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Abstract
Metaheuristic algorithms have received much attention recently for solving different optimization and engineering

problems. Most of these methods were inspired by nature or the behavior of certain swarms, such as birds, ants, bees, or

even bats, while others were inspired by a specific social behavior such as colonies, or political ideologies. These

algorithms faced an important issue, which is the balancing between the global search (exploration) and local search

(exploitation) capabilities. In this research, a novel swarm-based metaheuristic algorithm which depends on the behavior of

nomadic people was developed, it is called ‘‘Nomadic People Optimizer (NPO)’’. The proposed algorithm simulates the

nature of these people in their movement and searches for sources of life (such as water or grass for grazing), and how they

have lived hundreds of years, continuously migrating to the most comfortable and suitable places to live. The algorithm

was primarily designed based on the multi-swarm approach, consisting of several clans and each clan looking for the best

place, in other words, for the best solution depending on the position of their leader. The algorithm is validated based on 36

unconstrained benchmark functions. For the comparison purpose, six well-established nature-inspired algorithms are

performed for evaluating the robustness of NPO algorithm. The proposed and the benchmark algorithms are tested for

large-scale optimization problems which are associated with high-dimensional variability. The attained results demon-

strated a remarkable solution for the NPO algorithm. In addition, the achieved results evidenced the potential high

convergence, lower iterations, and less time-consuming required for finding the current best solution.
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1 Introduction

The process of optimization involves a holistic search for

the optimal response to a given problem. Many fields of

study, including economy, engineering, and medical fields,

have inherent problems that require optimization problems.

The development of the optimization algorithms has been

the focus of many researchers globally. The primary aim of

optimization algorithms (also known as search methods) is

the establishment of an optimal solution to an optimization

problem in such a way that the given quantity is optimized

subjected to a possible set of constraints [1, 2].

Though this is a simple definition of optimization, it

conceals several complex issues [3]. Some of the issues

concealed in this definition include (a) there may be a

combination of different types of data in the solution;

(b) the search area may be restricted by nonlinear con-

straints; (c) the convolution of the search space with many

individual solutions; (d) the tendency of the features of the

problem changing with time; and (e) the presence of con-

flicting objectives in the optimized quantity. These are

some of the problems that portray the complexities that an

optimization algorithm may encounter.

In the process of solving optimization problems with a

high-dimensional search space, it is impossible to achieve
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a suitable solution with the classical optimization algo-

rithms due to the exponential increase in the search space

with the size of the problem. Therefore, it is not feasible

to solve high-dimensional search space optimization

problems using exact techniques such as exhaustive search

[4]. Another problem of the classic optimization algo-

rithms is their inability to find sufficient global optima

(local optima stagnation). Furthermore, some of the clas-

sical optimization algorithms need search space derivation

as well. It is, therefore, pertinent that these classical

algorithms cannot adequately solve real-world optimiza-

tion problems [5, 6].

Metaheuristic algorithms are currently being used as the

primary approach to achieving optimal solutions to real

optimization issues [7, 8]. These approaches mainly ben-

efit from the stochastic operators that distinguish them

from the deterministic algorithms [9] which reliably

establishes the solution to a given problem using similar

starting points. There are several engineering applications

have evidenced the potential of the metaheuristic algo-

rithms for optimization process [10–17]. However, the

main problem associated with the optimization algorithm

is the local optima entrapment which is regarded as a

problem for the deterministic approach. Local optima

stagnation is the ability of an optimization algorithm to

find just the local solutions to a problem and consequently

failing to find the true global solution (optimum). Since

there are many local solutions in real problems, it may be

difficult to reliably find the global optimum using deter-

ministic algorithms [18].

Metaheuristics are used these days for several purposes,

such as enhancing system performance and reducing pro-

duct cost to meet market demands. Optimization, from the

engineering perspective, involves fine-tuning one or more

system parameters to achieve optimal system performance.

This is an important task, especially when faced with a

complicated and highly dimensional problem space [19]. In

recent literature, many different metaheuristics have been

proposed and successfully used for solving different engi-

neering problems [20–28].

The metaheuristic algorithms may be classified using

many criteria and this may be illustrated by their classifi-

cation based on their features with respect to their search

path, memory usage, the type of neighborhood exploration

used, and the current number of solutions carried from one

iteration to the next. In the literature, the metaheuristic

algorithms are fundamentally classified into the single-so-

lution based metaheuristics (SSBM) and the population-

based metaheuristics (PBM). Generally, the SSBMs are

exploitative-oriented, while the PBMs are more explo-

rative-oriented. Figure 1 illustrates the classification of

metaheuristics based on their number of solutions.

Furthermore, the metaheuristic algorithms are catego-

rized into the swarm-based algorithms (SBA), physics-

based algorithms (PBAs), and evolutionary algorithms

(EAs). The EA is inspired from natural evolutionary

behaviors. Some of the evolutionarily inspired meta-

heuristic algorithms are evolution strategy (ES), differen-

tial evolution (DE), genetic programming (GP), genetic

algorithm (GA), evolutionary programming (EP), proba-

bility-based incremental learning (PBIL), and biogeogra-

phy-based optimization (BBO) [29–32].

The SBAs are the next category; they are inspired by

social behaviors of living groups [33–35]. Some of the

common swarm-based algorithms include the particle

swarm optimization (PSO) which was inspired by the indi-

vidual and social behavior of birds, the cuckoo search (CS)

which mimics the unusual egg-laying behavior, the firefly

algorithm (FA) which was inspired by the characteristics

light flashes from fireflies, the artificial bee colony (ABC)

which was inspired by the behavior of bee swarms when

searching for food, the Grey Wolf Optimizer (GWO) which

mimics the behavior ofGreywolveswhen hunting preys, and

the Whale Optimization Algorithm (WOA) which mimics

the social behavior of the Humpback whales [20, 36–44].

Some authors have introduced a new swarm intelligence

category known as social-inspired metaheuristic algo-

rithms. The algorithms belong to this category are inspired

from the social and cultural interactions seen in human

behaviors. The common algorithms in this category include

Teaching–Learning-based Optimization (TLBO), Socio

Evolution & Learning Optimization Algorithm (SELO),

Cultural Evolution Algorithm (CEA), Artificial Memory

Optimization (AMO), and Human mental search (HMS)

[5, 45–47]. The physics-based algorithms mimic the

physical rules of nature. The common algorithms in this

category include the water cycle (WC), gravitational search

algorithm (GSA), Lightning Attachment Procedure Opti-

mization (LAPO), simulated annealing (SA) and mine blast

(MB) algorithms [4, 48–52].

A metaheuristic approach will successfully optimize a

given problem only if the right balance between explo-

ration (diversification) and exploitation (intensification)

can be established. Exploitation is necessary for identifying

the search parts that have quality solutions and also

important for the intensification of the search in some of

the potential accumulated search areas. The existing

metaheuristic algorithms differ in the way they try to strike

the balance between exploration and exploitation [53, 54].

The existed literature suggested the effectiveness of the

metaheuristics in solving several design problems and

points toward their ability to solve highly complex NP-hard

problems searching [53, 55–62]. However, there is still

lack of studies focusing on large-scale multidimensional

problems.
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Furthermore, tuning of control parameters can also a rele-

vant issue as far as the existingmetaheuristic is concerned. To

be specific, the tuning process can be painstakingly difficult

even for a small dimension problem, let alone dealing with

large-scale multidimensional problems. Specifically, poor

tuning of the control parameters leads to inefficient explo-

ration and exploitation, hence, affecting the performance of

the metaheuristic algorithm at hand. Therefore, a parameter-

free metaheuristic is well desired in terms of reducing the

complexity of parameter tuning and can be used in different

domains without any additional adaptive methods.

To overcome the above-mentioned drawbacks in the

existing metaheuristics, a novel parameter-free multi-swarm

metaheuristic is proposed in this paper. It is a social-based

algorithm inspired by the movement of nomads when

searching for the sources of food in the desert. The proposed

algorithm is known as theNomadic People Optimizer (NPO)

algorithm. The proposed algorithm with its unique structure

has the ability to handle large-scale problems.

The paper is organized as follows: Sect. 2 is divided into

two parts, first part explains the inspiration of the proposed

algorithm, while the second part explains NPO algorithm

with the developed operators, and the mathematical model,

together with the pseudocode of the proposed NPO algo-

rithm. Section 3 contains the results and discusses the

statistical results for the standard benchmarking functions.

Finally, Sect. 4 provides the conclusions from the study.

2 Nomadic People Optimizer

This section explained the fundamentals of NPO, begin-

ning with the definition of the nomadic people and their

lifestyle which formed the basis of the proposed algorithm.

Moreover, the mathematical model for NPO was provided.

2.1 Nomad people inhabit pattern: source
of inspiration

Nomads refer to those who live their entire life traveling

from one place to another with their herds of camels, cattle,

and sheep in search of natural sources of water and food.

These herds graze on pastures close to water sources and

provide their owners food, as well as other major neces-

sities, such as skin and wool for clothing and tent-making.

The milk from the herd serves as a source of calcium and

protein for the nomads. It is well-known that nomads do

not familiarize themselves with an environment or cultivate

the lands within their settlement as they do not settle in one

place for a long time. In fact, the nomads can be catego-

rized into several types, such as the Berbers, the Gypsy,

and the Bedouins.

The Bedouins’ classification and lifestyle inspired the

new algorithm, NPO. The Bedouins’ families are made up

of the Sheikh family and normal families. The role of the

Sheikh is usually hereditary (from father to son) or in sit-

uations of conflict where a normal family may take over

power from the Sheikh’s family if the normal family

becomes more influential. The sheikh as the leader of the

clan determines the locations essential for survival and

pattern of distribution for the families of the rest of the

clan. The sheikh would send the families in search of a new

suitable location. The selected families would move ran-

domly in different directions and distances. When a family

finds a better place, the Sheikh moves toward the new

position and re-establishes the clan (i.e., the normal fami-

lies) in a semicircular shape around his tent, Fig. 2 illus-

trates the distributions of the families. The distributions of

the families’ tents are in a semicircular pattern, with the

Sheikh’s tent at the center. The sheikh is the central fig-

ure with the authority not only over the families and their

Metaheuristics

Single-Solution Based Population Based

Evolutionary Based Swarm Based Physics Based

Living Organism Social Inspired

PSO FA

CSA GWO

TLBO SGO

SCO CEA

GSA

LAPO

GA

ES

Fig. 1 Classification of

metaheuristics based on number

of solutions
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fates, but also when and where the clan should move. In

times of conflict, the sheikh is responsible in deciding

whether the variances between clans are either resolved

peacefully or in fights.

The Bedouins continuously travel in search of location

rich with resources necessary to sustain their livelihood.

Migration occurs annually during summer and winter as

slight climatic and territorial changes are exploited using

seasonal or periodic movements between the summer and

winter pasture areas (SPA and WPA). The movement of

Bedouin clans is scattered over the deserts of the Arabian

Peninsula, Western Iraq, parts of Syria, Jordan, Palestine,

Egypt, and North Africa as illustrated in Fig. 3. SPA is

usually determined by the availability of water and pasture

sources, as well as suitable climatic conditions. WPA aims

for places with wells and dams, which could be either small

or closed areas. The occupation of SPA is between the

period of May and October (late harvest period) and the

clan will later move to WPA for the rest of the year.

2.2 Mathematical model of NPO

2.2.1 NPO terminology

The terminologies used to describe NPO are discussed

below:

1. Leader (r): An individual represents the current local

best solution in the swarm.

2. Best Leader (rE): An individual represents the global

best solution in all swarms, which is used in the

meeting room approach.

3. Normal Leader (rN): An individual represents the other
leaders except the Best Leader (rE).

4. Family (x): An individual represents a member in the

swarm or clan which has a lower fitness value than the

leader.

5. Clan (c): a group of families (x), including the Leader

(r), which represents an individual swarm. NPO

consists of several clans, each clan consists of several

families and single Leader.

6. Fitness or Objective Function (f xð Þ): a term refers to

the function or method to evaluate the goodness of a

position in the search space. It takes the coordinates in

the solution space and returns a numerical value

(goodness). The fitness function provides an interface

between the physical problem and the optimization

algorithm.

7. Direction (W): It is a variable used for guiding the

Normal Leaders toward the Best Leaders.

2.2.2 NPO algorithm

The NPO algorithm is comprised of five main operators,

which are (1) initial meeting, (2) semicircular distribution,

(3) families searching, (4) leadership transition, and lastly,

5) periodical meeting.

1. Initial meeting (initialization):

A set of Leaders (r), where ri ¼ r1; r2; . . .;#Clansf g is
initialized randomly by using the following equation:

rc
!¼ UB� LBð Þ � Rand þ LB ð1Þ

where UB and LB represent the upper bound and lower

bound, respectively, while Rand denotes a random value

between 0 and 1, and rc
! represents the position of the

leader of the clan c.

2. Semicircular distribution (Local Search—

Exploitation):

A set of families (x), where Xi = {X1;X2; . . .;#

Familiesg is distributed around the corresponding leader r.
Mathematically, it is possible to distribute points randomly

within a given circle with a known radius using the equa-

tions of the 2D circle. These points are circled around the

origin (center of the circle) by the value of the angle, as

given in the following equations:

Fig. 2 Semicircular distribution

of the families
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X ¼ Rd �
ffiffiffiffiffi

R1

p� �

� cos hð Þ þ X0 ð2Þ

Y ¼ Rd �
ffiffiffiffiffi

R2

p� �

� sin hð Þ þ Y0 ð3Þ

where X0 and Y0 represent the coordinates of the origin

point (center of the circle), while R1 and R2 denote the

random coordinates of a point within the perimeter of that

circle. Meanwhile, h refers to the angle value of that point,

which is a random value lies between [0, 2p].
Equations 2 and 3 are used when the generated points

are within a circle in 2D shape, (i.e., X, Y ; and h). Nev-
ertheless, if the solutions are represented within the search

space, the problems do not require any X and Y coordi-

nates. Hence, the representation of the solutions is unary

(i.e., single dimension), instead of 2D. As such, the dis-

tribution of tents randomly around the leader’s tent requires

an X coordinate, while excluding the non-required Y

coordinate. With that, the equation was developed to fit this

scenario, as given in Eq. 4 in the following:

Xc
�! ¼ rc

!�
ffiffiffi

R
p

� cos hð Þ ð4Þ

where Xc
�!

represents the position of a family, rc
! represents

the position of the leader for the same swarm—or clan (c),

and R represents a random number in range [0, 1]. In some

cases, where the LB is 0 or positive, the equation is mul-

tiplied by |cos(h)|. It can be noted from Eq. 4 that the

position of the families is based entirely on the position of

their leader, and this is within the powers of the leader since

he is in charge of distributing the families around his tent.

3. Families searching (global search—exploration):

In NPO, the exploration part is executed when there is

no new local best solution in the swarm. In such situations,

the families search for better positions far from the current

local best. All families move in different directions in the

search space based on random steps and directions gener-

ated by Lévy Flight formula as follows:

Xnew
i

��! ¼ Xold
i

��!
þ ac � rc � Xold

i

� �

�������!
� Levy

� �

ð5Þ

where Xnew
i

��!
andXold

i

��!
represent the new and old positions of

the current family respectively, ac represent the area of the

clan which is the average distance between all the normal

families and rc. ac can be calculated using the following

equation: -

ac ¼

PU
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc
!� Xold

i

��!� �2
s

U
ð6Þ

where U denotes the number of families in each clan, rc
!

and xic represent the positions of the leader and the normal

families, respectively. The distance between xc and rc gets
closer when families are distributed around rc in a small

circle (i.e., semicircular distribution), which leads to

explore the search space by small step size. While the large

distances between all xc and rc enhances the ability of the

families to explore the search space far from current rc.
Thus, the value of ac has a great effect on the searching

process.

The families move in different directions, and in random

step sizes; the step sizes are generated by the Lévy flight

ðkcÞ equation as follows:

Levy� u ¼ t�k ð1\k� 3Þ ð7Þ

The Lévy flight equation is usually used to generate a

random walk while drawing the random step length from a

Lévy distribution with an infinite mean and variance [37].

The stochastic equation for random walk is typically rep-

resented in Eq. 5. A random walk is generally a Markov

Fig. 3 The distribution of the

Bedouins over Arabic countries
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chain that depends on its current location (the first term in

the above equation) and the transition probability (the

second term) to determine its next status/location. The

product � means entry-wise multiplications. Here, the

random walk via Lévy flight is more efficient in exploring

the search space as its step length is much longer in the

long run.

4. Leadership transition (exploitation):

For each clan, check whether there is a new family that

has a better fitness than the leader of the same clan, then,

the family becomes a leader and vice versa.

5. The periodical meetings (exploitation–exploration):

The periodical meetings are dissimilar to the initial

meeting, except for the redistribution of Leaders in the

desert. During these periodical meetings, the Leaders strive

to resolve any external problem and discuss the best

locations for relocation purpose. The reason for this

meeting is to enable each Leaders to have control over his

place, but without arousing the ambitions of others, instead,

bringing them closer to himself.

The periodic meetings occur in two stages and they

involve only the Leaders. The families are disallowed from

interfering, except those in power. The first phase of the

meeting is to determine the most powerful Leader, or in

precise, the Leader of the best location who will propose

solutions to other Sheikhs for them to update their loca-

tions. This update is performed by adding the variance

between the position of the strongest Leader and that of the

normal Leader as depicted in the following equation:

DPos ¼ W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PD
i rE � rNc
� �2

q

#D

0

@

1

A ð8Þ

where rE represents the position of the best Leader, and rNi
denotes the position of the normal Leaders. Meanwhile,

#D is the number of dimensions of the problem, W refers

to the direction, and DPos represents the normalized dis-

tance between the best Leader and the normal Leader. The

direction variable W guides the normal Leaders to better

positions depending on the fitness value of the best sheikh,

as follows:

W ¼ 1 if f rEð Þ	 0

�1 otherwise

�

ð9Þ

The normal Leaders update their positions via Eq. 10.

This equation represents a part of the exploration stage in

NPO.

rnewc

��! ¼ rNc
�!

þ DPos rE � rNc
� �

� IT

#T
ð10Þ

where rnewc and rNc represent the new and old position of the

normal Leader, respectively, while IT and #T represent

the current iteration and the total number of iterations,

respectively.

During the periodical meeting, the positions of all nor-

mal Leaders are updated. The Leader stays at the new

position if it is better than before, apart from establishing

his new clan based on the second step (semicircular dis-

tribution), otherwise he returns to the old position. It is

important to mention that the periodical meeting is a

unique method of sharing information between swarms, for

it reflects a cooperative scheme for multi-swarms. As

mentioned before, each clan represents an individual

swarm, while the periodical meeting facilitates communi-

cation between them. This cooperative multi-swarm

scheme is called Meeting Room Approach (MRA). MRA

can be applied with other metaheuristics, it helps them to

balance between exploration and exploitation, which pro-

motes faster convergence, in comparison to other standard

versions of the algorithms. The pseudocode of the period-

ical meeting or MRA is given below:

1. Input: All Leaders 
2. Output: Best Leader Ever , Updated Positions for all Normal Leaders
3. Procedure:
4.    Determine the best leader ever as 
5.    Determine the value of the direction variable Ψ via . 9

7.    Calculate ∆ via . 8

9.    For each normal leader 
10.            Move towards the best leader ever , via . 10

12.            Calculate the fitness value for each using the objective function
13. If: the is better than the , Then keep it
14. Else: keep the 
15.    End For
17.    Return and other 

Algorithm: Periodical Meeting or Meeting Room Approach
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Figure 4 illustrates the main structure of the MRA,

where several clans interact with each other by sharing

their positions. Therefore, MRA represents a social learn-

ing approach between the leaders or the best solution in

each clan. The black circles represent the best solutions or

the leaders, while the white circles represent the families.

The main steps of NPO are summarized in the following

pseudocode, while the flowchart is given in Fig. 5.

3 Algorithm results, discussion, and evalua-
tion settings

The performance of NPO was evaluated by carrying out two

sets of experiments. The first experimental set looked into

the overall performance of the algorithms over a fixed

number of iterations. Upon completing certain number of

iterations, the performance of the algorithms was evaluated

based on the mean and the best fitness values found for each

benchmarked function. Next, the second experimental set

investigated the convergence behavior of the algorithms. In

this case, the algorithm was run on various numbers of

iterations to evaluate the mean fitness value established for

each case. Hence, the convergence behavior of the algo-

rithms based on the number of iterations was obtained. The

proposed NPO algorithm in this study was applied on new

combination of benchmarked functions, while its perfor-

mance was compared to that of six well-known algorithms

metaheuristics (particle swarm optimization (PSO2011)

[63], artificial bee colony (ABC) [64], flower pollination

algorithm (FPA) [65], Grey Wolf Optimizer (GWO) [41],

Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) [29], and Firefly Algorithm (FFA) [38]).

3.1 Benchmark functions

It is mandatory that the performance of any newly devel-

oped algorithm should be benchmarked and validated

against that of other existing algorithms using a good set of

test functions. Most researchers prefer to test the perfor-

mance of their algorithms on a large test set, especially

when optimization functions are involved. However, the

effectiveness of one algorithm over others cannot solely

depend on its ability to solve problems that are either too

specialized or without diverse features. The evaluation of

an algorithm demands the identification of the kind of

problems that it had a better performance compared to

others. This will help in determining the type of problems

that the algorithm can be used to solve. This can only be

achieved by using a test suite that is large enough to

embrace a range of problems such as unimodal, multi-

modal, separable, non-separable, and multidimensional

problems [66, 67].

This study focused on the test function benchmarks and

their diverse features such as modality and separability. A

function is multimodal if it has more than one local opti-

mum and is used to test the ability of an algorithm to

Algorithm: Nomadic People Optimizer (NPO)
1. Input: No. of Clans (#Clans), No. of Families (Φ), No. of Iterations (# ) 
2. Output: The Best Sheikh 
3. Procedure:
4. Define the objective function ( ), 
5. Initialize the Leaders  , = {1 , 2 , 3 , …  , # }  
6. Calculate the fitness value for each leader via ( )

7. Repeat ( ):
8.    For = 1 to #
9.         Distribute the solutions/families around the leader in a semi-circular shape via . 4

10         Calculate the fitness value for each solution via ( )

11.         Set the best in the clan as   
12.         If is better than the original Then, Swap them =
13.         Else: Explore the search space using the following steps: 
14.                  Calculate the average distance between all families via . 6  
15.        Move the family towards the new position via . 5

16.        Calculate the fitness value for each solution via ( )

17.        Set the best in the clan as 
18.        If is better than the original Then, Swap them =
19         End if
20.     End For
21.     Implement the Periodical Meeting
22. Loop Until ( > # )

23. Return 
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escape being trapped in any local minima. If an algorithm

is built with a poorly constructed exploration process, it

cannot effectively search the function landscape, and this

could result in having the algorithm stuck at local minima.

The most difficult class of problems for most algorithms is

the multimodal functions with many local minima. The

difficulty of different benchmark functions is expressed in

terms of their reparability. Because each variable of a

function in separable functions is independent of the other

variables, they are generally easily solved compared to

their inseparable counterpart.

To evaluate the performance of the NPO, 36 test func-

tions were carefully selected in this study from several

references [66, 68]. These test functions were divided into

Fig. 4 Meeting room approach

Initialization for each Leaders

Define the Objective Function

Start/Continue the Main 
Iterations

For each Clan in the Desert

Semi-Circular Distribution

Determine the best Family in 
the Clan

Leadership Transition

If the best Family is
better than the Leader?

Families Searching

Yes No   

Last Clan?No

Determine the best Leader in 
All Clans

Periodical Meeting

Yes

Satisfied ?No

Return Best Leader

Yes

Fig. 5 Flowchart of NPO

10366 Neural Computing and Applications (2020) 32:10359–10386

123



four groups (Unimodal Non-Separable (U-N) with 9 tests,

Unimodal Separable (U-S) with 6 tests, Multimodal Non-

Separable (M-N) with 13 tests, and Multimodal Separable

M-S) with 8 tests. Table 1 shows these functions. The

table presents the name of the test function, the type (U-S,

U-N, M-N, or M-S), the number of decision variables or

dimensions (Dim), the lower and lower boundaries of the

test function (LB and UB), and the optimal solution (Opt.).

3.2 Algorithms comparison and simulation
settings

All the experiments, including NPO and the previously

mentioned 36 benchmark test functions were executed on a

personal computer (Core i7, 3.60 GHz, 16 GB of RAM,

64-bit Windows 10 operating system) using MATLAB

2014a. The performance of NPO was compared to

PSO2011, ABC, FPA, GWO, CMA-ES, and FFA. The

experiments were executed in 30 different runs, and the

best, worst, median, mean, and standard deviation were

recorded. Table 2 presents the specific/default parameters

for the metaheuristics mentioned above.

NPO was compared to the other metaheuristics based on

the mentioned statistical parameters based on 30 run times.

Also, NPO is compared to the other metaheuristics based

on statistical test which is Wilcoxon signed-rank test. To

establish the speed of the NPO in converging to the optimal

solution, a convergence analysis for all the algorithms was

performed. The results of the 30 runtimes (means and

standard deviation) are compared to those of the mentioned

metaheuristics. To evaluate the ability of NPO algorithm

when solving the large-scale problems, 13 test functions

were selected with three different number of decision

variables—or dimensions—, they are (100, 500, and 2000).

3.3 Benchmarking results

This section presents the results of proposed NPO, it is

divided into two subsections. In the first subsection, the

performance of NPO over the unconstrained test function is

presented, while the second subsections present the per-

formance of NPO over the large-scale problems.

3.3.1 NPO for unconstrained test functions

After executing and recording all the experiments over the

36 benchmark test functions, the outcomes showed that the

NPO exerted superior performance and could reach the

optimal solution for many test functions. Although some of

these test functions had been exceptionally challenging to

solve and their best results could not be efficiently arrived

at with the NPO, the algorithm was able to reach values

very close to their ideal best results. Table 3 presents the

results of NPO and the other six metaheuristics over the 36

test functions.

Table 4 summarizes the results and the comparison with

other metaheuristics. The table also depicts the number of

test functions that had been solved via NPO. The symbol

‘?’ represents the number of test functions where NPO

exhibited better results while ‘-’ denotes the worst results,

‘=’ reflects both algorithms with similar good or bad

results, finally, ‘*’ refers to the number of test functions

where NPO reached the optimal solution. From the table, it

is evident that NPO had successfully outperformed the

other metaheuristic by 45.8%.

Although the statistical results presented in Tables 3 and

4 provided a first insight into the performance of NPO, a

pairwise statistical test is typically used for a better com-

parison. For this purpose, by using the results obtained

from 30 runs of each algorithm, a Wilcoxon Signed-Rank

Test is performed with a statistical significance value

/¼ 0:05. The null hypothesis H0 for this test is: ‘‘There is

no difference between the median of the solutions pro-

duced by algorithm A and the median of the solutions

produced by algorithm B for the same benchmark prob-

lem’’. i.e., median (A) = median (B). To determine whe-

ther algorithm A reached a statistically better solution than

algorithm B, or if not, whether the alternative hypothesis is

valid, the size of the ranks provided by the Wilcoxon

Signed-Rank Test (i.e., T?, and T-) are examined.

In Table 5, the statistical pairwise results of the NPO

algorithm compared to those of other algorithms are given.

In this table, the asterisk (*) indicates that a p value of less

than 0.05, which means there is a significant difference

between the two algorithms in that test. The legends used

in this test are:

(a) The sum of negative ranks equals the sum of positive

ranks.

(b) Based on positive ranks.

(c) Based on negative ranks.

Table 5 displayed the Wilcoxon signed-rank test for

comparison of the 30 runs of each metaheuristic. The

table can be summarized as follows:

• NPO versus PSO: The test indicates that there are more

significant negative ranks (N = 31) rather than signif-

icant positive ranks (P = 5). Meaning that the median

of NPO is more than median of PSO, in other words, the

H0 is rejected and the NPO has superior performance

and has outperformed PSO.

• NPO versus ABC: The test indicates that there are more

significant negative ranks (N = 18) rather than signif-

icant positive ranks (P = 13). Meaning that the median

of NPO is more than median of ABC, in other words,
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the H0 is rejected and NPO is statistically better than

ABC algorithm.

• NPO versus FPA: The test indicates that there are more

significant negative ranks (N = 14) rather than signif-

icant positive ranks (P = 12). Meaning that the median

of NPO is more than median of FPA, in other words, the

H0 is rejected and NPO has better performance than

FPA.

• NPO versus GWO: The test indicates that there more

significant negative ranks (N = 13) rather than signif-

icant positive ranks (P = 11). This means that the

median of NPO is more than median of GWO, in other

words, the H0 is rejected and the NPO is better than

GWO, however, there are 12 tests where both have

equal results.

• NPO versus CMA-ES: The test indicates that there

more significant negative ranks (N = 20) rather than

significant positive ranks (P = 12). This means that the

median of NPO is more than median of CMA-ES, in

other words, the H0 is rejected and the NPO is better

than GWO.

• NPO versus FFA: The test indicates that there more

significant negative ranks (N = 19) rather than signif-

icant positive ranks (P = 11). This means that the

median of NPO is more than median of FFA in other

words, the H0 is rejected, and the NPO statistically is

better than FFA.

Table 1 Benchmark test functions used for evaluation

fn Name Type Dim LB, UB Opt. fn Name Type Dim UB, LB Opt.

f1 Beale U-N 2 - 4.5,4.5 0 f19 Cross-in-tray M-N 2 - 10, 10 - 2.0626

f2 Easom U-N 2 - 10,10 - 1 f20 Griewank M-N 30 - 600, 600 0

f3 Matyas U-N 2 - 10,10 0 f21 GoldStein-Price M-N 2 - 2, 2 3

f4 Powell U-N 24 - 4, 5 0 f22 Hartman 3 M-N 3 0, 1 - 3.8627

f5 Schaffer No.1 U-N 2 - 100, 100 0 f23 Hartman 6 M-N 6 0, 1 - 3.3223

f6 Schaffer No.3 U-N 2 - 100, 100 0.001567 f24 Penalized M-N 30 - 50, 50 0

f7 Schaffer No.4 U-N 2 - 100, 100 0.29258 f25 Penalized No.2 M-N 30 - 50, 50 0

f8 Zakhrov U-N 30 - 5, 10 0 f26 Perm M-N 4 - 4, 4 0

f9 Quartic U-N 30 - 1.28,1.28 0 f27 Powersum M-N 4 0, 4 0

f10 Schwefel 2.21 U-S 30 - 100, 100 0 f28 Shubert M-N 2 - 10, 10 - 186.7309

f11 Schwefel 2.22 U-S 30 - 10, 10 0 f29 Alpine No.1 M-S 30 - 10, 10 0

f12 Sphere U-S 30 - 100, 100 0 f30 BohachevskyNo.1 M-S 2 - 100, 100 0

f13 Step2 U-S 30 - 100, 100 0 f31 Booth M-S 2 - 10, 10 0

f14 Stepint U-S 5 - 5.12, 5.12 0 f32 Branin M-S 2 - 5, 5 0.39789

f15 Sumsquares U-S 30 - 10, 10 0 f33 Michalewics 2 M-S 2 0, p - 1.8013

f16 Ackley M-N 30 - 32, 32 0 f34 Michalewics 5 M-S 5 0, p - 4.6876

f17 BohachevskyNo.2 M-N 2 - 10, 10 0 f35 Michalewics 10 M-S 10 0, p - 9.6601

f18 BohachevskyNo.3 M-N 2 - 100,100 0 f36 Rastrigin M-S 30 - 5.12, 5.12 0

Table 2 The specific parameters used in the studied metaheuristic

Algorithm Parameter Settings

PSO2011 Swarm size S.S 50

Inertia weight x Linearly decrease (0.9–0.1)

Cognitive parameter c1 1.49

Social parameter c2 1.49

ABC Colony size C.S 50

No. Food Source C.S/2

Limit 50

FPA Swarm size S.S 50

Switch probability P 0.8

Levy flight k 1.5

GWO Swarm size S.S 50

a Linearly decrease (2–0.1)

CMA-ES Initial point Xmean

Step size (Sigma r)

Population size (lambda k)

Mutation (l)

Rand(1, D)

0.5

4 ? Floor(3 � Log Dð Þ))
k=2

FFA Swarm size S.S 50

a 0.5

bmin 0.2

c 1.0

d 0.96

NPO Swarm size (r�#F) 50 (5 � 10)
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3.3.2 NPO for large-scale problems

To test the robustness of NPO over large-scale problems

with different dimensions sizes, several continuous

benchmark functions were chosen and used with medium

(100), large (500), and very large (2000) number of deci-

sion variables (dimensions). The results of the 30 runtimes

(best, worst, median, mean and standard deviation) are

compared to those of the mentioned metaheuristics. The

test functions used in this section are 13 problems. These

problems are

f8; f9; f10; f11; f12; f13; f15; f16; f20; f24; f25; f29; and f36ð Þ:

The main difference between these test functions and the

rest is that these functions have dynamic number of vari-

ables, thus, these functions can be used with the mentioned

above dimensions. The results are presented in Tables 6, 7,

and 8 respectively.

The results have clearly showed that NPO has the ability

to handle the large-scale problems. NPO has attained the

best results in 11 out of 13 test functions, while the other

algorithms have failed with most of these tests, especially

with the very large problems (i.e., number of dimen-

sions = 2000). The multi-swarm structure of NPO provides

stable performance in terms of the scalability, and out-

performs the other algorithms from the literature, except

for GWO, which attained the second place for most of the

problems in the experiment. The exploration part of NPO

helps the algorithm to explore a wide area in the search

space, and avoid trapping in the local optima.

3.4 Convergence analysis

The convergence curves for several test functions of NPO

and the other algorithms are provided in Fig. 6a–f for the

first 100 iterations. It is clear that NPO has fast conver-

gence as compared with the other algorithms, because of

two reasons. Firstly, the semicircular distribution and the

leadership transition change the position of the families

(solutions) faster than the other algorithms, in other words,

these two operators enhance the local search mechanism

and get a new local best solution each iteration. At the

same time, when the families are distributed based on

semicircular distribution operator, their new positions

depend on their leaders (local best solutions), meaning that

the families are converging fast enough toward the optimal

solution. Secondly, the periodical meeting operator

(meeting room approach) increases the exploration ability

of NPO by sharing the information between the leaders

(local best solutions), which enhances the searching ability

of the families when they are looking for new positions.

As a summary of the convergence, each member (fam-

ily) in NPO has its own responsibility to improve itsTa
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position within the clan and helps the clan to find better

position within the search space. This is evident in the

convergence curves, NPO showed a superior performance

as compared to the rest algorithms.

3.5 Discussion

This section discusses the outcomes of NPO, and attempts

to answer the following question: ‘why is NPO efficient?’

In fact, two primary reasons can be outlined in this case,

which are: (1) NPO has good exploration and exploitation

capabilities, and (2) NPO has a powerful mechanism that

balances exploration and exploitation capabilities. The

exploration is applied twice, the first time occurs when the

leaders are initialized at the first meeting and meet at the

periodical meeting, while the second time takes place when

the families are searching in the search space, or in precise,

the third operator. The exploration of NPO differs from that

of other metaheuristics, in which it explores the search

space by employing several members of swarms, while

other swarm-based algorithms commonly use a specific

mechanism between the global best solution and the whole

swarm. Moreover, the meeting room approach (MRA),

which is proposed in this paper, forces the normal leaders

to follow the best leader by using the direction variable W.

This variable guides them toward better places, in precise,

they may find better positions for their clans. In this paper,

two values were employed for the direction variable, ? 1

or - 1, because the values of fitness appeared either pos-

itive or negative, while in future studies, the researcher

may use varied values based on their case studies, if these

values do not suit them.

The exploration ability of NPO was optimum when

NPO was applied on multimodal test functions, which

comprised of 21 test functions. NPO successfully discov-

ered 19 optimal solutions. In addition, NPO proved that it

possesses the ability to avoid all local optima and could

approach the global optima on most of these tests. The

convergent curves showed that NPO had the fastest con-

vergence on multimodal test functions as well.

On the other hand, the exploitation stage consists of two

operators: semicircular distribution, and leadership transi-

tion. The first operator represents the local search mecha-

nism of NPO, while the other operator exploits the

solutions generated by the other two operators. Besides, it

is worth to mention that each clan with the second, third,

and fourth operators reflects an independent search algo-

rithm, which indicates that search algorithms are embedded

in NPO #Clans (no. of clans). For each iteration (gener-

ation) in NPO, the families in each clan search for better

places to move to, thus discovering leaders, and the clans

can be enhanced internally. Even if those leaders fail to

emerge as better than the global best leader, they still

represent an enhancement in NPO, thus leading to an

enhancement in the searching process, when MRA is

applied. Figure 9 illustrates an idea of the processes that

take place in both stages and the general block diagram of

NPO.

It is obvious that NPO does not contain any controlling

parameters, except for structural parameters, i.e., number

of clans and number of iterations. Although these param-

eters do not influence the search behavior of NPO, they do

have an impact on the probability of finding the best

solutions, or in precise, more families or more clans find

the solutions faster in the expense of execution time. This

paper had examined five clans and ten families in each clan

(50 swarm size in total), in which the performance was

found efficient in terms of execution time (Fig. 7).

It is important to note that NPO exhibited exceptional

performance with noise test function, especially quartic test

function (f9). To the best of our knowledge, no algorithm in

the literature has recorded the performance level achieved

in this study. On the other hand, some functions, such as

Matyas (f3) and Stepint (f14), proved to be difficult func-

tions since the flatness of the function did not provide the

algorithm any information to channel the search space

Table 4 Summarized

comparison results of NPO

versus other algorithms

Algorithm Results

U-N/U-S M-N/M-S All Tests

? - = ? - = ? - =

NPO versus PSO 14 0 1 14 2 5 28 2 6

NPO versus ABC 7 1 7 6 6 9 13 7 16

NPO versus FPA 9 1 5 5 3 13 14 4 18

NPO versus CMA-ES 6 1 8 7 4 10 13 5 18

NPO versus GWO 8 1 6 4 3 14 12 4 20

NPO versus FFA 10 1 4 9 5 7 19 6 11

Total 54 5 31 46 22 58 99 28 89

60% 5.5% 34.5% 36.5% 17.5% 46% 45.8% 13% 41.2%
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toward the best solutions. NPO, nonetheless, attained the

best solution for these two functions, hence proving its

efficacy in solving problems with limited information.

With proven efficiency of NPO, it also has some

shortcomings that should be investigated in future studies.

One drawback of NPO is its failure in solving several test

functions, especially those in the form of multimodal, such

as (f22; f25; f33 � f35). NPO failed in seeking the best solu-

tion for f35, which refers to a multimodal test function in

the used number of iterations, where it started rapidly at the

beginning of the search, but then the convergence became

very slow. Nevertheless, NPO attained a good position near

to the optimal solution for this test when number of itera-

tions have been increased. Figure 8 portrays the conver-

gence of NPO for f35:

As mentioned previously, NPO and the other algorithms

are swarm-based metaheuristics. Hence, they have been

evaluated within the same environment. A time-based

comparison, however, showed that NPO reached the opti-

mal solutions for most of the tests within shorter period of

time, in comparison to other algorithms. Figure 9 displays

the time-based comparison of single run for each test.

Table 5 Wilcoxon signed-rank

test
f n Versus PSO Versus ABC Versus FPA Versus GWO Versus CMA-ES Versus FFA

Z R Z R Z R Z R Z R Z R

f 1 - 2.705 d* - 4.782 c* - 4.782 c* - 2.993 c* - 4.782 c* - 4.782 c*

f 2 - 4.782 d* - 2.023 d* 0.000 b 0.000 b - 2.023 d* - 2.828 d*

f 3 - 4.782 d* - 4.286 d* - 4.782 d* - 4.782 d* 0.000 b - 4.782 d*

f 4 - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d*

f 5 - 4.782 d* 0.000 b 0.000 b 0.000 b 0.000 b - 4.782 d*

f 6 - 4.782 d* - 1.414 d 0.000 b - 4.264 d* - 1.414 d 0.000 b

f 7 - 4.782 d* - 2.460 d* - 1.414 c - 4.782 d* - 1.113 d - 3.197 d*

f 8 - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* 0.000 b - 4.782 d*

f 9 - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d*

f 10 - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d*

f 11 - 4.782 d* - 4.783 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d*

f 12 - 4.782 d* - 4.782 d* - 4.782 d* 0.000 b - 4.782 d* - 4.782 d*

f 13 - 4.782 d* - 4.782 d* - 4.782 d* 0.000 b 0.000 b 0.000 b

f 14 - 1.414 d 0.000 b 0.000 b 0.000 b - 1.414 d 0.000 b

f 15 - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d*

f 16 - 4.782 d* - 4.782 d* 0.000 b 0.000 b - 4.782 d* - 4.782 d*

f 17 - 4.782 d* 0.000 b 0.000 b 0.000 b - 4.762 d* - 4.782 d*

f 18 - 4.782 d* 0.000 b 0.000 b 0.000 b - 4.762 d* - 4.782 c*

f 19 - 1.820 d - 1.841 c* - 5.201 c* - 1.841 c - 1.003 d - 1.201 d

f 20 - 4.782 d* - 4.783 d* 0.000 b 0.000 b - 4.762 d* - 4.782 d*

f 21 - 4.741 c* - 4.782 c* - 4.782 d* - 4.165 c* - 2.023 c* - 4.782 c*

f 22 - 4.762 c* - 4.762 c* - 4.762 c* - 4.782 c* - 1.414 c* - 4.782 c*

f 23 - 3.445 d* - 0.086 d - 3.060 c* - 2.786 d* - 0.451 d 0.000 b

f 24 - 4.782 d* - 4.782 c* - 4.782 d* 0.000 b - 4.762 c* - 4.782 c*

f 25 - 4.782 d* - 4.782 c* - 4.782 d* - 3.898 c* - 4.782 c* - 4.782 c*

f 26 - 1.306 d - 3.445 c* - 4.782 c* - 3.980 c* - 3.980 c* - 4.782 c*

f 27 - 1.244 d - 2.651 c* - 4.762 c* - 3.939 d* - 4.268 c* 0.000 b

f 28 - 1.903 d - 4.268 c* - 4.762 c* - 4.268 c* - 1.947 d* - 4.703 c*

f 29 - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d* - 4.782 d*

f 30 - 4.782 d* 0.000 b 0.000 b 0.000 b - 4.782 c* - 4.782 d*

f 31 - 4.741 c* - 4.782 c* - 4.782 c* - 4.782 c* - 4.782 c* - 4.782 c*

f 32 - 4.659 c* - 5.477 c* - 5.477 c* - 5.477 c* - 4.268 d* 0.000 b

f 33 - 4.782 d* - 4.782 d* - 4.782 d* 0.000 b - 2.023 c* - 4.782 d*

f 34 - 1.841 c - 4.782 c* - 4.782 c* - 4.618 c* - 4.782 c* - 4.782 c*

f 35 - 4.083 d* - 4.782 c* - 4.350 c* - 4.762 c* - 0.652 c - 4.741 c*

f 36 - 4.782 d* - 4.762 d* 0.000 b 0.000 b - 4.782 d* - 4.782 d*

Bold values indicate the best results
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Figure 9 shows that the NPO has a superior performance in

terms of execution time in many test functions, such as

(f2 � f5; f7 � f20; f28 � f30; f36Þ. Meanwhile, the performance

of NPO appeared moderate for the other test functions.

3.6 Exploitation and exploration analysis

To analyze the two highly influential factors (exploration and

exploitation) of the metaheuristics, five commonly used

numerical optimization problems with different modality

were employed with 30 dimensions. These test functions are

Table 6 Results of the metaheuristics over Large-Scale Problems (D = 100)

f n Statistic PSO2011 ABC FPA GWO CMA-ES FFA NPO

f 8 Best 1334.055 1254.458 541.7490 7.1317E-08 1779.142 0.9161 0

Mean 1429.126 1365.845 987.7509 1.9303E-05 2658.035 23.0758 2.148E-12

S.D 54.767 84.4225 243.5670 3.4657E-05 586.7334 18.5865 0.04781

f 9 Best 664.939 2.0912 2.1086 1.6465E-04 0.0070 0.0113 7.32E-07

Mean 773.376 2.5277 5.1964 9.3399E-04 0.0142 0.0239 1.39E-05

S.D 108.421 0.3258 2.7691 4.3166E-04 0.0091 0.0062 1.28E-05

f 10 Best 81.7736 86.4876 23.9367 6.0793E-12 3.2603 0.8033 0

Mean 85.0544 89.1781 27.6855 1.1477E-08 4.0145 3.9197 0

S.D 2.7092 1.6063 2.4035 3.6298E-08 0.1613 4.8113 0

f 11 Best 4.335E?129 0.0049 1.4386E?49 1.3413E-37 82.0537 66.0143 0

Mean 6.860E?129 0.0110 3.1938E?65 9.9048E-37 98.4765 148.4295 0

S.D 9.423E?130 0.0097 8.5272E?65 5.4157E-37 7.3200 116.4210 0

f 12 Best 152314.109 0.0064 5835.941 1.6252E-64 3.1450 0.040309 0

Mean 159666.025 0.0117 7814.524 6.4274E63 5.1987 0.044081 0

S.D 7207.4705 0.0048 1593.364 1.1686E-62 1.3472 0.0032 0

f 13 Best 3233 0 513 0 0 0 0

Mean 3270.6 0 617.33 0 1.5333 0 0

S.D 48.726 0 56.049 0 1.5976 0 0

f 15 Best 72373.335 5.128E-09 2793.84 3.0859E-65 8.8075 1.3207 0

Mean 7825.9311 6.148E-08 4353.14 3.0494E-63 16.7818 3.2474 0

S.D 5514.437 1.147E-08 836.445 4.8647E-63 4.9145 1.2411 0

f 16 Best 0.120141 0.4537 0 0 0.5028 3.4214E-09 0

Mean 0.591568 1.5798 0 0 0.7173 1.3468E-04 0

S.D 0.442324 1.0513 0 0 0.1032 7.5581E-05 0

f 20 Best 0.14781 4.151E-06 0 0 0.0021 3.14E-08 0

Mean 0.23108 0.0024 0 0 0.0478 1.45E-07 0

S.D 0.08286 0.0050 0 0 0.447 1.86E-07 0

f 24 Best 5.533E?08 0.47845 15.3689 0.13323 0.0140 7.434E-05 0.8788

Mean 7.902E?08 0.44885 32366.04 0.23647 0.0295 9.956E-05 0.9922

S.D 1.436E?08 0.00474 59623.47 0.06456 0.0121 2.184E-05 0.0578

f 25 Best 1.718E?09 1.8745 2.499E?05 5.0365 0.4198 0.00285 8.3533

Mean 1.864E?09 2.8471 2.057E?06 6.0282 0.5233 0.00344 9.8193

S.D 1.347E?08 0.0576 2.215E?06 0.4857 0.0247 5.634E-04 0.28

f 29 Best 185.5875 0.0822 30.0075 6.0308E-38 0.1713 0.0552 0

Mean 204.521 0.1556 39.6843 5.5211E-36 0.2485 0.3184 0

S.D 9.0134 0.0601 5.0509 3.0247E-35 0.0436 0.2329 0

f 36 Best 0.03714 13.1517 0 0 0.0022 4.9966E-10 0

Mean 1.02581 16.6879 0 0 0.0161 1.1010E-08 0

S.D 0.57207 2.4709 0 0 0.0109 1.1926E-08 0
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(f11; f12; f16; f24; f36). This section focuses mainly on calcu-

lating diversity in swarm during iterations instead of running

the algorithm over certain number of independent runs and

averaging the results. Accordingly, we executed algorithm

once, as our preliminary experiments also evidenced

insignificant difference in results over multiple runs.

The exploitation has been calculated by using a counter

in three different parts, first part when all families are

initialized around their leader’s tent. While the second and

third parts when each time the Leadership operator is

executed. On the other hand, the exploration has been

calculated by using the same method, in three different

parts as well. First part when the leaders are initialized in

Table 7 Results of the metaheuristics over large-scale problems (D = 500)

f n Statistic PSO2011 ABC FPA GWO CMA-ES FFA NPO

f 8 Best 3.55412 7726.247 13357.241 1337.803 11606.348 115.5513 3.262E-105

Mean 4.77746 8094.705 4.323E?16 2035.742 19530.154 277.7533 189.1589

S.D 0.85447 246.1136 1.514E?16 3506.202 4430.996 170.7327 124.3142

f 9 Best 21895.22 9.5551 3945.361 0.0015 14.1004 1.3354 7.32E-07

Mean 23222.46 13.2630 4576.369 0.0034 19.9608 1.6052 1.39E-05

S.D 1034.118 4.3713 358.529 0.0012 4.1955 0.2452 1.28E-05

f 10 Best 90.0878 98.0309 32.087 32.3180 44.3891 78.0813 0

Mean 91.6079 98.2855 36.716 46.7162 46.0148 79.1870 0

S.D 1.07263 0.1744 3.2361 6.1147 0.2847 1.3015 0

f 11 Best – 2.5478 2646.036 2.3985E-18 INF INF 0

Mean – 2.2331 INF 2.2662E?102 INF INF 0

S.D – 0.4784 NaN 1.2387E?103 NaN NaN 0

f 12 Best 15160.206 17730.447 495913.721 3.4875E-31 5424.264 0.2541 0

Mean 19520.951 34161.687 709919.845 1.4785E-30 6255.894 0.6185 0

S.D 3517.773 10941.154 10100.475 2.6478E-30 432.9677 0.0561 0

f 13 Best 2.076E?07 8 4076 0 5841 16 0

Mean 4.753E?07 22.842 4471.00 0 6555.0214 17.00 0

S.D 3.544E?07 24.484 298.707 0 558.6245 1.00 0

f 15 Best 2.267E?06 0.00148 126351.566 9.5724E-31 32888.648 1880.0944 0

Mean 2.318E?06 0.02854 173852.407 2.7055E-30 38574.394 2248.810 0

S.D 5.125E?04 0.9453 22891.88 1.6336E-30 3363.985 581.7029 0

f 16 Best 0.03449 2.7839 0 0 5.7905 1.594E-04 0

Mean 0.27365 3.4535 0 0 6.0433 0.0011 0

S.D 0.14307 0.5038 0 0 0.1570 5.403E-04 0

f 20 Best 0.05649 199.0954 0 0 0.0060 1.8316e-08 0

Mean 0.17311 278.6552 0 0 0.1226 4.8136e-06 0

S.D 0.09765 61.7961 0 0 0.0918 5.6278e-06 0

f 24 Best 5.483E?09 4.6874 199170.663 0.70820 12.0199 8.4167 0.8788

Mean 5.734E?09 8.9965 12613.77 0.75102 13.5082 13.3083 0.9922

S.D 1.877E?08 2.9984 14376.24 0.02623 0.8086 3.6139 0.0578

f 25 Best 9.850E?09 39.9985 1.097E?07 44.4242 1765.485 160.9658 8.3533

Mean 1.104E?10 42.8541 3.525E?07 45.7044 12082.965 187.347 9.8193

S.D 7.341E?08 1.3147 2.387E?07 0.58574 8844.015 17.9665 0.28

f 29 Best 1118.486 104.5457 281.22 1.3988E-18 168.4668 20.0697 0

Mean 1136.983 112.5482 307.91 5.6327E-05 191.7240 32.3101 0

S.D 22.4322 5.4539 16.73 2.8410E-04 15.9773 5.4495 0

f 36 Best 0.006272 1434.661 0 0 4.477E-04 5.2875e-08 0

Mean 0.024489 1487.747 0 0 0.0221 0.1159 0

S.D 0.021632 54.4633 0 0 0.0183 0.2828 0
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Fig. 6 a–f Convergence curves for functions (f4; f12; f9; f16; f20; f36Þ
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Fig. 6 continued
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the initial meeting, while the second part during the fam-

ilies searching. Final part is when any leader updates his

own position inside the MRA. Table presents the best

objective function value found by NPO and the other

metaheuristics, exploration, and exploitation.

From Table 9, there is a dynamic problem nature-related

difference between the exploration and exploitation features

of NPO. The flexibility of this difference could be attributed

to two reasons: the first reason is the enhancing effect of

MRA on the searching process through guiding the normal

Sheikhs toward better positions once established; the second

reason is related to the process of checking for any family

with a better fitness than the Sheikh of the clan (Step 10 in the

pseudocode). This condition controls the algorithm and

decides whether a local search (leadership transition and

semicircular distribution—or exploitation) or a global search

(families searching—or exploration) is needed. Unlike the

other algorithms, the exploitation and exploration functions

are simultaneously executed in the NPO using different

governing equations.

4 Conclusion

Hard optimization problems are roughly defined as prob-

lems that are difficult to find the optimum problem solution

using any deterministic method within a ‘‘reasonable’’

time frame. These problems are satisfactorily solved using

metaheuristics. Metaheuristic is algorithms which have the

capability of solving a wide range of hard optimization

problems without necessarily adapting to each problem.

There are several issues faced by the metaheuristics, and

Fig. 7 Exploration and

exploitation of NPO

Fig. 8 Convergence curve for f35
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one of such issues is balancing the global search ability—

or exploration—with local search ability—or exploitation.

Another problem of metaheuristics is their dependence and

use of some control parameters whose values significantly

controls algorithmic searching process. Hence, there is a

need to tune these parameters for a better algorithmic

performance.

The major contribution of this study was the design and

implementation of a novel parameter-free multi-swarm

nature-inspired metaheuristic for unconstrained (normal

and large-scale) optimization problems. The proposed

Nomadic People Optimizer (NPO) depends on a new multi-

swarm approach and this is another contribution of this

study. NPO is inspired by the movement of nomads when

searching for the sources of food in the desert.

The Meeting Room Approach (MRA) is proposed for

two reasons. First, it represents the communication way

between the clans, while the second reason is to balance

between the exploration and the exploitation. MRA reflects

a multi-swarm cooperative scheme that is inspired from the

communication behavior of groups of peoples. The MRA

applies novel sharing of information between the leaders of

the swarms, where the leaders represent the local best

solutions. Additionally, NPO does not require any con-

trolling parameter as it requires only two structural

Table 9 Results of exploration

and exploitation
f n Measurements PSO ABC FPA GWO FA NPO

f 11 Solution 1.7985 1.30E-14 47493.2929 8.28E-41 0.27895 0

Exploration 35% 58% 85% 32% 83% 22%

Exploitation 65% 42% 15% 68% 17% 78%

f 12 Solution 1.2945 0 2.66E-52 0 0.0012864 0

Exploration 33% 59% 63% 68% 88% 46%

Exploitation 67% 41% 37% 32% 12% 54%

f 16 Solution 1.2293 0.020580523 0 0 2.86E-05 0

Exploration 36% 61% 60% 45% 92% 78%

Exploitation 67% 39% 40% 55% 08% 22%

f 24 Solution 8.8242 3.82E-16 1.3124 0.0065555 1.20E-05 0.008915

Exploration 40% 58% 59% 71% 86% 87%

Exploitation 60% 42% 41% 39% 14% 13%

f36 Solution 0.024484 5.68E-14 0 0 4.94E-10 0

Exploration 56% 72% 74% 76% 82% 71%

Exploitation 44% 28% 26% 24% 18% 29%
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parameters which are the number of clans or leaders, and

the number of families.

A set of test functions were combined in this paper. As

such, the employed set consisted of 36 benchmark func-

tions, which were divided into four groups (U-N, U-S,

M-N, and M-S). These test functions can be utilized to

evaluate the metaheuristics in terms of exploitation and

exploration, apart from avoiding the trapping in the local

optima. The results showed that the NPO exerted a superior

performance, in comparison to other six well-known

algorithms (PSO, ABC, GWO, FFA, CMA-ES, and FPA).

In quantitative scale, the proposed algorithm demonstrated

45.8% of optimal solution from the benchmark tests.

Additionally, the Wilcoxon signed-rank test, which is a

statistical ranking method, showed that the NPO has a

significant difference to other metaheuristics. The conver-

gence analysis confirmed that NPO possesses the ability to

seek the optimal solution in a rapid manner, mainly due to

the proposed local and global searches, aside from MRA

that controls the balance between them. On the other hand,

NPO has been evaluated based on 13 large-scale problems,

it had a superior performance against the other meta-

heuristics, meaning that NPO has the ability to handle the

problems with very large number of decision variables.

For future studies, the proposed NPO could be enhanced

to solve issues related to constraint optimization. In addi-

tion, it can be used to solve some optimization problems

related to machine learning, such as training the artificial

neural network (i.e., tuning the weights of the neural net-

works), and identifying the most relevant features in the

classification/clustering problems (i.e., feature selection

problem). Two more versions have been projected for

development, which are binary and multiobjective NPOs.
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