
THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

Présentée et soutenue par

Jérémie CHEVALIER

Le 28 septembre 2020

Optimisation des routes de départ et d'arrivée aux approches des
grands aéroports

Ecole doctorale : AA - Aéronautique, Astronautique

Spécialité : Mathématiques et Applications

Unité de recherche :

Thèse dirigée par
Pierre MARECHAL et Mohammed SBIHI

Jury
M. Xavier PRATS, Rapporteur

M. Adnan YASSINE, Rapporteur
M. Daniel DELAHAYE, Examinateur

Mme Fulya AYBEK ÇETEK, Examinatrice
M. Valentin POLISHCHUK, Examinateur

M. Pierre MARECHAL, Directeur de thèse

Résumé

L'objectif de cette thèse est de proposer une méthodologie pour la conception
optimale des routes de départ et d'arrivée dans les espaces aériens entourant
les grands aéroports, appelés Terminal Maneuvering Areas (TMA). Les
routes que suivent les aéronefs pour décoller et atterrir sont respectivement
appelées Standard Instrument Departures (SID) et Standard Terminal
Arrival Routes (STAR), et sont aujourd'hui créées à la main par des
experts métier. Cependant, l'augmentation prévue du tra�c aérien à l'échelle
mondiale va causer de plus en plus de problèmes de congestion dans les
années à venir. Pour contrer ces problèmes, les di�érents acteurs du tra�c
aérien prennent des mesures, pour des améliorations à court et à long terme.
L'une de ces mesures consiste à faire une meilleure utilisation de l'espace
aérien, à commencer par les TMA, qui sont les plus engorgées car elles
représentent un espace restreint contenant les points de départ et d'arrivée
du tra�c. Cette réorganisation de l'espace aérien, qui passe notamment par
une meilleure construction des SIDs et STARs, ou de leur amélioration
lorsqu'elles existent déjà, doit non seulement répondre de manière pertinente
à la situation de congestion croissante mais doit aussi prendre en compte
diverses contraintes opérationnelles et enjeux environnementaux. Ainsi nous
nous intéressons dans cette thèse au problème de conception optimale de ces
routes aériennes. Cette optimisation est e�ectuée en prenant en compte les
contraintes suivantes : navigablilité des routes (c'est à dire la facilité qu'un
appareil donné aura à la suivre, l'inconfort occésionné pour les passagers
etc.), évitement des obstacles, séparation des routes entre elles, séparation
des points de connexion des routes. Les points de connexion représentent
l'endroit où deux routes provenant de points d'entrée di�érents de la TMA
se rejoignent pour n'en former qu'une, ou au contraire l'endroit où une route
est séparée en deux pour atteindre deux points de sortie di�érents de la
TMA. Un meilleur placement de ces points de connexion permet de réduire
la charge mentale des contrôleurs dans la gestion du tra�c. L'objectif quant à
lui consiste à réduire la longueur des routes, l'espace total qu'elles occupent,
ainsi que le bruit subi par les populations survolées par celles-ci.
Nous commençons par formuler le problème comme un problème
d'optimisation mathématique. Dans ce modèle, les routes sont modélisées
en 3D et sont composées de deux parties. La première partie de la
route, représentant sa trace horizontale, est une succession de n÷uds dans
un graphe discrétisant la base de la TMA. La seconde partie est un
cône d'altitudes représentant pour chaque point de la partie horizontale
l'intervalle d'altitudes dans lequel un aéronef peut se trouver à ce point de

2

la route. Les obstacles sont représentés par des cylindres à base polygonale,
et les villes par des polygones en 2D auxquels sont associées des fonctions
indiquant la densité de population en chaque point de la surface polygonale.
Les fonctions densité permettent de dé�nir le coût du bruit.
Pour la résolution du problème, deux approches sont proposées. La première
est une heuristique basée sur le principe de la programmation dynamique.
Nous montrons d'abord que le sous-problème de la conception d'une
seule route (SID ou STAR) peut se ramener à un problème du plus
court chemin contraint dans un graphe, réputé NP-di�cile. Pour des tels
problèmes, le principe de programmation dynamique peut être formulé, avec
comme variables d'état des étiquettes associées aux n÷uds du graphe, mais
contrairement au problème classique du plus court chemin il faut conserver
un ensemble d'étiquettes à chaque n÷ud, ce qui mène à une complexité de
résolution exponentielle. Pour y remédier, le principe est utilisé de façon
heuristique : seul le plus court chemin jusqu'à un n÷ud donné est retenu,
ce qui revient à se placer dans le cas d'une recherche sans contrainte. Ces
contraintes son prises en compte par une phase de pré-traitement, qui associe
à chaque n÷ud un intervalle d'altitudes autorisées. Lors de la recherche de
chemin, un chemin peut passer par un n÷ud donné uniquement si l'altitude
atteinte à ce n÷ud se trouve à l'intérieur de l'intervalle calculé. Cette
heuristique est ensuite étendue à la conception de plusieurs routes. En plus de
la sous-optimalité induite par l'utilisation heuristique de la programmation
dynamique, cette heuristique suppose un ordre a priori pour la génération
des routes ce qui peut dégrader davantage la qualité de la solution obtenue.
Nous proposons donc une deuxième approche.
La seconde approche est basée sur l'utilisation d'une métaheuristique : le
recuit simulé (SA pour Simulated Annealing). Dans cette approche, une
solution est construite route par route puis optimisée pour le critère donné.
Le fait de construire les routes dans un ordre donné n'est pas un problème
ici, car une composante aléatoire est introduite dans la recherche de route.
La méthode repose sur deux étapes majeures : génération d'une solution,
et production d'une solution voisine. Dans la génération d'une solution,
chaque route est construite à l'aide d'une recherche de chemin dans le graphe
discrétisant la base de la TMA. Le coût des arcs du graphe est préalablement
dé�ni avec une méthode spéci�que, permettant de donner n'importe quelle
forme aux routes en 2D. Par ailleurs, la partie verticale des routes est
calculée sur la base de pentes minimale et maximale, auxquelles peuvent
s'ajouter des vols en palier, pour répondre à des contraintes opérationnelles
ou pour franchir des obstacles. Certaines contraintes, telles que l'évitement
des obstacles, sont relâchées et intégrées à la fonction objectif. Les routes
sont générées par ordre décroissant d'importance des �ux. A�n de gérer leurs
points de fusion, le processus fonctionne comme suit : la première route est
générée, de la piste jusqu'à son point d'arrivée. Ensuite, la deuxième route se
connecte sur la première en un point dé�ni par le SA. La troisième route se
connecte sur une des deux précédentes, en un autre point bien dé�ni et ainsi
de suite. Une fois cette solution générée, une solution voisine est construite
en altérant la solution initiale, par exemple en modi�ant la forme d'une
route, en ajoutant ou supprimant un vol en palier, ou en déplaçant un point

3

de connexion. L'une des deux solutions est ensuite choisie comme nouvelle
solution initiale, et les étapes précédentes sont e�ectuées à nouveau, jusqu'à
véri�er une condition d'arrêt.
Les deux approches ont d'abord été testées sur un cas test arti�ciel construit
de façon ad hoc pour permettre de mesurer leurs forces et faiblesses ainsi
que leur sensibilité aux paramètres de modélisation et algorithmiques. Ces
tests sont réalisés de façon incrémentale : sans ou avec un, ou plusieurs
obstacles ; une ou plusieurs routes. Ces tests ont permis de mettre en
lumière certaines limites de la première approche, basée sur le principe de
programmation dynamique, que la méthode basée sur le recuit simulé ne
présente pas, ou dans une forme très atténuée. De ce fait, seule cette dernière
approche a été confrontée aux autres cas tests. Ces cas correspondent à des
TMA réelles, tirées de la littérature : Stockholm, Paris Charles-de-Gaulle
et Zurich. Chacun de ces tests a permis de mieux mesurer et comprendre
les performances de notre algorithme. L'exemple de Stockholm montre
l'importance du choix dans la manière de construire le graphe pour le résultat
�nal. L'exemple de Charles-de-Gaulle nous a permis de tester les limites
de notre méthode dans un cas comportant un grand nombre de routes à
construire, réparties sur quatre pistes. L'exemple de Zurich montre les limites
de l'algorithme dans un cas comportant un grand nombre d'obstacles. En
dépit de ces limites, les tests e�ectués montrent que les performances de
notre algorithme sont satisfaisantes, comparé à l'état de l'art ainsi qu'aux
opérations en place actuellement, bien que des améliorations puissent être
apportées. Notre méthode doit être prise comme un outil d'aide à la décision
pour les concepteurs de procédures, capable de fournir rapidement une
première solution dans les cas de conception de routes complexes.

4

Abstract

This thesis aims at proposing a way to automatically design optimal
departure and arrival routes in the airspace surrounding large airports,
called Terminal Maneuvering Area (TMA). The routes that aircraft follow
to depart from and arrive to airports are respectively called Standard
Instrument Departure (SID) and Standard Terminal Arrival Routes (STAR),
and are currently designed by hand by experts. However, the predicted
increase in air tra�c worldwide is bound to cause more and more congestion
issues in the years to come. In order to address that issue, various
measures are taken by the di�erent actors of air tra�c for short to long
term improvements. One of these measures is to make a more e�cient use
of the airspace, beginning with TMAs, which are the most congested, as
they represent a narrow space containing the departure and arrival points
for the tra�c. This reorganization of the airspace, that involves a better
construction of the SIDs and STARs, or their improvement when they
already exist, must not only provide an adequate solution to the situation of
increasing congestion, but it must also take into account various operational
constraints and environmental concerns. In this thesis, we address the
problem of the optimal design of these air routes. This optimization is
carried out by taking into account the following constraints: "�yablility" of
the route (which measures how easy it is for a given aircraft to follow the
route, the discomfort for the passengers etc.), obstacle avoidance, pairwise
route separation, separation of the merging points of the routes. The
merging points represent the location where two routes coming from di�erent
entry points of the TMA merge into one, or, conversely, where a route splits
into two routes in order to attain two di�erent exit points of the TMA. A
better placing of these merging points allows for a lower workload for the
controllers in the air tra�c management. The objective consists in reducing
the length of the routes, the total space they occupy, as well as the noise
disturbance induced for the populations �own over.
We begin by formulating the problem as a mathematical oprimization
problem. In this model, the routes are considered in 3D and are represented
in two parts. The �rst part of a route, which represents its horizontal
component, is a sequence of nodes in a graph structure obtained by sampling
the TMA. The second part is a cone of altitudes representing the range of
altitudes for each point along the horizontal part of the route that an aircraft
is able to attain at this point following the route. The obstacles are modeled
as cylinders with polygonal bases, and the cities by 2D polygons associated
to a function indicating the population density on each point of the polygon.

5

The population density functions allow to de�ne the cost relative to noise.
For the problem resolution, two approaches are proposed. The �rst one is a
heuristic based on the dynamic programming principle. We �rst show that
the subproblem of the design of one route (SID or STAR) can be assimilated
to the problem of �nding the shortest constrained path in a graph, which is
NP-hard. For this problem, the principle of dynamic programming can be
formulated, with the state variables set as labels associated to the vertices
of the graph. However, as opposed to the usual, non-constrained shortest
path �nding case, several labels must be kept for each vertex, leading to
an exponential resolution time. In order to solve this issue, the dynamic
programming principle is considered heuristically: only the shortest path to
each vertex is kept as a label, and the other paths are discarded, as in the
non-constrained shortest path �nding problem. The constraints are taken
into account by means of a preprocessing phase which allocates an interval
of authorized altitudes for each vertex. During the path search phase, a path
can pass through a given vertex only if the altitude attained at this vertex lies
within the range of authorized altitudes. This heuristic is then broadened
to allow for the design of several routes. On top of the sub-optimality of
the solution provided by this method, induced by the use of the dynamic
programming principle by the means of a heuristic, this method requires an
a priori order for the design of the routes, which can further deteriorate the
quality of the obtained solution. Thus, we propose a second approach to
solve the problem.
The second approach is based on the use of a metaheuristic: the Simulated
Annealing (SA). In this approach, a solution is constructed one route at a
time, then it is optimized for the given criterion. Here, designing the routes
in a given order is not an issue, as randomness is introduced in the design
of the routes. This method relies on two main steps: generating a solution,
and producing a neighbor solution. In the solution generation, each route
is constructed by the means of a path search in the graph that discretizes
the base of the TMA. The costs of the edges in the graph are priory set to
carefully chosen values, allowing the possibility to give any desired shape to
the route in 2D. Additionally, the vertical part of the route is determined
by a minimum and a maximum slope, to which level �ights can be added in
order to comply with operational constraints or to avoid obstacles. Some of
the constraints, such as the obstacle avoidance, are relaxed and integrated
into the objective function. The routes are generated by decreasing order of
tra�c �ow. In order to manage their merging together, the process works as
follows: the �rst route is created, going from the runway to its ending point.
Then, the second route connects to the �rst one on a point chosen by the
SA. The third route connects on one of the previous two on another chosen
point, and so on. Once the solution is generated, a neighboring solution is
created, by altering the initial solution, for instance by modifying the shape
of a route, by adding or by removing a level �ight, or by moving a merging
point. One of the solutions is then chosen as the new initial solution, and
the previous steps are taken again, until a stopping criterion is met.
The two approaches were �rst tested on an arti�cial case built in a way that
allows to measure their strengths and weaknesses, as well as their sensitivity

6

to the modeling and algorithmic parameters. These tests were performed in
an incremental way: with or without one, or several obstacles; one or several
routes. These tests allowed to shed some light on some of the limitations
of the �rst approach, based on the dynamic programming principle, that
don't appear with the method based on the simulated annealing, or in a
much lighter form. Therefore, only the latter approach was tested against
the subsequent test cases. These cases correspond to real-life TMAs, taken
from the literature: Stockholm, Paris Charles-de-Gaulle and Zurich. Each
one of these tests helped in measuring and understanding the performances
of our algorithm. The Stockholm instance showed the importance of the way
to construct the graph in the �nal result. The Charles-de-Gaulle instance
allowed to test the limits of the method in a case where many routes, related
to four di�erent runways, were to be designed. The Zurich instance showed
the limits of the algorithm in a case containing many obstacles. Despite
these limitations, these tests showed that our algorithm's performances
are satisfactory, relatively to both state-of-the-art methods and current air
tra�c operations, although there is room for improvement. Our method
should be viewed as a decision-helping tool for expert procedure designers,
that is able to provide a quick �rst solution to a complex route design
problem.

7

Acknowledgments

I would like to thank all the people that helped me, directly or not, in
achieving this work. These years have been the opportunity for me to work
on a topic and in a context that I love, alongside great people. They allowed
me to create an algorithm that I'm proud of, and to travel to countries that
I always dreamt of visiting. For that I am most grateful.
Firstly, my thoughts go to my supervisors, Mohammed Sbihi, Pierre
Maréchal and Daniel Delahaye. These three great minds and kind human
beings guided me through my thesis, with great advice on its scienti�c,
methodological and algorithmic aspects. They have always been helpful and
caring, and it has been a genuine pleasure to share these years of my life
with them. I look forward to our paths crossing again.
I extend my warmest gratitude to the members of my jury: the reviewers
Xavier Prats and Adnan Yassine, and the examiners Valentin Polishchuk and
Fulya Aybek Çetek. They took the time to review my work, and expressed
interest in it which, coming from such experts in their domain, is a great
honor to me. They have been nothing but benevolent, and their insight on
my work helped me explore the topic in a broader way.
I also want to thank CGX Aéro for giving me the opportunity to carry out
this project. It has been the occasion to meet wonderful and caring people,
who are too numerous to be all named here but who will take the credit they
are entitled to. Nevertheless, I would like to stress my thanks to a few people
in particular: Patrice Gonzalez, for always lending an ear to my requests,
suggestions and feelings in the company; Pierre-Maël Mayne, even though
he left, for welcoming me and for getting me acquainted with the company
and with new algorithms in all his sassiness; and Antoine Charpentier for
sharing his insights, and the o�ce with me.
I would also like to thank the other PhD students, with whom I shared this
singular experience. It has been a pleasure exchanging points of view on our
work, but also blowing o� some steam with them. They made this time way
more pleasant than it could have been, had I been on my own. My special
thanks to Romaric, Florian, Sana, Philippe, Gabriel and Jun, for their very
enjoyable company.
My thanks also go to all of the Z building, full of people who are as nice as
they are competent. A special thanks to Serge Roux for his time and help
in all my connectivity endeavors, especially the day of my defense.
I acknowledge the Région Occitanie, that partly funded my research, and
allowed me to travel to present my work abroad.
I thank my friends and family, who have always been supportive, and here

8

for me whenever I needed to. No one could dream of better company than
theirs.
To my son, James, who arrived just in time to see his father become a doctor,
and last on this page but �rst in my heart, to my wife, Nathalie, who stood
by me even in the darkest moments. Words will never be enough to express
how much I love you. Thank you for being the extraordinary person that
I'm lucky enough to spend my life with.

9

Contents

1 Problem context: the framework of procedure design 20

1.1 The current and future state of air tra�c management . . . 20
1.2 Airspaces and �ight structure 22

1.2.1 The di�erent airspaces and their purpose 22
1.2.2 The di�erent steps of a �ight 24

1.2.2.1 The climb 24
1.2.2.2 The cruise 26
1.2.2.3 The landing 26
1.2.2.4 The missed approach 27

1.3 The purpose and design of SIDs and STARs 28
1.3.1 The navigational aids and instruments 28
1.3.2 The di�erent types of procedures 29

1.3.2.1 The conventional procedures 30
1.3.2.2 The RNAV procedures 31
1.3.2.3 The RNP procedures 31
1.3.2.4 A particular structure: the Point Merge . . 32

1.4 Operational context and objective of this thesis 34

2 Literature review 36

2.1 Search space and route representation 36
2.1.1 Triangulations . 37
2.1.2 Natural graph structures 38
2.1.3 Cell decomposition 39

2.2 Resolution methods for path and trajectory �nding problems 41
2.2.1 Exact methods . 42

2.2.1.1 Mathematical interpolations 42
2.2.1.2 Exact path-�nding algorithms 45

2.2.2 Heuristics and meta-heuristics 49
2.3 SID and STAR optimization 54

2.3.1 Automatic Design of Aircraft Arrival Routes with
Limited Turning Angle 54

2.3.2 Optimal Design of SIDs/STARs in Terminal
Maneuvering Area 56

2.4 Conclusion . 59

3 Problem modeling 61

3.1 Input data . 61
3.2 Graph construction and route representation 63

10

3.2.1 TMA representation and route network construction 63
3.2.2 The route representation 64

3.3 Optimization problem formulation 69
3.3.1 Decision variables . 69
3.3.2 Constraints . 70

3.3.2.1 Obstacle avoidance constraint 70
3.3.2.2 Limited turn constraint 71
3.3.2.3 Route separation constraint 71
3.3.2.4 Merge points constraint 72
3.3.2.5 Flight levels constraint 73

3.3.3 Objective function 73
3.3.3.1 The route length 73
3.3.3.2 The graph weight 73
3.3.3.3 The noise abatement 74
3.3.3.4 The complete optimization problem 75

4 Resolution approach 77

4.1 The dynamic programming principle 77
4.1.1 Modeling of the optimal SID/STAR design problem

as an optimal shortest constrained path 78
4.1.2 Complexity analysis 81

4.1.2.1 Spatial complexity 81
4.1.2.2 Time complexity 82

4.1.3 Dynamic programming based heuristic for designing
one route . 83
4.1.3.1 Without preprocessing 83

4.1.4 With preprocessing: imposing boundary values for the
minimum and maximum altitude 86

4.1.5 Heuristic for designing several routes 91
4.1.6 Motivations for a metaheuristic based approach . . . 92

4.2 The Simulated Annealing algorithm for the SID/STAR design
problem . 95

4.3 Generating one route on the graph: the modi�ed Bellman
algorithm . 97
4.3.1 The adaptation of the Bellman-Ford algorithm to our

problem . 98
4.3.2 The management of the edges' weight 103

4.4 The design of several routes with our algorithm 106
4.4.1 Choosing the merge layers 107
4.4.2 Generating a neighbor decision in the SA 110
4.4.3 Changing the level �ights 113
4.4.4 Changing the connection of a route 114

4.5 Solution evaluation . 119

5 Simulation results 124

5.1 Experimental setup . 124
5.1.1 Introduction of the test cases 124

5.1.1.1 The arti�cial instance 124

11

5.1.1.2 The Stockholm instance 125
5.1.1.3 The Paris Charles-de-Gaulle instance 125
5.1.1.4 The Zurich instance 125

5.1.2 Measuring the test results 125
5.1.3 The parameters used for the SA 126

5.2 The arti�cial instance . 126
5.2.1 The dynamic programming based approach 129

5.2.1.1 Designing one route 129
5.2.1.2 Designing several routes 130

5.2.2 The Simulated Annealing based approach 132
5.2.2.1 One runway 133

5.2.2.1.1 One route design and one obstacle 133
5.2.2.1.2 Six routes design with all obstacles 137

5.2.2.2 The arti�cial instance with two runways . . 141
5.2.2.2.1 The arti�cial case: two runways

with circular layers 141
5.2.2.2.2 The arti�cial case: two runways

with square layers 143
5.3 The Stockholm instance . 145

5.3.1 Test case 1: only two cities taken into account 148
5.3.2 Test case 2: all cities taken into account 148
5.3.3 Test case 3: circular layers 150

5.4 The Paris Charles-de-Gaulle instance 151
5.4.1 The Paris CDG case: a comparison with the literature 156

5.4.1.1 The CDG instance: square layers 157
5.4.1.2 The CDG instance: circular layers 159

5.4.2 The Paris CDG case: adding a forbidden zone 159
5.4.3 Comparative results for the CDG instance 165

5.5 The Zurich instance . 166
5.5.1 The Zurich instance with square layers 170
5.5.2 The Zurich instance with circular layers 172
5.5.3 Comparative results and discussion on the Zurich

instance . 176
5.6 General discussion on the results 177

6 Conclusions and perspectives 180

6.1 Review of the work . 180
6.2 Discussion and perspectives 181

6.2.1 Technical perspectives 181
6.2.1.1 Carry out an extensive study on the choice

for the layers 182
6.2.1.2 Broaden the tests to the case of a metroplex 182

6.2.2 Methodological (conceptual) perspectives 183
6.2.2.1 Multiobjective approach 183
6.2.2.2 New route shape modeling 183

Bibliography 186

12

Nomenclature

• P 1, ...PNP the entry or exit points of the TMA

• F i the expected tra�c �ow on the entry/exit point P i

• Ri an air route connecting P i to the runway

• γih the projection of route Ri on the horizontal plan

• γiv the vertical pro�le of route Ri

• zi(s), zi(s) the minimal and maximal altitudes that an aircraft can
attain at distance s from the starting point of route Ri

• C the center : the starting point of the SIDs or ending point of the
STARs for one graph structure

• L1, . . .LNL
the layers for a given graph structure

• N the number of vertices on one layer

• V the set of all vertices of a given graph

• Vi = {vi,j, j ∈ {1, . . . N}} the set of vertices on layer Li

• E the set of all edges of a given graph

• eij,k the edge that connects vi,j and vi+1,k

• e a random edge, and l(e) the length of e

• γh[i] the edge eij,k belonging to the horizontal pro�le γh

• γh[li, lj] the portion of the horizontal pro�le that starts at layer Li and
ends at layer Lj

• Lij = max
{
l ∈ {1, ..., NL }

∣∣ γih[1, l] = γjh[1, l]
}

the merge layer
between two routes i and j

• l(γh) :=
1∫
0

‖γ′h(s)‖ ds the total length of γh

• d(t) =
t∫

0

‖γ′h(s)‖ ds the curvilinear abscissa at t ∈ [0, 1]

• 0 = τ1 < τ2 < ... < τNL
= 1, such that γh([τm, τn]) = γh[m,n]

13

• êi−1
j,k e

i
k,l the angle formed by the edges ei−1

j,k and eik,l. It can also be

denoted ̂vi−1
j vikv

i+1
l

• O the set of all obstacles

• o = (Bo, lo, uo) ∈ O an obstacle given by its base polygon Bo, lower
and higher altitudes (resp. lo and uo)

• T the set of all cities

• τ = (Bτ , ητ) ∈ T a city given by its location in the plane as a polygon
Bτ , and the density function ητ : Bτ → R+ that gives the population
density at a given point in the city

• αmin and αmax the minimum and maximum climb slopes

• dh and dv respectively the minimum horizontal and vertical distances
to keep with an obstacle or another route

• dm the minimum distance to keep between two merge points

• θmin the minimum angle between two routes at a merge point

• θmax the maximum authorized turn angle

• nLFmax the maximum number of level �ights

• lLFmin, l
LF
max the minimum and maximum length of a level �ight

14

Glossary

• ADS-B: Automatic Dependent Surveillance - Broadcast

• ANS: Air Navigation Services

• ATC: Air Tra�c Control

• ASM: AirSpace Management

• ATM: Air Tra�c Management

• AWY: AirWaY

• B&B: Branch & Bound

• CAT: CATegory

• CCO: Continuous Climb Operations

• CDG: Charles-de-Gaulle airport

• CDO: Continuous Descent Operations

• CFL: Cleared Flight Level

• CPDLC: Controller-Pilot Data Link Communications

• CTA: ConTrolled Airspace

• CTR: Controlled Tra�c Region

• DME: Distance Measuring Equipment

• FAF: Final Approach Fix

• FAP: Final Approach Point

• FIR: Flight Information Region

• FMM: Fast Marching Method

• FMS: Flight Management System

• GA: Genetic Algorithm

• GNSS: Global Navigation Satellite System

15

• GPS: Global Positioning System

• IAF: Initial Approach Fix

• ICAO: International Civil Aviation Organization

• ILS: Instrument Landing System

• IMU: Inertial Measurement Unit

• INS: Inertial Navigation System

• IP: Integer Programming

• LOC: LOCalizer

• MAPt: Missed Approach Point

• MILP: Mixed Integer Linear Programming

• NDB: Navigation DataBase or Non-Directional Beacon

• PANS: Procedures for Air Navigation Services

• PBN: Performance Based Navigation

• PRM: Probabilistic Roadmap Planner

• RNAV: aRea NAVigation

• RNP: Required Navigation Performance

• RNP-AR: RNP-Authorization Required

• RRT: Rapidly exploring Random Tree

• RVR: Runway Visual Range

• RWY: RunWaY

• SA: Simulated Annealing

• SESAR: Single European Sky ATM Research

• SID: Standard Instrument Departure

• STAR: Standard Terminal Arrival Route

• TACAN: TACtical Air Navigation system

• TCA: Terminal Control Area

• TLS: Transponder Landing System

• TMA: Terminal Maneuvering Area

• TOC: Top Of Climb

16

• TOD: Top Of Descent

• TSP: Traveling Salesman Problem

• UAV: Unmanned Air Vehicle

• VOR: VHF Omnidirectional Range

• UIR: Upper Information Region

17

Introduction

Air transportation is one of today's quickest ways to travel. The �rst
commercial �ight took place on January 1st, 1914 and paved the way for
air travel as we know it today. The sector plays an important role in the
global economy: in 2017, 4.1 billion passengers traveled by air on 45,091
routes globally, generating $2.7 trillion (3.6% of the world's global economic
activity) and supporting over 65 million jobs worldwide [1]. The sector is
growing every year, and forecasts see the number of �ights in Europe increase
by 53% between 2017 and 2040 [2]. Air transportation also plays a major
role in the social landscape worldwide. As an example, in 2017, 57% of
international tourists traveled by air [1].
The importance and size of global air tra�c are expected to grow in the next
20 years according to EUROCONTROL's forecasts [3]. Over that period,
tra�c would increase by an average of 1.9% per year, and according to
Boeing's forecasts (in [4]), the major growth should take place in China and
regions like South and Southeast Asia as these countries develop quickly and
more of their people begin to travel. Such an increase in demand is bound to
bring new and complex challenges. Among them, the need to reduce carbon
emissions, as there is more and more demand for greener transportation. In
2017, 859 million tonnes of CO2 were emitted by airlines, 2% of the global
man-made emissions [1]. Companies and governments have already taken
action on the matter, and CO2 emissions per passenger per kilometer have
been halved since 1990 [1].
Another challenge to face is the already preoccupying congestion of major
airports, due to a demand in air or ground movements higher than what
the network is able to absorb. London - Heathrow is a good example, as it
operates at 99% capacity, while other major European airports are around
65/70% [3]. As global tra�c will very likely continue to grow, more and more
airports will have to deal with congestion. According to EUROCONTROL's
forecasts, 17 European countries could face a demand higher than their
capacity in 2040, in the most likely scenario [3]. This increase in demand
will lead to more delays, especially those related to Air Tra�c Flow and
Capacity Management (ATFCM), which could be multiplied by 5 in average
over this period. In order to manage �ights in the best possible way to
reduce delays, several elements are necessary, like e�cient infrastructures
and sectoring of the airspace. In order to face these challenges, new systems
are being developed, encompassing all aspects of air transportation. These
systems are developed under the name SESAR (Single European Sky ATM
Research) in Europe [5], and NextGen in the USA [6]

18

The airspace surrounding the airport is called Terminal Maneuvering Area
(TMA). It is designed to handle the departing or arriving tra�c and plays
a critical role in ATFCM. Thus, increasing the capacity of the TMA is
an essential step towards a sustainable growth of air tra�c. In order to
guide the aircraft from the airport to the en-route sector, or the other way
around, the TMA contains pre-de�ned air routes: the procedures. They
are respectively called Standard Instrument Departures (SID) and Standard
Terminal Arrival Routes (STAR) and are created manually by experts as
of today. This work requires to take many constraints into account, often
making it impossible for humans to optimize any criterion in the design. For
instance, creating short routes could help reduce the fuel consumption and
CO2 emissions, making the topic a matter of interest, both economically
and environmentally.
In this work, the design of SIDs and STARs is addressed in an automatic and
optimal way in regard of the number of movements that can be undertaken
in a given period of time. Several constraints are taken into account, such
as ground obstacles, route separation, controllers' workload, military zones
or cities. It features an adaptation of the Bellman-Ford algorithm to the
problem, used in combination with the Simulated Annealing metaheuristic.
The method presented in this document allows to take a certain number
of operational constraints into account while providing an operationally
e�cient way to manage the merging points between the routes, while keeping
a relatively low computation time in regard of the context.
This thesis is divided into �ve chapters. In chapter 1, the context of the study
is given. We introduce the structure of the airspace and the tools used to
achieve a safe and e�cient air tra�c management; the procedures are also
introduced. In chapter 2, we present a review of the literature, on general
methods for paths and trajectory optimization, but also on more speci�c
methods used in the context of air transportation. We put an emphasis
on a speci�c work that serves as a basis of comparison later in the thesis.
Chapter 3 presents the way that was chosen to model the problem as an
optimization problem. We give the way in which we model the search space
as well as the constraints and the objective function. In chapter 4, the
resolution approach that we developed is introduced in details. We explain
the way in which the constraints and objective were taken into account,
as well as some algorithmic procedures and the limitations associated to
them. Finally, in chapter 5, the results obtained with our method are
presented. Four instances were chosen to conduct the tests, three of them
taken from the literature. A comparison with these results allow to estimate
the achievements and margin for progress of our work. The analysis of the
results of the tests allow to have a better understanding of the underlying
mechanisms of our method.

19

Chapter 1

Problem context: the framework

of procedure design

In this chapter we de�ne and explain the current state of Air Tra�c
Management (ATM): the stages that allow for an e�cient management of the
�ights in due time, the various steps of a typical �ight, and the speci�cities
of each step, as well as the regulatory framework in air tra�c. We also
introduce some of the tools used in air navigation and the ongoing changes
made to these equipments. Finally, we speci�cally present the object of this
thesis, the procedures: what they and their purpose are, and the critical
aspects of their design.

1.1 The current and future state of air tra�c

management

ATM is a large �eld that encompasses all systems (humans and equipment)
that allow aircraft to take o� from an airport, travel to their destination and
land safely. According to the Commission of the European Communities [7],
it covers three main services:

• Air Tra�c Control (ATC): its purpose is to ensure su�cient separation
between aircraft in the air and on the ground, and between aircraft
and ground obstacles so as to avoid collisions. This has to be done in
a way that keeps an orderly �ow of air tra�c.

• Air Tra�c Flow Management (ATFM): its purpose is to regulate the
�ow of aircraft to avoid congestion in busy sectors. It aims at matching
in the best possible way the supply to the demand in terms of airspace
capacity by anticipating the needs in controllers.

• AirSpace Management (ASM): its purpose is to de�ne and allocate the
airspace sectors as e�ciently as possible between the di�erent actors
(civil and military).

These operations take place at di�erent moments in time. For instance, the
design of the airspace sectors has to be done before the scheduled �ights

20

take place. To distinguish between these temporal milestones, three levels
of planning are in use in the aviation sector:

• The strategic level encompasses all operations that must be done as
early as up to one year before the actual �ights, and until a few
weeks before them. Such operations can be to build an estimate of
the demand, congestion or other indicators, or to design the nominal
routes that aircraft will follow on a daily basis.

• The pre-tactical level encompasses all operations that take place
between a few weeks and one day before the actual �ights. In this
phase, more precise data is collected, such as actual demand in air
tra�c or weather, in order to adjust the work previously done at the
strategic level.

• The tactical level encompasses all operations that take place the day
of the �ights: tra�c control, possible re-routing, departure time slots
allocations and so on.

In order to manage the tra�c, especially at the tactical level, various
equipments and systems are used and regularly improved, such as:

• The Flight Management system (FMS). Embedded in (almost) all
aircraft, its purpose is to allow the on-board sta� to pilot e�ciently.
It gathers all the relevant information for the �ight, such as the �ight
plan, the trajectory to follow and a way to transfer it to an automatic
pilot, a Navigation DataBase (NDB), which usually contains:

� the airways;

� the waypoints, which will be detailed later in this document;

� the airports and runways;

� the departure and arrival routes (SIDs and STARs), which will
be explained later in this document.

• The surveillance system, which gathers all the technologies used to
locate aircraft and monitor tra�c. As of today, this is done with the
use of di�erent kinds of radars. The primary radar only detects the
presence of objects in its surrounding airspace, and works on its own.
The secondary radar establishes a connection between the ground and
the aircraft, and allows the transfer of more information depending on
the used mode. The mode of the radar determines the nature of the
exchanged information. The mode A transmits the aircraft's identi�er.
The mode C, as the mode A, transmits the aircraft's identi�er, but
also its altitude. Finally, the mode S allows to transfer any kind of
information, such as the aircraft's identi�er, altitude, heading, speed
etc. The information is then displayed to the controllers.

• The communication system between pilots and controllers. Currently
almost exclusively done by voice over radio, it could be improved by
exchanging automatic messages with the ground. This solution, called

21

Controller-pilot data link communications (CPDLC), is already in use
in several control centers.

These systems and technologies are bound to be improved, since they are
insu�cient to face the upcoming increase in tra�c demand. Therefore,
new projects are emerging, such as the NextGen project in the USA or
SESAR (Single European Sky ATM Research) in Europe. These projects
aim at improving the capabilities of ATM. For instance, instead of using
radars to locate and acquire data about �ights, the information could be
transmitted directly by the aircraft with the ADS-B (Automatic Dependent
Surveillance - Broadcast) technology, which uses a GPS positioning and is
therefore more accurate and reliable than the technology currently in use.
Signi�cant improvements are also made in the �eld of air navigation with
the introduction of Performance Based Navigation (PBN), which will be
detailed later.

1.2 Airspaces and �ight structure

In order to distribute the tra�c in the most e�cient way, the airspace
has to be segregated into di�erent sectors. In this section, we are going
to review the di�erent types of sectors and their properties, as well as the
standard progress of a �ight.

1.2.1 The di�erent airspaces and their purpose

In order to achieve e�cient aircraft directing and separation, the airspace is
generally divided into di�erent layers:

• The ground layer at an airport is a layer on its own. It is not usually
referred to as an airspace, but it still has dedicated controllers on a
large majority of airports. Its purpose is to allow controllers to handle
tra�c that go back and forth the gates and runways in a safe and
e�cient way.

• The control zone, or Controlled Tra�c Region (CTR) is a controlled
portion of airspace that extends from the ground to a speci�ed height.
It is designed to protect the tra�c that take o� and land onto the
airport.

• The control area (CTA) is a volume of controlled airspace that exists
near an airport, with speci�ed nonzero lower and upper limits. Usually,
a CTA is located directly above one or several CTR (when, for
example, several airports are close to one another), but exceptions
exist. It is designed to provide a controlled portion of airspace that
makes a link between the upper limit of a CTR and the airways.

• The Terminal Maneuvering Area (TMA), or Terminal Control Area
(TCA) in the USA and Canada is a term designating a particular type

22

of CTA, which surrounds large airports (it often covers several airports
close to each other). Usually, this part of airspace is divided into
several cylindrical layers of increasing radii, forming an "upside down
wedding cake" above the CTRs (see �g 1.1). This type of airspace is
designed to handle heavy tra�c between the upper limit of the CTRs
and the airways.

• The airways, or air routes, are de�ned corridors that connect two
geographical points, identi�ed either by satellite coordinates or by
navaids (physical devices on the ground that aircraft can detect and
�y to). They have a speci�ed altitude and width and allow aircraft to
transit.

• The Flight Information Region (FIR) is a portion of airspace in which a
�ight information service and an alerting service are provided. It is the
largest regular division of airspace, and can cover an entire country.
Sometimes, a FIR is divided into two portions. In these cases, the
upper portion is called Upper Information Region (UIR).

Figure 1.1 � The simpli�ed representation of a TMA.

These regions of airspace are often divided into categories, identi�ed with
letters, according to the requirements an aircraft and its crew must meet to
be authorized to enter them. Some portions of airspace are not controlled
at all. Finally, some portions of airspace can be temporarily or permanently
restricted. These are regions such as:

23

• Restricted areas, in which military activities can be conducted
(missiles, artillery �ring...). These areas may be �own across when
they are inactive, if a clearance has been issued by the controllers.
They are identi�ed on the charts by the letter R.

• Warning areas, that are roughly the same as restricted areas. They
exist in the USA and extend to 3NM outwards the coasts. They are
identi�ed by the letter W.

• Prohibited areas, in which all �ights are prohibited as a matter of
national security. They are often located above major cities or sensitive
ground areas. They are identi�ed with the letter P.

• National security areas, which are located above areas where security
and safety of ground facilities are necessary. It is required to
voluntarily avoid these areas. They are not identi�ed with a speci�c
letter.

• Temporarily restricted areas, which may be used to clear the airspace
to allow important or urgent tra�c, such as rescue aircraft, to transit
quickly.

The sectoring of the airspace is necessary to divide the workload between
controllers and thus achieve a safe and e�cient transit of all aircraft.

1.2.2 The di�erent steps of a �ight

A typical �ight is divided into three main steps: the climb, the cruise and
the descent. When a problem occurs in the landing phase, a fourth step is
added: the missed approach. Here, we explain in details how these steps
are performed and when. Figure 1.2 provides an illustration of the di�erent
steps of a �ight.

Figure 1.2 � The di�erent steps of a �ight (taken from [8]).

1.2.2.1 The climb

This phase is the �rst to take place. In order to take o�, a strict procedure
must be observed:

• The push back phase: when the plane is �nished boarding, the pilot
asks the ground controller for a clearance to be pushed back from its

24

departure gate. A departure time slot is issued for this aircraft, and
the pilot completes the checklist before asking a clearance for taxi.

• The taxi phase: it is one of the most complex phases to handle for a
controller on large airports. It consists in "driving" the plane from a
starting point to an ending point on the ground, by using the taxiways.
In major airports, it is one of the main causes of congestion, since
many aircraft need to transit, mostly between gates and runways, and
the taxiways network is not always able to absorb all the demand.
Some research is conducted to improve the path �nding and reduce
congestion on taxiways ([9] [10]).

• The take-o� phase: once an aircraft has taxied to its assigned holding
point, which is located next to the runway (note that a holding point
can also be encountered at each road crossing) (see �g. 1.3), the pilot
can ask for a take-o� clearance. When it is granted, the pilot is
authorized to go onto the runway and take o�. During this phase,
several moments are distinguished (see �g. 1.4).

Figure 1.3 � Two planes waiting at a holding point.

� The plane accelerates until it reaches a speed V1. Past this point,
it is no longer safe to abort the take-o�.

� The plane keeps accelerating until it reaches a speed VR, the
rotation speed, at which the nose is lifted from the ground.

� The plane reaches the speed VLOF , the lift-o� speed, at which it
no longer touches the ground.

25

� The plane reaches the speed V2, which is the minimum speed at
which the plane can safely climb with one engine inoperative.

Figure 1.4 � The phases of take-o� (taken from [11]).

• The climb phase: once the aircraft has taken o�, it has to reach the
en-route sector. It is almost always done by following pre-designed
air routes called Standard Instrument Departures (SID) through the
TMA. The structure and properties of a SID will be detailed in the
next section.

1.2.2.2 The cruise

In this phase, the aircraft has passed its Top Of Climb (TOC) point, at which
it stabilized its altitude, and travels towards its destination. The routes
are straighter in average than in the previous phase, and the airspace less
congested. However, with the increasing growth of air tra�c, this situation
is bound to change. The main di�culty for controllers in this phase is
to anticipate and resolve con�icts between crossing aircraft. The subject
is widely researched, and many works have already been published on the
matter, with di�erent ways to avoid con�icts: change the heading of the
aircraft [12] [13], its altitude [14] [15], its speed [16] or holding it on the
ground even before it takes o� [12] [17].

1.2.2.3 The landing

In this phase, the aircraft is close enough to its destination to initiate a
descent. After obtaining a clearance from the controllers, the pilot leaves
the airway and enters the TMA of the destination airport. As of today,
similarly to the climb phase, the descent is carried out in several phases.
Usually, there are three of them. The �rst phase is the descent, in which the
aircraft starts to lose altitude (this point is called the Top Of Descent (TOD)
and reaches a �rst control point called the Initial Approach Fix (IAF). This
phase may include holding paths when the airspace is congested. The second
phase is the approach. Here, the aircraft is ready to land and travels from the
IAF to the last control point before the runway, denominated Final Approach
Fix (FAF) or Final Approach Point (FAP). In this phase, a plane will have
its �aps out and will deploy the landing gear. The �nal step is the landing

26

on the runway and taxi to the arrival gate. Current works aim at reducing
or even suppressing the need for holdings, level �ights, or radar vectoring
(i.e. when a controller temporarily deviates an aircraft from its scheduled
route in order to avoid collisions). When arriving at large airports, aircraft
usually follow pre-designed air routes through the TMA. Such routes are
called Standard Terminal Arrival Routes (STAR). Note that, depending on
certain parameters (such as the weather and the aircraft capabilities), the
TOD can be located well after the beginning of the STAR, which means that
an aircraft may engage in a STAR while still being in its cruise phase. The
characteristics and purpose of a STAR will be detailed in the next section.
Once it has reached the end of the STAR and has been cleared to land,
the aircraft may �nish its descent onto the runway and taxi to its assigned
gate. In order to land safely, the pilot must ensure that all conditions are
met. When it is not the case, they must abort the landing. This is called
a missed approach, that will be detailed in the next paragraph. The last
possible moment for a pilot to decide whether to land or not is directly
related to the decision height and the Runway Visual Range (RVR), which
is the distance over which a pilot is able to identify the center line of the
runway. These values depend on three parameters:
• The equipment available at the airport;

• The equipment of the aircraft;

• The training of the pilots.

Depending on them, the options for precision landing are classi�ed into
categories :
• Category I: The decision height is 200ft (60m), with an RVR of 550m
(1800ft);

• Category II: The decision heigth is 100ft (30m), with an RVR of 350m
(1200ft);

• Category III A: The decision heigth is 100ft (30m), with an RVR of
200m (700ft);

• Category III B: The decision heigth is 50ft (15m), with an RVR of
50m (150ft);

• Category III C: There are no limits, the pilot can land without any
visibility.

1.2.2.4 The missed approach

Under certain circumstances, an aircraft that was cleared to land may have
to abort the landing and re-take o�. This situation can be caused by various
factors: debris or another aircraft on the runway, insu�cient visibility at the
decision height (which is the minimum height at which a pilot can decide
whether to land or not, and depends on the category of landing) or too much

27

wind too close to the ground... Depending on the cause, the aircraft either
attempts to land another time, or is directed towards another airport (in
the case of persisting bad weather, for instance).

1.3 The purpose and design of SIDs and

STARs

To be able to handle safely heavy tra�c departing from and arriving to
large airports, a speci�c type of air routes has been created: the procedures.
They indicate the path that an aircraft should take in order to proceed
from the runway to the en-route airspace (or the other way around). The
general regulatory aspects for air tra�c and management are the topic of
one of the International Civil Aviation Organization (ICAO)'s Annexes.
The procedures to follow for a given topic in aviation are gathered in the
Procedures for Air Navigation Services (PANS) documents, such as [18]. In
this section, we are going to describe how the procedures are made, and for
which types of aircraft.

1.3.1 The navigational aids and instruments

In order to design a procedure, one must know beforehand the type of aircraft
that will use it, as well as the capabilities of the airport under consideration
with regard to its take-o� and landing equipment. Here, a non-exhaustive
list of equipments is presented, along with their purpose and performances.

• The Distance Measuring Equipment (DME) is an equipment that
measures the distance between an aircraft and a ground station by
using radio navigation technology. It works by timing propagation
delays of radio signals. In order to work, there must not be any
obstacle on the line of visibility from the station to the aircraft (so
it cannot detect, for instance, aircraft below the horizon, or behind a
mountain). This equipment is often used with an azimuth guidance
system, like a VOR or a TACAN.

• The VHF Omnidirectional Range (VOR) is a short-range radio
navigation system that allows aircraft with an adequate receptor to
know their bearing (angle) relatively to the station. It works by
emitting two signals: a "master" signal as reference, and another signal
whose phase di�ers from the master's by the value of the angle.

• The Tactical Air Navigation System (TACAN) is equivalent to the
combination of a VOR and a DME, with more accuracy. It is mostly
used by the military, but can also be used by civil aircraft.

• The Non-Directional Beacon (NDB) is a radio transmitter that has the
same purpose than a VOR, which is to provide an aircraft's bearing.
It works by emitting a signal that is received by the aircraft, that in
turn analyzes it to determine the direction in which it is the strongest.

28

This direction is that of the NDB. In opposition to the VOR, it follows
the curvature of the earth, so it can be perceived from a longer range
at a lower altitude. It is however sensitive to atmospheric conditions,
mountains or coast re�ection.

• The Localizer (LOC, or LLZ) is a part of the Instrument Landing
System (ILS) equipment of an airport. Located beyond the runway, it
provides horizontal guidance to the aircraft and allows them to stay
in its axis by giving the horizontal deviation from it.

• The Glide is also part of an airport's ILS. It is the vertical pendant of
the Localizer, as it provides the optimal slope of descent to the runway
to the aircraft.

• The Transponder Landing System (TLS) is a precision landing system
that can be implanted where a LOC/Glide equipment would be
ine�ective, for example in uneven terrains (mountains) or terrains with
large obstacles nearby (buildings, for example). It works by using
three antennas that interrogate the aircraft's transponder and uses
the information to perform a trilateration.

• The Inertial Navigation System (INS), sometimes referred to as
Inertial Measurement Unit (IMU), is an embedded system that allows
an aircraft to compute its position, speed and orientation without any
exterior equipment, by referring to the aircraft's last known parameters
and by using a computer, accelerometers and gyroscopes.

• A Global Navigation Satellite System (GNSS), such as the GPS
(from the USA), GLONASS (from Russia), Galileo (from Europe) or
Beidou-2 (from China), is a satellite-based radio navigation system
that uses trilateration to provide its position, speed and time to a
receiver with a great accuracy. For the system to work, the receiver
must be "visible" from at least four satellites.

As we established, these equipments have varying accuracies, and thus
cannot be all used in the same way.

1.3.2 The di�erent types of procedures

In the air transportation domain, the procedure design is a highly regulated
topic, that is subject to many changes and improvements. Due to the
complexity of the task, designing the procedures is a task entirely handled
by human experts by hand. In the following paragraphs, we will go over
the precise de�nition of SIDs and STARs, and the di�erent possibilities that
exist to design them.
A Standard Instrument Departure (SID) is a procedure, a plan of
operations that an aircraft equipped with IFR (Instrument Flight Rules,
which means that the aircraft can be piloted by relying on the instruments)
has to follow in order to depart from an airport. It begins right after
the take-o� and leads to the en-route sector. The pilot must obtain a

29

clearance from the controllers to �y it. A Standard Terminal Arrival

Route (STAR) is the landing pendant of a SID. It usually connects the
end of the en-route sector to the IAF, which marks the transition to the
approach control area, or sometimes all the way to the FAF, the last point
before the runway's threshold. A procedure usually contains information
and requirements about altitude at certain points. They usually include
one or several level �ights. However, a possible way to �y the procedures
is to perform Continuous Climb Operations (CCO) and Continuous

Descent Operations (CDO), which allow to climb and descend without
the need for an intermediary �ight at a constant altitude (see �g. 1.5). This
improvement allows to save fuel as well as to improve the noise abatement
in the vicinity of airports. As these operations require additional margins,
they tend to not be used in heavy tra�c conditions. It can be seen that the

Figure 1.5 � The illustration of Continuous Descent Operations.

SID and STAR design falls into the �eld of path planning, which is not to
be mistaken with trajectory planning. This di�erence will be explained in
the next chapter.

1.3.2.1 The conventional procedures

The conventional procedures rely solely on the ground-based equipment.
They are often denominated by the equipment they use. Therefore, the
type of a STAR could be VOR/DME, or DME/DME for instance. These
procedures are constructed by using segments between the successive devices
on the ground. Their precision is relatively low compared to more recent
technologies. Typically, a DME has a minimum error range of ± 400m,
and increases with the distance to it. As a result, wide additional margins
must be taken when designing a conventional procedure in order to ensure
the safety of the aircraft. The use of the airspace is then greatly limited.
Another consequence is that the aircraft �ying conventional procedures are
very likely to be scattered around the nominal path, since their equipment
lacks accuracy. This often leads the controllers to give heading directions to
manage the tra�c, and creates congestion.

30

1.3.2.2 The RNAV procedures

The Area Navigation (RNAV) belongs to the wider category of the
Performance Based Navigation (PBN). As opposed to conventional
procedures, which are de�ned by the equipment used, PBN is de�ned
based on its operational requirements. Therefore, as long as the required
performances are met, an aircraft �ying with PBN can rely on existing
equipment, such as VOR or DME. The RNAV subcategory of PBN is
characterized by the ability to �y any path, de�ned by waypoints, which
are geographic �xes such as ground navaids but also points given in lat/long
coordinates, for instance (see �g 1.6). Various denominations are in use

Figure 1.6 � The illustration of waypoints.

regarding RNAV, each corresponding to the degree of accuracy available.
More speci�cally, it gives information about the lateral accuracy that the
system is expected to achieve during at least 95% of the �ight. Thus, a
system quali�ed for "RNAV 1", for instance, will be able to remain within a
2NM-wide path centered on the desired track (1NM on each side) for at least
95% of the �ight. The usual systems are RNAV 10 for the en-route part of
the �ight, and RNAV 5, 2 or 1 for the terminal area. The RNAV-quali�ed
aircraft must also comply with requirements of continuity (the service must
not be interrupted during the �ight).

1.3.2.3 The RNP procedures

The Required Navigation Performance (RNP), like the RNAV, belongs to
the PBN category. It was �rst introduced by the ICAO in 1998 in the
reference document 9613 [19]. As RNAV, it is referred to as "RNP X"
where X is the acceptable lateral error. The major di�erence with RNAV
is that RNP is required to provide integrity (the information provided by
the equipment must be reliable) by on-board performance monitoring and
alerting. This component must be able to detect a failure that prevents the
aircraft to remain within two times the RNP value, or if the probability of
this happening exceeds 10−5.
A speci�c type of RNP is de�ned, the RNP AR, for Authorization
Required [20]. This type of navigation is even more precise than standard
RNP, with RNP values going from 0.3 to 0.1. They are used only for the
approach part of a �ight, and require a dedicated authorization given by the
corresponding safety authority. These enhanced capabilities allow a wider
range of maneuvers in the vicinity of the runway when landing. For instance,

31

with RNP AR, it is possible to go from the FAP to the decision altitude with
a curve instead of a segment in the axis of the runway. Figure 1.7 provides
an illustration of the comparison between conventional, RNAV and RNP
capabilities.
In all cases, procedures must include su�cient margins on each side

Figure 1.7 � The comparison between conventional, RNAV and RNP
procedures (taken from [21]).

of the desired path, and between the path and the terrain or buildings
in altitude. Each type of procedure has its speci�cities, and each one
of them has been covered in a dedicated document from the ICAO.
Since conventional procedures are quali�ed by the equipment they use
(and not their performances), a manual is issued for each combination of
equipments: VOR/DME, DME/DME... (example in [22]). The way to
build these protection areas will not be addressed in this thesis due to
the complexity and speci�city of the topic. The reader can refer to the
o�cial documentation (Annexes and PANS documents) for further reading.
An example of published procedure for Paris Charles-de-Gaulle airport is
provided in �g. 1.8.

1.3.2.4 A particular structure: the Point Merge

In order to decrease congestion, a new concept has emerged, �rst introduced
by EUROCONTROL in 2006 [23]: the point merge. In the vicinity of large
airports, there are multiple STARs to merge together and controllers must
often temporarily deviate the aircraft from their route to manage their
sequencing (this is called vectoring). They can also make them gain or
reduce speed, although vectoring is preferred. To alleviate the workload
that this situation generates for the controllers, the point merge works as
follows (see �g 1.9):

32

Figure 1.8 � An example of published procedure at CDG airport.

• A waypoint is set as the point merge. It is the point where the two
STARs are supposed to merge initially.

• A cone is created, starting from the point merge and expanding
towards the beginning of the STARs.

• Layers are created inside the cone. They are portions of circles centered
on the point merge, set at di�erent distances from it. Each distance
corresponds to a level of congestion: the higher the congestion, the
greater the distance.

• When arriving to the speci�ed layer while �ying the STAR, the
aircraft automatically set their route so as to remain on the layer until
instructed otherwise.

• When the controller instructs it, the aircraft may reset its route to �y
directly to the point merge.

33

This method allows for a naturally ordered sequencing, way easier to manage
than a vectoring situation, and has already been implemented in 25 locations
around the world. The design of departure and arrival procedures is a

Figure 1.9 � The illustration of the Point Merge concept [24].

very complex topic, due to the number and speci�city of the constraints,
especially the design of protection areas around the paths. This speci�city
causes each case to be di�erent and generic approaches to be very likely to
fail. The method presented in this work allows for exploring a large number
of possible designs. By doing so, it provides the possibility to introduce
optimization criteria, which is not easy when the design is done by hand.
Our method is designed to remain as close as possible to the way in which
the design is handled as of today.

1.4 Operational context and objective of this

thesis

This thesis is sponsored by CGX Aero (https://cgx-group.com/fr/
index.htm) as one of their research projects. CGX is a company providing
solutions for airport and procedure design as part of their activities. In this
context, the aim of our work is to provide a tool that is capable of designing
SIDs and STARs in an automatic way, including in complex situations (for
instance: with many routes to design, or in a complex terrain). The result
of our solution should be as close as possible to the design that an expert
could make. This would allow the expert procedure designers to be given a
�rst solution to work on and improve if needed in a very short time.
At CGX, a tool for checking the compliance of a given procedure with
the separation and route protection rules is available: GéoTITAN R©.
This software allows to draw a procedure in a given terrain and test its
compliance with the constraints. An example is provided in �g. 1.10. As our

34

https://cgx-group.com/fr/index.htm
https://cgx-group.com/fr/index.htm

Figure 1.10 � The GéoTITAN R© software.

work aims at designing procedures, its output could be interfaced with the
input of GéoTITAN R© to proceed with a thorough evaluation of the solution.

The objective of this thesis is to provide a method to automatically design
SIDs and STARs by optimizing various criteria while taking into account
the operational constraints, with the aim of improving on the drawbacks of
existing works. Indeed, although the topic of path and trajectory design has
already been widely researched, few works in comparison were dedicated to
the speci�c topic of SID/STAR design. In the next chapter, we present some
methods and algorithms that can be applied to solve the general problem
of path and trajectory �nding, but also some works that tackle the problem
of automatic design of SIDs and STARs. Their speci�cities, advantages and
limitations are emphasized.

35

Chapter 2

Literature review

In this chapter we present the work that has already been done on the topic
of automatic procedure design, and more generally the works on automatic
path or trajectory design. We de�ne paths and trajectories as follows:

• A path is a curve that connects a starting and an ending point while
avoiding static obstacles. The notions of time or speed are not taken
into account, as only static elements are taken under consideration.
As an example, a path can be assimilated to a railway.

• A trajectory is the association of a path and the way to follow it. In
a trajectory �nding problem, dynamic obstacles and speed must be
taken into account. For instance, �ying a plane in the presence of
hazardous weather falls into the trajectory �nding category.

In this thesis, the objective is to design paths, and although the speci�c
topic of automatic procedure design has not yet been extensively explored,
the more general problem of path and trajectory �nding has been a subject
to interest for several decades, particularly in the domain of robotics. In
most of the related works, the search space is taken to be of dimension
two. However, a certain number of works take the third dimension and the
increase in di�culty in processing into account. This chapter is divided
into three parts. In the �rst part, we present the methods relative to the
representation of the search space and of the routes or trajectories. In the
second part, a review of methods for solving a path or trajectory �nding
problem is given. In the last part, we focus on two speci�c SID and STAR
optimization works that were taken as references for the tests in this thesis.

2.1 Search space and route representation

The �rst step in a path or trajectory planning problem is to identify the
form to be given to a route, and therefore the way in which the search space
is to be constructed. This section focuses on the methods used to represent
these elements.

36

2.1.1 Triangulations

A standard way to discretize the space is to perform triangulation. It consists
in partitioning the search space with triangles. In this section, we consider
that the search space is given as the interior of a polygon, in 2D or 3D
depending on the discussed case. Triangulation creates "tiles", thus making
the path �nding problem discrete.
The Delaunay triangulation [25] is probably the most frequently used
method for triangulation, since it veri�es in 2D a certain number of
mathematical properties [26]. Among them, the fact that the circumscribed
circle of each triangle contains only the points of this triangle. This
requirement allows to maximize the minimum angle in each triangle,
which yields a result without any "degenerate" cell (for example �attened
cells). This type of discretization is achievable in a very reasonable time:
O(n log n), where n is the number of points used to describe the search
space [27]. Another advantage of this method is that it is easily translatable
to 3D [26]. It is then referred to as tetrahedralization.
The main drawback of this method is that in certain cases, the result is still
not satisfactory: the shape of the search space makes it impossible to obtain
a decent triangulation, as illustrated by �g. 2.1 where some triangles are too
small, too thin and generally speaking very heterogeneous. This causes the
need for another category of triangulation: the Steiner triangulations. They
consist in adding new points on the border of the search space in order to
obtain a more homogeneous triangulation (see �g. 2.1). The goal is then
to choose the additional points, called Steiner points (as explained in [28]).
The way to choose the points varies with the nature of the problem under
consideration: the Steiner points will not be in the same number and place
whether the aim is to obtain the most regular triangles, or to achieve a great
precision in the discretization of the research space, for instance.
The notion of triangulation is closely related to the structures of graphs

(a) The Delaunay triangulation. (b) A Steiner triangulation.

Figure 2.1 � Examples of the Delaunay triangulation and a Steiner
triangulation in [28].

or trees: once the space is divided into cells, each one of these cells can be
assimilated to a node. It is then possible to apply path �nding algorithms
on this structure. The problem consisting in �nding the minimal Steiner
tree (i.e. a tree of minimal total length) is a NP-complete problem and is
still actively researched as of today [29] [30].

37

2.1.2 Natural graph structures

Apart from triangulation, there are other methods that allow to discretize
a search space. The most intuitive approach is probably the creation of a
visibility graph. This method can be used when the goal is to compute one or
several shortest paths between points in a space where there are polygonal
obstacles [31]. Intuitively enough, the shortest path between two points is a
straight line when there are no obstacle, or a set of segments that connect
the starting and ending points by passing by the vertices of the obstacles
(see �g. 2.2). Several works propose methods for �nding the shortest path
in a visibility graph, such as [31] [32] [33]. Note that this approach for a
shortest path between two points is no longer acceptable in 3D, since the
shortest path does not necessarily pass by the vertices of the obstacles. As an
example, we can consider the case in which the starting and ending points
are separated by a rectangular parallelepiped (see �g. 2.3). More on the
subject can be found in [34]. The shortest path is likely to pass by one of
the edges. Other works contribute to the extension of the visibility graph
in 3D, such as [35] [36]. In some cases, the obstacles can be both polygons

Figure 2.2 � An example of visibility graph.

Figure 2.3 � The shortest path between the two points (in green) does not
pass through a vertex of the parallelepiped. Therefore, connecting only the
vertices is no longer su�cient to �nd the shortest path in 3D with a visibility
graph, since the output would be the path in red.

and closed curves. In these cases, the equivalent to the visibility graph is

38

called the tangent graph, introduced by Liu and Arimoto in 1992 [37]. In
this representation, a vertex of the graph is a point lying on the boundary
of an obstacle. An edge in this graph is then either a segment joining points
belonging to two di�erent obstacles or a curve between two nodes of the
same obstacle. This method can be used in cases where the obstacles to be
avoided are circular, as in [38]. By using this method, the mobile passes as
close as possible to the obstacles. In some cases, it is instead required to
pass as far as possible from any obstacle. In order to achieve this goal, an
intuitive behavior would be to follow paths that are at an equal distance
from all obstacles, so as to remain "in the middle" of the unobstructed area.
This notion of equal distance to objects is the principle of Voronoi diagrams.
This technique relies on the concept of in�uence area of a particle, which
allows to determine all paths that are as far as possible from all obstacles
(see �g 2.4). The speci�city of this diagram is that it is in fact the dual of
the Delaunay triangulation. Thus, there exists a "natural" transition from
one to the other: every particle in the Voronoi diagram is a vertex in the
corresponding Delaunay triangulation. A bibliography on the subject can
be found in [39].

Figure 2.4 � An example of Voronoï diagram.

2.1.3 Cell decomposition

Another way to discretize space is to sample it by the means of a grid. There
are several types of such structures. The constant step grids are probably
the simplest to implement: the only thing to do is to choose the length of the
side of the cells, which will remain �xed and is the same for all grid cells. The
drawback of this method is that it is very approximate in the cases where
obstacle detection is an issue, since the resolution is decided beforehand.
Conversely, if a "good" resolution is chosen in order to accurately detect
obstacles, this method is very likely to be too expensive in terms of data
storage, since it will also yield a good resolution on empty areas. On the
other hand, transposing this method to 3D is immediate. In order to solve
the problem of constant resolution in constant step grids, one can use similar
data structures, in a dynamical way: the quadtrees (see �g. 2.5). The idea

39

is to store only useful information, which means to require precision only in
the vicinity of obstacles or points of interest. This method allows to store
information on various levels: each square is divided in four, and so on until
the required precision is attained on the interesting parts. This method
yields a "zoomable" structure, which is very useful in managing various
levels of precision. The transition to 3D is once again quite easy: instead
of squares, the manipulated structures are cubes, and they are divided into
eight parts. They are then called octrees.
Another way to subdivide the search space into cells can be, for instance,

Figure 2.5 � An example of quadtree ([40]).

with parallel segments (see �g. 2.6). In this approach, each segment either
passes through or ends on a di�erent vertex of polygonal obstacles. Other
techniques of space subdivision can be found in [41] [42]. A connectivity
graph can then be established, by symbolizing each cell by a vertex and by
connecting two vertices whenever the corresponding cells are adjacent. A
path in such a structure can then be transposed from the graph to the cells
by taking each time the middle of the segment between two adjacent cells
as a passage point, for instance. Further detail on the applications of cell
decomposition for path �nding can be found in [43] [44]. In order to go
further on the topic of connectivity graphs, we can mention the abstraction
graphs. This structure is not a way to discretize space per se, but rather a
meta-structure that allows to store additional information about the space
topology. It allows, for instance, to know if a node is isolated, in a dead
end, in a corridor or at a crossing [46] (see �g. 2.7). This technique allows
to discard useless research in the graph in a later path search, since all
information about further connectivity is stored in the nodes, which can be
particularly useful in situations involving closed environments.

40

Figure 2.6 � A decomposition with parallel segments and the associated
connectivity graph (from [45]).

Figure 2.7 � An example of abstract graph in [46].

2.2 Resolution methods for path and

trajectory �nding problems

The path and trajectory planning problem, as shown in the previous section,
can take many shapes, depending on the provided data and the expected
results. Depending on the form chosen for the route representation, di�erent
types of optimization problems can be considered to tackle such problems.
The corner stone in the path and trajectory planning is often to be able to
e�ciently design one route, as many works in which several routes are to
be designed proceed sequentially. Another frequent concern in this topic is
the choice of the objective function. In some cases, and more particularly

41

in many air tra�c related works, there are multiple objectives to satisfy
at the same time, which are often contradictory (in industry, this is often
translated in terms of safety/comfort vs savings/pro�t ; for another example,
the reader can refer to [47]). In these situation, a solution is to introduce
the Pareto Front of solutions. In order to de�ne the Pareto Front, we say
that a solution to a multi-objective optimization problem dominates another
one when all criteria are better satis�ed in the �rst one. A Pareto front is
then de�ned by the set of solutions that are dominated by no other. In
the rest of this document, whenever several criteria are to be optimized at
the same time, we will use the term "optimal" to qualify a solution that
is Pareto-optimal. In this section, we present some of the methods used to
solve the path and trajectory planning problem, gathered in two categories:
exact methods, and heuristics or meta-heuristics.

2.2.1 Exact methods

2.2.1.1 Mathematical interpolations

Some methods consist in de�ning a path as a combination of known basis
functions. Finding an optimal path then boils down to �nding the optimal
coe�cients for the combination. Some of these basis functions can be
found in [48] and in [49]. In the following paragraphs, we assume that
the path to be designed is constrained by a given sequence of points
(x0, y0), (x1, y1), . . . , (xn, yn), through or by which the path must pass.
The most intuitive way to interpolate a given sequence of points is by
connecting them with segments. This method is the piecewise a�ne
interpolation. In this case each segment Si, 1 ≤ i ≤ n is de�ned as the
following function:

Si(x) = ai(x− xi) + bi, x ∈ [xi, xi+1] (2.1)

where ai =
yi+1−yi
xi+1−xi and bi = yi. An example of piecewise a�ne interpolation

is given in �g. 2.8. The main drawback of this method is that the

Figure 2.8 � An example of piecewise linear interpolation (from [45]).

42

path provided is not smooth, its derivative is not continuous. In some
cases, like in robotics, this can cause problems of maneuverability. The
piecewise linear interpolation belongs to a larger family of interpolations,
the piecewise polynomial interpolations. In the same fashion as piecewise
linear interpolation, this method allows to connect the given points, but
this time with polynomials of any order instead of segments. Such curves
are also called splines. The main advantage of this representation is that the
curvature of the result can be constrained, particularly at the control points,
making the derivatives of the function continuous. The higher the order of
the polynomials, the smoother the curve (see �g.2.9). The degree of the
spline is the one of the polynomial of highest order. When all polynomials
are of the same order, the spline is uniform. The particular case of degree 3

(a) The interpolation of 4 points with a
spline of degree 1.

(b) The interpolation of 4 points with
a spline of degree 3.

Figure 2.9 � Illustration of spline interpolation.

splines is called the piecewise cubic Hermite interpolation.
Another way to connect a given sequence of points is to create a unique
function instead of a piecewise function. The most famous interpolating
function in this domain is the Lagrange interpolating polynomial [50]. It is
the polynomial of minimal degree that passes through every given point. It
is de�ned as follows:

n∑
i=0

yi
∏

0≤j≤n
j 6=i

x− xj
xi − xj

(2.2)

This de�nition shows that for every xi, only one of the sub-products is
nonzero. An example of Lagrange interpolation polynomial is given in
�g. 2.10. In this �gure, every colored curve corresponds to one of the terms
of the sum (one xi). They all evaluate to 0 on all but one xi. The resulting
Lagrange polynomial is represented by the dashed line. The main issue with
Lagrange's polynomial is the Runge phenomenon, where the interpolating
function's �tness to the real function can actually decrease when the number
of interpolation points increases, producing oscillations. Another issue, as
for the Bézier curves that will be introduced in the next paragraph, is its
dependency on all the points. In this particular case, this can cause a

43

Figure 2.10 � An example of interpolation with Lagrange's polynomial
(from [45]).

heavy instability of the solution, depending on the points locations. In
some cases, passing through the given points is not required (we then use
the term approximation instead of interpolation), and passing by is su�cient
(for instance, this is the case for the waypoints in the RNP procedures in
aviation). In these cases, the Bézier curves [51] can be applied. By denoting
the points Pi = (xi, yi), 0 ≤ i ≤ n, the corresponding Bézier curve is de�ned
by:

B(t) =
n∑
i=0

(
n

i

)
ti(1− t)n−i Pi, t ∈ [0, 1] (2.3)

The curve always starts on P0 and ends on Pn and usually only passes by
the other points, with some exceptions like in�exion points. An example
of Bézier curve is given in �g. 2.11. The main drawback of this method,

Figure 2.11 � An example of Bézier curve (from [45]).

as for the Lagrange polynomial, is the dependency on all the points. This
dependency results in a change of shape for the whole curve when only one

44

point is changed, but also in an increase in degree when a point is added,
which can be di�cult to handle when too many points are considered. A
way to cope with this problem is to use the equivalent of splines, adapted
to the Bézier curves: the B-splines (see �g. 2.12).

Figure 2.12 � An example of B-spline ([52]).

2.2.1.2 Exact path-�nding algorithms

In a path planning problem, the objective to attain can take several forms.
It could consist in simply �nding a collision-free path, or a path minimizing
or maximizing a given criterion. This second objective falls into the
category of path optimization, and the most common objective to attain is
to �nd a path of minimum cost. The most famous of these algorithms, and
one of the most used as of today, is the Dijkstra algorithm [53], that has
been widely studied since it came out. It consists in �nding the shortest
path between two points in a weighted graph that does not contain any
absorbing circuit, which is a closed path in the graph that has a negative
total weight. The basic idea is to iteratively expand the node with the
lowest known cost from the start, denoted V0, by updating the cost of all
its adjacent nodes V1, . . . , Vn. The new cost of a node Vi, 1 ≤ i ≤ n is the
minimum between the current cost of Vi and the sum of the cost of V0 and
the cost to travel from V0 to Vi. When the node to expand V0 is the ending
node, the shortest path is found. The equivalent to the Dijkstra's algorithm
for the single-source multiple shortest paths problem is the Bellman-Ford
algorithm. First proposed by Alfonso Shimbel in 1955 [54], it was published
by Lester Ford Jr. in 1956 [55] and by Richard Bellman in 1958 [56], to
whom it owes its name. The main di�erence with Dijkstra's algorithm is
that the Bellman-Ford algorithm computes the shortest distances to all
vertices in the graph where only the shortest path to one vertex was found
in Dijkstra's algorithm. In order to achieve this goal, the method consists
in expanding all vertices at each iteration instead of expanding only the one
with the lowest cost. This results in an increased time complexity, but also
allows to detect absorbing circuits, which is not possible with Dijkstra's
algorithm. A more detailed presentation of the Bellman-Ford algorithm is

45

given in chapter 4.
Another algorithm with a similar functioning is the A* algorithm [57].
It works in a similar way to Dijkstra's algorithm by taking into account
an estimate of the "cost-to-go" on top of the current cost of a path
(see �g. 2.13). This method has been equally, if not more, studied than

Figure 2.13 � An illustration of the principle of the A* algorithm.

Dijkstra's algorithm. Several variants were developed, so that the algorithm
can give a �rst solution quickly and improve it over time, or so that it
can take into account changes in its environment during the execution, for
instance [58]. The A* algorithm has been used in a variety of problems,
including path and trajectory �nding in aeronautical contexts. For instance,
in [59], the optimal routes in terminal areas are computed with this method,
with considerations of minimum turn angle. Furthermore, it includes a
representation of the possible altitudes of an aircraft �ying the routes with
the means of a cone de�ned along the 2D path. This idea will be explained
more thoroughly later in this chapter. The A* algorithm was also used
in the context of trajectory planning under hazardous weather avoidance
constraint, for example in [60] and [61]. The A* algorithm has become
quite popular in the path �nding domain because of its simplicity, and its
ability to provide a good result in a short time, which makes it e�cient in
real-time applications.
A domain in which the path �nding in a short time problem is particularly
studied is video games [46]. Various techniques are used in this �eld,
most of which rely on triangulated environments. Among them, we will
cite here the Funnel algorithm [62], designed to �nd the shortest path
in a corridor-like environment. It works by exploring the two sides of
the corridor until the straight line connecting the starting point and the
current point intersects the boundaries, and then iterates with a new
starting point based on this intersection (see �g. 2.14). In video games,
environments are modeled with polygons. However, there are applications

46

Figure 2.14 � An illustration of the funnel algorithm in [62].

in which the obstacles to avoid have di�erent shapes. In some of these
cases, the Dubins paths can be used. Their particularity compared to the
other methods seen so far is that they consider circular obstacles, and so
they don't only rely on segments to construct a path, but on a succession
of segments and arcs. It has been proved that Dubins paths are optimal
when dealing with circular obstacles [63]. They are still studied as of
today, particularly with the aim of integrating them to other path �nding
methods or with meta-heuristics [64] [65], including in the �eld of aircraft
maneuvering [66][67].
In the line of exact algorithms that tackle combinatorial problems, we will
also mention methods like Mixed Integer Linear Programming (used, for
instance, in trajectory planning: [68] [69]), where the objective function
and the constraint functions are linear and some of the variables can only
take integer values. The main drawback of these exact methods is their
computation time (which is often exponential with the size of the search
space), which makes them unusable on large instances, at least when used
only by themselves without hybridization with a heuristic-based approach.
Some works take their inspiration in the processes found in nature, for
instance the light propagation phenomenon. In these approaches, in order
to simulate the propagation of light in the search space, the fast marching
method (FMM) can be applied. In principle, the fast marching algorithm
in the case of shortest paths search works in a similar way than Dijkstra's

47

algorithm, and measures how fast a wavefront reaches a given point in
space when its starting point and speed function are given, with the
possibility that the front doesn't propagate uniformly in space, depending
on irregularities or obstacles (see �g. 2.15).
The fast marching method is quite widely used in the domain of wave

Figure 2.15 � An illustration of wavefront propagation in complex
environments in [70].

propagation [71] [72]. This method can be viewed as a particular case
of Optimal Control, which consists in �nding a command for a given
dynamical system described by di�erential equations that is optimal with
reference to a given objective function. For instance, it can be used to
�nd the way to pilot an aircraft, given the equations of its dynamics, from
a starting to an ending point, that minimizes its fuel consumption. This
topic is addressed in [73] and [74], where the problem is modeled in a way
that takes into account many operational aspects of air tra�c control,
such as the various speeds in use. In these works, the aim is to minimize
the fuel consumption of aircraft by computing an optimal trajectory while
avoiding possible intruders. Moreover, a focus on the use of this method
for departure trajectories is provided, with the example of two aircraft
departing from Barcelona airport. In previous works, a similar model based
on optimal control was used to design departure routes that minimize noise
over sensitive areas (see �g. 2.16) by using fuzzy logic, and lexicographic
ordering of the objectives and fairness criteria so as to design routes that
don't penalize one area for the pro�t of the others [75] [76] [77]. In these
works, the main goal is to minimize the noise disturbance over populated
areas. When the noise disturbance has reached a satisfactory level, the
authors optimize the design for fuel consumption as an economical criterion,
while keeping the trajectory within the acceptable levels of noise. The
topic of fuel consumption optimization by optimal control is also addressed
in [78], with a less comprehensive model. Another criterion of optimization
can be to resolve a maximum number of con�icts between several aircraft.

48

Figure 2.16 � The result of the optimization process in [77] with their
associated noise disturbance. The optimal trajectories minimize the
maximum noise over each area. The results are shown for two 10am �ights,
an Airbus A340 (a) and an Airbus A321 (b).

This problem is addressed in [79], with the following works [80] and [81]
integrating the managing of the route merging. In this case, it consists
in computing both the optimal trajectory for each aircraft and their
sequencing upon arrival at their destination. In [82], the authors use an
optimal control approach, solved by both direct and indirect methods, in
order to optimize the noise reduction around airports. A survey of optimal
control methods applied to trajectory planning can be found in [83].

2.2.2 Heuristics and meta-heuristics

The main problem with exact approaches is that they can take too much
time to solve the given problem. Their complexity is often exponential with
the size of the search space. In order to obtain solutions in a more acceptable
time, one can turn towards the use of heuristics and meta-heuristics, that
try to estimate as accurately as possible the best possible solution. Some
methods mimic natural phenomena in order to compute the shortest path.
One method to generate several routes is that of the �elds of potential. This
method was �rst introduced in 1980 in the domain of robotics [84], and
rapidly improved to expand its possibilities, like the coordination of several
agents [85], or its application to the design of air routes [86]. The point is
to attribute a "power of attraction" to the arrival point(s), and a "power of
repulsion" to the obstacles. This generates a map of attraction �elds that
needs to be traversed in the opposite direction of the attraction �eld from
the arrival point(s) until the starting point(s) to �nd the optimal path(s)
while avoiding the obstacles (see �g. 2.17: a path is constructed with �elds
of potentials, with the arrival point in green). This method has two main
drawbacks: �rst, it induces oscillations of the trajectory in the vicinity of
obstacles, while it should be as smooth as possible. The second drawback
of this method is, as other research works, that it remains theoretical in
the sense that it does not take into account the current and short-term

49

Figure 2.17 � An illustration of the method of the �elds of potentials in [86].

operational context of air tra�c. Thus, for instance, all paths created with
this method merge on the arrival point, which is not manageable from a
controller's point of view.
Another method imitating behaviors found in nature that was investigated
is the wavefronts propagation. It aims at applying Fermat's principle, which
states that light always follows the fastest possible path. In principle,
the search space is assimilated to a propagation medium with a variable
refractive index, higher in areas covered by obstacles than in empty areas.
This method has been used in numerous �elds, from path planning to
boundary detection [87] [70], and also applied to the route �nding problem
for aircraft (but mainly in the en-route context) [88] (see �g. 2.18: a path
is designed with the lowest refractive index in blue and the highest in red),
with roughly the same problems than with the �elds of potential. This work,
in order to simulate the light propagation, makes use of a fast marching
method.
The previous methods are mostly designed for a speci�c problem. In order to
be able to tackle several types of problem with the same approach, another
family of algorithms has been developed, more generic: the meta-heuristics.
Among them, the Particle Swarm Optimization [89] and its derivatives. This
meta-heuristic is able to tackle problems of large dimension by �nding a
global optimum without being dramatically a�ected by local minima, as
can be the case with other algorithms. It works by mimicking the behavior
of animal swarms in real life. Each individual moves with respect to three
criteria: its velocity, the best point stored in its history and the best point
known to the entire swarm. This method allows an e�cient exploration of
the search space. In an enhanced version, this algorithm allows to tackle
multi-criteria problems by using a cooperation/competition system [90].
In this version, there are as many sub-swarms as there are criteria to
be optimized. Then, a system of duels allows to choose a representative
sub-swarm for each criterion. The cooperation phase then aims at putting

50

Figure 2.18 � An illustration of the method of light propagation in [88].

together the information collected about the best solutions found by the
swarm.
In the family of meta-heuristics, another important type of algorithm is
the Genetic Algorithm (GA) [91]. It consists in mimicking the process of
evolution of living organisms: here again, it involves several individuals.
They are iteratively put through a selection phase, where the less �t
individuals are removed from the group, and then the remaining individuals
are paired with one another and produce o�springs. During this process,
the o�spring inherits each of its characteristics from one parent or the
other, and has a low probability of being subject to a mutation (usually
0.1 to 1% chance). Note that one pair can generate several o�springs,
usually depending on this pair's �tness. This process is designed to build a
population that is as �t as possible for the problem under consideration. This
method has been applied to the problem of path and trajectory �nding in the
aeronautical context, for instance in [92] and the following works [93] [94],
where aircraft trajectories are designed between pairs of airports, with
con�ict resolution carried out with the use of Cleared Flight Levels (CFL),
allowing for a separation of trajectories in altitude. An example of result
found with this method is presented in �g. 2.19
The Genetic Algorithm and its variants (such as the well-known Non-Sorted
Genetic Algorithm (NSGA-II) [95] for multi-objective problems) can
be seen as particular cases of Evolutionary Algorithms (EA). In the
recent years, another type of EA has been proposed, the Multiobjective
Evolutionary Algorithm based on Decomposition(MOEA/D) [96], that works
by decomposing a multi-objective problem into mono-objective subproblems
and solving each one of them independantly in order to �nd a solution to
the original problem. This method has been applied in the domain of SID
design in the works of Ho-Huu et al., initially to �nd SIDs that minimize
noise exposure for the inhabitants, as well as fuel consumption for the
aircraft [97] [98], and then by integrating to these objectives a third one,

51

(a) Top view. (b) Side view.

Figure 2.19 � The result of the GA algorithm for 10 paths in [92].

consisting in allocating �ights to the routes [99] [100]. Figure 2.20 shows the
result obtained for the route design, along with the noise level (green curves)
and number of people annoyed by the design. In complex optimization

Figure 2.20 � The result of the design of two SIDs along with their noise
impact in [100].

problems, it is common to see a solution featuring a meta-heuristic that
uses exact methods to solve smaller sub-problems. This is the case,
for example, in [101] where several routes are designed sequentially by
using a Fast Marching Method (FMM) [102]. In this representation, each
previously generated route is viewed as an obstacle for the others, which
penalizes the last ones in terms of available space. Therefore, a Simulated
Annealing meta-heuristic is added, that tests several possible orders for the
route generation. The Simulated Annealing has already been used and
proven e�cient on problems relative to ATM [103] [104]. Sometimes, the
sub-problem itself is solved with a meta-heuristic, resulting in the use of
two (or more) meta-heuristics. This is the case, for instance, in [105], where
the problem is that of designing a network for coal mining in a complex
terrain. A �rst solution is computed by using an ant colony algorithm. This

52

meta-heuristic aims at mimicking the behavior of an ant colony to �nd an
optimal path. The problem in the scope of the work under consideration is
that this method yields a precocious result. In order to solve this problem,
the authors integrate the ant colony algorithm into a SA. The possibilities
for hybridization are many, each meta-heuristic presenting its own strengths
and weaknesses.
Finally, another family of algorithms, the Probabilistic RoadMap planners
(PRM), allows to explore the state space with little risk to be caught in a
local minimum. It consists in picking random points in the state space (it
can take into account more than just a position, for instance an orientation
or speed), and in trying to connect these states with one another by means
of an admissible path. An admissible path is such that it contains only
points in the state space. Therefore, for instance, it cannot pass through an
obstacle. Quite many works have been conducted on the subject, although
it is still studied as of today, particularly in robotics [106] [107]. In the
category of the PRM, a type of algorithms is particularly adapted to the
path �nding problem in high dimensions: the Rapidly exploring Random
Trees (RRT) [108]. Their functioning is basically the same as the PRM
in the way that it is based on picking random points in the search state
and trying to connect them with the previously generated points. Usually,
the points are picked one by one and connected to the closest point of the
current solution, or the one generating the lowest cost to connect. When
the point cannot be connected with the existing solution, it is discarded
and another one is drawn. By working this way, a tree structure is created,
that eventually reaches the arrival point(s) (see �g. 2.21). Several works have
improved this algorithm to be more time-e�cient [109] [110], or to allow it to
go through more complex obstacles [111] [112] [113]. The strong advantage

Figure 2.21 � An example of Rapidly exploring Random Tree in [113].

of PRM and more particularly RRT is that they are but lightly a�ected by
the dimension of the state space, where other families of algorithms would
see their complexity heavily increased in high dimension search spaces.

53

2.3 SID and STAR optimization

In comparison with the route and trajectory design problems, the SID and
STAR design problem has been less extensively researched. The main reason
for this is the large number of constraints that are to be taken into account,
and the 3D nature of the problem, which make it di�cult to construct
a simpli�ed model for the problem. Two of the works that tackle the
SID/STAR optimization design are presented below. The �rst one aims
at constructing the STARs in the vicinity of Stockholm Arlanda's airport
with an Integer Programming (IP) based method [114]. The second one
makes use of the Simulated Annealing and the Branch-and-Bound (B&B)
methods to optimize the SIDs and STARs on various scenarios [45]. This
thesis relies on these two works from the literature for the tests undergone,
in order to compare the method used to the state of the art. These two
works focus on di�erent aspects in the design of SIDs and STARs, but both
aim at optimizing the procedures.

2.3.1 Automatic Design of Aircraft Arrival Routes with
Limited Turning Angle

The �rst work to be presented is aimed at solving the optimal design of
STARs problem in the vicinity of Stockholm Arlanda airport [114] and relies
on Integer Programming (IP). It focuses on the operational usability of the
output. In order to achieve this goal, the constraints taken into account are:
• no more than two routes merging on the same point;

• two merging points must be far enough from each other;

• no sharp turns;

• obstacle avoidance;

• vertical separation between the SIDs and STARs, with their crossing
only authorized at a minimum distance from the runway.

The idea is then to model the surroundings of the runway with a grid, which
will serve as an underlying graph for a path search. The grid's cells are
designed so that the various routes can merge at a su�cient distance from
one another and create a solution that is acceptable for air controllers. Two
objectives are taken into account: the individual length of each route, and
the weight of the solution, which measures the total space that it occupies.
An example of solution found with this method is provided by �g. 2.22. The
performed tests allowed to �nd a Pareto front for the solutions, displayed
in �g. 2.23. One solution is represented by a set of edges of the grid. In
order to further enhance the design, a post-processing technique is applied,
which consists in removing any point that is not critical for the maximum
turn angle constraint. This process is illustrated in �g. 2.24. The problem
of route design with separated merging points is developed by some of the
same authors in another work [115], that takes into account the possibilities

54

Figure 2.22 � An example of solution in [114].

Figure 2.23 � The Pareto front found in [114].

Figure 2.24 � The post-processing technique used in [114].

of RNP, and more particularly the Radius-to-Fix possibility. Therefore, the
routes in this work are modeled as successions of segments and arcs of circles.

55

2.3.2 Optimal Design of SIDs/STARs in Terminal
Maneuvering Area

This thesis greatly relies and elaborates on the results found in [45].
Therefore, in this paragraph, we present this work in more detail. As in
our work, the aim of the thesis mentioned is to automatically design an
optimal set of departure and arrival routes in the vicinity of large airports,
in 3D. A route is modeled in two parts:
• the horizontal part, as a Dubins path (a succession of segments and
arcs of circles);

• the vertical part, as a cone of altitudes representing all vertical paths
that aircraft can take along the corresponding horizontal part.

In [45], obstacles are taken into account. They can be either ground obstacles
(mountains, buildings...) or air obstacles (like forbidden zones), with a
nonzero minimum altitude. These obstacles are represented as cylinders,
made up of:
• a base, given as a circle, with its center and radius;

• a minimum altitude;

• a maximum altitude.

A representation of an obstacle is given in �g. 2.25. In her work, the

Figure 2.25 � The modeling of an obstacle in [45].

author considers that two obstacles whose projections on the horizontal
plane completely overlap (one base circle is totally included in the other) are
one and the same. This prevents from letting the possibility to pass between
the two obstacles. Conversely, there are obstacles, such as mountains, that
cannot be represented by only one cylinder, as the approximation wouldn't
make any sense. In these cases, the obstacle is broken down into several
sub-obstacles that are more �tted for the problem (see �g. 2.26).

56

The chosen shape for the obstacles in [45] o�ers four possibilities to bypass

Figure 2.26 � Modeling of the obstacles in the Zurich airport region in [45].

them:
• clockwise;

• counter-clockwise;

• by passing underneath;

• by passing above.

These possibilities are at the core of the method chosen to build the optimal
paths. The author solved the optimal path �nding subproblem for one route
with a Branch-and-Bound (B&B) algorithm. In this case, the branching
strategies are the way to bypass obstacles. Therefore, all paths designed
with this method will automatically be collision-free. However, this also
implies that the time required to run the algorithm is directly linked to the
number of obstacles to be taken into account. In order to reduce this number,
a convex hull �lter is applied before launching the algorithm (see �g. 2.27).
Applying the �lter allows to greatly reduce the number of obstacles to be
accounted for in some cases, allowing the algorithm to run faster. In this
work, the author also takes into account the orientation of the runway. This
is done by creating an arti�cial obstacle near the starting point of the route,
and imposing the way to bypass it. By doing so, the initial orientation of
the route is constrained (see �g. 2.28: the �ctitious obstacle is striped).
The design of several routes is done in two ways. In the �rst one, the

author applies a 1 vs all strategy. This consists in designing the routes in
a given arbitrary order. Each designed route serves as an obstacle for the
next ones. For each route, the design is �rstly done by considering only

57

(a) All starting obstacles.
(b) The relevant obstacles after
applying the convex hull �lter.

Figure 2.27 � The e�ect of the convex hull �lter in [45].

Figure 2.28 � The design of one route in [45].

the original obstacles. Then, if the newly designed route is in con�ict with
a previously generated route, a new �ctitious obstacle is added, covering
the area of con�ict, and the last route is designed again, by taking the new
obstacle into account. This allows the routes to be separated in the vertical
plane (see �g. 2.29: the route γ3 takes two detours to avoid γ1 by passing
above it and γ2 by passing below it). The con�ict detection is carried out
by sampling the paths with a constant step and putting the resulting points
into a grid. Each cell of the grid is then analyzed: if it contains a point,
all neighboring cells are checked for points from other paths. When another

58

Figure 2.29 � The con�ict resolution strategy in [45].

point is found, the vertical separation of the routes is evaluated. There is
a con�ict whenever the separation is too small (this method is explained in
more details in chapter 3).
This method of designing the routes imposes to choose beforehand an order
for the design. Therefore, another way to design the routes was tested,
using the Simulated Annealing meta-heuristic. In this method, all routes
are generated regardless of the con�icts between routes. When all routes
have been generated, a neighboring solution is designed by adding �ctitious
obstacles for all routes on each area of con�ict and choosing an avoidance
strategy for these obstacles. The algorithm iterates by choosing various
avoidance strategies.
Both methods were tested on a certain number of instances. Among them,
the cases of Paris Charles-de-Gaulle and Zurich, which will be taken as
references for the tests in this thesis. As stated before, the objective of the
work from [45] is to produce the shortest possible routes. Incidentally, all
routes merge on the same point, which is the runway threshold. Such a
con�guration is not manageable for a controller, as the workload induced by
the situation is too important. This constitutes the main drawback of the
method.

2.4 Conclusion

Although the topic of path and trajectory planning has been quite
extensively researched, the speci�c problem of SID/STAR design is still to
be solved e�ciently in the current state of air tra�c operations for large
airports. The main di�culty of such a design is the number and complexity
of the constraints, which doesn't allow for the exclusive use of exact methods,
that would take too long to yield a satisfactory result. The works that have
already been done on the subject present two major drawbacks:

59

• The method does not take into account the current state of air tra�c
operations. As a result, the solutions found are often impossible
to use in real-life scenarios although they are compliant with the
mathematical objective that was assigned.

• The method is not suited for large instances. Some approaches work
�ne on situations with few routes to design or with a narrow search
space, but cannot give a satisfactory output on larger instances in an
acceptable time.

The topic raises the problem of multiple optimal path �nding in a 3D
environment, for which the literature does not yet provide fully satisfactory
solution. This work provides a method that allows to take into account
many operational constraints (management of the merging points between
the routes, terrain avoidance, forbidden zones, limited turns...) and several
objectives (noise reduction, distance �own...) at the same time, including
on large instances. The topic requires a speci�c mathematical model in
order to be addressed in a rigorous way. In the next chapter, we present the
mathematical modeling that was chosen for the SID/STAR optimization
problem, including the variables, the constraints and the objective function.

60

Chapter 3

Problem modeling

This chapter depicts the problem of SID/STAR design as an optimization
problem. We describe the mathematical modeling that was used to establish
its formulation. This chapter is divided into three sections. First, we present
the data that we consider known in advance, and provided as input for
the resolution method. In the second section, we explain how the TMA
is represented, as well as the shape that was chosen for the routes to be
designed. In the last section, we formulate the problem as an optimization
problem. We express the constraints and the objective function.

3.1 Input data

In order to be able to design SIDs and STARs, some prior data is required.
The �rst element to know is the departure and arrival points of each route to
be designed. Then, the highest points of the terrain in the area surrounding
the airport(s) are considered. They are the critical elements for route design,
as they de�ne the lower boundary of the search space. The shape of the
routes depends on their height and positioning. Once these elements are
identi�ed, the designers can begin to create the routes, usually by starting
with the legs that are closest to the runway, and expanding towards the
boundary of the TMA. Here, in order to compute the routes in the TMA,
we assume that various parameters are known beforehand. We list them in
this section. They are separated into two categories: the elements relative
to the environment, and those relative to the aircraft and operations.
The parameters relative to the environment are:

61

• the position and altitude of the starting point for the SIDs of every
runway to take into account, as well as the position and altitude of the
ending point for the STARs (for instance the Initial Approach Fix) of
every runway to take into account;

• the orientation used for each runway;

• the exit point of each SID to the en-route sector, associated to a range
of admissible altitudes, as well as the entry point of each STAR into
the TMA, associated to a range of possible altitudes P 1, ...PNP where
NP is the total number of such points;

• the expected tra�c �ow on each route to be designed F i, i ∈
{1, . . . NP};

• the elevation of the terrain beneath the TMA;

• the set of ground (such as mountains, buildings) or air (such as military
zones) obstacles O. An obstacle o ∈ O is given as o = (Bo, lo, uo) where
Bo is the base polygon, lo and uo are respectively the lower and higher
altitudes of the obstacle (see �g. 3.1);

• the set of cities T underneath the TMA. Each city τ ∈ T is given as
2D polygons, as well as their population density: T = {τ = (Bτ , ητ)}
where Bτ is a 2D polygon, and ητ : Bτ → R+ is the density function
that gives the population density at a given point in the city.

The parameters relative to the operational context are:
• the minimum and maximum climb and descent slopes αmin,climb,
αmax,climb, αmin,descent, αmax,descent. To simplify the reading, we suppose
that αmin,climb = αmin,descent = αmin and αmax,climb = αmax,descent = αmax

without loss of generality;

• the maximum admissible turn angle θmax;

• the maximum authorized number of level �ights nLFmax;

• the minimum and maximum authorized length of a level �ight lLFmin,
lLFmax respectively;

• the minimum horizontal distance to keep with obstacles or other routes
dh;

• the minimum vertical distance to keep with obstacles or other routes
dv;

• the minimum horizontal distance between two merging points dm.

62

(a) The representation of an obstacle.

(b) Various obstacles.

Figure 3.1 � The modeling of the obstacles.

3.2 Graph construction and route

representation

In this section, we describe the construction of the support for the design of
the routes and the way we chose to represent them. The approach consists
in discretizing the TMA into a suitable graph in which the routes will be
searched. We �rst present the way in which the graph is built, then, in 3.2.2,
the way in which the routes are represented based on this graph. The graph
gives their horizontal shape to the routes. The vertical part is added once
the horizontal path is designed.

3.2.1 TMA representation and route network
construction

We chose to turn towards a graph structure to design the routes (see �g. 3.2).
More precisely, one graph structure is designed for each runway orientation
that is to be taken into account (see �g. 3.3). The vertices are constructed
as follows :

• The starting point of the route (which is usually located near the

63

runway's threshold, in its alignment) is called the center, and is
denoted C. It represents the �rst waypoint at which an aircraft will
be authorized to maneuver.

• We construct concentric layers, centered on C. The layers can be the
borders of any family of increasing convex sets (for instance: circles,
or squares). They are denoted by the set L = {Li, i ∈ {1, . . . NL }}
where NL is the total number of layers. We consider that C is itself
a layer. The layers are constructed so that LNL

passes through the
exit point of the SID.

• Each layer is sampled to create a set of points. We denote Vi =
{vi,j, j ∈ {1, . . . NLi

}} the set of all points yielded by the sampling
of Li. In this notation, vi,j is the jth point on Li and NLi

is the
number of points contained on Li. In order to simplify the reading,
and without any loss of generality, we will consider in the rest of the
document that: ∀i ∈ {2, . . . NL }, NLi

= N with N a constant.

This process provides a set V = ∪i∈{1,...NL }Vi of vertices. The next step
consists in connecting these vertices together by edges in order to obtain a
graph. This is done as follows (see Algorithm 1):

• We denote eij,k the segment that connects vi,j and vi+1,k.

• For a given vertex v2,j located on the second layer, we consider the
segment e1

1,j (lines 6-9 for the general case).

• The angle formed by the orientation of the runway and e1
1,j is evaluated

(lines 14-15). If it is not greater than θmax, e
1
1,j is added to the set of

edges E (lines 16-17).

• This process is done for every point of L2.

• When all points of L2 have been considered, the layer L3 is processed.
This is done by repeating the same process, but instead of checking
the angle with the initial direction, we check the angle with every
edge between L1 and L2 (lines 11-13). We then do the same for all
subsequent layers.

This process provides an oriented graph G = (V,E), in which it is possible to
perform path searches (see �g. 3.2). By construction, a graph is associated
to one runway threshold with its initial direction. Therefore, when several
thresholds are to be taken into account, one graph is created for each
threshold. We obtain a con�guration illustrated in �g. 3.3.

3.2.2 The route representation

Based on the graph constructed in the previous paragraph, we are able to
de�ne a route. It is composed of two parts. The horizontal pro�le is de�ned
as a succession (e1

i1,i2
, e2
i2,i3

. . . eNL−1
iNL−1,iNL

) of elements of E (see �g. 3.4). In

64

Algorithm 1 Construction of one search graph.

Require: center = (xc, yc), θmax the maximum turn angle, vertices a
double-entry array containing all vertices, such that vertices [i] [j] = vi,j,
initialDirection = (xi, yi) a vector indicating the direction of the runway

1: Initialization: Let E := ∅, previousDirection := initialDirection,
expectedDirection a null vector, currentPoint = center, nextPoint a
null vertex, predecessors an empty double-entry array indexed by the
vertices, such that predecessors [vi,j] contains the predecessors of vi,j as
vertices

2: Set predecessors [center] =
−−−−−−−−−−−−−−−−−→
(initialDirection, center)

3: for i from 1 to NL − 1 do
4: Set N ′ = 1 if i = 1, N otherwise
5: for j from 1 to N ′ do
6: currentPoint = vertices [i] [j]
7: for k from 1 to N do

8: Set nextPoint = vertices [i+ 1] [k]

9: Set expectedDirection =
−−−−−−−−−−−−−−−−−−→
(currentPoint, nextPoint)

10: Set Np = predecessors [vi,j].length
11: for l from 1 to Np do

12: previousPoint = predecessors [currentPoint] [l]

13: previousDirection =
−−−−−−−−−−−−−−−−−−−−−→
(previousPoint, currentPoint)

14: Set θ = angle(previousDirection, expectedDirection)
15: if θ ≤ θmax then

16: E.add(expectedDirection)
17: predecessors [nextPoint].add(currentPoint)
18: end if

19: end for

20: end for

21: end for

22: end for

23: return E

the rest of the document, we will denote the horizontal path by several
possible means, depending on the context:

As a function γh : [0, 1]→ R2, or
As a succession of edges (eij,k)1≤i≤NL−1 ∈ ENL−1

In the two cases, the horizontal pro�le is referred to as γh. In the second
notation, an edge eij,k belonging to the horizontal pro�le can be referred to
as γh[i]. Moreover, we denote:

65

Figure 3.2 � An example of discretization and graph construction (Five
layers, one vertex every 5◦, θmax = 30◦).

Figure 3.3 � An illustration of graphs for three runway directions.

• l(γh) :=
1∫
0

‖γ′h(s)‖ ds the total length of γh;

• d(t) =
t∫

0

‖γ′h(s)‖ ds the curvilinear abscissa at t of γh, which is the

distance �own along γh from the center to t with t ∈ [0, 1];

• γh[li, lj] the portion of the horizontal pro�le that starts at layer Li and
ends at layer Lj;

• The family 0 = τ1 < τ2 < ... < τNL
= 1, such that γh([τm, τn]) =

γh[m,n]. This family allows us to describe a continuous portion of a
horizontal pro�le, by using the representation of γh as a function.

66

Figure 3.4 � An example of horizontal pro�le in the graph.

The second part of a route is the vertical pro�le. It is represented by a
function γv : [0, l(γh)]→ R+2

that gives, for a given curvilinear abscissa, the
minimum and maximum altitudes at which an aircraft will be able to �y. In
this work, we suppose that the vertical pro�le is composed of a continuous
climb, with possible level �ights, in a limited number. This choice has been
made so as to take advantage of the CCO concept and its possibilities. It
was also motivated by the observation of the take-o� and landing pro�les at
Paris Charles-de-Gaulle airport (see �g. 3.5). In this work a level �ight is

(a) Take-o� pro�les. (b) Landing pro�les.

Figure 3.5 � Take-o� and landing pro�les in Paris CDG airport [45].

considered as one or several consecutive edges of a horizontal pro�le on which
the maximum (or minimum, in the case of a descent) altitude is constrained.
Hence, given a minimum and a maximum climb slopes αmin and αmax, the
vertical pro�le is entirely de�ned by the family (z1, ..., zNL−1) ∈ {0, 1}NL−1

where zi indicates the presence (1) or absence (0) of a level �ight between
the layers i and i + 1, i.e. on the arc γh[i]. It is then possible to build
the function given previously, as explained by Algorithm 2. In essence, this

67

algorithm builds two functions:

z, z : [0, l(γh)] → R
s 7→ the minimum and maximum possible altitudes of an aircraft

at �own distance s from the center

The functions z, z are continuous piecewise linear and can be characterized
by their values at curvilinear abscissa of the intersection between the route
and the layers. By abuse of notation, the values corresponding to layer i are

Algorithm 2 Construction of z, z. They are computed layer by layer, by
increasing each time the altitude by the distance �own multiplied by the
slope (lines 10-15), or by constraining the maximum altitude and updating
the minimum altitude accordingly when there is a level �ight (lines 6-9).

Require: HorizontalPath = γh, VerticalPro�le = γv in the binary
representation, an initial altitude Altinit, a minimum slope Slopemin, a
maximum slope Slopemax

1: Initialization: Let z = (Altinit,0,...0) and z = (Altinit,0...,0) two arrays of
length NL , Altpreviousmax = Altinit, Alt

previous
min = Altinit

2: for i from 1 to NL − 1 do

3: Let (vij, v
i+1
k) = HorizontalPath[i] and Alti = VerticalPro�le[i]

4: Let d = d2D(v
i
j, v

i+1
k)

5: Let Altmin = Altpreviousmin + Slopemin
d

100
and Altmax = Altpreviousmax +

Slopemax
d

100

6: if Alti is true then

7: z[i+ 1]← min (Altpreviousmax , Altmin)

8: z[i+ 1]← Altpreviousmax

9: Altpreviousmin = min (Altpreviousmax , Altmin)

10: else

11: z[i+ 1]←Altmin

12: z[i+ 1]←Altmax

13: Altpreviousmax = Altmax

14: Altpreviousmin = Altmin

15: end if

16: end for

17: return (z, z)

denoted by z[i], z[i]. Figure 3.6 gives an example of the construction of the
functions z, z, in which four layers are represented (two normal climbs and
two level �ights in the picture on the right). In the rest of this document, γv

68

(a) A vertical pro�le with no level
�ight.

(b) A vertical pro�le with two level
�ights.

Figure 3.6 � Illustration of the vertical pro�le zγ.

will refer to either of the three formulations, depending on the context. We
adopt the same notations as with the horizontal pro�le: γv[i] and γv[l1, l2].
A route is the association of a horizontal pro�le and a vertical pro�le.
The aim of our work is to be able to design several routes for large airports.
In order to do so, we denote by X i the element X for the ith route to be
designed, with i ∈ [1, NP]. For instance, we will denote γ3

h the horizontal
pro�le of route 3.

3.3 Optimization problem formulation

In the previous section, we presented the underlying structure of the routes
and the way to design them. Based on these representations, we are
able to formulate the problem of the SID/STAR design as an optimization
problem. In this section, we introduce the variables of the problem, then its
constraints, and the objective function.

3.3.1 Decision variables

The problem consists in designing a set of routes in an optimal way.
Therefore, the two variables at stake are:
• the horizontal pro�les of the routes γih;

• the vertical pro�les of the routes γiv.

Since several routes are to be designed, we must also be able to de�ne
the connection points between them, as we want these connections to be
separated from one another. Therefore, an aspect in the choice of the
horizontal pro�le must be emphasized: the merging points of the routes.
We de�ne the merging layer of two routes i and j by

Lij = max
{
l ∈ {1, ..., NL }

∣∣ γih[1, l] = γjh[1, l]
}

69

Note that, by construction, γiv[1, lij] = γjv[1, lij]. Also, lij always exists
whenever routes i and j belong to the same graph and can be 1. In this
case, the routes i and j only have the center in common. The merge point
is then introduced as the common node between γih and γ

j
h located on layer

Lij. See �g. 3.7 for an illustration of a merge point.

Figure 3.7 � An illustration of merge point.

3.3.2 Constraints

In order for our work to yield relevant results, we must take some constraints
into account. The problem of SID/STAR design is very complex due to the
number, and sometimes the complexity, of these constraints. They arise
from both the operational requirements of safety and operability, which are
relative to the shape of the routes, and the environment in which the routes
are designed, that constrains the search space. We list these constraints in
the following paragraphs.

3.3.2.1 Obstacle avoidance constraint

Avoiding obstacles is the �rst, and sometimes the most di�cult aspect to
take into account when designing SIDs and STARs. Here, we refer to ground
obstacles, such as buildings, forests or terrain. For safety measures, it is not
su�cient to impose that the routes do not cross obstacles. We must provide
an additional margin around the route, both horizontally and vertically,
to ensure that aircraft will be able to avoid the obstacles. The way to
create this margin is quite complex, and depends on the type of procedure.
In this work, we chose to take this constraint into account by adding a

70

constant margin horizontally and vertically to the route. The reader can
refer to [116][117][118] for more details on the construction of protection
areas. We denote o = (Bo, lo, uo) ∈ O an obstacle, given as a base polygon
in 2D (Bo) and a lower and higher altitude (lo and uo). Thus the obstacles
are modeled as cylinders. The constraint is expressed as follows:

∀o ∈ O,∀i ∈ {1, ..., NP} ,∀t ∈ [0, 1] ,d(γih(t), Bo) ≥ dh or

max(zi(d(t)), lo)−min(zi(d(t)), uo) ≥ dv
(3.1)

In this equation, d is the euclidean distance between two objects (i.e. the
minimum distance between two points, one on the �rst object and the other
on the second) and dh and dv are respectively the minimum horizontal and
vertical distances to keep with an obstacle.

3.3.2.2 Limited turn constraint

Since aircraft cannot maneuver in any direction instantly, the route design
must take a maximum turn angle into account:

∀n ∈ {1, ...NP},∀ei−1
j,k = (vi−1

j , vik), e
i
k,l = (vik, v

i+1
l) ∈ Rn, | ̂vi−1

j vikv
i+1
l |≤ θmax

(3.2)
This equation ensures that two consecutive arcs in the horizontal pro�le

form an angle lower than a maximum angle, with ̂vi−1
j vikv

i+1
l being the angle

formed by the succession of vertices vi−1
j , vik and v

i+1
l . Figure 3.8 illustrates

this constraint: it shows a path that violates it by including too sharp
turns. This �gure also illustrate the fact that even by taking into account
the maximum turn angle in the graph's construction, some paths can still
violate the constraint. This is due to the fact that the graph is essentially
built by taking into account all possibilities of paths and putting all of them
together. However, when designing a single path, the possibilities to go from
a layer Li to a layer Li+1 are constrained by the choice that was made to
go from the layer Li−1 to the layer Li.

3.3.2.3 Route separation constraint

As several routes are to be designed, we must ensure that they do not
intersect each other. This constraint is similar to the obstacle avoidance
constraint, except that we require an extra margin between the routes in
order to avoid airprox, the situation when two aircraft are too close to each
other, as much as possible. However, this condition cannot be met whenever
the two routes at stake merge together. In this case, we impose that the angle
between them at their merge point be greater than a minimum angle, so that
the route are separated as soon as possible. The constraint is expressed as
follows:

∀i, j ∈ {1, ..., NP} , j 6= i, ∀t ∈
[
τ ilij , 1

]
,∀s ∈

[
τ jlij , 1

]
,[

d(γih[lij + 1, N](s)− γjh[lij + 1, N](t)) ≥ dh, or
max(zi(d(s)), zj(d(t)))−min(zi(d(s)), zj(d(t))) ≥ dv

(3.3)

71

1 2 3 4 5

Figure 3.8 � A forbidden path with θmax = 30◦.

and

∀i, j ∈ {1, ..., NP} , j 6= i, êime
j
m ≥ θmin. (3.4)

In this last equation, eim and ejm denote the arcs that start on Lij for routes
i and j respectively. Note that the second equation is not always applicable,
since routes i and j can belong to two di�erent graphs. Therefore, in this
case, lij is 0, and e

i
m and ejm are not de�ned.

3.3.2.4 Merge points constraint

As stated in the previous section, two merge points cannot be put too close
to one another when they belong to the same route. This is because it
would induce a requirement for increased attention from the controllers
when monitoring the aircraft that use the routes, and an increased need
of vectoring on these points (i.e. momentarily changing the aircraft's course
to avoid air con�icts). Such a situation would be similar to one where three
routes merge together at the same time. This situation is not a problem
when designing SIDs, since merging more than two SIDs in our work means
dividing the tra�c faster. Therefore, there is no need for increased attention
from the controllers, since the spacing between aircraft can only increase
when a route is divided into several others. However, we chose to keep this
constraint active for all routes in our work.

Two merge points that belong to the same route
cannot be closer to each other than dm

(3.5)

72

3.3.2.5 Flight levels constraint

In order to favor the use of the CCO and CDO possibilities, we chose to
impose constraints on the level �ights. They are stated below:

The number of level �ights cannot exceed a given value nLFmax

The length of each level �ight cannot be less than a given distance lLFmin,
for this wouldn't make sense in an operational context

The length of each level �ight cannot be greater than a given distance lLFmax,
to allow the aircraft to climb

(3.6)

3.3.3 Objective function

This work aims at optimizing the design of air routes. In the previous
paragraphs, we detailed the way in which these routes are represented, and
the constraints to take into account for the design. Now, we introduce
the optimization function that will allow us to evaluate our design. In our
case, the problem is multi-objective in nature. We identi�ed three distinct
functions that can be optimized in the process. We detail them in the
following paragraphs.

3.3.3.1 The route length

The �rst and most intuitive criterion is the length of the routes, as shorter
routes are often the fastest ones. This may not always be the case, depending
on the speed of the aircraft. Indeed, when designing procedures, some
velocity constraints can be applied to the routes in order to reduce the
margins that are to be taken with the obstacles. Therefore, if a shorter
route is velocity-constrained, it may be slower than a longer, unconstrained
route. However, we make the assumption here that the speed is not
route-dependent, and that all routes are �own at the same speed. Therefore,
creating shorter routes also allows airlines to save fuel and to emit less CO2.
In this work, a part of the objective is to design a set of routes that have
the lowest cumulative length:

clength =

NP∑
i=1

F i
∑
e∈γih

l(e) (3.7)

In this equation, clength is the cost associated to the route length criterion,
F i is the expected tra�c �ow on route i and l(e) is the length of arc e. This
objective function will be referred to as the route length criterion in the rest
of this document.

3.3.3.2 The graph weight

Another objective that is considered is the graph weight, which represents
the total space occupied by the graphs. This objective is introduced as a way
to make the �nal solution usable in the current context of air tra�c control.

73

The aim is to orient the method towards merging together the routes that
are close to each other. This process allows to be left with as few routes
as possible as soon as possible, which makes it easier for the controllers to
handle the various air �ows. It is equivalent to the problem of �nding an
optimal Steiner tree, which is an NP-complete problem. This objective that
has to be minimized is represented by equation 3.8:

cweight =
∑
e∈E

χ(e)l(e) (3.8)

In this equation, χ(e) = 1 if e belongs to at least one route, 0 otherwise.
It can easily be seen that this part of the objective is di�erent, and
sometimes contradictory with the route length criterion. An illustration
of this contradiction is provided by �g. 3.9.

Figure 3.9 � An illustration of the contradiction between best route length
(in red) and best graph weight (in blue).

3.3.3.3 The noise abatement

As the air tra�c and the population grow, it is more and more di�cult to
avoid �ying over cities. However, this is also more and more required when
the routes are designed, as environmental concerns arise. Thus, this criterion
has been taken into account as follows in our work: the aircraft must avoid
�ying over them, but if there is no choice, the impact has to be as small as
possible, so the routes must try to �y over the least populated areas.

cnoise =

NP∑
i=1

Fi
∑
τ∈T

1∫
0

 zi(di(t))∫
zi(di(t))

cτ (γ
i
h(t), z)dz

dt (3.9)

where cτ (γ
i
h(t), z) is the cost of an aircraft �ying at altitude z at γih(t)

regarding noise emissions. The noise intensity varies with the altitude of the
aircraft, and its calculation can take into account many parameters [119]. As

74

a simpli�cation, in this document, we consider that the nominal noise (noise
intensity besides the aircraft) is decreased by 6dB every time the distance
to the aircraft is multiplied by 2. The nominal noise at 3 meters is set here
at 100dB [120]. The cost cτ (x, y, z) for τ being a city is expressed as:

cτ (x, y, z) = η(x, y) ·max

((
100− 6

ln z
3

ln 2

)
, 0

)
(3.10)

A graphical representation of cτ is provided in �g. 3.10. In �g. 3.10, the
function η(x, y) is represented on the ground on a 10×10 grid, and varies
between 0 and 1. The brightest color corresponds to the highest population
density. Above, the cost function is represented, for a �ight at a constant
altitude of 10,000ft.

Figure 3.10 � An illustration of the cost function cτ (equation 3.9) at a
constant altitude of 10,000ft. The population density is displayed on the
horizontal plan (the brighter the color, the higher the density).

3.3.3.4 The complete optimization problem

As illustrated in the rest of this section, the problem is indeed
multi-objective. In order to simplify the optimization process, we
chose to combine the three objectives into one, as a linear combination. By
taking into account the constraints stated above, the overall optimization
problem can be written as follows:

min αclength + βcweight + γcnoise

s.t. Obstacle avoidance constraint (3.1)
Route separation constraint (3.3)(3.4)
Limited turn constraint (3.2)
Merge constraint (3.5)
Level �ights constraint (3.6)

where α, β and γ are chosen by the user and express the relative importance
of these criteria.
By choosing a single-objective function, all the criteria are combined into

75

one. As a result, the solutions may be optimal in neither of these criteria,
as, for instance, the route length and the graph weight are contradictory
objectives, most of the time: the route length objective tends to make
the routes go straight from the center to the exit point while the graph
weight criterion will often push the merging points towards the exits. In
this formulation, we add together two lengths and a measurement of noise.
Therefore, it is not easy to compare the three criteria and to set values for
α, β and γ. A solution can be to divide each criterion by an upper bound
of this criterion, so as to manipulate percentages, which are comparable.
However, �nding an upper bound for each criterion, that would preserve the
scale of each value is not easy. Another solution would then be to take the
noise criterion out of the equation and to integrate it in the optimization
problem as a constraint. This solution would allow to deal with a length as
the objective function, with two comparable parts (route length and graph
weight). However, this solution is not explored in the context of this work.

In this chapter, we established the mathematical modeling for the optimal
SID/STAR design problem. The TMA is sampled by the means of concentric
layers in the horizontal plan, which provide a graph structure in which a
multiple path search can be performed. A route is made up of two parts: a
horizontal pro�le, represented by a path in the graph, and a vertical pro�le,
which provides the range of possible altitudes that an aircraft can attain
at each point along the horizontal pro�le. Numerous constraints, such as
obstacle avoidance or the location of the merging points of the routes must
be taken into account. The resulting optimization problem is complex, and
as a simpli�cation, the three chosen optimization criteria are mixed together
into a single objective function. This choice allows to apply mono-objective
resolution methods. In the next chapter, we present two resolution methods:
a method based on the dynamic programming principle, and the other based
on the Simulated Annealing metaheuristic. The strengths and weaknesses
of both methods are analyzed, and the details of the resolution process are
presented for each one of them.

76

Chapter 4

Resolution approach

In this chapter, we describe the choices that were made to tackle the problem
of SID/STAR optimization. First, we present a deterministic resolution
method based on the principle of dynamic programming. Its performances
and limitations are emphasized. Then, we introduce a second approach
based on the use of a metaheuristic: the Simulated Annealing, and the way
in which it was adapted to our problem. We then present in detail each step
of the process: the route generation with an adaptation of the Bellman-Ford
algorithm, then the design of several routes, and the solution evaluation
process. We put an emphasis on the di�erent ways to generate a neighbor
solution in the SA for our problem.

4.1 The dynamic programming principle

In order to compute the routes, a �rst option is to use an exact approach
such as the dynamic programming principle, as it is used in many shortest
path search problems. This category of algorithm relies on the fact that
any part of a shortest path is itself the shortest possible. For instance, if a
path is to be computed between two points A and B, and if the shortest
path from A to B passes by a point P , then the path from A to P is the
shortest. Therefore, the algorithm needs to keep only the best subsolution
at each step in order to �nd the best �nal solution. In our work, such an
approach could be applied in the graph structures (described in chapter 3),
by taking advantage of the structure by layers.
In our case, we have to take the altitude into account in the construction
of a solution. In some cases, the routes must avoid obstacles, such as
mountains or other routes, for instance. Therefore, in order to be able to
compute the optimal set of paths, these constraints must be taken into
account. A report on the adaptation of the dynamic programming principle
to the optimal constrained path search can be found in [121].

77

4.1.1 Modeling of the optimal SID/STAR design
problem as an optimal shortest constrained path

Under certain hypotheses, that will be detailed later, the problem of optimal
SID/STAR design can be described as a problem of shortest constrained
path as presented in [121]. In [121], the problem of �nding the shortest
constrained path under constraints can be described by using the following
notations:

• G = (V,A) an oriented graph, where V is the set of vertices, of size n,
and A ⊂ V × V is the set of edges, of size m;

• R is the set of resources, of size R;

• To each arc (i, j) ∈ A is associated a cost cij and a non-negative
resource consumption vector (trij)r=1,...,R;

• The graph G cannot contain an absorbing circuit, i.e. it cannot contain
a subset B = {(i0, i1), (i1, i2) . . . (in, i0)} ⊂ A such that
n∑
j=0

ciji(j+1)modn+1
< 0;

• A path Px→y from vertex x to vertex y is a sequence of arcs: Px→y =
∪pi=1{(ui, vi)} such that (ui, vi) ∈ A for all i, ui+1 = vi, u1 = x and
vp = y;

• The length of the path Px→y presented above is p;

• The cost of the path Px→y presented above is de�ned as C(Px→y) =∑
(u,v)∈Px→y

cuv.

The problem of shortest constrained path then consists in �nding the path
with the minimum cost between two given vertices, that meet the resource
constraints. These constraints can be expressed as follows: to each vertex i
in V are associated R resource windows, denoted [ari , b

r
i] , r = 1, . . . , R. Each

window [ari , b
r
i] represents the amount of resource r that can be used before

reaching vertex i. Here, we examine the case where waiting is not permitted,
which means that the amount of resource r consumed upon arrival at vertex i
cannot be less than ari . We denote Tx→y the vector of resource consumption:
the rth component of Tx→y is associated to a path Px→y and represents the
total amount of resource r consumed by taking this path. The resource
consumption constraint can then be written as:

∀j ∈ Px→y,∀r ∈ 1, . . . , R, arj ≤ T r(Px→j) ≤ brj (4.1)

where j is a vertex through which Px→y passes, and T r(Px→j) is the
consumption of resource r upon arrival at vertex j when taking the path
Px→y:

∀r = 1, . . . , R, T r(Px→j) =
∑

(u,v)∈Px→j

truv (4.2)

78

.
We can apply this formalism, and the results obtained with it in [121], to the
optimal SID/STAR design problem, by making the following assumptions
for the latter:

• We consider only one resource, which is the altitude. Therefore, with
the previous notations, R = 1;

• We assume that at each point, the range of authorized altitudes is an
interval (which in reality is not always the case: it can be a set of
intervals);

• In order to simplify the notations, we consider that αmin = αmax = α.
Therefore, there is only one possible value for the altitude at a given
point on the path.

We construct the graph G = (V,A) described above by applying the
following steps:

• We consider the graph G = (V,E) built in section 3.2.1;

• We create a set E ′ of arcs, which is a duplicate of E;

• With l(e) the length of an arc e, we set the resource consumption (the
altitude) of each arc as follows:

• For all arcs e in E: t1e = α̇l(e). These arcs are those on which no
level �ight is applied;

• For all arcs e′ in E ′: t1e′ = 0. These arcs are those on which a
level �ight is applied;

• We create the set A = E ∪ E ′;

• For each arc a ∈ A, we set its cost: ca = l(a);

• The results of [121] can be applied on the graph G′ = (V,A).

As mentioned in [121], �nding the shortest constrained path is a NP-hard
problem, even with a single resource to be taken into account.
A way to tackle this problem is to use the principle of dynamic programming
described above, that states that any subsequence of an optimal sequence
is itself optimal. In dynamic programming approaches, one method to solve
the problem is to create and update labels. A label is a vector representing a
path, each coordinate of which represents either the cost associated to this
path or its consumption of the resources. For instance, in the case studied
here, a label is a couple of values (c, z) where c is the cost of the path (its
length), and z is the altitude reached at the end of this path. Note that to
each possible path between two vertices in G = (V,A) corresponds a label.
In particular, to each vertex can be associated a label, corresponding to the
path between the center of the graph (see section 3.2.1 for the de�nition of
the center) and this vertex, as long as such a path exists.
We de�ne the notion of dominance of a label over another in the following
way: a label (c, z) dominates a label (c′, z′) ((c, z) � (c′, z′)) if and only if:

79

• c ≤ c′, and

• z ≥ z′, and

• one of these inequalities is strict.

This criterion favors paths that allow for a quick climb. It allows to:

• reach the en-route sector at a su�cient altitude;

• avoid con�icts with ground obstacle as much as possible;

• reduce the number of level �ights, which is bene�cial in the context of
Continuous Climb Operations.

However, this criterion can also lead to poor results when considering
forbidden zones that must be �own under, since it favors quick climbs.
Taking these into account would require a more complex model and
dominance criterion. Therefore, we can temporarily discard forbidden zones
and their e�ects on the route design in order to keep this section more simple,
as the results will not di�er in their interpretations.
The set of all non-dominated labels (i.e. all labels that no other dominates)
is called the Pareto front of the solution.
In order to �nd the optimal solution in the SID/STAR design problem, one
can apply Algorithm 5 from [121], that presents a solution for acyclic graphs,
which corresponds to the case of our study. This adaptation is described by
Algorithm 3.

80

Algorithm 3 The algorithm based on the dynamic programming principle
to �nd the shortest constrained path between the center of the graph of
section 3.2.1 and one arrival point. It works by computing all possible labels
for each reachable vertex in the graph, and then by keeping only the Pareto
front of labels for each.

Require: An acyclic graph G = (V,A) with a resource constraint of the
type [zmin, zmax] associated to each vertex in V ; a starting altitude zstart

at the center, an arrival vertex.
1: We denote LAB(l, i) the set of all labels associated to the ith vertex of

the lth layer (see section 3.2.1 for the de�nition of layers). One such
label is of the form (c, z).

2: Initialization: Set LAB(1, 1)← (0, zstart).
3: for l from 2 to NL do

4: for i from 1 to N the number of vertices per layer do
5: LAB(l, i)← ∅
6: for each arc (vl−1,j, vl,i) in A do

7: Denote cji the cost of this arc, zji its altitude variation.
8: for each Lab ∈ LAB(l − 1, j) do
9: if vl,i.zmin ≤ Lab.z + zji ≤ vl,i.zmax then

10: LAB(l, i)← LAB(l, i) ∪ {(Lab.c+ cji,Lab.z + zji)}
11: end if

12: end for

13: end for

14: LAB(l, i)← the Pareto front of LAB(l, i)
15: end for

16: end for

17: return the path corresponding to the label of minimum cost at the
arrival vertex.

4.1.2 Complexity analysis

We can analyze the complexity of the resolution method provided by
Algorithm 3. The algorithm operates on the graph G′ = (V,A) constructed
above, in section 4.1.1. We denote N the number of vertices per layer, and
NL the total number of layers.

4.1.2.1 Spatial complexity

We begin by determining the space that is required to carry out the
procedure. Any vertex in the graph has O(N) predecessors, except for the
�rst and the second layers (the only vertex on the �rst layer, which is the
center, has 0 predecessor, and any vertex on the second layer has at most 1
predecessor: the center).
Then, we compute the maximum number of labels held by any vertex in
the graph. This number is equal to the size of the Pareto front of solutions
for the optimal path search problem between the center and this vertex. In
the worst case, this Pareto front is the size of the number of possible paths
from the center to the vertex (which means that no path is dominated). By

81

recurrence:
• a vertex on layer L2 holds two labels (one for the arc from the center
to this vertex without a level �ight, and one for the arc with the level
�ight, see the de�nition of the set A of arcs in section 4.1.1);

• a vertex on layer L3 holds O(N) labels;

• a vertex on layer Li with i ≥ 2 holds O(N i−2) labels: two for each
label of each vertex on the previous layer.

In order to obtain the total spatial complexity, we sum over all vertices:

NL∑
L=1

N ×NL−2 =

NL−1∑
L=0

NL

=
NNL − 1

N − 1

= O(NNL−1)

This result is intuitive enough: the space needed in the worst case is about
the total number of combinations of vertices, one vertex per layer. Thus,
this complexity is exponential in the number of layers.

4.1.2.2 Time complexity

In order to compute the time complexity of the method, we analyze the path
�nding process given by algorithm 3. It works by propagating to a vertex
the labels of all of its predecessors (lines 6-13), and then by �nding the
Pareto front of the resulting set (line 14). If we consider a vertex vi+1,j on
layer Li+1, i ≥ 2, then it has O(N) predecessors, each propagating O(N i−2)
labels, based on the analysis of the previous paragraph. Therefore, the
time required to propagate all labels to vi+1,j from its O(N) predecessors is
O(NṄ i−2) = O(N i−1).
Then, we must compute the Pareto front for this vertex. By the dominance
criterion stated in section 4.1.1, we know that each label has to be compared
to every other label. There are O(N i−1) labels at vertex vi+1,j, so comparing
one label to all others is done in O(N i−1) time. This operation has to be
carried out for each label. The time complexity to compute the Pareto front
for one vertex is then O(N i−1Ṅ i−1) = O(N2(i−1)).
Finally, in order to �nd the optimal path between the center and a vertex
located on layer LNL

, this operation must be done for each vertex on each
layer:

NL∑
L=1

N ×N2(L−1) =

NL∑
L=1

N2L−1

=
1

N
× N2NL − 1

N2 − 1

= O(N2NL−3)

As for the space complexity, the time complexity is exponential with the
number of layers. These results, although they are given for the worst case

82

scenario, should be close to the expected time and space complexity, given
two reasons:

• Apart from the �rst layers, and depending on the way that the layers
are sampled and the maximum authorized turn angle, it is very likely
that every vertex has an important number of predecessors, of the
order of N/3 for the test cases presented in this thesis;

• The dominance criterion given in 4.1.1 implies to keep a large number
of labels for each vertex, since the cost and altitude of a path are
proportional to one another (with small variations depending on the
level �ights).

Therefore, the expected time and space complexities should be close to their
worst case evaluation, which is exponential, and therefore not suitable for
large instances, which are the subject of this thesis. In order to decrease
these complexities, a solution is to use heuristics.

4.1.3 Dynamic programming based heuristic for
designing one route

4.1.3.1 Without preprocessing

A method to reduce the space and time complexity of the method can
be to consider only the cost of a path for the design, and to consider the
minimum and maximum altitudes only when an obstacle is encountered.
The corresponding method is described by Algorithm 4 and illustrated in
�g. 4.1. This method di�ers from the one developed in [121] and adapted
in the previous section in that only one label is kept for each vertex,
representing the cost of each path. By keeping only the cost for each path,
we take this method back to a classic path search, only checking that the
constraints are met a each label's creation. By taking into account the
structure in layers, and since the edges are always oriented from a layer i
to the layer i + 1, this algorithm has a time complexity in O(‖A‖), which
allows to tackle rather large instances.

83

Algorithm 4 The dynamic programming algorithm for the SID/STAR
design problem. In this algorithm, the cost of each edge is computed in
two con�gurations: with and without a level �ight (lines 11-13). The �nal
cost of the edge is the minimum between the two, and the corresponding
con�guration is remembered (line 14). Each ending vertex of the edges has
then its cost updated whenever its current cost is higher than the cost of a
previous vertex, to which is added the cost of the edge (lines 15-22). This
process is done for all vertices, layer by layer (lines 9-10).

Require: A starting vertex s, a list of layers L composed of vertices,
to which are attached edges, a minimum and a maximum slope of
climb/descent, resp. αmin and αmax. The set of all vertices is denoted
V , the set of all edges is denoted E.

1: Initialization: Create an array d of 'distances' the size of V such that
d [v] contains the distance from s to v. Create an array p of predecessors
such that p [v] contains the predecessor vertex of v.

2: for each vertex v in V do

3: d [v] =∞
4: p [v] = null
5: end for

6: d [s] = 0
7: s.minimumAltitude = 0
8: s.maximumAltitude = 0
9: for i from 1 to L.size do

10: for each vertex u on Li do
11: for (u, v) in E do

12: compute two surfaces S1 and S2. S1 is the 3D extension of
(u, v) obtained applying αmin and αmax on the length of (u, v), starting
respectively at the minimum and maximum altitudes of u. S2 is obtained
with the same method, by applying a level �ight on (u, v).

13: set c1 and c2 the costs of S1 and S2 respectively, according to
the constraints and objective function.

14: set c = min(c1, c2) and S the corresponding surface.
15: if d [u] + c < d [v] then
16: d [v] = d [u] + c
17: p [v] = u
18: if S is the version with a level �ight then
19: set v.levelFlightLength = u.levelFlightLength +

distance2D(u,v)
20: else

21: set v.levelFlightLength = u.levelFlightLength
22: end if

23: end if

24: end for

25: end for

26: end for

27: return p, d

84

(a) The cost of each neighboring node
is computed by taking all constraints
and the objective function into
account. Two costs are computed:
one by considering a level �ight on
the arc, and the other without.

(b) The cost kept for the neighbor
is the minimum between the two
computed previously. The costs of
all neighbors of the starting node are
computed in the same way.

(c) Once all costs for the �rst
neighboring layer have been
computed, the same evaluation
begins for the second layer.

(d) The costs of the neighbors are
updated in the same fashion as in
the original Bellman-Ford algorithm.
The process goes on layer by layer
until all costs have been computed in
the graph.

Figure 4.1 � The �rst iteration for the dynamic programming algorithm. All
the neighbors of the node are visited, but only a part of them is selected for
the next steps.

85

However, in three dimensions, applying this method without prior
preprocessing can lead to the impossibility to �nd a solution in some
particular cases. If we take for instance the situation illustrated in �g. 4.2a,
in which an obstacle is to be �own over by making a detour so as to gain
enough altitude to pass over it, this method is not able to �nd a feasible
solution, as illustrated in �g. 4.2b. Indeed, by construction, this method
will only retain for each node the least expensive way to attain it, based
on the information gathered by processing previous nodes. Therefore, it
does not take into account the constraints yet to come, nor retains the other
possibilities to attain the node. In the example given here, this translates
into being unable to �nd a path that �ies over the obstacle when there might
be one, because only the shortest path to each node is kept, and the attained
altitude is too low to pass the obstacle.

(a) A situation where a detour is
necessary to be able to pass over the
obstacle.

(b) The default behavior of the
method is to build the paths
progressively, by keeping only the
best current solutions for each node.
In this case, the path chosen to attain
the point P (solid line) is not long
enough to allow for passing over the
obstacle. The path that would allow
it (in dashed line) was discarded, as
it was not the best possible subpath
to P .

Figure 4.2 � A situation where the naive heuristic leads to unfeasible
solutions.

4.1.4 With preprocessing: imposing boundary values
for the minimum and maximum altitude

The issue raised in the previous section, regarding the possibility to end up
in a dead end due to the lack of visibility on the constraints, can be partly
resolved by applying the principle of dynamic programming, in a reverse
way (in our case: from the entry/exit point of the TMA towards the center
of the graph), so as to propagate the altitude constraints on all nodes on the
graph before applying the path search algorithm. This process is described

86

by Algorithm 5, and illustrated by �g. 4.3. This preprocessing phase allows
a later path search algorithm to �nd paths otherwise discarded by the �rst
heuristic. However, it also creates a dependency on the entry/exit point
processed. Therefore, each route must be computed individually, which
doubles the computing time of a solution in the case where one route is
to be found, and multiplies the computing time of a solution by roughly
two times the number of routes to compute in a general case (instead of
running the algorithm only once for the whole solution, it is run twice for
each route). This increase in computation time can be critical in instances
where numerous edges must be processed. In this preprocessing step, some
vertices may be discarded for the subsequent path search (lines 25-29 in
Algorithm 5). This situation happens when the constraints on the minimum
and maximum altitude lead to an unfeasible situation, where the minimum
required altitude is higher than the maximum authorized altitude. This
idea originates from Algorithm 1 in [121] and allows to overlook some of the
infeasible solutions during the path search.

87

Algorithm 5 The preprocessing method to take altitude constraints into
account. This algorithm provides each node of the graph with additional
constraints. It begins by computing the requirements of altitude for the
arrival point (lines 5-9). Then, these altitude constraints are propagated
towards the center (lines 11-12). This is done by updating the minimum
possible altitude at the vertex (lines 13-19), and the maximum possible
altitude at the vertex (lines 20-22).

Require: The starting vertex s of a route, its arrival vertex a, a list of layers
L composed of vertices, to which are attached edges, a minimum slope
of climb/descent αmin, the altitude constraints imposed by the layout on
each vertex, respectively denoted zobstacles

min and zobstacles
max . The set of all

vertices is denoted V , the set of all edges is denoted E.
1: Initialization: Create two arrays zmin and zmax of minimum and

maximum altitudes both the size of V such that zmin [v] and zmax [v]
contain resp. the minimum and maximum authorized altitudes upon
arrival at v starting from s to attain a.

2: for each vertex v in V do

3: zmin [v] = +∞, zmax [v] = −∞
4: end for

5: if a.zobstacles
min or a.zobstacles

max is not a null value then
6: zmin [a]← a.zobstacles

min and/or zmax [a]← a.zobstacles
max

7: else

8: zmin [a]← +∞, zmax [a]← −∞
9: end if

10: Set a as processed
11: for i from L.size to 2 do
12: for each edge (u,v) in E such that v is on Li and v is processed do
13: if dmin [v] is �nite then
14: Set d the length of the proj. of (u,v) on the horizontal plane
15: zmin [u]← min (zmin [u] , zmin [v]− dαmin)
16: end if

17: if u.zobstacles
min is not a null value then

18: zmin [u] ← max
(
zmin [u] , u.z

obstacles
min

)
if zmin [u] is �nite,

u.zobstacles
min otherwise

19: end if

20: zmax [u]← max (zmax [u] , zmax [v])
21: if u.zobstacles

max is not a null value then
22: zmax [u]← min

(
u.zobstacles

max , zmax [u]
)
if zmax is �nite, u.z

obstacles
max

otherwise
23: end if

24: end for

25: for all vertices u on layer i do
26: if zmin [u] and zmax [u] are �nite and zmin [u] > zmax [u] then
27: Discard vertex u and all the edges connected to it
28: end if

29: end for

30: end for

31: return zmin, zmax

88

(a) The minimum altitude to pass
over the obstacle is deduced from the
height of the obstacle beneath a.

(b) All vertices connected to the
arrival vertex are updated so that
each of them holds the minimum
altitude required to be able to pass
over the obstacle when it is needed.

(c) The backpropagation of the
constraint is carried out until the
route start.

(d) When the backpropagation is
complete, the path search algorithm
can be run, by taking into account
the minimum altitude constraint.
The process is exactly the same
for the maximum altitude constraint
(which occurs when some obstacles
have a nonzero lower altitude, such
as forbidden zones).

Figure 4.3 � The backpropagation method prior to the dynamic
programming based path search algorithm on the graph allows it to avoid
some dead ends when computing the routes.

89

However, on top of the increase in computation time, applying Algorithm 5
is not enough to guarantee the optimality of the solution. This is due to
the fact that this method stores only the most favorable constraint for the
subsequent path search. Therefore, it improves its capacity to �nd a solution,
but �nding the optimal solution is subject to the same problem as stated
before, in which a �rst part of a solution is computed, which is optimal for
the given criterion and for the subpath under consideration, but will lead to
a suboptimal solution. This case is illustrated by �g. 4.4. In this example,
two subpaths from the starting point s and a point P are illustrated, with the
arrival point a behind an obstacle. The obstacle has two di�erent heights:
low in blue and moderate in red. During the preprocessing phase, as it is
described in Algorithm 5, a minimum altitude is associated to the point P .
This minimum altitude corresponds to the low obstacle. We assume that
the altitude reached by the path in solid line is that same minimum altitude.
Then, the best admissible path from P to a is over the low obstacle. This
path will be chosen by the method, even though the path in dashed line is a
better solution to the problem. More importantly, this method still cannot

Figure 4.4 � A case where requiring a minimum altitude is not su�cient to
�nd the optimal solution: the path in solid line is chosen over the one in
dashed line, even though the latter is shorter.

guarantee to �nd any solution when there might be one. An example is
provided by �g. 4.5. In this simpli�ed example, there are two possible routes:
one that passes over a mountain, and one that passes beneath a forbidden
zone. With the method described above, and since only the most permissive
constraints are backpropagated to each point, point P is not constrained
on the minimum altitude due to the backpropagation from the forbidden
zone, and P is not constrained in maximum altitude either, due to the
backpropagation from the mountain. If we consider that the shortest path
from the center to P is too long to allow to pass under the forbidden zone,
but too short to allow to pass over the mountain, the algorithm cannot
�nd any solution, even though there might be one (that passes over the

90

mountain), despite the preprocessing phase.

Figure 4.5 � A case where the preprocessing phase is not enough to allow
the algorithm to �nd a solution: the most permissive constraints only are
backpropagated from the forbidden zone and the mountain, and the resulting
situation leads to the same problem as the case where no preprocessing is
applied.

4.1.5 Heuristic for designing several routes

In the previous sections, we presented a method to design one route under
altitude constraints. In the next paragraphs, we extend this method to the
design of several routes.
A �rst idea can be to use repeatedly the method for one route until all routes
are designed. This idea is illustrated by Algorithm 6. In this case, only one

Algorithm 6 Designing a set of routes sequentially by using the dynamic
programming heuristic with preprocessing. All routes start at the center.

Require: The center of the graph c, all entry/exit points of the TMA as
vertices P 1, . . . , PNP , a list of layers L composed of vertices, to which
are attached edges, a minimum slope of climb/descent αmin, the altitude
constraints imposed by the layout on each vertex, respectively denoted
zobstacles

min and zobstacles
max . The set of all vertices is denoted V , the set of all

edges is denoted E.
1: Initialization: Create an array r of routes.
2: for each entry/exit point P i, i = 1, . . . , NP do

3: Apply the preprocessing technique of Algorithm 5 by considering
routes 1, . . . , i− 1 as obstacles

4: Let ri be the result of Algorithm 4 applied between the center and
P i

5: r[i]← ri

6: end for

7: return r

91

graph of the form G = (V,A) as described in section 4.1.1 is considered,
which means that only one runway (and one orientation of this runway) is
taken into account. The method, however, is the same when taking several
graphs into account. The most important drawback of this method is that
it doesn't take into account the need to separate the merging points of the
routes. Indeed, Algorithm 6 shows that all routes depart from the origin. As
explained in the previous chapters, such a design is not acceptable in real-life
conditions. Therefore, some of the routes must be allocated a new starting
point. In order to achieve this, one can proceed as explained in Algorithm 7.
The routes are ordered by decreasing order of tra�c �ow. This will allow
to favor a more direct design for the busiest routes. Then, for each route R
except the �rst one, we search for the point P with a maximum curvilinear
abscissa such that P is too close to another route. We denote L the layer
containing P , and R′ the route that P is too close to. The new starting
point for R is then the intersection of R′ with L. The process is illustrated
by �g. 4.6.

(a) The initial solution for the
concurrent merging problem. Routes
R and R′ are too close, from the
center to layer L.

(b) The new start for route R is the
intersection of R′ with L.

Figure 4.6 � The heuristic for solving the concurrent merging problem. The
routes start on the route closest to them, on the last layer on which the
routes were too close to each other.

4.1.6 Motivations for a metaheuristic based approach

As demonstrated in the last paragraphs, the heuristic constructed from the
dynamic programming approach has several severe drawbacks in the scope
of this work. Firstly, the optimality of the solution is not automatically
veri�ed. This problem could be overcome by keeping a Pareto front of
labels, but in our case, it would take too much time to �nd a solution,
as demonstrated in section 4.1.2.2. Also, as for the routes in one graph,
when several graphs are to be taken into account, these must be processed
sequentially. Therefore, in order to �nd the optimal solution, one should also
test all combinations for the order of generation of the graphs, and routes.

92

Even so, the optimality cannot be guaranteed. For instance, optimality
cannot be achieved in a case where two graphs are to be considered and the
optimal solution involves a level �ight in both, in order to avoid a route from
the other (see an illustration of this case in �g. 4.7). Such a solution can only
be found if both graphs are processed at the same time, or by introducing
random behaviors. Finally, and most importantly, the method based on the

Figure 4.7 � A case where two graphs must be processed at the same time
in order to �nd the optimal solution. Route R1 must have a level �ight in
order to pass below R3 and route R2 must have a level �ight to pass below
R1.

heuristic is not guaranteed to �nd a solution, even when one exists (even
when taking the preprocessing steps), as explained in section 4.1.4. Despite
these drawbacks, this method presents various advantages, listed below:
• It is an e�cient way of designing a single route when only one obstacle
is to be taken into account.

• It doesn't need any parameter setting, which makes it very easy to
use. The user only has to provide the starting and ending point of the
route.

These features make the method fairly e�cient in cases where only one, or
very few routes are to be computed, with few to no obstacles to take into
account. However, with the risk of not being able to �nd any solution when
there might exist one, by introducing a heuristic for the choice of the new
starting points for the routes, and with the need to process each separate
graph in a sequence, this approach is not viable on its own for general
cases. This algorithm could be considered to make for a subroutine of a
metaheuristc-based approach. In the next sections, we present the approach
chosen to solve the optimal SID/STAR design problem, that is based on a
meta-heuristic.

93

Algorithm 7 The heuristic for the design of several routes with the dynamic
programming based approach. Lines 2 to 5 build a �rst solution, with all
routes starting on the center. Lines 6 to 15 determine for each route the
last route among the previous ones that is too close to the route under
consideration. Based on this information, lines 16 to 24 recompute the
routes with a new starting point so that the merging constraint as well as
the route separation constraint are met.

Require: The center c of the graph, the entry/exit points of the TMA
P 1, . . . , PNP , a list of layers L composed of vertices, to which are
attached edges, a minimum slope of climb/descent αmin, the altitude
constraints imposed by the layout on each vertex, respectively denoted
zobstacles

min and zobstacles
max . The set of all vertices is denoted V , the set of all

edges is denoted E.
1: Initialization: Create an empty set R of routes, a double-entry array A

of size NP × 2. This array will contain for each index i both the last
route that is too close to Ri and the last layer for which the two routes
were too close to each other. All values of A are initialized to −1.

2: for i from 1 to NP do

3: Apply the preprocessing algorithm (Algorithm 5) between c and P i

4: Compute Ri between c and P i with Algorithm 4
5: end for

6: for i from 2 to NP do

7: for j from 1 to NL do

8: for k from 1 to i− 1 do
9: if Ri and Rk violate the route separation constraint on layer
j then

10: A[i][0]← k
11: A[i][1]← j + 1
12: end if

13: end for

14: end for

15: end for

16: R← R1

17: for i from 2 to NP do

18: if A[i][1] = −1 or A[i][1] is greater than the number of the layer
that contains P i or A[i][1] is greater than the number of the layer that
contains PA[i][0] then

19: Set the new starting point s = c
20: else

21: Set the new starting point s = γ
A[i][0]
h (τ

A[i][0]
A[i][1]), which is the

intersection of RA[i][0] with the layer LA[i][1]. If s is already a merging
point, increase the layer of connection until the intersection of RA[i][0]

with the layer is not already a merging point. If no such point exists,
set s = c.

22: end if

23: Apply the preprocessing algorithm (Algorithm 5) between s and P i

24: Compute Ri between s and P i with Algorithm 4
25: R← Ri

26: end for

27: return R 94

4.2 The Simulated Annealing algorithm for the

SID/STAR design problem

We start by introducing the general method on which our algorithm relies
to handle the optimization of SIDs and STARs: the Simulated Annealing
meta-heuristic. It was �rst introduced in the early 1980's [122] and is
designed to address an optimization problem with a mono-objective function.
This method aims at mimicking a process originally found in metallurgy,
the annealing. It consists in heating a material to a high temperature
and then letting it cool down at a slow rate in order, for the molecules, to
rearrange in a structure of minimal internal energy. This process is opposed
to the quenching, which consists in immediately submitting the hot material
to a low temperature. It also allows the material to harden, but with a
non-optimal arrangement of its molecules (see �g. 4.8). The corresponding

Figure 4.8 � The purpose of the annealing process. Top: quenching, bottom:
annealing (taken from [123]).

algorithm is described by Algorithm 8 and works in the following way:

• Initialization: A �rst solution to the problem is computed, that will
serve as the initialization of the algorithm. In the mean time, a starting
"hot" temperature is chosen. This temperature is set by following these
steps:

1. a �xed initial temperature is set;

2. a solution to the problem is computed;

3. a neighboring solution is computed;

4. the neighboring solution is accepted with a probability depending
on the temperature (see the steps in the cooling loop for the
probability);

5. repeat steps 2 to 4 for a �xed number of times;

95

6. if the number of accepted neighbors is lower than a �xed value,
increase temperature and repeat steps 2 to 6.

More detail on the choice of the initial temperature can be found
in [123], and the reader can refer to chapter 5 for the speci�c �xed
values used in this work.

• Cooling loop:

� The result of the evaluation of the objective function for the
current solution xi is denoted yi, and the current temperature
of the algorithm is denoted by T .

� A neighbor xj of the current solution is randomly generated. This
step implies that it is possible to establish a notion of distance
between two solutions in the algorithm.

� The objective function is evaluated for the neighbor solution xj.
The result is denoted by yj.

� If yj is better than yi, then the neighbor is accepted as the new
current solution, and will serve as a starting point for the next
iteration of the loop.

� If yj is not better than yi, the neighbor is nonetheless accepted as

the new current solution, with a probability of e
yi−yj

T (4.3). Thus,
the probability of accepting a solution worse than the current one
decreases with the temperature.

� The temperature T is decreased.

• Stopping criterion: The algorithm stops when it has performed a
pre-de�ned number of iterations, or when the temperature reaches a
�xed value. It can also stop earlier in the cases where the optimal value
of the objective function is known and the algorithm �nds a solution
for which the objective function is evaluated to this value.

In our work, the general idea is to gather the data required to build an
instance of a problem, and then to apply a SA-based method to compute
a solution. The choice of using a meta-heuristic was made because of the
large number and the complexity of the constraints to be taken into account,
such as the route separation, which make the use of exact approaches more
di�cult to implement in terms of computation time. In the process used
here, the routes are computed one by one in their decreasing order of tra�c
�ow, then the resulting set is evaluated along the optimization function.
This process is done iteratively until a stopping criterion is reached. The
algorithm is designed to explore the solution space at the beginning, and
then focus more and more on the best solutions found towards the end.
This exploration behavior, induced by the introduction of randomness in the
path search, which will be detailed later in this chapter, allows to generate
the routes sequentially, in any given order, without the drawback that this
induces in deterministic approaches. In our case, the evaluation process is
carried out by putting the generated routes into a simulation containing the

96

Algorithm 8 The principle of functioning of the SA.

1: Build instance
2: Set a starting temperature for the SA
3: Compute an initial solution
4: while stopping criterion isn't reached do
5: for a �xed number of iterations do
6: Compute a neighboring solution
7: Evaluate the new solution
8: Select one of the two solutions as reference for the next iteration
9: end for

10: Decrease temperature
11: end while

12: return best solution encountered

parameters relative to the terrain and the cities. This simulation computes
the cost of the given solution in order to estimate its performance in the
scope of the problem (see �g. 4.9).

Figure 4.9 � The simpli�ed process for the SA adapted to our case. The
solution computed by an iteration of the SA is evaluated by the means of a
simulation and the result is used for the subsequent iterations of the SA.

4.3 Generating one route on the graph: the

modi�ed Bellman algorithm

In this section, we describe in details the way in which the Simulated
Annealing and Bellman-Ford algorithms have been adapted to our problem.
The Bellman-Ford algorithm is used to solve the single source shortest path
problem in a directed graph [56]. In its original version, it works by updating
repeatedly the minimum cost to each vertex in the graph with estimations
that are more and more precise at each iteration. The original algorithm
is described in Algorithm 9 and illustrated in �g. 4.10. This algorithm
iteratively updates the cost of each vertex in the graph by comparing its
current cost with the cost of all of its neighbors added to the cost of traveling
from the neighbor to the vertex (lines 8-13). This process is done as many

97

Algorithm 9 The original Bellman-Ford algorithm for the one-to-all
shortest path problem in a graph.

Require: A starting vertex s, a list of vertices V , a list of edges E
1: Initialization: Create an array d of distances the size of V such that d [v]

contains the distance from s to v. Create an array p of predecessors such
that p [v] contains the predecessor vertex of v

2: for each vertex v in V do

3: d [v] =∞
4: p [v] = null
5: end for

6: d [s] = 0
7: for i from 1 to V .size-1 do
8: for (u, v) with weight w in E do

9: if d [u] + w < d [v] then
10: d [v] = d [u] + w
11: p [v] = u
12: end if

13: end for

14: end for

15: for (u, v) with weight w in E do

16: if d [u] + w < d [v] then
17: Error: there is a negative cycle
18: end if

19: end for

20: return p, d

times as there are vertices (minus one) so that all possible paths within
the graph are checked (line 7). This algorithm has a time complexity in
O(‖V ‖ ‖E‖).

4.3.1 The adaptation of the Bellman-Ford algorithm to
our problem

In our version, we modify the Bellman-Ford algorithm to take advantage of
the structure in layers. This adapted version is presented in Algorithm 10,
which is illustrated by �g. 4.11. In �g. 4.11a, we consider the starting
node for a path, as well as its neighbors: V1.1 to V1.5, with their associated
costs. At this point, the only marked node is s. The table below holds for
each vertex its minimal cost (distance) from s, d(v), the preceding vertex
in the shortest path from s to this vertex, p(v), and a value true or false
that indicates whether the arrival point a is reachable from the vertex under
consideration. In the second step (�g. 4.11b), the aim is to select a subset of
arcs with minimum cost among the arcs that allow to reach the arrival point
a. This subset is denoted Eu, u being the current expanded vertex (so, in
�g. 4.11b, u = s). In step 3 (�g. 4.11c), the ending vertices of the selected
edges are marked. The algorithm will then repeat the three steps with each
marked vertex in the second layer, and proceed through all the layers in the

98

same way until the layer of a is considered. The shortest path from s to a
is given by the sequence of predecessors starting at a, taken backwards.
This version of the Bellman algorithm allows for a better computation
time, since we don't consider all edges at each iteration but only the edges
associated to the vertices of a single layer. When a vertex is not marked,
none of its edges is considered at all. The other noticeable feature of this
modi�ed version is the use of the list Eu containing only a portion of all
edges coming out of a given vertex u. This choice was made in order to
save computation time by only considering the arcs with the lowest cost. In
theory, it puts the optimality of the solution in jeopardy by integrating a
greedy behavior. However, when we consider the context of the work, two
arguments can be raised in favor of this approach:
• The weights of the edges are their length, as they represent the
distance between two points. Therefore, there should be no signi�cant
di�erence between the weight of two edges starting on the same vertex,
and so over the whole graph: the weights are uniform.

• This modi�ed version of the Bellman-Ford algorithm is used to
generate routes between two given points in the search space. In order
to allow for exploration of the search space, at each path search, the
weight of the edges is changed, in a way that will be explained in the
next paragraph. Therefore, we do not, in fact, look for the shortest
path, but rather a short, reproducible path. Since the modi�ed
Bellman-Ford algorithm is itself embedded in a Simulated Annealing,
the latter is the one responsible for choosing the best weights for the
edges. Since the algorithm is designed to explore the search space, it is
very likely that previously discarded edges will be taken into account
in a later iteration.

99

(a) The graph used for the example of
the original Bellman-Ford algorithm.
The starting node is colored in green.

(b) The initial state of the algorithm.
The source node is A with cost 0, the
rest have an initial in�nite cost.

(c) Step 1: A �rst relaxation of all
arcs is performed. The costs of all
nodes are updated. There will be as
many relaxations as the number of
vertices except A. The nodes whose
cost is updated are colored in blue.

(d) Step 2: A second relaxation of
all arcs is performed. The costs of all
nodes are updated. Node B has its
cost unchanged.

(e) Step 3: A third relaxation is
performed.

(f) Step 4: A fourth relaxation is
performed. Only node D has its cost
changed.

Figure 4.10 � An example of run of the Bellman-Ford algorithm. The letters
are replaced by the cost for a better readability. The starting node is colored
in green ; the nodes whose cost is updated are colored in blue at each
iteration.

100

Algorithm 10 The Bellman-Ford algorithm in the SA method. The original
algorithm is modi�ed to take the layer structure into account. The process
is sped up by taking into account only the edges that allow to reach the
destination (line 11), by expanding only the nodes previously visited (lines
8,10,17) and by visiting only a promising set of neighbors for each node (line
11).

Require: A starting vertex s, an arrival vertex a, a list of layers L composed
of vertices, to which are attached edges. s is located on the �rst layer
and a on the last layer, an integer n giving the maximum number of
edges to take into account for each vertex expanded

1: Initialization: Create an array d of distances the size of V the set of
all vertices such that d [v] contains the distance from s to v. Create an
array p of predecessors such that p [v] contains the predecessor vertex of
v.

2: for each vertex v in V do

3: d [v] =∞
4: p [v] = null
5: Tag v as not marked
6: end for

7: d [s] = 0
8: Tag s as marked
9: for i from 1 to L.size-1 do

10: for each vertex u on L [i] tagged as marked do

11: create a list Eu containing the n edges (u, v) of E with the lower
weight and such that a is tagged as true for v. If there are fewer than n
such edges, Eu contains all of them

12: for each (u, v) with weight w in Eu do
13: if d [u] + w < d [v] then
14: d [v] = d [u] + w
15: p [v] = u
16: end if

17: Tag v as marked
18: end for

19: end for

20: end for

21: return p, d

101

(a) The initial state of the algorithm. Only s is marked.

(b) Expansion of the promising arcs. V1.5 is not expanded
because a is unattainable.

(c) The state of the algorithm before the second iteration: the
ending vertices of the selected arcs are marked. Only marked
nodes on layer 2 will be expanded.

Figure 4.11 � The �rst iteration for the modi�ed Bellman-Ford algorithm.
All the neighbors of the node are visited, but only a part of them is selected
for the next steps.

102

4.3.2 The management of the edges' weight

Each individual path is computed with an adapted version of the
Bellman-Ford algorithm, with a carefully chosen cost for the arcs, as the
algorithm has to be able to explore various possible paths for two given
starting and ending points. This last requirement implies that the cost of
the edges can vary during the execution of the algorithm. Otherwise, for
two given points, the result of the search would always be the same. To
achieve this, the algorithm biases the costs of the edges in the graph for
each path to be computed.This process is done by the SA. A number (the
bias) between -1 and +1 is associated to each merging layer. A negative
bias will increase the costs of the arcs 'on the right' of each node until the
next merge layer, while a positive bias will increase the costs 'on the left'
(see Figure 4.12). The closer the bias is to -1 or +1, the sharper the turn

Figure 4.12 � Two paths to the same exit and the associated biais functions.
The shape of the paths is similar to the associated shape of the bias function
g on [0 , 1].

will be, while a null bias will favor the straightforward paths. By resetting
the costs of the arcs at each path search, it is possible to have a complete
exploration of the graph while keeping a way to recreate any path, given
its start and end points along with the biases. The way in which the biases
are applied to the edges of the graphs is described in Algorithm 11, and
illustrated in �g. 4.13. In a nutshell, this piece of algorithm does, for each
node and given biases, the following:

103

Algorithm 11 The arcs valuation algorithm.

Require: A starting vertex s, an exit vertex e, layers L1...Ln where s
belongs to L1 and e belongs to Ln, an array A of size n− 1 containing
�oat values between −1 and +1.

1: Initialization: Set all arcs costs to their length. Tag s as marked. Choose
an expansion coe�cient α.

2: for each L i do

3: for each marked vertex v on Li do

4: Let nv be the number of arcs starting on v
5: Number all arcs (v, w) from 1 to nv from left to right and mark

each w
6: Let m be b(1 + A[i])nv−1

2
c+ 1

7: Arc number m has its cost unchanged
8: Let G =Max(m,nP −m)
9: for all arcs ek1 on the right of arc m do

10: Multiply the cost of ek1 by 1 + k1−m
G

(α− 1)
11: end for

12: for all arcs ek2 on the left of arc m do

13: Multiply the cost of ek2 by 1 + m−k2
G

(α− 1)
14: end for

15: end for

16: end for

• Find the middle node among its successors (Fig. 4.13a);

• Find the node corresponding to the assigned coe�cient. This
coe�cient is the same for all nodes between two given merging layers.
The gap between the middle node and the node to �nd is proportional
to the assigned coe�cient (which is in [−1,+1]). The sign of the
coe�cient indicates the direction of the gap relatively to the middle
node (right or left). For instance (see �g. 4.13b), if there are 3 nodes
on the right of the middle node, and the coe�cient is 1

3
, then the node

to �nd is the �rst one on the right of the middle node. This new node
is called the reference node;

• The reference node has its cost unchanged;

• The algorithm iteratively increases the costs of the nodes neighboring
the reference node. The farther the node from the reference node, the
more its cost is increased (�g. 4.13c).

It is during this phase that the list Eu in Algorithm 10 is created. Once all
edges starting on a given vertex have their new weight set, the n of them
with the lowest weight can be put into the list Eu. The coe�cients for the
cost bias are chosen in a way that helps reducing the zigzag phenomenon.
The aim is to generate a sequence of numbers that are coherent with their
predecessors and successors. In order to achieve this, the generation is
based on the raised cosine function:

104

(a) Identi�cation of the
middle neighbor of a
node.

(b) Identi�cation of the
reference node.

(c) Valuation of the
arcs. The cost to the
red node is una�ected.
The cost to the white
one is heavily a�ected.

Figure 4.13 � The arcs valuation function. The cost of the arcs is increased
proportionally to the distance of their ending vertex to the reference node.

rcos(x, µ, s) =
1

2s

[
1 + cos

(
x−µ
s

π

)]
on [µ−s, µ+ s] (4.4)

The method works as follows, for a given starting vertex o (origin) and a
given ending vertex a (arrival):
• A number α ∈ [0, 1] and two signs sgn1, sgn2 ∈ {−1,+1} are randomly
chosen;

• Three amplitude values A1, A2, A3 in [0, 1] are set. These values can
be chosen randomly, but in this work, they are decreased down to zero
with the progress of the SA. This allows to explore the state space
when the temperature is high and focus on a narrower neighborhood
when it is low;

• Three raised cosine functions are generated (see Figure 4.14):

• rcos1(x) = sgn1 ·A1 · α2 · rcos(x,
α
2
, α

2
)

• rcos2(x) = − sgn1 ·A2 · 1−α
2
· rcos(x, α+ 1−α

2
, 1−α

2
)

• rcos3(x) = sgn2 ·A3 · 1
2
· rcos(x, 1

2
, 1

2
)

• A function g is de�ned as g(x) = rcos1(x)+rcos2(x)+rcos3(x)
2

on [0, 1], by
setting rcos1 = 0 on]α, 1] and rcos2 = 0 on [0, α[;

• The coe�cients are chosen so that the route to �nd has the same shape
than g, scaled to the distance [o , a] (see �g. 4.12).

105

Figure 4.14 � The raised cosine functions to determine the biases in a general
case. The function g is the weighted sum of the three others and its shape
is the one to give to the path under computation.

4.4 The design of several routes with our

algorithm

Once the �rst route is computed with the method above, a solution can be
fully generated by adding the remaining routes, creating a tree structure.
The full process for the design of one solution is as follows:
• One tree is constructed for each di�erent runway under consideration,
with its layers, vertices and edges. For instance, in the case of an
airport using two parallel runways, one for the departures and the
other for the arrivals, two trees will be constructed;

• In each tree, the routes are built as follows:

� The �rst route (γ0
h, γ

0
v) is designed with the method explained

above;

� A subset of L is identi�ed as merge layers. They are the layers
on which it will be possible for two routes to merge together.
These layers cannot be chosen randomly, in order to avoid having
two merge points too close to one another. This aspect will be
detailed in the next paragraph;

� The intersection points between γ0
h and the merge layers are

identi�ed as possible merge points;

� One of these points is chosen as the starting point for the next
route search. Note that in the mathematical modeling, the whole
portion of route comprised between the center and the merge
point is also counted as part of the new route. Bearing this in
mind, all routes in a same tree start at the center of this tree;

� The second route is designed using the same method;

� The process continues until all routes have been computed;

• This process is performed for all trees under consideration.

Once a complete solution has been found, it can be optimized with the SA
algorithm as described at the beginning of this chapter.

106

4.4.1 Choosing the merge layers

As stated before, one of the main stakes in our approach is to choose where
to merge the routes. We chose to label some of the layers as merge layers,
as explained in the previous paragraph. In this paragraph, we explain how
the merge layers are chosen. We consider here for simplicity purposes that
there is only one graph, but in reality, the process is done for each graph.
Firstly, the center is always a merge layer. This allows to ensure that each
route can be designed, as long as there is at least one edge that ends on their
entry/exit vertex (i.e. that there exists an admissible path from the center
to this vertex). Indeed, the merge layers determine the starting points of
all routes. If the center were not considered as a merge layer, a signi�cant
part of the possible paths would be discarded, as it would be equivalent to
preventing the routes to start on this point. If there is not a single path
leading from the center to a given ending point of a route, the graph has to
be constructed in an other way so that there exists at least one path for each
route. The subsequent merge layers are chosen as follows (see �g. 4.15):
• We de�ne the value r as the number of regular layers between two
consecutive merge layers. Typically, in our tests, we chose r between
1 and 9 depending on the size of the instance;

• We choose an o�set value between 1 and r;

• The second merge layer (the �rst being the center) is Loffset+2;

• Each subsequent merge layer is spaced with the previous one by a gap
of r. For instance, the ith merge layer is Loffset+2+(i−2)·(r+1);

• The number m of merge layer is then

m = bNL − (o+ 2)

(r + 1)
c︸ ︷︷ ︸

nb of regular merge layers

+

center and offset︷︸︸︷
2 .

This method ensures that the merge layers are su�ciently far from each
other to abide by the merge constraint 3.5 as long as the space between
two consecutive layers is greater than a certain value. However, this process
alone cannot guarantee that an entry or exit point isn't located on a merge
layer. This situation can be very problematic since it would allow aircraft
to enter the TMA directly on another route, which in turn could generate
con�icts. In order to avoid such a situation, when an entry/exit point is
located on a merge layer, or on a layer that is too close, the merge layer
is moved to the nearest layer that is farther than the minimum distance
to keep between two merge layers from the layer containing the entry/exit
point, as long as it is not too close to another merge layer (see �g. 4.16). If
the minimum distances cannot be kept, the merge layer is simply deleted,
and becomes a regular layer (see �g. 4.17). Typically, as the entry/exit point
that is the farthest from the center is located on the last layer, the last merge
layer is often deleted.

107

Figure 4.15 � The positioning of the merge layers. In this case, the o�set
is 2 and r is 3. Apart from the �rst and second ones, the merge layers are
spaced by r regular layers.

(a) The exit point is located on a merge
layer, which is not acceptable.

(b) The merge layer is changed to be
on a regular layer that is su�ciently far
from both the exit point and the nearest
merge layer.

Figure 4.16 � The moving process of a merge layer when it is too close to
an exit point.

108

(a) The exit point is located on a merge
layer, which is not acceptable.

(b) The merge layer cannot be moved
to a regular layer that is su�ciently
far from the closest merge layer. It is
therefore deleted.

Figure 4.17 � The deleting process of a merge layer when it is too close to
an exit point and it cannot be moved.

109

4.4.2 Generating a neighbor decision in the SA

When operating the SA, one of the most important processes is the
generation of a neighbor for a given solution. A neighbor is a solution that
slightly di�ers from the original solution. In our work, and since the number
of iterations in the cooling process is known in advance, we de�ne the value
p ∈ [0, 1] as the progression of the algorithm. It is computed as p = T−Tend

Tinit−Tend
with T the current temperature. We also de�ne a random value R ∈ [0, 1]
that is drawn at every neighbor generation. The possibilities to generate a
given type of neighbor are set as explained by Algorithm 12 and illustrated
by the �owchart in �g. 4.18. In Algorithm 12, several operations are not
detailed, such as the management of the route connections or of the level
�ights. These are addressed in the next paragraphs. Some of the operations
listed in Algorithm 12 change many features in the initial solution. These
steps aim at exploring the search space in the beginning of the algorithm. It
can be seen that after 60% of progression of the algorithm, it is impossible
to fall in these cases. The algorithm then focuses on narrowing the best
solutions' neighborhoods.

110

� ∈ [0, 1]
� ∈ [0, 1]

Initial solution

Yes

No

 ?(1 − �). � > 0.4

0.5 < � ≤ 0.9

� > 0.9

� ≤ 0.5

Evaluate �

- Remove all level flights
- Change all coefficients for
the Bellman-Ford algorithm

Change all coefficients for
the Bellman-Ford algorithm

- Change all merge layers
- Remove all level flights
- Change all route connections
- Change all coefficients for the
Bellman-Ford algorithm

Yes No

Is there any conflict ? or
Is there any level flight ? or

?� > 0.3

Set � ∈ {1, 2, 3} Set � ∈ {1, 2}

� = 1

� = 2

� = 3

Evaluate �

NoYes

 ?� > 0.5

Change the route of
connection for a

random route (except
the first one)

Change the layer of
connection for a

random route (except
the first one)

Change the
coefficients for the

Bellman-Ford
algorithm for a
random route

Create a level flight
or

Change an existing
level flight

Neighbor solution

Figure 4.18 � The illustration of Algorithm 12 for the neighbor generation
in the SA. The major changes are colored in red, the medium changes in
orange and the minor changes in blue. At the beginning of the SA, the
major changes are more likely to happen. Past a certain progression of the
algorithm, only minor changes can be performed.

111

Algorithm 12 The neighbor generation in the SA method. Major changes
can happen at the beginning of the algorithm. Past a given progression of
the algorithm, only minor changes can happen.

Require: the progression p, the random number R, an initial solution S to
the problem

1: Initialization: Create a new solution S ′ that is a copy of S
2: if (1− p) ·R > 0.4 then
3: if R > 0.9 then
4: Change all merge layers
5: Remove all existing level �ights
6: Change all route connections
7: Change all coe�cients for the Bellman-Ford algorithm
8: else if R > 0.5 then
9: Remove all existing level �ights

10: Change all route connections
11: else

12: Change all coe�cients for the Bellman-Ford algorithm
13: end if

14: else

15: Set a variable nbChoices = 3 if there are con�icts (between a route
and an obstacle, or between two routes) or if there are level �ights in S ′

or if R > 0.3, 2 otherwise
16: Set a (the action) a random integer between 1 and nbChoices
17: if a = 1 then
18: if R > 0.5 then
19: Change the route of connection for a randomly drawn route

except the �rst two
20: else

21: Change the layer of connection for a randomly drawn route
except the �rst one

22: end if

23: else if a = 2 then
24: Change the coe�cients for the Bellman-Ford algorithm for a

randomly drawn route
25: else

26: Change the level �ights for a route on which there is a level �ight,
or a route that is in con�ict with an obstacle or another route, or create
a level �ight on a randomly drawn route

27: end if

28: end if

112

4.4.3 Changing the level �ights

In our work, we decided to include the management of level �ights in order
to be able to tackle complex scenarios where two routes can cross in the
horizontal plane. As stated in chapter 3, there are three constraints that
apply to the level �ights:
• There is a limit to the number of level �ights that can appear in the
solution.

• A level �ight cannot be too short in terms of horizontal distance: it
wouldn't make sense in a real operational context.

• A level �ight cannot be too long in terms of horizontal distance: the
aircraft has to climb enough to reach the en-route sector.

In order to enforce these requirements, we decided to impose that a level
�ight is always applied on the whole part of the horizontal pro�le of a route
that is comprised between two merge layers (see �g. 4.19). In doing so,
the second point is always considered valid. The management of the �rst
requirement, concerning the number of level �ights, is achieved with the
use of a table shared between all sets of routes in a solution, whose size
is the maximum authorized number of level �ights. It holds information
about each level �ight by the means of the tree number, route number and
layer number to which it belongs (see �g. 4.19). At the beginning of the

Figure 4.19 � The illustration of the management of the level �ights in our
approach. The table holds for each authorized level �ight the route and the
merge layer on which it is applied.

algorithm, this table is empty. Once it contains at least one level �ight, the
possible actions concerning the level �ights in Algorithm 12 are as follows
(see �g. 4.20):

113

• Changing an existing level �ight (i.e. changing the graph, route,
and/or layer of an existing level �ight);

• Removing an existing level �ight;

• Creating a new level �ight. If the maximum number of level �ights
is already reached, the new one replaces an existing one, chosen at
random.

If there is no existing level �ight, the only option is to create one.

Figure 4.20 � The possible choices for a change in the level �ights.

4.4.4 Changing the connection of a route

One of the main points addressed by our algorithm is the management of
the route connections. The way two routes merge together has already been
described in chapter 3. In this paragraph, we give in detail the way in
which the connections are created and modi�ed throughout the algorithm's
execution. For a given tree, the connections are handled by the means of a
dedicated table whose size is the number of routes (see �g. 4.21). The index
i corresponds to the connection information of route i, which is given by
the number of the route on which route i is connected, and the number of
the layer on which the connection takes place. When operating the SA, the
table is managed in the following way:

• The �rst route doesn't connect on anything, so we set the information
to a default value, like (-1,-1).

• All connections are decided before the �rst route is designed.

• When the route i is created or modi�ed, the algorithm checks the table
between indices i+1 and the table size. Each route that was connected
to route i is to be computed again, since their current connection may
not be acceptable anymore (it could induce a violation of the turn
angle constraint, or the obstacle avoidance constraint, for instance)
(see �g. 4.22). The other indices are not checked, since a route i can
only connect to a route between 1 and i− 1. Therefore, none of these
routes are connected to route i.

114

Figure 4.21 � The illustration of the management of the route connections
in our approach. The table holds for each route the route and merge layer
on which the connection must be done.

• When creating or modifying a connection, the algorithm checks
whether the connection it tries to create already exists. If this is the
case, it proceeds as follows:

� It tries to establish a connection on a di�erent layer of the chosen
route;

� When no solution is found, it tries to connect on a random route
with an index lower than that of the route to connect;

� The last point is repeated until an acceptable connection is found,
or a certain arbitrary count is reached. We set the count limit at
100;

� If the count limit has been reached, the route connects at the
center by default, even if another connection exists. This is
the only way to ensure that the route can be designed by the
algorithm. This kind of degraded cases can happen when the
number of merge circles is too small, or if the �rst routes to
design are too short. In these cases, there are too few connection
possibilities and they become saturated (see �g. 4.23). The
best way to avoid this situation is to include more merge layers
whenever possible.

• It can happen that during the execution of the algorithm, a connection
leads to an infeasible design (see the example of �g. 4.24). In that case,
the impossibility is detected by the modi�ed Bellman-Ford algorithm,
as the arrival point is never marked, which means that there is no
path between the connection point and the arrival point. When this
happens, the algorithm changes the connection to the nearest merge

115

(a) Route 2 must be recomputed. (b) Route 2 is recomputed. Since route
3 is connected to route 2, it must be
recomputed as well.

(c) Route 3 is recomputed. The
other routes are not checked for
recomputation as they are not connected
to route 2.

Figure 4.22 � The illustration of the propagation of the change in one route
in our method. The changes propagate to all subsequent routes that are
connected to the original route.

layer in the direction of the center, and repeats this process until a
feasible route can be generated (see �g. 4.25). In some cases, the
situation is similar to the one described in the last point, and the
route connects on the center regardless of other existing connections.

116

Figure 4.23 � Route 3 cannot be computed, since it cannot be connected
anywhere: all possible connection points are taken (the merge layers are
displayed in red, the regular layers in black). The only possible connection
point (route 1, layer 1) is already taken by route 2.

Figure 4.24 � An example of connection for which no solution can be found.
There exists no path between the selected merging point and the route arrival
point.

117

(a) Route 2 must connect to route 1
on layer 4, which is impossible.

(b) The connection layer for route
2 is lowered to 3. There is still no
possible path for this connection.

(c) The connection layer for route 2
is lowered to 2. A route can then be
found for this connection.

Figure 4.25 � No route can be found in the graph for route 2 with the given
connection. The merge layer is decreased until a route can be found. Only
the merge layers are displayed.

118

4.5 Solution evaluation

In the simulated annealing meta-heuristic, it is necessary to be able to
evaluate frequently a given solution (i.e. a set of routes). This evaluation is
carried out by the means of a grid with the following features:
• The grid covers at least the area covered by the trees.

• Each cell of the grid is a square whose side length is not greater than the
minimum horizontal separation (for example, their side is 1NM-long
in this work).

• Each cell holds the following information:

� The height of the highest ground obstacle that can be found in
this cell (mountain, antenna, building...);

� The minimum and maximum altitudes of a forbidden �ight zone
in this area (if any);

� The density of population on the ground (if any).

Thus, the obstacles are 'widened' due to the discretization. This allows to
take additional margins, but could also lead to the loss of potential solutions
if the grid squares are too large. This is why it is important to keep them
rather small.
In order to simplify the path search process, some of the constraints
presented in 3 are relaxed. They are the following constraints:
• maximum turn angle constraint;

• route separation constraint;

• obstacle avoidance constraint.

Instead of looking for routes that abide by these constraints in the path
search, we authorize the algorithm to design any set of routes. However,
during the evaluation process, whenever a constraint is violated, the
objective function is heavily penalized, which forces the algorithm to discard
such solutions. Note that in some complex cases, the algorithm may
terminate with its best solution still violating some constraints. In this
case, one or several other tries are made. If the algorithm still cannot �nd
an admissible solution, either the discretization or the limiting parameters
(minimum/maximum slopes γ, maximum turn angle...) must be changed.
To carry out the evaluation phase, each route is discretized with an arbitrary
step, for example dh (see �g. 4.26). Each of the created points belongs to
one cell of the grid according to its coordinates in the plane, and is given
a cost value, which is initialized at 0. The evaluation is done by processing
successively each cell of the grid containing at least one point. We also
de�ne the direct predecessors and direct successors of a point P with a
given curvilinear abscissa γ(P) as all the points of the same route as P
whose curvilinear abscissas are respectively within [γ(P)− 2dh, γ(P)] and
[γ(P), γ(P) + 2dh] (see �g. 4.26). These values have been arbitrarily chosen,

119

so that a curved path is not penalized, but a zigzagging one should be.
When a cell contains at least one point P , its evaluation is carried out as

Figure 4.26 � The discretization of one route for the evaluation process. The
direct predecessors and direct successors are identi�ed.

follows:

• The cost of P is increased by the value of the discretization step, so
as to take into account the route length objective;

• The cell containing P is checked for the presence of a city. When there
is one, the formula given in chapter 3 is applied, and the result is added
to the cost of P ;

• All cells in a dh radius around P are checked for obstacle intersections.
For each cell checked, and each existing obstacle within them, if
the obstacle separation constraint 3.1 is violated, the cost of P is
dramatically increased;

• All cells in a dh radius around P are checked for other routes. For
each cell checked, and each existing route point P ′ within them, the
following tests are carried out (see the illustration of each case in
�g. 4.28). If P ′ is at a distance (in 2D) less than or equal to dh and:

� belongs to a route that is in another graph, or

� belongs to a route in the same graph that is not involved in a
connection with the route to which belongs P , or

� belongs to a route that is involved in a connection with the route
to which belongs P , but neither one of the direct predecessors of

120

P is a direct predecessor of P ′, nor one of the two points P and
P ′ is a direct predecessor of the other, or

� belongs to the same route as P but is neither one of its direct
predecessors or successors,

and the vertical distance between P and P ′ is less than dv, then the
cost of P is dramatically increased. If one of the above conditions are
met, but the vertical distance between P and P ′ is more than or equal
to dv, a slight increase in the objective function is applied, so that the
algorithm favors planar graphs. This choice has been made to keep
the cognitive load of the controllers at the lowest possible level, since
a crossing between two routes always draws attention, even when they
are separated in the vertical dimension.

On top of this cell-by-cell evaluation, the maximum turn constraint 3.2 is
also checked, by considering successively each individual route. Starting
from the center and going towards each entry/exit point, the algorithm
checks each triplet of successive points. If the constraint is violated, the
cost of the middle point is dramatically increased. See �g. 4.27 for the
identi�cation of the cells to check, and �g. 4.28 for an illustration of the
possible cases that can occur when another route point is found in the
neighboring cells. Note that in our work and with our modeling, the case

Figure 4.27 � The evaluation process for one point of one route. One cell is
tested for all criteria. Neighboring cells in a given radius are tested for all
criteria but noise disturbance.

where P and P ′ are in con�ict while belonging to the same route is very
unlikely to happen, since an edge can only go from a layer i to a layer i+1.
It may however still happen, with an adequate choice of layers and a wide
maximum turn angle.

121

(a) P ′ is not checked for con�ict. (b) P ′ is a direct predecessor of P .

(c) P ′ is not a direct successor of P . (d) P ′ belongs to another route.

(e) P ′ and P have common direct
predecessors.

(f) P ′ and P don't have any common
direct predecessor.

Figure 4.28 � The detection of con�icts between routes in our algorithm.
Each possible case for the nature of P ′ is illustrated.

122

In this chapter, we presented two resolution approaches for the optimal
SID/STAR design problem. The �rst one is inspired by the principle of
dynamic programming. However, resolving the problem as it is formulated
with an exact algorithm is not feasible, as we established that both space
and time complexities are exponential. Therefore, the method features a
heuristic in order to reduce the risks of dead ends when a solution exists.
Nevertheless, this �rst approach has major drawbacks, such as the necessity
to impose an order for the route generation, or the fact that it cannot
�nd any solution when there might be one in speci�c conditions. In order
to avoid these problems, a second method is introduced, based on the
Simulated Annealing metaheuristic. This method allows to explore the
various possibilities of solutions while being less prone to getting stuck
in local minima. However, it also requires to tune a certain number of
parameters, often empirically. In the next chapter, we present the results
that were obtained for both approaches on an arti�cial test case. We also
measure the performances of the SA approach on three other instances
depicting real-life scenarios, taken from the literature. A comparison
between the results of our approach and the ones from the literature is
provided.

123

Chapter 5

Simulation results

In this chapter, we present the results obtained with our methods. These
tests were performed on various instances. First, we tested the approach
based on the principle of dynamic programming, on an arti�cial instance.
This test allowed to highlight the strengths, but also the limitations of this
approach. Then, we tested the SA approach on the same instance. Given the
comparative results on the performances for both methods, we then chose
to continue the tests with only the SA approach. The subsequent tests
were performed on three instances: Stockholm, Paris Charles-de-Gaulle and
Zurich. For each one of them, several con�gurations were tested (for instance
by varying the number and shape of the layers).

5.1 Experimental setup

We start here by laying out the experimental conditions in which the tests
were performed. A short introduction of each test case is provided, then
some speci�cities about the way to measure the results are given. Finally,
we give the numerical values used to parametrize the SA algorithm. All the
tests were run on a 2.70 GHz Intel Core i7 processor with 16GB of RAM on
a Windows operating system, with a code written in java.

5.1.1 Introduction of the test cases

5.1.1.1 The arti�cial instance

The �rst instance on which the algorithm was tested is an arti�cial instance,
designed speci�cally for the method presented here. Two resolution methods
are tested on this instance: the dynamic programming based heuristic, and
the SA-based method. For the �rst approach, we successively consider a
forbidden zone and a mountain. Then, we present a case with a mountain,
a forbidden zone and a city together with six routes to design. These three
obstacles are then considered independently for the SA-based approach, then
all together again for the same six routes to be designed.

124

5.1.1.2 The Stockholm instance

The second test case for our algorithm is taken from the literature [114]
and consists in designing �ve STARs in the vicinity of Sotckholm Arlanda's
airport. It is the �rst test case taken from a real-life scenario. In this
case, the only obstacles to consider are the cities in the area. A comparison
between our results and those from [114] is provided.

5.1.1.3 The Paris Charles-de-Gaulle instance

The third scenario on which our method was tested is the Paris
Charles-de-Gaulle case. For this design, we took the input data from [45] in
order to be able to compare our approach with a state-of-the-art method.
The di�culty in this speci�c case is to be able to design a large number of
routes.

5.1.1.4 The Zurich instance

The last test case for our method is also taken from [45]. It represents the
vicinity of the Zurich airport with nine routes to be designed. The main
di�culty of this instance is to be able to take high mountains into account
in the design, in a TMA of a relatively small size. The results are also
compared with those from [45].

5.1.2 Measuring the test results

The tests presented in this section were all run at least 30 times each for
the SA-based approach, in order to measure mean values for the various
criteria. In the tests run for this work, some of them failed, in the way that
the solution provided by the algorithm violated a con�ict constraint (i.e.
at least one route passes through a ground obstacle, a forbidden zone or
another route). In this case, the algorithm is run again, and so until the
solution is feasible (i.e. it doesn't violate a con�ict constraint). The 30 to 50
tests mentioned above represent only the number of successful tests. When
giving the numerical results of our experiments, the computation time will
be mentioned. This computation time always takes into account the failed
tests. Thus, when multiple solutions are rejected, the computation time is
lengthened. Another feature mentioned in the results will be the proportion
of failed tests. These are always counted against the total number of tests,
which is the sum of successful and failed tests. Therefore, the proportion of
failed tests is always comprised between 0 and 100%. Therefore, for instance,
a proportion of failed tests of 50% on a series of tests means that there were
as many failed tests as successful ones, since for each test, the algorithm
starts over every time the solution is not feasible.

125

5.1.3 The parameters used for the SA

The performed tests all make use of the Simulated Annealing, with the same
parameters. These parameters have been tuned, in preliminary tests, in such
a way that they �t the method. We set these parameters to the following
values:

• The initial temperature is chosen by iteratively generating a solution
and a neighbor (in our case, 100 times) and measuring the average
acceptation rate of the neighbor against the initial solution with
equation 4.3. If this rate is lower than 80%, the temperature
is increased by 50% and the process starts over. The starting
temperature is set to 67.5;

• The stopping criterion is by default the temperature reaching the
initial temperature divided by 10,000;

• In the cooling phase, the temperature is decreased by 10% of its current
value each time it is decreased. This induces that the stopping criterion
is equivalent to reaching a certain number of iterations (in our case,
88);

• The number of neighbors kept for each vertex expansion (as described
in section 4.3.1 by �g. 4.11b) is 10;

• The coe�cients for the objective function are the same for all test
cases: α = 2/29, β = 25/29 and γ = 2/29.

5.2 The arti�cial instance

For our �rst test scenario, we decided to create an arti�cial layout especially
designed to test all the possibilities of the algorithm: taking cities, ground
obstacles and military zones into account. Firstly, we apply the dynamic
programming algorithm on three separate cases. Two of them consist in
designing a single route, respectively with a forbidden zone to be �own
under with a level �ight, and a mountain very close to the runway, to be
�own over. The third test case for this method involves a forbidden zone, a
mountain and a city, with six routes to be designed. We then present the
results obtained for the SA-based approach. In these tests, we successively
measured the behavior of the algorithm on each of the three obstacles
used for the last test of the dynamic programming method individually.
Then, the performances of the SA-based approach are measured on the
same case than before, with all obstacles and six routes to design at the
same time. Finally, we added a second runway in the scenario. In all tests
conducted on the arti�cial instance, all routes are considered to be STARs.
The layout for the obstacles is displayed in �g. 5.1, and the corresponding
numerical values are given in Table 5.1. In Table 5.1, each obstacle is given
in the form (((x1, y1); (x2, y2); . . . ; (xn, yn)) , lo, uo) and the city in the form
(((x1, y1); (x2, y2); . . . ; (xn, yn)) , η(x, y)) where:

126

• (x1, y1); (x2, y2); . . . ; (xn, yn) are the coordinates of the base polygon
giving the location of the city

• lo is the lower altitude of the obstacle (0 being on the ground)

• uo is the upper altitude of the obstacle

• η(x, y) is a function indicating the population on the ground at the
point (x, y).

The data used for the routes is presented in Table 5.2.

Figure 5.1 � The layout used to test the algorithm in the SA-based approach.

Obstacle number Obstacle type (B, l, u) or (B, η)

1 Mountain
((
(300,-180);(300,178);(359,178);(359,-180)

)
, 0, 12

)
2 City

((
(-2,1);(-360,1);(-2,359)

)
, (x, y) 7→ 806− (y − x)

)
3 Military Area

((
(-120,-355);(-80,-355);(-80,100);(-80,-355)

)
, 15, 50

)
4 Close mountain

((
(50,-180);(50,178);(79,178);(79,-180)

)
, 0, 12

)

Table 5.1 � The obstacles and city for the arti�cial test case (see Figure 5.1).

127

Route number Tra�c �ow Graph center Entry point (polar coordinates)
1 26.67%

(0,0,0)

(346NM, 0◦)
2 24% (346NM, 10◦)
3 21.33% (346NM ,350◦)
4 13.33% (346NM ,90◦)
5 12% (328.5NM, 135◦)
6 2.67% (328.5NM, 230◦)

Table 5.2 � The data used for the routes in the arti�cial instance (1 runway).

Additionally, the data relative to the constraints in this case is the following:

• The runway is oriented by the vector (0, 1)

• The altitude range of the exit points is not relevant (so all ranges are
accepted in the solution)

• Maximum turn angle θmax = 30◦. It is the maximum authorized angle
between two consecutive arcs in the horizontal pro�le.

• Minimum angle at merge points θmin = 15◦

• Minimum slope αmin: 3.24%

• Maximum slope αmax: 16.2% Note that the values for the slopes are
taken from the standards communicated by the ICAO.

• The maximum number of level �ights nLFmax = 4

• The minimum length of the level �ights was set to lLFmin = 10NM and
the maximum length lLFmax is not relevant here

• There is no orientation imposed on the entry points

For all tests conducted on the arti�cial instance, and for the ones presented
in the rest of this document, the layers have been arbitrarily chosen. The
layers must provide a discretization both precise enough to represent the
TMA, as if there are not enough, a signi�cant part of the possible solutions
can be missed, and sparse enough to keep the routes close to real ones,
with a small enough number of possible turns, and a minimum distance
between two potential decision-making points. It also keeps the instance
within the computational capabilities of the algorithm, as the computation
time increases strongly with the number of points used to discretize the
TMA.

128

5.2.1 The dynamic programming based approach

5.2.1.1 Designing one route

We �rst tested the dynamic programming approach with two situations.
The �rst one is the design of one route (route 6 from Table 5.2) with
a forbidden zone to avoid (obstacle 3 from Table 5.1). We chose to use
circular layers for all tests in this section, with 100 layers and 360 points
equally distributed on each layer (it is the same discretization as the "heavy
discretization" used in the �rst test case of the SA approach, described in
the next section). The result is shown in �g. 5.2, with both the horizontal
and the vertical pro�le of the route. It can be seen that the route avoids

(a) The horizontal pro�le of the route
with a forbidden zone to avoid.

(b) A more precise view of a portion
of the route. The turns are made
as the discretization allows. The
maximum turn angle constraint is
met.

(c) The vertical pro�le of the route.

Figure 5.2 � The dynamic programming approach with one route to be
designed with a forbidden zone to avoid.

the forbidden zone by making use of a level �ight, of minimum possible
length. The route is as straightforward as possible between the center and

129

the exit point of the TMA.
The second test that was conducted aims at designing a route that passes
over a mountain that is located very close to the runway. Therefore, the
route needs to be longer before crossing the mountain, in order to gain
altitude. The results are shown in �g. 5.3. The results show that the

(a) The horizontal pro�le of the route
with a mountain to avoid.

(b) The vertical evolution of the
route.

Figure 5.3 � The dynamic programming approach with one route to design
with a mountain to avoid.

algorithm is able to choose the shortest route among only the feasible ones,
thanks to the preprocessing phase indicating the minimum altitude required
to pass the obstacles. Therefore, this approach is very e�cient to design a
single route with any kind of obstacle. In both cases presented above, the
method takes between 6 and 7 min to yield the result. The irregularities
that can be observed are due to the choice of the discretization. They
could be removed, for instance, with a smoothing technique applied in a
postprocessing phase, which is not the case here.

5.2.1.2 Designing several routes

In the next test case, we decided to design six routes (see Table 5.2) with
three types of obstacle: a city, a forbidden zone and a mountain (obstacles 1,
2 and 3 from Table 5.1). For this test, the routes are designed sequentially,
two times each (cf Algorithm 7). In the �rst design, each route is computed
with the preprocessing method (cf Algorithm 5), without taking the other
routes into account. Therefore, the result is for each entry point the shortest
route from the center. When all routes have been computed in this fashion,
the pairwise distance between them is measured. Then, for each route except
for the �rst one, a new starting point is chosen, as explained and illustrated
in section 4.4, as the last point from another route that was too close to the
route under consideration. The results are shown in �g. 5.4.
The results were obtained in approximately 43 min, which is a very

130

(a) The six routes at the end
of the �rst computation, without
connection management (horizontal
pro�les). All routes connect on the
same point: the center.

(b) The vertical pro�les at the end of
the �rst computation.

(c) The six routes at the end of
the second computation, with the
merge separation constraint taken
into account (horizontal pro�les).
Each route connects on a di�erent
point so as to spread out the merging
points. Each route is connected on
the �rst available point.

(d) The Vertical pro�les at the end
of the second computation.

Figure 5.4 � The result obtained with the dynamic programming approach
for six routes and three obstacles, with a management of the connection
points for the routes.

acceptable computation time considering the strategic context of the study,
and show that the algorithm is capable of taking all constraints into account.
However, the connection points for the routes have to be chosen either
manually, or with a heuristic. The same limitation occurs when several
graphs are to be taken into account, as the order for the design has to be
chosen beforehand.
As a comparison, we ran the same test with the dynamic programming-based
heuristic and with the Simulated Annealing approach, with routes 1, 2 and 3
to design (see Table 5.2) with the mountain to avoid (obstacle 1, see �g. 5.1
and Table 5.1). The numerical results for this test are provided in Table 5.3,
and the shapes of the routes are illustrated in �g. 5.5. The results show that
the dynamic programming-based approach is slower to �nd a solution than
the SA. We can also note that the shape of the routes is more appropriate
for the SA approach, as the routes merge as soon as possible, far from the
center. This allows for the controllers to have mainly one route to monitor
instead of three, which is valuable. As can be seen from these results, the
SA approach is more likely to yield satisfactory results in the context of this

131

Measurement DP-based heuristic SA approach
Computation time 20 min 34s 18 min 11s

Route length 1013.89 1280.79
Graph weight 993.73 700.97

Table 5.3 � The mean results for the test of comparison between the dynamic
programming-based approach and the SA approach

(a) The three routes designed by
the dynamic programming-based
heuristic. The merging points of the
routes are close to one another, and
close to the center.

(b) The three routes designed by the
SA approach. The merging points of
the routes are close to one another,
but far from the center. The graph
weight criterion is thus better than
for the dynamic programming-based
heuristic.

Figure 5.5 � The comparative results for the design of three routes over a
mountain by the dynamic programming-based heuristic and the Simulated
Annealing approach. The SA allows for a better "compactness" of the
solution, while the dynamic programming-based heuristic favors direct
routes.

thesis. Therefore, we analyze this approach in more detail over the next
section, before testing it against cases taken from the literature.
In conclusion, the dynamic programming-based approach has many
advantages for the design of a single route: the result is easily reproducible ;
the method doesn't need parametrization and the input is very simple (only
the starting and ending points are required, besides the operational features,
such as the climb slopes). However, on its own, it lacks the exploration
power provided by metaheuristics, which is necessary to tackle situations
with more routes to handle, and with the introduction of a heuristic, it is
not guaranteed to �nd a solution, even when there might be one. In the
next section, we present the results obtained for the same instance, with the
SA-based approach.

5.2.2 The Simulated Annealing based approach

For the SA-based approach, we �rst tested the case where only one runway
is taken into account, then we added a second runway.

132

5.2.2.1 One runway

In the case where only one runway is taken into account, we start by
designing only one route at a time, in order to test the algorithm on each type
of obstacle. Then, several routes are computed together, with all obstacles
at the same time. In all this section, all tests were successful. Therefore,
the proportion of failures is 0% for all cases with a single runway.

5.2.2.1.1 One route design and one obstacle

This test case successively considers the e�ects of a mountain, a city and
a military zone on the design of one route. For each of these tests, the
algorithm was �rst run without any obstacle, so as to set a reference. In
all this section, the routes have been designed only once, as there was no
reason to measure average values for the route length or the computation
time. The aim here is to observe the behavior of the algorithm when a route
must deviate from a straight line to avoid an obstacle. The type of layers
used here is circular. The �rst obstacle that has been studied is a mountain,
on the right-hand side of the map (see Figure 5.1), too high for the route to
�y in a straight line from the center to its exit point. The results are shown
in Figure 5.6. It can be seen from Figure 5.6 that the route is lengthened
for the aircraft to gain altitude and to be able to �y over the obstacle.
The second obstacle that has been studied is a city, as shown in Figure 5.1,
with the highest population density at the center and decreasing towards
the exterior. As before, the algorithm was �rst run without any constraint
to set a reference. The results are shown in Figure 5.7. The turn towards
the exit point is delayed so as to avoid �ying over the most populated areas
of the city and cause noise disturbance. Finally, the e�ects of a military
zone between the center and an exit point (see Figure 5.1) were tested. The
results are shown in Figure 5.8. The algorithm does set level �ights on the
route for it to avoid the restricted area.
Thus, taken one by one, all the constraints are well handled by the algorithm.
In the next part,the e�ects of all obstacles at once with several routes to be
designed are studied.

133

(a) The route without any obstacle.

(b) The route with a mountain to
avoid. (c) The vertical pro�le of the route.

Figure 5.6 � The e�ects of a mountain on the route design.

134

(a) The route without any
obstacle. (b) The route with a city to avoid.

Figure 5.7 � The e�ects of a city on the route design. The route stays on
the side of the city until its minimum altitude is high enough to �y over the
city with a null cost with regard to the noise abatement criterion.

135

(a) The route without any obstacle.
(b) The vertical pro�le with no
obstacle.

(c) The route with a military zone to
avoid.

(d) The Vertical pro�le in presence of
the zone.

Figure 5.8 � The e�ects of a military zone on the route design.

136

5.2.2.1.2 Six routes design with all obstacles

The next test that we conducted is aimed at measuring how the algorithm
behaves when all the elements discussed in 5.2.2.1.1 are added. As for the
other test cases, a �rst computation of all routes without any obstacle has
been performed to set a reference. The �rst test uses 50 circular layers
regularly spaced by 7NM, and each layer is discretized into 72 vertices (one
every 5◦). We also set a merge layer every 5 layers. The results are shown
in Figure 5.9. It can be seen from Figure 5.9a that the routes have the

(a) The result of the algorithm
without any obstacle seen from above.
All constraints are met, including the
limited turn constraint.

(b) The result of the algorithm with
all obstacles seen from above. The
routes are modi�ed so as to meet all
the constraints, such as passing over
the mountain, or under the forbidden
zone.

(c) The vertical pro�le for one of the
routes above the mountain.

(d) The vertical pro�le for one of the
routes below the military zone.

Figure 5.9 � The result of the algorithm with all obstacles at once.

expected shape: they all go in a quite straightforward way to their assigned
exit points. The merge points are located near the exits when several of them

137

are close to each other, while the route on the left merges with the others
quite close to the center, as no other exit is nearby. However, the routes are
less straightforward than in the individual cases. This is due to the increase
in the number of possible changes for a given iteration. In Figure 5.9b, both
routes on the left have a signi�cant change in shape. All obstacles and other
routes are still avoided, the merging constraint is met, and the routes remain
quite straightforward, making the solution quite relevant.
Then, the same test was run again, but with more circles (100, one every
1NM, and a merge layer every 10 layers) and more points per circle (360, one
every degree), so as to measure the performance of the algorithm in terms of
computation time on large instances. This also allows to see if it leads to a
signi�cant change in the shape of the routes. The obtained results are shown
in Figure 5.10. All the constraints are met: the routes on the right �y over
the mountain, and the route on the left doesn't pass through the military
zone. However, the shape of some routes has been negatively a�ected
compared to the previous case: both routes heading north are unnecessarily
longer, and their separation at the merge point is reduced. The solution
is, however, still acceptable. This test makes it explicit that a heavier
discretization doesn't necessarily improve the solution. An explanation can
be that in the last case, the number of possible routes is strongly increased
while the algorithm runs the same number of iterations. This causes an
unnecessary exploration of similar non-feasible solutions and allows for less
improvements on the good ones. Table 5.4 gives some indicators on the
performed tests.
We then tested the algorithm on the same instance, by changing the type of

(# of
layers, # of
points per
layer)

Computation
time

Obstacles
(Table 5.1)

Routes length

without obstacles

Routes length

with obstacles

Graph weight

without obstacles

Graph weight

with obstacles

Single route
(50,72) 9 min 20s 1

358.61
417.36

358.61
417.36

(50,72) 8 min 53s 2
344.79

394.50
344.79

394.50

(50,72) 9 min 0s 3
378.83

376.17
378.83

376.17

Six routes
(50,72) 4 min 08s 1,2,3

2701.98
2970.13

1673.86
1874.41

(100,360) 19 min 38s 1,2,3
2568.06

2928.00
1601.70

2096.64

Table 5.4 � The numerical results of the experiments (circular layers, one
runway). The computation times are the same for both cases: with and
without obstacles. The route length and graph weight criteria are worsened
by 25% in average in the worst case because of the obstacles.

layers to squares. The aim is to see to what extent a change in the shape of
the layers can a�ect the solutions. In this test, the squares' sides are parallel

138

(a) The result of the algorithm with all obstacles.

(b) The vertical pro�le for one of the
routes above the mountain.

(c) The vertical pro�le for the route
below the military zone.

Figure 5.10 � The result with all obstacles with a heavier discretization.

to the x and y axes. We used 86 layers progressively discretized into 48 to
360 vertices. The rest of the data in unchanged. An example of result is
given by �g. 5.11 and the comparative measurements are given in Table 5.5.
The results are signi�cantly worse than in the case of circular layers, from
any point of view. The main feature that should be noticed is the lack of
separation between the two routes on the right. In this case, the algorithm
couldn't �nd any feasible solution. One of the routes is zigzagging and the
city is not properly avoided.

139

Figure 5.11 � An example of result obtained on the arti�cial instance with
squares as layers.

Measurement Circular layers Square layers
Computation time 4 min 08s 29 min 27s

Route length 2970.13 3276.15
Graph weight 1874.41 2394.19

Table 5.5 � The mean results for the arti�cial instance with squares as layers
(1 runway).

140

This test shows how discretization impacts the results. It is chosen
arbitrarily, and to the best of our knowledge there is no way to know
beforehand the type of discretization that will provide the better result.
However, it has been observed in all the tests that were conducted, including
the ones taken from the literature, that past a certain number of layers, the
algorithm becomes less performing. Therefore, the optimal solution should
be searched by changing the shape of the layers rather than their number.

5.2.2.2 The arti�cial instance with two runways

In order to complete the tests on the range of capabilities of the algorithm, we
added a second runway to the arti�cial instance. The corresponding data
is gathered in Table 5.6, with the features of the �rst runway reminded.
The tra�c �ows are relative to their associated runway. Therefore, the total
tra�c �ow for each runway is 100%. The entry points are given as polar
coordinates, relatively to their respective centers. This runway is oriented
by the vector (0,-1), all other parameters are unchanged. The test has been
run with the two discretizations: circular and square layers. The results are
presented in the next paragraphs.

5.2.2.2.1 The arti�cial case: two runways with circular layers

As for the con�guration with only one runway, we tested a "light" and
a "heavy" discretization. The parameters of these discretizations are
presented in Table 5.7. We decided to keep the same discretization for
the two con�gurations on the second runway, as the aim was to measure
the performances of the algorithm under two di�erent workloads, and
the di�erence between the two discretizations for the �rst runway already
providing a su�cient di�erence in workloads. Figure 5.12 provides examples
of the results that were obtained with this con�guration, and Table 5.8 the
mean numerical results of the tests. The �rst noticeable feature is the
closeness of the mean values for the route length and graph weight criteria.
For the graph weight, the value is even lower for the light discretization.
As for the case with one runway, it can be concluded that a heavier

Route number Tra�c �ow Graph center Entry point
1 26.67%

(0,0,0)

(346NM, 0◦)
2 24% (346NM, 10◦)
3 21.33% (346NM ,350◦)
4 13.33% (346NM ,90◦)
5 12% (328.5NM, 135◦)
6 2.67% (328.5NM, 230◦)
7 54%

(150,300,0)

(547NM, 350◦)
8 27% (547NM, 270◦)
9 19% (547NM ,225◦)

Table 5.6 � The data used for the routes in the arti�cial instance (2 runways).

141

Parameter Light discretization Heavy discretization
of layers (1st runway) 50 100
of layers (2nd runway) 70 70

of points per layer (1st runway) 72 360
of points per layer (2nd runway) 72 72

Table 5.7 � The data used for the arti�cial instance (circular layers, 2
runways).

(a) An example of result that was obtained with the light
discretization.

(b) An example of result that was obtained with the heavy
discretization.

Figure 5.12 � Examples of results that were obtained with layers as circles
for the arti�cial instance (2 runways).

142

Measurement Light discretization Heavy discretization
Computation time 35 min 22s 48 min 42s

Route length 6332.40 6330.77
Graph weight 4283.12 4335.76

Table 5.8 � The mean results for the arti�cial instance with squares as layers
(2 runways). The graph weight represents the sum of the lengths of each arc
in the solution counted only once.

discretization does not necessarily give better results. It can also be noticed
that the shape of the layers does not impact the mean time necessary to
obtain an admissible solution (i.e. a solution that does not violate the
obstacle constraint): a solution for the light discretization scenario is found
in approximately 35 min whether the layers are circular or square, and a
solution for the heavy discretization in roughly 50 min. The examples of
results found by the algorithm also show that the solutions are quite similar.

5.2.2.2.2 The arti�cial case: two runways with square layers

Finally, we tested the algorithm with square layers for both runways in
order to compare the performances of the algorithm with the con�guration
with circular layers. The characteristics of the layers used are gathered in
Table 5.9. An example of result that could be obtained is presented in
�g. 5.13. The numerical values for the optimization criteria are gathered in
Table 5.10, with the values for the approach with circular layers reminded
for comparison. The results displayed in �g. 5.13 show that the algorithm
becomes unable to handle correctly the considered scenario. The maximum
turn angle constraint is no longer met, and the routes are signi�cantly and
unnecessarily longer, especially for the second runway. In these results,
we included a "Number failed" line. It quanti�es the number of solutions
returned by a complete run of the algorithm that violate the obstacle
avoidance constraint (in this case: when a route passes through a mountain
or a military zone). The proportion of failed runs is particularly high and
shows that the algorithm reaches its limits in particularly complex cases.
The complexity of an instance, as the comparison between the various tests
shows, is not only determined by the layout and operational constraints
(obstacles, position of the entry points, cities, maximum slopes and turn

Parameter Value
of layers (1st runway) 86
of layers (2nd runway) 110

of points per layer (1st runway) from 48 to 360
of points per layer (2nd runway) from 48 to 360

Table 5.9 � The data used for the arti�cial instance (square layers, 2
runways).

143

(a) The solution seen from above. The routes don't have
a coherent shape, and one of them violates the maximum
turn angle constraint.

(b) The vertical pro�les of the
solution. The ground obstacle and
the military zone are avoided. (c) The side view of the solution.

Figure 5.13 � A solution for the arti�cial case with two runways and square
layers.

Measurement Circular layers Square layers
Computation time 35 min 22s 55 min 13s

Route length 6332.40 6976.51
Graph weight 4283.12 5470.63
Number failed 0% 75%

Table 5.10 � The mean results for the arti�cial instance with squares as
layers (2 runways). The graph weight represents the sum of the lengths of
each arc in the solution counted only once.

144

angles...), but also by the choice of the discretization to apply (shape and
number of the layers, number and location of the vertices on the layers).
The tests conducted on this arti�cial instance further demonstrated the
sensitivity of the algorithm to the choice of the layers, as during our tests,
two particular situations were encountered:
• The algorithm couldn't �nd a single admissible solution over 50 runs.
The tests were stopped under the assumption that no admissible
solution would be found.

• The algorithm couldn't build a given route. This means that the
chosen discretization didn't allow to �nd a single path that led to
the entry point. This case occurred more speci�cally when the �rst
layers were sampled into too few vertices and thus the maximum turn
angle constraint was violated during the pre-processing part of the
algorithm. This case is illustrated in �g. 5.14.

In a nutshell, it can be concluded that the angular stone of the method lies in

(a) The exit point is not attainable. (b) The exit point is attainable.

Figure 5.14 � An illustration of the impact of the discretization.

the choice of the discretization: shape and number of the layers, number and
points per layer. Although it has not been explicitly tested, it can also be
inferred that the distribution of the points on the layers plays an important
role. An idea would be to increase their number in the vicinity of obstacles
and allow fewer of them in open areas.

5.3 The Stockholm instance

The �rst instance of a real-life scenario on which the SA based algorithm was
tested is taken from the literature [114]. It involves a single runway and four
STARs to be designed for the Sotckholm Arlanda airport. In [114], the routes
are designed only in 2D with an integer programming (IP)-based method
applied on a grid (see �g. 5.15). In their work, the authors design several
solutions for the presented problem in order to �nd the Pareto front with
regard to the route length and graph weight criteria. The solution presented
in �g. 5.15 corresponds to the minimum graph weight. The drawback of
this approach is its execution time: 9447 seconds (2h 37min 27s) to �nd the
minimum weight spanning tree. The data that was used to conduct the test,
with regard to the route parameters is presented in Table 5.11.

145

Figure 5.15 � The result from [114] and the layout used.

Route number Tra�c �ow Graph center Entry point
1 25%

(7,11)

(14,13)
2 25% (9,20)
3 25% (0,10)
4 25% (7,0)

Table 5.11 � The data used for the routes in the Stockholm instance.

146

Additionally, we used the following values for the parameters:

• Center = (7,12);

• The runway is oriented by the vector (0, 1);

• The altitude range of the exit points is not relevant (so all ranges are
accepted in the solution);

• Maximum turn angle θmax = 45◦. It is the maximum authorized angle
between two consecutive arcs in the horizontal pro�le;

• Minimum angle at merge points θmin = 15◦;

• The minimum and maximum slopes αmin and αmax are not relevant;

• The number and minimum and maximum length of the level �ights
nLFmax, l

LF
min and lLFmax are not relevant;

• There is no orientation imposed on the entry/exit points.

In Table 5.12, we present the data that was used for the obstacles of the
instance. Although they are cities, we represented them as "hard" obstacles,
in order to comply with the representation used in [114]. In Table 5.12, each

one of them is given in the form
((

(x1, y1); (x2, y2); . . . ; (xn, yn)
)
, lo, uo

)
where:
• (x1, y1); (x2, y2); . . . ; (xn, yn) are the coordinates of the base polygon
giving the location of the city;

• lo is the lower altitude of the obstacle (0 being on the ground);

• uo is the upper altitude of the obstacle.

We conducted several series of tests on this same instance: one with only
two cities taken into account, and the other with all cities considered. We
present and explain the results obtained in the next paragraphs.

Obstacle (B, l, u)

Enköping
((
(1,10);(3,10);(3,12);(1,12)

)
, 0, +∞

)
Stockholm

((
(7,6);(9,6);(9,8);(7,8)

)
, 0, +∞

)
Uppsala

((
(5,13);(6,13);(6,15);(5,15)

)
, 0, +∞

)
Sodertäle

((
(5,4);(5,5);(6,5);(6,4)

)
, 0, +∞

)
Table 5.12 � The obstacles for the Stockholm instance.

147

5.3.1 Test case 1: only two cities taken into account

In this �rst test, the aim is to compare the results of our approach to [114].
Therefore, we considered only the cities of Stockholm and Enköping. We
chose to use 13 concentric square layers for this test so as to match the
discretization used in the literature. Square i has a 2(i − 1) NM-long side,
with square 1 being the center at (7,12) as shown in �g. 5.16. There is a
vertex each 1NM on each square starting from a corner. This discretization
is the same as the one used in the literature. An example of result that was
obtained with our algorithm is presented in �g. 5.17, and the comparative
results are presented in Table 5.13. The results presented here do not display
the vertical pro�les, as they were not taken into account in [114], although
they were computed during the execution of the algorithm and taken into
account for the obstacle avoidance and route separation. Since cities are
to be completely avoided and solutions can easily be made planar, any
slopes are acceptable. Both the route length and graph weight criteria
are better for the solution from the literature. This is explained by three
particularities. The �rst one is that the MILP-based algorithm is an exact
approach, while the SA is not. The second reason is that in [114], the
solutions are post-processed to partially become independent from the grid:
all vertices that can be removed without violating the turn angle constraint
are deleted (see �g. 5.18). This allows for both shorter routes and lighter
graphs. Finally, our algorithm does not allow for going from a layer Li to
a layer Lj with j ≤ i. This causes the route coming from the south in the
example shown to be longer than IP route. These particularities are the
reason why the solutions found with our method cannot attain the same
characteristics as the ones from the literature with regard to route length
and graph weight even if given more computational power.
The last feature to notice in these results is the great di�erence in
computational time required by the solutions.

5.3.2 Test case 2: all cities taken into account

In this paragraph, we present the results obtained when including all cities of
Table 5.12. The results relative to the route length and graph weight criteria
are presented in Table 5.14, with a reminder of the previously presented
results. As can be expected, both criteria are slightly degraded when all
cities are taken into account. The shape and computing time of the average
solution does not di�er from the previous case with only two cities taken into
account. The reason for that is that the two additional cities are already

Feature Solution from [114] Our solution
Route length 45.74 48.11
Graph weight 33.26 41.98

Computation time 9447s 4.54s

Table 5.13 � The comparative results for the Stockholm instance.

148

Figure 5.16 � The layers used for the �rst test with 7 of the 13 layers.

Feature Solution
from [114]

Our solution (2
cities)

Our solution (all
cities)

Route length 45.74 48.11 52.08
Graph weight 33.26 41.98 43.56
Computation
time

9447s 4.54s 3.46s

Table 5.14 � The comparative results for the Stockholm instance with
squares as layers.

149

(a) The solution found in the
literature [114].

(b) The solution found with our
algorithm.

Figure 5.17 � Comparative results for the Stockholm instance.

Figure 5.18 � The post-processing technique used in [114].

avoided in the solutions from the previous test case.

5.3.3 Test case 3: circular layers

In this third test case, we decided to test another type of discretization.
In this case, we tested circular layers regularly spaced by 0.5NM sampled
into 360 vertices each (one every degree). There are 25 layers in total in
this case. An example of result is shown in Figure 5.19. The comparative

Figure 5.19 � The result of the algorithm on the Stockholm instance by using
circular layers.

results are given in Table 5.15. The results are way less satisfactory than in

150

Feature Our solution (square
layers)

Our solution (circular
layers)

Route length 52.08 73.13
Graph weight 43.56 52.4
Computation time 4.54s 125.19s

Table 5.15 � The comparative results between square and circular layers for
the Stockholm instance with all cities.

the previous case, as the routes are signi�cantly longer and occupy a wider
surface. The computation time is also dramatically increased, due to the
strong increase in layers and discretization points. Thus, the choice of the
layout, and more particularly the shape of the layers, has a great impact on
the quality of the solution given by the algorithm. The main improvement
of our method over an exact approach is the reduced computation time.
Although it is not critical in this particular case, since the routes are to be
designed at a strategic level, which allows to take several hours, it will be
an essential feature for larger instances.

5.4 The Paris Charles-de-Gaulle instance

The aim of this work is to be able to design routes for large airports, since
these cases are very often more di�cult to tackle than cases involving a
single runway. In order to test our algorithm on a large size real-life scenario,
we designed the layout of the Paris Charles-de-Gaulle airport (CDG). This
instance has already been studied in [45]. Therefore, in order to establish
a comparison with this approach from the literature, we kept the same
con�guration.
The SIDs and STARs currently in use at CDG airport are published and
publicly available from Jeppesen (see the example of �g. 5.20). In our work,
the initial direction for the procedures is given by the orientation of the
runway it depends on. This orientation is given by the heading that an
aircraft follows when using the runway. Therefore, a runway always has two
possible orientations, di�ering by 180◦ from each other. This orientation is
used to identify the runway, by rounding its heading to the nearest 10◦ and
giving the �rst two numbers. For instance, a runway oriented towards the
heading 140 (140◦ clockwise relatively to the magnetic north pole) will be
identi�ed as 14. Since a runway has two opposite directions, the complete
identi�cation for this example is 14/32 (see �g. 5.21). When using a runway
for departure or arrivals, only one number is given, that corresponds to the
heading of the aircraft. Therefore, a plane landing on runway 32 means
that its heading is 320 when landing. In large airports, it is common to see
two or even three parallel runways next to each other. This con�guration
helps absorb heavy tra�c �ows, as one runway can be used for take-o�s
and the other one for landings. When this case occurs, the runways are
di�erentiated by letters: L for the left one, R for the right one and C for the

151

Figure 5.20 � An example of a published procedure at CDG airport.

152

Figure 5.21 � The identi�cation of a runway.

center one when applicable (see �g. 5.22). In the case studied here, there
are 4 runways, whose characteristics are gathered in Table 5.16 (this data
is the same that is used in [45])(see �g. 5.23). Depending on the weather,
the runways in use, the type of aircraft and other criteria, the operating
SIDs and STARs can change. In this work, as in [45], 15 routes have been
chosen. The corresponding o�cial waypoints, as well as the estimated tra�c
�ow, are given in Table 5.17. The data is taken from [45]. The tra�c �ows
have been measured by counting the relative number of aircraft taking the
procedures in a given time window. The graphical representation of these
routes is given in �g. 5.24. The coordinates of the starting and ending
points for the routes are gathered in Table 5.18.

Runway threshold Type of procedure
Graph center

2D position Height (ft)
27L SID (99.28, 122.95) 370
26R SID (100.9, 121.5) 338
27R STAR (111.12, 124.51) 3392
26L STAR (112.8, 122.66) 3316

Table 5.16 � The characteristics of the runway thresholds and starting points
for the tests.

153

Figure 5.22 � The identi�cation of parallel runways.

Figure 5.23 � The thresholds at CDG airport in [45].

Route Threshold Type of procedure Tra�c �ow Waypoints
1 27R STAR 12.77% DINAN, XERAM, LORTA, BSN

2 27L SID 10.82% PG274, PG278, NAPIX, DIKOL

3 26R SID 10.72% PG266, PG289, DOPAP, OKASI

4 27R STAR 8.7% DPE, SOKMU, KOROM, MERUE, CREIL, PG525

5 26R SID 7.44% PG268, RBT, ADADA, AGOPA

6 26L STAR 7.33% BENAR, ROMLO, BALOD, DOMUS, PG515, PG516

7 26L STAR 7.16% RLP, TROY, OMAKO, PG512

8 27R STAR 6.97% MOPIL, XERAM, LORTA, BSN

9 27L SID 5.63% PG276, OPALE

10 26L STAR 5.61% DJL, TRO, OMAKO, PG512

11 27L SID 4.9% PG274, PG278, LAURA, LASIV

12 27L SID 4.76% PG276, NURMO

13 27L SID 3.38% PG280, PG284, EVREUX

14 26R SID 2.33% PG264, PG288

15 27R STAR 1.48% DVL, SOKMU, KOROM, MERUE, CREIL, PG525

Table 5.17 � The routes selected for the tests for Charles-de-Gaulle airport.

154

Figure 5.24 � The chosen published routes as shown in [45].

Route Threshold
Graph center

Entry/Exit point (2D)
2D coordinates Height (ft)

2

27L (99.28, 122.95) 370

(159.87, 132.61)
9 (73.18, 175.07)
11 (167.34, 118.76)
12 (107.11, 171.69)
13 (48.26, 122.38)

3
26R (100.9, 121.5) 338

(111.77, 67.03)
5 (80.87, 66.08)
14 (31.89, 113.55)

1

27R (111.12, 124.51) 3392

(207.18, 177.27)
4 (45.4, 176.02)
8 (158.66, 193.36)
15 (12.31, 138.75)

6
26L (112.8, 122.66) 3316

(29.88, 75.39)
7 (211.86, 61.57)
10 (208.23, 23.08)

Table 5.18 � The routes with their associated starting and ending points for
the Charles-de-Gaulle instance.

155

The additional characteristics of this instance are as follows:

• The altitude range of the exit points is not relevant (so all ranges are
accepted in the solution);

• Maximum turn angle θmax = 30◦;

• Minimum angle at merge points θmin = 15◦;

• Minimum slope (SID) αSIDmin : 7.0%;

• Maximum slope (SID) αSIDmax: 11%;

• Minimum slope (STAR) αSTARmin : 1.6%;

• Maximum slope (STAR) αSTARmax : 4.2%;

• The maximum number of level �ights nLFmax = 4 per runway threshold
(so 16 in total);

• The minimum length of the level �ights was set to lLFmin = 10NM and
the maximum length lLFmax is not relevant here;

• There is no orientation imposed on the entry/exit points.

Finally, we set the city of Paris as an obstacle, in order to proceed on the
same base as the one that was used in [45]. It is represented as a cylinder
with the following characteristics:
• The base is a circle centered on (92.43, 113.16) with a 5NM-radius;

• The lower altitude is 0;

• The higher altitude is 50,000 ft.

In the rest of this section, we provide the results that were obtained with
both circular and square layers, and we establish a comparison between or
results and those from the literature, in terms of route length and graph
weight.

5.4.1 The Paris CDG case: a comparison with the
literature

In the approach tested in [45], the problem is solved by using a
Branch-and-Bound algorithm to decide for each route the way to avoid
obstacles when there are any (refer to Chapter 2 for the details of this
approach). This approach allows to minimize the route length criterion in
a search space where all obstacles are circular, in 2D. The results obtained
are shown in �g. 5.25. The main drawback of this approach is that it lacks a
management of the merging points, and all routes merge on the equivalent of
the center here, which makes it unusable in a real-life scenario. The results
of our approach is shown below.

156

Figure 5.25 � The routes designed with the method from [45].

5.4.1.1 The CDG instance: square layers

We �rst tested the algorithm with square layers. These are set as shown in
Table 5.19. In this case, the layers' sides are parallel to the x and y axes,
and are discretized into 120 to 360 points (proportionally to their number
starting at 2, so that, for instance, if there are 12 layers, L6 will be sampled
into 216 vertices). Another point to emphasize is that whenever two entry
or exit points belonging to the same graph are too close to each other, they
are both put on the same layer, which is then located at mid-distance from
both points. In this work, two points are considered too close to each other
whenever the distance between them and the center di�ers by less than 1NM.
The distance chosen depends on the type of layer:
• If the layers are square, the distance is the L∞-norm, which is the
maximum between the x and y values taken positively;

• For circular layers, which will be addressed later, the distance will be
the usual euclidean distance.

The layers are always spaced by a constant distance. For instance, if layer
Li has a 2NM-long side and Li+2 has a 4NM-long side, then Li+1 has
a 3NM-long side. In Table 5.19, the "Layers interval and step" column
gives a starting and an ending layer, along with the distance step between
two consecutive layers. With the same example as above, the column will
indicate: Li → Li+2 : 0.5. The step given is the increase in the maximum
x (or y) distance from the center, so half of the increase in side length (see
�g. 5.26). The number given to the gates are the ones that correspond
to their path (see Table 5.18). An example of result obtained with this

157

Threshold
Total number

of layers
Layers interval and step Gates involved

Layer of
the gates

27L 17

1 → 11 : 4.874 12 11
11 → 12 : 2.28 13 12
12 → 13 : 1.1 9 13
13 → 15 : 4.235 2 15
15 → 17 : 3.735 11 17

26R 18
1 → 14 : 4.2265384

6 14
7 14

14 → 18 : 3.5162502 10 18

27R 21

1 → 14 : 5.055384615 4 14
14 → 15 : 3.13 8 15
15 → 20 : 5.442 1 20
20 → 21 : 2.75 15 21

26L 25
1 → 21 : 4.146 3 21

21 → 25 : 4.1
5 25
14 25

Table 5.19 � The structure of the square layers for the CDG instance. The
distance step between two consecutive layers is given, as well as the layer on
which each route starts or ends.

Figure 5.26 � The illustration of the functioning of Table 5.19 with a toy
example. Two di�erent spacings are used: 2 and 3NM, resp. from layer 1 to
4 and from layer 4 to 7. Gate 2 is located on layer 4, gate 1 on layer 6 and
gate 3 on layer 7.

158

discretization is shown in �g. 5.27.
The results are quite satisfactory, since they present the following
characteristics:

• The city is avoided;

• There is no con�ict between the routes;

• The merging points are separated;

• The merging points are well located.

However, in this series of tests, it is to be noted that more than half of the
results were rejected and the test have been performed again because the
solution was not feasible. More precisely, 62% of the tests failed in that way.
This means that although the city represents but a small portion of the area,
the algorithm struggles to �nd routes that avoid it. This is mainly due to
the need to design many routes, and thus, in top of the city, all con�icts
between them are to be avoided, which reduces greatly the possibilities of
design.
In order to test other possibilities, we then ran the same tests, with circular
layers.

5.4.1.2 The CDG instance: circular layers

The previous test cases showed that the shape of the layers play an important
role in the outcome of the algorithm. Incidentally, we decided to run the
tests in the same con�guration, but with circular layers. Their layout is
given in Table 5.20. In this table, the mark "x" means that no gate is
involved in the described layers. With all other parameters being equal to
those in the square layers test case, an example of result is shown in �g. 5.28.
We observe that the routes are signi�cantly less direct, and the resulting set
occupy more space than in the square layers case. It can also be noted that
some of the routes adopt a zigzagging behavior towards their end. This can
be due to the number of routes to design: the priority of the algorithm is to
avoid the con�icts between the routes rather than designing them straight.
This behavior can be smoothed with a post-processing of the result. In this
series of tests, only 6% of the results were rejected due to con�icts. This
is signi�cantly lower than in the case of square layers. This di�erence is
discussed at the end of the chapter.

5.4.2 The Paris CDG case: adding a forbidden zone

In order to test further the capacities of the algorithm, we ran it again on
the same instance, with the same two sets of layers. The zone that was
added has the following characteristics:

159

(a) 1st view.

(b) 2nd view.

Figure 5.27 � The results with square layers for the CDG instance (SIDs in
blue/green, STARs in red/orange).

160

(a) 1st view.

(b) 2nd view.

Figure 5.28 � The results with circular layers for the CDG instance (SIDs in
blue/green, STARs in red/orange).

161

Threshold
Total number

of layers
Layers interval and step Gates involved

Layer of
the gates

27L 23

1 → 2 : 4.36493188 x x
2 → 17 : 3 12 17

17 → 18 : 1.65825207 13 18
18 → 20 : 3.633323535 9 20
20 → 21 : 3.06539451 2 21
21 → 23 : 3.41681383 11 23

26R 21

1 → 2 : 4.7756 x x

2 → 18 : 3.388456
3 17
5 18

18 → 21 : 3.5126 14 21

27R 36

1 → 2 : 5.58456376 x x

2 → 28 : 3
4 28
8 28

28 → 33 : 3.249252328 15 33
33 → 36 : 3.2515089 1 36

26L 46

1 → 2 : 5.44725926 x x
2 → 32 : 3 6 32

32 → 39 : 2.9907397 7 39
39 → 46 : 3.077382442 10 46

Table 5.20 � The disposition of the circular layers for the CDG instance.

• The base is a rectangle whose angles are at coordinates (130,60),
(140,60), (140,127), (130,127);

• The lower altitude is 1.7NM;

• The higher altitude is 2NM.

The other parameters were left unchanged. An example of result is given
by �g. 5.29. In this �gure, some vertical pro�les are displayed, showing how
the forbidden zone is avoided by the routes. In comparison with the test
case without the forbidden zone, the shape of the routes is less satisfactory,
especially in the positioning of the merging points. For instance, routes 7
and 10 (the STARs that avoid the zone) could have merged much closer to
their respective gates, as these gates are close to each other. It would have
been better to have only one route pass under the zone, that would split only
afterward. This result can be explained by the need for the algorithm to
avoid the forbidden zone, on top of the city and the con�icts between routes.
By referring to the mathematical formulation of the problem, its priority is
to �nd solutions that don't violate the constraints, and then comes the
optimization. In this series of tests, more than 78% failed. The main cause
for failure remains the non-avoidance of the city (53% of the total number
of tests), the avoidance of the forbidden zone representing the other 25%.
We then tested the algorithm in the same con�guration with circular layers.
An example of result is given in �g. 5.30. The given vertical pro�les also
belong to the routes avoiding the forbidden zone. As for the square layers

162

(a) The routes designed for the CDG instance with a
forbidden zone and square layers.

(b) The vertical pro�le of route 7. (c) The vertical pro�le of route 10.

Figure 5.29 � The results with square layers for the CDG instance with a
forbidden zone.

163

(a) The routes designed for the CDG instance
with a forbidden zone and circular layers (1st

view).

(b) The routes designed for the CDG instance with a
forbidden zone and circular layers (2nd view) (SIDs in
blue/green, STARs in red/orange).

(c) The vertical pro�le of route 7. (d) The vertical pro�le of route 6.

Figure 5.30 � The results with circular layers for the CDG instance with a
forbidden zone.

164

case, we observe that the results are less satisfactory in terms of shape of
the routes. The explanation is the same as before. In this series of tests,
only 32% of the tests failed, with 23% due to the presence of the forbidden
zone and the remaining 9% to the non-avoidance of the city. Although it
represents almost a third of the total number of tests run, this number is
very low compared to the previous case.

5.4.3 Comparative results for the CDG instance

Over all series of tests, measurements were taken in order to compare
numerically our results to the ones from the literature, and from the real-life
implantation of this case. The numerical results are gathered in Table 5.21.
The measurements for the standard routes are taken from [45]. A �rst result
to consider is the di�erence in the route length criterion, which is higher in
our work than in the published routes as well as the work from [45]. This
di�erence with the work from the literature is explained by the fact that the
latter is explicitly designed so as to minimize this criterion, by locating all
merging points on the runways' thresholds, and thus it does not take into
account the merging criterion. The di�erence with the published routes is
mostly due to two elements:
• Our algorithm is not able to connect a layer i to a layer j with j < i;

• We set a maximum turning angle smaller than the one observed on
the published procedures.

As a consequence, several routes are lengthened, mostly to avoid con�icts.
This behavior can be observed for routes 4 and 15, route 6 and routes 2
and 11. In a minor way, the routes from our solution are not as straight
as in the published solution. The results on the graph weight criterion are
explained in a similar way. The last result to mention is the computation
time required to design the solutions. Within our own results, there is a
signi�cant di�erence between the two choices of layers (circles or squares).
This di�erence is due to the high proportion of failed results provided by
the square discretization, resulting in almost twice the number of iterations
necessary to obtain the same number of admissible solutions in that case.

Measurement Published routes B&B approach ([45]) SA approach ([45])
Route length 1358.26 1313.49 1295.51
Graph weight NC 1313.49 1295.51

Computation time NC 9.8s 20 min

Measurement
Square layers Circular layers

Without zone With zone Without zone With zone
Route length 1910.38 1992.53 1972.12 1926.67
Graph weight 1508.70 1558.42 1502.52 1470.16

Computation time 13 min 45s 20 min 02s 4 min 22s 6 min 17s
Number failed 72.22% 78.57% 0% 57.75%

Table 5.21 � The mean numerical results for the Charles-de-Gaulle instance.

165

The computation time in our worst-case scenario is however comparable to
the one from the literature using the same meta-heuristic (the Simulated
Annealing). In this work, we consider that the acceptable time that can be
used to �nd a satisfactory solution is of the order of 8 hours. Therefore our
algorithm is compliant with this objective.
The main element that was put forward with this test case is the great
sensitivity of the algorithm to the choice of the shape of the layers. In all
cases, it managed to �nd solutions, but the number of trials necessary to
achieve the same result varies strongly depending on this choice. Thus, it
can be seen that the case with the circular layers allowed the algorithm to
�nd feasible solutions more easily. It has also been shown that increasing
the number of routes to be designed can a�ect negatively the shape of the
routes in order to comply with the given constraints, and in particular the
con�ict avoidance. It should also be noted that several discretizations were
tested beside the ones presented in this document. For many of them, the
algorithm was unable to �nd a solution, either because it couldn't connect
an entry/exit point to its runway threshold when constructing the graph,
or because the discretization didn't allow it to �nd a feasible solution (all
solutions would include con�icts). This observation strengthens our previous
comment on the importance in the choice of the layers. The last point to
mention is that we observed an important disparity in the observable quality
of the results given by the algorithm even in the same series of tests. This
shows that in complex cases the algorithm cannot be considered constant in
the solution it provides, because of the numerous possibilities of design that
it encounters. Therefore, it appears necessary to perform several tests for
each given instance in order to obtain at least one fully coherent solution,
i.e. a solution in which the shape of the routes is close to what a human
could intuitively design (without steep turns or unnecessary detours or level
�ights, for instance). Empirically, we established that 20 successful tests
were enough to attain this goal.
In the next section, a di�erent layout is considered for measuring the
performance of the algorithm in a case where the main di�culty comes
from the terrain.

5.5 The Zurich instance

In the Charles-de-Gaulle instance, the main di�culty is to design a large
number of routes. In this case, the environment was relatively simple, as
the only obstacle was the city of Paris. Another situation that can be di�cult
to handle for our algorithm is when the terrain is not �at, for instance in
mountainous landscapes. Such a situation has been tackled in [45] with the
case of Zurich airport. In this instance, the main di�culty is to manage to
design the routes so that the aircraft �y over the mountains. Figure 5.31a
(taken from [45]) presents the landscape in the considered area, and �g. 5.31b
the way that we modeled it. In this case, the grid we used was made up
of 1NM×1NM squares. This instance features three runways: one for the
SIDs (runway 10), and the STARs arrive on two di�erent runways, 32 and

166

(a) The terrain elevation in the Zurich instance as shown
in [45].

(b) Our model for the terrain elevation in the Zurich
instance.

Figure 5.31 � The layout of the Zurich instance.

167

34. However, these runways share the same STARs, the separation occurs
just before landing. Therefore, in the scope of this document, the algorithm
works as if there were only one runway, oriented at 330◦. The centers for
the Zurich instance are given in Table 5.22. In [45], for this instance, no
tra�c �ow is mentioned. Therefore, we chose to give the same importance
to all routes. Additionally, one of the SIDs to design (path number 4) is
supposed to start from runway 32/34, but the author of [45] chose to change
its threshold to 10 on the grounds of keeping the design coherent. There are
9 routes to design in total. The tra�c �ows and waypoints are gathered in
Table 5.23. Figure 5.32 displays the published routes, that are currently in
use at this airport. The coordinates of the starting and ending points for
the routes are gathered in Table 5.24. The coordinates are the same as in
[45].
The additional features of this instance are as follows:

• The altitude range of the exit points is not relevant (so all ranges are
accepted in the solution);

• Maximum turn angle θmax = 30◦;

• Minimum angle at merge points θmin = 15◦;

• Minimum slope (SID) αSIDmin : 7.0%;

• Maximum slope (SID) αSIDmax: 11%;

• Minimum slope (STAR) αSTARmin : 2%;

• Maximum slope (STAR) αSTARmax : 5%;

• The maximum number of level �ights nLFmax = 4 per runway threshold
(so 8 in total);

• The minimum length of the level �ights was set to lLFmin = 5NM and
the maximum length lLFmax is not relevant here;

• There is no orientation imposed on the entry/exit points.

With this data, the author from [45] presented two sets of results, one based
on a Branch-and-Bound approach (�g. 5.33a), the other on a SA approach
(�g. 5.33b). In both �gures, the published routes are displayed in dashed
lines, and the results obtained in solid lines. The green circles represent the

Runway threshold Type of procedure
Graph center

2D position Height (ft)
10 SID (348.60, 46.53) 1400

32/34 STAR (343.90, 50.66) 2615

Table 5.22 � The characteristics of the runway thresholds and graph centers
for the Zurich tests.

168

Route Threshold Type of procedure Tra�c �ow Waypoints
1 10 SID 12% ZH502, ZH526, ARTAG, GERSA

2 10 SID 11% BREGO, VEBIT

3 10 SID 11% ZH502, KOLUL, DEGES

4 10 SID 11% SONGI

5 32/34 STAR 11% RILAX, LAMAX, AMIKI, ZUE, TRA

6 32/34 STAR 11% RAVED, NEGRA, MATIV, AMIKI, ZUE, TRA

7 32/34 STAR 11% KELIP, ZH625, KLO, GIPOL, TRAD10

8 32/34 STAR 11% BLM, GIPOL, TRAD10

9 32/34 STAR 11% DOPIL, ERMUS, GIPOL, TRAD10

Table 5.23 � The routes selected for the tests for Zurich airport.

Figure 5.32 � The chosen published routes for the Zurich instance in [45].

169

Route Threshold
Graph center

Entry/Exit point (2D)
2D coordinates Height (ft)

1

10 (348.60, 46.53) 1400

(349.72, 21.42)
2 (326.84, 32.85)
3 (374.48, 46.86)
4 (352.95, 66.5)

5

32/34 (343.9, 50.66) 2615

(343.07, 75.39)
6 (391.14, 68.09)
7 (359.69, 17.48)
8 (304.10, 52.63)
9 (328.47, 20.99)

Table 5.24 � The routes with their associated starting and ending points for
the Zurich instance.

obstacles that were chosen for the instance. As for the other cases, we tested
both square and circular layers. The results obtained with our approach are
presented in the next paragraphs.

5.5.1 The Zurich instance with square layers

As the results obtained on the Charles-de-Gaulle instance were more
satisfactory with the square layers, we decided to test those �rst. They
were designed according to Table 5.25.
In this case, we tested three di�erent discretizations of the layers:

• in the �rst one, there are 80 to 180 vertices per layer depending on the
layer's number (in the same way as for the CDG instance);

• in the second one, there are 80 to 360 vertices;

• in the third one, there are 120 to 480 vertices.

Threshold
Total number

of layers
Layers interval and step Gates involved

Layer of
the gates

10 13

1 → 11 : 2 4 11
11 → 12 : 1.76 2 12

12 → 13 : 3.735
1 13
3 13

32/34 24

1 → 13 : 2.060833333 5 13
13 → 15 : 2.47 9 15
15 → 17 : 1.755 7 17

17 → 20 : 2.206666667 8 20
20 → 24 : 1.86 6 24

Table 5.25 � The disposition of the square layers for the Zurich instance.

170

(a) The results from the literature (B&B algorithm).

(b) The results from the literature (SA algorithm).

Figure 5.33 � The results from the literature [45] on the Zurich instance.

171

The number and position of the layers don't change along tests, only the
number of vertices per layer. This choice has been made in order for the
algorithm to be able to �nd solutions. This aspect will be discussed at
the end of this section on the Zurich instance, and more generally in the
conclusion of this chapter and the discussion. The results are displayed in
�g. 5.34. It appears that the results are very similar in their shapes. The
mountains are avoided and no con�ict is observed between the routes. The
interesting comparison to consider here is the proportion of failed iterations
of the algorithm (see Table 5.27). These values show that there are too
few discretization points in the �rst case, and the algorithm is unable to
easily �nd feasible routes, because only a small proportion of all possibilities
actually leads to a feasible solution. In the third test case, the opposite
problem is responsible for the number of failures: there are too many
possibilities, most of which are not feasible. Therefore, the algorithm is not
able to easily �nd a feasible solution among all possibilities. These values
put forward two important aspects:
• The algorithm has reached its limits in terms of capacity to manage
the terrain on this instance (a slightly more complex instance could
have led to the impossibility to �nd any solution, at least with this
type of layers);

• The choice of the density of vertices is once again a critical criterion
of the performance of the algorithm.

We can also mention that several other discretizations of the square layers
were attempted, which couldn't provide any feasible result. This puts an
emphasis on the last point.

5.5.2 The Zurich instance with circular layers

As for the other test cases, we decided to implement the layers as circles.
The layers that were used are as presented in Table 5.26.

Threshold
Total number

of layers
Layers interval and step Gates involved

Layer of
the gates

10 27 1 → 27 : 1.0

4 21
1 26
2 27
3 27

32/34 51 1 → 51 : 1.0

5 26
9 34
7 38
8 41
6 51

Table 5.26 � The disposition of the circular layers for the Zurich instance.

172

(a) The results with the �rst
discretization (1st view).

(b) The results with the �rst
discretization (2nd view).

(c) The results with the second
discretization (1st view).

(d) The results with the second
discretization (2nd view).

(e) The results with the third
discretization (1st view).

(f) The results with the third
discretization (2nd view).

Figure 5.34 � The results on the Zurich instance with square layers.

173

As for the tests with square layers, and for the same reasons, the variation
in discretization only applies to the number of vertices per layer:

• in the �rst case, there are 72 vertices per layer (one every 5◦, see
�g. 5.35);

• in the second case, there are 360 vertices per layer (one every degree).

The results obtained are presented in �g. 5.36. As for the square layers, the

b

Center

b
b
b
b
bb
bb

bb
bb

bbb
bbbbbbbbbbbbbbbbbb

b
b
b
b
b
b
b
b b b b b b b b b b b b b b b b b b b

b b
b b
b b
b b
b b
b
b
b

1NM 1NM

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

bbbbbbb
b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b b b b b b b
b

b
b

b
b

b

b

b

b

b

b

b

b

b

1NM

Figure 5.35 � An example of discretization for the Zurich instance in the �rst
test case for circular layers. They are separated by 1NM each, and sampled
into 72 vertices each. The same method for discretization applies for the
other cases.

results are quite similar in shape. However, this time it can be observed that
the solution from the "heavy" discretization yields a smoother result than
the one with the lighter discretization, which presents irregularities. It can
also be noted that in this case, the solutions provided with circular layers
are visually more coherent with real-life operations than with the square
layers. Again, we can look at the proportion of failed tests in these two
cases in Table 5.27. These numbers, as in the Charles-de-Gaulle instance,
are much lower than their counterparts in the square layers case. This tends
to con�rm that circular layers are more suited when the instance is complex
and an admissible solution can be hard to determine. In the next paragraph,
we analyze the numerical results of the tests run on the Zurich instance.

174

(a) The results with the �rst
discretization (1st view).

(b) The results with the �rst
discretization (2nd view).

(c) The results with the second
discretization (1st view).

(d) The results with the second
discretization (2nd view).

Figure 5.36 � The results on the Zurich instance with circular layers.

175

5.5.3 Comparative results and discussion on the Zurich
instance

The results obtained for the tests on the Zurich instance are gathered in
Table 5.27. The results show that it is possible for the algorithm to design
a set of routes with a route length criterion approaching the one achieved
by the procedures in use. The most remarkable feature in these results
lies in the big di�erence between the mean computation times for the cases
with circular layers. Two explanations can be brought. Firstly, it can be
explained by the fact that the number of vertices per layer was multiplied by
5, which dramatically increased the time required to build the graphs as well
as the arcs valuation and path search processes. The second explanation,
in a minor way, is that in the �rst case, the algorithm ended up with a
non-feasible solution in a bigger proportion than for the �rst case.
The last noticeable element from these results is the di�erence in values for
the two criteria (route length, but also graph weight) between our results
and those from the literature. This is mainly due to the need to manage
the location of the merging points. Although one could expect the graph
weight criterion to be lower in our work, this is not automatically the case,
especially in instances like Zurich, where the maneuverable area is small.
In this case, forcing a separation of the merging points requires to occupy
more space than if it wasn't necessary. Another explanation is that for each
of the two runways under consideration in this case, the entry/exit points
are rather regularly spread around the centers. This implies that the routes
should share little to no common parts and rather immediately take di�erent
directions, which the merging points management prevents.
The Zurich test case has shed some light on one of the most critical types
of scenarios for the design of procedures with our algorithm: the complexity
of the layout of the search. We mentioned above that the number and
disposition of the layers weren't changed between the tests, only the number
of vertices per layer. This is due to the di�culty for the algorithm to �nd
solutions when the structure of the layers is not adapted. The following
cases were encountered:

Measurement Published routes B&B approach ([45]) SA approach ([45])
Route length 439.52 380.44 387.69
Graph weight NC 380.44 387.69

Computation time NC 2.7s 12 min 50s

Measurement
Square layers Circular layers

1st discr. 2nd discr. 3rd discr. 1st discr. 2nd discr.
Route length 483.95 520.30 540.28 520.94 506.68
Graph weight 413.45 436.59 464.38 392.84 407.27

Computation time 1 min 44s 1 min 35s 6 min 53s 35s 4 min 57s
Failed proportion 82% 51% 86% 20% 33%

Table 5.27 � The mean numerical results for the Zurich instance.

176

• If the layers are too close to one another, it is more di�cult for
the algorithm to design turns (as explained in the section about the
arti�cial case). In this con�guration, the algorithm was not able to
connect one of the gates to its runway in the graph construction. A
solution to this problem would be to increase the number of vertices
per layer. However, if the number of vertices per layer increases too
much, the computation time is severely worsened, and most of the
solutions are very negatively a�ected in terms of coherence.

• If the layers are too far from one another, then there aren't enough
possibilities to create paths. This often resulted in the algorithm not
being able to �nd any admissible solution (all solutions had con�icts
with the terrain).

Many con�gurations that were tested led to a failure to �nd any admissible
solution. The di�culty in this test case lies in the rather short maneuverable
distance between the runway thresholds and the mountains around them.
This situation, as the situation of Charles-de-Gaulle airport did for the
number of routes, allowed to de�ne the limits of the algorithm in terms
of terrain elevation for a real-life scenario. It also brought to our attention
the e�ects of scattered entry or exit points around the centers, which, due
to the management of the merging points, takes a toll on both the route
length and graph weight criteria.

5.6 General discussion on the results

The main and most important feature of the algorithm, as put into light by
the series of tests detailed above, is the choice of the layers.

177

The following elements were observed:

• The Stockholm instance showed the importance in the choice of the
shape of the layers, even on "small" instances. The results can vary
strongly depending on this choice.

• The tests on the arti�cial instance proved that the density of vertices
also played an important role in �nding a solution, even without
changing the shape of the layers. It appeared that increasing the
number of vertices doesn't automatically lead to better solutions, and
there is no easy way to know beforehand what the best suited number
of vertices is.

• The Charles-de-Gaulle instance gave an example of the limits of the
algorithm in terms of capacity to produce a good solution when
the number of routes to design increases strongly. There again, the
importance in the choice of the shape of the layers was emphasized,
the square layers giving more coherent results than the circular ones,
but also leading to many more failed runs of the algorithm than
their circular counterparts. It was noted that better results could be
obtained by allowing wider turn angles and by being able to go back
to a previous layer.

• The Zurich instance showed the limits of the algorithm in terms
of terrain management, with once again more di�culties to �nd
admissible solutions with square layers. The main di�culty for this
instance was to be able to �nd the right number of layers and number of
vertices per layer to implement. This was due to the relative smallness
of the available search space compared to other large airports, and
even by putting the layers close to each other, their number could be
critically low for the way the algorithm was designed. In this case, the
circular layers yielded better results than their square counterparts.

In all cases, the algorithm is very sensitive to the choice of the layers,
both in the chosen shape and in the number of discretization points per
layer. It is di�cult to know in advance what type of layers will provide
the most satisfactory results. However, we observed from the results of
our tests that the routes have a tendency to be shaped in the form of
the underlying layers: the square layers provide routes that are rather
straightforward, with sharper turn angles, while the circular layers give
routes that are rounder. Based on that observation, it would appear that the
square layers or similar (rectangles, diamonds, trapezoids, parallelograms,
regular polygon...) should be more suited for instances where the routes
are expected to be straightforward (for example when there are few to
no obstacles, and/or when many routes are to be designed), and that the
circular layers or similar (ellipses) are more �tted for instances where it is
necessary to circumvent obstacles. These assumptions are backed by the
results on the tests performed for this work, but they should be investigated
more thoroughly and more speci�cally with series of tests designed especially

178

to con�rm or in�rm them. Finally, it should be mentioned that circular
layers have a better tendency to provide admissible results than their square
counterparts, sometimes at the detriment of the coherence of the solution
(as shown with the Charles-de-Gaulle instance), which goes in the same
direction than the previous assumptions: this type of layers looks more
suited for maneuverability and square ones for straightforwardness.

179

Chapter 6

Conclusions and perspectives

6.1 Review of the work

In this thesis, we presented a solution to automatically design Standard
Instrument Departures (SIDs) and Standard Terminal Arrival Routes
(STARs) at a strategic level. The method relies on the possibilities o�ered
by the Required Navigation Performance (RNP) procedures that are being
developed throughout the world to improve the way to use the airspace. The
solution proposed takes many criteria into account, among which the route
length, the avoidance of certain areas or the management of merging points
between the routes. It was designed in order to be the closest possible to
the shape of the procedures currently in use in real-life scenarios, with the
minimization of the controllers' workload as a primary objective.
In our model, a route is represented by two elements. The �rst element is
the horizontal pro�le, which consists of a sequence of geographical points in
2D (the waypoints) by which the aircraft are expected to �y. These points
are constructed by sampling the Terminal Maneuvering Area (TMA) around
the runway by the means of concentric layers, which are themselves sampled
into vertices to form a graph. The horizontal pro�le is a sequence of points
of increasing layers in that graph. The second part of the route model is the
vertical pro�le, represented as a cone of altitudes associated to the horizontal
pro�le. These altitudes encompass all the paths that aircraft following the
routes could �y in the vertical plane. The vertical pro�le is constructed by
applying a minimum and maximum slope along the horizontal pro�le, while
taking into account possible level �ights.
The obstacles are modeled as cylinders with a polygonal base, and a
minimum and maximum altitudes. The cities are designed as 2D polygons
associated to a population density function. They represent areas that
should be avoided if possible, but that can be �own over if there is no other
choice. The design of the routes is modeled as an optimization problem that
we tackled with the use of an algorithm based on the Simulated Annealing
(SA) meta-heuristic. For one runway, a �rst route is designed, and then the
other routes can connect either to the runway or to a previously created
route, by taking care not to connect with two routes at the same time. Each
route is designed by attributing carefully chosen costs to the arcs in the
graph and then by applying a shortest path search in this graph between the

180

desired starting and ending points. The routes are designed by decreasing
order of tra�c �ow so as to favor the busiest ones. The same process is done
for all runways, then the SA optimizes the solution. The obstacle and cities
avoidance, as well as the avoidance of con�icts between routes are carried
out during the evaluation process of the SA, by increasing dramatically the
cost of solutions that violate one or several constraints.
This method was tested on several instances, both arti�cial and from real-life
scenarios. These tests provided satisfactory results in the current state of Air
Tra�c Management, but also showed the limits of the algorithm in terms of
complexity management, in terms of number of routes and terrain structure.
The main element to handle is the shape of the layers used to discretize the
search space. It appeared that circular layers had a better chance to give
admissible results and was better tailored to instances in which avoiding
obstacles is a major concern, while square layers proved to be more e�cient
when the main objective is to design straightforward routes, especially in
an environment with few to no obstacles. In all test cases, the algorithm
ran in a time span that is very acceptable in the context it is designed for.
A comparison of our results with those from the literature showed that our
method could be improved, in terms of route length and space occupied by
the solutions. The main contribution of this thesis lies in the management
of the merging points between the routes, and the variety of constraints that
is taken into account, making it very close to the way actual procedures are
currently designed.

6.2 Discussion and perspectives

The results showed that there is still room for improvement for the algorithm,
including in terms of coherence of the routes on complex instances. Indeed,
some of the routes display a zigzag behavior, are unnecessarily lengthened
or connect to other routes in a non-optimal way. However, compared to the
current way of designing procedures, by hand, the algorithm runs way faster.
These observations make it very suited for decision-helping in the procedure
design process. A �rst solution can be quickly provided by the algorithm,
even on complex instances, and then improved by hand by experts. A �rst
element could be to add the design of the missed approach routes to the
algorithm, in order to add to the compatibility of the algorithm with the
current state of air operations. Other perspectives can also be considered,
and are presented in the next paragraphs.

6.2.1 Technical perspectives

Various possibilities can be considered in order to improve, or explore further
the solution presented in this thesis, such as trying other meta-heuristics
(genetic algorithms, ants colony algorithms, particle swarm optimization...)
for instance. In this section, we present two technical perspectives that can
be looked into.

181

6.2.1.1 Carry out an extensive study on the choice for the layers

We established that the shape and sampling of the layers used to discretize
the search space play a critical role in the �nal solution provided by the
algorithm. We were able to make assumptions on the role played by the
shape of the layers, and the following ideas could help enhance the algorithm
on this aspect:
• Con�rm or in�rm that circular or elliptic layers, and also regular
polygons with a high enough number of vertices are more suited to
instances in which the primary goal is to avoid obstacles;

• Con�rm or in�rm that square, rectangle, trapezoidal, diamond,
parallelogram shapes or convex polygons that are non-regular or
contain few vertices are more suited to instances where there are few
to no obstacles, or where many routes are to be designed;

• Test the in�uence of "hybrid" shapes of layers (such as half-circles, for
instance, when all entry/exit points are located in the same half plane.
The half-circles can be closed by a diameter, that would pass on the
center) on instances containing both situations mentioned above;

• Improve the algorithm so that it becomes able to design routes that
pass several times on a given layer, allowing to make U-turns easier
and thus improve the performances.

6.2.1.2 Broaden the tests to the case of a metroplex

The aim of this work is to be able to design routes for large airports.
Therefore, the logical continuation is to test it on even larger instances than
Charles-de-Gaulle, like the New-York TMA (see �g. 6.1). An intermediary
step could be to add the airports of Paris-Orly and Paris-Le Bourget to the
Charles-de-Gaulle instance. As the limits of the algorithm were seemingly
close to be attained on the CDG instance, it should be expected that
running the algorithm on a more complex case would yield poor results,
to no result at all (impossibility for the algorithm to build one or several
routes). Implementing one of the solutions mentioned in 6.2.2 would then
be necessary in order to tackle larger instances.

182

Figure 6.1 � The New-York metroplex (taken from [45]).

6.2.2 Methodological (conceptual) perspectives

6.2.2.1 Multiobjective approach

We stated in chapter 3 that the problem of SID and STAR design is
multi-objective in nature. An interesting perspective could then be to
modify the algorithm in a way that allows to explore the Pareto front of the
solutions, rather than outputting a single solution. This would also allow
for a better coverage of the various possibilities for the route design. This
coverage could also help in reducing the probabilities for the �nal output
to be an incoherent solution with regard to the current state of air tra�c
management.
Another way to modify the objective function could be to take the cost
relative to the noise out of it, in order to be left with two criteria with the
same unit (so only route length and graph weight). The part of the objective
relative to the noise could then be integrated to the problem as a constraint.
This constraint could be, for instance, to forbid to �y at a lower altitude
than a value set for each point of the grid. This constraint would then be
indistinguishable from the obstacle constraint.

6.2.2.2 New route shape modeling

In our work, we decided to design one route by relying on a graph structure
with carefully chosen costs for the arcs and a shortest path search on this
graph. It could be interesting to employ other means to design a route and
compare them to the work presented in this thesis. Two main possibilities
should be particularly interesting to consider.
The �rst possibility is to replace the shortest path search by a construction
based on splines. Splines are mathematical objects that can be used to
design smooth paths by interpolating them using �xed points. A spline
is a sequence of polynomials of arbitrary degree, each polynomial being
de�ned between two consecutive �xed points. A useful property of splines
is that depending on their degree, regularity conditions can be imposed on

183

the connection points, which allows to create smooth paths. Using splines
instead of arcs should take the solutions provided by the algorithm farther
from current designs and closer to a mathematical modeling of paths than the
ones presented in this work, but should help in implementing more e�ciently
the limited turn constraint.
The second possibility to design the routes in another way is to use the
optimal control theory. This method takes in entry the state equations,
describing the movement of an aircraft, functions describing the constraints,
and an optimization function. Several methods can be used to solve the
associated optimization problem, and the solution provided gives the optimal
way to �y the aircraft under the optimization function provided (for example
the route shortness, or the fuel consumption...). Although all routes could
be designed with this method, it could also be interesting to apply it to
each route, inside a Simulated Annealing-based algorithm. This would allow
to modify the optimization function during the process, or for each route,
allowing to explore the search space more thoroughly.

184

Publications

This thesis lead to two publications

• In AIAA's journal Aerospace: Departure and Arrival Routes
Optimization Near Large Airports, 6(7), 80, published on July, 12th,
2019; https://doi.org/10.3390/aerospace6070080.

• For the EIWAC2019 conference in Tokyo, Japan: SID and STAR
routes optimization near large airports, published in HAL archive:
https://hal-enac.archives-ouvertes.fr/hal-02352437,
February, 8th, 2020, HAL id: hal-02352437, version 1.

185

https://doi.org/10.3390/aerospace6070080
https://hal-enac.archives-ouvertes.fr/hal-02352437

Bibliography

[1] �Global facts sheet.� https://aviationbenefits.org/media/

166713/abbb18_factsheet_global.pdf, 2018.

[2] �European aviation in 2040 - challenges of growth
- annex 4: Network congestion.� https://www.

eurocontrol.int/sites/default/files/2019-05/

challenges-of-growth-2018-network-congestion-21122018.

pdf, 2018.

[3] �European aviation in 2040 - challenges of growth.� https://www.

eurocontrol.int/sites/default/files/content/documents/

official-documents/reports/challenges-of-growth-2018.pdf,
2018.

[4] �Commercial market outlook 2019 - 2038.� https://

www.boeing.com/resources/boeingdotcom/commercial/

market/commercial-market-outlook/assets/downloads/

cmo-sept-2019-report-final.pdf, 2018.

[5] S. J. Undertaking, �European atm master plan - executive view,� tech.
rep., 2020.

[6] F. A. A. (FAA), �Nextgen implementation plan,� tech. rep., 2018.

[7] E. Commission, �Air tra�c management - freeing europe's airspace,�
tech. rep., Commission of the European Communities, 1996.

[8] C. Letondal, C. Hurter, R. Lesbordes, J.-L. Vinot, and S. Conversy,
�Flights in my hands: Coherence concerns in designing strip'tic, a
tangible space for air tra�c controllers,� tech. rep., 04 2013.

[9] S. Rathinam, J. Montoya, and Y. Jung, �An optimization model for
reducing aircraft taxi times at the dallas fort worth international
airport,� MDPI, vol. 1, pp. 3470�3483, 2008.

[10] M. Zhang, Q. Huang, S. Liu, and H. Li, �Multi-objective optimization
of aircraft taxiing on the airport surface with consideration to taxiing
con�icts and the airport environment,� MDPI - Sustainability, vol. 11,
p. 6728, 2019.

[11] T. Degaspare, P. Paglione, and C. Marinho, �Development of a
simulation environment for ground control laws design,� 12 2015.

186

https://aviationbenefits.org/media/166713/abbb18_factsheet_global.pdf
https://aviationbenefits.org/media/166713/abbb18_factsheet_global.pdf
https://www.eurocontrol.int/sites/default/files/2019-05/challenges-of-growth-2018-network-congestion-21122018.pdf
https://www.eurocontrol.int/sites/default/files/2019-05/challenges-of-growth-2018-network-congestion-21122018.pdf
https://www.eurocontrol.int/sites/default/files/2019-05/challenges-of-growth-2018-network-congestion-21122018.pdf
https://www.eurocontrol.int/sites/default/files/2019-05/challenges-of-growth-2018-network-congestion-21122018.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/official-documents/reports/challenges-of-growth-2018.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/official-documents/reports/challenges-of-growth-2018.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/official-documents/reports/challenges-of-growth-2018.pdf
https://www.boeing.com/resources/boeingdotcom/commercial/market/commercial-market-outlook/assets/downloads/cmo-sept-2019-report-final.pdf
https://www.boeing.com/resources/boeingdotcom/commercial/market/commercial-market-outlook/assets/downloads/cmo-sept-2019-report-final.pdf
https://www.boeing.com/resources/boeingdotcom/commercial/market/commercial-market-outlook/assets/downloads/cmo-sept-2019-report-final.pdf
https://www.boeing.com/resources/boeingdotcom/commercial/market/commercial-market-outlook/assets/downloads/cmo-sept-2019-report-final.pdf

[12] S. Chaimatanan, D. Delahaye, and M. Mongeau, �A hybrid
metaheuristic optimization algorithm for strategic planning of 4d
aircraft trajectories at the continental scale,� IEEE Computational
Intelligence Magazine, vol. 9, pp. 46�61, 2014.

[13] O. Rodionova, M. Sbihi, D. Delahaye, and M. Mongeau, �North
atlantic aircraft trajectory optimization,� IEEE Transactions on
Intelligent Transportation Systems, vol. 15, pp. 2202�2212, 2014.

[14] C. Allignol, N. Barnier, and A. Gondran, �Optimized vertical
separation in europe,� in 31st IEEE/AIAA Digital Avionics Systems
Conference (DASC2012), pp. 4B3�1�4B3�10, 2012.

[15] N. Durand and J.-B. Gotteland, �Genetic algorithms applied to air
tra�c management,� Metaheuristics for Hard Optimization Methods
and Case Studies, pp. 277�306, 2006.

[16] S. Ca�eri and N. Durand, �Aircraft decon�iction with speed regulation:
New models from mixed-integer optimization,� Journal of Global
Optimization, vol. 58, no. 4, pp. 613�629, 2014.

[17] N. Barnier and C. Allignol, �4d-trajectory decon�iction through
departure time adjustment,� in 8th USA/Europe Air Tra�c
Management Research and Development Seminar (ATM 2009), 2009.

[18] ICAO, PANS OPS vol II - Construction of Visual and Instrument
Flight Procedures, 2006.

[19] ICAO, Performance-based Navigation (PBN) Manual, 2008.

[20] ICAO, Required Navigation Performance Authorization Required
(RNP AR) Procedure Design Manual, 2009.

[21] �Compatibility in clearances issued,� in International Federation of Air
Tra�c Controllers' Associations (IFACTA) 58th annual conference,
2019.

[22] Eurocontrol, Guidance Material for the Design of Terminal Procedures
for DME/DME and GNSS Area Navigation, 1999.

[23] Eurocontrol, Point Merge Integration of Arrival Flows Enabling
Extensive RNAV Application and Continuous Descent - Operational
Services and Environment De�nition, 2010.

[24] �Point merge.� https://www.eurocontrol.int/concept/

point-merge.

[25] B. Delaunay, �Sur la sphère vide,� Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk, vol. 7, pp. 793�800, 1934.

[26] P. Maur, �Delaunay triangulation in 3d,� 2002. State of the Art and
Concept of Doctoral Thesis - University of West Bohemia in Pilsen,
Czech Republic.

187

https://www.eurocontrol.int/concept/point-merge
https://www.eurocontrol.int/concept/point-merge

[27] G. Leach, �Improving worst-case optimal delaunay triangulation
algorithms,� in 4th Canadian Conference on Computational Geometry,
1992.

[28] M. Brevilliers, �Triangulations de steiner,� 2006. LMIA Seminary.

[29] Y. Thoma, Tissu Numérique Cellulaire a Routage et Con�guration
Dynamiques. PhD thesis, Ecole Polytechnique Fédérale de Lausanne,
2005.

[30] D. Watel, Approximation de l'Arborescence de Steiner. PhD thesis,
Université de Versailles Saint-Quentin-en-Yvelines, 2014.

[31] T. Lozano-Pérez and M. A. Wesley, �An algorithm for planning
collision-free paths among polyhedral obstacles,� Communications of
the ACM, vol. 22, no. 10, pp. 560�570, 1979.

[32] H. Rohnert, �Shortest paths in the plane with convex polygonal
obstacles,� Information Processing Letters, vol. 23, no. 2, pp. 71�76,
1986.

[33] J. Storer and J. Reif, �Shortest paths in the plane with polygonal
obstacles,� Journal of the ACM, vol. 41, pp. 982�1012, 1994.

[34] M. N. Bygi and M. Ghodsi, �3d visibility graph,� Computational
Science and its Applications, 2007.

[35] M. Sharir and A. Schorr, �On shortest paths in polyhedral spaces,�
pp. 144�153, 1984.

[36] K. Jiang, L. Seneviratne, and S. Earles, �Finding the 3d shortest
path with visibility graph and minimum potential energy,� vol. 1,
pp. 679�684, 1993.

[37] Y.-H. Liu and S. Arimoto, �Path planning using a tangent graph for
mobile robots among polygonal and curved obstacles,� International
Journal of Robotic Research, vol. 11, no. 4, pp. 376�382, 1992.

[38] M. Pocchiola and G. Vegter, �Minimal tangent visibility graphs,�
Computational Geometry, vol. 6, no. 5, pp. 303�314, 1996.

[39] F. Aurenhammer, �Voronoi diagrams - a survey of a fundamental
geometric data structure,� ACM Computing Surveys, vol. 23,
pp. 345�405, 1991.

[40] �Quadtree.� https://github.com/domoench/Quadtree.

[41] H. Choset, Sensor Based Motion Planning: The Hierarchical
Generalized Voronoi Graph. PhD thesis, California Institute of
Technology, 1996.

188

https://github.com/domoench/Quadtree

[42] B. Chazelle and L. Guibas, �Visibility and intersection problems in
plane geometry,� Discrete & Computational Geometry, vol. 4, no. 6,
pp. 551�581, 1989.

[43] N. Sleumer and N. Tschichold-Gürman, �Exact cell decomposition of
arrangements used for path planning in robotics,� tech. rep., Institute
of Theoretical Computer Science Zurich, 1999.

[44] F. Lingelbach, �Path planning using probabilistic cell decomposition,�
in Proceedings of 2004 IEEE International Conference on Robotics and
Automation, vol. 1, pp. 467�472, 2004.

[45] J. Zhou, Optimal Design of SIDs/STARs in Terminal Maneuvering
Area. PhD thesis, Université Toulouse 3 Paul Sabatier, 2017.

[46] D. Demyen, �E�cient triangulation-based path�nding,� Master's
thesis, University of Alberta, 2007.

[47] A. Ait El Cadi, Plani�cation de Trajectoires pour une Flotte d'UAVs.
PhD thesis, Université de Montreal, 2010.

[48] P. Gallina and A. Gasparetto, �A technique to analytically formulate
and to solve the 2-dimensional constrained trajectory planning
problem for a mobile robot,� Journal of Intelligent and Robotic
Systems, vol. 27, no. 3, pp. 237�262, 2000.

[49] D. Delahaye, S. Puechmorel, P. Tsiotras, and E. Feron, �Mathematical
models for aircraft trajectory design: A survey,� Air Tra�c
Management and Systems: Selected Papers of the 3rd ENRI
International Workshop on ATM/CNS (EIWAC2013), pp. 205�247,
2013.

[50] H. Je�reys and B. Je�reys, �Methods of mathematical physics.�
Cambridge University Press, 1988.

[51] G. Farin and D. Hansford, The Essentials of CAGD. Natick, MA,
USA: A. K. Peters, Ltd., 2000.

[52] W. Mula, �B-spline with control points/control polygon, and marked
component curves.� https://fr.wikipedia.org/wiki/B-spline#

/media/Fichier:B-spline_curve.svg.

[53] E. W. Dijkstra, �A note on two problems in connexion with graphs,�
Numerische Mathematik, vol. 1, no. 1, pp. 269�271, 1959.

[54] A. Shimbel, �Structure in communication nets,� in Proceedings of the
Symposium on Information Networks, pp. 199�203, Polytechnic Press
of the Polytechnic Institute of Brooklyn, 1955.

[55] L. Ford, Network Flow Theory. RAND Corporation, 1956.

[56] R. Bellman, �On a routing problem,� Quaterly of Applied Mathematics,
vol. 16, no. 1, pp. 87�90, 1958.

189

https://fr.wikipedia.org/wiki/B-spline#/media/Fichier:B-spline_curve.svg
https://fr.wikipedia.org/wiki/B-spline#/media/Fichier:B-spline_curve.svg

[57] P. Hart, N. Nilsson, and B. Raphael, �A formal basis for the heuristic
determination of minimum cost paths,� IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100�107, 1968.

[58] D. Ferguson, M. Likhachev, and A. Stentz, �A guide to heuristic
based path planning,� Proceedings of the Workshop on Planning under
Uncertainty for Autonomous Systems at The International Conference
on Automated Planning and Scheduling (ICAPS), 2005.

[59] D. M. Pfeil, Optimization of Airport Terminal-Area Air Tra�c
Operations under Uncertain Weather Conditions. PhD thesis,
Massachusetts Inst. of Technology, Cambridge, MA, 2011.

[60] J. Chen, A. Youse�, S. Krishna, B. Sliney, and P. Smith, �Weather
avoidance optimal routing for extended terminal airspace in support of
dynamic airspace con�guration,� in 31st IEEE/AIAA Digital Avionics
Systems Conference (DASC2012), pp. 3A1�1�3A1�16, 2012.

[61] J. Chen, A. Youse�, S. Krishna, D. Wesely, B. Sliney, and P. Smith,
�Integrated arrival and departure weather avoidance routing within
extended terminal airspace,� in 32nd IEEE/AIAA Digital Avionics
Systems Conference (DASC2013), pp. 1A4�1�1A4�17, 2013.

[62] M. Shakour, �Conception et implementation d'un algorithme
de plani�cation de chemin dans un jeu vidéo comportant un
environnement triangularisé,� Master's thesis, Université du Québec
à Montréal, 2012.

[63] L. Dubins, �On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,� American Journal of Mathematics, vol. 79, no 3,
pp. 497�516, 1957.

[64] T. Li, J. Jiang, Z. Zhen, and C. Gao, �Mission planning for multiple
uavs based on ant colony optimization and improved dubins path,� in
IEEE Chinese Guidance, Navigation and Control Conference, 2016.

[65] R. Garroppo, S. Giordano, and L. Tavanti, �A survey on
multi-constrained optimal path computation: Exact and approximate
algorithms,� Elsevier, 2010.

[66] C. H. and S. M. LaValle, �Time-optimal paths for a dubins airplane,�
in 46th IEEE Conference on Decision and Control, pp. 2379�2384,
2007.

[67] I. Lugo-Cárdenas, G. Flores, S. Salazar, and R. Lozano, �Dubins
path generation for a �xed wing uav,� in International Conference
on Unmanned Aircraft Systems (ICUAS 2014), pp. 339�346, 2014.

[68] A. Richards, �Trajectory optimization using mixed-integer linear
programming,� Master's thesis, Massachusetts Institute of Technology,
2002.

190

[69] J. Bellingham, M. Tillerson, A. Richards, and J. How, Multi-Task
Allocation and Path Planning for Cooperating UAVs, pp. 23�41.
Springer, 2003.

[70] G. Elghoumari, K. Hila, E. Delechelle, and E. Petit, �Analyse
qualitative des images par propagation de front d'ondes,� 2001.
GRETSI, Groupe d'Etudes du Traitement du Signal et des Images.

[71] J. Sethian, �A fast marching level set method for monotonically
advancing fronts,� Proceedings of the National Academy of Sciences
of the United States of America, vol 33, pp. 1591�1595, 1996.

[72] J. Sethian and A. Vladimirsky, �Ordered upwind methods for static
hamilton-jacobi equations,� Proceedings of the National Academy of
Sciences of the United States of America, vol 98, pp. 11069�11074,
2001.

[73] S. Vilardaga and X. Prats, �Con�ict free trajectory optimisation for
complex departure procedures,� in 6th International Conference on
Research in Air Transportation (ICRAT2014), 2014.

[74] S. Vilardaga and X. Prats, �Mass estimation for an adaptive
trajectory predictor using optimal control,� in Proceedings of the 5th
International Conference on Application and Theory of Automation in
Command and Control Systems (ATACCS15), pp. 75�84, 2015.

[75] X. Prats, V. Puig, J. Quevedo, and F. Nejjari, �Multi-objective
optimisation for aircraft departure trajectories minimising noise
annoyance,� Transportation Research Part C: Emerging Technologies,
vol. 18, no. 6, pp. 975 � 989, 2010. Special issue on Transportation
Simulation Advances in Air Transportation Research.

[76] X. Prats, V. Puig, and J. Quevedo, �Equitable aircraft noise-abatement
departure procedures,� Journal of Guidance, Control, and Dynamics,
vol. 34, pp. 192�203, 2011.

[77] X. Prats, V. Puig, and J. Quevedo, �A multi-objective optimization
strategy for designing aircraft noise abatement procedures. case study
at girona airport,� Transportation Research Part D: Transport and
Environment, vol. 16, pp. 31�41, 2011.

[78] M. Soler, A. Olivares, and E. Sta�etti, �Hybrid optimal control
approach to commercial aircraft trajectory planning,� Journal of
Guidance, Control, and Dynamics, vol. 33, no. 3, pp. 985�990, 2010.

[79] D. Toratani and S. Ueno, �A study on trajectory optimization for the
terminal area,� in 6th International Conference on Research in Air
Transportation (ICRAT2014), 2014.

[80] D. Toratani, S. Ueno, and T. Higuchi, �Simultaneous optimization
method for trajectory and sequence for receding horizon guidance in

191

terminal area,� SICE Journal of Control, Measurement, and System
Integration, vol. 8, no. 2, pp. 144�153, 2015.

[81] D. Toratani, D. Delahaye, S. Ueno, and T. Higuchi, �Merging
optimization method with multiple entry points for extended
terminal maneuvering area,� in 4th ENRI International Workshop on
ATM/CNS (EIWAC2015), 2015.

[82] S. Khardi and L. Abdallah, �Optimization approaches of aircraft
�ight path reducing noise: Comparison of modeling methods,� Applied
Acoustics, vol. 73, no. 4, pp. 291�301, 2012.

[83] J. Betts, �Survey of numerical methods for trajectory optimization,�
Journal of Guidance, Control, and Dynamics, vol. 21, no. 2,
pp. 193�207, 1998.

[84] O. Khatib and J.-F. Le Maitre, �Dynamic control of manipulators
operating in a complex envrionment,� in 3rd Symposium on Theory
and Practice of Robots and Manipulators, pp. 267�282, 1980.

[85] D. Kim, H. Wang, G. Ye, and S. Shin, �Decentralized control
of autonomous swarm systems using arti�cial potential functions:
Analytical design guidelines,� in 43rd IEEE Conference on Decision
and Control (CDC), 2004.

[86] L. Guys, Plani�cation de Trajectoires d'Avions sans Con�it :
Fonctions Biharmoniques et Fonction de Navigation Harmonique.
PhD thesis, Universite Toulouse 3 Paul Sabatier, 2014.

[87] F. Rejiba, Modélisation de la Propagation des Ondes
Electromagnétiques en Milieux hétérogenes - Application au Radar
Sol. PhD thesis, Université Pierre et Marie Curie - PARIS VI, 2002.

[88] N. E. Dougui, Plani�cation de Trajectoires Avion : Approche par
Analogie Lumineuse. PhD thesis, Universite Toulouse 3 Paul Sabatier,
2011.

[89] J. Kennedy and R. Eberhart, �Particle swarm optimization,� in IEEE
International Conference on Neural Networks, 1995.

[90] C. Goh, K. Tan, D. Liu, and S. Chiam, �A competitive and
cooperative co-evolutionary approach to multi-objective particle
swarm optimization algorithm design,� European Journal of
Operational Research 202, pp. 42�54, 2010.

[91] J. Holland, Adaptation in Natural and Arti�cial Systems. University
of Michigan Press, 1975. second edition, 1992.

[92] D. Gianazza, N. Durand, and N. Archambault, �Allocating
3d-trajectories to air tra�c �ows using a* and genetic algorithms,� in
CIMCA 2004, international conference on Computational Intelligence
for Modelling, Control and Automation, 2004.

192

[93] D. Gianazza and N. Durand, �Separating air tra�c �ows by allocating
3d-trajectories,� in 23rd Digital Avionics Systems Conference
(DASC2004), vol. 1, pp. 2.D.4�21�13, 2004.

[94] D. Gianazza and N. Durand, �Assessment of the 3d-separation of air
tra�c �ows,� in 6th USA/ Europe Air Tra�c Management Research
and Development Seminar (ATM2005), 2005.

[95] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, �A fast and elitist
multiobjective genetic algorithm: Nsga-ii,� IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182�197, 2002.

[96] Q. Zhang and H. Li, �Moea/d: A multiobjective evolutionary
algorithm based on decomposition,� IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712�731, 2007.

[97] V. Ho-Huu, S. Hartjes, H. Visser, and R. Curran, �An e�cient
application of the moea/d algorithm for designing noise abatement
departure trajectories,� Aerospace, vol. 4, p. 54, 2017.

[98] V. Ho-Huu, S. Hartjes, L. Geijselaers, H. Visser, and R. Curran,
�Optimization of noise abatement aircraft terminal routes using
a multi-objective evolutionary algorithm based on decomposition,�
Transportation Research Procedia, vol. 29, pp. 157 � 168, 2017.
Aerospace Europe CEAS 2017 Conference.

[99] V. Ho-Huu, S. Hartjes, H. Visser, and R. Curran, �Integrated design
and allocation of optimal aircraft departure routes,� Transportation
Research Part D: Transport and Environment, vol. 63, pp. 689 � 705,
2018.

[100] V. Ho-Huu, S. Hartjes, H. Visser, and R. Curran, �An optimization
framework for route design and allocation of aircraft to multiple
departure routes,� Transportation Research Part D: Transport and
Environment, vol. 76, pp. 273 � 288, 2019.

[101] J. Zhou, S. Ca�eri, D. Delahaye, and M. Sbihi, �Optimization of arrival
and departure routes in terminal maneuvering area,� 6th International
Conference on Research in Air Transportation (ICRAT 2014), 2014.

[102] J. Sethian, �Fast marching methods,� SIAM Review, vol. 41,
pp. 199�235, 1998.

[103] Y. Huo, D. Delahaye, J. Ma, and M. Sbihi, �Integrated Tra�c Flow
Based Optimization of Airport and Terminal Area,� in SID 2019, 9th
SESAR Innovation Days, 2019.

[104] M. Liang, Aircraft Route Network Optimization in Terminal
Maneuvering Area. PhD thesis, Université Toulouse 3 Paul Sabatier,
2018.

193

[105] K. Liu and M. Zhang, �Path planning based on simulated annealing
ant colony algorithm,� 9th International Symposium on Computational
Intelligence and Design, 2016.

[106] M. Kobilarov and G. Sukhatme, �Near time-optimal constrained
trajectory planning on outdoor terrain,� in IEEE International
Conference on Robotics and Automation, IEEE.

[107] R. Geraerts and M. Overmars, �A comparative study of probabilistic
roadmap planners,� Algorithmic Foundations of Robotics V, Springer
Tracts in Advanced Robotics vol 7, pp. 43�57, 2004.

[108] S. LaValle, �Rapidly-exploring random trees: A new tool for path
planning,� tech. rep., Computer Science Department, Iowa State
University, 1998.

[109] S. Karaman and E. Frazzoli, �Incremental sampling-based algorithms
for optimal motion planning,� Robotics Science and Systems VI, 2010.

[110] J. Gammell, S. Srinivasa, and T. Barfoot, �Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,� 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2014),
pp. 2997�3004, 2014.

[111] J. Gammell, S. Srinivasa, and T. Barfoot, �Bit*: Batch informed trees
for optimal sampling-based planning via dynamic programming on
implicit random geometric graphs.� 2014.

[112] J. Gammell, S. Srinivasa, and T. Barfoot, �Batch informed trees (bit*):
Sampling-based optimal planning via the heuristically guided search
of implicit random geometric graphs,� IEEE International Conference
on Robotics and Automation (ICRA 2015), pp. 3067�3074, 2015.

[113] J. Gammell, S. Srinivasa, T. Barfoot, S. Choudhury, and S. Scherer,
�Regionally accelerated batch informed trees (rabit*): A framework to
integrate local information into optimal path planning,� 2016 IEEE
International Conference on Robotics and Automation (ICRA 2016),
pp. 4207�4214, 2016.

[114] T. A. Granberg, T. Polishchuk, V. Polishchuk, and C. Schmidt,
�Automatic design of aircraft arrival routes with limited turning
angle,� 16th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS16)., 2016.

[115] V. Polishchuk, �Generating arrival routes with radius-to-�x
functionalities,� 7th International Conference on Research in Air
Transportation (ICRAT 2016), 2016.

[116] Eurocontrol, Guidance Material for the Design of Terminal Procedures
for DME/DME and GNSS Area Navigation, 1999.

194

[117] Eurocontrol, Guidance Material for the Design of Terminal Procedures
for Area Navigation (DME/DME, B-GNSS, Baro-VNAV and
RNP-RNAV), 2003.

[118] ICAO, Required Navigation Performance Authorization Required
(RNP AR) Procedure Design Manual, 2009.

[119] B. Schä�er, C. Zellmann, S. Pluess, K. Eggenschwiler, R. Bütikofer,
and J. Wunderli, �Sound source data for aircraft noise calculations -
state of the art and future challenges,� in EURONOISE 2012, 2012.

[120] �Aircraft noise levels.� https://www.faa.gov/about/office_org/

headquarters_offices/apl/noise_emissions/aircraft_noise_

levels/.

[121] O. Laval, S. Toulouse, and A. Nagih, �Rapport de recherche sur le
problème du plus court chemin contraint,� tech. rep., 2006.

[122] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, �Optimization by
simulated annealing,� Science, vol. 220, pp. 671�680, 1983.

[123] D. Delahaye, S. Chaimatanan, and M. Mongeau, Simulated Annealing
: From Basics to Applications. Springer, 2018.

195

https://www.faa.gov/about/office_org/headquarters_offices/apl/noise_emissions/aircraft_noise_levels/
https://www.faa.gov/about/office_org/headquarters_offices/apl/noise_emissions/aircraft_noise_levels/
https://www.faa.gov/about/office_org/headquarters_offices/apl/noise_emissions/aircraft_noise_levels/

	Résumé
	Abstract
	Contents
	Nomenclature
	Glossary
	Introduction
	Chapter 1: Problem context: the framework of procedure design
	1.1 The current and future state of air traffic management
	1.2 Airspaces and flight structure
	1.2.1 The different airspaces and their purpose
	1.2.2 The different steps of a flight
	1.2.2.1 The climb
	1.2.2.2 The cruise
	1.2.2.3 The landing
	1.2.2.4 The missed approach

	1.3 The purpose and design of SIDs and STARs
	1.3.1 The navigational aids and instruments
	1.3.2 The different types of procedures
	1.3.2.1 The conventional procedures
	1.3.2.2 The RNAV procedures
	1.3.2.3 The RNP procedures
	1.3.2.4 A particular structure: the Point Merge

	1.4 Operational context and objective of this thesis

	Chapter 2: Literature review
	2.1 Search space and route representation
	2.1.1 Triangulations
	2.1.2 Natural graph structures
	2.1.3 Cell decomposition

	2.2 Resolution methods for path and trajectory finding problems
	2.2.1 Exact methods
	2.2.1.1 Mathematical interpolations
	2.2.1.2 Exact path-finding algorithms

	2.2.2 Heuristics and meta-heuristics

	2.3 SID and STAR optimization
	2.3.1 Automatic Design of Aircraft Arrival Routes with Limited Turning Angle
	2.3.2 Optimal Design of SIDs/STARs in Terminal Maneuvering Area

	2.4 Conclusion

	Chapter 3: Problem modeling
	3.1 Input data
	3.2 Graph construction and route representation
	3.2.1 TMA representation and route network construction
	3.2.2 The route representation

	3.3 Optimization problem formulation
	3.3.1 Decision variables
	3.3.2 Constraints
	3.3.2.1 Obstacle avoidance constraint
	3.3.2.2 Limited turn constraint
	3.3.2.3 Route separation constraint
	3.3.2.4 Merge points constraint
	3.3.2.5 Flight levels constraint

	3.3.3 Objective function
	3.3.3.1 The route length
	3.3.3.2 The graph weight
	3.3.3.3 The noise abatement
	3.3.3.4 The complete optimization problem

	Chapter 4: Resolution approach
	4.1 The dynamic programming principle
	4.1.1 Modeling of the optimal SID/STAR design problem as an optimal shortest constrained path
	4.1.2 Complexity analysis
	4.1.2.1 Spatial complexity
	4.1.2.2 Time complexity

	4.1.3 Dynamic programming based heuristic for designing one route
	4.1.3.1 Without preprocessing

	4.1.4 With preprocessing: imposing boundary values for the minimum and maximum altitude
	4.1.5 Heuristic for designing several routes
	4.1.6 Motivations for a metaheuristic based approach

	4.2 The Simulated Annealing algorithm for the SID/STAR design problem
	4.3 Generating one route on the graph: the modified Bellman algorithm
	4.3.1 The adaptation of the Bellman-Ford algorithm to our problem
	4.3.2 The management of the edges' weight

	4.4 The design of several routes with our algorithm
	4.4.1 Choosing the merge layers
	4.4.2 Generating a neighbor decision in the SA
	4.4.3 Changing the level flights
	4.4.4 Changing the connection of a route

	4.5 Solution evaluation

	Chapter 5: Simulation results
	5.1 Experimental setup
	5.1.1 Introduction of the test cases
	5.1.1.1 The artificial instance
	5.1.1.2 The Stockholm instance
	5.1.1.3 The Paris Charles-de-Gaulle instance
	5.1.1.4 The Zurich instance

	5.1.2 Measuring the test results
	5.1.3 The parameters used for the SA

	5.2 The artificial instance
	5.2.1 The dynamic programming based approach
	5.2.1.1 Designing one route
	5.2.1.2 Designing several routes

	5.2.2 The Simulated Annealing based approach
	5.2.2.1 One runway
	5.2.2.1.1 One route design and one obstacle
	5.2.2.1.2 Six routes design with all obstacles

	5.2.2.2 The artificial instance with two runways
	5.2.2.2.1 The artificial case: two runways with circular layers
	5.2.2.2.2 The artificial case: two runways with square layers

	5.3 The Stockholm instance
	5.3.1 Test case 1: only two cities taken into account
	5.3.2 Test case 2: all cities taken into account
	5.3.3 Test case 3: circular layers

	5.4 The Paris Charles-de-Gaulle instance
	5.4.1 The Paris CDG case: a comparison with the literature
	5.4.1.1 The CDG instance: square layers
	5.4.1.2 The CDG instance: circular layers

	5.4.2 The Paris CDG case: adding a forbidden zone
	5.4.3 Comparative results for the CDG instance

	5.5 The Zurich instance
	5.5.1 The Zurich instance with square layers
	5.5.2 The Zurich instance with circular layers
	5.5.3 Comparative results and discussion on the Zurich instance

	5.6 General discussion on the results

	Chapter 6: Conclusions and perspectives
	6.1 Review of the work
	6.2 Discussion and perspectives
	6.2.1 Technical perspectives
	6.2.1.1 Carry out an extensive study on the choice for the layers
	6.2.1.2 Broaden the tests to the case of a metroplex

	6.2.2 Methodological (conceptual) perspectives
	6.2.2.1 Multiobjective approach
	6.2.2.2 New route shape modeling

	Publications
	Bibliography

