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ABSTRACT 8 

Larval settlement and recruitment play an important role on the population dynamics of marine benthic 9 

invertebrates, and are key factors in the management of aquaculture industries. In order to check the 10 

current strategies of mussel seed gathering from collector ropes in the Ria of Ares-Betanzos (NW Spain), 11 

this work analyses the seasonal and spatial variability of larval settlement and recruitment of the mussel 12 

Mytilus galloprovincialis, as well as the relationship between settlement and recruitment. Our results 13 

highlight the importance of the hydrographic characteristics of the Ría de Ares-Betanzos on the spatial 14 

distribution of larval settlement and on the early post-settlement mortality, which determines recruitment 15 

success. The spatial distribution of larval settlement, with higher abundances in the northern-shore but 16 

significant larval retention in the southern culture areas, is in agreement with the positive subtidal 17 

circulation of this embayment and the larger residence times in the southern shore. The positive subtidal 18 

circulation of the Ría favours larval transport from the culture areas located in the south to the northern 19 

shore, while the larger residence times allow larval retention in the southern shore. The strong linear 20 

relationship between settlement and recruitment suggest density-independent mortality and allowed 21 

estimating recruitment abundances and short-term survival rates. The highest and lowest post-settlement 22 

mortalities were registered at the most external and sheltered locations respectively, suggesting that the 23 

vulnerability to the hydrodynamic stress may be the main cause of early post-settlement mortality of 24 

mussel juveniles on suspended substrates. Our results confirm that the sheltered culture polygons located 25 

in the inner area of the Ría of Ares-Betanzos are favourable environments for the recruitment of Mytilus 26 

galloprovincialis spat, supporting the current strategies of seed gathering from collector ropes in the Ría 27 

of Ares-Betanzos. 28 

 29 
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 31 

1. INTRODUCTION 32 

The life cycle of most benthic marine invertebrates, such as Mytilus galloprovincialis, involve a 33 

dispersive planktotrophic larval phase, which can last for several weeks, and a post-larval sedentary stage 34 

(Cáceres-Martı́nez and Figueras, 1998a; Grantham et al., 2003).. Larval settlement (the process by which 35 
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individuals become associated with the substrate) and recruitment (the number of individual attached to 36 

the substrate an arbitrary time after settlement) play an important role in the population dynamics of 37 

marine benthic invertebrates (Arribas et al., 2015; Menge et al., 2009).  Therefore, understanding all the 38 

processes that affect larval dispersal, settlement and recruitment would be of key importance for a proper 39 

management of exploited stocks (e.g. mussels and oysters), tracking invasions (e.g. Xenostrobus securis 40 

in the Galician Rías) or designating marine reserves (Levin, 2006; López-Duarte et al., 2012).      41 

Settlement and recruitment of marine invertebrates are determined by many biotic and abiotic 42 

factors operating and interacting on multiple time and spatial scales in numerous environments (Levin, 43 

2006; Pineda et al., 2008). The timing and magnitude of larval supplies (Cáceres-Martínez and Figueras, 44 

1998a; Porri et al., 2006), the presence of conspecifics (Tumanda et al., 1997), algal and microbial 45 

coverage (Hunt and Scheibling, 1997; O’Connor et al., 2006) among others, are biotic factors that 46 

determine larval settlement. On the other hand, larval survivorship and development during the planktonic 47 

stage are affected by abiotic factors such as physic-chemical characteristics of water (e.g. temperature, 48 

salinity and oxygen concentration) and food availability (Alfaro, 2005; O’Connor et al., 2007; Phillips, 49 

2004, 2002; Widdows, 1991). In particular, larval settlement in heavily affected by hydrodynamic 50 

conditions controlling larval dispersal and nutrients availability (Peteiro et al., 2011; Smith et al., 2009; 51 

Xavier et al., 2007), along with the type of settlement substrate. Recruitment of marine benthic 52 

invertebrates is determined by the interaction between settlement abundance and post-settlement 53 

processes, such as migration and mortality. Post-settlement mortality has been mainly attributed to the 54 

physiological stress associated with metamorphosis, a greater vulnerability to physical stress in smaller 55 

individuals, predation and intra and/or interspecific competition for food and/or space (Bownes and 56 

McQuaid, 2009; Capelle et al., 2014; Dolmer and Stenalt, 2010; Gosselin and Qian, 1997; 57 

Peteiro et al., 2010; Peteiro et al., 2007a).   58 

Mussels are dominant organisms on many rocky shores worldwide, where they serve as 59 

ecosystem engineers because they attenuate storm surge, stabilize the shoreline, sequester 60 

carbon and provide food and habitat for many species, and are a central component of 61 

community structure (Commito et al., 2014; Lawrie and McQuaid, 2001; Menge and Branch, 62 

2001; Navarrete and Menge, 1996; Petraitis, 1998; Rilov et al., 2008)  In addition, mussels have 63 

important commercial value worldwide, which has motivated the continuous increase of 64 
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aquaculture industry along the last decades. Filter-feeders (e.g. mussels, oysters) grown in 65 

suspended culture also have an important influence in the ecosystem, mainly in areas dominated 66 

by aquaculture (Ferreira et al., 2007; Pérez-Camacho et al., 2014) .These effects may include a 67 

top-down control of eutrophication symptoms (Bricker et al., 2003) and changes in the water 68 

column biogeochemistry (Souchu et al., 2001). The important ecological role of mussels and the 69 

need of mussel seed for the aquaculture industry have motivated an increasing interest on 70 

understanding the pre and post-settlement processes that determine their abundance and 71 

dynamics.   72 

Eastern boundary coastal upwelling systems (EBUS) represent less than 1% of the total 73 

volume of the oceans but they provide to humankind more than 20% of the proteins of marine 74 

origin (Fréon et al., 2009). The Galician Rías (NW Spain), located in the in the northern 75 

boundary of the Iberian–Canary Current upwelling system, are characterized by a high mussel 76 

productivity. The importance of larval dispersal and recruitment for the management of mussel 77 

culture in this area has motivated an important body of research (e.g. Cáceres-Martı́nez and 78 

Figueras, 1998a; Fuentes and Molares, 1994; Peteiro et al., 2011 and references therein). 79 

Cáceres-Martinez et al. (1993) and Peteiro et al. (2011) found that larval settlement is 80 

concentrated during spring-summer, i.e. the upwelling favourable season (Alvarez et al., 2008; 81 

Figueiras et al., 2002). Filgueira et al. (2007)  confirmed that Mytilus galloprovincialis has clear 82 

settlement preferences for textured and complex substrates because they offer increased surface 83 

area, acting as refuges against predators thus reducing post-settlement mortality. Peteiro et al. 84 

(2007a) and Peteiro et al. (2010) identified self-thinning, which regulates population density to 85 

allow individual growth, and predation, which can eliminate the settled population, as the main 86 

causes of post-settlement mortality. Peteiro et al. (2011) developed a model to determine the 87 

effects of intermittent-upwelling events on the settlement patterns of Mytilus galloprovincialis 88 

in two distinct locations of the Ría of Ares-Betanzos. Peteiro, (2010) analysed the effect of the 89 

physico-chemical characteristics of the water on larval settlement.   90 



 
 

5 
 

This work focusses on the settlement and recruitment patterns of Mytilus 91 

galloprovincialis grown in suspended culture in the Ría of Ares-Betanzos. Our main goals were 92 

to evaluate if the current seed collector strategies are optimal or can be improved, and to test 93 

whether the recruitment of mussel juveniles is more affected by settlement abundances or by 94 

post-.settlement processes. To this purpose, larval settlement and recruitment abundances of 95 

mussel juveniles were measured fortnightly during a year on artificial suspended substrates, 96 

which were deployed at four locations subjected to different oceanographic regimes and with 97 

different adult abundances. The analysis conducted in this work can be summarized in two 98 

points: (i) characterize the spatial and temporal variability of settlement and recruitment 99 

abundances of mussels in this embayment, and (ii) study the relationship between larval 100 

settlement and recruitment and estimate post-settlement mortalities. The results of this study 101 

allowed us the characterize the spatial variability in the seasonal patterns of larval settlement 102 

and recruitment of Mytilus galloprovincialis along the Ría of Ares Betanzos, showed that in this 103 

embayment the recruitment of mussel juveniles is more determined by settlement abundances 104 

than by post-settlement processes, and confirmed the suitability of the current strategies of 105 

mussel seed gathering on collector ropes in the Ría of Ares-Betanzos. 106 

 107 

2. MATERIALS AND METHODS 108 

2.1. Study area 109 

The Ría of Ares-Betanzos is the largest of the six embayments located in the northern 110 

Galician coast, between Cape Fisterra and Cape Prior (NW Iberian Peninsula; Figure 1), with a 111 

surface area of 72 km
2
, a volume of 0.75 km

3
 and a maximum length of 19 km. This ría has two 112 

main branches: Ares, the estuary of river Eume, and Betanzos, the estuary of river Mandeo. In 113 

the outer part, the two branches converge into a confluence zone that is freely connected to the 114 

adjacent shelf through a mouth that is 40 m deep and 4 km wide. This embayment is 115 

characterized by its positive circulation pattern, with a bottom inflow and a surface outflow,  116 

and by the existence of a cyclonic gyre in the confluence zone (Duarte et al., 2014). 117 
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Mussel aquaculture is the main economic activity in the Ría the Ares Betanzos, which 118 

supports 147 rafts distributed in four culture polygons (Figure 1). Most of the rafts are 119 

concentrated in Arnela and Lorbé, located in the southern inner (SI) and outer sides of the Ría, 120 

respectively. Industrial seed gathering has been mainly conducted in Miranda and Redes, 121 

located in the northern outer (NO) and inner (NI) sides of the ría, respectively, and in the inner 122 

polygon of the southern shore (Arnela), while Lorbé has been dedicated exclusively to the 123 

culture of adult mussels. 124 

Settlement and recruitment of Mytilus galloprovincialis spat were monitored fortnightly 125 

during 2007 at each culture polygon using three collector ropes covered with jute. Prior to their 126 

deployment in the field, collecting ropes were kept for 30 days in seawater filtered through a 127 

100 µm mesh, renewing the water every 2 days to allow the development of an adequate biofilm 128 

but preventing the attachment of epifauna  (Peteiro et al., 2007b; Porri et al., 2006). Three 129 

conditioned ropes were suspended on long-lines/rafts fortnightly at each location and sampled 130 

45 days after deployment. Sampling consisted on the collection of three sub-samples of known 131 

area (6 cm x 2 cm) from the jute covering each rope at two depths (1 and 6 m/ 1 and 4 m in 132 

Redes). Samples were collected at these depths to test for differences in the settlement and 133 

recruitment patterns between the surface and the bottom. Samples were preserved in 70% 134 

ethanol until their processing in the laboratory. Sample processing consisted of the detachment 135 

of settled individuals using a 20% bleach dilution (Davies, 1974), and a 5-minutes ultrasound 136 

bath. Detached individuals were then sorted using a sieve kit with mesh sizes ranging from 125 137 

to 2360 µm, to ease their counting under a binocular microscope. The average size of 138 

individuals retained was calculated measuring the length (L, mm) of the ante-posterior axis of 139 

the larvae (subsample of 100-150 individuals for large samples) for each replicate and sieve 140 

size. Taking into account the taxonomic classification of post-larvae settlement (Dare, 1976; 141 

Dare et al., 1983), individuals were divided into settlers (L < .5mm) and recruits (L ≥ 0.5mm). 142 

Settlement and recruitment abundances (N) were calculated as the number of individuals per 143 

meter of rope (ind/m).  144 
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 145 

2.2. Statistical analysis 146 

Our first aim was to characterize the spatial variability of the seasonal patterns of larval 147 

settlement and recruitment in the Ría of Ares-Betanzos. To this purpose, we need to fit 148 

settlement and recruitment abundances as a function of time and then test for differences 149 

between locations and depths. We also tested for differences between the temporal patterns of 150 

larval settlement and recruitment. The nonlinear relationship between the response (N, ind/m) 151 

and explanatory (date) variables, clearly discourages the use of classical regression models and 152 

cuvariance analysis.  Thus, we used non-parametric regression techniques. 153 

For each group, defined by location, depth and taxa (settlers/recruits), the seasonal 154 

pattern of mussel abundance can be defined as 155 

  ij j i ijy g t e   156 

where tj is the date of the i-est sampling for group j.  yij is the square-root transformed 157 

settlement/recruitment abundance, this transformation was conducted to reduce overdispersion, 158 

and the errors, eij are assumed to be independent and normal. In this work, independence and 159 

normality of errors were checked by the Box-Jenkins and the Shapiro tests, respectively The 160 

unknown curves that define the relationship between the covariate and the response variable, gi, 161 

were estimated by kernel regression (Nadaraya, 1965)  162 
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where Kh  is a symmetric, unimodal density function with mean 0 and standard deviation h, 164 

these parameter is known as bandwidth and is key to obtain a proper estimation.  In this work 165 

the bandwidth was selected by cross-validation.   166 
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The null hypothesis assumes equality between groups of smooth curves, e.g. the 167 

seasonal patterns of settlement abundances at a given depth is the same at the four locations: 168 
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By analogy with one-way analysis of variance, to test whether H0 is true the individual 170 

estimators of each group are compared with the common estimator using the following statistic:  171 
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 (3) 172 

where p is the number of groups (e.g. p=4 when the effect of location is tested), and nj the 173 

number of observations in group j. The estimator of the error variance was included in the 174 

denominator to reduce the effect of scale (see details in Young and Bowman (1995)) 175 

The dependence between settlement and recruitment was checked by Pearson´s cross-176 

correlation analysis. In agreement with the results obtained in the cross-correlation analysis, 177 

which detected a strong linear dependence between settlement and recruitment at lag 1, i.e. with 178 

a delay of two weeks, a generalized linear model was fitted to estimate recruitment abundance 179 

according to the settlement registered two weeks earlier. Model selection was conducted by F-180 

tests to search for effects of location and depth on both the intercept and slope. A Box-Jenkins 181 

test (p-value = 0.1938) confirmed the independence of residuals. Once the model was fitted, 182 

Wald tests (Harrell, 2013) were conducted to check for differences in comparison post-183 

settlement fortnightly survival rates (slopes) between locations. 184 

Data analysis was conducted with the statistical package R.3.1.3 (R Development Core 185 

Team, 2015). The sm package of R (Bowman and Azzalini, 2014) was used to fit the seasonal 186 

patterns of mussel abundances and perform the non-parametric covariance analysis.   187 

 188 

3. RESULTS 189 
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Table 1 reports higher settlement abundances of Mytilus galloprovincialis in the 190 

northern than in the southern shore of the ría, with Miranda, the outermost sampling location in 191 

the Northern shore (see Figure 1) having the highest mean values. Larval settlement was higher 192 

in the surface (1m) in all locations but Redes (NI), which is the shallowest position. Our results 193 

alos reflect the overdispersion (see standard deviations in Table 1) of both settlement and 194 

recruitment abundances, Figure 2 shows a clear seasonal pattern for both settlement (solid line) 195 

and recruitment (dashed line) of mussel spat. Larval settlement (N > 500ind/m) was 196 

concentrated from mid-April to mid-November, which comprises the upwelling- favourable 197 

season, while the rest of the year only residual larval retentions were registered  (N < 198 

500ind/m). Settlement was characterized by a high peak in late April and successive episodes 199 

during summer and early autumn. This peak was higher at 1m than at 6m, and was particularly 200 

important in Miranda (NO, up to 150.000ind/m) and Arnela (SI, up to 58.000ind/m).  Figure 2 201 

also shows higher spat abundances in Miranda during the settlement episode registered in July.  202 

In Lorbé (SO), where the first peak was barely significant, larval settlement registered lower 203 

seasonal variability than in the other locations. 204 

Comparison between the seasonal patterns of larval settlement and recruitment 205 

abundances (Table 2) detected significant differences between taxa except in Arnela at 6m. 206 

Figure 2 shows that recruitment was lower than settlement abundance at all locations, which 207 

indicates post-settlement mortality.  Recruitment of mussel juveniles was registered from early-208 

May to December, and its seasonal pattern is characterized by a first peak in May and 209 

successive episodes up to December, i.e. settlement and recruitment abundances exhibited 210 

similar seasonal patterns with a delay of 2 weeks in the later. As observed for larval settlement, 211 

the northern shore registered higher recruitment of mussel juveniles than the southern shore of 212 

the ria. However, differences between locations in recruitment abundances were lower than 213 

those observed for larval settlement, particularly in the spring peak,  214 

Despite the differences observed in Figure 2, the non-parametric analysis of covariance 215 

(Table 2) only detected a significant effect of depth on the recruitment of mussel juveniles in 216 
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Lorbé (SO). The non-parametric analysis of covariance (Table 3) confirmed a differential 217 

recruitment pattern in Miranda (NO), which registered the highest recruitment abundances. 218 

Significant differences in recruitment were found between Lorbé (SO) and the northern 219 

locations, as well as between Redes (NI) and the southern locations in the deepest position 220 

(Table 3).  221 

Table 4 shows that the correlations between settlement and recruitment were positive 222 

and relatively strong up to lag 2 (4 weeks) at most locations. The strongest dependence was 223 

observed for a lag of 2 weeks. This linear relationship between larval settlement and recruitment 224 

abundances indicates that early post-settlement mortality is density independent and  suggests 225 

the use of generalized linear models to predict the recruitment abundances at a given week 226 

according to the settlement abundances registered two weeks earlier. The model selection tests 227 

(Table 5) indicated that the  the interaction between location and settlement abundance provided 228 

the best estimator of recruitment abundances of mussel juveniles, while the effect of depth was 229 

not significant. The fitted model (Table 6) shows that recruitment and settlement were 230 

proportional (no significant intercept at any location), thus the slopes can be seen as survival 231 

rates. These rates ranged between the 27.2% registered in Miranda (NO), and the 46.4% in 232 

Arnela (SI). Comparison between slopes revealed higher post-settlement survivorships in the 233 

inner locations (Arnela and Redes) than in the outer (Miranda and Lorbé).  Particularly, the 234 

Wald test (Table 7) found significant differences between Arnela (SI) and the outer locations, as 235 

well as between Miranda (NO) and the inner locations.  Comparison between observed and 236 

fitted values (Figure 3) confirmed the goodness of fit of the model.  237 

 238 

4. DISCUSSION 239 

Larval settlement in the Ría of Ares-Betanzos exhibited a clear seasonal pattern with a 240 

major peak in mid-spring and subsequent episodes during the upwelling favourable season (up 241 

to mid-autumn). This season is characterized by intermittent short-term upwelling episodes 242 
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followed by periods of stratification or weak downwelling, and low continental runoffs (Peteiro 243 

et al., 2011). The larval pelagic stage of Mytilus galloprovincialis ranges between 10 and 30 244 

days (Cáceres-Martı́nez and Figueras, 1998a; Grantham et al., 2003), thus the seasonal pattern 245 

of larval settlement should mainly reflect temporal fluctuation in larval production. Analysis 246 

conducted by Toupoint et al. (2012) on eastern Canada shows the coupling between the seasonal 247 

patterns of settlement and occurrence of larvae in the water column. 248 

Villalba (1995) stated that the reproductive cycle of Mytilus galloprovincialis in the Ría 249 

of Ares-Betanzos in characterized by a single spawning event in mid-summer. However, the 250 

seasonal pattern found in this work agrees more with the reproductive cycle of mussels in the 251 

southern Galician Rías (Cáceres-Martinez et al., 1993; Cáceres-Martıńez and Figueras, 1998b; 252 

Suárez et al., 2005; Villalba, 1995). Studies conducted at intermediate latitudes on both rocky 253 

shores (Broitman et al., 2008; Johnson and Geller, 2006; Menge et al., 2011; Navarrete et al., 254 

2008) and collector ropes (Toupoint et al., 2012) found significant settlement abundances of 255 

Mytilus spp. from mid-spring to early-fall, although the main settlement peak varied between 256 

late summer and early winter depending on the latitude (Broitman et al., 2008). Recruitment of 257 

Mytilus spp. in Central Chile was found to be less seasonal (Navarrete et al., 2008). 258 

Our results report higher settlement abundances in the northern shore of the ría 259 

(Miranda and Redes), although the musel adult population is concentrated in the southern shore 260 

(Arnela and Lorbé). The positive subtidal circulation of this embayment and the upwelling 261 

episodes, which reduce flushing times, have been identified as the main causes of larval 262 

transport from the southern culture areas to the northern-outer side (Duarte et al., 2014; Peteiro 263 

et al., 2011; Piedracoba et al., 2014; Villegas-Ríos et al., 2011). Prior studies in the Galician 264 

Rías have also reported the highest settlement abundances in the most seaward location 265 

(Cáceres-Martínez and Figueras, 1998c; Fuentes and Molares, 1994). Larval retention in the 266 

southern shore may be attributed to the lower current velocities registered in the culture areas,  267 

and to the sheltered position of Arnela, which prevents water displacement to the East and 268 

North and the lost by advection of larvae and nutrients supplied by the adjacent shelf  269 
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(Piedracoba et al., 2014).  Indeed, according to the hydrodynamic model developed by Duarte et 270 

al. (2014), residence times during the upwelling season can reach 10 and 5 days in Arnela (SI) 271 

and Lorbé (SO), while in Redes (NI) are less than three days.  272 

During the last years several studies have highlighted the important role of hydrographic 273 

dynamics and wind regimes on larval dispersal and settlement of Mytilus spp. and other marine 274 

benthic invertebrates (Menge et al., 2014, 2011; Newell et al., 2010; Pineda et al., 2010; Rilov 275 

et al., 2008; Smith et al., 2009; Zhang et al., 2015). The model developed by Peteiro et al., 276 

(2011) was able to describe the effect of wind regime on larval transport, survivorship and 277 

settlement in the Ría of Ares-Betanzos. Coastal water fertilization during the upwelling events 278 

favour larval survival during the planktonic stage, while the intermittent offshore transport 279 

enhance larval dispersal from the southern culture areas to the northern-outer shore of the ría. 280 

Peteiro (2010) found that, in addition to the intermittent upwelling regime, water stratification 281 

and pH also affect larval settlement. Water stratification in the Ría of Ares-Betanzos occurs 282 

when the temperature of the surface is above 14ºC (Peteiro, 2010), i,e, under optimal conditions 283 

for larval development (Bayne, 1965; O’Connor et al., 2007). Water stratification may also 284 

favour active larval transport to the surface (Rawlinson et al., 2004 and references therein), 285 

which results in higher settlement and recruitment abundances of Mytilus galloprovincialis in 286 

the surface than in the bottom, as observed in this work. The positive effect of pH, which is a 287 

stable indicator of primary production, on larval settlement confirms the important role of food 288 

availability on pre-settlement larval survivorship and development.  Food availability is a 289 

limiting factor on the development and growth of bivalve larvae, which determines the length of 290 

the planktonic stage and larvae physiological conditions at metamorphosis  (Phillips, 2004, 291 

2002). Given the high mortality rates during the planktonic stages, fast larval development may 292 

favor larval survivorship and increase settlement  abundance (Widdows, 1991). 293 

As stated in the previous paragraph,  Peteiro et al., (2011) detected a significant effect of 294 

the wind regime on larval transport and settlement in southern-inner (Arnela) and northern-outer 295 

(Miranda) culture polygons, which exhibited similar seasonal patterns, but this effect has not 296 
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been tested in the other locations (Lorbé (SO) and Redes (NI)). Given that the subtidal current 297 

in Redes does not depend on wind regime (Piedracoba et al., 2014), a lower effect of wind 298 

regime on the settlement patterns is also expected in this site. Although Peteiro et al., (2011) did 299 

not find any significant effect of the continental runoff on larval settlement in Arnela and 300 

Miranda, large continental runoffs during upwelling periods enhance off-shore transport (Aguiar 301 

et al., 2015) and may lead to lower mussel larval retention in the northern-inner location (Redes) 302 

and higher abundances in northern-outer polygon (Miranda), as indicated by peak recorder in 303 

spring.  304 

The cross-correlation analysis allows checking whether recruits affect settlement 305 

patterns, and understanding the relative effects of settlement abundance and short-term post-306 

settlement processes on recruitment. The positive correlation observed at lag 0, i.e. between 307 

individuals attached to the same rope, suggests that the presence of settled spat  may increase 308 

settlement. The disposition of individuals on the ropes after settlement may increase the 309 

complexity of the substrate, providing refuge against mortality risks such as predation and 310 

hydrodynamic forces (Capelle et al., 2014; Carl et al., 2012; Filgueira et al., 2007; Peteiro et al., 311 

2010).   312 

The strong correlation between recruitment and settlement abundances registered two 313 

weeks earlier suggests that the seasonal pattern of recruitment is mainly determined by larval 314 

settlement. Post-settlement mortality has been mainly attributed to the physiological stress 315 

associated with metamorphosis, the vulnerability to physical stress in smaller individuals, 316 

predation and intra and/or interspecific competition for food and/or space (Bownes and 317 

McQuaid, 2009; Capelle et al., 2014; Dolmer and Stenalt, 2010; Gosselin and Qian, 1997; 318 

Peteiro et al., 2007a; Peteiro et al., 2010). The linear relationship found between settlement and 319 

recruitment indicates a lack of density-dependent effect on post-settlement mortality. Studies 320 

conducted in the west coast of US: found a positive correlation between settlement and 321 

recruitment for mussels and barnacles on rocky shores, which suggest that post-settlement 322 

mortality was density-independent (Broitman et al., 2008; Menge et al., 2010). Thus, in contrast 323 
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with the findings of Peteiro et al. (2007a) for a longer period, short-term mortality cannot be 324 

attributed to self-thinning caused by competition for food and space. The spatial variability in 325 

the survival rates recorded during this study, with higher values in the inner side of the Ría,  326 

indicate that the vulnerability to hydrodynamic forces may be the major cause of early post-327 

settlement mortality and/or dislodgement from the collector ropes.   328 

This study confirms that larval settlement of Mytilus galloprovincialis in the Ría of 329 

Ares-Betanzos follows the typical seasonal pattern of this species in temperate latitudes, with a 330 

major peak after the first spawning event and subsequent episodes along the upwelling 331 

favourable season. The spatial distribution of larval settlement, with higher abundances in the 332 

northern shore, but significant larval retention in the southern culture areas is in agreement with 333 

the hydrographic characteristics of this embayment. The analysis of the relationships between 334 

larval settlement and recruitment, which detected higher mortality rates in the most exposed 335 

areas, suggests that hydrodynamic pressures may be the main cause of early post-settlement 336 

mortality. Thus, although the northern-outer location registered the highest larval settlement, it 337 

can be stated that the inner area of the embayment, which registered significant larval retention 338 

and lower mortality risks, constitutes a favourable environments for the recruitment of Mytilus 339 

galloprovincialis spat on collector ropes. Therefore, these results support the current strategies 340 

of mussel seed gathering on collector ropes in the Ria of Ares-Betanzos, which develop this 341 

activity in the culture polygon with the highest settlement abundance (Miranda, NO), and in the 342 

sheltered polygons located in the inner side of the ría, which provide refugee against early post-343 

settlement mortality risks (Arnela and Redes). 344 
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Table 1:  Descriptive summary of larval settlement and recruitment during 2007 for each 568 

culture polygon and depth 569 

  Settlement Recruitment 

  mean sd mean sd 

Arnela 1m 6993 14251.14 3311 7576.19 

 6m 3958 6680.16 1814 3353.12 

Lorbé 1m 6291 8682.93 2833 4056.73 

 6m 5171 7015.15 1360 2233.48 

Miranda 1m 18615 38015.97 6928 10867.56 

 6m 10489 15838.56 4004 6225.50 

Redes 1m 7124 13236.71 3681 6826.79 

 4m 9044 13866.42 4132 5927.11 

 570 

Table 2:  P-values of the non- parametric covariance analysis conducted to compare the 571 

seasonal patterns of mussel (Mytilus galloprovincialis) abundances. Top: comparison between 572 

taxa (settlers vs recruits) for each location and depth. Bottom: comparison between depths for 573 

each location and taxa. to test for effects of type (settlement vs. recruitment), and depth on the 574 

seasonal patterns of . Mussel abundances were square-root transformed prior to conduct the 575 

tests. 576 

 Arnela  Lorbé  Miranda  Redes  

 1m 6m 1m 6m 1m 6m 1m 4m 

Taxa 0.0646 0.1005 0.0158 0.0068 0.0196 0.0128 0.0302 0.0171 

 Settlers Recruits Settlers Recruits Settlers Recruits Settlers Recruits 

Depth 0.2690 0.5847 0.9997 0.0215 0.5734 0.5360 0.8542 0.2232 

 577 

 578 
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Table 3: P-values of the non- parametric covariance analysis conducted to test for the effect of 579 

location on the seasonal patterns of mussel (Mytilus galloprovincialis) abundances (square-root 580 

transformation). 581 

 All 

locations 

Pairwise 

A-L A-M A-R L-M L-R M-R 

Settlers 1m 0.0104 0.3780 0.0766 0.9989 0.0826 0.2989 0.0245 

 6m 0.0831 0.9788 0.0201 0.2826 0.0254 0.2577 0.9845 

Recruit 1m 0.3044 0.8910 0.3540 0.9713 0.0133 0.0780 0.5214 

 6m 0.0184 0.7971 0.1074 0.0566 0.0318 0.0245 0.9376 

 582 

Table 4:  Cross correlations between larval settlement and recruitment of Mytilus 583 

galloprovincialis up to lag 4 (8 weeks).   584 

    0  1  2  3  4  

Arnela  1m  0.533 * 0.929 *** 0.253  0.047  0.025  

 6m 0.878 *** 0.591 * 0.429 . 0.174  0.029  

Lorbé 1m  0.561 * 0.831 *** 0.849 *** 0.555 * 0.225  

 6m 0.657 ** 0.785 *** 0.828 *** 0.541 * 0.404  

Miranda 1m  0.373 ** 0.896 *** 0.675 *** 0.186  0.106  

 6m 0.524 * 0.835 *** 0.758 ** 0.452  0.365  

Redes 1m  0.466 * 0.781 *** 0.886 *** 0.463 * 0.052  

  4m 0.473 . 0.828 *** 0.804 *** 0.572 * 0.399  

(***) p-value < 0.001, (**) p-value < 0.01, (*) p-value < 0.05, (.) p-value < 0.1. 585 

 586 

 587 

 588 
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 589 

Table 5: F-tests for comparison of nested generalized linear model conducted to select the 590 

model used to predict recruitment of Mytilus galloprovincialis spat. 591 

 Res.Df RSS Df Sum of Sq F Pr(>F)  

Recruit ~ settle 178 2171864803      

Recruit ~ loc +settle 175 2131315041 3 40549762 1.2577 0.2908  

Recruit ~ loc*settle 172 1900658177 3 230656863 7.154 0.0002 *** 

Recruit ~ depth +loc*settle 171 1880017636 1 20640541 1.9205 0.1677  

Recruit ~ loc*depth*settle 164 1762544870 7 117472766 1.5615 0.1503  

(***) p-value < 0.001, (**) p-value < 0.01, (*) p-value < 0.05, (.) p-value < 0.1. 592 

Table 6:  General linear model to estimate recruitment of Mytilus galloprovincialis spat 593 

according to location and larval settlement, with a lag of 2 weeks. 594 

 Estimate Std. Error t value Pr(>|t|)  Adj. R2 

(Intercept) 21.4 563.1 0.038 0.9697 

 

0.7433 

Lorbé 282.9 835.4 0.339 0.7352 

 

 

Miranda 1555.2 797.6 1.95 0.0528 .  

Redes 830.1 807.0 1.029 0.3051 

 

 

settle 0.464 0.045 10.353 <2e-16 ***  

Lorbé:settle -0.177 0.073 -2.442 0.0156 *  

Miranda:settle -0.192 0.048 -4.006 9.19e-05 ***  

Redes:settle -0.082 0.058 -1.42 0.1574 

 

 

(***) p-value < 0.001, (**) p-value < 0.01, (*) p-value < 0.05, (.) p-value < 0.1. 595 

 596 

 597 

 598 

 599 

 600 
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Table 7:   Post-settlement fortnightly survival rates of Mytilus galloprovincialis spat, and p-601 

values of the Wald test for comparison between slopes of the GLM summarized in Table 6. 602 

 Survival 

rate 

 Wald test   

Arnela Lorbé Miranda 

Arnela 0.464 

   Lorbé 0.287 0.0156 

  Miranda 0.272 9.19e-05 0.8026 

 Redes 0.382 0.1574 0.1607 0.0067 

 603 

 604 

  605 
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FIGURES: 606 

Figure 1: Ría of Ares-Betanzos. Samplings were conducted at the four culture polygons:   607 

Miranda (M) and Lorbé (L) in the outer part (north and south, respectively) and Redes and 608 

Arnela at the inner part (north and south, respectively). Isoclines of the bathymetry of the Ría 609 

are also provided. 610 

 611 

  612 
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Figure 2: Settlement (solid lines) and recruitment (dashed lines) abundance of Mytilus 613 

galloprovincialis during 2007 for each location and depth. 614 

 615 
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Figure 3: Observed (points) and fitted (lines) recruitment abundances of Mytilus 616 

galloprovincialis provided by the generalized linear model (Adj R
2
 = 0.7433) outlined in Table 617 

6.  Dashed lines indicate 95% confidence intervals for the fitted values.  618 

 619 

 620 


