MARITIME GREEN SUPPLY CHAIN MANAGEMENT (MGSCM) AND FINANCIAL PERFORMANCE: A MEDIATING EFFECT OF ENERGY EFFICIENCY AND LOW CARBON PERFORMANCE

MUHAMAD FAIRUZ BIN AHMAD JASMI

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG
SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and, in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

__
(Supervisor’s Signature)

Full Name : DR YUDI FERNANDO
Position : SENIOR LECTURER
Date : 6 AUGUST 2019
STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : MUHAMAD FAIRUZ BIN AHMAD JASMI
ID Number : PPT 17011
Date : 6 AUGUST 2019
MARITIME GREEN SUPPLY CHAIN MANAGEMENT (MGSCM) AND FINANCIAL PERFORMANCE: A MEDIATING EFFECT OF ENERGY EFFICIENCY AND LOW CARBON PERFORMANCE

MUHAMAD FAIRUZ BIN AHMAD JASMI

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Industrial Management
UNIVERSITI MALAYSIA PAHANG

AUGUST 2019
ACKNOWLEDGEMENTS

Alhamdulillah, all praises to Allah the Almighty, this thesis has finally been completed with his love and blessing from him.

Firstly, I would like to express my highest gratitude to my dedicated supervisor, Dr Yudi Fernando for his systematic support and insightful comments given during his time supervising me. His trust and faith push me forward with his positive attitude and commitment throughout the entire process of finishing up this thesis. I honestly enjoyed and learned new things from each meeting and very thankful for his endless guidance and mentoring has encouraged me to embark this adventurous journey successfully.

To my greatest and most lovely parents in the world, Ahmad Jasmi and Rohani Hassan this thesis is a gift for both of you. Thank you very much for encouraging and giving me moral support and loved at the same time that much needed by me. I also would like to thank my family members especially to both my sisters Siti Zulaiha and Siti Zubaidah and not to forget my beloved and lovely wife Emme Eryanie for their moral support and to stay by my side all the time.

For always staying by my side, guiding me firmly, comforting as well as forever motivating, I really appreciate assistance and companionship from my fellow PhD peers, Shabir, Latifah, Munira, Anisha, Nurul and others that I would never be able to repay the dedication and kindness of these amazing people. May Allah reward them with far more rewarding gifts, InsyaAllah.

Last but not least, thank you to all research respondents, especially to all Maritime port suppliers that have given their honest input direct or indirectly, Universiti Malaysia Pahang, and everyone who was involved in the completion of my thesis. It is well hoped that this particular research would benefit everyone who reads it and subsequently contribute to the academic world as well as increase the motivation for sustainable practices in the maritime industry, especially in Malaysia.
ABSTRAK

Atas kesedaran mengenai kesan negatif ekologi meningkat dikalangan industri, organisasi di seluruh dunia telah termotivasi untuk mewujudkan operasi yang lebih mampun. Ini telah menyebabkan perkembangan minat yang luas dalam bidang pengurusan rantaian bekalan (SCM) dan pengurusan rantaian bekalan hijau (GSCM) di kalangan sarjana dan pengamal industri sejak kebelakangan ini disebabkan isu-isu alam sekitar, kemerosotan bahan mentah dan pengeluaran sisa yang berlebihan. Walau bagaimanapun, kerja yang dilakukan dalam membangun dan menggabungkan langkah-langkah hijau ke dalam kesusasteraan rantaian bekalan maritim sedia ada agak terhad. Hanya beberapa artikel yang telah diterbitkan dalam literasi dekad yang lalu mengenai konsep hijau dalam konteks maritim. Matlamat utama dalam kajian ini adalah untuk menangani cabaran ini secara empirikal dan menguji langkah-langkah dan prestasi pengurusan rantaian bekalan maritim hijau (MGSCM) dalam konteks rantaian bekalan maritim. Berdasarkan tinjauan literasi, lapan soalan penyelidikan telah dicadangkan untuk untuk menangani jurang semasa dalam bidang ini. Oleh itu, kajian ini telah mencadangkan 5 pembolehubah MGSCM dan 3 pembolehubah prestasi yang boleh digunakan oleh organisasi untuk mengukur kesan MGSCM terhadap organisasi maritim. Walau bagaimanapun, 2 daripada tiga pembolehubah prestasi yang terdiri daripada prestasi kecekapan tenaga (EEP) dan prestasi karbon rendah (LCP) akan bertindak sebagai pemboleh ubah pengantara untuk mengkaji hubungan antara MGSCM dan prestasi kewangan (FP). Satu kaji selidik dalam talian telah dihantar kepada pelbagai syarikat rantaian bekalan maritim di Malaysia. 160 set soal selidik dianalisis dengan menggunakan kaedah kuadrat separa terendah (PLS) melalui pemodelan persamaan struktur (SEM) dengan perisian Smart PLS dan perisian IBMSPSS untuk analisis deskriptif. Penemuan itu mengesahkan bahawa dari perspektif rantaian bekalan maritim, beberapa amalan MGSCM tertentu (seperti GICS dan GSIP) memang mempengaruhi hasil prestasi kewangan. Hasil kajian juga menunjukkan sokongan kepada hipotesis bahawa EEP dan LCP memediasi kesan diantara GICS, GVALS, dan SDC terhadap prestasi kewangan. Hasil kajian ini juga membuktikan keberkesanan rangka kerja yang dicadangkan berdasarkan teori NRBV dan GSCM dalam memahami impak lestari dari perspektif rantaian bekalan maritim. Akhirnya, kajian ini telah membentangkan cadangan praktikal untuk para pengamal industri dan pembuat polisi yang menekankan perlunya mengamalkan amalan hijau dalam rantaian bekalan maritim untuk mencapai operasi mampun dan keuntungan berpanjangan.
ABSTRACT

As awareness and consciousness regarding the negative ecological impacts that industry bring to the environment increases, more organizations around the globe have motivated in establishing sustainable operations. As a result, a cross-disciplinary interest in the field of supply chain management (SCM) and green supply chain management (GSCM) has grown amongst scholars and practitioners in recent years due to environmental issues, deteriorating raw materials and excess of waste production. However, there has been little work done in developing and incorporating green measures into the existing maritime supply chain literature. Only a handful of articles has been published in the last decade on the green concept in maritime context literature. The aim of this study is thus, to address this challenge by empirically developing and testing maritime green supply chain management (MGSCM) measures and performance for the maritime supply chain. Based on an extensive literature review, eight research questions were proposed for this study to address current gaps in the body of knowledge. Hence, this study has proposed five (5) MGSCM variables and three (3) performance constructs that can be used by organizations to measure MGSCM impact on the maritime organization. However, two (2) out of three (3) constructs which consists energy efficiency performance (EEP) and low carbon performance (LCP) will act as mediating variables to study inter-relationship that might be influenced the single performance outcome construct of financial performance (FP). An online survey was administrated to various maritime supply chain companies in Malaysia. One hundred sixty (160) sets of questionnaires were analysed using the partial least squares method through structural equation modelling (SEM) with Smart PLS software and IBMSPSS software for descriptive analysis. The findings confirmed that from the maritime supply chain perspective, certain MGSCM practices (such as GICS and GSIP) facilitated financial performance outcome. The results also showed support for the hypotheses that EEP and LCP mediate the effect of GICS, GVALS, and SDC on financial performance. To a certain extent, the findings of the study validated the robustness of the MGSCM framework based on the extended natural resource-based view (NRBV) and GSCM theory to study the sustainability impact from maritime supply chain perspective. Finally, this study has presented a practical suggestion for practitioners and policymakers which highlighted a need to adopt green practices in the supply chain operation to achieve sustainable operation and long-term competitive advantage.
TABLE OF CONTENTS

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF ABBREVIATION xiii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background Study 3

1.3 Maritime Supply Chain in Malaysia 5

1.4 Research Gap 9

1.4.1 Research Gap on MGSCM 9

1.4.2 Research Gap on Energy Efficient Performance (EEP) 12

1.4.3 Research Gap on Low Carbon Performance (LCP) 14

1.4.4 Research Gap on Financial Performance 15

1.4.5 Research Gap on NRBV Theory 17

1.5 Problem Statement 18

1.6 Research Objectives 21

1.7 Research Questions 22

1.8 Scope of the Study 27

1.9 Significant of Study 29

1.9.1 Theoretical Contribution 29

1.9.2 Practical Contribution 30

1.9.3 Social Contribution 31

1.10 Definition of Key Terms 32

1.11 Organization of Thesis 34
CHAPTER 2 LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>36</td>
</tr>
<tr>
<td>2.2 General Overview of Malaysian Maritime Sector and Supply Chain</td>
<td>37</td>
</tr>
<tr>
<td>2.2.1 Overview of Global Maritime Industry</td>
<td>37</td>
</tr>
<tr>
<td>2.2.2 Overview of Malaysian Maritime Industry</td>
<td>39</td>
</tr>
<tr>
<td>2.2.3 The Components of the Malaysian Maritime Supply Chain System</td>
<td>44</td>
</tr>
<tr>
<td>2.2.4 Maritime Supply Chain and Environmental Concerns</td>
<td>50</td>
</tr>
<tr>
<td>2.2.5 Maritime Supply Chain and Climate Change</td>
<td>52</td>
</tr>
<tr>
<td>2.2.6 Carbon Emission from the Maritime Supply Chain Sector</td>
<td>57</td>
</tr>
<tr>
<td>2.2.7 Environmental Regulation in Maritime Supply Chain</td>
<td>61</td>
</tr>
<tr>
<td>2.2.8 Malaysia and Environmental Stewardship</td>
<td>66</td>
</tr>
<tr>
<td>2.2.9 The Challenge of Malaysian Maritime Supply Chain</td>
<td>69</td>
</tr>
<tr>
<td>2.3 Underpinning Theory</td>
<td>73</td>
</tr>
<tr>
<td>2.3.1 GSCM and Organisational Theories</td>
<td>74</td>
</tr>
<tr>
<td>2.3.2 Natural-Resource-Based View as an Extension Concept of Resource-Based View</td>
<td>76</td>
</tr>
<tr>
<td>2.3.3 MGSCM Concept as a Form of Organizational Capabilities and Pollution Prevention</td>
<td>80</td>
</tr>
<tr>
<td>2.4 GSCM in Maritime Supply Chain</td>
<td>82</td>
</tr>
<tr>
<td>2.4.1 The Historical Development of GSCM Concept</td>
<td>83</td>
</tr>
<tr>
<td>2.4.2 The Conceptual Notions of Sustainability, GSCM and MGSCM</td>
<td>86</td>
</tr>
<tr>
<td>2.4.3 Motivations and Benefits from GSCM Practices</td>
<td>92</td>
</tr>
<tr>
<td>2.5 Research Model and Theoretical Framework</td>
<td>97</td>
</tr>
<tr>
<td>2.5.1 Introduction: Conceptualization of Research Conceptual Framework</td>
<td>97</td>
</tr>
<tr>
<td>2.5.2 Theoretical Development of MGSCM Attributes</td>
<td>103</td>
</tr>
<tr>
<td>2.5.3 Conceptualization of MGSCM from Three Key Attributes of Sustainability Practice</td>
<td>109</td>
</tr>
<tr>
<td>2.6 MGSCM as The Novel Concept in Maritime</td>
<td>118</td>
</tr>
<tr>
<td>2.6.1 Green Information and Communication System (GICS)</td>
<td>118</td>
</tr>
<tr>
<td>2.6.2 Green Value Added Logistic Service (GVALS)</td>
<td>123</td>
</tr>
<tr>
<td>2.6.3 Green Supply Chain Integration Practices (GSIP)</td>
<td>128</td>
</tr>
<tr>
<td>2.6.4 Shipping Design and Compliance (SDC)</td>
<td>134</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.6.5 Green Financial Flow (GFF)</td>
<td>137</td>
</tr>
<tr>
<td>2.7 Conceptualization of Performance Measures</td>
<td>141</td>
</tr>
<tr>
<td>2.7.1 Energy Efficiency Performance (EEP) as Mediating Variable</td>
<td>142</td>
</tr>
<tr>
<td>2.7.2 Low Carbon Performance (LCP) as Mediating Variable</td>
<td>146</td>
</tr>
<tr>
<td>2.7.3 Conceptualizing the Financial Performance as Dependent Variable</td>
<td>150</td>
</tr>
<tr>
<td>2.8 Summary of Hypotheses</td>
<td>153</td>
</tr>
<tr>
<td>2.9 Chapter Summary</td>
<td>156</td>
</tr>
<tr>
<td>CHAPTER 3 METHODOLOGY</td>
<td>158</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>158</td>
</tr>
<tr>
<td>3.2 Research Philosophy and Approach</td>
<td>158</td>
</tr>
<tr>
<td>3.3 Research Design</td>
<td>163</td>
</tr>
<tr>
<td>3.3.1 Unit of Analysis</td>
<td>166</td>
</tr>
<tr>
<td>3.3.2 Population</td>
<td>166</td>
</tr>
<tr>
<td>3.3.3 Sample Size</td>
<td>167</td>
</tr>
<tr>
<td>3.3.4 Sampling Method</td>
<td>170</td>
</tr>
<tr>
<td>3.4 Measurement of Variables and Constructs</td>
<td>173</td>
</tr>
<tr>
<td>3.4.1 Measurement of Independent Variables</td>
<td>175</td>
</tr>
<tr>
<td>3.4.2 Measurement of Mediating Variables</td>
<td>177</td>
</tr>
<tr>
<td>3.4.3 Measurement of Dependent Variables</td>
<td>179</td>
</tr>
<tr>
<td>3.4.4 Measurement of Demographic Variables</td>
<td>179</td>
</tr>
<tr>
<td>3.5 Pilot Test</td>
<td>180</td>
</tr>
<tr>
<td>3.5.1 Method of Pilot Testing</td>
<td>180</td>
</tr>
<tr>
<td>3.5.2 Result and Discussion of Pilot Test</td>
<td>181</td>
</tr>
<tr>
<td>3.5.3 Conclusion of Pilot Test Result</td>
<td>186</td>
</tr>
<tr>
<td>3.6 Data Collection</td>
<td>186</td>
</tr>
<tr>
<td>3.6.1 Data Collection Method</td>
<td>187</td>
</tr>
<tr>
<td>3.6.2 First Question Selection</td>
<td>188</td>
</tr>
<tr>
<td>3.6.3 Raising Response Rate</td>
<td>188</td>
</tr>
<tr>
<td>3.7 Statistical Data Analysis</td>
<td>189</td>
</tr>
<tr>
<td>3.7.1 Descriptive Statistics</td>
<td>190</td>
</tr>
<tr>
<td>3.7.2 Goodness of Measures</td>
<td>191</td>
</tr>
<tr>
<td>3.7.3 Hypothesis Testing</td>
<td>194</td>
</tr>
</tbody>
</table>
3.7.4 Assessing Common Method Bias 194
3.8 Ethical Consideration 194
3.9 Chapter Summary 195

CHAPTER 4 DATA ANALYSIS 197
4.1 Introduction 197
4.2 Initial Data Analysis 197
 4.2.1 Data cleaning 198
 4.2.2 Data Screening 198
4.3 Descriptive Analysis 200
 4.3.1 Response Rate 200
 4.3.2 Sample Characteristic 202
 4.3.3 Green Certification 207
 4.3.4 Green Training, Program and Incentives 208
 4.3.4 Respondent Profiles 211
 4.3.5 The Extent of MGSCM Adoption 213
4.4 Common method bias 213
4.5 Model Evaluation: Measurement Model Results 214
 4.5.1 Validity 216
 4.5.2 Reliability Analysis 221
 4.5.3 Hypotheses Testing 221
4.6 Chapter Summary 232

CHAPTER 5 CONCLUSION 233
5.1 Introduction 233
5.2 Recapitulation of the Research Objectives and Hypothesis Findings 233
5.3 Findings and Discussion 235
 5.3.1 RO 1: To examine the extent of MGSCM practices adoption in Malaysian maritime supply chain 235
 5.3.2 RO 2: To investigate the effect of maritime green supply chain management (MGSCM) on its financial performance in the maritime supply chain industry in Malaysia 236
5.3.3 RO 3: To examine the effect of maritime green supply chain management (MGSCM) to the energy efficiency performance (EEP) in the maritime supply chain industry in Malaysia

5.3.4 RO 4: To examine the effect of maritime green supply chain management (MGSCM) to the low carbon performance (LCP) in the maritime supply chain industry in Malaysia

5.3.5 RO 5: To investigate the effect of energy efficiency performance (EEP) on financial performance in the maritime supply chain industry in Malaysia

5.3.7 RO 7: To examine whether energy efficiency performance (EEP) mediates the relationship between maritime green supply chain management (MGSCM) and financial performance

5.3.8 RO 8: To examine whether low carbon performance (LCP) mediates the relationship between maritime green supply chain management (MGSCM) and financial performance

5.5 Implications of the Study
5.5.1 Theoretical Implications
5.5.2 Practical Implications
5.5.3 Social and Environmental Implications

5.6 Limitations and Future Research

5.7 Conclusion

REFERENCES

APPENDIX A COVER LETTER AND QUESTIONNAIRES
APPENDIX B SPSS OUTPUT FOR PILOT STUDY
APPENDIX C SPSS OUTPUT FOR DESCRIPTIVE ANALYSIS
APPENDIX D SMARTPLS3 OUTPUT
APPENDIX E GOOGLE ONLINE SURVEY (SNAPSHOT)
APPENDIX F PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table 1.1</th>
<th>Container Throughput (TEU) from the Year 2006-2016</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Developments in international seaborne trade, selected years (millions of tons loaded)</td>
<td>38</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Main function and supportive activities of the maritime supply chain system</td>
<td>45</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Key IMO conventions on pollution and environmental protection</td>
<td>62</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>MARPOL 73/78 Annexes</td>
<td>64</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Malaysia vs selected countries in the Environmental Performance Index (EPI) for the year 2016 and 2014</td>
<td>67</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Key policies and governances on pollution and environmental protection</td>
<td>68</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>GSCM Organizational Theory</td>
<td>75</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>A NRBV Theory: Strategic Capability and Environmental Driving Force</td>
<td>79</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>The development of green issues</td>
<td>85</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Conceptual definitions/notions in GSCM literature</td>
<td>88</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>Organizational advantages of GSCM practice</td>
<td>96</td>
</tr>
<tr>
<td>Table 2.12</td>
<td>Main studies of MGSCM in maritime literatures</td>
<td>98</td>
</tr>
<tr>
<td>Table 2.13</td>
<td>MGSCM dimensions and definitions</td>
<td>102</td>
</tr>
<tr>
<td>Table 2.14</td>
<td>Measures of maritime flexibility and sustainability improvement</td>
<td>105</td>
</tr>
<tr>
<td>Table 2.15</td>
<td>Contributors to operational effectiveness</td>
<td>106</td>
</tr>
<tr>
<td>Table 2.16</td>
<td>Tools to assist environmental management in the maritime supply chain</td>
<td>107</td>
</tr>
<tr>
<td>Table 2.17</td>
<td>Summary of sustainability attributes and associated MGSCM dimensions</td>
<td>110</td>
</tr>
<tr>
<td>Table 2.18</td>
<td>Financial performance indicator</td>
<td>151</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Questions answered with different research methods</td>
<td>162</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Sample sizes for different sizes of the population at a 95% confidence level</td>
<td>169</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Items for GVALS (Independent Variable)</td>
<td>175</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Items for GICS (Independent Variable)</td>
<td>176</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Items for GSIP (Independent Variable)</td>
<td>176</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Vessel crossing Malacca straits from the year 2000 to 2017</td>
<td>41</td>
</tr>
<tr>
<td>2.2</td>
<td>Handling of Export and Import Container Year, Malaysia, 2010-2017</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>Maritime logistics in the whole logistics system</td>
<td>47</td>
</tr>
<tr>
<td>2.4</td>
<td>Structure of Freight Logistics</td>
<td>48</td>
</tr>
<tr>
<td>2.5</td>
<td>Variation in temperature and CO\textsubscript{2} over the past 400,000 years</td>
<td>53</td>
</tr>
<tr>
<td>2.6</td>
<td>The greenhouse effect</td>
<td>54</td>
</tr>
<tr>
<td>2.7</td>
<td>Changes in global average surface temperature, global average sea level and Northern Hemisphere snow cover</td>
<td>56</td>
</tr>
<tr>
<td>2.8</td>
<td>Percentage of industrial sectors to global carbon emission</td>
<td>58</td>
</tr>
<tr>
<td>2.9</td>
<td>Projected exhaust emissions from the shipping industry between 2013 to 2035</td>
<td>59</td>
</tr>
<tr>
<td>2.10</td>
<td>CO\textsubscript{2} emissions, world fleet, 2007</td>
<td>59</td>
</tr>
<tr>
<td>2.11</td>
<td>Interaction of sustainability performance with competitiveness</td>
<td>93</td>
</tr>
<tr>
<td>2.12</td>
<td>Sustainability performance and economic success</td>
<td>94</td>
</tr>
<tr>
<td>2.13</td>
<td>The basic tenet of conceptual constructs of MGSCM practices towards financial performance</td>
<td>111</td>
</tr>
<tr>
<td>2.14</td>
<td>Performance measurement linkage with MSCM</td>
<td>116</td>
</tr>
<tr>
<td>3.1</td>
<td>Sampling technique variations</td>
<td>118</td>
</tr>
<tr>
<td>4.1</td>
<td>Initial data analysis framework</td>
<td>153</td>
</tr>
<tr>
<td>4.2</td>
<td>Research Model</td>
<td>171</td>
</tr>
<tr>
<td>4.3</td>
<td>Model of Loadings</td>
<td>198</td>
</tr>
<tr>
<td>4.4</td>
<td>Bootstrapping results of the structural model (path coefficient and t-value)</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>217</td>
</tr>
<tr>
<td></td>
<td></td>
<td>224</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>AFS</td>
<td>International Convention on the Control of Harmful Anti-Fouling Systems on Ship</td>
<td></td>
</tr>
<tr>
<td>AGV</td>
<td>Automated Guided Vehicle</td>
<td></td>
</tr>
<tr>
<td>AMP</td>
<td>Alternative Marine Power</td>
<td></td>
</tr>
<tr>
<td>AMS</td>
<td>Auto Monitoring Systems</td>
<td></td>
</tr>
<tr>
<td>APEC</td>
<td>Asia-Pacific Economic Cooperation</td>
<td></td>
</tr>
<tr>
<td>APSN</td>
<td>APEC Port Services Network</td>
<td></td>
</tr>
<tr>
<td>AVE</td>
<td>Average variance extracted</td>
<td></td>
</tr>
<tr>
<td>BMW</td>
<td>International Convention for the Control and Management of Ships' Ballast Water and Sediments</td>
<td></td>
</tr>
<tr>
<td>CB-SEM</td>
<td>Covariance-based structural equation modelling</td>
<td></td>
</tr>
<tr>
<td>COLREG</td>
<td>International Regulations for Preventing Collisions at Sea</td>
<td></td>
</tr>
<tr>
<td>COP 15</td>
<td>United Nations Conference of Parties on Climate Change</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>Composite reliability</td>
<td></td>
</tr>
<tr>
<td>CSR</td>
<td>Corporate social responsibility</td>
<td></td>
</tr>
<tr>
<td>EBIT</td>
<td>Earnings before Interest and Taxes</td>
<td></td>
</tr>
<tr>
<td>EDI</td>
<td>Electronic data Interchange</td>
<td></td>
</tr>
<tr>
<td>EEDI</td>
<td>Energy Efficiency Design Index</td>
<td></td>
</tr>
<tr>
<td>EEP</td>
<td>Energy efficiency performance</td>
<td></td>
</tr>
<tr>
<td>EMAS</td>
<td>Eco-management scheme and audit scheme</td>
<td></td>
</tr>
<tr>
<td>EMS</td>
<td>Environmental Management System</td>
<td></td>
</tr>
<tr>
<td>EnMS</td>
<td>Energy Management System Certification</td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
<td></td>
</tr>
<tr>
<td>EPI</td>
<td>Environmental Performance Index</td>
<td></td>
</tr>
<tr>
<td>ETP</td>
<td>Economic Transformation Program</td>
<td></td>
</tr>
<tr>
<td>EUMCCI</td>
<td>EU-Malaysia Chamber of Commerce and Industry</td>
<td></td>
</tr>
<tr>
<td>FDI</td>
<td>Foreign Direct Investment</td>
<td></td>
</tr>
<tr>
<td>FMM</td>
<td>Federation of Malaysian Manufacturers</td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>Financial performance</td>
<td></td>
</tr>
<tr>
<td>GFF</td>
<td>Green financial flow</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
<td></td>
</tr>
<tr>
<td>GICS</td>
<td>Green information and communication system</td>
<td></td>
</tr>
<tr>
<td>GMP</td>
<td>Green management practices</td>
<td></td>
</tr>
<tr>
<td>GPAS</td>
<td>Green Port Award System</td>
<td></td>
</tr>
<tr>
<td>GPR</td>
<td>Greening and performance relativity</td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning Systems</td>
<td></td>
</tr>
<tr>
<td>GSCM</td>
<td>Green supply chain management</td>
<td></td>
</tr>
<tr>
<td>GSIP</td>
<td>Green supply chain integration practice</td>
<td></td>
</tr>
<tr>
<td>GSM</td>
<td>Green shipping management</td>
<td></td>
</tr>
<tr>
<td>GSP</td>
<td>Green shipping practices</td>
<td></td>
</tr>
<tr>
<td>GT</td>
<td>Green technology</td>
<td></td>
</tr>
<tr>
<td>GTP</td>
<td>Government Transformation Programme</td>
<td></td>
</tr>
<tr>
<td>GVALS</td>
<td>Green value added logistic service</td>
<td></td>
</tr>
<tr>
<td>HTMT</td>
<td>Heterotrait-monotrait</td>
<td></td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization</td>
<td></td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
<td></td>
</tr>
<tr>
<td>ISM</td>
<td>International Safety Management</td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>Information technology</td>
<td></td>
</tr>
<tr>
<td>JIT</td>
<td>Just-in-time</td>
<td></td>
</tr>
<tr>
<td>LCA</td>
<td>Life-cycle costing analysis</td>
<td></td>
</tr>
<tr>
<td>LCP</td>
<td>Low carbon performance</td>
<td></td>
</tr>
<tr>
<td>MARDEP</td>
<td>Marine Department of Malaysia</td>
<td></td>
</tr>
<tr>
<td>MARPOL</td>
<td>The International Convention for the Prevention of Pollution from Ships</td>
<td></td>
</tr>
<tr>
<td>MATTRADE</td>
<td>Malaysia External Trade Development Corporation</td>
<td></td>
</tr>
<tr>
<td>MGSCM</td>
<td>Maritime green supply chain management</td>
<td></td>
</tr>
<tr>
<td>MIDA</td>
<td>Malaysian Investment Development Authority</td>
<td></td>
</tr>
<tr>
<td>MLSP</td>
<td>Maritime Logistic Service Provider</td>
<td></td>
</tr>
<tr>
<td>NPE</td>
<td>National Policy on the Environment</td>
<td></td>
</tr>
<tr>
<td>NRBV</td>
<td>Natural resource-based view</td>
<td></td>
</tr>
<tr>
<td>OPRC</td>
<td>Oil Pollution Preparedness, Response, and Co-operation</td>
<td></td>
</tr>
<tr>
<td>PERS</td>
<td>Port environmental review system</td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>PLS-SEM</td>
<td>Partial least squares structural equation modelling</td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
<td></td>
</tr>
<tr>
<td>RBV</td>
<td>Resource-based view</td>
<td></td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
<td></td>
</tr>
<tr>
<td>ROA</td>
<td>Return-On-Assets</td>
<td></td>
</tr>
<tr>
<td>ROCE</td>
<td>Return-On-Capital-Employed</td>
<td></td>
</tr>
<tr>
<td>ROI</td>
<td>Return-On-Investment</td>
<td></td>
</tr>
<tr>
<td>SCM</td>
<td>Supply chain management</td>
<td></td>
</tr>
<tr>
<td>SDC</td>
<td>Shipping design and compliance</td>
<td></td>
</tr>
<tr>
<td>SDM</td>
<td>Self-diagnosis</td>
<td></td>
</tr>
<tr>
<td>SEEMP</td>
<td>Ship Energy Efficient Management Plan</td>
<td></td>
</tr>
<tr>
<td>SEEOI</td>
<td>Ship Energy Efficiency Operational Indicator</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>Structural equation modelling</td>
<td></td>
</tr>
<tr>
<td>SMSC</td>
<td>Sustainable maritime supply chain</td>
<td></td>
</tr>
<tr>
<td>SOLAS</td>
<td>International Convention for the Safety of Life at Sea</td>
<td></td>
</tr>
<tr>
<td>SOSEA</td>
<td>Strategic overview of environmental aspects</td>
<td></td>
</tr>
<tr>
<td>STCW</td>
<td>International Convention for Standards, Training, Certification and Watchkeeping for Seafarers</td>
<td></td>
</tr>
<tr>
<td>TEU</td>
<td>Twenty-Foot Equivalent Unit</td>
<td></td>
</tr>
<tr>
<td>UN</td>
<td>United Nation</td>
<td></td>
</tr>
<tr>
<td>UNCTAD</td>
<td>United Nations Conference on Trade and Development</td>
<td></td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
<td></td>
</tr>
<tr>
<td>VIF</td>
<td>Variance inflation factors</td>
<td></td>
</tr>
<tr>
<td>WEF</td>
<td>World Economic Forum</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

259

Byrne, B. M. (2016). *Structural equation modeling with AMOS: Basic concepts, applications, and programming.* Routledge.

Lincoln, Y., & Guba, E. (2000). The only generalization is: There is no generalization. *Case Study Method*, 27–44.

296

Rugman, A. M., & Verbeke, A. (2002). Edith Penrose’s contribution to the resource-
based view of strategic management. *Strategic Management Journal, 23*(8), 769–
780. https://doi.org/10.1002/smj.240

based perspective*. Oxford University Press on Demand.

Russo, M. V. (2016). A Resource-Based Perspective on Corporate Environmental
559.

Saade, R., Thoumy, M., & Sakr, O. (2019). Green supply chain management adoption in
Lebanese manufacturing industries: an exploratory study. *International Journal of

supply chain management literature. *International Journal of Production

Production Economics*. https://doi.org/10.1016/j.ijpe.2010.11.010

European Journal of Operational Research, 107(1), 159–174. https://doi.org/10.1016/S0377-
2217(97)00160-4

Sarkis, Joseph, Bai, C., Jabbour, A. B. L. de S., Jabbour, C. J. C., & Sobreiro, V. A.
(2016). Connecting the pieces of the puzzle toward sustainable organizations.
Benchmarking: An International Journal, 23(6), 1605–1623. https://doi.org/10.1108/BIJ-04-
2015-0033

Sarkis, Joseph, Gonzalez-Torre, P., & Adenso-Diaz, B. (2010). Stakeholder pressure and
the adoption of environmental practices: The mediating effect of training. *Journal of

organizational theoretic review of green supply chain management literature. *Intern.

302

