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 1 
  2 
Abstract 3 

  In this work, Valanis model parameters, and their variation with bolt preload, were determined for a bolted lap 4 

joint, which consisted in two steel plates held together by a metric 12 screw. For this purpose, a series of transitory non-5 

linear analyses were performed on the basis of a three dimensional finite element model of the bolted lap joint subjected to 6 

varying bolt preloads and tangential displacements.  Curve fitting of hysteresis cycles obtained from numerical simulations 7 

allowed determination of Valanis model parameters as well as assessment of bolt preload influence on these parameters. In 8 

addition, the present numerical simulations provided information about the evolution of the contact state from stick to slip 9 

regimes between the bolted plates, reflecting the non-linear behaviour of the joint.  Quasi-static tests at several preloads and 10 

tangential displacements conditions were conducted to validate Valanis model parameters previously obtained from 11 

numerical simulations. The present findings provided detailed information about the evolution of the aforementioned 12 

Valanis parameters with bolt preload. Thus, we confirmed that equivalent stiffness values corresponding to the macro-slip 13 

regime as well as the upper limit of the sticking regime (Et, and 0, respectively) are highly influenced by bolt preload 14 

levels. These results may prove useful to appropriately design bolted joints to be used under specific stiffness and damping 15 

criteria, and therefore reducing the vibration response of the joint. 16 

 17 
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1. Introduction 1 
 2 
 3 
Bolted lap joints represent an important component of many structural assemblies used in diverse fields, such as aerospace 4 

and automotive industries, or in civil engineering applications [1-3]. These joints are typically preloaded to a constant force 5 

value normally applied to the contact surface. The preload is provided by one or more bolts, and, during service, the joint is 6 

subjected to fluctuating forces or displacements tangential to the contact surface. The complex phenomenon produced 7 

between the contact surfaces of the joint depends on a high number of parameters, being friction coefficient, slip area, and 8 

contact pressure the most important [4]. 9 

 10 

Modelling of friction phenomena in lap joints may be dealt from two different points of view. On one hand, constitutive 11 

models may be used, explaining friction on a microscopic basis and relating applied stresses to strains produced. On the 12 

other hand, phenomenological models may describe the overall relationship between the friction force and the relative 13 

displacement between the contact surfaces. From a phenomenological point of view, bolted lap joints are described by 14 

force-displacement curves, which relate tangential forces on the contact surface to the tangential displacement produced 15 

between them [5,6]. If a cyclic tangential displacement to certain amplitude is imposed, the registered curve exhibits a 16 

distinct hysteresis cycle (Figure 1), where three regimes are clearly differentiated. Thus, when a joint is forced to a 17 

tangential displacement, dT, this firstly behaves in a linear-elastic fashion (Line A-B) since the tangential force on the 18 

contact surface, FT , is below the threshold of relative displacement. This initial behaviour is generally known as sticking.  19 

As the tangential displacement increases, a transition region can be observed, the micro-slip region (Line B-C), wherein the 20 

area of the contact surface that is slipping is gradually larger. Finally, increasing amplitudes of the tangential displacement 21 

provoke bolted lap joints enter into the macro-slip region (Line C-D), wherein the whole contact surface slips. Beyond that 22 

point, decreasing tangential displacements result in a sudden switch to a sticking state, reproducing the inverse of the 23 

aforementioned phenomenon (Line D-B'-C'-D') [4]. 24 

 25 

Several studies make use of the hysteresis cycle to determine the stiffness and damping behaviour of individual bolted lap 26 

joints to develop dynamic models of the joint within more complex assemblies. Bolted lap joints, when subjected to 27 

oscillating tangential forces or displacements, dissipate some energy, Ed, which is equivalent to the area enclosed by the 28 

hysteresis cycle (dashed line in Figure 1). This dissipated energy determines the global damping ability of assembled 29 

structures and limits the potential harmful effects of resonant vibrations. In addition, the equivalent stiffness, Keqv, of the 30 
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bolted joint, is determined as the ratio between the force and the maximum tangential displacement produced during the 1 

hysteresis cycle and coincides with the slope of line D-D' in Figure 1. 2 
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 10 

Fig. 1. Typical hysteresis cycle found for a bolted lap joint. 11 
 12 

Phenomenological models can be classified in three groups. In the first group, friction force is assumed to be a static 13 

function of the relative slip velocity between contact surfaces, being the Coulomb model the most representative. The 14 

second group embraces dynamic models, which are based on the evolution of internal state variables. The LuGre model 15 

belongs to this second category and was first published in 1995 [7]. Finally, the third group embraces hysteresis friction 16 

models, which stem from the elasticity theory to mainly describe energy dissipation and deformation in joints. The Valanis 17 

model [8-11] lies in this latter category and it was known and extensively used in the plasticity field. Gaul and Lenz 18 

employed the Valanis model to determine the non-linear behaviour of load transfer for a bolted joint, in both micro and 19 

macro-slip regimes, and then to simulate the response under cyclic and transitory loads [8,12]. Thus, they succeed in 20 

reproducing the experimental results of frictional behaviour of bolted joints. Equation 1 summarizes the Valanis model 21 

[8,11]: 22 
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Where E0 represents the stiffness in the sticking regime, Et describes the slope of the macro-slip regime, the  parameter 24 

controls the influence of micro-slip, so that high values imply little influence of this regime in joint behaviour, 0  25 

establishes the upper limit of the sticking regime, and the  parameter, which is defined by the following relationship 26 

between the former parameters (equation 2):   27 

(1) 
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A typical hysteresis cycle based on the Valanis model for a bolted lap joint is shown in Figure 2. 2 
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 11 
Fig. 2. Valanis model hysteresis cycle for a bolted lap joint 12 

 13 

In this work, Valanis model parameters were determined for a lap joint between two steel plates bolted by a metric 12 14 

screw. Analyses of the effects of different preload levels and maximum tangential displacements on the dissipated energy 15 

and equivalent stiffness were also conducted. These parameters were determined by fitting hysteresis cycles obtained by 16 

means of finite element modelling of the joints. Finite element models also allowed assessment of changes in the contact 17 

state of the joint as a function of tangential displacements and bolt preloads. The finite element model results were 18 

correlated and validated by experiments on a bolted lap joint subjected to varying tangential displacement amplitudes and 19 

bolt preloads. 20 

 21 
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2. Joint sample 1 
 2 
The bolted joint studied in this work corresponds to a bolted lap joint between two steel plates. The joint consists of two 3 

steel plates, as well as a M12 bolt, a not self-locking nut, and two washers (Fig. 3). The plates were obtained by means 4 

of drilling and milling processes, so that roughness ranged from Ra,min=1.69m and Ra,max=2.49m (average 5 

roughness Ra=1.85m) as measured by a portable profilometer (Mitutoyo SJ-201)  on contact surfaces. To analyze 6 

the behaviour of this joint, varying preload levels, which produced normal pressure onto the contact surface of the two 7 

plates, and cyclic tangential displacements were applied. Machining of the two plates was carried out so that the joint 8 

surface lied within the medium plane of the plates, thus minimizing bending stresses. Plates dimensions are shown in Fig. 9 

4, and their geometry was designed so that bending stresses could be avoided.  Specifically, the application of the 10 

axial force lies into the contact plane, as it is shown in Figure 6, thus minimizing bending.  The rest of the 11 

components had standard dimensions (Table 1). The diameter of the holes in plates was 13mm following DIN EN 12 

20273 [13] standard guidelines. This size gives enough space to accommodate bolt movement due to slipping. When the 13 

slippage limit is reached, the stiffness of the element is assumed to reach a high value, and therefore the bolted connection 14 

would be in a near-rigid state [14,15]. In this work, it is assumed that the displacement experienced by the bolted joint does 15 

not exceeds the clearance between the bolt and the hole, as it is common in many civil engineering and machine design 16 

applications. Nonetheless, other applications (i.e. aerospace field) use bolted joints with no clearance or even under press-17 

fit conditions [16, 17]. The characteristic material properties for each component are shown in Table 1, with Poisson 18 

coefficient = 0.3 and longitudinal elastic modulus E = 206 GPa [18, 19]. 19 

 20 

 21 

Table 1. Mechanical properties of the steel parts of the bolted joint 22 

Component Designation Material 
Standard 

 (Yielding stress) 
[N/mm2] 

 (Tensile strength)  
[N/mm2] 

 (Max. Elongation) 
[%] 

Plate S355 EN-10025 355 470 17 
Bolt DIN 631 8.8 DIN-ISO 898 640 800 12 
Nut DIN 934 6.8 DIN-ISO 898 480 640 8 
Washer DIN 126 6.8 DIN-ISO 898 480 640 8 
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Fig.3. Bolted lap joint 7 
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Fig. 4. Plate geometry and dimensions (mm). 20 

 21 

3. Experimental analysis   22 
 23 
While in some studies [20, 21] bolted joints are subjected to dynamic loads, often at the resonant frequency, in the present 24 

work quasi-static experiments were performed to characterize the joint behaviour based on their hysteresis cycles and later 25 

correlate them with a finite element model. The quasi-static characterization of bolted joints is a method previously used by 26 

other researchers [22, 23]. The main advantage of this methodology is that it closely mimics real-world operation 27 

conditions (force levels) for the bolted joint. The experimental testing design allowed easy and expedite characterization of 28 

the joint behaviour by means of equipment typically used in mechanical testing.  29 
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3.1. Equipment and instrumentation 1 

Experiments were carried out at Instituto Tecnologico de Aragon using a universal testing machine (Instron 8800; 2 

Norwood, MA; USA) with dynamic control, hydraulic grip jaws and a maximum force of 100kN. Data acquisition software 3 

recorded the applied force and the moving grip jaw displacement. 4 

 5 

The application of tightening torque on bolt was made by means of a dynamometric spanner of 30-160 Nm range. The 6 

preload force on the bolt was measured with an ALD-W-200 loading cell model (A.L. Trademark; Design Inc.), 0-10000 7 

daN range and 2.14 mV/V sensitivity, connected to a portable bridge of Wheatstone model P3 (Vishay Micro-8 

Measurements Trademark; Malvern, PA; USA) (Fig. 5)  9 

 10 

 11 

3.2. Assembly and loading conditions  12 

Initially, the plates were placed in the jaws, and they were properly aligned and focused. Then the rest of the components 13 

(bolt, loading cell, washer and nut) were placed by applying the tightening torque and registering the preload value in the 14 

bolt (Fig. 6).   15 
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Fig 5. Bolt preload measurement apparatus. 29 
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Fig 6. Experimental set-up. 14 

 15 

At the free end of the bolted joint, a periodic triangular signal (0.6 Hz) was applied to produce a selected displacement for 16 

10 cycles. A triangular signal was chosen to impose the selected displacements so that the bolted joint was subjected to 17 

tangential forces under conditions of constant displacement velocity. Thus, fluctuations between the stick-slip states were 18 

avoided. This experiment was repeated to three bolt preload levels and four amplitude displacements as shown in Table 2. 19 

Both the imposed displacements and tangential forces were recorded at a 60 Hz sampling frequency. The magnitude of 20 

bolt preload was related to yield strength by means of a  ratio: 21 

y

cl

F

F
  22 

where Fy is yield strength, and Fcl is the applied preload. Yield strength was the maximum force the bolt was able to 23 

withstand without suffering plastic deformation in the minor diameter section, As, which, in turn, was defined as 24 

[24]: 25 
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where d  is the metric diameter, and p represents the thread pitch. 1 

The applied preload was defined as follows [24]: 2 

bolt
cl Kd

T
F    3 

 4 

where Fcl is the initial preload (kN), T is the torque (Nm), dbolt is the nominal bolt diameter, and K is the torque 5 

coefficient defined as the term which depends on friction coefficients, lead and thread angles, as well as mean 6 

diameter of the bolt [25]. A typical value for the torque coefficient is 0.2 [25], however bolt lubrication significantly 7 

decreases the friction coefficient of the screw threads allowing higher preloads for the same torque, and therefore 8 

smaller torque coefficients, K [26]. In this work, the bolt was lubricated to reduce the scattering between bolt 9 

preload and the applied torque, thus obtaining a much more reliable load-torque correlation. Experimental 10 

measures carried out during this work confirmed K reached a value of 0.0954%, which is in good agreement with 11 

K values obtained in a previous work by Croccolo and colleagues [26].  12 

Bolt torque maxima were chosen so that the applied preload resulted in bolt preload levels equal to the =90% [24]). 13 

The remaining bolt torque values were selected so that the generated stress levels lie below the aforementioned 14 

value, reproducing different joint loosening situations during service. In our work, bolt preload was continuously 15 

measured through the whole test, confirming there were no significant variations in this parameter. 16 

 17 

 18 

Table 2. Imposed bolt preload and maximum tangential displacements used for experimental tests 19 

Test number  (%) 

ycl FF /  

Maximum tangential 
displacement imposed 

dT,max(mm) 
1A 57 ±0.10 
1B  ±0.14 
1C  ±0.18 
1D  ±0.22 
2A 77 ±0.10 
2B  ±0.14 
2C  ±0.18 
2D  ±0.22 
3A 90 ±0.10 
3B  ±0.14 
3C  ±0.18 
3D  ±0.22 

 20 

(5) 
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 1 

3.3. Measurements 2 

Temporal values corresponding to imposed displacements and force levels at the free end of the joint were registered for all 3 

the tests included in Table 2. As an example, typical temporal tangential displacements and forces records are shown in 4 

Figure 7. 5 
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Fig. 7: Temporal displacement and force records corresponding to test 1A 6 
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 1 

The temporal displacement and force records allowed obtaining hysteresis cycles shown in Fig. 8. 2 
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Fig.  8: Hysteresis cycles obtained from temporal force-displacement responses 3 



 13

 1 

Finally, dissipated energy and equivalent stiffness parameters were calculated from hysteresis cycles. The first parameter, it 2 

was obtained by means of calculations of the area enclosed by the hysteresis cycle and the second one from the maximum 3 

force and displacement values. 4 

 5 

3.4. Results 6 

To facilitate the analysis of the experimental dissipated energy and equivalent stiffness per cycle, their variation with 7 

preload levels and maximum tangential displacement imposed was plotted (Fig. 9).  8 
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Fig. 9. Response surfaces corresponding to experimental dissipated energy and equivalent stiffness for the bolted joint 9 
 10 

It was observed that increasing amplitudes of the imposed displacement resulted in increasingly higher energies dissipated 11 

by the joint, while the stiffness decreased. As regards to bolt preload, higher preloads caused an increase in the joint 12 

stiffness, and its effect on the dissipated energy was dependent of the imposed displacement. Thus, the dissipated energy 13 

decreased at higher preloads for the smaller displacements. A change in this trend was observed over 0.18 mm 14 

displacements so that the dissipated energy grew with preload for displacements equal to 0.22 mm or higher.   15 

 16 

4. Finite Element Model (FEM) analysis  17 
 18 
3D finite element models allow reproduction and characterization of bolted joints behaviour [27-29]. Finite element 19 

models, however, are not suitable for dynamic analysis of assemblies including several joints because of too long 20 

calculation times. Nevertheless, it is possible to use a quasi-static model to obtain the parameters of a simplified model of 21 

the joint, such as those of the Valanis model. In this work, the main purpose of using FEM simulation was to avoid the 22 



 14

performance of too many experiments to different preload levels. The FEM provided force-displacement curves for the 1 

simulated experiments to selected preload levels, which after proper curve fitting analysis, allowed finding the Valanis 2 

model parameters and their relationship to preload. Thus, it was possible to validate the FEM model by comparison with 3 

the parameters (dissipated energy and equivalent stiffness) determined from experiments performed to different preload 4 

levels. 5 

 6 

4.1. Model  7 
 8 

A non-linear model of the bolted joint behaviour was developed using ANSYS software. Joint components were meshed 9 

using 8 nodes brick elements (SOLID185) [30], with a minimum size of 2.5 mm, giving a model of 7583 elements and 10 

1071 nodes (see Fig. 10). Mesh size was chosen based on the results of a convergence study performed in one of our 11 

previous works [29]. 12 

To model the interaction between components, surface-surface elements (CONTA174 and TARGE170) were employed 13 

[31]. The normal interaction between surfaces was described by a penalization method, which allowed surface penetrations 14 

of one body into the other controlled by the penalty parameter, the so-called normal contact stiffness or contact stiffness. 15 

As for the tangential direction, a Coulomb type friction model established the difference between the sticking and sliding 16 

regimes of the joint. In this model, during the sticking-type behaviour shear forces were transmitted without sliding 17 

between surfaces, while not exceeding a shear force limit value. Once this limit was exceeded, sliding-type behaviour was 18 

produced between both surfaces. Finally, bolt preloads were applied by means of PRETS179 type elements [30], which 19 

served to define a pre-stressed section in previously meshed structures. 20 

Details of the finite element model used in the simulation of the joint have been reported elsewhere [29], including a 21 

convergence study to determine the appropriate mesh size, as well as the contact parameters. Boundary conditions were 22 

modelled introducing an additional pilot node at the lateral sides of the plates, so that all the forces and displacements 23 

applied to this node were transferred to the corresponding lateral side. Specific boundary conditions were fixed 24 

displacement on one side, and time-periodic displacement on the other. This definition facilitates post-processing since 25 

results (reactions and displacements) are referred to a single node and the analysis of energy dissipation in the hysteretic 26 

loop is possible by means of force-displacement curves. In summary, the FEM model allowed determination of 27 

characteristic force-displacement curves of the joint and calculation of dissipated energy and equivalent stiffness as a 28 

function of bolt preloads and maximum tangential displacements imposed to the joint. Numerical results were correlated 29 



 15

with experimental findings, thus validating the FEM model used. Likewise, the evolution of the contact state has been 1 

studied as a function of the tangential displacement imposed to the joint, as well as the applied bolt preload. 2 

  3 

 4 
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 14 

 15 

Fig. 10. Meshing of FEM. Parts, loads and boundary conditions are shown 16 

 17 
 18 

4.2. Results and correlation with experimental data 19 
 20 

A total of twenty simulations with ANSYS were carried out [29], with four preload levels (=43%, 64%, 85% and 21 

106%), five displacement amplitudes (0.05mm, 0.10mm, 0.15mm, 0.20mm, and0.25mm) and a static friction 22 

coefficient of 0.22. In a previous work [29], the contact parameters of the numerical model, including the static friction 23 

coefficient, were found by correlation with the experimental curve for the bolted joint subjected to a monotonic load. The 24 

value of static friction coefficient of 0.22 obtained in the aforementioned work [29] is in agreement with values 25 

proposed by other researchers [32, 33]. Response surfaces corresponding to dissipated energy and equivalent stiffness 26 

obtained by means of the finite element model are included in Figure 11. It can be observed that the influence of preload 27 

and maximum displacement amplitude on the aforementioned parameters was similar to that registered in experimental 28 

tests.  29 

 30 
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Fig. 11. Response surfaces corresponding to dissipated energy and equivalent stiffness obtained from simulations 1 
To correlate the experimental results with numerical results, the equations of the response surfaces that best fitted the 2 

numerical simulations were obtained, applying the Response Surface Methodology (RSM) supported by OPTIMUS 3 

software [34,35], and they were used to determine the dissipated energy and equivalent stiffness under the experimental 4 

conditions. Correlation results were characterized by maxima errors of about 7 % for the previous parameters, as shown in 5 

Table 3.  6 

Table: 3. Numerical-experimental correlation 7 
 (%) Maximun tangential 

displacement imposed 
dT,max (mm) 

Energy dissipated per cycle 
E d (Nm) 

 Equivalent stiffness 
Keqv (N/m) 

  Test RSM Error %  Test RSM Error % 
57 ±0.10 0.923 0.857 -7.2  7.32E+07 7.50E+07 2.5 
 ±0.14 1.807 1.675 -7.3  6.11E+07 6.12E+07 0.0 
 ±0.18 2.775 2.712 -2.3  5.28E+07 5.32E+07 0.6 
 ±0.22 4.099 3.928 -4.2  4.57E+07 4.79E+07 4.9 
77 ±0.10 0.702 0.659 -6.1  9.57E+07 9.22E+07 -3.6 
 ±0.14 1.74 1.65 -5.2  7.92E+07 7.51E+07 -5.2 
 ±0.18 2.981 2.801 -6.0  6.72E+07 6.47E+07 -3.8 
 ±0.22 4.138 4.137 0.0  5.84E+07 5.80E+07 -0.8 
90 ±0.10 0.516 0.546 5.8  1.08E+08 1.01E+08 -6.5 
 ±0.14 1.618 1.637 1.2  8.76E+07 8.25E+07 -5.9 
 ±0.18 3.018 2.912 -3.5  7.46E+07 7.07E+07 -5.3 
 ±0.22 4.317 4.296 -0.5  6.58E+07 6.34E+07 -3.7 

 8 

 9 

4.3. Evolution of contact condition with tangential displacement 10 

In the initial force-displacement curve obtained by simulation of the joint for a =43%  and varying tangential 11 

displacement between 0 and a maximum value of 0.2mm, the three regimes previously mentioned, sticking, micro-slip and 12 

macro-slip, are clearly differentiated and define the non-linear behaviour of the joint (see Fig. 12). 13 

 14 
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Fig.12. Initial force-displacement curve obtained by simulation 2 

 3 

Changes in the force-displacement relationship and the non-linear behaviour are explained by contact state images shown 4 

in Figure 13. It can be seen how for the displacement values indicated in Figure 12 the contact state of the interaction 5 

surface of the two steel plates gradually evolved from the sticking regime to micro-slip, first, and macro-slip, then, states. 6 

As observed in the first image of Fig. 13, the initial bolt preload generated a contact surface where the contact condition 7 

was mostly stick type, situation that holds for displacements lower than dT=0.025mm (stick behaviour). As the 8 

displacement increased, (displacements longer than dT =0.025mm) the area affected by a stick type contact decreased, 9 

whereas the surface with slip type increased (micro-slip behaviour). Finally, a change was produced so that the whole 10 

contact surface turned into slip type contact (macro-slip behaviour) for displacements longer than dT =0.065mm. 11 

 12 
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 1 

Fig. 13. Evolution of contact condition throughout the range of displacement imposed. 2 

(Dark grey: stick type contact. Light grey: slip type contact) 3 

 4 

 5 

 6 

 4.4. Influence of bolt preload on the contact condition 7 

Force-displacement curves were also generated by the present finite element simulations for several initial bolt preloads 8 

(=43%, 64%, 85%, and 106%) and tangential displacements (0 – 0.05 mm). These curves presented a similar behaviour 9 

for the lower displacements, but they noticeably changed as the imposed displacement increased (see Fig. 14).  10 



 19

The initial bolt preload is a fundamental parameter in the joint behaviour, as it determines the tangential force limit between 1 

sticking and slipping regimes on the contact surface. The effect of different initial bolt preloads on the evolution of the 2 

contact state of the joint with the tangential displacements imposed is shown in Figure 15.  3 
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Fig. 14. Initial force-displacement curves obtained by finite element simulations for varying bolt preloads. 7 

 8 

Displacements lower than 0.025mm did provoke no significant changes in the contact state regardless of the bolt preload. 9 

However, the contact state at maxima tangential displacements was significantly different depending on the bolt preload. 10 

Thus, the contact surface in the slip regime became smaller as the bolt preload increased.  Whereas at the lowest bolt 11 

preload an evolution of the contact state with the displacement amplitude took place, high bolt preloads kept the contact 12 

state practically constant. This behaviour can be observed in the curves plotted in Figure 14, where the force-displacement 13 

relationship is basically linear and the joint lied into the stick regime for the highest bolt preload. At the lowest bolt 14 

preload, however, the force-displacement curve was clearly non-linear, exhibiting both stick and micro slip regions. 15 

 16 

 17 
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 1 

Fig.15. Influence of bolt preload on contact condition evolution (a) =43%, (b) =43%, (c) =43%, and (d) =43% 2 

(Dark grey: stick type contact. Light grey: slip type contact) 3 

 4 
 5 
5. Valanis model  6 
 7 
5.1. Determination of Valanis model parameters obtained from FEM simulations 8 
  9 
Curve fitting of the simulated hysteresis cycles (see Fig. 16) served to determine the four Valanis model parameters (see 10 

Fig. 17). Analysis of the results shown in Figure 17 revealed the bolt preload had influence on the Valanis model 11 

parameters. Thus, bolt preload had little influence in the stiffness of the sticking regime, which corresponds to E0. On the 12 

contrary, the stiffness of the macro-slip regime, which corresponds to Et, was highly influenced by the preload level. 0 13 

linearly increased for higher bolt preloads, whereas  was almost constant (0.8) for the bolt preload range explored.  14 
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To quantify the Valanis model parameters dependence on the bolt preload, linear regression equations were generated for 1 

the four Valanis model parameters (see Figure 17).  2 
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Fig. 16. Simulated hysteresis cycles () and Valanis model hysteresis cycles (), at different preload levels 3 
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Fig. 17. Linear regression fits () for Valanis model parameters () at different bolt preloads. 6 
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5.2. Validation of Valanis model parameters obtained from FEM simulations 1 

To validate the results of FEM simulations of the bolted joint, the Valanis model parameters (and their associated linear 2 

regression equations) corresponding to simulations to different bolt preloads (=43%, 64%, 85% and 106%) were used. 3 

The linear regression equations allowed determination of Valanis model parameters for the present experimental bolt 4 

preload conditions. Dissipated energy and equivalent stiffness found by means of the analytic Valanis model were 5 

confirmed to accurately reproduce the experimental data obtained for the bolted joint (Table 4). 6 

 7 
 8 

Table: 4. Valanis model-experimental correlation 9 
 (%) Maximun tangential 

displacement imposed 
dT,max (mm) 

Energy dissipated per cycle 
E d (Nm) 

 Equivalent stiffness 
Keqv (N/m) 

  Test Valanis 
model 

Error %  Test Valanis 
model 

Error % 

57 ±0.10 0.923 0.851 -7.8  7.32E+07 7.63E+07 4.2 
 ±0.14 1.807 1.728 -4.4  6.11E+07 6.15E+07 0.7 
 ±0.18 2.775 2.586 -6.8  5.28E+07 5.34E+07 1.1 
 ±0.22 4.099 4.012 -2.1  4.57E+07 4.81E+07 5.3 

77 ±0.10 0.702 0.648 -7.7  9.57E+07 9.16E+07 -4.3 
 ±0.14 1.74 1.679 -3.5  7.92E+07 7.32E+07 -7.6 
 ±0.18 2.981 2.764 -7.3  6.72E+07 6.28E+07 -6.5 
 ±0.22 4.138 4.012 -3.0  5.84E+07 5.61E+07 -3.9 

90 ±0.10 0.516 0.557 7.9  1.08E+08 1.02E+08 -5.6 
 ±0.14 1.618 1.722 6.4  8.76E+07 8.12E+07 -7.3 
 ±0.18 3.018 2.963 -1.8  7.46E+07 6.93E+07 -7.1 
 ±0.22 4.317 4.217 -2.3  6.58E+07 6.16E+07 -6.4 

 10 
 11 
 12 
 13 

6. Conclusions  14 
 15 
In this work, an experimental study of the quasi-static frictional behaviour of a bolted lap joint between two steel plates was 16 

carried out for different preload levels and imposed tangential displacements, giving a total of twelve experiments. 17 

Dissipated energy and equivalent stiffness per cycle were also obtained from the force-displacement hysteresis cycles of the 18 

joint. These results were correlated with numerical simulations, proving the suitability of the finite element model in 19 

reproducing the frictional behaviour of the joint. This model was later used to determine the Valanis model parameters of 20 

the bolted joint studied. In addition, the numerical model served to better understand the non-linear behaviour of the joint, 21 

based on the contact surface states between the two steel plates as a function of the tangential displacement and the bolt 22 

preload of the joint. Finally, the Valanis model of the bolted lap joint was validated by comparison of the simulation and 23 

experimental results. 24 



 23

The findings of this study confirmed that the present bolted lap joint exhibited a non-linear behaviour, which was 1 

dependent of preload levels and tangential displacement amplitudes. Variations in preload levels and tangential 2 

displacements were also confirmed to determine the evolution of the contact state between stick, micro-slip and macro-slip 3 

regimes for the contact surfaces of the bolted plates.   4 

We observed that the bolted joint presented a hysteretic force-displacement behaviour, thus validating the use of the 5 

Valanis analytical model. As for the influence of bolt preload levels, we observed that the equivalent stiffness of the joint 6 

increased with increasing preloads. The variation of the dissipated energy with bolt preload, however, was dependent of the 7 

magnitude of the imposed tangential displacement. Thus, for low tangential displacements, gradually higher bolt preloads 8 

implied decreasing dissipated energies, whereas this trend was the opposite for high tangential displacements as dissipated 9 

energies increased with increasing preload levels. 10 

The use of a 3D finite element model of the bolted joint allowed us to find appropriate Valanis model parameters, as 11 

validated by experimental results. These numerical results also provided the evolution of the aforementioned Valanis 12 

parameters with bolt preload. In this sense, we confirmed that equivalent stiffness values corresponding to the macro-slip 13 

regime as well as the upper limit of the sticking regime (i.e. Et, and 0) are highly influenced by bolt preload levels. These 14 

results may prove useful in appropriate designs of the bolted joint under stiffness and damping criteria, thus limiting the 15 

vibration response of the joint. 16 

 17 
 18 
 19 
 20 
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