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Abstract 

Iron oxide nanoparticles with engineered physical and biochemical properties are finding a 

rapidly increasing number of biomedical applications. However, a wide variety of safety 

concerns, especially those related to oral exposure, still needs to be addressed in order to 

reach the clinical practice. Here, we report on the effects of chronic oral exposure to low dose 

of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight and diet intake 

reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed 

in liver, spleen and duodenum, while faeces are the main excretion route. Liver iron level and 

duodenal villi morphology reflect the bioavailability of the iron released from the partial 

transformation of γ-Fe2O3 nanoparticles in acid gastric environment. Duodenal gene 

expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the 

enhancement of ferric over ferrous pathway supporting the role of mucins. Our findings 
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reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at 

low nanoparticle doses. 

 

1. Introduction 

Progress in nanotechnology has brought countless novel applications[1] in different 

areas such as material science, energy or health. In the latest, nanometre-scale chemical 

engineering is providing novel tools for diagnostics, therapeutics and sensoring[2-3].  

One example is given by iron oxide nanoparticles (IONP), which are finding a rapidly 

increasing number of biomedical applications thanks to their suitable structural, 

colloidal, and magnetic properties[4]. Nowadays, IONP are employed as suitable 

platforms for biosensing[2], biomolecular-magnetic trapping[5], magnetic 

hyperthermia[6], imaging[7], drug- or gene-delivery[8-9]. There is a wide variety of 

IONP preparation methods providing controllable nanoparticle size and customized 

physical, chemical and biological functionalities without cytotoxicity drawbacks[4, 10-

14]. The coprecipitation of iron salts in water is the most widely used chemical method 

for synthesis of IONP[14]. Such chemical route provides crystalline IONP from the 

transformation of a mixture of ferric and ferrous salts in alkaline aqueous medium. 

Appropriated chemical procedures[4, 15] allow to prepare single-phase IONP avoiding 

the coexistence of Fe3O4 and γ-Fe2O3 phases and therefore different iron oxidation 

states (i.e. Fe(II) and Fe(III)) present into the same nanoparticle. 

The success of IONP on distinct biomedical applications requires to overcome safety 

concerns[16-18]. The assessment of IONP toxicity, biodistribution and excretion routes 

after long-term exposure is mandatory prior to a safe incorporation into clinical 

practice. Little attention has been paid to the effects related to IONP oral exposure in 

spite of the use of engineered nanoparticles for nutritional[19-23] and pharmaceutical 

[8, 24-25] purposes is expected to increase[20, 26-27]. An important issue is related to 
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the oral administration of nanoparticles where magnetic ones offer the possibility to 

magnetically guide the drug delivery to intentionally enhance the drug release into the 

affected tissue[8]. There exist toxicity and gastro-intestinal functioning concerns 

related to the oral exposure to IONP, especially regarding the absorption of metals like 

iron[20, 28-29].  Dietary iron is found in two basic forms[30-31], either as haem –

found in meat- or non-haem iron -present in cereals, vegetables, beans, fruits, etc. in a 

number of forms ranging from simple iron oxides and salts to more complex organic 

chelates. Haem iron is more bioavailable than the non-haem form and their absorption 

takes place by different pathways. It is well accepted that the main iron absorption 

takes place in duodenum. In case of non-haem iron, there are two main transport 

mechanisms to enter into enterocytes. These mechanisms tightly depend on the iron 

oxidation state: ferrous (i.e. Fe(II)), or ferric (i.e. Fe(III)) forms. Thus, luminal Fe(II) 

absorption involves divalent metal transporter-1 (DMT1) whereas luminal Fe(III) is 

proposed to undergo enzymatic reduction to Fe(II), by duodenal cytochrome B 

(DcytB), prior to apical DMT1 transport from lumen into labile iron pool in the 

cytoplasm of the enterocytes. Recently, Simovich et al. [32] proposed a novel and 

different ferric pathway at the apical surface of the villus which is specific for the 

uptake of the ferric form without previous enzymatic reduction. Such iron transport 

process involves the participation of four proteins in two stages. Firstly, luminal Fe(III) 

is chelated by mucins, then ferrous iron crosses the membrane in association with β3-

integrin and mobilferrin to internalize into cytosol. Secondly, this Fe(III) and protein 

complex combines with flavin monooxygenase and β2-microglobulin (β2-m) leading to 

paraferritin complex where Fe(III) is reduced to Fe(II). Once non-haem iron is inside 

the enterocyte, it can be either stored as ferritin or exported through the basolateral 

membrane from the ferrous iron pool to blood stream by the combined action of 

ferroportin (FPN) and hephaestin.[30] 
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The effects of nanomaterials on intestinal functioning have recently started to be 

evaluated. Some works on iron containg nanoparticles[20, 23, 33] show that iron from 

nanoparticles is bioavailable allowing to nanoparticles to act as efficient iron sources 

spite of the fact the duodenal absorption pathways remain still unknown.[21, 34-35] 

For this purpose, broiler chicken has been shown to be a suitable and accurate animal 

model for iron absorption and bioavailability studies[28, 36]. The broiler chickens are 

useful model for initial screening of Fe bioavailability in foods due to its growth rate, 

anatomy, size, and low cost. Recent results indicate that this animal model exhibits the 

appropriate responses to Fe deficiency and has potential to serve as a model for Fe 

bioavailability[36].  Previous studies related to oral exposure to IONP in mice reveal 

the genotoxic effects after acute and prolonged oral exposure[16, 25, 37-38]. The 

controversial variety of results underlines the need to clarify the influence of IONP oral 

exposure on the intestinal functioning for the sake of safety issues in oral biomedical 

applications[7-8].  

Here, we report on the effects of chronic oral exposure to IONP in growing chickens. 

Animal observation, diet intake and body weight reveal no adverse signs, symptoms, or 

mortality after 14 days of low dose IONP oral exposure. No IONP accumulation in 

liver, spleen and duodenum has been observed, while faeces appear as the main IONP 

excretion route. In addition, the liver iron level and the duodenal villi morphology 

reveal that iron from IONP is available. The analysis of haematological parameters 

indicates normality after chronic IONP dietary treatment. Duodenal gene expression 

studies on non-haem iron transport indicate that the ferrous pathway is inhibited whilst 

the ferric pathway is enhanced, supporting the involvement of mucins in iron solubility 

and transport into enterocytes. 

 
2. Materials and methods 
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2.1 Synthesis of γ-Fe2O3 nanoparticles 

The synthesis of γ-Fe2O3 nanoparticles coated with amino dextran (AD) was carried 

out in two steps procedure. In the first step, Fe3O4 nanoparticles were synthesized 

following the co-precipitation protocol described by Massart et al.[14]  and including 

some modification[39] of the reaction conditions allows to obtain γ-Fe2O3 IONP of 12 

nm size and narrow size distribution. In the second step, we proceed to modify the 

surface of nanoparticles. An aqueous solution of 500 mg of nanoparticles was 

dispersed in 70 mL of water at pH 11 (adjusted with KOH). AD (500 mg) was 

dissolved in 30 mL of water and added to nanoparticle dispersion very slowly and 

sonicated for twelve hours. The excess of coating was washed by dialysis against 

distilled water. Finally, the particles were dried on a stove to get the γ-Fe2O3 IONP 

powder. 

2.2 Structural characterization of γ-Fe2O3 nanoparticles 

Particle shape, size and size distribution were determined by Transmission Electron 

Microscopy (TEM) using the 200 KeV JEOL 2000 FXII microscope for routine TEM 

images and 200 KeV JEOL JEM 2100 for high resolution Transmission Electron 

Microscopy (HRTEM) images. For that purpose nanoparticles were prepared by 

placing a drop of a dilute nanoparticle suspension on a carbon-coated copper grid 

covered with a perforated carbon film and allowing the solvent to evaporate slowly at 

room temperature. The nanoparticle size is 12 ± 2 nm. The average particle size and 

distribution were evaluated by measuring the largest internal dimension of 350 

particles for the sake of statistical validity. The different size populations are organized 

into a histogram and are adjusted to a log-normal function. The particle surface coating 

was characterized by Fourier transform infrared spectra, recorded between 4000 and 

300 cm-1 in a Bruker IFS 66 V-S spectrometer. Samples were prepared for infrared 
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characterization by diluting the iron oxide nanoparticle powder in KBr at 2% by weight 

and compressing the mixture, pressing it into a pellet. On the other hand, quantification 

of the coating was carried out by simultaneous thermogravimetric analysis and 

differential thermal analysis performed on a Seiko TG/DTA 320U thermobalance by 

heating particle dispersion from room temperature to 900 °C at 10 °C/ min under an air 

flow of 100 ml/ min.  

2.3 Magnetic characterization of iron oxide nanoparticles 

Magnetization cycles of IONP powder were carried out in a vibrating sample 

magnetometer 7410 Lakeshore up to 2 T. A mass of 4.6 mgFe of AD coated IONP 

powder was introduced into a sample holder for tracing magnetization loops at room 

temperature while sweeping the magnetic field at 0.25 T/min. Magnetization values are 

normalized to the γ-Fe2O3 mass. In addition, temperature dependence of alternating 

current (AC) magnetic susceptibility measurements were performed on IONP and 

mashed freeze-dried liver, spleen and faeces. Samples were transferred into gelatine 

capsules for AC magnetic susceptibility characterization using a QuantumDesign 

MPMS-XL SQUID magnetometer. The variation of the AC magnetic susceptibility 

was recorded under given AC field conditions (11 Hz and 0.41 mT) in a temperature 

range from 2 to 300 K. 

2.4 Diet formulations 

Three experimental diets were designed for the experiment. Diet A: basal corn-soybean 

diet; diet B: basal diet supplemented with ferrous sulphate (FeSO4); diet C: basal diet 

supplemented with powder of AD coated γ-Fe2O3 IONP. Diets in mash form and water 

were provided ad libitum to birds. All diets were formulated to meet or exceed the 

minimum requirements established by Spanish Foundation for the Animal Nutrition 

Development (FEDNA) for broiler chickens[40], except for iron in case of diet A.  
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2.5 Animal model 

A total of 60 one-day-old male broiler chicks (Cobb strain) were housed in electrically 

heated starter batteries in an environmentally controlled room. From 1
st
 till 7

th
 day, 

birds were fed ad libitum on diet B with an adaptation period. At the 7
th

 day, 36 birds 

were selected by similar weight (189 ± 3g) and haemoglobin level. At 8
th

 day, the 36 

selected chickens were divided in three groups for receiving different diets during 14 

days of dietary treatment period. Each dietary group was allocated in 3 cages (3 

replicates with 4 chicks per replicate). At the end of the dietary treatment period (21
st
 

day) birds were subjected to 8 hours fasting, and feed consumption per cage was 

recorded. Then, birds were individually weighted and prepared for blood sample 

extraction. After blood collection, all chicks were euthanized using carbon dioxide 

prior to the extraction of duodenal, liver and spleen samples. Experimental procedures 

were approved by Animal Care and Ethics Committee of Universidad Complutense de 

Madrid in compliance with the Ministry of Agriculture, Fishery and Food for the Care 

and Use of Animals for Scientific Purposes.  

2.6 Collection of Samples 

Faeces: At the 19
th

 day, clean stainless steel collection trays were placed under each 

cage, for collecting bird excreta during next 48 h (3 replicate per diet, 4 birds per 

replicate). A subsample of excreta per cage was collected in polyethylene bags and 

freeze-dried for subsequent determination of iron content. For AC magnetic 

susceptibility measurements, a pooled sample per diet was prepared out of 3 replicates 

with 4 birds per replicate. Blood samples: 7 birds per diet were randomly selected for 

blood sample extraction by cardiac puncture. Blood was collected in 

ethylenediaminetetraacetic acid vacutainer tubes for subsequent determination of 

haematological parameters. The tubes were centrifuged at 1,500 x g for 10 min, and the 
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supernatants were removed and stored at -20°C until assayed. Liver and spleen: 

samples were washed with saline solution, weighted and frozen at -20º C until 

lyophilisation. For iron quantification, samples of liver and spleen tissues from 2 birds 

belonging to same diet were pooled and mashed (6 replicates per diet, 2 birds per 

replicate). For AC magnetic susceptibility measurements, pooled samples of liver and 

spleen tissues were prepared from mashed tissues out of 6 replicates with 2 birds per 

replicate. Duodenum: samples from 7 birds per diet were taken and washed with saline 

solution and divided into 3 different fragments. The first portion of duodenum 

intestinal mucosa was cleaned with saline solution before preserving in a clean micro-

centrifugetube (1.5 ml) and stored at -80ºC after freezing in liquid nitrogen for 

posterior gene expression study. The second duodenum portion was directly placed in 

10% formalin 0.1 phosphate buffer (pH = 7) for subsequent histological studies. The 

third duodenal portion was frozen at -20ºC until lyophilisation for iron quantification. 

2.7 Duodenal morphological studies 

Samples were processed for 24 h in a tissue processor with ethanol and were embedded 

in paraffin. Sections (5 µm) were prepared from duodenal tissue and were stained with 

hematoxylin-eosin. Histological sections were examined with an an Olimpus optical 

microscope (Olimpus Optical Co., GmbH, Hamburg,Germany). The images were 

analyzed using an image software (Soft Imaging System, Olimpus, Hamburg, 

Germany). The variables measured were villus height, and crypt depth. A total of 10 

intact, well-oriented villus-crypt units selected for each intestinal cross-section (6 

cross-sections/sample). Villus height (µm) was measured from the tip of the villus to 

the villus-crypt junction, and crypt depth was defined as the depth of the invagination 

between adjacent villi. The average of these values was used for statistical analysis.  

2.8 Iron quantification in faeces, tissues and diets 
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 Cage pooled faeces, liver, spleen and duodenum tissues were lyophilised and mashed 

prior to acid digestion. Samples were incubated with 65% nitric acid (1 ml, 1 h, 60°C) 

for total iron quantification analysis determined per gram of tissue. Quantitative 

determination of iron was analysed by Inductively Coupled Plasma Atomic Emission 

Spectroscopy (Perkin Elmer OPTIMA 2100 DV). 

2.9 Solubility studies 

 The solubility tests was done according to the standardized method of Swain et al. 

[41] considering 30 and 60 min as gizzard transit times, 40ºC[42] as physiological 

temperature and three different pH values (1,2 and 3) to reproduce the acid gastric 

conditions[43] into gizzard of 21
st
 days old birds. The digestion volume was often 

gently shaken to simulate the gizzard peristaltic motion. Quantitative determination of 

iron was analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy 

(Perkin Elmer OPTIMA 2100 DV). 

2.10 Total RNA Extraction from duodenum tissues 

 Total RNA was extracted from seven duodenal tissue samples per diet by using 

RNeasy Mini Kit (Qiagen, Valencia, CA) and following the manufacturer’s instruction, 

(Animal Tissues and Cells, DNase Digest). The extracted RNA mass values ranges 

from 4 to 29 mg. An automated RNA extraction system (QIAcube system, Qiagen) 

was used, in order to get the highest reproducibility. Total RNA was finally dissolved 

in 30 µL elution buffer and stored at –80° C. The quantity and quality of total RNA 

were assessed on a NanoDrop-ND 1000 (Thermo Fisher Scientific Inc., Boston, MA) 

and an Agilent 2100 Bioanalyzer, respectively. An aliquot of total RNA (1 µL) was 

analyzed in an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA) 

using appropriated RNA Chips and reagents. The RNA integrity number (RIN) value is 

an empirical measure of RNA integrity based on the intensities of 28s and 18s rRNA 
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bands. The RIN value is based on an algorithm that assesses a number of features 

derived from an electropherogram profile for a given sample. 

2.11 DMT1, DcytB, FPN and β2-m Gene Expression Analysis 

cDNA was produced using the GoTaq Two Step RT-PCR System A6010 (Promega, 

Madison, WI, USA) in a total volume of 20 µl, with 536 ng of total RNA, following 

the manufacturer’s protocol. No-template and no-reverse-transcription controls were 

included for each reverse-transcription run for the control treatment. cDNA was stored 

at -20ºC for later use. Polymerase chain reactions for duodenal DMT1, DcytB and FPN 

genes were carried out with primers described previously by Tako et al.[36], while the 

β2-m cDNA was amplified with primers designed by Yu et al.[44]. Amplification 

reactions were performed in a 25 µl volume with 2 µl of cDNA and 250 nM of each 

primer, in iQ5 96-well PCR plates (Bio-Rad). Thermal cycling conditions consisted of 

1 cycle at 95°C for 2 min and 40 cycles of denaturation (15 s) and annealing and 

extension (60 s). After the reaction, a melting curve analysis from 65ºC to 95ºC was 

applied to ensure consistency and specificity of the amplified product. Eukaryotic 18S 

rRNA (Endogenous 18S rRNA, part # 4352930E, Applied Biosystems, Carlsbad, CA, 

USA) was used as endogenous control for relative gene expression quantification. 18S 

sRNA was amplified in a different tube. The data mining and quantification of the gene 

expression levels were determined by the number of cycles needed for the 

amplification to reach a fixed threshold in the exponential phase of the PCR reaction. 

The number of cycles is referred to as the quantification cycle (Cq) value. The level of 

mRNA was normalized to 18S rRNA expression in each sample and presented as the 

∆Cq value (∆Cq = Cq target mRNA– Cq 18S rRNA)[45]. Real Time PCR analysis of 

∆Cq for each sample was performed in triplicate, the average of these three values was 

used for statistical analysis.  
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2.12 Statistical analysis 

Data from the animal assays were subjected to a one-way analysis of variance by using 

the general linear model procedure (version 9.2, SAS Institute Inc., Cary, NC). Data 

are shown as mean values ± standard error of the mean (s.e.m). When the effect was 

declared significant (P<0.05), means were compared using a Tukey's Studentised range 

test. 

3. Results and Discussions 

3.1 Iron oxide nanoparticles  

Single-phase γ-Fe2O3 nanoparticles with AD coating of 12 ± 2 nm size were prepared 

for dietary Fe(III) supplementation. The as-synthesized are highly crystalline 

nanostructures as shown in Figure 1. AD coating provides biocompatible features to 

IONP which have been widely tested in in vitro and in vivo studies[46]. The magnetic 

properties of AD coated IONP are shown in Figure 2. On one hand, the magnetization 

cycles show superparamagnetic features with saturation magnetization values around 

70 A·m
2
/kgγ-Fe2O3 and negligible values of remanent magnetization and coercive field at 

room temperatures. On the other hand, the temperature dependence of the AC 

magnetic susceptibility is a high-sensitive technique for the detection of IONP in 

tissues. The AC magnetic susceptibility has two components: the in-phase 

susceptibility (χ’) and the out-of-phase susceptibility (χ’’). The out-of-phase 

component χ’’(T) is only sensitive to mineralised iron, as the one forming the AD 

coated IONP, while the in-phase component χ’(T) includes the contribution from both 

mineralised iron, paramagnetic iron or other diamagnetic contributions[47]. Figure 2b 

shows the temperature dependence of χ’’of the AD coated IONP powder. Briefly, the 

temperature behaviour of χ’’(T) shows a maximum at around 220 K accompanied by a 

small shoulder at around 40 K. The maximum observed around 220 K is related to 
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magnetic relaxation processes, while the feature observed at 40 K could be related to 

an uncoherent reversal of the magnetic moments of single domain non-interacting 

particles[48]. The overall thermal behaviour of χ’’(T) can be used as an IONP 

fingerprint for tracking its presence in animal tissues or faeces after 14 days of oral 

exposure.  

3.2 Birds and diets  

Growing broiler Cobb chickens were employed in the dietary study. It has been 

recently shown that broiler chickens are a suitable animal model for iron 

bioavailability studies due to similarities with the human gastrointestinal tract[28, 36]. 

The timeline of the experimental procedure, dietary iron dose and sources employed 

are shown in Figure 3. Initially, 60 male broiler Cobb chickens 1-day-old were fed ad 

libitum with ferrous sulphate supplemented diet (diet B) along an adaptation period of 

7 days to warrant an iron sufficient diet avoiding epithelial alteration which may 

influence the results of our dietary study. After the adaptation period, dietary treatment 

period starts. From 8th day to 21
st
 day, the bird weight increases 4-fold from 189 ± 3 g 

to 759 ± 69 g revealing that growing birds need to satisfy strong nutritional 

requirements along the dietary treatment period. In case of γ-Fe2O3 IONP 

supplemented diet (diet C), the accomplishment of iron requirements implies that each 

bird would ingest, in average, a total IONP mass of 58 mg along the dietary treatment 

period. 

 3.3 Animal observation, food consumption, and body weight  

During the period from day 8
th

 to 21
st
, all birds grew in similar way independently of 

diet, achieving a similar appearance and average weight (759 ± 69 g) at the end of 

dietary treatment period. The total fed intake (756 ± 16 g) and weight gain (570 ± 30g) 

were comparable for all diets along 14 days. In case of birds fed on γ-Fe2O3 IONP 
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supplemented diet, the daily IONP dose varies from 24 mg of IONP per kg of bird at 

day 8
th

 to 6 mg/kg at day 21
st
 when considering the average ingested IONP mass (4 

mg) per bird and day and the variation of weight gain along the dietary treatment 

period, Therefore, the study remains in a low IONP dose range (<300 mg/kg) -

according to the dose range established by Kumari et al.[37]- where no toxicological 

effects are expected. Indeed, no adverse signs, symptoms, or mortality were observed 

in birds fed on γ-Fe2O3 IONP supplemented diet. This is reflected on the ratios of fresh 

liver and spleen/ animal weights, comparable for all diets as shown in Figure 4. The 

fact that liver and spleen weights are not influenced by diets implies that no 

toxicological signs such as inflammation were manifested in the animal growth of 

birds fed on IONP supplemented diet after 14 days.  

3.4 IONP biodistribution and excretion  

The IONP organ biodistribution analysis after chronic oral exposure was carried out on 

liver and spleen of birds fed on different diets. Several IONP biodistribution studies in 

animal models showed preferential accumulation in spleen and liver after intravenous 

injections, and to a lesser extent in other organs, depending on dosage[49], surface 

coating[49-50] or intravenous administration methodology[51]. The total IONP intake 

(58 mg) per bird along the dietary treatment period represents a relevant amount of 

magnetic nanomaterial for testing their safety since its accumulation in duodenum, 

spleen and liver can be tracked by AC magnetic measurements. Nonetheless, no signs 

of IONP accumulation in liver and spleen were observed for birds fed on γ-Fe2O3 

IONP supplemented diet as shown in Figure 5. These results prove that after IONP oral 

exposure during 14 days, the accumulated IONP amounts in liver or spleen are 

insignificant or under the detection limit of AC magnetic susceptibility measurements. 

IONP do not achieve blood stream from the gastrointestinal tract spite birds were fed 
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ad libitum during 14 days. However, faecal AC magnetic data from birds fed on IONP 

supplemented diet show a χ’’(T) profile (see Figure 5c) which highly resembles the 

IONP powder data shown in Figure 2b. The slightly different temperature location of 

the χ’’(T) maximum, in comparison with the IONP powder could be probably related 

to either a different IONP aggregation degree[49], partial degradation of IONP, or 

both. In any case, excretion results reveal that IONP are highly ejected along the 

gastrointestinal tract.  

3.5 Influence of dietary IONP treatment on iron storage 

The different iron sources employed in diets may result in distinct iron solubility 

leading to different iron storage and transport pathways. Acid gastric conditions[43] 

and digestive transit times[42] of twenty-one-days-old Broiler chickens were simulated 

by in vitro acid digestions in order to detect and quantify by analytical means the 

release of iron atoms from IONP during their degradation. Table 1 shows the results of 

the iron solubility[52]  from IONP under the different pH and acidic digestion times, 

mimicking gastric digestion conditions. The degradation of γ-Fe2O3 nanoparticle 

releases ferric iron. Solubility values shown in Table 1 are highly low (~2% in the best 

conditions) for all experimental conditions. These results reflect a poor biodegradation 

of IONP into Fe(III) under acid gastric conditions, what may  explain the large amount 

of IONP present in faeces observed in Figure 5c. These experiments confirm the 

intestinal tract as an efficient excretion route. Other relevant information extracted 

from excreta is that faecal iron level is tightly correlated with diets. The faecal iron 

level in birds fed on non-iron supplemented diet shows significantly lower value than 

iron supplemented diets. Since faeces are the main IONP excretion route, we assess their 

accumulation along intestinal tract by checking the duodenal iron level for different diets. 

Thus, we observed that duodenal iron level has similar values in birds fed on non-iron and 
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IONP supplemented diets but these values are significantly lower than for birds fed on 

ferrous sulphate supplemented diet (see Figure 6d). Such similarities for non-iron and γ-

Fe2O3 IONP supplemented diets suggest no IONP accumulation in duodenum. The 

different duodenal iron levels associated with distinct dietary iron sources (i.e. iron 

sulphate or IONP) can be related to their different iron solubility and/or absorption 

mechanisms. Indeed, it is well accepted[53] that Fe(II) has higher solubility than Fe(III) 

leading to higher iron absorption and efflux rates. This is in agreement with the dietary 

effects on the liver iron shown in Figure 6b for Fe(II) from iron sulphate and Fe(III) 

from IONP. Liver iron levels are significantly higher in birds fed on ferrous sulphate 

supplemented diet than in case of non-iron supplemented-one, while IONP 

supplemented diet shows intermediate values. This is an important result which reflects 

that iron from IONP is partially bioavailable. Besides, iron amount detected in spleen is 

similar for all diets (see Figure 6a). Considering that the iron supplement amount (FeSO4 

or γ-Fe2O3  IONP) represents the 40% of the iron amount present in basal diet (i.e. Diet 

A), the effects on liver iron underline that iron supplementation by IONP should be 

considered as physiological. 

Haematological parameters have been also analysed since they are expected to be 

sensitive to iron storage[54]. We have observed no influence of diets on the number of 

red blood cells, and haematocrit, haemoglobin and serum iron concentrations and their 

correspondence to bird age (see Tables S1 and S2 in Supporting Information). 

Similarly, the serum proteinogram does not reflect differences between diets. Hence, 

haematological data reveal normality after 14 days of oral exposure to IONP as 

expected for a low dose (i.e. <24 mg/kg)[37]. 

3.6  Dietary IONP effects on duodenal morphology 
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Recent works show that the oral exposure to distinct types of nanoparticles may 

influence the activity of the intestinal epithelium. On one hand, iron- and insulin-

containing nanoparticles can be efficiently absorbed acting as efficient iron[55] and 

insulin sources[24]. On the other hand, chronic and acute oral exposure to polystyrene 

carboxylated nanoparticles[28] negatively affects iron absorption at the intestinal 

epithelial layer. In order to assess the expression of any epithelial alteration in birds 

after 14 days of oral exposure to IONP we have analyzed the morphology of intestinal 

villi. In general, we observe no alteration or atrophy of duodenal morphology, contrary 

to recent works[22, 28], which  report alterations in the epithelial intestine of chickens 

after oral exposure to nanoparticles. This can be due to the fact that we use iron 

sufficient birds avoiding histological changes, which may alter the epithelial 

functioning. The villi absorption surface tightly depends on the dietary iron as shown 

in Figure 7 where the villus heights and crypt depths of duodenal tissues are depicted 

for birds subjected to different diets. While villus height and crypt depth of birds fed 

on iron supplemented diets are similar, these values are higher than the one observed 

for the non-iron supplemented diet. Interestingly, these results show that villus 

morphology is highly related to dietary iron level. This is in agreement with recent 

results showing that iron deficiency induces gastrointestinal manifestation such as 

intestinal atrophy whilst non-haematological manifestations are observed[56]. Hence, 

lower values of villus height and crypt depth are associated with non-iron 

supplemented diet where dietary iron reduction is around 30% lower than for iron 

supplemented diets. Furthermore, the intestinal villi development agrees with the liver 

iron levels shown in Figure 6b. As the IONP accumulation in the liver of birds fed on 

IONP supplemented diet has not been observed by AC magnetic measurements, we 

believe that the observed enhancement of liver iron concentration is probably 

associated with biogenic species such as ferritin. The AC magnetic signal from ferritin 
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is 100 times lower than γ-Fe2O3 IONP and its observation requires animals with iron 

overload [57-58], what is not the case in our study. Thus, the higher villi development 

observed for birds fed on iron supplemented diets (independently on the iron source) 

than the non-iron supplemented-one underlines the iron bioavailability from ingested 

IONP. Recent studies[22-23, 35] show that iron absorption from nanosize structures is 

favoured in comparison to microsize or bulk courterparts. Furthermore, authors suggest 

that the luminal non-haem iron released from nanostructures would imply ferrous 

absorption pathways (i.e. DMT1 and DcytB proteins) without showing experimental 

evidences. 

3.7 Dietary IONP effects on duodenal gene expression 

Iron absorption mechanisms are known to depend on iron forms. As mentioned above, it 

is well accepted the high bioavailability of Fe (II) from iron sulphate[35] and its 

absorption mechanism involving Dcytb-DMT1 proteins[30]. Figure 8 shows the results 

of DMT1, DcytB, β2-m and FPN gene expression analysis. At first glance, the 

expression of DcytB and DMT1 shows similar values for non-iron supplemented and 

ferrous sulphate diets but significantly lower than in case of γ-Fe2O3 IONP supplemented 

diet. On the contrary, the β2-m is significantly overexpressed for birds fed on IONP diet 

in comparison to control diets. β2-m which is one of the four proteins involved in the 

non-haem ferric pathway whose gene expression methodology is available for 

chickens[44]. Finally, FPN displays similar values for all diets revealing that the iron 

efflux from enterocyte to blood stream is performed in similar manner independently on 

the ferrous iron content into the cytoplasm related to different diets. Nevertheless, the 

downregulation of DMT1 and DcytB genes for γ-Fe2O3 IONP supplemented diet 

suggests an inhibition of ferrous transport pathways while ferric pathway is increased. 

Such possibility involves mucins, which play an important role to trigger ferric pathways 
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instead of ferrous-ones[32]. This may explain our experimental findings on Fe(III) 

released from the partial transformation of crystalline γ-Fe2O3 nanoparticles under acid 

gastric conditions. Fe(III) is susceptible to bind mucins[59] favoured by the low 

solubility of the ferric form into the intestinal mucosa  resulting in bioavailable iron.  

4. Conclusions 

The influence of oral exposure to γ-Fe2O3 nanoparticles at low concentration in the diet 

during 14 days has been assessed in growing broiler chickens. The ingestion of γ-Fe2O3 

nanoparticles within this growing period has not shown toxicological symptoms on 

growth parameters, intestinal or haematological alterations. Our results show that γ-

Fe2O3 nanoparticles are not accumulated in liver, spleen, or duodenum but mainly 

excreted by faeces. Liver iron level and duodenal villi morphology reveals the 

bioavailability of Fe(III) resulting from a partial transformation of γ-Fe2O3 

nanoparticles under acid gastric environment. Iron absorption mechanisms are assessed 

after oral exposure to iron containing nanoparticles. Duodenal gene expression studies 

related to non-haem iron proteins indicates that ferrous pathways are inhibited while 

ferric pathways are enhanced suggesting the participation of mucins in the iron 

transport into enterocytes. Our findings reveal that oral administration of iron oxide 

nanoparticles is a safe route for drug delivery at low dose. Nanotechnology opens new 

avenues towards nanoparticle engineering for providing customized iron forms and 

fractions, allowing to control iron solubility and absorption rates. 
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Figures and Tables 
 

 

Figure 1. Structural characterization of nanoparticles (A) TEM micrograph of IONP. Scale 

bar:40 nm. Inset: HRTEM micrograph of IONP. Scale bar: 5 nm, (B) size distribution (log 

normal fit) of IONP. 
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Figure 2. Magnetic characterization of nanoparticles (A) Mass-normalized magnetization 

cycle of IONP powder at room temperature, (B) Temperature dependence of χ'' of IONP 

powder. 
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Figure 3. Timeline and experimental design (A) Dietary iron source and dose, (B) Timeline 

of animal feeding and selection schedule, animal groups, diets, selection criteria, and sample 

collection. 
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Figure 4. Influence of diets on fresh organ weight (A) fresh spleen/animal weight ratio 

(n=12), (B) fresh liver/animal weight ratio (n=12). Error bars, ± s.em. 
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Figure 5.  Temperature dependence of χ” in different tissues from birds fed on different diets 

(A) liver tissues, (B) spleen tissues, (C) faeces. In (A,B), pooled samples of liver and spleen 

tissues were prepared from mashed tissues out of 6 replicates with 2 birds per replicate. In 

(C), pooled sample per diet was prepared out of 3 replicates with 4 birds per replicate. 
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Figure 6. Influence of diets on the iron concentration in (A) spleen tissues (n=6 replicates,2 

birds/replicate), (B) liver tissues (n=6 replicates,2 birds/replicate), (C) pen pooled faeces (n=3 

replicates,4 birds/replicate), (D) duodenum tissues (n=7). Error bars, ± s.e.m. In (B-D), 

significant dietary differences (P<0.05) on iron liver, spleen and duodenum average 

concentration values are indicated by contrast characters (a,b) according to a one way analysis 

of variance with Tukey’s post test. 

 

 

 

 

 

Page 22 of 27CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  NANO-106253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

23 

 

0

500

1000

1500

2000

2500

3000

non-iron

FeSO
4

γ-Fe
2
O

3
 IONP

h
e
ig

h
t 

(µ
m

)

villus 

 

 

P= 0,01

a
a

b
b

a
a

0

50

100

150

200

250

d
e

p
th

 (µ
m

)

crypt 
 

 

P= 0,02

 
Figure 7: Influence of diets on duodenal morphological parameters (A) villus height (n=7), 

(B) crypt depth (n=7). Error bars, ± s.e.m. In (A-B), significant dietary differences (P<0.05) 

on average villus and crypth values are indicated by contrast characters (a,b) according to a 

one way analysis of variance with Tukey’s post test. 
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Figure 8. Influence of diets on mRNA expression of duodenal genes (A) DcytB, (B) 

DMT1,(C) β2-m, (D) FPN. Gene expression levels were determined by real-time quantitative 

reverse-transcription-polymerase chain reaction (n = 7) and expressed relative to 18S rRNA in 

arbitrary units (a.u.).Error bars, ± s.e.m. In (A-C), significant dietary differences (P<0.05) on 

mRNA expression are indicated by contrast characters (a,b) according to a one way analysis 

of variance with Tukey’s post test. 
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Table 1. Solubility of Fe from IONP under different pH and digestion times, mimicking 

gastric digestion conditions. 

 

pH 
Digestion Time  
(min) 

Total Fe mass 

(µg) 

Released Fe mass  
(µg) 

Fe solubility  
(%) 

1 
1 

30 

60 

2770 

3020 

43 

57 

1.6 

1.9 

2 
2 

30 

60 

2560 

2920 

9 

12 

0.3 

0.4 

3 
3 

30 

60 

2550 

2870 

4 

5 

0.2 

0.2 

 
References 

 
[1] Directorate of Research &  Innovation E C 2011 Nanotechnology applications  
[2] Haun J B, Yoon T-J, Lee H and Weissleder R 2010 Magnetic nanoparticle 

biosensors Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 
2 291-304 

[3] Hilger I and Kaiser W A 2012 Iron oxide-based nanostructures for MRI and 
magnetic hyperthermia Nanomedicine 7 1443-59 

[4] Costo R, Bello V, Robic C, Port M, Marco J F, Puerto Morales M and 
Veintemillas-Verdaguer S 2012 Ultrasmall Iron Oxide Nanoparticles for 
Biomedical Applications: Improving the Colloidal and Magnetic Properties 
Langmuir 28 178-85 

[5] Konry T, Bale S, Bhushan A, Shen K, Seker E, Polyak B and Yarmush M 2012 
Particles and microfluidics merged: perspectives of highly sensitive diagnostic 
detection Microchimica Acta 176 251-69 

[6] Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, 
Budach V and Jordan A 2011 Efficacy and safety of intratumoral thermotherapy 
using magnetic iron-oxide nanoparticles combined with external beam 
radiotherapy on patients with recurrent glioblastoma multiforme J. Neurooncol. 
103 317-24 

[7] Hahn P, Stark D, Lewis J, Saini S, Elizondo G, Weissleder R, Fretz C and 
Ferrucci J 1990 First clinical trial of a new superparamagnetic iron oxide for use 
as an oral gastrointestinal contrast agent in MR imaging. Radiology 175 6 

[8] Seth A, Lafargue D, Poirier C, Péan J-M and Ménager C Performance of 
magnetic chitosan–alginate core–shell beads for increasing the bioavailability of a 
low permeable drug Eur. J. Pharm. Biopharm.  

[9] Dobson J 2006 Gene therapy progress and prospects: magnetic nanoparticle-
based gene delivery Gene Ther. 13 283-7 

[10] Roca A G, Costo R, Rebolledo A F, Veintemillas-Verdaguer S, Tartaj P, 
González-Carreño T, Morales M P and Serna C J 2009 Progress in the 
preparation of magnetic nanoparticles for applications in biomedicine J. Phys. D: 
Appl. Phys. 42 224002 

[11] Prina-Mello A, Crosbie-Staunton K, Salas G, del Puerto Morales M and Volkov 
Y 2013 Multiparametric Toxicity Evaluation of SPIONs by High Content 
Screening Technique: Identification of Biocompatible Multifunctional 
Nanoparticles for Nanomedicine Magnetics, IEEE Transactions on 49 377-82 

Page 24 of 27CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  NANO-106253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

25 

 

[12] Mejías R, Gutiérrez L, Salas G, Pérez-Yagüe S, Zotes T M, Lázaro F J, Morales 
M P and Barber D F 2013 Long term biotransformation and toxicity of 
dimercaptosuccinic acid-coated magnetic nanoparticles support their use in 
biomedical applications J. Controlled Release 171 225-33 

[13] Luengo Y, Nardecchia S, Morales M P and Serrano M C 2013 Different cell 
responses induced by exposure to maghemite nanoparticles Nanoscale 5 11428-37 

[14] Massart R 1981 Preparation of aqueous magnetic liquids in alkaline and acidic 
media Magnetics, IEEE Transactions on 17 1247-8 

[15] Morales M P, Veintemillas-Verdaguer S, Montero M I, Serna C J, Roig A, Casas 
L, Martínez B and Sandiumenge F 1999 Surface and Internal Spin Canting in γ-
Fe2O3 Nanoparticles Chem. Mater. 11 3058-64 

[16] Singh N, Manshian B, Jenkins G J S, Griffiths S M, Williams P M, Maffeis T G G, 
Wright C J and Doak S H 2009 NanoGenotoxicology: The DNA damaging 
potential of engineered nanomaterials Biomaterials 30 3891-914 

[17] Foy S P and Labhasetwar V 2011 Oh the irony: Iron as a cancer cause or cure? 
Biomaterials 32 9155-8 

[18] Gu L, Fang R H, Sailor M J and Park J-H 2012 In Vivo Clearance and Toxicity 
of Monodisperse Iron Oxide Nanocrystals ACS Nano 6 4947-54 

[19] Miller D D 2010 Food nanotechnology: New leverage against iron deficiency Nat 
Nano 5 318-9 

[20] Pereira D I A, Bruggraber S F A, Faria N, Poots L K, Tagmount M A, Aslam M 
F, Frazer D M, Vulpe C D, Anderson G J and Powell J J 2014 Nanoparticulate 
iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in 
humans Nanomed. Nanotechnol. Biol. Med.  

[21] Aslam M F, Frazer D M, Faria N, Bruggraber S F A, Wilkins S J, Mirciov C, 
Powell J J, Anderson G J and Pereira D I A 2014 Ferroportin mediates the 
intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice 
The FASEB Journal 28 3671-8 

[22] Hilty F M, Arnold M, Hilbe M, Teleki A, Knijnenburg J T N, Ehrensperger F, 
Hurrell R F, Pratsinis S E, Langhans W and Zimmermann M B 2010 Iron from 
nanocompounds containing iron and zinc is highly bioavailable in rats without 
tissue accumulation Nat Nano 5 374-80 

[23] Hilty F M, Teleki A, Krumeich F, Büchel R, Hurrell R F, Pratsinis S E and 
Zimmermann M B 2009 Development and optimization of iron- and zinc-
containing nanostructured powders for nutritional applications Nanotechnology 
20 475101 

[24] Lopes M A, Abrahim B A, Cabral L M, Rodrigues C R, Seiça R M F, de Baptista 
Veiga F J and Ribeiro A J 2014 Intestinal absorption of insulin nanoparticles: 
Contribution of M cells Nanomed. Nanotechnol. Biol. Med. 10 1139-51 

[25] Fu C, Liu T, Li L, Liu H, Chen D and Tang F 2013 The absorption, distribution, 
excretion and toxicity of mesoporous silica nanoparticles in mice following 
different exposure routes Biomaterials 34 2565-75 

[26] Sozer N and Kokini J L 2009 Nanotechnology and its applications in the food 
sector Trends Biotechnol. 27 82-9 

[27] Timko B P, Whitehead K, Gao W, Kohane D S, Farokhzad O, Anderson D and 
Langer R 2011 Advances in Drug Delivery Annual Review of Materials Research 
41 1-20 

[28] Mahler G J, Esch M B, Tako E, Southard T L, Archer S D, Glahn R P and 
Shuler M L 2012 Oral exposure to polystyrene nanoparticles affects iron 
absorption Nat Nano 7 264-71 

Page 25 of 27 CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  NANO-106253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

26 

 

[29] Powell J J, Faria N, Thomas-McKay E and Pele L C 2010 Origin and fate of 
dietary nanoparticles and microparticles in the gastrointestinal tract J. 
Autoimmun. 34 J226-J33 

[30] Sharp P and Srai S K 2007 Molecular mechanisms involved in intestinal iron  
absorption World Journal of Gastroenterology 13 9 
[31] West A R and Oates P S 2008 Mechanisms of heme iron absorption: Current 

questions and controversies World Journal of Gastroenterology 14 4101-10 
[32] Simovich M, Hainsworth L N, Fields P A, Umbreit J N and Conrad M E 2003 

Localization of the iron transport proteins mobilferrin and DMT-1 in the 
duodenum: The surprising role of mucin Am. J. Hematol. 74 32-45 

[33] Gastearena M A I, Gil A G, Azqueta A, Coronel M P and Gimeno M 2003 A 
comparative study on the gastroduodenal tolerance of different antianaemic 
preparations Hum. Exp. Toxicol. 22 137-41 

[34] Pereira D I A, Mergler B I, Faria N, Bruggraber S F A, Aslam M F, Poots L K, 
Prassmayer L, Lönnerdal B, Brown A P and Powell J J 2013 Caco-2 Cell 
Acquisition of Dietary Iron(III) Invokes a Nanoparticulate Endocytic Pathway 
PLoS ONE 8 e81250 

[35] Zimmermann M B and Hilty F M 2011 Nanocompounds of iron and zinc: their 
potential in nutrition Nanoscale 3 2390-8 

[36] Tako E, Rutzke M A and Glahn R P 2010 Using the domestic chicken (Gallus 
gallus) as an in vivo model for iron bioavailability Poult. Sci. 89 514-21 

[37] Kumari M, Rajak S, Singh S P, Murty U S N, Mahboob M, Grover P and 
Rahman M F 2013 Biochemical alterations induced by acute oral doses of iron 
oxide nanoparticles in Wistar rats Drug Chem. Toxicol. 36 296-305 

[38] Singh S P, Rahman M F, Murty U S N, Mahboob M and Grover P 2013 
Comparative study of genotoxicity and tissue distribution of nano and micron 
sized iron oxide in rats after acute oral treatment Toxicol. Appl. Pharmacol. 266 
56-66 

[39] de la Presa P, Luengo Y, Multigner M, Costo R, Morales M P, Rivero G and 
Hernando A 2012 Study of Heating Efficiency as a Function of Concentration, 
Size, and Applied Field in γ-Fe2O3 Nanoparticles The Journal of Physical 
Chemistry C 116 25602-10 

[40] de Blas C, Mateos G G and García-Rebollar P 2010 Tablas FEDNA de 
composición y valor nutritivo de alimentos para la fabricación de piensos 
compuestos Fundación Española para el Desarrollo de la Nutrición Animal, 
Madrid  502 

[41] Swain J H, Newman S M and Hunt J R 2003 Bioavailability of Elemental Iron 
Powders to Rats Is Less than Bakery-Grade Ferrous Sulfate and Predicted by 
Iron Solubility and Particle Surface Area The Journal of Nutrition 133 3546-52 

[42] Rougière N and Carré B 2010 Comparison of gastrointestinal transit times 
between chickens from D+ and D− genetic lines selected for divergent digestion 
efficiency animal 4 1861-72 

[43] Herpol C and Van Grembergen G 1967 La signification du pH dans le tube 
digestif de gallus domesticus Ann. Biol. Anim. Biochim. Biophys. 7 33–8 

[44] Yu C, Liu Q, Qin A, Hu X, Xu W, Qian K, Shao H and Jin W 2013 Expression 
kinetics of chicken β2-microglobulin and Class I MHC in vitro and in vivo during 
Marek’s disease viral infections Vet. Res. Commun. 37 277-83 

[45] Livak K J and Schmittgen T D 2001 Analysis of Relative Gene Expression Data 
Using Real-Time Quantitative PCR and the 2−∆∆CT Method Methods 25 402-8 

[46] Simberg D, Park J-H, Karmali P P, Zhang W-M, Merkulov S, McCrae K, Bhatia 
S N, Sailor M and Ruoslahti E 2009 Differential proteomics analysis of the 

Page 26 of 27CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  NANO-106253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

27 

 

surface heterogeneity of dextran iron oxide nanoparticles and the implications 
for their in vivo clearance Biomaterials 30 3926-33 

[47] Gutierrez L, Morales M P and Lazaro F J 2014 Prospects for magnetic 
nanoparticles in systemic administration: synthesis and quantitative detection 
PCCP 16 4456-64 

[48] Lázaro F J, Larrea A and Abadı[a A R 2003 Magnetostructural study of iron–
dextran J. Magn. Magn. Mater. 257 346-54 

[49] Gutiérrez L, Mejías R, Barber D F, Veintemillas-Verdaguer S, Serna C J, Lázaro 
F J and Morales M P 2011 Ac magnetic susceptibility study of in vivo 
nanoparticle biodistribution J. Phys. D: Appl. Phys. 44 255002 

[50] Cole A J, David A E, Wang J, Galbán C J and Yang V C 2011 Magnetic brain 
tumor targeting and biodistribution of long-circulating PEG-modified, cross-
linked starch-coated iron oxide nanoparticles Biomaterials 32 6291-301 

[51] Gutierrez L, Mejias R, Lazaro F J, Serna C J, Barber D F and Morales M P 2013 
Effect of Anesthesia on Magnetic Nanoparticle Biodistribution After Intravenous 
Injection Magnetics, IEEE Transactions on 49 398-401 

[52] Fe solubility = 100 x Released Fe / Total Fe  
[53] Whitehead M W, Thompson R P and Powell J J 1996 Regulation of metal 

absorption in the gastrointestinal tract. Gut 39 625-8 
[54] Mitchell T R, Anderson D and Shepperd J 1980 IRON DEFICIENCY, 

HÆMOCHROMATOSIS, AND GLYCOSYLATED HÆMOGLOBIN The 

Lancet 316 747 
[55] Powell J J, Bruggraber S F A, Faria N, Poots L K, Hondow N, Pennycook T J, 

Latunde-Dada G O, Simpson R J, Brown A P and Pereira D I A 2014 A nano-
disperse ferritin-core mimetic that efficiently corrects anemia without luminal 
iron redox activity Nanomed. Nanotechnol. Biol. Med. 10 1529-38 

[56] Lizarraga A, Cuerda C, Junca E, Bretón I, Camblor M, Velasco C and García-
Peris P 2009 Atrophy of the intestinal villi in a post-gastrectomy patient with 
severe iron deficiency anemia Nutr. Hosp. 24 618-21 

[57] Gutiérrez L, Quintana C, Patiño C, Bueno J, Coppin H, Roth M P and Lázaro F 
J 2009 Iron speciation study in Hfe knockout mice tissues: Magnetic and 
ultrastructural characterisation Biochimica et Biophysica Acta (BBA) - Molecular 
Basis of Disease 1792 541-7 

[58] Gutiérrez L, Vujić Spasić M, Muckenthaler M U and Lázaro F J 2012 
Quantitative magnetic analysis reveals ferritin-like iron as the most predominant 
iron-containing species in the murine Hfe-haemochromatosis Biochimica et 
Biophysica Acta (BBA) - Molecular Basis of Disease 1822 1147-53 

[59] Conrad M E and Umbreit J N 1993 A concise review: Iron absorption—The 
mucin-mobilferrin-integrin pathway. A competitive pathway for metal 
absorption Am. J. Hematol. 42 67-73 

 

 

Page 27 of 27 CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  NANO-106253.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


