignore this

distinction from this point onward in this thesis - see [69][1.5 and 1.6] for further

discussion in this direction.

Definition 1.2.5. — We say that a variety X is factorial, if all the local rings of

X are UFDs. This implies that all the Weil divisors of X are Cartier, since every

subvariety can be written locally as the vanishing of a single function. Similarly, we

say that a variety X is Q-factorial if every Weil divisor is some non-zero multiple of

a Cartier divisor.

From the point of view of Birational rigidity, it is important that we study vari-

eties that are (at least) Q-factorial. It is not due merely to the presence of singular-

ities that is the ”main” obstruction of whether a variety is birationally rigid or not,

but its factoriality. Clearly every non-singular variety is factorial, however develop-

ing criteria to determine whether a singular variety is Q-factorial is more difficult.

This was discussed in a paper of Mella, [46], where he showed that a quartic three-

fold with at worst quadratic singularities is birationally rigid, as long as it remains

Q-factorial. However, in the same paper he showed that a general determinantal

quartic threefold is rational.

For Fano threefolds more generally, we can work on a case-by-case basis, often re-

sorting to the topology of the variety in question. Some papers which display some

of the ideas involved are by Cheltsov, who was able to bound the number of singular

points on threefold hypersurfaces, sextic double solids, nodal quartic threefolds and

quartic double solids using a mixture of algebraic and topological arguments; see [9],
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[11], [8] and [13] for the respective results.

In this thesis however, we concern ourselves with higher dimensional varieties so

can use the following famous theorem proved by Grothendieck which bypasses a lot

of the work needed in this case; a modern proof is given as [3, Theorem 7].

Theorem 1.2.6. — Let X be a variety where every local ring OX,x is a complete

intersection ring. Then X is factorial if the following inequality holds:

codim(SingX) ≥ 4.

The following theorem allows us to relate a canonical divisor of a non-singular

variety with that its restriction to a divisor. It has many applications within the

field of Birational geometry.

Theorem 1.2.7 (Adjunction Formula). — Let D be a non-singular divisor on a

non-singular projective variety X. Then in terms of their canonical divisors we

have:

(KX +D)|D = KD.

Proof. We give a brief proof sketch. Let D and X be as given. Let i : D ↪→ X be the

inclusion of D in X with ideal sheaf I. Then there is the conormal exact sequence

of sheaves

0 // I/I2 // ΩX ⊗OD // ΩD
// 0

where ΩX ,ΩD denote the cotangent sheaves of X and D respectively. Taking the

determinant of this sequence yields the isomorphism

ωD ∼= ωX ⊗OX(D)⊗OD.

In terms of canonical classes, this is simply

KD = (KX +D)|D

as claimed.
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Example 1.2.8. — We can easily show that the canonical divisor in terms of

hyperplane sections is equal to (−n−1)H for projective space Pn. For a non-singular

hypersurface Xd ⊂ Pn of dimension d we can use the adjunction formula to show the

canonical divisor is equal to (d− n− 1)H using the adjunction formula. Inductively

applying said formula for Xd1,d2,...,dl ⊂ Pn, tells us that the canonical divisor is equal

to (−n−1+
∑l

i=1 dk)H. Similarly, we also have the following theorem, which requires

a bit more work, but gives an analogous result in the weighted projective setting.

Theorem 1.2.9. — [22, Theorem 3.3.4] Let X = Vd be a quasismooth weighted

complete intersection of multidegree d = (d1, . . . , ds) embedded in weighted projective

space P(a0, a1, . . . , an). Let d =
∑s

j=0 dj and a =
∑n

i=0 ai. Then KX = OX(d− a).

We will make use of this theorem to calculate the canonical divisor for a cyclic

cover later on.

Definition 1.2.10. — Let D,D′ be a pair of divisors on a projective factorial variety

X. The complete linear system associated to D, is defined to be the set of divisors

E ⊂ X such that D = E + (f) for some principal divisor (f) and is denoted |D|. It

can be shown that the set |D| is in bijection with the group (H0(X,OX(D))\{0})/C∗,
and hence has the structure of a projective space. We then define an arbitrary linear

system Σ to be a projective subspace of a complete linear system. We say that a linear

system is mobile if the base locus has codimension 2 or greater, and that a divisor

D is mobile if its associated linear system |D| is mobile. Let Σ be a linear system on

a variety X. Then Σ determines a rational map φΣ : X 99K Pk in the following way:

If {f1, f2, . . . , fk} is a basis of Σ, then φΣ maps x ∈ X to [f1(x) : f2(x) : . . . : fk(x)].

Throughout this thesis, the importance of mobile linear systems, especially ap-

plied to the theory of Birational rigidity cannot be understated. We will discuss this

all in Chapter 2. We will also need the following theorem, presented without proof.

Note that the second part of the theorem immediately follows the first from Serre

Duality.

Theorem 1.2.11 (Kodaira Vanishing). — Let X be a projective nonsingular variety

of dimension n over the field C. Let KX be the canonical divisor on X, and let D

be an ample divisor on X. Then
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1. H i(X,OX(KX +D)) = 0, i > 0

2. H i(X,OX(−D)) = 0, i < n

We can also define Q-divisors, by taking the tensor product of Q with the group

Div(X). Since the coefficients of Q-divisors no longer need be integral, we make a

few natural definitions.

Definition 1.2.12. — Let D =
∑
aiDi be a Q-divisor on a variety X. The round-

up dDe and integral part bDc = [D] of D are the integral divisors

dDe =
∑
daieDi,

bDc = [D] =
∑

[ai]Di

where for x ∈ Q we denote by dxe the least integer greater than or equal to x, by

bxc = [x] the greatest integer less than or equal to x. The fractional part {D} of D

is defined as

{D} = D − [D].

Definition 1.2.13. — Let X be normal. We say a Q-Cartier divisor D is big if

some multiple mD induces a birational map onto its image under the map φ|D| from

Definition 1.2.10. We say that D is nef if deg(D ·C) ≥ 0 for all curves C ⊂ X, where

deg in some sense counts the number of points of intersection of the two cycles. We

make this more explicit in Section 1.3.

Definition 1.2.14. — Considering X and D as above, we say D has simple normal

crossings at a point z ∈ D, shortened to D is SNC at z, if there exists a non-empty

Zariski open neighbourhood U ⊂ X of z such that U is a non-singular subset of X

and D is defined by local analytic coordinates of the type

k∏
i=1

zi = 0

for some k ≤ n. If D is SNC at every point z ∈ D we simply say that D is SNC. We

say a Q-divisor D′ =
∑
aiDi has simple normal crossing support if

∑
Di is an SNC

divisor. If we allow the case where n > k, we say that D has normal crossings.
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Using these definitions, the following generalisation of the Kodaira vanishing

theorem was proved.

Theorem 1.2.15 (Kawamata-Viehweg Vanishing). — Let X be a nonsingular

proper algebraic variety, and let D =
∑
αiDi be a nef and big Q-divisor. Assume

that the support of the fractional part {D} has only simple normal crossings. Then

H i(X,OX(KX + dDe)) = 0 ∀i > 0.

This generalises Kodaira vanishing to the case where our divisor D is no longer

integral. Though it feels a somewhat artificial statement, in fact this theorem has a

lot of mileage in the topic of the Minimal Model Programme, though this thesis will

not venture in that direction. We will however make use of this theorem to prove

the so-called connectedness principle.

1.3. Intersection Theory

In this section we describe intersection theory on projective varieties, that is how to

define the intersection of two subvarieties of a given variety X. This allows us to

work out how multiplicities of subvarieties behave under blow up of cycles.

We begin by defining numerical Chow groups. To do this we extend the defini-

tion of numerical equivalence of divisors to that of so-called k-cycles. This allows us

to perform meaningful intersections of subvarieties of a given variety X.

Definition 1.3.1. — Let X be a factorial n-dimensional quasi-projective variety.

We define the group of k-cycles to be the free abelian group generated by subvarieties

of dimension k, denoted by Zk(X). We say a k-cycle Z =
∑
niYi is effective if all

non-zero coefficents ni are non-negative.

Definition 1.3.2. — Considering X again as above, we now assume that it is non-

singular. Let k1 and k2 be integers less than or equal to n, but such that their sum is

greater than or equal to n. We define the intersection of a k1-cycle A and a k2-cycle
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B on X in the following way. Suppose that the intersection of the two cycles is

proper: that is that dimA ∩B = dimA+ dimB − dimX. We have a map

(− · −) : Zk1(X)× Zk2(X)→ Zk1+k2−n(X)

induced by set-theoretic intersection of such cycles. Taking the set of irreducible

components of the image {C1, C2, . . . , Cl} = C, we define the scheme-theoretic inter-

section of A and B to be

(A ·B) =
∑
Ci∈C

multCi(A,B)Ci,

where multCi(A,B) is the so-called intersection multiplicity of A and B along Ci.

Remark 1.3.3. — There are several (equivalent) ways to define intersection mul-

tiplicities. One way which works in full generality is to use Serre’s formula [25,

Theorem 2.7], though this is a hazardous construction. However, since we only

work with complete intersections, by [24, Proposition 18.13], we can assume that

our variety X is Cohen-Macaulay, and hence by [30, Proposition 8.2], we have that

multCi(A,B) is equal to the length of the ring OCi,A∩B.

Remark 1.3.4. — The condition that A and B have proper intersection (i.e. inter-

sect transversally) does not need to be checked in any application throughout this

thesis: in every case where we take intersections, we are only taking the intersection

of general cycles, so we can always assume that the intersection is ”good”.

Remark 1.3.5. — If we relax to the case where X is only Q-factorial, suppose that

we have Weil divisors D and E such that nD and mE are Cartier for integers n and

m. Then we define the intersection of D and E by

D · E =
(nE) · (mD)

nm

and similarly for lower dimensional cycles.
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Definition 1.3.6. — Given a 0-cycle Z =
∑
aiYi, we define the degree map

deg : Z0(X)→ Z

which sends Z 7→
∑
ai. From this, we can define the degree of an arbitrary k-cycle

Z ′ to be deg(Z ′ ·Hn−k) where H is a hyperplane divisor of X.

Definition 1.3.7. — Let X be an n-dimensional projective variety. We say that

two k-cycles Z and Z ′ are numerically equivalent if for any (n−k)-cycle W , we have

the following equality:

deg(Z ·W ) = deg(Z ′ ·W ).

Definition 1.3.8. — Let X be a non-singular integral quasi-projective variety. We

define the numerical Chow groups Ak(X) to be the groups Zk(X)/ ∼ where ∼ is the

numerical equivalence relation. The intersection product in fact imposes a graded

ring structure on the direct sum

n⊕
k=0

Ak(X).

We call this ring the Chow ring of X and denote it by A(X).

Remark 1.3.9. — Similarly we take the convention that we can also define the

group of k-cocycles Ai(X) = An−i(X) analogously.

Example 1.3.10. — The Chow ring of Pn is given by

A(Pn) = Z[H]/(Hn+1)

where H ∈ An−1(Pn) is the equivalence class of a hyperplane. More generally, the

class of a variety of codimension k and degree d is dHk.

Theorem 1.3.11 (Lefschetz hyperplane theorem). — Let X be a non-singular pro-

jective variety of dimension n, and let D be any effective ample divisor on X. Then

the restriction map

ri : H i(X,Z)→ H i(D,Z)
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is an isomorphism for i ≤ n− 2 and injective when i = n− 1.

Corollary 1.3.12. — Let X be a non-singular complete intersection of dimension

≥ 3 embedded in (weighted) projective space. Then Ai(X) ∼= Z for i < dimX
2
.

Proof Sketch. For a k-cocycle Z on a non-singular projective variety X, there is a

so-called class map sending Z to its image in H2k(X,Z). We say that two k-cocycles

are cohomologically equivalent if their images under this map are equal. We can then

use the Lefschetz Theorem to derive this result; see [30, Example 19.3.10] for the

cohomology groups of a complete intersection. Cohomological equivalence implies

numerical equivalence, which gives us the result.

Definition 1.3.13. — We also will define AiR(X) := Ai(X)⊗R, Ai+(X) the closure

of the cone in AiR(X) generated by classes of effective cycles (containing pseudo-

effective cycles), and the pseudo-effective cone, Aimob(X), the closure of the cone

generated by classes of mobile divisors.

Definition 1.3.14. — Let π : X̃ → X be the blowing up of a variety X at a

subvariety Y , and let D ⊂ X be a divisor. Let Z be the image of the exceptional

locus, and suppose that D 6⊂ Z. We define the strict transform of D to be the closure

of the inverse image π−1(D\Z). Similarly, we can define the strict transform of a

linear system Σ to be the closure of the inverse image π−1(Σ\Z). We can extend

this definition to arbitrary k-cycles not contained in Z similarly.

Definition 1.3.15. — Considering now the blow up of a quasi-projective variety

X along an irreducible cycle B of codimension ≥ 2 with exceptional divisor E(B),

let Z =
∑
aiZi, Zi ⊂ E(B) be any k-cycle where k ≥ dimB. We define the degree

of Z setting

degZ =
∑
i

ai deg
(
Zi ∩ σ−1

B (b)
)

where b ∈ B is a generic point on B, σ−1
B (b) ∼= PcodimB−1 and the right-hand side

degree is equal to the degree defined in Definition 1.3.6.

Now that we have all the main definitions of the intersection theory we use in

this thesis, we will highlight the following very important lemma.
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Lemma 1.3.16. — Let D and Q be two different prime Weil divisors on a quasi-

projective variety X, again let σB : X(B)→ X be the blow up of an irreducible cycle

B of codimension ≥ 2 with exceptional divisor E(B) and let DB, QB, (D ·Q)B be the

strict transforms of the divisors and their intersection on X(B). Then:

1. Assume that codimB ≥ 3. Then

DB ·QB = (D ·Q)B + Z

where SuppZ ⊂ E(B) and

multB(D ·Q) = (multBD)(multB Q) + degZ

2. Assume that codimB = 2. Then

DB ·QB = Z + Z1

where SuppZ ⊂ E(B), SuppσB(Z1) does not contain B and

D ·Q = {(multBD)(multB Q) + degZ}B + (σB)∗Z1.

Proof Sketch. The first part is almost trivial. For the second, we can assume that B

is a surface by taking a generic point b ∈ B, letting S 3 b be a germ of a nonsingular

surface in general position in B, SB its proper inverse image on X(B). This reduces

the question to the intersection of two irreducible curves at a non-singular point on

a surface in terms of its blowup.

Remark 1.3.17. — We note the distinction between the two cases where we blow

up a cycle of codimension 2 and one of higher codimension; this is crucial to the

proof of the 4n2-inequality in Section 2.3.

Finally, we need the following for the proof of Theorem 2.3.9. This was proved in

the paper [74] by Suzuki, and was an extension of the original so-called cone method.
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Theorem 1.3.18. — [Pukhlikov’s Lemma] Let X ⊂ PN be a non-singular complete

intersection of codimension l ≥ 1, S ⊂ X a subvariety of codimension a ≥ 1 and

B ⊂ X a subvariety of dimension al, where N ≥ (l + 1)(a + 1) holds. Then the

inequality

multB S ≤ m

holds, where m ≥ 1 is defined by the condition S ∼ mHa
X where HX ∈ A1X is the

class of a hyperplane section of X.

This is [74, Proposition 2.1], and is a generalisation of the previously used method,

known as the so-called cone method. The proof of this very similar in spirit to the

proof of the original for the hypersurface case, [62, Proposition 3.6].

1.4. Birational Classification of Varieties

At this point, we have the necessary language in order to describe and attack the

problem of the classification of varieties up to birational equivalence. We recall first

of all the definition of a birational map:

Definition 1.4.1. — Let X ⊂ Pn and Y ⊂ Pm be two projective varieties. A

correspondence Z from X to Y is a relation given by a closed algebraic subset

Z ⊂ X × Y . Z is said to be a rational map if Z is irreducible and there is a Zariski

open set X0 ⊂ X such that every x ∈ Xo is related by Z to one and only one point of

Y . Z is said to be a birational map if Z ⊂ X×Y and Z−1 ⊂ Y ×X are both rational

maps. If there exists a birational map between varieties X and Y , we say that X and

Y are birational to one another. Equivalently, we can say that two varieties X and

Y are birationally isomorphic to each other if and only if their respective function

fields K(X) and K(Y ) are as well.

Note that instead of writing out the correspondence Z ⊂ X × Y each time, we

will abbreviate this to a map φ : X 99K Y .

In particular, we can talk about the rationality of a variety; we say a variety V

is rational if it is birational to projective space Pn for some n.
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The most important theorem we have in relation to the rationality problem is

the following famous theorem due to Hironaka (1964).

Theorem 1.4.2. — Let X be an irreducible variety, and let D ⊂ X be an effective

Weil Q-divisor on X. Then:

1. There is a (not-necessarily unique) projective birational morphism

µ : X̃ → X

composed of blow ups of subvarieties of X contained in Sing(X) where X̃ is

non-singular and µ has divisorial exceptional locus exc(µ) such that

µ−1 Supp(D) + exc(µ)

is a divisor with SNC support.

2. We can further assume that µ is an isomorphism away from the locus where

D does not have simple normal crossing support.

This is known as a log resolution of X. If we take D = 0, then we call it a

resolution of singularities of the variety X. In particular, every complex projective

variety X is birational to a non-singular projective variety X ′.

Remark 1.4.3. — We should note that the theorem applies more generally than

in our case, to more general fields of characteristic 0. However, this is the form of

the theorem that is most useful for this thesis.

Another consequence of the theorem on the resolution of singularities is that it

allows us to define a notion of singularity based on the exceptional divisors of any

resolution of singularities in the following way, by defining the notion of a pair :

Definition 1.4.4. — Let X be a normal variety with a Weil Q-divisor D =
∑
diDi

such that KX + D is Q-Cartier on X (note that we allow the coefficients di to be

completely general). We call (X,D) a pair.
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Remark 1.4.5. — From this we can define a log resolution of the pair (X,D) in

exactly the same way as above.

Now let µ : Y → X be a birational morphism, where Y is normal. Then there

are rational numbers

a(E) = a(E,X,D) ∈ Q

attached to each prime divisor E ⊂ Y having the property that

KY ≡ µ∗(KX +D) +
∑

a(E).E,

where the sum runs over every prime divisor of Y . Note that the right hand side

is not unique, as we allow non-exceptional divisors in the summation. Therefore we

adopt the following:

A non-exceptional divisor E appears in the right hand side if and only if E ≡
f−1
∗ Di for some summand Di in D, with coefficient a(E,X,D) = −di. The push-

forward in this definition is defined as in [25, Definition 1.19] and in this case maps

Weil divisors to Weil divisors.

Definition 1.4.6. — a(E,X,D) is called the discrepancy of E with respect to the

pair (X,D). Note that if f : Y ′ → X is another birational morphism, by invariance

of the function field of X, if E ′ is the birational transform of E on Y ′, then we have

the equality a(E,X,D) = a(E ′, X,D).

Remark 1.4.7. — We also may assume that the divisor in the pair (X,D) may

well be empty. In this case, we simply drop the D from the definition of discrepancy

and write a(E,X). Secondly, if f : Y → X is any birational morphism to a pair

(X,D), then there exists a unique divisor DY on Y such that

KY +DY = f ∗(KX +D) and

f∗(DY ) = D.

Definition 1.4.8. — Let (X,D) be a pair. Then we define

discrep := inf{a(E,X,D)|E is exceptional with non-empty centre on X}
totaldiscrep := inf{a(E,X,D)|E has non-empty centre on X}
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Example 1.4.9. — Suppose E ⊂ X is a divisor different from any of the Di,

then a(E,X,D) = 0, and so totaldiscrep(X,D) ≤ 0. Similarly, if E is obtained by

blowing up any non-singular codimension 2 subvariety, then by [33, Exercise II.8.5],

a(E,X,D) = 1, so discrep(X,D) ≤ 1.

We now have all the language we need to define what we mean by the singularity

of a pair.

Definition 1.4.10. — Let X be a normal variety and D =
∑
diDi be a Q-divisor

such that KX +D is Q-Cartier. We say that (X,D) is

terminal if discrep(X) > 0

canonical if discrep(X) ≥ 0

log terminal (plt) if discrep(X) > −1

Kawamata log terminal (klt) if discrep(X) > −1 and bDc ≤ 0

log canonical if discrep(X) ≥ −1

These are the bread and butter definitions for singularities, and play a large role

in the classification according to the minimal model programme, which we will dis-

cuss in relation to Birational rigidity shortly.

We now list a few more properties that a variety can have in relation to its Bi-

rational geometry.

Definition 1.4.11. — Let X be a projective variety, and let X̃ be a resolution of

X. Let R(X) be the ring

R(X) =
⊕
n≥0

H0(X,nKX̃).

We call this the canonical ring of X. We define the Kodaira dimension κ(X) of the

variety X to be the dimension of the Proj of the ring R(X), if it is greater than or

equal to 0, and −∞ otherwise.
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Theorem 1.4.12. — Let X be a smooth projective variety. Then the canonical ring

of X, R(X), and hence the Kodaira dimension κ(X) is a birational invariant.

The birational invariance of R(X) follows from the invariance of plurigenera,

proved in [33, Chapter 2, Theorem 8.19].

We now come to the definition of the main objects of study in the field of bira-

tional geometry.

Definition 1.4.13. — A non-singular projective variety X is called a

� variety of general type if its canonical divisor KX is ample;

� Calabi-Yau variety if its canonical divisor KX is numerically trivial;

� Fano variety if its anticanonical divisor −KX is ample.

Note that alternative definitions are sometimes used, especially in the case of Calabi-

Yau varieties, where sometimes we might require the vanishing of all the intermediate

cohomology groups H i(X,OX). However, this is the most relevant to our setting.

The case of a variety of general type can be dealt with from a birational perspec-

tive by the following theorem:

Theorem 1.4.14. — Let φ : X 99K Y be a birational map where X and Y are

non-singular varieties such that the canonical divisors KX and KY are ample. Then

φ is an isomorphism.

Proof. We reproduce the proof from [5] as follows: A birational map between non-

singular varieties X and Y induces an isomorphism between their canonical rings,

and hence one between the spaces H0(X,mKX) and H0(Y,mKY ) for every m ≥ 0.

However, since KX and KY are also ample, we have

X ∼= Proj

(⊕
n≥0

H0(OX(nKX))

)
∼= Proj

(⊕
n≥0

H0(OX(nKX))

)
∼= Y.
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Remark 1.4.15. — In the sense that the degree of a hypersurface of general type

is unbounded above, we can state that ”most” varieties are of this kind. Given

the above theorem, we note that study of varieties of general type are done using

biregular methods.

We do not touch on the Birational geometry of Calabi-Yau varieties, though this

is a rich topic with a lot of research in this area. We are most interested in Fano

varieties, and generalise their definition to include the following:

Definition 1.4.16. — If a normal projective variety X has terminal singularities,

and some positive integral multiple −nKX , n ∈ N of the anticanonical Weil divisor

−KX is an ample Cartier divisor, then we call X a singular Fano variety.

Note that in the case considered above, the Kodaira dimension is equal to −∞.

The most important properties of Fano varieties can be summed up in the following

theorem.

Proposition 1.4.17. — [36, Theorem 2.1.2] Let X be an n-dimensional singular

Fano variety with klt singularities, and let f : Y → X be a resolution of singularities.

Then:

1. H i(X,OX) = H i(Y,OY ) = 0 for every i > 0;

2. Pic(X) and Pic(Y ) are finitely generated torsion-free Z-modules;

3. Numerical and linear equivalence coincide on the set of Cartier divisors on both

X and Y ;

4. κ(Y ) = −∞.

Proof. We need a lemma, proved in [43, Chapter 4]:

Lemma 1.4.18 (Injectivity lemma). — Let f : Y → X be a finite surjective mor-

phism of irreducible projective varieties where X is normal, and let L be a coherent

sheaf on X. Then the natural homomorphism

Hj(X,L)→ Hj(Y, f ∗L)

induced by f is injective.
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1) follows immediately from Kawamata-Viehweg vanishing. For 2), we consider

the exponential sequence of sheaves over C:

0 // Z // OY // O∗Y // 0

Taking the induced long exact sequence of this sequence:

· · · // H1(X,OY ) // H1(Y,O∗Y ) // H2(Y,Z) // H2(Y,OY ) // · · · ,

0 0

using the isomorphism PicY ∼= H1(Y,O∗Y ), as well the finite generation of H2(Y,Z)

gives us the statement over Y . Using the injectivity lemma above then proves it for

X.

To prove 3), one implication is immediately obvious (this is Exercise V.1.7 in [33]).

Suppose now that D is a Cartier divisor on Y , and suppose D ≡num 0, where ≡num

denotes numerical equivalence. Then by the Hirzebruch-Riemann-Roch theorem we

get h0(Y,OY (D)) = h0(Y,OY ) = 1. Therefore, there exists an effective divisor

D0 ∈ |D|, the divisor of zeros of an arbitrary non-zero section of OY (D)). We then

write

D0 =
k∑
i=1

niDi

where the Di are prime divisors on X and the coefficients ni are all positive. Since

Y is projective, the result follows by intersecting with n − 1 general hyperplanes,

none of which are contained in D2, . . . , Dk and intersect D1 transversally. We then

obtain:

0 = (D ·Hn−1) = (D0 ·Hn−1) =
k∑
i=1

ni(Di ·Hn−1) ≥ n1D1 ·Hn−1,

which shows that n1, and hence every ni, is equal to zero. Therefore, D is linearly

equivalent to the zero divisor and we are done. This similarly holds for X again
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using the injectivity lemma.

To show the Picard group is torsion free, we suppose that there exists some tor-

sion element D ∈ PicX so that αD ≡num 0 for some nonzero integer α. This implies

that (αD ·C) = α(D ·C) = 0 for all curves C on X, so that (D ·C) = 0 for all curves

C and hence that D ≡ 0. By the equivalence of numerical and linear equivalence,

we get that D is equal to 0 in Pic(X).

The last part follows by the definition of Kodaira dimension.

Corollary 1.4.19. — For a Fano variety X with klt singularities there exists a

greatest rational number r ∈ Q+ such that KX = −rH for some ample divisor H

(the fundamental divisor). We call this number r = r(X) the index of the Fano

variety X.

Proof. This follows from the second part of the theorem above.

Remark 1.4.20. — In fact, this theorem also tells us that the Picard group PicX

is in fact isomorphic to the group of (n−1)-cycles (under the first Chern class map).

This is not true in general; if for example if we take X to be an irreducible plane

cubic with a node, then it can be shown that c1 : Pic(X)→ An−1(X) is not injective

(See [25, Exercise 1.35] for a proof of this fact.).

Proposition 1.4.21. — Let X be a n-dimensional Fano variety with klt singulari-

ties of index r and let H be a fundamental divisor. Then

H i(X,OX(mH)) = 0 ∀ i > 0, m > −r.

Proof. This follows from the Kawamata-Viehweg vanishing theorem.

Corollary 1.4.22. — The index of a Fano variety with klt singularities X, ind(X),

is not greater than dimX + 1.

Proof. By the Riemann-Roch theorem, χ(OX(mH)) is a polynomial of degree dimX,

where χ is the Euler characteristic. By the above proposition, the roots of this
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polynomial are integers

n = −1,−2, . . . , 1− dre,

where dre is the smallest integer greater than r, from which we get r ≤ dimX+1.

From here, we have the following well-known pair of theorems. In some sense,

they hint that high index varieties are nearly always rational.

Theorem 1.4.23. — [39, Theorem 1.1, Theorem 2.1] Let X be a non-singular Fano

variety of dimension n. If the index ind(X) = n + 1, then X ∼= Pn. Similarly if

ind(X) = n, then X is necessarily a quadric. In both cases, the variety X is rational.

On the other hand, we can ask about what happens in the opposite case, namely

when the index of a Fano variety is low. When we are dealing with index 1 varieties,

we can prove its non-rationality by looking at its Birational rigidity.

1.4.24. Rational Connectedness —

Definition 1.4.25. — We say a variety X of positive dimension is rationally con-

nected if any two points on X can be joined by a rational curve. That is, for every

two points a and b on X, there is a map

φ : C → X

such that φ(0) = a and φ(∞) = b for distinguished points 0,∞ ∈ C, where C is a

curve whose normalisation is isomorphic to P1.

Example 1.4.26. — X = Pn is clearly rationally connected; any two points can be

joined by a line l. It is also a theorem that the quadric surface Q ⊂ P3 is rationally

connected.

In fact we can say much more:

Theorem 1.4.27. — [42, 78] Fano varieties with at worst klt singularities are

rationally connected.
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From our point of view this is practically the first step to proving the Birational

(super)rigidity of Fano varieties, as it allows us to define the threshold of canonical

adjunction and show that it is finite. We will do this in the next chapter.

We can also define rational connectedness in the relative case.

Definition 1.4.28. — A surjective morphism π : X → S of projective varieties is

called a rationally connected fibre space if the base S and a fibre of general position

π−1(s), s ∈ S are rationally connected varieties. By [31, Lemma 3], it then follows

that X is also rationally connected.

Studying and classifying rationally connected varieties is another of the key prob-

lems of Birational geometry. It is clear that this notion is closely related to that of

a Mori fibre space - indeed it can be shown that an Mori fibre space, as defined in

the introduction is the end point of MMP applied to a rationally connected variety.

We will discuss this notion in the next section.

1.5. The Minimal Model Program, the Sarkisov Pro-

gram and Birational Rigidity

We detour here to give a (very) brief introduction to MMP, mentioned in the intro-

duction, and its relationship with the theory of our interest, Birational rigidity.

The aim of MMP is to assign to every variety a so-called model birational to the

original which is as ”nice” as possible. Beginning in dimension one, we can show

that two non-singular curves are birational if and only if they are isomorphic. In

dimension 2, we can show that any birational map can be factored into a sequence of

finitely many blow-ups, followed by blowing down finitely many times [72, Chapter

2, Section 4]. It can also be shown that the exceptional locus of any blow up of a

surface is a so-called minimal, or (−1)-curve [33, V.3.1], that is a curve with self-

intersection number equal to −1. Conversely, we can show that any (−1)-curve can

also be blown down. [33, V.5.7]. From this, we can immediately deduce that any
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surface is birational to one without any minimal curves. This is a simplification of

the ideas that led to Castelnuovo’s proof for his criterion of rationality for surfaces.

The question, then, is whether we can generalise this to higher dimensions.

Initial works of Mori [47] and Reid [68] set out ideas to build the program that

would be able to enact this idea in dimension 3. The main idea is that it is possi-

ble to replace the condition of having no (−1)-curves by asking that the canonical

bundle of a minimal variety to be numerically effective (nef) in the case where the

variety was of general type, i.e has positive intersection with all curves lying on the

variety. Alternatively, in the case where our variety V had Kodaira dimension equal

to −∞, we ask that the anticanonical bundle is nef instead. This is the Fano case,

and the one where our theory of Birational rigidity applies.

Noting that in general, the output of MMP for the Kodaira dimension equal to

−∞ case is not unique, the theory of Birational rigidity aims to discern when the

opposite holds. In addition, thus far we have only been able to prove the validity

of MMP in general in dimension 3. Due to this, studying the Birational geometry

of varieties in higher dimensions requires us to study under a slightly more general

setup, as we will see.

Similarly, we can ask whether birational maps can also be factored in a system-

atic way as well as the Sarkisov program of factoring birational maps. The main

idea is that any birational map between to Mori fibre spaces can be factored into

one of four kinds of links. For threefolds, this has become a very powerful tool of

the study of their explicit birational geometry. That every birational map could be

factored into finitely many of these links was proved in the paper [15], and many of

the ideas within could be applicable directly to the study of the explicit Birational

geometry of threefolds. Unfortunately, though we have a similar result in higher

dimensions proved in the paper [32], this is by no means a constructive result, and

thus we cannot in general use the same methods.

Indeed, one way of proving the Birational rigidity of an Mori fibre space is to ask
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whether there are any initial links to another variety. Our approach is different.

The method of maximal singularities is (relatively) advantageous in the setting of

absolute Mori fibre spaces, that is Mori fibre spaces with a base equal to a point, in

that we can expand the category in which we can apply our methods.



2.

Birational Rigidity

In this chapter, we discuss the main definitions and Theorems of Birational rigidity,

deriving them from a simpler definition, that of the threshold of canonical adjunction

of a variety. These will form the basis behind the proof of Theorem 3.1.2 in Chapter

4. We will give a proof of the generalised 4n2-inequality, an improvement on the

4n2-inequality, a key ingredient in the proof of Theorem 3.1.2. Most of this material

on Birational rigidity comes from the book [59], written and originally proved by

Pukhlikov. Terminologically, we quickly remark that varieties in this section are

assumed to be of arbitrary dimension unless indicated; the integer n is reserved for

a part of the definition of a mobile linear system.

2.1. Main Definitions

2.1.1. The Threshold of Canonical Adjunction — We begin with the defini-

tion.

Definition 2.1.2. — Let X be a projective rationally connected variety with at

worst Q-factorial terminal singularities. The threshold of canonical adjunction of an

effective divisor D ⊂ X is the number c(D,X) = sup{ε ∈ Q+ |D+ εKX ∈ A1
+X}. If



Chapter 2. Birational Rigidity 33

we let Σ be a non-empty linear system on X, then we similarly set c(D,Σ) = c(D,X),

where we take D ∈ Σ to be arbitrary.

Theorem 2.1.3. — For a variety X satisfying the above conditions, this number is

finite.

Proof. On a rationally connected variety, KX is negative on at least one family of

curves sweeping out X, whilst an effective divisor D is non-negative on such a family.

Therefore, for m� 0, the linear system |D +mKX | is empty.

Remark 2.1.4. — From this point onward in this chapter, we assume that any

given variety X satisfies the conditions given above, and hence always has a finite

threshold canonical adjunction.

We work out some examples as follows:

Example 2.1.5. — 1. Let X be a primitive Fano variety, that is to say, suppose

X is a variety with Picard group is generated by an ample anticanonical class,

so that PicX = ZKX . For any effective divisor D, we have that D ∈ |−nKX |
for some n, so that c(D,X) = n. Similarly, if we relax the primitivity condition

to the case where rk PicX = 1, so that KX = −rH where H is a hyperplane

class which also generates the Picard group, and r is the index of the variety

X, then for D ∈ |nH| we get c(D,X) = n
r
.

2. Let π : X → S be a rationally connected fibre space where dimX > dimS ≥ 1,

and let DS be an effective divisor on the base. If we take the pullback of

DS to X, then we immediately see that c(π∗(DS), X) = 0. If we further

impose that X/S is a standard rationally connected fibre space, so that PicX =

π∗ PicS ⊕ ZKX , and impose also that D is an effective divisor that isn’t the

pullback of a divisor on the base S, then D ∈ |−nKX + π∗R| for some divisor

R on S and where n ≥ 1. Clearly c(D,X) ≤ n, whilst we have equality if the

divisor R is effective.

Unfortunately, whilst this threshold is often very easy to compute, it is not a

birational invariant and so not immediately helpful for us as the following example

shows.
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Example 2.1.6. — Let π : PM 99K Pm be a linear projection from an (M −m−1)-

dimensional plane P ⊂ PM . Let Σm be a mobile linear system of hypersurfaces of

degree n in Pm and let ΣM be its pullback on PM . We get that c(ΣM ,PM) = n
M+1

.

If we then blow up the plane P however, say σP : P+ → PM , so that the composite

map π ◦ σ : P+ → Pm is a PM−m-bundle, then in particular π ◦ σ is a morphism with

rationally connected fibres. If we then let Σ+ be the strict transform of Σ on P+,

then by Example 2.1.5, we get c(Σ+,P+) = 0.

Therefore, in order to overcome this non-invariance we define the following:

Definition 2.1.7. — Let Σ be a mobile linear system on a variety X. We define

the virtual threshold of canonical adjunction by the formula

cvirt(Σ) = inf
X]→X

{c(Σ], X])}

where the infimum is taken over all birational morphisms X] → X where X] is a

non-singular projective model of C(X) and Σ] is the strict transform of the system

Σ on X].

Clearly this is a birational invariant of the pair (X,Σ): if χ : X → X ′ is a

birational map, Σ′ = χ∗Σ is the strict transform of the system Σ with respect to

χ−1, then we get cvirt(Σ) = cvirt(Σ
+).

Proposition 2.1.8. — 1. Assume that on a projective variety X there are no

mobile linear systems with virtual threshold of canonical adjunction equal to

0. Then on X there are no structures of a non-trivial fibration into varieties

of negative Kodaira dimension, that is to say, there is no rational dominant

map ρ : X 99K S, dimS ≥ 1, the generic fibre of which has negative Kodaira

dimension.

2. Let π : X → S be a rationally connected fibre space. Assume that every mobile

linear system Σ on X such that cvirt(Σ) = 0 is the pullback of some mobile
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linear system Λ on S. Then any birational map

X
χ //

π

��

X]

π]
��

S S]

where π] is a fibration into varieties of negative Kodaira dimension is fibrewise

commutative, that is to say that there exists a rational dominant map ρ : S 99K

S] making the diagram commutative. In other words, we can define an order

on the set of rationally connected structures RC(X) by setting π] ≥ π: further

π is the least element of RC(X).

Proof. 1. Suppose we have such a fibration. Let ∆ be a mobile linear system

on S, and consider the system Σ = ρ∗(∆). Then by Example 2.1.5 we get

c(X,Σ) = 0; this contradicts our assumption.

2. Suppose there doesn’t exist such a map ρ. This implies there exists an arbitrary

mobile linear system ∆] on S], whose pullback π]∗(∆]) satisfies cvirtπ
]∗(∆])) >

0. By hypothesis, this is a contradiction.

We can now state the main definitions of this section.

Definition 2.1.9. — 1. A variety X is said to be birationally superrigid if for

any mobile linear system Σ ⊂ |−nKX | on X the following equality holds:

cvirt(Σ) = c(Σ, X).

2. A variety X (respectively, a rationally connected fibre space X/S) is said to be

birationally rigid if for any mobile linear system Σ on X there exists a birational

self-map χ ∈ BirX (respectively a fibrewise birational self-map χ ∈ Bir(X/S))

which gives the equality

cvirt(Σ) = c(χ∗Σ, X).
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This pair of definitions leads to the whole theory of Birational rigidity, one of the

key methods to answering the rationality question for varieties.

Remark 2.1.10. — Note that a varietyX being birationally superrigid immediately

implies that is also birationally rigid; the converse does not hold in general. As an

example, the intersection of a cubic and a quadric in P5 is rigid but not superrigid;

see [37, Chapter 3] for a proof of this.

2.1.11. Contraction of Divisors — Therefore, supposing we wish to prove or

disprove the Birational superrigidity of a rationally connected variety X, we begin by

assuming by contradiction that there exists a mobile linear system Σ on X satisfying

the inequality

cvirt(Σ) < c(Σ). (2.1)

By definition, this implies that there exists a birational morphism

φ : X+ → X

such that we have the inequality c(Σ+, X+) < c(Σ), where Σ+ is the strict transform

of Σ. In particular, this implies the existence of at least one divisor E ⊂ X+ which is

contracted by the morphism φ (an irreducible component of the exceptional divisor

of the map φ). Supposing that this weren’t the case, that we had an isomorphism

in codimension 1 (i.e. outside a closed subset Y ⊂ X+) of codimension 2), then for

any divisor D ⊂ X and its strict transform D+ we would have c(D,X) = c(D+, X+)

which contradicts our initial assumption.

Our divisor E determines a discrete valuation on the field of rational functions C(X),

that is a function ordE : C(X)→ Z ∪ {∞} such that

� ordE(f · g) = ordE(f) + ordE(g)

� ordE(f + g) ≥ min{ordE(f), ordE(g)}

� ordE(f) =∞ ⇐⇒ f = 0.
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Note that this is independent of the choice of model X+ in the following way;

suppose we have another birational morphism φ] : X] → X such that the birational

map (φ])−1 ◦ φ : X+ 99K X] is an isomorphism at a general point of the divisor E,

so that (φ])−1 ◦ φ(E) = E] ⊂ X] is an exceptional divisor of the morphism φ], then

ordE = ordE] .

Remark 2.1.12. — Note that the irreducible subvariety φ(E) ⊂ X the centre of

the discrete valuation ordE as defined in Chapter 1 is independent of our choice of

model.

In fact by applying the valuation ordE to an effective divisor D ⊂ X we obtain

the multiplicity νE(D) ∈ Z+ - we do this by looking at local equations, possible since

our variety X is Q-factorial. If we let E be the set of exceptional divisors of the

birational morphism φ, then we get

φ∗D = D+ +
∑
E∈E

νE(D)E. (2.2)

Similarly, for the canonical class KX+ we get

KX+ = φ∗KX +
∑
E∈E

a(E)E, (2.3)

where a(E) = a(E,X) ≥ 1 is the discrepancy of the geometric valuation E, also

independent of the model X+.

Returning to our original setup, by assumption we have that n = c(Σ) > 0.

Definition 2.1.13. — A geometric discrete valuation ordE of the field C(X) is

called a maximal singularity of the linear system Σ if the Noether-Fano inequality

νE(Σ) > na(E)

holds, where νE(Σ) = νE(D) for a general divisor D ∈ Σ. In particular, we say that

an irreducible subvariety Y ⊂ X of codimension ≥ 2 is called a maximal subvariety
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of the linear system Σ if the inequality

multY Σ > n(codimY − 1)

holds, where multY Σ = multY D for a general divisor D ∈ Σ.

Proposition 2.1.14. — Assume that the inequality 2.1 holds. Then the linear

system Σ has a maximal singularity.

Proof. Let φ : X+ → X be a birational morphism from a non-singular variety X+

satisfying the inequality c(Σ+) < c(Σ) = n, E the set of divisors contracted by the

morphism φ, D ∈ Σ a general divisor, and let D+ ∈ Σ+ be its strict transform on

X+. From equations 2.2 and 2.3 we get

D+ + nKX+ = φ∗(D + nKX)−
∑
E∈E

e(E)E /∈ A1
+X

where e(E) = νE(D)−na(E) and the last non-inclusion holds by assumption. Since

D + nKX ∈ A1
+X, and the pullback of a pseudoeffective class is necessarily pseudo-

effective, we obtain that there exists at least one divisor E for which e(E) > 0.

Remark 2.1.15. — Note that we can reformulate the Noether-Fano inequality in

terms of the language of Q-divisors as follows. Let D ∈ Σ be a general divisor. Then

the Noether-Fano inequality states that the log pair (X, 1
n
D) is not canonical, that

is, has a non-canonical singularity E ⊂ X+ satisfying the inequality νE( 1
n
D) > a(E).

We prove the following proposition, which is the most important implication of

rigidity and superrigidity.

Proposition 2.1.16. — Let X be a primitive Fano variety, X ′ a Fano variety

with Q-factorial terminal singularites and Picard number one (so that PicX ′⊗Q =

QK ′X) and let χ : X 99K X ′ be a birational map.

1. Assume X is birationally rigid. Then X and X ′ are biregularly isomorphic,

though χ is not necessarily an isomorphism.
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2. Assume that X is birationally superrigid. Then χ is a biregular isomorphism,

and in particular BirX = AutX.

Proof. 1. Let χ : X 99K X ′ be a birational map and φ : X̃ → X a log resolution,

so that ψ = χ ◦ φ is a birational morphism. The variety X̃ is non-singular and

Pic X̃ = Zφ∗KX ⊕
⊕
Ei∈E

ZEi

where E is the set of all the φ-exceptional divisors. By assumption

Pic X̃ ⊗Q = Qψ∗KX′ ⊕
⊕
E′i∈E ′

QE ′i

where E ′ is the set of all the ψ-exceptional divisors. Set K = φ∗KX , K
′ =

ψ∗KX′ . We get

KX̃ = K +
∑
Ei∈E

aiEi = K ′ +
∑
E′i∈E ′

a′iE
′
i (2.4)

where ai ∈ Z, ai ≥ 1 and a′i ∈ Q, a′i > 0.

Let Σ′ = |−mKX′ |, m� 0 be a very ample linear system. Clearly c(Σ′, X ′) =

m. Taking its strict transform we get Σ = χ−1
∗ Σ′ ⊂ |−nKX | for some n -

similarly c(Σ, X) = n. By twisting with a suitable birational map (*) and the

rigidity of X we may assume that we have equality of both virtual and actual

thresholds for χ, so it follows that n ≤ m. The strict transform of the linear

system Σ on X̃ coincides with the strict transform of the linear system Σ′ with

respect to ψ. Therefore there exist positive integers bi such that

−mK ′ = −nK −
∑
Ei∈E

biEi.

and bi ≤ m−n for every i. Dividing by −m and substituting into the equation

2.4, we get (
1− n

m

)
K =

∑
Ei∈E

(
bi
m
− ai

)
Ei +

∑
E′i∈E ′

a′iE
′
i.
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Since the divisors Ei are φ-exceptional and a′i > 0 for every i, we get the

equality n = m. Furthermore, all the divisors E ′j turn out to be φ-exceptional

and moreover E = E ′, otherwise rk PicX ′ ≥ 2. Thus χ is an isomorphism in

codimension one; set

U = X \
⋃
Ei∈E

φ(Ei), U ′ = X ′ \
⋃
E′i∈E ′

ψ(E ′i).

Then by the above χ : U → U ′ is an isomorphism. Therefore Σ = |−nKX | and

χ induces an isomorphism χ◦χ∗ of the (ample) linear systems Σ and Σ′, where

χ∗ is some map in BirX. Consequently, we can conclude that χ : X → X ′ is

an isomorphism.

2. This follows since we now no longer need to twist by a suitable birational map

at (*).

This proposition presents the most important implications of the definition of

rigidity and superrigidity. In particular, it is clear that rational varieties are neither

rigid nor superrigid.

Remark 2.1.17. — There is an alternate definition of Birational (super)rigidity

that applies to the category of Mori fibre spaces with morphisms given by birational

maps, the so-called Sarkisov Category. These are end points of MMP applied to

rationally connected varieties. We give it as follows, in a commonly seen form.

Definition 2.1.18. — [17, Definition 1.3] let X → Z and X ′ → Z ′ be Mori fibre

spaces. A birational map f : X 99K X ′ is square if it fits into a commutative diagram

X
f //

��

X ′

��
Z

g // Z ′

where g is birational and, in addition, the map fL : XL 99K X ′L induced on generic

fibres is biregular, where L denotes a generic point of Z. In this case we say X/Z
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and X ′/Z ′ are square birational. A square birational map that is also biregular is

called square biregular.

Definition 2.1.19. — We define the pliability of X to be the set

P(X) = {Mori fibre spaces Y → T ∼ square equivalence}.

We say that X is birationally rigid if P(X) consists of a single element. Further, X

is birationally superrigid if Bir(X) = Aut(X).

Our definition in the absolute case covers the situation where the base is a point

- in addition there is a slight asymmetry whereby X ′ is allowed to have torsion in

the Picard group. However, in the study of varieties having undergone MMP we can

safely ignore this distinction, so many authors prefer to take this simpler definition

of Birational rigidity.

2.2. The Method of Maximal Singularities

We now describe the method of maximal singularities. This is the main method

by which we prove Birational rigidity of varieties. We ask for a given geometric

valuation νE of C(X) whether there exists a mobile linear system with a threshold

of canonical adjunction n = c(Σ) > 0 for which νE is a maximal singularity. We

then have two possibilities:

1. The answer is positive. Then we attempt to untwist the singularity E, that is

to find a birational self map χE ∈ Bir(X) such that c(χ−1
E ∗Σ, X) < c(Σ, X).

In this case, we can hope that our variety X is birationally rigid, though not

superrigid. If it is not possible to untwist the singularity, then the variety is

neither.

2. The answer is negative for any choice of geometric evaluation νE. In this case,

the variety in question X is birationally superrigid.

Untwisting maps have been used successfully in many papers to prove the Birational

rigidity of varieties. However, we choose to focus on what is known as exclusion of
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maximal singularities. This is where we suppose that the variety in study has such

a singularity, and derive a contradiction based on this assumption.

In order to analyse a possible maximal singularity, the centre of which may well

be infinitely near (which we now define), we use an associated resolution of the

singularity. In approximate terms, we blow up successive centres of the contraction

of the singularity until we arrive at a step where the contraction is a blow up. In

concrete terms, we have the following:

Let X be a projective variety, and let E ⊂ X+ be a divisor contracting to a centre

B ⊂ X by a birational map χ : X+ 99K X where codimB ≥ 2, with the condition

that B is not contained in the singular locus of X. Let σB : X(B)→ X be the blow

up of the centre B with exceptional divisor E(B) = σ−1
B (B).

Proposition 2.2.1. — 1. One of the following holds: either the composition of

birational maps σ−1
B ◦ ψ : X+ 99K X is an isomorphism in a neighbourhood of

the generic point of E, and in this case σ−1
B ◦ψ(E) = E(B), or B+ = σ−1

B ◦ψ(E)

is an irreducible subvariety of codimension greater than or equal to 2.

2. Moreover, B+ 6⊂ SingX(B), B+ ⊂ E(B) and σB(B+) = B.

Proof. The first part is true by definition. To see the second part, note that X(B) is

non-singular outside the σB-preimage of the set SingX ∪ SingB, σB ◦ σ−1
B ◦ ψ(E) =

B.

Remark 2.2.2. — Outside the preimage of the set SingX ∪ SingB, we can see

that the morphism σB : E(B) → B is a locally trivial PcodimB−1-fibration and the

discrepancy of the exceptional divisor E(B) is codimB − 1; this is a consequence of

[33, Chapter 2, Exercise 8.5].

By repeatedly applying the above proposition we obtain a sequence of blow ups

φi,i−1 : Xi
// Xi−1

Ei //

∪

Bi−1

∪

(2.5)
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where i ∈ {1, . . . K}, X0 = X, B0 = centre(E,X), Bj is the centre of E on Xj, and

Ei = φ−1
i,i−1(Bi−1). In other words, we are successively blowing up the centres of the

valuation E. The varieties X1, X2, . . . can generally speaking be singular. However,

each Xj is non-singular at the generic point of the subvariety Bj ⊂ Ej. For i > j we

set

φi,j = φj+1,j ◦ . . . ◦ φi,i−1 : Xi → Xj

along with φi,i = idXi .

In particular, by the previous proposition we see that φi,j(Bi) = Bj for i > j. For an

irreducible subvariety Y ⊂ Xj we denote its strict transform on Xi (supposing that

Y 6⊂ Bj so that it is well-defined) by Y i ⊂ Xi, adding the index i. We also use the

same notation for effective algebraic cycles - for example if Z =
∑
mkZk is a cycle

on Xj, then its strict transform on Xi is given by Zi =
∑
miZ

i
k.

Proposition 2.2.3. — The sequence of blow ups 2.5 terminates: that is to say that

for some K ≥ 1 the first case of Proposition 2.2.1 occurs, i.e. σ−1
K,0 ◦ ψ(E) = EK.

Proof. We will see below that the discrepancies of the exceptional divisors Ei with

respect to the model X will strictly increase; in particular, a(Ei, X) ≥ i. At the

same time, a(Ei, X) ≤ a(E,X) since the centre of E on Xi is contained in Ei.

Remark 2.2.4. — The sequence 2.5 is called the resolution of the discrete valuation

νE with respect to the model X. On the set of exceptional divisors {E1, . . . , EK}
we introduce a structure of an oriented graph in the following way: the vertices Ei

and Ej are joined by an oriented edge denoted by i → if i > j and Bi−1 ⊂ Ei−1
j .

The graph structure formalises the operation of computing the strict transforms of

exceptional divisors:

Ei
j = φ∗i,jEj −

∑
j←k≤i

φ∗i,kEk

In order to compute the pullback in terms of the various strict transforms involved,

set for i > j, pij to be the number of paths from Ei to Ej in the oriented graph

described above, and set pii = 1
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Proposition 2.2.5. — The following decomposition holds:

φ∗i,jEj =
i∑

k=j

pkjE
i
k (2.6)

Proof. This statement is proved by induction on i ≥ j. If i = j, there is nothing to

prove. If i = j + 1, then φ∗j+1,jEj = Ej+1
j , since Bj ⊂ Ej and Ej is non-singular at

the generic point of Bj. For i ≥ j + 2 we get:

φ∗i,jEj = φ∗i,i−1

(
i−1∑
k=j

pkjE
i−1
k

)

=
i−1∑
k=j

pkjE
i
k +

 ∑
k=j

Bi−1⊂Ei−1
k

pkj

Ei

We then use the following equality:

pij =
∑
i→k

pkj

where the arrow under the sum means that we care only about the first arrow.

Remark 2.2.6. — The pij encode the multiplicities and discrepancies of all the

blow ups and pullbacks involved. If we let Σj be the strict transform of the linear

system Σ on Xj, we then set νj = multBj−1
Σj−1 and βj = codimBj−1 − 1. We

subsequently get the traditional form of the Noether-Fano inequality:

νEk(Σ) = νE(Σ) =
K∑
i=1

pKiνi, a(E) =
K∑
i=1

pKiβi

In particular, by looking at the inequality in this form we see that the discrepan-

cies are strictly increasing as claimed. Setting pi = pKi we obtain for a maximal
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singularity the most useful form of the Noether-Fano inequality :

K∑
i=1

piνi > n

K∑
i=1

piβi (2.7)

2.3. The 4n2 Inequalities

From a resolution of a maximal singularity E ⊂ X+ we have two different cases.

In the first, we have equality of dimension of all the centres B0, . . . , BK−1. In the

second, we have dimB0 < dimBK−1; we call this the infinitely near case. Now

suppose we are in the infinitely near case, so that we can no longer use the second

part of Definition 2.1.13. In particular, codimB ≥ 3. We set B = B0 and consider

the self-intersection of the linear system Z = (D1 ·D2), where D1, D2 ∈ Σ are general

divisors. Recall that n = c(Σ) > 0 is the threshold of canonical adjunction and the

Noether-Fano inequality holds. From this we have the following theorem:

Theorem 2.3.1. — [59, Chapter 2, Section 2.2] The following inequality holds:

multB Z > 4n2.

Proof. Our strategy is to divide the resolution φi,i−1 : Xi → Xi−1 into a lower and

an upper part, corresponding respectively to the indices i = 1, . . . , L ≤ K where

codimBi−1 ≥ 3 and the indices i = L+ 1, . . . , K, where codimBi−1 = 2. It may well

be that L = K occurs and hence the upper part is empty.

Consider the general divisors D1 and D2 as above. We define a sequence of codi-

mension 2 cycles on each Xi, setting inductively

D1 ·D2 = Z0,

D1
1 ·D1

2 = Z1
0 + Z1,

· · ·
Di

1 ·Di
2 = (Di−1

1 ·Di−1
2 ) + Zi,

· · ·
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where in each case we have Zi ⊂ Ei. Therefore for any i ≤ L we get

Di
1 ·Di

2 = Zi
0 + Zi

1 + . . .+ Zi
i−1 + Zi.

For any j > i, j ≤ L, set

mi,j = multBj−1
(Zj−1

i )

where we extend our notion of multiplicity of an irreducible subvariety along a smaller

subvariety to arbitrary cycles by linearity.

Set di = degZi. We get the following system of equalities:

ν2
i + d1 = m0,1

ν2
2 + d2 = m0,2 +m1,2

· · ·
ν2
i + di = m0,i + . . .+mi−1,i

· · ·
ν2
L + dL = m0,L + . . .+mL−1,L.

We also have the inequality

dL ≥
K∑

i=L+1

ν2
i deg[(φi−1,L)∗Bi−1] ≥

K∑
i=L+1

ν2
i .

by Lemma 1.3.16. We now need the following definition.

Definition 2.3.2. — We say that a function a : {1, . . . , L} is compatible with the

graph structure if

a(i) ≥
∑
j→i

a(j)

for any i = 1, . . . , L.

In particular, a(i) = pi is such a function; we omit the proof of this (though it is

a very easy exercise to show this).
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Proposition 2.3.3. — Let a() be a function compatible with the graph structure.

Then
L∑
i=1

a(i)m0,i ≥
L∑
i=1

a(i)ν2
i + a(L)

K∑
i=L+1

ν2
i .

Proof. We need the following two lemmas.

Lemma 2.3.4. — If mi,j > 0, then j → i.

Proof. If mi,j > 0, then some component of Zj−1
i contains Bj−1, whilst Zj−1

i ⊂
Ej−1
i .

Lemma 2.3.5. — For any i ≥ 1, j ≤ L we have mi,j ≤ di.

Proof. The cycles Bλ are non-singular at their generic points, whilst the maps φλ,µ :

Bλ → Bµ are surjective. This means that we can count multiplicities at generic

points. If we then blow up at a generic point, taking into account that multiplicities

are non-increasing with respect to blowing up a non-singular variety, we reduce to

the case of a hypersurface in projective space. But this is obvious.

We multiply the i-th equality of the system by a(i) and take the sum. This gives

us on the left hand side:

i=L−1∑
j≥i+1

a(j)mi,j ≤ di
∑
j→i

a(j) ≤ a(i)di.

using the above lemmas whilst on the right hand side we have

L∑
i=1

a(i)ν2
i +

L∑
i=1

a(i)di ≥
L∑
i=1

a(i)ν2
i + a(L)dL

≥
L∑
i=1

a(i)ν2
i +

K∑
i=L+1

a(L)ν2
i .

Putting this all together gives the result.

From this we get the following corollaries:
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Corollary 2.3.6. — Set m = m0,1 = multB(D1 ·D2). Then the following inequality

holds:

m

(
L∑
i=1

a(i)

)
≥

L∑
i=1

a(i)ν2
i + a(L)

K∑
i=L+1

ν2
i .

Corollary 2.3.7. — The following inequality holds:

m

(
L∑
i=1

pi

)
≥

K∑
i=1

piν
2
i .

Proof. For i ≥ L+ 1 obviously pi ≤ pL.

Applying the Noether-Fano inequality, we can then minimise the right hand side

of the corollary when

ν1 = . . . = νK =

∑K
i=1 piβin∑K
i=1 pi

.

If we now set

Σl =
∑
βj≥2

pj, Σu =
∑
βj=1

pj,

we get

multB Z >
(2Σl + Σu)

2

Σl(Σl + Σu)
n2.

It is then very easy to see that the right hand side is bounded below by 4n2, from

which the result follows.

This is the main tool we have to tackling the case of an infinitely near singularity.

We have several refinements, two of which are mentioned in this thesis - the first is

Lemma 2.3.8, which we use as an ingredient to proving the second, the generalised

4n2-inequality, and improves the bound in the case of singular points. We outline

the proof below:

Lemma 2.3.8. — Let o ∈ X be a point on non-singular surface, C 3 o a non-

singular curve and let Σ be a mobile linear system on X. Let Z = (D1 ·D2) be the

self-intersection of the linear system Σ, an effective 0-cycle. We may assume that
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the cycle Z is concentrated at the point o. Assume that for a positive real number

a < 1 and integer n > 0 the pair (
X,

1

n
Σ + aC

)
is not log canonical. Then the following inequality holds:

degZ > 4(1− a)n2.

This is a special case of [16, Theorem 3.1] where a point on a normal crossings

curve is considered. It was later extended by Mustaţă to the case where a can be

arbitrarily positive.

From this we now prove the generalised 4n2-inequality, our setup is as follows:

Let (X, o) be a complete intersection singularity of codimension l and type µ =

(µ1, . . . , µl), where

dimX = M ≥ l + µ1 + . . .+ µl + 3.

We assume that the singularity is generic, to be defined below. Our theorem takes

the form:

Theorem 2.3.9. — [65, Theorem] Let Σ be a mobile linear system on X. Assume

that for some positive n ∈ Q the log pair (X, 1
n
Σ) is not canonical at the point o but

canonical outside this point. Then the self-intersection Z = (D1 ·D2) of the system

Σ satisfies the inequality

multo Z > 4n2 multoX.

Remark 2.3.10. — In other words, this theorem gives us a very strong lower bound

on the multiplicity at a centre of a maximal singularity of the self-intersection of a

general pair of divisors in a linear system. This allows us to exclude centres which

are singular points as well as non-singular - as will be seen this will be very useful

for the main result of the thesis.

Proof. Our strategy is to reduce to the previous theorem by blowing up the point o

under certain assumptions.
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The germ (X, o) is given locally by a system of l algebraic equations

0 = q1,µ1 + q1,µ1+1 + . . .+ q1,d1

· · ·
0 = ql,µl + ql,µl+1 + . . .+ ql,dl

in an affine chart CM+l, where the polynomials qj,i are homogeneous of degree i in

the coordinates z1, . . . , zM+l and where at least one of the µi is greater than or equal

to two; the point o = (0, . . . , 0) is the origin. We denote by

µ = (µ1, . . . , µl)

the type of the singularity o ∈ X and set

µ =
∏

µi = multoX

to be the multiplicity of the point o. We also set∣∣µ∣∣ =
∑
i

µi.

We recall that by assumption M ≥ l +
∣∣µ∣∣ + 3. Let P 3 o be a linear subspace of

CM+l of dimension 2l +
∣∣µ∣∣+ 3. We denote by XP the intersection X ∩ P .

Definition 2.3.11. — We say that the complete intersection singularity (X, o) is

generic, if for a general subspace P of dimension 2l+
∣∣µ∣∣+ 3 the singularity o ∈ XP

is an isolated singularity, dimXP = l + |µ|+ 3 and for the blow up

φP : X+
P → XP

of the point o, the variety X+
P is non-singular in a neighbourhood of the exceptional

divisor QP = φ−1
P (o), which is a non-singular complete intersection

QP = {q1,µ1 = q2,µ2 = . . . = ql,µl = 0} ⊂ P2l+|µ|+2
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of codimension l and type µ = (µ1, . . . , µl).

From this point, assume that o ∈ X is generic. In particular, by Theorem 1.2.6,

X is a factorial variety near o. Let us begin the proof.

For a general (2l+
∣∣µ∣∣+ 3)-subspace P , set ΣP = Σ|P to be the restriction of Σ onto

P . By inversion of adjunction, proved below, the pair (XP ,
1
n
ΣP ) is not canonical.

We also have

ZP = Z|P = (Z ·XP )

is the self-intersection of the system and multo Z = multo ZP . Therefore, we may

assume that M = l + |µ| + 3 and so P = CM+l from the start, so that our original

singularity o ∈ X is isolated. Therefore, we can omit the index P and hence write

φ : X+ → X

for the blow up of the point o and Q = φ−1(o) for the exceptional divisor, which

as before is a non-singular complete intersection of codimension l and type µ in

P2l+|µ|+2.

At this point we restric to a generic linear subspace Π 3 o of dimension
∣∣µ∣∣+ 3. Let

XΠ denote the intersection X ∩ Π. Similarly, we let

φΠ : X+
Π → XΠ

be the blow up of the point o and let QΠ = φ−1(o) be the exceptional divisor. In

addition, by the adjunction formula we have the equality

a(QΠ, XΠ) = 2.

If we now take a general divisor D ∈ Σ and its strict transform D+ ∈ Σ+ on X+ we

have

D+ ∼ −νQ

for some positive integer ν. If ν > 2n, then

multo Z ≥ ν2µ > 4µn2
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and so we have the desired inequality. Therefore, we assume the converse, that

ν ≤ 2n.

If we set DΠ = D|XΠ
, we get D+

Π ∼ −νQΠ. Again, by inversion of adjunction the

pair (XΠ,
1
n
DΠ) is not canonical at the point o, so for some exceptional divisor EΠ

lying over XΠ the Noether-Fano inequality

ordEΠ
ΣΠ > na(EΠ, XΠ)

holds. This implies that EΠ 6= QΠ since ν ≤ 2n and a(QΠ, XΠ) = 2, hence EΠ is a

non canonical singularity of the pair(
X+

Π ,
1

n
D+

Π +
ν − 2n

n
QΠ

)
.

Let ∆Π ⊂ QΠ denote the centre of EΠ on X+
Π , which is an irreducible subvariety in

QΠ.

Proposition 2.3.12. — Suppose that codim(∆Π ⊂ QΠ) = 1, then the estimate

multo Z ≥ 8n2µ

holds.

Proof. Begin by noting that by the genericity of the subspace Π, the multiplicity

remains the same on restriction so that multo Z = multo ZΠ. Using Lemma 2.3.8, we

get the following inequality:

multo ZΠ ≥ ν2µ+ 4
(

3− ν

n

)
n2µ

from which the claim follows.

Remark 2.3.13. — This was first proved for the case of a non-singular point (in a

slightly different setup) as [4, Lemma 5.3]
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Therefore, returning to the proof of the theorem, we can assume that codim(∆Π ⊂
QΠ) ≥ 2. Therefore, returning to our original variety X, by taking into account

the first blow up and the Noether-Fano inequality, we can conclude that for some

exceptional divisor E lying over X we get the inequality

ordE Σ > n(2 ordE Q+ a(E,X+))

such that the centre ∆ ⊂ Q of E on X has codimension at least 2 and dimension at

least 2l. At this point, as above, we can now resolve the singularity.

Consider, as in the first case, the resolution of the singularity E

X = X0 ← X+ = X1 ← X2 ← . . .← XK ,

with the same notation as in the previous section so that the blow ups are given by

maps φi,i−1 : Xi → Xi−1 with centres Bi−1 ⊂ Xi−1 and exceptional divisors Ei−1. In

this case however, we can already say that B0 = o and B1 = ∆, so that E1 = Q.

Since X1 = X+ is non-singular in a neighbourhood of E1, so too are all subsequent

varieties Xi non-singular at the generic point of Bi and hence we can use all the

previous constructions automatically.

As before, recall that the last exceptional divisor EK defines the discrete valua-

tion ordE. Similarly, divide the sequence φi,i−1 into the lower part with indices

i = 1, . . . , L and the upper part where i = L + 1, . . . , K. As before we also denote

the strict transform of any geometric object on Xi by adding the upper index i and

set:

νi = multBi−1
Σi

for any i = 2, . . . , K. We now have an inequality of the form

K∑
i=1

piνi >

(
2p1 +

K∑
i=2

piβi

)
(2.8)

where βi = codim(Bi−1 ⊂ Xi−1) and ν1 = ν. By linearity of inequality 2.8 and
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the standard properties of the numbers pij we may assume that νK > n, replacing

if necessary EK by a lower singularity Ej for some j < K. By Theorem 1.3.18,

applying the result to a divisor in the linear system Σ1|Q, we conclude that ν1 ≥ ν2,

since dimB1 ≥ 2l. The inequalities

ν2 ≥ ν3 ≥ . . . ≥ νK

hold as standard.

We now take a general pair of divisors D1, D2, as in the proof of the traditional

4n2-inequality and set

Z = Z0 = (D1 ◦D2)

to be the self-intersection of the mobile linear system Σ. Again denote, where ap-

propriate, by an upper index i the strict transform of some geometric object on Xi.

For i ≥ 1 we write

(Di
1 ◦Di

2) = (Di−1
1 ◦Di−1

2 )i + Zi,

where Zi is supported on Ei, is a codimension 2 cycle, and hence may be seen as an

effective divisor on Ei. Therefore, for any i ≤ L we obtain the presentation

(Di
1 ◦Di

2) = Zi
0 + Zi

1 + . . . Zi
i−1 + Zi.

For the effective divisor Z1 on E1 = Q (we can view it as such as Zi is an effective

codimension 2 cycle supported on Ei) we have the relation

Z1 ∼ d1HQ

for some d1 ∈ Z+, where HQ is the class of a hyperplane section of the complete



Chapter 2. Birational Rigidity 55

intersection Q ⊂ P4l+2. Once again we get a system of equalities

µ(ν2
1 + d1) = m0,1

ν2
2 + d2 = m0,2 +m1,2

· · ·
ν2
i + di = m0,i + . . .+mi−1,i

· · ·
ν2
L + dL = m0,L + . . .+mL−1,L

where the multiplicities mi,j are defined as before and the estimate

dL ≥
K∑

i=L+1

ν2
i

holds as usual. The theorem now follows from the following proposition:

Proposition 2.3.14. — The following pair of inequalities holds:

1. d1 ≥ m1,2;

2. m0,1 ≥ µm0,2.

Proof. The first part follows from Theorem 1.3.18 as Z1 ∼ d1H1 and dimB1 ≥ 2l.

For the second part, we note we have the numerical equivalence

(Z1 · E1) ∼ 1

µ
deg(Z1 · E1)H2

Q

∼ 1

µ
m0,1H

2
Q

as m0,1 = deg(Z1 · E1). Applying Theorem 1.3.18 to the cycle (Z · Q), we get the

inequality

m0,2 ≤ mult∆(Z1 ·Q) ≤ 1

µ
m0,1,

which completes the proof of the proposition.
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In fact, we can say further, that m0,1 ≥ µm0,1 for i ≥ 3. If we then set

m∗i,j = µmi,j

for (i, j) 6= (0, 1) and m∗0,1 = m0,1, as well as d∗i = µdi for i = 1, . . . , L, we obtain the

following system of inequalities:

µν2
1 + d∗1 = m∗0,1

ν2
2 + d∗2 = m∗0,2 +m∗1,2

· · ·
ν2
i + d∗i = m0,i∗ + . . .+m∗i−1,i

· · ·
ν2
L + dL = m∗0,L + . . .+m∗L−1,L

as well as

d∗L ≥ µ
K∑

i=L+1

ν2
i

where the integers m∗i,j and d∗i satisfy precisely the same properties as the integers

mi,j and di in the non-singular case. Repeating the same arguments verbatim we

obtain the inequality (
L∑
i=1

pi

)
multo Z ≥ µ

K∑
i=1

piν
2
i

and by the same argument the desired inequality

multo Z > 4µn2.

Remark 2.3.15. — Note that if we allow the case where µi = 1 for every i,

then this theorem reduces to the older 4n2-inequality as the point o automatically

satisfies the genericity condition on the singularity. This justifies our terminology

for the theorem.
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Remark 2.3.16. — It would be lovely if we were able to relax the condition of

genericity - in general however this very difficult, as elucidated by the following

example. If we take a singular variety S ⊂ Pn, and take the affine cone over S

where the vertex is the point o, blowing up this point yields an exceptional divisor

isomorphic to the original variety S, so we cannot reduce immediately to the non-

singular case. In principle it should be possible to prove the theorem for individual

varieties in certain geometric problems. However, in any case, due to the nature

of proving Birational rigidity of higher dimensional varieties using linear systems

introduces a degree of genericity anyway, we will not worry so much about this.

2.4. Inversion of Adjunction

As part of the proof of the generalised 4n2-inequality, we had to use the inversion

of adjunction. This allows us to relate the discrepancies in the neighbourhood of a

point p ∈ X and the discrepancies of the same point on a subvariety X ∩ S, where

S is a hypersurface containing the point p. We call this method of simplifying some

Birational rigidity type arguments the linear method. Its proof follows by blowing up

at the point in question and using the following theorem, known as the connectedness

principle; we recall the proof given for [40, Theorem 7.4].

Theorem 2.4.1. — Let X be a normal variety and let D =
∑
diDi be an effective

Q-divisor on X such that (KX +D) is a Q-Cartier divisor. Let f : Y → X be a log

resolution of the pair (X,D). Define

KY ≡ f ∗(KX +D) +
∑
i∈I

eiEi

and let A =
∑

ei>−1 eiEi and F = −
∑

ei≤−1 eiEi. Then Supp(F ) = Supp(bF c) is

connected in a neighbourhood of any fibre of F .

Proof. We begin by noting that

dAe − bF c = KY + (−f ∗(KX +D)) + {−A}+ {F}.
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By the Kawamata-Viehweg vanishing theorem we have the vanishing of the right

derived groups R1f∗OY (dAe − bF c) = 0. Applying f∗ to the exact sequence of

sheaves

0 // OY (dAe − bF c) // OY (dAe) // ObF c(dAe) // 0

we see that the map f∗OY (dAe)→ f∗OY bF c(dAe) is surjective.

Let Ej be an irreducible component of A, so that Ej is either an exceptional di-

visor of the strict transform of some D with di < 1 - this implies that the divisor

dAe is completely exceptional, and hence f∗OY (dAe) = OX . Suppose by contradic-

tion that bF c had at least two connected components, so that bF c = F1 t F2 in a

neighbourhood of f−1(x) for some point x ∈ X. Then the stalks

f∗ObF c(dAe)(x)
∼= f∗OF1(dAe)(x) ⊕ f∗OF2(dAe)(x)

and both summands are necessarily non-zero. Therefore f∗ObF c(dAe)(x) cannot

be a quotient of a module generated by a single element. In particular, OX,x ∼=
f∗OY (dAe)(x) is such a module, a contradiction, since f∗ObF c(dAe)(x) is clearly a

quotient of this module.

Now that we have the connectedness principle available to us, we are in a position

to prove the inversion of adjunction.

Theorem 2.4.2. — Let o ∈ X be a point on a Q-factorial terminal variety, and

D ⊂ X an effective Q-divisor, the support of which contains o. Let R ⊂ X be an

Cartier divisor where o 3 R 6⊂ SuppD. Assume that the pair (X,D) is not canonical

at the point o, but canonical outside that point. Then the pair (R,DR = D|R) is not

log canonical at the point o.

Remark 2.4.3. — When we say that (X,D) is not canonical at a point o but

canonical outside that point, we mean that any exceptional divisors which appear

with a negative coefficient in a resolution of X necessarily map to the point x under

the resolution morphism.
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Proof. Let D =
∑

i∈I diDi be an effective Q-divisor, so that di ∈ Q+ for every i ∈ I.

Since the pair (X,D) is canonical outside the point o, we get the inequality di ≤ 1

for all i ∈ I. Further, we can assume that every di < 1 be replacing D by 1
1+ε

D for

a small value of ε ∈ Q+.

Let φ : X̃ → X be a resolution of singularities of the pair (X,D +R). We write

KX̃ = φ∗(KX +D +R) +
∑
j∈J

ejEj =
∑
i∈I

diD̃i − R̃, (2.9)

where the exceptional divisors of the morphism φ are all the Ej, and D̃i and R̃ are

the strict transforms of the divisors Di and R on X̃ respectively. Set

bj = ordEj φ
∗D, aj = a(Ej, X)

for every j ∈ J . From this we get that ej = aj − bj − rj, where rj = ordEj φ
∗R. If

we then consider the pullback of the point o we obtain

φ−1(x) =
⋃
j∈J+

Ej

for some subset J+ ⊂ J . Recalling that R is some Cartier divisor on X containing

the point o, we get that for j ∈ J+,

rj = ordEj φ
∗R ≥ 1.

Further, since the pair (X,D) is not canonical at o, but is canonical outside that

point, there exists among the indices j ∈ J+ an index k such that ak < bk. For this

index we have ek < −1 corresponding to an exceptional divisor Ek. In particular, by

the connectedness principle we have

Ek ∩ R̃ 6= ∅.
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We now apply the adjunction formula to get

KR̃ = (KX̃ + R̃)|R̃ = φ∗R(KR +DR) +

(∑
j∈J

ejEj|R̃ −
∑
i∈I

diD̃i|R̃

)

where φR = φ|R̃ : R̃ → R is the restriction of the resolution map φ onto R. The

coefficient of Ek is then strictly less than −1.

2.5. Hypertangent Divisors

In this section we give a description of the technique of hypertangent divisors. This

was first used in the paper [60] where it was proved that a general hypersurface

of degree d embedded in Pd where d ≥ 5 is birationally superrigid, and has been

used successfully many times since then for numerous classes of families. It also

has applications in the calculation of canonical thresholds, which we will discuss in

Chapter 4.

Definition 2.5.1. — Let X be a variety, and let π : X+ → X be the blow up of an

arbitrary point o ∈ X. Assume that the exceptional divisor E = π−1(o) is reduced

and irreducible. An effective divisor on X is said to be hypertangent to X (with

respect to a point o) if the strict transform D+ of the divisor D is an element of the

linear system |kH − lE| for some l ≥ k + 1. The number β(D) = l
k

is then called

the slope of the divisor.

The most important fact about hypertangent divisors is the following:

Lemma 2.5.2. — Let D be a hypertangent divisor on a variety X in the linear

system |kH − lE| , where l ≥ k + 1, with slope β(D) = l
k
. Then for any irreducible

subvariety Y of X such that Y 6⊂ |D|, where |D| is the set of points defined by

the divisor D, the algebraic cycle equal to the scheme-theoretic intersection (D ◦ Y )

satisfies the following:
multo
deg

(Y ◦D) ≥ β(D)
multo
deg

Y.
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This more or less directly follows on from the definition of hypertangent divisor,

yet is the main tool by which we are able to prove the Birational superrigidity of

the varieties of interest. This works well for hypersurfaces, but runs into trouble

with complete intersections due to the containment condition. Beginning in the

paper [53], the following generalisation of this method was used that can tackle this

problem.

Definition 2.5.3. — Let π : X+ → X be the blow-up of X at the point o. A

non-empty linear system Σ on X is said to be hypertangent (with respect to the

point o) if Σ+ ⊂ |kH − lE|, where E is the exceptional divisor, l and k are positive

integers such that l ≥ k + 1, and Σ+ is the strict transform of the system Σ on X+.

The number β(Σ) = l
k
> 1 is called the slope of the system Σ.

Rather usefully it is the case that a set of hypertangent divisors D generates

a hypertangent linear system Σk = Σk(D) in the following way: for each D ∈ D,

define kD and lD to be the coefficients in the expression of the strict transform

D+ ∈ |kDH − lDE|. Let

fD ∈ H0(X,OX(kDH))

be a section defining the divisor D. Set

Σk =

∣∣∣∣∣∑
kD≤k

fDsD = 0

∣∣∣∣∣
where the summation is taken over all hypertangent divisorsD ∈ D such that kD ≤ k,

and sD is an arbitrary polynomial of degree (k − kD) with a zero of order (k − kD)

at the point o. Clearly

β(Σk) ≥ min
D∈D, kd≤k

{
k + lD − kD

k

}
.

In fact, in most cases and in the case considered in Chapter 4, for every D ∈ D we

have that lD = kD + 1, so that all the slopes are of the form

β(Σk) ≥
k + 1

k
.
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Further, we get the equality

codimo Bs Σk = #{D ∈ D | kD ≤ k}.

Define the ordering function

χ : {1, . . . , N} → K = {kD |D ∈ D}

by the relation

#{D ∈ D | kD < χ(i)} < i ≤ #{D ∈ D | kD ≤ χ(i)}. (2.10)

For example,

χ(1) = min{kD |D ∈ D}, χ(N) = max{kD |D ∈ D}.

By construction, we finally obtain

codimo Bs Σχ(i) ≥ i.

Using this technique, as well as Lemma 2.5.2, which directly carries over to this

environment, we are able to prove the Birational superrigidity of higher dimensional

varieties. We do this by constructing a sequence of varieties, essentially by successive

intersection to derive a contradiction; we will show how to do this as an example in

the proof of Theorem 3.1.2.



3.

Cyclic Covers

In this chapter we prove the main result of the paper [29], the Birational superrigidity

of a general cyclic cover of a Fano hypersurface with an isolated singular point of high

multiplicity of index one where the singular point does not lie on the ramification

divisor. We use the term ”high” in this case to distinguish from other applications

of the theory of hypertangent divisors where we restrict ourselves to the case of

quadratic singularities (of bounded rank).

3.1. Introduction

3.1.1. Statement of the main result. — Let M ≥ 6, and let G = Gm ⊂
PM+1 = P be a hypersurface of degree m containing a single isolated singular point

o with multiplicity µ, where µ < M − 4. We then let

σ : F → G

be a K : 1 cyclic cover branched over a divisor W ∩ G where W = WKl ⊂ P is a

hypersurface of degree Kl and o /∈ W . Introducing a new coordinate u of weight l,

we can realise F as a complete intersection of type m ·Kl in the weighted projective
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space

P∗ = P(1, . . . , 1︸ ︷︷ ︸
M+2

, l).

Namely, F is given by the system of equations

f(x0, . . . , xM+1) = 0, uK = g(x0, . . . , xM+1)

where f and g are homogeneous polynomials of degrees m and Kl respectively - f

corresponds to the hypersurface G whilst g corresponds to the branch divisor W .

We further require that the polynomials f and g satisfy some regularity conditions at

every point p ∈ F , stated in Section 3.2. Since o is a singular point and M ≥ 6, the

variety remains factorial by Theorem 1.2.6. Then, using Theorem 1.2.9, we impose

on the integers m, l and K that they satisfy the relation m + (K − 1)l = M + 1.

This means that F is a primitive Fano variety of dimension M , which is to say that

PicF = ZKF and (−KF ) is ample.

We also assume that

(Kl)2 − 5Kl + 10 ≥ 2m. (3.1)

The proof that the codimension of the subspace of the defining parameter space where

the regularity conditions fail is positive requires this inequality, and is compatible

with the previous choice of paramaters of m, K and l.

The theorem is then:

Theorem 3.1.2. — A general (in the Zariski topology) variety F of the type

described above is birationally superrigid. In particular, F admits no non-trivial

structures of a rationally connected fibration, any birational map F 99K F ] onto a

Fano variety with Q-factorial terminal singularities and whose Picard group satisfies

rk PicF ] = 1 is an isomorphism, and further the groups of birational and biregular

self-maps coincide:

BirF = AutF.

When we say ”general” in the statement of the theorem above, we mean that the
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defining polynomials f and g satisfy some regularity conditions whose failure implies

that the pair of polynomials f and g belong to a strict closed subset of the defining

parameter space. We explain precisely what we mean in the coming section.

3.2. The Regularity Conditions

Since F is determined by two polynomials f and g of degrees m and Kl respectively,

we can view F as a point f in the parameter space F

f ∈ F ⊂ H0(P,OP(m))×H0(P,OP(Kl))

under the following conditions for F :

� for a pair of polynomials (f, g) = f ∈ F , the corresponding Fano cyclic cover

F = V(f, g) ⊂ P∗ is irreducible and reduced.

� deconstructing the local equation for f at the point o (here we view f as defining

the variety G) into homogeneous components, the initial µ− 1 components all

vanish, that is to say locally

f = qµ + qµ+1 + . . .+ qm,

where qi is the ith homogeneous component of f and qµ is not identically zero,

whilst at every other point o′, the equation is locally given in homogeneous

components as

f = q′1 + q′2 + . . .+ q′m,

where again q1 is not identically zero.

� the points σ−1(o) are not contained in the variety defined by the equation

g = 0.

� the variety defined by the vanishing of the polynomial uK = g is non-singular.

This set F makes a natural parameter space for Fano cyclic covers in question.
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We also need a condition on the blow up of the singular point o ∈ G:

(R0.1) Condition on the singularity on the base. Let φP : P+ → P be the

blow up of the point o on G, EP = φ−1
P (o) ∼= PM the exceptional divisor, G+ ⊂ P+

the strict transform of the hypersurface G, so that φ : G+ → G is the blow up of

the point o on G and E = G+ ∩ EP is the exceptional divisor. We require that the

subvariety

E ⊂ EP ∼= PM

is a non-singular hypersurface in its linear span, i.e.

〈E〉 ∼= PM .

In other words, supposing (z0, z1, . . . , zM+1) is a set of affine coordinates at the point

o, with the local equation again decomposed into homogeneous coordinates as

f = qµ + qµ+1 + . . .+ qm,

then we ask that (z0 : . . . : zM+1) forms a set of affine coordinates on EP and the

hypersurface E is given by the equation qµ|EP = 0. This condition is to ensure that at

singular points on the cover, we can apply the generalised 4n2-inequality, Theorem

2.3.9.

Now let f = (f, g) ∈ F be a defining pair for a Fano cyclic cover F , p ∈ F an arbi-

trary point, and let p′ = σ(p). We choose a system of affine coordinates z1, . . . , zM+1

with the origin at the point p′. Without loss of generality we can assume that

z1 = xi/x0. We set y = u/xl0.

Then the standard affine set

A = AM+2
(z1,...,zM+1,y)

is a chart for P(1, . . . , 1, l). Abusing notation, we use the same symbols corresponding

to the homogeneous polynomials f and g, namely f = q′1 + q′2 + . . . + q′m at non-
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singular points of the intersection, f = qµ + qµ+1 + . . . + qm at singular points, and

g = w0 + w1 + . . . + wKl, where the polynomials q′i, qj and wk are homogeneous

components of degree i, j and k respectively in the variables z∗, so that in the affine

chart A, the variety F is given by the pair of equations f = 0, yK = g, replacing our

original system. If the point p ∈ F does not lie on the ramification divisor, then we

assume that w0 = 1. If it does, the point p′ ∈ G is non-singular, and so without loss

of generality, we assume that q1 ≡ zM+1.

We now formulate the regularity condition for any point o ∈ F .

(R1.1) The regularity condition for a point p outside the ramification

divisor. We begin by giving the regularity condition for a singular point. Let the

singularities of F be given by the set

SingF = {o1, o2, . . . , oK}

where the points o1, . . . , oK are the K points in the preimage of the singular point

o ∈ G. Let p be one of the points oi ∈ SingF . We assume locally w0 = 1 and we

may also assume that y(p) = 1. Set

g1/K = (1 + w1 + . . .+ wKl)
1/K = 1 +

∞∑
i=1

γi(w1 + . . .+ wKl)
i

= 1 +
∞∑
i=1

Φi(w1, . . . , wKl),

where γi ∈ Q are the coefficients in the Taylor expansion of (1 + s)1/K at zero and

Φi(w1(z∗), . . . , wKl(z∗)) are homogeneous polynomials of degree i ≥ 1 in the variables

z∗. It is easy to see that for i ∈ {1, . . . , Kl} we get

Φi(w∗(z∗)) =
1

K
wi + Φ]

i(w1, . . . , wi−1) (3.2)

for some polynomials Φ]
i only depending on the polynomials (w1, . . . , wi−1).

In these notations we formulate the regularity condition in the following way: We
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say a sequence satisfies the regularity condition (R1.1) if the set of polynomials

{qµ, . . . , qm, Φl+1(w∗(z∗)), . . . ,Φν(w∗(z∗))} (3.3)

forms a regular sequence in Op,CM+1 , where

ν =

Kl
2

+ 1 if Kl is even

Kl+1
2

if Kl is odd.

In other words, the set of homogeneous equations

{qi = 0, Φj = 0 | i = µ, . . . ,m, j = l + 1, . . . , ν}

defines a closed set of codimension ν +m− µ− l + 1 in CM+1.

Considering now a non-singular point p 6= oi, i ∈ {1, . . . , K} lying off the ramifica-

tion divisor, the conditions are identical to those in the paper [55]. Let u1, . . . , uM+1

be a system of affine coordinates with the origin at p. We perform the same decom-

position as before, finishing with local equations

{q′1, . . . , q′m, Φ′1(w′∗(u∗)),Φ
′
2(w′∗(u∗)), . . .}

at the point p. We then require the regularity of the sequence

{q′1, . . . , q′m, Φ′l+1(w′∗(u∗)), . . . ,Φ
′
Kl−1(w′∗(u∗))} (3.4)

if m ≤ Kl, whilst if m > Kl, we require the regularity of the sequence

{q′1, . . . , q′m−1, Φ′l+1(w′∗(u∗)), . . . ,Φ
′
Kl(w

′
∗(u∗))}. (3.5)

Note that we also call this condition (R1.1).

(R1.2) The regularity condition for a point p on the ramification divisor.
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Here w0 = 0. We require that the set of polynomials

{q′′1 , . . . , q′′m, w′′1 , . . . , w′′K} (3.6)

forms a regular sequence in Op,CM+1 , where q′′i and w′′i are the local defining equations

at the point p.

Definition 3.2.1. — A Fano cyclic cover defined by f ∈ F is said to be regular,

if every point p in the corresponding variety F satisfies the regularity conditions,

namely the conditions (R1.1) and (R1.2), and the singularity on the base satisfies

the condition (R0.1).

We denote the set of regular cyclic covers by the symbol Freg. This is clearly

open in F .

Theorem 3.2.2. — The set Freg is non-empty and the following inequality holds:

codim(F \Freg ⊂ F) ≥ 2.

Remark 3.2.3. — In general, when we are using the method of hypertangent

divisors, we would prefer to be able to restrict to (multi)quadratic singularities, at

which point we have enough ”room” to be able to get an ”effective” bound on the

codimension where the parameter space fails to be regular. One such paper where

these ideas were shown to fruition is [23], where a double covers of hypersurfaces

were shown to be effectively rigid - i.e. the equivalent statement about the bound of

the codimension is quadratic in the dimension of the variety F . Unfortunately, for

a general cyclic cover this implies the degree of the ramification divisor to be equal

to one, and so is of little use to us.

We postpone the proof of Theorem 3.2.2 for now, and first of all show the proof

of 3.1.2.
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3.3. Proof of 3.1.2

Assuming Theorem 3.2.2, we can now prove Theorem 3.1.2; we show that any regular

cyclic cover F corresponding to a point f ∈ Freg is birationally superrigid.

3.3.1. The maximal singularity. — We fix a pair of polynomials f = (f, g) ∈
Freg. Let F = V(f, g) be the corresponding cyclic cover. We recall that by our

choices of m, µ, K and l, we have that

PicF = ZH, KF = −H,

where H is the σ-pullback of a hyperplane section of G. Assume that F is not

birationally superrigid. By what was said before, this implies that on F there is

a mobile linear system Σ ⊂ |nH| , n ≥ 1, with a maximal singularity E: for some

non-singular projective variety F̃ with a birational morphism φ : F̃ → F there exists

a φ-exceptional prime divisor E ⊂ F̃ satisfying the Noether-Fano inequality

ordE Σ > na(E).

Let B = φ(E) ⊂ F be the centre of the divisor E on F . This is an irreducible sub-

variety satisfying the inequality multB Σ > n. By the corollary to the Lefschetz

theorem for numerical Chow groups of algebraic cycles on V , Corollary 1.3.12,

we have the equality A2V = ZH2. We can now exclude the simplest case where

codim(B ⊂ F ) = 2.

If codim(B ⊂ F ) = 2, then we begin by intersecting with a general six dimen-

sional linear subvariety V ⊂ P∗, so that we have a five dimensional non-singular

variety FV = F ∩ V . Further set HV = H ∩ V . Then by the Lefschetz theorem,

PicFV = ZHV , A2FV = ZH2
V .

If we then also set BV = B ∩ V , then BV ∼ mH2
V for some m ≥ 1. Consider the self

intersection Z = (D1 ◦ D2) of the linear system ΣV = Σ ∩ V . Clearly Z ∼ n2H2
V .
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On the other hand, Z = γBV + Z1 where γ > n2 and Z1 is an effective cycle of

codimension 2 that does not contain BV as a component (here we are using the

Noether-Fano inequality together with, for example, [59, Chapter 2, Lemma 2.2]).

Taking the classes of the cycles in A2FV then yields the inequality n2 ≥ γm > mn2.

This is the required contradiction.

If codim(B ⊂ F ) ≥ 3 and B 6⊂ SingF , then the inequality multB Z > 4n2 holds.

This is the classical 4n2-inequality going back to [35] (see [59, Chapter 2] for a mod-

ern exposition). At this point, we use the arguments of [59, Chapter 3, Section 2,

Theorem 2.1] to cover this case. We can do this because it relies only on the regu-

larity conditions at non-singular points.

We are therefore left with the only option: B is a singular point lying off the ramifi-

cation divisor, specifically B = p ∈ {o1, . . . , oK}. To exclude the remaining case, we

use the method of hypertangent linear systems.

3.3.2. Hypertangent linear systems — We are now in the position to make use

of the technique of hypertangent linear systems.

Returning to our original cover

σ : F → G,

set

Di = σ∗{(qµ + . . .+ qi)|G = 0}

where i = µ, . . . ,m− 1 and where we are taking the closure in P∗. Similarly, let

Lj =

{
y − 1−

j∑
i=1

Φi(w1, . . . , wj)|F = 0

}

where j = l, . . . , Kl − 1. These sets are clearly both of hypertangent divisors with

multiplicities at the point p of:

multpDi = i+ 1, multp Lj = j + 1,



72 Dominic Robert Foord

and hence with slopes

β(Di) =
i+ 1

i
, β(Lj) =

j + 1

j

respectively. To see this note that (qµ+. . .+qi)|G = (−qi+1−. . .−qm)|G and similarly

for the divisors Lj. Define the set

D = {Di | i = µ, . . . ,m− 1} ∪ {Lj | j = l . . . , ν − 1}.

to be the collection of these hypertangent divisors. Let

N = #D = m− µ+ ν − l.

We now generate a hypertangent linear system in the usual way: Let

π : X+ → X

be the blow up of the variety X at the point p where E+ denotes the strict transform

of an arbitrary divisor E. Then for eachD ∈ D, define kD and lD to be the coefficients

in the expression of the strict transform D+ ∈ |kDH − lDE|. Let

fD ∈ H0(X,OX(kDH))

be a section defining the divisor D. Set

Σk =

∣∣∣∣∣∑
kD≤k

fDsD = 0

∣∣∣∣∣
where the summation is taken over all hypertangent divisorsD ∈ D such that kD ≤ k,

and sD is the pullback of an arbitrary polynomial of degree (k − kD) with a zero of

order (k − kD) at the point α(p). Clearly

β(Σk) ≥ min
D∈D, kd≤k

{
k + lD − kD

k

}
.
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In fact, in our case, for every D ∈ D we have that lD = kD + 1, so that, as expected

all the slopes are of the form

β(Σk) ≥
k + 1

k
.

From this equality, we see that the integer-valued function codimo Bs Σk is increasing

when k = kD for some D ∈ D, and only for those values.

As before we have the ordering function

χ : {1, . . . , N} → K = {kD |D ∈ D}

defined by the relation

#{D ∈ D | kD < χ(i)} < i ≤ #{D ∈ D | kD ≤ χ(i)}. (3.7)

By construction, we again obtain

codimo Bs Σχ(i) ≥ i.

From this, pick a general set of hypertangent divisors

D = (D1, . . . , DN) ∈
N∏
i=1

Σχ(i)

and an arbitrary subvariety Y of codimension d containing the point p; we get Y 6⊂
Supp(Di) for i ≥ d+ 1. In particular, let us take Y to be an irreducible component

of the self-intersection Z with the highest ratio multp / deg of the multiplicity at the

point p to the degree d; this is clearly bounded above by 1. We can now construct

in the usual way (see [59, Chapter 3]) a sequence of irreducible subvarieties Y2 =

Y, an arbitrary codimension 2 subvariety of X, Y3, . . . , YN satisfying the following

properties:

� codim(Yi ⊂ F ) = i,

� Yi 6⊂ Dχ(i+1), so that (Yi ◦Dχ(i+1)) is an effective cycle on V and Yi+1 is one of
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its irreducible components,

� Yi+1 is an irreducible component of the algebraic cycle of the scheme-theoretic

intersection (Yi◦Dχ(i+1)) with the maximal possible value of multo Yi+1/ deg Yi+1.

In particular, the inequality

multp Yi+1

deg Yi+1

≥ β(Σi+1)
multp Yi
deg Yi

holds, again using Lemma 1.3.16, which immediately implies the following proposi-

tion:

Proposition 3.3.3. — The following inequality holds:

multp Y

deg Y
≤

(
N−2∏
i=1

β(Σi+2)

)−1

This implies the following inequality:

multo Y

deg Y
≤ 4µ

mK
, (3.8)

which holds at every singular point o ∈ Sing(F ) including p.

Theorem 3.1.2 then follows if this holds true; to see this, note that F being bi-

rationally superrigid would imply that degZ = mKn2 and multp Z > 4µn2, contra-

dicting the above.

If we now apply Proposition 3.3.3 to the subvariety Y , we can hence deduce the

following:

multp Y

deg Y
≤

(
µ

µ+ 1
· µ+ 1

µ+ 2
·
m−1∏
i=µ

i+ 1

i
·
ν−1∏
j=l

j + 1

j

)−1

=
µ+ 2

µ
· µ · l
mν

<
(µ+ 2) · 2
mK

≤ 4µ

mK
.
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If F were birationally superrigid with a centre of a maximal singularity at the sin-

gular point p, however, this would imply the existence of a codimension 2 subvariety

Z, specifically the self-intersection of a mobile linear system Σ ⊂ |nH|, with the

following properties: degZ = mKn2 and multp Z > 4µn2. However, this clearly

contradicts the above, so we have been able to exclude the possibility that the sin-

gular point p is a singularity, and hence, since we have previously exhausted all the

other cases, the theorem follows accordingly.

3.4. Proof of Theorem 3.2.2.

Let us now prove Theorem 3.2.2. This follows from the following: F is non-empty -

we show this in the proof of 3.4.6. Now let p ∈ P∗ be an arbitrary fixed point (not

necessarily the same as the point p from the previous section), and let p′ = σ(p).

Consider the set F(p) = {f ∈ F |G 3 p′} ⊂ F . Since the cover σ is cyclic, either all

the points σ−1(p′) satisfy the regularity conditions, or none of them do. Set

Freg(p) ⊂ F(p)

to be the set of covers such that each point p′ ∈ σ−1(p) satisfies the regularity

conditions.

Proposition 3.4.1. — The following inequality holds:

codimF(p)(F(p)\Freg(p) ⊂ F(p)) ≥M + 2.

Since p ∈ PM+1 is an arbitrary point, and F(p) ⊂ F is a divisor, we can use the

same argument as in the case of a Fano complete intersection (see [59, Chapter 3,

Section 3, 3.2]) to complete the proof of Theorem 3.2.2.

First of all, the case where p is non-singular has been covered in [55, Proposition

5.1]. Therefore, we assume that p is singular (and hence has multiplicity µ).

We need the following lemma. We construct a sequence of polynomials Φ+
i (w1, . . . , wl),
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first of all setting

Φ+
l+1 = Φ]

l+1

where the polynomials Φ]
j were defined as in the equation 3.2. We then subsequently

set

Φ+
i = Φ]

i(w1, . . . , wl,−KΦ+
l+1, . . . ,−KΦ+

i−1)

for i ≥ l + 2.

Lemma 3.4.2. — The sequence 3.3 is regular in the ring OF,p if and only if the set

of polynomials

{qµ, . . . , qm, wl+1 +KΦ+
l+1, . . . , wν +KΦ+

ν } (3.9)

forms a regular sequence.

Proof. The sets of zeros for both sequences are the same: this can be shown by

induction using the equality

Φi|B ≡ 0 ⇐⇒ wi|B ≡ −KΦ]
i

for an arbitrary closed irreducible set B.

Note that the sequence 3.9 has the polynomials wi(z∗) shifted by polynomials Φ+
i

which depend only on w1, . . . , wl. The set of polynomials wi, i ∈ {1, . . . , l} can be

assumed to be fixed, and all taken to be general. Therefore in the sequence 3.9 each

of the homogeneous polynomials wi, i ∈ {l+ 1, ν} is shifted by a fixed homogeneous

polynomial of degree i.

Let Π be the space of polynomials qµ, . . . , qm, w1, . . . , wν . Consider an irreducible

component X ⊂ Π corresponding to non-regular sequences 3.3 or 3.9. For a fixed

set of homogeneous polynomials u1, . . . , ul, where deg ui = i, let

Π(u1, . . . , ul) = {wi = ui| i = 1, . . . , l} ⊂ Π
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be the corresponding affine subspace with fixed polynomials w1, . . . , wl, and set

X(u1, . . . , ul) = X ∩ Π(u1, . . . , ul).

Note that Π(u1, . . . , ul) is identified with the space of polynomials qµ, . . . , qm, wl+1, . . . , wν ,

which we denote by Π+. Thus we consider X(u1, . . . , ul) to be embedded in the linear

space Π+. For a general tuple (u1, . . . , ul) we have

codimΠX = codimΠ+ X(u1, . . . , ul).

Lemma 3.4.3. — X(0, . . . , 0) 6= ∅.

Proof. Φi, Φ]
i and Φ+

i are quasi-homogeneous in w∗, where the coordinates w∗ are

weighted so that wtwi = i for every value of i. Therefore, for λ 6= 0,

(qµ, . . . , qm, λ
l+1wl+1, . . . , λ

νwν) ∈ X(λu1, λ
2u2, . . . , λ

lul)

if and only if

(qµ, . . . , qm, wl+1, . . . , wν) ∈ X(u1, . . . , ul).

Setting λ = 0 gives us the statement, using closure of the component.

Remark 3.4.4. — If we then notice that

codimΠ X ≥ codimΠ+ X(0, . . . , 0),

this allows us to calculate the codimension of the space where the regularity condi-

tions fail, essentially by ignoring the polynomials Φ+
i , and so we only need to estimate

the codimension of the closed set of non-regular sequences qµ, . . . , qm, wl+1, . . . , wν .

We should however take into account the effect that introducing the singularity

will affect the proof of regularity of non-singular points in the same neighbourhood.

In fact, we consider the larger set of non-regular sequences qµ, . . . , qm, wl+1, . . . , wKl,

as the bound is good enough for our purposes.
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3.4.5. Codimension estimate — Begin first of all by noting that the codimen-

sion estimate is trivial at the point o, and follows from the usual argument for a

codimension count in the non-singular case. However, as we will see, it is possible

the singular point will have an effect on the codimension of the set of non-regular

sequences at nearby non-singular points, so we have to check that the regularity

conditions hold here as well. Recall that we are working in the chart A where the

y coordinate is fixed to be equal to 1, and by abuse of notation whenever we talk

about the variety F , we are referring to its restriction to the chart A|{y=1}. We let

Pd,M+1 stand for the linear space of homogeneous polynomials of degree d in M + 1

variables (z∗). Set

P[a,b],M+1 =
b∏
l=a

Pl,M+1

to be the space of tuples of polynomials of the form (qa, qa+1, . . . , qb), where qd ∈
Pd,M+1. We then let

P = P[µ,m],M+1 × P[l+1,Kl],M+1

to be the space of pairs f of defining polynomials of the type discussed above. In

the following, F always refers to the corresponding variety. Note that for a general

pair the condition (R0.1) is satisfied.

Let o ∈ Sing(F ) be a singular point lying at the origin in A and let p ∈ A, p /∈
Sing(F ) be an arbitrary point. We assume that p has coordinates (1, 0, . . . , 0). We

let

u∗ = {u1 = z1 − 1, u2 = z2, . . . , uM+1 = zM+1}

be a system of affine coordinates with origin at the point p. Set qj = qj,k + z1qj,k−1 +

. . . + zk1qj,0 and wj = wj,k + z1wj,k−1 + . . . + zk1wj,0 where qj,k and wj,k are homoge-

neous polynomials of degree k ≤ j in the variables z2, . . . , zM+1. In the alternate

coordinates u∗, we can see that the polynomial q′j takes the form

j∑
α=0

uj−α1

 m∑
δ=max(µ,j)

(
δ − α
j − α

)
qδ,α

 . (3.10)
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Similarly, w′j takes the form

j∑
α=0

uj−α1

(
Kl∑
δ=j

(
δ − α
j − α

)
wδ,α

)
. (3.11)

Therefore, the change of coordinates (z∗)→ (u∗) defines a linear map

τ : P → P[0,m],M+1(u∗)× P[0,Kl],M+1(u∗).

Theorem 3.4.6. — The set of pairs f in P such that

τ(f) ∈ P[1,m],M+1(u∗)× P[0,Kl],M+1(u∗)

where the second polynomial has constant term equal to 1 and τ(f) fails the regularity

condition (R1.1) is of codimension at least M + 2 in the space P.

Proof. We begin by noting that q0 = qµ,0 + . . . + qm,0, w
′
0 = w0,0 + . . . + wKl,0 and

the equalities q′0 = 0, w′0 = 1, expressing the fact that p lies on the vanishing set of f

and g − 1, give 2 independent conditions for the polynomials f and g; we then have

remaining M + 1 + l degrees of freedom for the non-linear defining polynomials q′i
and w′i. This immediately gives us non-emptiness of the set F .

For a fixed linear form L in the variables u∗ we denote by the symbol

P[p;L] ⊂ P

the affine subspace of pairs f such that q′0 = 0, w′0 = 1 and q′1 = L.

3.4.7. The line connecting the points o and p. — Let us denote this line by

the symbol [o, p]. We say we are in the non-special case if [o, p] 6⊂ TpF , and in the

special case if [o, p] ⊂ TpF . First of all we note that in the coordinates u∗, the line

is given by the equations

u2 = u3 = . . . = uM+1 = 0
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on the space TpP∗. Supposing [o, p] 6⊂ TpF , we then have

dim〈u2|TpF , . . . , uM+1|TpF 〉 = M − 1

so that for every j ≥ 1 the space

{qj|TpF | qj ∈ Pj,M}

(where Pj,M uses the M variables not equal to z1) is the whole space of homogeneous

polynomials of degree j on TpF . Note that it follows from the equation 3.10 that

q′δ = qm,δ + (∗), where (∗) is a linear combination of terms uδ−k1 qj,k where either

j < m or j = m and k < δ.

As the polynomials qj,k are arbitrary of degree k in the variables u2, . . . , uM+1, we

conclude that when we consider the pairs f in the space P[p;L], there is no depen-

dence between any of the polynomials q′δ|TpV (and indeed the polynomials w′δ|TpV )

where δ ≥ 2. This means that the methods outlined in [59, Chapter 3] and so we can

use the result on non-singular cyclic covers from [55, Proposition 5.1] (noting that

the slight difference in regularity conditions - we go up to wKl instead of wKl−1 - has

no bearing on the final estimate) to get the desired inequality, that the set of pairs

f in P which fail the regularity condition (R1.1) has codimension at least M + 1 in

the space P [p;L]. Since for different linear forms L 6= L′ the spaces P[p;L] and P[p;L′]

are disjoint, we essentially reduce to the case where the cyclic cover is non-singular,

and where the codimension estimate is as required, again using [55, Proposition 5.1].

Therefore, we assume we are in the special case, that is, L|[o,p] ≡ 0. Explicitly,

this means that the equality

µqµ,0 + . . .+mqm,0 = 0

holds, so we can no longer directly use the previous result. Now note that if µ ≤ m−1

we obtain a new independent condition on f . We then use the following proposition:

We set T = P(TpF ) ∼= PM−1. Within this space, we denote the point corresponding
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to the line [o, p] by ω.

Proposition 3.4.8. — Suppose we are in the special case. Then the set of pairs

f ∈ P such that the system of equations

q′j|T = 0, w′k|T = 0, 2 ≤ j ≤ m, l ≤ k ≤ Kl − 2

has in T a positive-dimensional set of solutions, is of codimension at leastM + 1 if µ = m

M if µ ≤ m− 1

in the space P [p;L].

Proof. Let us begin by fixing the linear space L, and hence the projective space T.

Placing the polynomials q′|T and w′|T in lexicographic order we get M−1 polynomials

on PM−1:

p1, p2, . . . , pM−1,

where deg pi+1 ≥ deg pi. As we are in the special case it is no longer true that the pi

run through the corresponding spaces of polynomials independently of each other,

so we can no longer use the standard method, outlined in [59, Chapter 3, Section 3].

Therefore let us consider the affine space A = P [p;L]. Let Bline ⊂ A be the set

of pairs f ∈ A such that pi|R ≡ 0 for some line R ⊂ T for every i. Furthermore, set

Bi ⊂ A\Bline to be the set of pairs f ∈ A such that

codim({p1 = . . . = pi−1 = 0 ⊂ T}) = i− 1,

but for some irreducible component B of the set {p1 = . . . = pi−1 = 0} we have

pi|B ≡ 0. (For i = 1 this condition means that pi ≡ 0).

We then need the following pair of propositions:
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Proposition 3.4.9. — The following inequality holds:

codim(Bline ⊂ A) ≥M + c∗ − 1,

where

c∗ =

1 if m = µ

0 otherwise.

Proposition 3.4.10. — For all i = 1, . . . ,M − 1 the following inequality holds:

codim(Bi ⊂ A) ≥M + 1.

The estimate of the codimension then clearly follows from these.

Remark 3.4.11. — Let (v∗) = (v0 : v1 : . . . : vM−1) be a system of homogeneous

coordinates on T, and let ω be given by the point (1 : 0 : . . . : 0). The formulas

3.10 and 3.11 imply that for fixed polynomials p1, . . . , pi−1 the set through which the

polynomial pi runs is a disjoint union of affine subspaces of the form

p′i + Pdeg pi,M−1(v1, . . . , vM−1),

where p′i is some polynomial. Applying the method of linear projections from [59,

Chapter 3, Section 3], we obtain the inequality

codim(Bi ⊂ A) ≥
(
M − i− 1 + deg pi

deg pi

)
.

Note that when i = 1, 2, this already gives us what we need:

codim(Bi ⊂ A) ≥
(
M − 1

2

)
Therefore it is sufficient to prove Proposition 3.4.10 for i ≥ 3, so that deg pi ≥ 3.

3.4.12. Proof of Proposition 3.4.9 — We consider the subsets of Bline corre-

sponding to the case when R contains the point ω, (B+
line), and when it does not
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(B−line). We estimate the codimensions of these sets in A separately.

For f ∈ (B−line) the conditions pi|R ≡ 0, i = 1, . . . ,M − 1 similarly to the non-

special case give
∑M−1

i=1 (deg pi + 1) independent conditions for f . Since the line R

varies in an 2(M − 2)-dimensional family, we obtain the estimate

codim(B−line ⊂ A) ≥
M−1∑
i=1

deg pi −M + 3.

Lemma 3.4.13. — The following inequality holds:

M−1∑
i=1

deg pi ≥ 2M − 2.

Proof. Note that

M−1∑
i=1

deg pi =
m(m+ 1)

2
− 1 +

(Kl − 1)(Kl − 2)

2
− l(l + 1)

2
(3.12)

Note that if m ≤ Kl− 3 (or vice versa), then we can replace m by m+ 1 and Kl by

Kl− 1 and this does not increase the value of either expression in the formula 3.12.

Further, we can assume that we are in the worst possible case, that is where we have

l = 1. Therefore, the minimum of the expression is obtained when the values of m

and Kl − 1 are as close as possible, that is when

m = a+ 1, Kl = a+ 3

where M = 2a+ r, r ∈ {0, 1}.

The above lemma then implies the inequality

codim(B−line ⊂ A) ≥M + 1,

which is stronger than the inequality needed (we only need our inequality to be



84 Dominic Robert Foord

greater than or equal to M). We then need to consider the other case (B+
line ⊂ A),

which follows from the following claim:

Proposition 3.4.14. — The following inequality is true:

codim(B+
line ⊂ A) ≥M + 1 + c∗ − k.

Proof. Let R 3 ω be a line. In the notations of Remark 3.4.11 let

λ = (0 : a1 : . . . : aM−1) = R ∩ {v0 = 0}.

The conditions pi|R ≡ 0, i = 1, . . . ,M − 1 give a smaller codimension that in the

case R 63 ω considered above. However, on the other hand the lines R containing ω

vary in a (M − 2)-dimensional family. Let us fix the line R and the point λ.

At this point we suppose that m ≤ Kl (the opposite case is almost identical, swap-

ping q′∗ for w′∗ where appropriate).

Lemma 3.4.15. — The conditions

q′2|R ≡ . . . ≡ q′m ≡ 0

are equivalent to the conditions

qj,k(λ) = 0.

where µ ≤ j ≤ m, k = 0, 1 . . . , j.

Proof. For the homogeneous polynomial

q′(v∗) = vl0r0 + vl−1
0 r1 + . . .+ v0rl−1 + rl

where ri(v1, . . . , vM−1) is a homogeneous polynomial of degree i, the condition q′|R ≡
0 means that

r0 = r1(λ) = . . . = rl(λ) = 0.

The formula 3.10 implies that if all polynomials q′j vanish identically on the line R,
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then the equalities
m∑

j=max(µ,e)

(
j − k
e− k

)
qj,k(λ) = 0

hold for every e = 0, . . . ,m and k = 0, . . . , e. Setting e = m, we obtain the system

of equalities

qm,k(λ) = 0, k = 0, . . . ,m.

If µ = m, then the claim is shown.

Assume instead that µ ≤ m−1. Setting e = m−1, we obtain the system of equalities

qm−1,k(λ) +

(
m− k

m− 1− k

)
qm,k(λ) = 0

for k = 0, . . . ,m − 1, whence, taking into account the previous inequalities, we

conclude that

qm−1,k(λ) = 0, k = 0, . . . ,m− 1.

Similarly, we do the same for the values k = m− 2, . . . , µ and complete the proof of

the lemma.

Lemma 3.4.16. — The conditions

w′2|R ≡ . . . ≡ w′Kl−2|R ≡ 0

define a linear subspace of codimension

1

2
[(Kl − 1)(Kl − 2)]− 1

in the space of tuples of homogeneous polynomials wj,k, 1 ≤ j ≤ Kl − 2, k =

0, 1, . . . , j.

Proof. Adding the condition

w′Kl−1|R ≡ 0

and applying the previous lemma, we obtain 1
2
[(Kl)(Kl + 1)] − 1 independent lin-

ear conditions wj,k(λ) = 0. The vanishing of wKl−1 on the line R adds Kl linear
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conditions.

Combining Lemmas 3.4.15 and 3.4.16, we see Proposition 3.4.14 follows from the

inequality

1

2
[(m+ 1)(m+ 2)− µ(µ+ 1) + (Kl − 1)(Kl − 2)− 2]− (M − 2) ≥M + c∗ − 1.

But this is just Equation 3.1. Thus we have proved Propositions 3.4.9 and 3.4.14.

3.4.17. Proof of Proposition 3.4.10 — Note that by Remark 3.4.11 we can as-

sume that deg pi ≥ 3. From this point we can use (a modified version of) the method

of good sequences and associated subvarieties, which is described in [59, Chapter 3,

Section 3].

Let Bi,b ⊂ Bi be the subset of pairs f ∈ A such that for some irreducible com-

ponent B of the set {p1 = . . . = pi−1 = 0} (which has codimension i − 1 in T,

since f ∈ Bi), such that codim(〈B〉 ⊂ T) = b, we have pi|B ≡ 0. The parameter b

runs through the set of values {0, 1, . . . , i − 1} for i ≤ M − 2, and through the set

{0, . . . ,M −3} for i = M −1. When b = i−1, the component B is a linear subspace

in T, and the codimension codim(Bi,i−1 ⊂ A) can be calculated explicitly, though

this is stronger than we need.

Let P be a linear subspace of codimension b in T. By the symbol Bi,b(P ) we denote

the subset of pairs f ∈ Bi,b such that the linear span of the associated irreducible

subvariety B is P . Obviously

codim(Bi,b ⊂ A) ≥ codim(Bi,b(P ) ⊂ A)− b(M − b).

Furthermore, for a subset of indices

I = {j1 < . . . , < ji−1−b} ⊂ {1, . . . , i− 1}
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let Bi,b,I(P ) ⊂ Bi,b(P ) be the subset of pairs f ∈ Bi,b(P ) such that there exists a

sequence of irreducible subvarieties

Y0 = P, Y1, . . . , Yi−1−b = B

satisfying the following properties:

� for every l ∈ {1, . . . , i − 1 − b} and every index jl−1 < j < jl (where j0 = 0)

the polynomial pj vanishes identically on Yl−1,

� for every l ∈ {1, . . . , i−1−b} we have pjl |Yl−1
6≡ 0 and Yl ⊂ Yl−1 is an irreducible

component of the closed set {pjl |Yl−1
= 0} containing the subvariety B.

In the terminology of [59] we say the polynomials pjl |P , l = 1, . . . , i − 1 − b form a

good sequence with B as one of its associated subvarieties. Obviously,

Bi,b(P ) =
⋃
I

Bi,b,I(P ).

Lemma 3.4.18. — The following inequality holds:

codim(Bi,b,I(P ) ⊂ A) ≥ (2b+ 3)(M − 1− b)− 2

Proof. We check the polynomials pj not included in the good sequence individually.

When the polynomials pγ with γ < j are fixed, the condition pj|Yl−1
≡ 0 imposes on

the coefficients of the polynomial pj at least

deg pj(M − 2− b) + 1 ≥ 2(M − 2− b) + 1

independent conditions, since 〈Yl−1〉 = P (recall that Yl−1 ⊃ B). There are b of

these. The condition pi|B ≡ 0 gives (with p1, . . . , pi−1 fixed) at least

deg pi(M − 2− b) + 1 ≥ 3(M − 2− b) + 1

independent conditions. Putting these two together completes the proof of the

lemma.
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We now complete the proof of Proposition 3.4.10. Let us look first of all at the

values i ≤M−2 when the parameter b takes the values 0, 1, . . . , i−1. Let us consider

the quadratic function

φ1(t) = (2t+ 3)(M − 1− t)− t(M − t)− 2.

Since φ′′1(t) = −1 < 0, its minimum on the set [0, i− 1] is attained either at t = 0 or

at t = i− 1. Therefore, for i = k + 1, . . . ,M − 2 we get

codim(Bi ⊂ A) ≥ min{3M − 5, (M − i− 1)(i+ 2) + 1}.

Since 3M−5 ≥M+1, which is what we need, let us consider the quadratic function

φ2(t) = (M − t− 1)(t+ 2) + 1.

Again, φ′′2(t) = −1
2
< 0, so that its minimum on the set [3,M − 2] is attained at

either endpoint. In the M−2 case we get φ2(M−2) = M+1 as required. Therefore,

in order to prove Proposition 3.4.10 for i ≤M − 2, it is sufficient to show the truth

of the inequality

5(M − 4) + 1 ≥M + 1.

But M ≥ 5, so this follows immediately. Therefore we have proved Proposition

3.4.10 in the case i ≤M − 2.

Finally, in the case where

i = M − 1,

the parameter b takes the values 0, 1, . . . ,M − 3 (We needed Proposition 3.4.9 in

order to deal with the case b = M − 2). If b = 0, we get φ1(0) = 3M − 5 as above

which is fine. On the other hand, if b = M −3, we get the value φ1(M −3) = M + 1,

which leads to the estimate

codim(BM−1 ⊂ A) ≥M + 1,
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which is also fine. This finishes off the proof of Proposition 3.4.10. and hence

3.2.2.

Since we have now proved 3.4.10, Theorem 3.2.2 now follows.



4.

The Canonical Threshold of a General

Cyclic Cover

In this chapter, we define the canonical threshold of a variety, and from this aim to

find a bound for the canonical threshold of a general cyclic cover. This leads to some

crossover to the case where we can consider the varieties in question in the complex

analytic setting, proving the existence of a Kähler-Einstein metric on such a variety.

4.1. Introduction

We first take a brief detour to Complex Geometry. We need several definitions to

motivate the work of this chapter. Let X be a non-singular variety, so in particular

it has the structure of a complex manifold. We need the following definition.

Definition 4.1.1. — We say that X is Kähler if it has a Hermitian metric g such

that the associated 2-form ω, where ω = i
2
(h− h̄), is closed, i.e. dω = 0. The Ricci

curvature of g is then given by

Ric = − ∂2

∂zj∂z̄k
log det(g).
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We say that X is Einstein if Ric = λg for some constant g ∈ R. Finally, we say that

X is Kähler-Einstein if it is both Kähler and Einstein.

The importance of these definitions is related to the very important property

of K-stability, which we will not define in this thesis. In layman’s terms, we can

categorise when a Fano manifold is Kähler-Einstein if and only if it is also K-stable.

A good introduction to these ideas can be found in [75].

We now return to the algebraic setting and define the global canonical threshold

(or simply canonical threshold) for a variety X to be

ct(X) = sup{λ ∈ Q+|(X,
λ

n
D) is canonical for every D ∈ |nH| for every value n ≥ 1}.

Similarly, we define the global log canonical threshold by the equality

lct(X) = sup{λ ∈ Q+|(X,
λ

n
D) is log canonical for every D ∈ |nH| for every value n ≥ 1}.

The definition of the global log canonical threshold was introduced by Cheltsov and

Park as [6, Definition 1.7], and was announced in a COW seminar held at Liverpool

University in 2000 by Cheltsov (the author is unsure of the exact origin of the sister

definition, though it is clearly very similar). It was later shown in [7, Appendix A]

by Demailly that the global log canonical threshold of a non-singular Fano variety

equalled that of its alpha invariant, introduced by Tian in the paper [76]. A purely

algebraic version of this theorem was then proved in the paper [49] by Odaka and

Sano. This set of ideas is important in linking complex and birational aspects of a

variety’s geometry. In particular, by combining [76, Theorem 2.1] with the above

equivalence tells us that

lct(F ) >
M

M + 1

implies the existence of a Kähler-Einstein metric on F . We are interested in the

case where the canonical threshold is equal to one, as this then implies Birational

superrigidity in a straightforward way. However, the converse does not hold. In

particular, it was proved that every non-singular index two hypersurface is K-stable

by the paper [1], which implies the admission of a Kähler-Einstein metric. However,
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Birational superrigidity is a property that can only be held by index 1 varieties.

4.1.2. Relationship to Birational Rigidity — Note that in general, this is a

much more powerful criteria than that used in Birational rigidity. In Birational

rigidity, we only care about linear systems that are mobile. Indeed, we can similarly

define the so-called mobile canonical threshold mct(X) to be:

mct(X) = sup{λ ∈ Q+|(X,
λ

n
D) is canonical for a general D ∈ Σ ⊂ |−nH|}

where Σ is an arbitrary mobile linear system. Clearly we have that mct(X) >

ct(X), so calculating the canonical threshold of X gives us a lower bound of the

mobile canonical threshold. The connection to Birational Rigidity was first used for

the following:

Theorem 4.1.3. — [54, Theorem 1] Let F1, . . . , FK , K ≥ 2 be primitive Fano

varieties, and suppose that the conditions lct(Fi) = 1 and mct(Fi) ≥ 1 hold. Then

their direct product

V = F1 × . . .× FK

is a birationally superrigid variety. In particular,

1. Every structure of a rationally connected fibre space on the variety V is given by

a projection onto a direct factor. More precisely, if β : V ] → S] is a rationally

connected fibre space and χ : V 99K V ] is an arbitrary birational map, then

there exists a subset of indices

I = {ii, . . . , ik} ⊂ {1, . . . , K}

and a birational map

α : FI =
∏
i∈I

Fi 99K S
]
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such that the diagram

V
χ //

πI
��

V ]

β
��

FI
α // S]

commutes, that is β ◦ χ = α ◦ πI , where πI is the natural projection onto a

direct factor:

πI :
K∏
i=1

Fi →
∏
i∈I

Fi.

2. Let V ] be a variety with Q-factorial terminal singularities satisfying the condi-

tion

dimQ(PicV ] ⊗Q) ≤ K

and suppose χ : V 99K V ] is a birational map. Then χ is a (biregular) isomor-

phism.

3. The groups of birational and biregular self-maps of the variety V coincide:

BirV = AutV.

In particular, the group BirV is finite.

4. The variety V admits no structures of a fibration into rationally connected

varieties of dimension strictly smaller than min{dimFi}. In particular, V

doesn’t admit a structure of a conic bundle or a fibration into rational surfaces.

5. The variety V is non-rational.

Indeed, we will show that cyclic covers described below will satisfy the conditions

of Theorem 4.1.3.

4.2. Cyclic Covers

When we talk about the canonicity of cyclic covers, we now prefer to simplify things

and insist that our variety is non-singular. Let M ≥ 12, and let G = Gm ⊂ PM+1 = P
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be a non-singular hypersurface of degree m. We then consider a cyclic cover

σ : F → G

branched over a hypersurface W ∩G. In particular, W = WKl ⊂ P is a hypersurface

of degree Kl. Continuing this construction, we end up with a complete intersection

in the weighted projective space

P∗ = P(1, . . . , 1︸ ︷︷ ︸
M+2

, l)

given by equations

f(x0, . . . , xM+1) = 0, uk = g(x0, . . . , xM+1)

where f and g are homogeneous polynomials of degrees m and Kl respectively,

where u is the l-weighted variable. We now require firstly that K(l − 3) ≥ 9, and

that m+(K−1)l = M+1, so that F is a non-singular (and hence factorial) primitive

Fano variety with Picard group generated by the pullback of a hyperplane section

on the base which is denoted H.

Let

F ⊂ H0(P∗,OP(m))×H0(P∗,OP(Kl))

be the parameter space defining non-singular irreducible reduced cyclic covers, with

defining pairs of polynomials (f, g) ∈ F denoted by f .

Theorem 4.2.1. — There is a non-empty Zariski open subset Freg ⊂ F such that

for every variety V ∈ Freg and every divisor D ∼ nH the pair (V, 1
n
D) is canonical.

Remark 4.2.2. — Notice that in this case, we prove a stronger statement than

when we are talking about the rigidity of a variety - we require that every divisor

satisfies this condition, rather than only divisors sitting inside a mobile linear system.

This stronger property is known as the divisorial canonicity of a variety.
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4.3. Exclusion of Maximal Singularities

We fix a cyclic cover F ⊂ Freg and assume that D ∼ nH is an effective divisor on F

such that the pair (F, 1
n
D) is not canonical. We aim to derive a contradiction from

this statement, proving the theorem. To do this, we apply the projection method,

first used in the case of an abelian cover of projective space in the paper [58].

4.3.1. Projection — We outline a method that allows us to treat our variety orig-

inally embedded in weighted projective space as if it were in the usual non-weighted

kind, so that we may use the full range of hypertangent divisors when taking inter-

sections. This works in our setup as follows:

Let o∗ = (0 : . . . : 0 : 1) = (0M+2 : 1) ∈ P∗ be the unique singular point of the

weighted projective space P∗. Clearly o∗ /∈ F . Consider the projection

πP∗ : P∗\{o∗} 99K P,

given locally as πP∗((x0 : . . . : xM+1 : u)) = (x0 : . . . : xM+1).

We use the following lemma:

Lemma 4.3.2. — Let γ(x0, . . . , xM+1) be a weighted polynomial of degree l. Then

the equation u = γ(x∗) defines a hypersurface Rγ ⊂ P∗ that does not contain the

point o∗ = (0 : . . . : 0 : 1). The projection πP∗|Rγ is an isomorphism of Rγ and P.

Proof. This is obvious.

Therefore, considering the affine chart {x0 = 0} ⊂ P∗ with the natural affine

coordinates zi = xi/x0 and y = u/xl0 the projection πP takes the form

AM+2
z1,...,zM+1,y

→ AM+1
z1,...,zM+1

,

(z1, . . . , zM+1, y) 7→ (z1, . . . , zM+1),
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where A = AM+1
z∗ is the affine chart {x0 6= 0} in P. Clearly the affine hypersurface

Rγ ∩ {x0 6= 0} is given by the equation y = h(z1, . . . , zM) = γ(1, z1, . . . , zM).

The point of this discussion is to note that that the complete intersection Fγ = F∩Rγ

identifies naturally with a codimension 2 complete intersection Γ = Qf ∩ Qg in P,

and its intersection with the affine chart A identifies with a codimension 2 complete

intersection in the same affine space. Note that we will occasionally abuse this no-

tation, and will refer to the complete intersection embedded in the affine chart A by

the same symbols Qf ∩Qg.

The advantage of doing this is that we remove the obstruction on the degree of

hypertangent divisors from the weighting of the ambient projective space, giving us

more ”room” to get our required contradiction.

4.3.3. Non-canonical divisors — In more detail, returning to our divisor D ∼
nH, we note that we may assume that D is prime. If there is a non-canonical

singularity the centre of which is of positive dimension, then the pair(
Γ,

1

n
DΓ

)
,

where DΓ = D|Γ, is again non-canonical. If the centres are points, then taking a

general polynomial passing through one of them yields a pair (Γ, 1
n
DΓ) that is even

non-log canonical, though this is not required in this situation.

In either case, we obtain a non-singular codimension 2 complete intersection Γ ⊂
PM+1 where the defining polynomials which by abuse of notation we again call f

and g (with the same decomposition as before) define non-singular hypersurfaces of

degrees m and Kl respectively, as well as an effective divisor DΓ ∼ nHΓ, where HΓ

is the class of a hyperplane section generating the group Pic Γ, such that the pair
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(Γ, 1
n
DΓ) is non-canonical. We work with this pair, replacing our original one. Let

CS

(
Γ,

1

n
DΓ

)
be the union of centres of non-canonical singularities of the pair (Γ, 1

n
D).

Just as in the case of a rigid cyclic cover, we need to formulate the regularity condi-

tions required to use the hypertangent divisors:

They are as follows:

� (N1): For any linear form

λ(z∗) /∈ 〈g1, f1〉

the sequence of homogeneous polynomials

{f1|λ=0, f2|λ=0, . . . , fm|λ=0}
{g1|λ=0, g2|λ=0, . . . , gM−3|λ=0}

is regular in the ring Oo,PN .

� (N2): For any linear form λ /∈ 〈g1〉, the set

Γ ∩ {g1 = g2 = 0} ∩ {λ = 0}

is irreducible and reduced, where the gi and fi are considered as the defining

polynomials for Γ, rather than the original variety F .

We will prove that the set where the polynomials fail these conditions is closed

in the overall parameter space in section 4.4.

4.3.4. Inversion of Adjunction — Note that since the pair (Γ, DΓ) is not canon-

ical, then there exists a divisor E over Γ satisfying the inequality

νE(DΓ) > na(E,Γ).
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Let B ⊂ Γ be the centre of the exceptional divisor E. The inequality

multBDΓ > n

clearly holds, from which by 1.3.18 we deduce that dimB ≤ 1. Suppose first of all

that B is not contained within the singular locus Sing Γ.

Consider a non-singular point o ∈ B of general position. Let σ : Γ+ → Γ be

the blow up with exceptional divisor E+ = σ−1(o) ∼= PM . Then for some hyperplane

Θ ⊂ E+ the inequality

multoD + multΘD
+ > 2n (4.1)

holds, where D+ is the strict transform of the divisor DΓ on F+ (This is Proposition

9 of the paper [54]).

4.3.5. The subvariety of high multiplicity — Now we consider a general hy-

perplane section ∆ of the complete intersection Γ containing the point o and cutting

out the hyperplane Θ on E+ so that ∆+ ∩ E+ = Θ.

Lemma 4.3.6. — The restriction D∆ = D|∆ = (D ◦ ∆) of the divisor D on ∆

satisfies the inequality

multoD∆ > 2n. (4.2)

Proof. By the intersection theory lemma 1.3.16, we have the following:

(D+ ◦∆+) = D+
∆ + Z,

where Z is an effective divisor on E+. Looking at the multiplicities yields

multoD∆ = multoD + degZ,

since multo ∆ = 1. However, Z contains B with multiplicity at least multBD
+, from

which the statement follows in combination with equation 4.1.
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Note that by linearity we can assume that D∆ is prime. Let

∆f = {f1|∆ = 0}.

By the condition (N1) we have the equality multo ∆f = 2, it is irreducible due

to the Lefschetz theorem, and so by 4.2 we can conclude that ∆f 6= D∆. Since

multo ∆f = 2. We can consider the scheme-theoretic intersection (D∆ ◦ ∆f ) = Y2,

and take an irreducible component Y ∗2 with maximal value of multo
deg

which is an

effective codimension 2 cycle satisfying the following:

multo
deg

Y ∗2 >
4

m ·Kl
.

We now consider the following. Let:

g≤i = g1 + . . .+ gi

for i = 1, . . . , Kl − 1 and consider the restricted second hypertangent system

Λ∆
2,g =

∣∣∣s0g≤2|∆ + s1g1|∆
∣∣∣

where so ∈ C and s1 runs through the space of linear forms in the variables z∗. By

the condition (N2) the base locus Bs(Λ∆
2,g) is irreducible and reduced, and by the

condition (N1) it is of codimension 2 on ∆. Let D2 ∈ Λ2,g be a general divisor. By

the above, it is clear that it does not contain Y ∗2 , and so we obtain another effective

cycle Y3 = (Y ∗2 ◦D2). Again taking a component with maximal value of multo
deg

yields

a codimension 4 cycle Y ∗3 such that

multo
deg

Y ∗3 >
6

m ·Kl
.

Finally, consider the divisor ∆g = {g1|∆ = 0}

Lemma 4.3.7. — The subvariety Y ∗3 is not contained in the divisor ∆g.
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Proof. The base set of the hypertangent system Λ∆
2,g is

S∆ = {g1|∆ = g2|∆ = 0}.

It is irreducible and reduced, and hence

degS∆ = 2 deg ∆.

By the condition (N1) we have the equality

multo S∆ = 6,

so that Y ∗3 6⊂ S∆. Note that a particular polynomial s0g≤2 + s1g1 vanishes on Y ∗3 ,

where s0 6= 0 by generality of the divisor D2. Suppose that Y ∗3 ⊂ ∆g. Then

immediately this would imply the vanishing (restricted to Y ∗3 ) of g1|Y ∗3 and g≤2|Y ∗3 ,

implying that

g2|Y ∗3 = 0,

since g≤2 = g1 + g2. But this implies that Y ∗3 ⊂ S∆, which is false.

By this lemma, we have shown that the effective cycle

Y4 = (Y ∗3 ◦∆g)

of codimension 4 on ∆ is well-defined. We can further assume it to be irreducible,

and that it satisfies the inequality

multo
deg

Y4 >
12

m ·Kl
.

4.3.8. Using the technique of hypertangent divisors — At this point, we are

nearly finished, and can take intersections with hypertangent divisors in the following

way to finish off the proof of exclusion of a maximal singularity lying over a non-

singular point. We intersect Y4 with hypertangent divisors first corresponding to the

polynomial f , followed by the polynomial g in the following way: we take general
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hypertangent divisors

D5 ∈ Λ∆
2,f , . . . , Dm+2 ∈ Λ∆

m−1,f

Dm+3 ∈ Λ∆
4,g, . . . , DM−3 ∈ Λ∆

M−3,g.

By the condition (N1), on successively intersecting Y4 and taking irreducible com-

ponents of maximal value of multo
deg

, we obtain an irreducible curve C ⊂ Γ satisfying

the inequality

multo
deg

C >
12

m ·Kl
· 3

2
· . . . · m

m− 1
· 5

4
· . . . · K(l − 1)− 3

K(l − 1)− 4
=

6

Kl
· (K − 1)l − 3

4
≥ 1

by the condition on the variables K and l. This is a contradiction, and have hence

concludes the proof of the theorem.

4.4. Regularity Conditions

Finally we come to the proof that failure of the regularity conditions is confined to

a closed subset of the parameter space. Note that showing that violation of each

condition can be checked separately, and so we divide into the two cases (N1) and

(N2).

4.4.1. (N1) — As usual, we have to show that violation of the regularity conditions

imposes at least M independent conditions on the coefficients of the polynomials in

question. The complete intersection Γ is non-singular, hence the tangent space to Γ

is given by

ToΓ = {f1 = g1 = 0}.

Let us relabel the polynomials of the sequence, excluding the linear terms, as p1, p2, . . . , pM−3.

We restate the regularity condition (N1) in the following way: for any hyperplane

S ⊂ ToΓ, the sequence

p1|S, p2|S, . . . , pM−3|S
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is regular at the origin o. Let us fix an isomorphism ToΓ ∼= CM−1, and set T =

P(ToΓ) ∼= PM−2. Set δ(i) = deg pi and let Pa,M−2 be the space of homogeneous

polynomials on T, and

PT =
M−3∏
i=1

Pδ(i),M−2.

Supposing all the polynomials pi vanish on a line L ⊂ T, then clearly the regularity

condition is violated: we take any hyperplane S ⊃ L. For that reason, the case when

the set {p1 = . . . = pM−3 = 0} contains a line is considered separately.

The case of a line. — Let Bline ⊂ PT be a closed subset of tuples (p1, . . . , pM−3)

such that for some lie L ⊂ T we have

p1|L ≡ . . . ≡ pM−3|L ≡ 0.

Proposition 4.4.2. — The following inequality holds: codim(Bline ⊂ PT) ≥M.

Proof. We begin with the following lemma:

Lemma 4.4.3. — The following inequality holds:

codim(Bline ⊂ PT) =
M−3∑
i=1

(δ(i) + 1)− 2(M − 3).

Proof. The first component in the right hand side is the codimension of the set of

polynomials vanishing on a fixed line L ⊂ T. We then subtract off dimension of the

Grassmannian of lines.

By [67, Lemma 3.2], this is bounded below by

1

2

(
(M − 2)2

2
+M − 2

)
− 2

which is clearly greater than 2(M − 3) +M for M ≥ 13.
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Finishing the proof — To conclude, let us fix a hyperplane S ⊂ T and its iso-

morphism S ∼= PM−3. Set

P =
M−3∏
i=1

Pδ(i),M−2.

Since the hyperplane S varies in a (M−2)-dimensional family, it is sufficient to show

that the codimension of the set of tuples (p1, . . . , pM−3) ∈ P such that the closed set

{p1 = . . . = pM−3 = 0}

has a component of positive dimension, which isn’t a line, is of codimension at least

M + (M − 2) = 2M − 2 in P . Let Bi ⊂ P be the set of tuples such that the closed

set

{p1 = . . . = pi−1 = 0} ⊂ PM−3 (4.3)

is of codimension (i− 1) in PM−3 but for some irreducible component of this set, B,

say, we have pi|B ≡ 0, and moreover, if i = M − 3, then B is a curve of degree at

least 2. Theorem 4.2.1 is then implied by the following:

Proposition 4.4.4. — The following inequality holds:

codim(Bi ⊂ P) ≥ 2M − 2.

Proof. By the usual method of estimating the codimension first seen in [60, Propo-

sition 1], for k = 1, 2, we obtain the estimate

codim(Bi ⊂ P) ≥
(
M − i

2

)
.

The minimum for this expression is obtained at i − 2, at which point we can check

that (
M − 2

2

)
− 2M + 2 ≥ 0

for M ≥ 12. Therefore, we may assume that i ≥ 3, so that δ(i) ≥ 3. Now let

Bi,b⊂P be the set of tuples such that the closed set 4.3 is of codimension (i− 1), and
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moreover, there is an irreducible component B of this set such that

codim(〈B〉 ⊂ PM−3) = b,

where b ∈ {0, 1, . . . , i− 1}, b 6= M − 4 and pi|B ≡ 0. Since

Bi =
i−1⋃
b=0

Bi,b,

it is sufficient to show the inequality

codim(Bi,b ⊂ P) ≥ 2M − 2

for i ≥ 3, b ∈ {0, . . . , i−1}, b 6= M−4. Applying the technique of good sequences and

associated subvarieties, which we do not delve into in this thesis, gives the estimate

codim(Bi,b ⊂ P) ≥ (M − 1)(2b+ 3)− 2b2 − 6b− 5.

The right hand side of this inequality is attained either at b = 0, when we obtain

3M − 8 ≥ 2M − 2, or at b = i− 1 if i ≤M − 4, or b = M − 5 if i = M − 3. In either

case, once again the expression is not smaller than 2M − 2.

4.4.5. (N2) — We prove this using Proposition 1.3 of the paper [67], which states

that the codimension where the regularity conditions fail is greater than or equal to
1
2
(M2 − 15M + 40), which is clearly positive for M ≥ 12.

This finishes the proof of Theorem 4.2.1.



5.

Fibre Spaces and Further Questions

In the final chapter, we will use the results from Chapters 3 and 4 to derive some

more results about the Birational geometry of cyclic covers. In particular, we concern

ourselves with a pencil of cyclic covers, and more general types of fibre space.

5.1. Geometry of Fibre Spaces

Thus far we have only been concerned with the Birational (super)rigidity of varieties

considered on their own. Or rather, as a fibre space over a single point. In fact, we

can also consider the more general case of a fibre space over a base variety.

We recall the following definitions:

Definition 5.1.1. — Consider a standard rationally connected fibre space X/S. We

get an obvious inclusion π∗AimobS ⊂ AimobX. Furthermore, A1V = R[KX ]⊕ π∗A1S.

We say a standard Fano fibre space π : X → S satisfies the K-condition if

A1
mobX ⊂ R+[−KX ]⊕ π∗A1

+S.

In other words, it is equivalent to say that for any mobile linear system |−nKX + π∗A|
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the class A is pseudo-effective.

Definition 5.1.2. — We say a standard fibre space π : X → P1 satisfies the

K2-condition if

K2
X /∈ IntA2

+X,

where A2
+ denotes the set of effective classes of codimension 2.

The following proposition links the two conditions together.

Proposition 5.1.3. — If a fibre space π : X → P1 satisfies the K2-condition, it

satisfies the K-condition as well.

Proof. If we take the self intersection of the divisor |−nKV + lF | where F is the

class of a fibre and the integers n and l are strictly positive, we obtain

(−nKV + lF )2 = n2K2
V + 2nl(−KV · F ).

Since −KV ·F is clearly pseudo-effective, this immediately implies that l is positive,

which implies the K-condition.

This gives us a good proxy to study structures of a rationally connected fibre

space due to the following proposition:

Proposition 5.1.4. — [59, Chapter 4, Section 3] Assume that a rationally con-

nected fibre space π : X → S satisfies the K-condition. Then we have the following:

1. For the threshold of canonical adjunction of a mobile linear system Σ ⊂ |−nKX + π∗A|
we have the equality c(Σ, X) = n.

2. If the mobile linear Σ satisfies c(Σ, X) = 0, then Σ is a π-pullback of a mobile

linear system ΣS on the base S.

3. If the variety X is birationally superrigid, so we have equality of virtual and

actual thresholds of canonical adjunction on X, then for any birational map
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χ : X 99K X ′ to a rationally connected fibre space π′ : X ′ → S ′, there is a

rational dominant map ψ : S 99K S ′ such that the following diagram commutes:

X
χ //

π
��

X ′

π′

��
S

ε // S ′.

We also have the following slightly weaker definition; we need it for the following

theorem.

Definition 5.1.5. — Let π : X → P1 be a standard fibre space, so that PicX =

ZKX ⊕ ZF , where F is the class of a fibre of the projection π. Assume further that

A2X = ZK2
X ⊕ ZHF

holds, where HF = (−KX · F ), where F is the class of a fibre of the projection π.

We say that X satisfies the K2-condition of depth ε ≥ 0 if

K2
X − εHF /∈ IntA2

+X.

5.1.6. Recap on Pencils of Cyclic Covers — In the paper [55], in a series of

propositions the following theorem on the Birational rigidity of pencils of Fano cyclic

covers was proved. We summarise the statement of the theorem as follows.

Suppose a∗ = {0 = a0 ≤ a1 ≤ . . . ≤ aM+1} is a non-decreasing sequence of non-

negative integers, E =
⊕M+1

i=0 OP1(ai) a locally free sheaf on P1, and let X = P(E)

be the corresponding projective bundle. Calculating the Picard group and canonical

divisor, we obtain the following:

PicX = ZLX ⊕ ZR, KX = −(M + 2)LX + (aX − 2)R,
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where LX is the class of the tautological sheaf, R the class of a fibre of the morphism

πX : X → P1 and aX = a1 + . . .+ aM+1, L
M+2
X = aX . For some aQ, aW ∈ Z+ let

Q ∼ mLX + aQR, WX ∼ K(lLX + aWR)

be divisors on X, where Q ⊂ X is a non-singular subvariety, and W = WX ∩ Q be

a non-singular divisor on Q. Let

σ : V → Q

be the K-sheeted cyclic cover of the variety Q branched over the divisor W . The

projection πX |Q will be denoted by πQ, the projection πQ ◦ σ : V → P1 by π. The

fibre π−1
Q (t), t ∈ P1 will be denoted by Gt (or simply G when it is clear), and the

fibre π−1(t) ⊂ V by the symbol Ft or F . Set LQ = LX |Q and L = σ∗LQ respectively.

Again we have for the Picard group and the canonical divisor the following:

PicV = ZL⊕ ZF, KV = −L+ (aX + aQ + (K − 1)aW − 2)F.

It is easy to check the formulae (LM · F ) = mK, LM+1 = K(maX + aQ) hold. From

here we obtain (−KV · LM) = K((1−m)aQ −m(K − 1)aW + 2m) and

(K2
V · LM−1) = K(−maX + (1− 2m)aQ − 2m(K − 1)aW + 4m).

We write the parameters of the cover V in the form

((a1, . . . , aM+1), (aQ, aW ))

and moreover, among the numbers a1, . . . , aM+1 we specify only non-zero values, if

there are any, else we write (0). Using this, we can verify which values are permitted

when checking the K2-condition. Once done, the following is proved:

Proposition 5.1.7. — 1. The variety V satisfies the strong K2-condition if one

of the following takes place:
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� aW ≥ 1,

� aW = 0, aQ ≥ 3,

� aW = 0, aQ = 2, aX ≥ 1,

� aW = 0, aQ = 1, aX ≥ 3,

� aW = aQ = 0, aX ≥ 4.

2. If aW = 0, aQ = 2, aW = 0 then the variety V satisfies the K2-condition of

depth 2
m

.

3. If aW = 0, aQ = 1, then the variety V satisfies the K2-condition of depth 1
m

for aX = 2 and depth (1 + 1
m

) for aX = 1.

4. If aW = aQ = 0, then the variety V satisfies the K2-condition of depth 1 for

aX = 3 and depth 2 for aX = 2.

We now formulate the main result. Assume that the cyclic cover V is sufficiently

general in the family constructed above.

Theorem 5.1.8. — 1. The variety V is birationally superrigid, the projection

π : V → P1 is the only structure of a rationally connected fibre space on V , and

the groups of birational and biregular automorphisms of the variety V coincide

if the integral parameters of the variety either satisfy any of the six conditions

of the first part of the previous theorem, or are of one of the following six types:

((2), (0, 0)), ((2), (1, 0)), ((1, 1), (1, 0)), ((3), (0, 0)), ((1, 2)(0, 0)), ((1, 1, 1)(0, 0)).

2. The variety V of the type ((1, 1)(0, 0)) is birationally superrigid. However,

the K-condition does not hold: the linear system |−KV − F | is mobile and

determines a rational map φ : V 99K P1, the fibres of which are rationally

connected. On the variety V there are precisely two structures of a rationally

connected fibre space: the projection π and the map φ. There exists a unique (up

to a fibrewise isomorphism) fibration into Fano cyclic covers π+ : V + → P1
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of the same type ((1, 1)(0, 0)) and a birational isomorphism χ : V 99K V +

biregular in codimension one, such that the following diagram commutes:

V
χ //

φ
��

V +

π+

��
P1 = P1.

The correspondence V → V + is an involution, that is, (V +)+ = V .

3. The variety V of the type ((0), (2, 0)) is birationally superrigid. Again however,

the K-condition does not hold: the linear system |−mKV − F | is mobile and de-

termines a rational map, the fibres of which are rationally connected. The group

of birational self-maps BirV is strictly larger than the groups of birational au-

tomorphisms: it contains a non-trivial birational involution τ ∈ BirV \ AutV

and moreover, BirV ∼= (Z/2Z)× (Z/KZ), where Z/2Z = {id, τ}. On V there

are precisely two structures of a rationally connected fibre space: the projection

π and the rational map π ◦ τ : V 99K P1, and moreover |−mKV − F | = τ∗ |F |.

Now note that by Theorem 3.1.2 we can expand the singularities allowed in the

fibres. In fact, it is clear that we can do this far more generally, over many different

classes of varieties which are locally complete intersections by using the generalised

4n2-inequality. Whenever we take fibre spaces over a variety, it is inevitable that sin-

gularities are picked up. Whereas previously there was a lot of case-by-case checking

involved in proving the superrigidity of the fibres for a given class of fibre spaces, and

we had to limit ourselves to the case where the singularities were quadratic and high

enough rank, now we are in a position to deal with singular varieties with points of

much higher multiplicity than before.

There is also an application of the second theorem of this thesis to Mori fibre spaces,

namely the following.

Theorem 5.1.9. — [56, Theorem 1]

Let π : X → S be a Mori fibre space such that
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� every fibre Fs = π−1(s), s ∈ S is a factorial Fano variety with terminal singu-

larities and Picard group PicFs = ZKs;

� for every effective divisor Ds ∈ |nKS| the pair (Fs,
1
n
Ds) is log canonical, and

for every mobile linear system Σs ⊂ |nKs| and every general divisor Ds ∈ Σs

the pair (Fs,
1
n
Ds) is canonical;

� for every mobile family C̄ of curves sweeping out the base S, and a curve C ∈ C̄
the class of the following cycle of dimension dimFs for any positive N ≥ 1

−N(KV ◦ π−1(C̄))− Fs

is not effective, that is, not rationally equivalent to an effective cycle of dimen-

sion dimF .

Then every birational map χ : V 99K V ′ onto the total space of a rationally connected

fibre space π′ : V ′/S ′ is fibrewise, that is to say that the following diagram commutes:

V
χ //

π
��

V +

π+

��
S // S ′.

Indeed we would be able to say that we would be able to apply this theorem more

specifically to our case of a cyclic cover. The problem is that although it is certainly

true that non-singular cyclic covers of the type discussed satisfy the conditions of

the theorem, aside from the trivial fibre space F × S, any such space would have

singular fibres, the log canonicity of such has not yet been proved, since Theorem

4.2.1 is only concerned with smooth covers. It should be possible to gain results in

this direction, similar in spirit to the paper [62].

5.2. Projective Covers

On the other hand, we can also relax the condition that our cover is cyclic, and in-

stead consider more general covers. Once done, we should be able to say something
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about more general complete intersections in weighted projective space. Following

the methods of this thesis, in principle we should be able to tackle this problem and

get some bound on the dimension, number of defining polynomials and bounds on

any singularities to gain some knowledge of the Birational geometry of such varieties.

A first step in this direction is the following, the proof of which was the inspira-

tion for Chapter 4.

Theorem 5.2.1. — [58, Theorem 0.1] Let π : F → PN be a d-sheeted cover of N-

dimensional complex projective space PN where N ≥ 10, d ≥ 5, and F is embedded

in weighted projective space P(1, . . . , 1︸ ︷︷ ︸
M+1

, l) and N = (d− 1)l. Then a Zariski general

such cover is birationally superrigid.

Indeed following the projection method outlined in Chapter 4, we should be able

to bound the canonical threshold of an arbitrary cover over a hypersurface, at the

cost of imposing stronger regularity conditions. Combining the two discussions in

the last section, we should be able to generalise to the case where we allow quadratic

singularities (of high enough rank). With this done, we would be able to prove the

Birational rigidity of pencils of such varieties.

5.3. Higher Index Varieties

We can also study higher index varieties using the methods developed in this thesis.

Unfortunately, it is easy to see that we cannot directly use the definitions of Birational

rigidity to describe higher index cases. This is because we have (infinitely many) Fano

fibre spaces induced by linear projections; we can see this by use of the adjunction

formula. We are able however to say something about the index 2 case, following

the paper [64]:

Theorem 5.3.1. — Let XM ⊂ PM+1 be a generic degree M hypersurface in M + 1-

dimensional projective space where M ≥ 16. Let χ : X 99K Y be a surjective

birational map onto a rationally connected fibre space λ : Y → S where S 6= {pt}.
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Then S = P1 and for some isomorphism P1 → S and some subspace P ⊂ PM+1 of

codimension 2 we have

λ ◦ χ = β ◦ πP

where πP is the induced projection from the linear space P .

It should be possible to use the methods of this thesis combined with those of

the paper above to consider the case of an index 2 cyclic cover without too much

trouble. Indeed, as the total dimension increases, we should be able to say more about

hypersurfaces with a higher index. This is summed up in the following problem,

formulated in [19] by De Fernex:

Problem 5.3.2. — Find a non-trivial function g(N) such that for a class of hyper-

surfaces Xd ⊂ PN with g(N) ≤ d ≤ N , the only Fano fibre spaces birational to Xd

are those induced by linear projections PN 99K Pk with 0 ≤ k ≤ N − d.

In principle, we should at least be able to answer what g(2) may well be us-

ing methods similar to these, however the calculations involved quickly become in-

tractable as soon as we go beyond this point. We would have to make use of a

different set of ideas to attack this problem.
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