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Abstract. In this study we analyzed the sensitivity of four drought indices to precipitation (P) and 13 

reference evapotranspiration (ETo) inputs. The four drought indices are the Palmer Drought Severity 14 

Index (PDSI), the Reconnaissance Drought Index (RDI), the Standardized Precipitation 15 

Evapotranspiration Index (SPEI) and the Standardized Palmer Drought Index (SPDI). The analysis 16 

uses long-term simulated series with varying averages and variances, as well as global observational 17 

data to assess the sensitivity to real climatic conditions in different regions of the World. The results 18 

show differences in the sensitivity to ETo and P among the four drought indices. The PDSI shows 19 

the lowest sensitivity to variation in their climate inputs, probably as a consequence of the 20 

standardization procedure of soil water budget anomalies. The RDI is only sensitive to the variance 21 

but not to the average of P and ETo. The SPEI shows the largest sensitivity to ETo variation, with 22 

clear geographic patterns mainly controlled by aridity. The low sensitivity of the PDSI to ETo makes 23 

the PDSI perhaps less apt as the suitable drought index in applications in which the changes in ETo 24 

are most relevant. On the contrary, the SPEI shows equal sensitivity to P and ETo. It works as a 25 

perfect supply and demand system modulated by the average and standard deviation of each series 26 

and combines the sensitivity of the series to changes in magnitude and variance. Our results are a 27 

robust assessment of the sensitivity of drought indices to P and ETo variation, and provide advice on 28 

the use of drought indices to detect climate change impacts on drought severity under a wide variety 29 

of climatic conditions. 30 



2 
 

 31 

Key-words: Palmer Drought Severity Index, Standardized Precipitation Evapotranspiration Index, 32 

Reconnaissance Drought Index, Standardized Palmer Drought Index, evaporation, global warming. 33 

 34 

1. Introduction 35 

Determining the effect of climate change on drought severity is difficult due to the lack of long-term 36 

series and accurate measurements of streamflows, soil moisture, lake levels, etc. This situation is 37 

made worse by the effects of water management and land transformation on these series, making a 38 

separation of a climatic and antrophogenic signal difficult. For this reason, the assessments of 39 

climate warming impacts on drought trends at the global scale have been based on climatic drought 40 

indices (e.g., Sheffield et al., 2012; Dai, 2013; Van der Schrier et al., 2013; Beguería et al., 2014), 41 

which can be computed for the entire world given the availability of global climate data. These 42 

indices are calculated from time series of precipitation (P) and reference evapotranspiration (ETo), 43 

and in general they are good proxies to determine drought conditions in a variety of environmental, 44 

hydrological and agricultural systems (Vicente-Serrano et al., 2012). 45 

The results of global studies analyzing the effect of warming processes on drought severity differ in 46 

the magnitude of the drought trends and in their spatial patterns as a consequence of differences in 47 

the forcing precipitation data sets used (Trenberth et al., 2014), the models used to estimate ETo and 48 

the meteorological data sets used to calculate ETo. Sheffield et al. (2012) analyzed, at the global 49 

scale, the influence of using a simple empirical temperature-based formulation and a more physical 50 

model, based on several meteorological variables, to estimate ETo. They showed that, globally 51 

averaged, differences in the variability and change of drought indices may relate to the 52 

parameterization used to estimate ETo. Nevertheless, strong differences in the magnitude of ETo 53 

changes may be obtained using different methods to estimate ETo (e.g., Donohue et al., 2010; 54 

Vicente-Serrano et al., 2014a, van der Schrier et al. 2013).  55 
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These observations pose the question to the sensitivity of the different indices to variations in P and 56 

ETo; a matter which has seen only limited attention in the scientific literature A few studies based on 57 

the Palmer Drought Severity Index (PDSI) showed contradictory or opposite results. Guttman (1991) 58 

analysed the sensitivity of the Palmer Drought Hydrological Index (similar but slightly simpler than 59 

the PDSI) to P and ETo in USA, and found that the effect of temperature anomalies (used to obtain 60 

ETo) are insignificant compared to the effect of precipitation anomalies. On the contrary, Hu and 61 

Willson (2000) analyzed the sensitivity of the PDSI in central United States and showed that the 62 

PDSI can be equally affected by temperature and precipitation, when both have similar magnitudes 63 

of anomalies.  64 

The Standardized Precipitation Index (SPI) (McKee et al., 1993) is put forward by the World 65 

Meteorological Organization (WMO) as universal drought index (Hayes et al., 2011; WMO, 2012). 66 

Strong points favoring the use of the SPI are its capacity to be calculated on different time-scales to 67 

adapt to the varied response times of typical hydrological variables to precipitation deficits. It allows 68 

detecting different drought types that affect different systems and regions. Although the SPI has 69 

shown to be useful for drought monitoring and early warning (e.g., Hayes et al., 1999), deficiencies 70 

have also been noticed related to its inability to detect drought conditions determined not by a lack of 71 

precipitation but by a higher than normal atmospheric evaporative demand. This situation may be 72 

very relevant under extreme heat waves (Beguería et al., 2014). For climate change studies, the 73 

inability of the SPI to capture an increased evaporative demand related to global warming is 74 

problematic as well (Dai, 2013; Beguería et al., 2014; Cook et al., 2014). For this reason, studies on 75 

recent drought trends (Sheffield et al., 2012; Vicente-Serrano et al., 2014b) and drought scenarios 76 

under future climate change projections (e.g., Hoerling et al., 2012; Cook et al., 2014) are based on 77 

drought indices that consider not only precipitation but also the atmospheric evaporative demand. 78 

Using these indices, Cook et al. (2014)  showed that increased ETo not only intensifies drying in 79 
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areas where precipitation is already reduced, it also drives areas into drought that would otherwise 80 

experience little drying or even wetting from precipitation trends alone.  81 

In this study we analyze the relative contribution of variations in P and ETo to the spatial and 82 

temporal variability of four drought indices that make use of both variables in their calculation: (i) 83 

the self calibrated Palmer Drought Severity Index (PDSI) (Wells et al., 2004); (ii) the 84 

Reconnaissance Drought Index (RDI) (Tsakiris et al., 2007); (iii) The Standardized Precipitation 85 

Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010a); and (iv) the Standardized Palmer 86 

Drought Index (SPDI) (Ma et al., 2014). The analysis includes a theoretical assessment using long-87 

term simulated series under different average and variance constraints for both P and ETo, and a 88 

global study based on gridded datasets and instrumental series from meteorological stations. The 89 

motivation to include these four indices is that they all are based on a combination of P and ETo 90 

which we think is more realistic than using only P. Temporal agreement between hydrological and 91 

climatic drought indices using ETo in their formulations is strong even considering different climate 92 

conditions (Lopez-Moreno et al., 2013; Lorenzo-Lacruz et al., 2013; Haslinger et al., 2014; Törnros 93 

and Menzel, 2014). In addition, the relationship of these indices with vegetation growth and activity, 94 

both highly determined by soil water availability, is quite strong (Orwing and Abrams, 1997; 95 

Vicente-Serrano et al., 2013; Ivits et al., 2014). 96 

 97 

2. Methods 98 

2.1. Drought indices 99 

a) The Palmer Drought Severity Index 100 

The PDSI (Palmer, 1965; Karl, 1983 and 1986; Alley, 1984) enables measuring both wetness 101 

(positive values) and dryness (negative values), based on the supply and demand concepts of the 102 

water balance equation, and thus incorporates prior precipitation, moisture supply, runoff, and 103 

evaporation demand at the surface level. Palmer (1965) used data from a few locations in the 104 
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American mid-west to standardize the index, which restricts its application around the world (see 105 

Akimremi et al., 1996; Guttman et al., 1992; Heim, 2002). This problem was solved by the self-106 

calibrated PDSI (Wells et al., 2004), which calibrates the PDSI using data specifically suitable for 107 

each location, which makes it more spatially comparable. In this study we use the self-calibrated 108 

version of the PDSI.  There is a number of studies that have revised the advantages and limitations of 109 

the PDSI for drought analysis and monitoring. On the positive side, it allows to measure both 110 

wetness (positive values) and dryness (negative values), based on the supply and demand concepts of 111 

the water balance equation, and thus incorporates prior precipitation, moisture supply, runoff and 112 

evaporation demand at the surface level (Karl, 1983 and 1986; Alley, 1984). In addition to the above 113 

mentioned problems of spatial comparability, other different issues and deficiencies in the use of the 114 

PDSI for drought quantification and monitoring have been widely reviewed. They are related to its 115 

sensitivity to the soil water field capacity (Karl, 1986; Weber and Nkemdirim, 1998) and its lack of 116 

adaptation to the intrinsic multi‐scalar nature of drought (Vicente-Serrano et al., 2011). Mishra and 117 

Singh (2010) provided a revision of the advantages and limitations of different drought indices, and 118 

they also stressed the limitations of the PDSI related to runoff underestimation and slow response to 119 

developing and diminishing droughts. 120 

 121 

b) The Reconnaissance Drought Index 122 

The RDI (Tsakiris and Vangelis, 2005) is calculated with P and ETo and is based on the approach 123 

similar to calculate the aridity index (AI); i.e., as the quotient between P and ETo (UNESCO, 1979),  124 

which can be computed at different time-scales. This quotient is standardized according to the mean 125 

and standard deviation of the series, assuming that P/ETo follows a log-normal distribution. 126 

Interpretation of the RDI is similar to that of the SPI. The RDI has been used to assess drought 127 

variability and trends in some regions (e.g., Khalili et al., 2011; Zarch et al., 2012; Baninahd and 128 

Khalili, 2013; Vangelis et al., 2013). There are not studies that have analysed the advantages and 129 
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shortcomings of the RDI, but among the main theoretical limitations of this drought index it is 130 

highlighted that gives no valid values when ETo is equal to 0, which is very common in cold regions 131 

in winter, mainly when ETo is calculated using empirically temperature-based methods.  132 

 133 

c) The Standardized Precipitation Evapotranspiration Index  134 

Vicente-Serrano et al. (2010a, 2010b, 2011, 2012) and Beguería et al. (2014) provided complete 135 

descriptions of the theory behind the SPEI, the computational details, and comparisons with other 136 

popular drought indicators such as the PDSI and the SPI. The SPEI is based on a monthly climatic 137 

water balance (P-ETo), which is adjusted using a 3–parameter log–logistic distribution. The values 138 

are accumulated at different time scales and converted to standard deviations with respect to average 139 

values. Some authors have criticized the SPEI in relation to the PDSI arguing that the SPEI does not 140 

represent soil water content (Dai, 2011; Joetzjer, 2014) but  the aim of the SPEI is to represent 141 

departures in climatological drought, the balance between the water availability and the atmospheric 142 

water demand, and is therefore slightly different from the drought índices that include a simplified 143 

soil moisture budget which relate their index to the latter quantity (see further discussion in Beguería 144 

et al., 2014). 145 

 146 

d) The Standardized Palmer Drought Index  147 

Recently, Ma et al. (2014) developed a drought index based on the mixture of the supply and demand 148 

concept of the PDSI while having the multi-scalar and statistical nature of the SPI and SPEI. The 149 

SPDI is based on a moisture departure used to obtain the PDSI and a probabilistic approach. 150 

Moisture departure is the difference between actual precipitation and a reference precipitation, which 151 

Palmer (1965) referred to as ‘Climatically Appropriate For Existing Conditions’ (CAFEC). The 152 

CAFEC precipitation is analogous to a simple water balance where precipitation is equal to ETo plus 153 

runoff, plus or minus any change in soil moisture storage (Alley, 1984). 154 
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Moisture departure is transformed to a standard normal variable, with mean equal to 0 and standard 155 

deviation equal to 1, fitting the observed moisture departures to a General Extreme Value 156 

distribution. Authors argued advantages of the SPDI with respect to (i) the PDSI because it can be 157 

calculated on different time-scales, and (ii) to the SPEI since more spatially uniform response to P 158 

and ETo variations can be achieved. Ma et al. (2014) argued that SPEI responds differently to 159 

temperature and precipitation variations for diverse climatic conditions, and indicated that this would 160 

challenge the spatial consistency and comparability of the SPEI. 161 

 162 

2.2. Data sets 163 

To analyze the sensitivity of the four drought indices to P and ETo we used different data sources. 164 

One is random surrogate series for P and ETo series corresponding to different average monthly 165 

magnitude (i.e. 20, 50, 75, 100, 150, 200 and 250 mm month
-1

) and three levels of standard deviation 166 

(i.e. 10%, 25% and 50% of the average of the series) for each P and ETo averages. Following a 167 

simple Monte Carlo simulation, 100-year random series were generated independently from a normal 168 

distribution and a white noise process, which means serially uncorrelated random variables. The 169 

mean of the series were the seven monthly magnitudes indicated above and the three standard 170 

deviation levels of the given magnitude. We generated 21 series (i.e. 7 different average magnitudes 171 

x 3 different standard deviations) of P and ETo, and combined them as inputs to calculate the four 172 

drought indices. Figure 1.A shows an example with the pdfs of simulated series corresponding to 173 

different average monthly P magnitudes under three standard deviations. Figure 1.B shows an 174 

example of 100 years evolution of simulated monthly precipitation with a monthly average of 100 175 

mm and three different standard deviations. A total of 441 combinations between the simulated P and 176 

ETo series were used to calculate 100 years of drought indices. These conditions cover a wide range 177 

of P and ETo regimes worldwide. 178 
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The second source of data are the global P and ETo data from the Climatic Research Unit 179 

(CRU) TS3.21 dataset (Harris et al., 2013, http://badc.nerc.ac.uk/; last accessed 1 September 2014), 180 

which has a spatial resolution of 0.5° and covers the period 1901−2011. ETo in the TS3.21 dataset is 181 

obtained using the FAO-56 Penman-Monteith equation (Allen et al., 1998). In this study we focused 182 

on the period 1950-2011 to avoid that low data availability in large regions of the world for the first 183 

half of the twentieth century affected the obtained results. The potential soil moisture storage 184 

capacity dataset is taken from the Food and Agriculture Organization digital soil map of the world 185 

(FAO, 2003) and regridded from 5' to 0.5º resolution by taking the water holding capacity of the 186 

most dominant soil type in the aggregated grid.  187 

Simultaneosly, we used data from meteorological observatories recorded in world regions 188 

characterized by different climate conditions. Observed data was obtained from the Global Historical 189 

Climatology Network (GHCN-Monthly) database (http://www.ncdc.noaa.gov/oa/climate/ghcn-190 

monthly/; last accessed 1 September 2014). Given availability limitations for some of the variables 191 

needed to calculate ETo using the Penman-Monteith method (wind speed, sunshine duration and 192 

relative humidity), we used mean temperature and estimated ETo using the Thornthwaite equation 193 

(Thornthwaite, 1948). Because of the only dependence of this parameterization on temperature, this 194 

parameterization could affect drought trends (Sheffield et al., 2012). However, it does not effect on 195 

the sensitivity analysis applied in this study since only the magnitude and variance of ETo plays a 196 

role on this analysis, and the average magnitude and variance of Thornthwaite and Penman-Monteith 197 

ETo are similar at the global scale (van der Schrier et al., 2011; Sheffield et al., 2012).. The stations 198 

used for this analysis correspond to thirty-four observatories around the World for the period 1901-199 

2007 of P and mean temperature data, having less than 5% of missing gaps. These observatories 200 

represent regions whose climates are classified as equatorial (Manaus and Quixeramobim) tropical 201 

(Tampa, Sao Paulo, Seychelles and Curitiba), monsoon (Indore, Calcutta, Bangkok, etc.), 202 

Mediterranean (Valencia, Kimberley and Tripoli), semiarid (Albuquerque, Lahore and Saint-Louis), 203 

http://badc.nerc.ac.uk/
http://www.ncdc.noaa.gov/oa/climate/ghcn-monthly/;%20last
http://www.ncdc.noaa.gov/oa/climate/ghcn-monthly/;%20last
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extreme arid (Khartoum), continental (Wien, Zurich, Winnemucca, Toccoa and Salta), cold 204 

(Helsinki, Punta Arenas and Reykjavik) and oceanic (Abashiri, Lisboa, Uccle, Buenos Aires, 205 

Smithfield, Olga and Smithfield) (Figure 2).  206 

The simulated series allowed determining the theoretical sensitivity of the drought indices 207 

using a wide range of climate conditions, while the observed climate series from observations and 208 

gridded datasets allowed determining the response under real conditions, considering the existing 209 

spatial gradients in P and ETo averages and standard deviations. 210 

 211 

2.3. Experimental set-up 212 

We calculated the four drought indices from the surrogate P and ETo series (a total of 441 213 

combinations of P and ETo) and used the 12-month time-scale for computing the SPEI, RDI and 214 

SPDI. Monthly values were used for subsequent analysis. The PDSI does not relate to one specific 215 

time-scale (Guttman, 1998), but in general it can be associated with time-scales between 9-14 216 

months in most regions of the world (Vicente-Serrano et al., 2010a and 2010b). For this reason, it is 217 

expected that 12-month is a suitable time scale for SPEI, RDI and SPDI to be compared to the PDSI. 218 

We also compared the series of the four drought indices among them calculating Pearson’s r 219 

correlations. Higher (positive or negative) r values means higher (positive or negative) sensitivity of 220 

the drought index to P or ETo. The analysis was applied to the indices obtained from the surrogate 221 

series, gridded datasets and the observed station series. For PDSI and SPDI, information on the soil 222 

moisture capacity is needed. For the surrogate series three values are used; 500 mm (i.e., the lowest 223 

value in the  Webb et al., 1993 dataset), 1000 mm and 2000 mm (i.e., the highest value in the Webb 224 

et al., 1993 dataset). For the observatory series, a uniform value of 1000 mm is used as soil water 225 

capacity.  226 

In the gridded datasets we masked the desert areas by means of the GlobCover coverage 227 

(http://due.esrin.esa.int/globcover/; last accessed 1 September 2014) since calculating drought indices 228 

http://due.esrin.esa.int/globcover/
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in desert regions is meaningless. Moreover, there are methodological problems for their calculation 229 

given high frequency of 0 values for precipitation and water balances (Wu et al., 2007; Beguería et 230 

al., 2014). 231 

Sensitivity of the four drought indices to variation in P and ETo was also assessed by means of the 232 

correlation between the 12-month SPEI, RDI and SPDI with cumulative 12-month P and ETo series 233 

used for their calculations. The exception was the PDSI since it does not represent a fixed time-scale. 234 

For this reason we obtained correlations between the series of PDSI and series of P and ETo at time-235 

scales from 1- to 24-months retaining the maximum correlation, independently of the time-scale at 236 

which it was recorded (see example in the Supplementary Figure 1). The results of these analyses 237 

were compared with the average and standard deviation of P and ETo. 238 

 239 

3. Results 240 

3.1 Relationship between drought indices 241 

The four drought indices correlated strongly with each other. Figure 3 shows correlations among the 242 

PDSI, the RDI, the SPEI and the SPDI obtained from the 441 combinations of simulated P and ETo 243 

series. The plots show correlations between the drought indices for ETo and P series with given 244 

means and one of the three levels of standard deviation. For example, the upper left element of each 245 

matrix corresponds to Pearson’s r values for the P series having a standard deviation equal to 10% of 246 

the average and ETo series having a standard deviation equal to 50% of the average. Correlation 247 

between the PDSI and the other three drought indices was lower than found among the RDI, the 248 

SPEI and the SPDI Pearson’s r correlation coefficients between the PDSI and the RDI, the SPEI and 249 

the SPDI vary between 0.5 and 0.8. There are no clear patterns of correlation between PDSI and the 250 

other three indices as a function of the average and standard deviation of P and ETo series. 251 

Nevertheless, some features can be highlighted. For high average P and low average ETo values, the 252 

correlation between the PDSI and the RDI is low, mostly for low P standard deviation. Higher 253 
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correlations between the PDSI and the RDI are identified corresponding to high average ETo values. 254 

Correlations coefficients between the PDSI and the SPEI are high corresponding to high ETo 255 

standard deviations. The lower correlations among these two drought indices are recorded for series 256 

of low means of P combined with high P standard deviation and high ETo average. The correlation 257 

matrices of Figure 3 show that for P and ETo series having similar averages the correlation between 258 

the PDSI and the RDI and the SPEI decreases noticeably for low values of the variability in P and 259 

high values in the variability of ETo. This could be related to the water balance algorithm used in the 260 

PDSI calculations, since this pattern is also identified in the SPDI, which shares the same algorithm 261 

with the PDSI. Moreover, since the magnitude of this pattern is different as a function of the soil 262 

water capacity (see Supplementary Figures 2 and 3) it is plausible that under these particular 263 

conditions (i.e., same average P and ETo) the PDSI is producing low correlated series with respect to 264 

statistical drought indices such as the RDI and the SPEI. On the contrary, correlation between the 265 

PDSI and the SPDI is maximum for series having the same P and ETo averages, with Person’s 266 

correlation coefficients higher than 0.8, independently of the standard deviation of the series. 267 

Correlations among the SPEI, the RDI and the SPDI are much higher than those identified with the 268 

PDSI. In general, the values are higher than 0.9, independently of the average and standard deviation 269 

of P and ETo (with the exception of the SPDI from P and ETo series having the same average and 270 

standard deviation). The soil water capacity used to calculate the PDSI and the SPDI has not a 271 

noticeable influence in the correlations among the four drought indices (see Supplementary Figs. 2 272 

and 3). 273 

Pearson’s r coefficients among the different drought indices in the series of the 34 selected 274 

observatories show, in general, high coefficients (Table 1). Correlation coefficients between PDSI 275 

and RDI are similar to those between PDSI and SPEI.  The majority of observations show slightly 276 

higher correlation coefficients between PDSI and SPDI. Correlations between SPEI and RDI are 277 

very strong in most of the observatories, showing coefficients higher than 0.95, with the exception of 278 
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the most arid observatories (Khartoum and Albuquerque) where correlations are 0.83. Correlations 279 

between the RDI and the SPEI, and the SPDI, are also high (usually higher than 0.90). The 280 

correlation between the SPEI and the SPDI is quite strong in the majority of observatories, varying 281 

between 0.75 in the most arid observatory (Khartoum) and 0.96-0.97 in observatories located in very 282 

humid regions (e.g., Manaus and Seychelles). 283 

The spatial distribution of the Pearson’s r coefficients among the four drought indices at the 284 

global scale shows magnitudes that resemble those found from simulated series and observed series. 285 

Figure 4 displays the correlation coefficients between the four drought indices calculated at the 286 

global scale by means of the CRU-TS3.21 dataset. The PDSI shows lower correlation coefficients 287 

with the other drought indices. Moreover there are not clear spatial patterns with the exception of the 288 

lowest correlations with the RDI and the SPEI in the north of Canada. Correlations between the 289 

PDSI and the SPDI are also only slightly higher with no clear patterns and dominant patchy 290 

structure. Correlation between the RDI and the SPEI is very strong in most of the regions of the 291 

world, and this finding is also valid for correlations between the RDI and the SPDI and between the 292 

SPEI and the SPDI, with the exception of regions of central USA, central Europe and central Asia.          293 

 294 

3.2. Influence of P and ETo on drought indices 295 

3.2.1 Assessment with surrogate series 296 

Figure 5 shows the Pearson’s r correlations between the PDSI obtained from surrogate series 297 

of P and ETo with different means and a standard deviation of 10%, 25% and 50% the mean value. 298 

The different plots show a clear gradient in the influence of P and ETo on the PDSI as a function of 299 

P and ETo average and standard deviation. The sensitivity of the PDSI to P is higher when mean 300 

values of ETo are lower than mean values of P with the PDSI a near-perfect reflection of P when 301 

ETo < P.  Low standard deviation (10%) in ETo and high standard deviation (50%) in P also makes 302 

the PDSI reflect P more. The correlation between PDSI and P is weakest when amplitude and 303 
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variability of P are smaller than the corresponding values of ETo (upper left element of the matrix in 304 

Figure 5a) Comparing this element with its anti-symmetric counterpart, the lower-right element of 305 

the matrix in Figure 5b, shows that correlations in this latter figure are generally closer to zero. This 306 

means that the PDSI is not equally sensitive to P and to ETo. Moreover, differences in P and ETo 307 

averages and standard deviations determine the PDSI sensitivity. The soil water capacity does not 308 

seem to affect the sensitivity of the PDSI to P and ETo variations since similar Pearson’s r 309 

coefficients between the PDSI and P and ETo variations are found for soil water capacities equal to 310 

500 mm, 1000 mm and 2000 mm (see Supplementary Figure 4 and 5).  311 

The response of the RDI to ETo and P variations is more simple than that found for the PDSI 312 

(Figure 6). The RDI only responded to variations in the standard deviation of P and ETo, but it does 313 

not respond to changes in the magnitude of P and ETo. This is related to the definition of the RDI as 314 

the quotient of P and ETo, in combination with a standardization to have unit standard deviation. In 315 

the RDI the magnitude of the correlations with P and ETo is exactly the same, although the sign is 316 

opposite. For example, the correlation between the RDI and P, considering P standard deviation 317 

equal to 50% and ETo standard deviation equal to 10% is r = 0.97 and the correlation between the 318 

RDI and ETo for ETo standard deviation equal to 50% and P equal to 10% is -0.97. In other words, 319 

having P and ETo series the same standard deviation, the RDI responds equally to both variables. 320 

For the SPEI, we found the opposite response to P and ETo (Figure 7). P and ETo series 321 

having the same average and standard deviation exert the same role on the SPEI values. 322 

Nevertheless, when P and ETo series display different standard deviations some differences can be 323 

identified. The sensitivity to P is much higher for high means of P combined with high P standard 324 

deviations (25% and 50% of the average) and low standard deviations in ETo. Conversely, for low 325 

means of P, high mean values of ETo the sensitivity of the SPEI to P is low, especially when 326 

variability in ETo is high and variability in P is low. The pattern of correlations between the SPEI 327 
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and the ETo is the opposite to that found for P; the highest negative correlations are recorded with 328 

ETo high magnitude and standard deviation. 329 

Finally, Figure 8 shows correlations between the SPDI and 12-month P and ETo series for 330 

different average and standard deviations of P and ETo. It shows a mixed response when compared 331 

to that of the RDI and the SPEI. For high standard deviation of P and low standard deviation of ETo 332 

the SPDI does not show a noticeable sensitivity to the magnitude of P. Under these conditions, the 333 

Pearson’s r coefficients are higher than 0.95 over the whole range of P magnitudes. Nevertheless, for 334 

P series having low standard deviation (i.e., 10% of the average) and high ETo standard deviation, 335 

the SPDI shows sensitivity to variations in the average magnitude of P. A quasi-opposite pattern is 336 

found analyzing the correlation between the SPDI and ETo. Strong negative correlations are found 337 

between the SPDI and ETo for high ETo magnitudes and standard deviations. As observed for the 338 

PDSI, the soil water capacity has small influence on the sensitivity of the SPDI to P and ETo (see 339 

Supplementary Figures 6 and 7). 340 

Differences in the Pearson r coefficient (Supplementary Figs. 8, 9 and 10) show that the SPEI 341 

and the SPDI are stronger linearly correlated with P than the PDSI. Also the relation between ETo 342 

and the SPEI is more direct than with the other indices investigated. 343 

 344 

3.2.2 Assessment of climate observations 345 

a) Gridded datasets 346 

Figure 9 takes the analysis of Section 3.2.1 one step further and shows the correlation 347 

between the four drought indices and P and ETo at the global scale from the CRU TS21 dataset. This 348 

figure shows that the SPDI is strongest linearly related to precipitation, and the PDSI has the least 349 

strong linear relation with precipitation. SPEI and RDI have slightly less strong correlations with 350 

precipitation than SPDI, especially at high latitudes and, for the SPEI, in dry areas. The spatial 351 

pattern could be due to the different magnitude and standard deviation of P and ETo series recorded 352 
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at a global scale (see Supplementary Figure 11). P reaches higher average values than ETo but the 353 

most relevant issue is that P has higher standard deviations than ETo. This pattern would explain that 354 

although some of the drought indices respond theoretically equal to P and ETo (e.g., SPEI and RDI) 355 

the observed correlation between drought indices and P is usually higher than between drought and 356 

ETo. This is also observed for the PDSI and the SPDI in the majority of observatories and gridded 357 

datasets. Correlation between the four drought indices and P shows high Pearson’s r coefficients in 358 

large parts of the world for the SPEI, the RDI and the SPDI, with the pattern more uniformly high for 359 

the SPDI reaching values over 0.95 for almost all world regions. Correlations between the RDI and P 360 

are also high in most of the world, with the exception of boreal regions in North Eurasia and North 361 

America. The pattern of correlation between the SPEI and P is more complex, with regions in the 362 

different continents showing correlations lower than 0.85. Correlations between the PDSI and P 363 

show much lower magnitude than those found for the other three indices (i.e., varying between 0.65 364 

and 0.85) and a patchy behavior characterized by strong spatial diversity in correlations. Correlations 365 

between the PDSI and P are lower than those found with the other three drought indices 366 

(Supplementary Figure 12). It also shows how differences are higher with the SPDI, which shares the 367 

same soil water balance approach with the PDSI, and how differences do not show a clear spatial 368 

structure. The differences of correlation between the SPEI, the SPDI and the RDI and P are much 369 

lower. The correlations between the four drought indices and ETo show more diversity and clear 370 

spatial patterns than those found for P. The magnitude of correlations is usually lower than for P, and 371 

there are more differences among the four indices. The magnitude of correlations with ETo is higher 372 

for the SPEI than for the rest of the indices, whereas the PDSI shows, again, the lowest correlations. 373 

The four drought indices show lowest correlations in equatorial and boreal regions while maximum 374 

correlations are recorded in central Asia, North America, South Africa and Australia. In contrast to 375 

what is observed for P, the differences between the SPDI and the PDSI are generally low at the 376 

global scale with minor regional differences (Supplementary Figure 13). In the semiarid regions of 377 
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North and South America, Africa, Australia and central Asia the SPEI shows stronger correlations 378 

with ETo than those found between ETo and the RDI. The opposite is found in equatorial and boreal 379 

regions in which correlations are stronger considering the RDI.  380 

 381 

b) Meteorological observatories 382 

The patterns with strong and weak correlations between the drought indices and aggregated P 383 

and ETo as discussed in Section 3.2.2 are also found with the series of observatories (see 384 

Supplementary Table 1). Maximum correlation between the PDSI and P is recorded in Manaus 385 

(Pearson’s r = 0.85). Minimum correlation between the PDSI and ETo is found in Wien (r = -0.76). 386 

In areas with high ETo (e.g., Khartoum, Saint-Louis and Bangkok) the response of the PDSI to 387 

variations in ETo is close to zero. Correlations between the RDI and the SPDI with P are also in 388 

general higher than those obtained with the SPEI. On the contrary, the SPEI shows more negative 389 

correlations with ETo in the majority of observatories in relation to the other three drought indices.  390 

Table 2 shows linear R
2
 coefficients between the correlations of the four drought indices with 391 

P and ETo (dependent variable) and the average and standard deviation of P and ETo from the 392 

observatories and gridded datasets (independent variable). The purpose of this analysis is to 393 

determine whether the spatial differences in the observed sensitivity of the four drought indices to P 394 

and ETo are related to the magnitude and variability of the two input variables.  395 

Figure 10 shows some representative examples of the relationship between these variables 396 

from both gridded datasets and meteorological observatories. Correlation of the PDSI with P (Plot D) 397 

does not show a clear relationship with climate characteristics, since although it shows a R
2
 398 

coefficient of 0.37 with the standard deviation of P, this must be due to low data sampled since the 399 

coefficient obtained from the gridded data is close to zero. Correlation between the PDSI and ETo 400 

(Plot E) shows a negative relationship with ETo average and standard deviation. It means that areas 401 

in which the PDSI is more affected by the ETo variability correspond to areas with high magnitude 402 
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and/or standard deviation of ETo. The spatial pattern of correlations between the RDI and P (Plot C) 403 

is mainly determined by the average ETo, with a non-linear relationship. Although the series of 404 

observatories show a R
2
 coefficient equal to 0.35 between the correlation of the RDI vs. ETo and the 405 

average ETo (see Table 2), this is not recorded in the gridded dataset (R
2
 = 0.05, see Table 2). 406 

Among the four drought indices, the SPEI shows the best control of the average magnitude and 407 

variance of P and ETo to explain variations in its response to P and ETo variability (Figure 10, Plots 408 

A, B and Table 2). Moreover, the results are consistent between the observatories and gridded 409 

datasets. Results are also in agreement with those expected from the sensitivity analysis reported 410 

previously. The response of the SPEI to P is clearly determined by the average and standard 411 

deviation of P, both in the series of observatories and in the gridded data. The relationship is clearly 412 

non-linear (Figure 10, Plot G), showing that in areas of high P the SPEI is mostly determined by the 413 

variability of P. The SPEI response to ETo is also controlled by the spatial pattern of P and ETo, 414 

with consistent results between the observatories and gridded datasets (Figure 10, Plots B and H). 415 

There is a linear positive relationship between the SPEI vs. ETo correlation and the average P, which 416 

shows that in areas with low P the correlation between P and ETo tends to be higher. Finally, the 417 

sensitivity of the SPDI to P does not show clear patterns related to the average and standard 418 

deviation of P series (see Table 2). The response to ETo shows a control similar to that found for the 419 

PDSI (Figure 10, Plot K), with a negative relationship with ETo standard deviation (Plot L). 420 

 421 

4. Discussion  422 

This study analyzed the sensitivity of four widely used drought indices to precipitation (P) 423 

and reference evapotranspiration (ETo). The four drought indices (Palmer Drought Severity Index –424 

PDSI-, Reconaissance Drought Index –RDI-, Standardized Precipitation Evapotranspiration Index –425 

SPEI- and the Standard Palmer Drought Index –SPDI-) are calculated based on these two 426 

parameters. Using surrogate series covering a wide range of P and ETo means and standard 427 
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deviations, we showed that the PDSI and the SPDI show a more complex correlation pattern when 428 

compared with the other drought indices RDI and SPEI. The relation between drought indices is 429 

generally strong, except when compared with the PDSI, which correlates noticeably lower. This is 430 

demonstrated in Figure 5, which shows a band of strong correlations between SPDI and PDSI on the 431 

diagonal, whereas correlations between SPDI and mainly PDSI with the other drought indices are 432 

weak on the diagonal. We relate this to the use of the soil water balance algorithm which SPDI and 433 

PDSI share. On the diagonal, amplitude and variance of both P and ETo are similar. This results in a 434 

situation where P, on average, nearly perfectly balances ETo making the CAFEC precipitation nearly 435 

equal to the actual P. The value of the moisture departure, the difference between actual and CAFEC 436 

precipitation is therefore small and minute changes in the runoff term or in the storage terms in the 437 

water balance will impact the moisture departure significantly, making its relation with P and ETo 438 

less direct. SPDI and PDSI, both based on the moisture departure, will remain correlated but RDI 439 

and SPEI, based on P and ETo will then correlate less strongly with either SPDI or PDSI. In 440 

addition, this study confirms earlier findings (Briffa et al., 1994, Dai et al., 1998, van der Schrier et 441 

al. 2006) that the PDSI does not show noticeable differences of sensitivity to P and ETo for different 442 

levels of soil water capacity. This suggests that although the PDSI follows a physically based soil 443 

water balance model, the influence of the soil water capacity on PDSI variability is low in relation to 444 

the influence of P and ETo. 445 

The SPEI, the RDI and the SPDI all show high correlations for a range of P and ETo averages 446 

and standard deviations. This is also observed using long time series of meteorological observations 447 

under different climates and in the global gridded datasets. An exception to these strong correlations 448 

is, again, the PDSI, which shows lower correlations of around 0.75 with the other three indices under 449 

different theoretical conditions and with the series of observatories and gridded datasets. The PDSI is 450 

apparently more distantly related to either P or ETo than the other indices where almost linear 451 

relations with P and ETo are observed. Moreover, although the PDSI and the SPDI are related via the 452 
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moisture departure, we have not found a strong agreement between these two, whereas all indices 453 

(excluding the PDSI) are found to be rather strongly related This must be related to the 454 

standardization of the moisture departure d used in the PDSI which differs with that of SPDI and 455 

makes the relation of PDSI with the drivers of drought, P and ETo, less direct. The SPDI is based on 456 

a standardization of d based on the fit to a probability distribution (Ma et al., 2014) whereas the PDSI 457 

uses a more complex way to standardize d. The procedure to standardize d apparently strongly 458 

influences the resulting drought index. This was demonstrated earlier by Wells et al. (2004). There is 459 

a second reason why the PDSI correlates less strongly with the drivers of drought (and with the other 460 

drought indices used in this study). To determine if a wet or dry spell has ended,  Palmer (1965) kept 461 

track of three different indices in the algorithm to which he related the end (or start) of a spell.  462 

Application of this criterion in the determination of whether a dry or wet spell has ended, may lead to 463 

a revision of previously computed PDSI values. This retrospective element in the PDSI calculations 464 

is referred to as `backtracking' (Wells et al., 2004; van der Schrier et al., 2006) and further dilutes a 465 

direct relation between the drought index and its drivers. 466 

The strong correlations found between the SPDI, the SPEI and the RDI and the weaker 467 

correlations of these indices with the PDSI indicates that differences between the PDSI and the other 468 

drought indices is not only due to the physical basis of the soil water balance model on which the 469 

PDSI is based, but also on the methodology to accumulate and standardize the precipitation surplus 470 

and deficit.  471 

Differences between RDI and SPEI are found in their relation to ETo, with SPEI being much 472 

more sensitive to changes in ETo than RDI. This is confirmed with the observatory and gridded data 473 

used in this study. Although there were no previous studies analyzing the sensitivity of the RDI to 474 

both P and ETo inputs, the strong correlation shown in some studies between the RDI and the SPI, 475 

which is based on precipitation data only (Pearson’s r > 0.98, e.g., Tsakiris et al., 2007; Zarcch et 476 

al.,2012) already indicated that the RDI has a low sensitivity to ETo and high sensitivity to P. 477 
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When considering the sensitivity of the four drought indices used in this study to P or ETo 478 

changes on a global scale, the very high correlation between P and SPDI stands out. With 479 

correlations generally > 0.95, it is difficult to see what this index adds to the use of the Standardized 480 

Precipitation Index in which only P is standardized. The correlation patterns between P and SPEI or 481 

P and RDI are similar in structure, although the RDI seems slightly stronger correlated. At high 482 

latitudes, where small values of ETo and P are found, both indices show weaker correlations with P 483 

than on the rest of the globe. The PDSI shows much lower correlations with P, which is shown to be 484 

related to the standardization used in this index. 485 

Not surprisingly, the correlations between ETo and the PDSI or SPDI are very similar (with 486 

those of SPDI slightly stronger) given the shared use of the water balance model in their formulation. 487 

The relation between ETo and SPEI is the strongest of the four indices used. Recently, Cook et al. 488 

(2014) used the PDSI and the SPEI to determine 21th century drying by means of GCMs at the 489 

global scale. They observed, similar to the observations made in this study, that the SPEI was more 490 

sensitive to ETo changes than the PDSI, especially in arid regions such as the Sahara and the Middle 491 

East. Cook et al. (2014) also stressed that drying is more severe in the SPEI projections for the 21th 492 

century than those using the PDSI. When interpreting drought as an imbalance between water 493 

availability and the water demand, the SPEI is the more direct measure whereas the PDSI is more 494 

directly related to soil water availability. We have not been able to reproduce the result of Ma et al. 495 

(2014) that in humid sites no relation exists between the SPEI and ETo. Such relation was found for 496 

the surrogate data sets, the data from observational sites and the global gridded datasets. Figure 9 497 

shows that in the tropics, the correlation between SPEI and ETo is stronger than that between SPDI 498 

and ETo. Thus, the sensitivity of SPEI to changes in P and ETo average and variance contradicts the 499 

statement raised by Ma et al. (2014). They concluded that P and temperature (used to calculate ETo) 500 

would contribute almost equally to the formulation of water surplus/deficit in both the PDSI and the 501 

SPDI, but not in the SPEI. 502 
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 503 

5. Conclusions 504 

 The four drought indices show sensitivity to P and ETo variations. Nevertheless, the degree 505 

and nature of this sensitivity varies noticeably among them.  506 

 The RDI does not show sensitivity to variations in the magnitude of P and ETo which relates 507 

to the nature of this index. Using the quotient of P and ETo as input to a standardization 508 

cancels the amplitude of the drivers of drought. According to the results obtained in this 509 

study, under a climate change scenario where both P and ETo increase (as in northern 510 

Europe, e.g., Kaste et al., 2006) RDI would show a muted response, which means strong 511 

limitation for drought analysis and monitoring.  512 

 The SPDI shows a strong sensitivity to P much higher than the PDSI. This indicates that the 513 

standardization procedure may affect the relation between drought index and the drivers of 514 

drought in a more important way than the used soil water balance algorithm since both 515 

indices uses the same algorithm. 516 

 The PDSI is more sensitive to P than to ETo. Correlation between the PDSI and ETo shows 517 

substantially lower correlation than correlation between the SPEI and ETo, being this 518 

difference higher in arid and semiarid regions. This relates to the water balance model which 519 

is at the basis of the PDSI. The actual evapotranspiration (ETa), which enters the algorithm to 520 

calculate PDSI, is limited by precipitation rather than ETo in water stressed situations. This 521 

makes that the PDSI decouples from ETo values in situations where ETo > P (van der Schrier 522 

et al., 2013). The low sensitivity of the PDSI to ETo makes the PDSI perhaps less apt as the 523 

suitable drought index in applications in which the changes in ETo are most relevant. 524 

 The SPEI shows equal sensitivity to P and ETo. It works as a perfect supply and demand 525 

system modulated by the average and standard deviation of each series. In contrast to the RDI 526 

that only shows sensitivity to variations on the standard deviation, the SPEI combines the 527 
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sensitivity of the series to changes in magnitude and variance. Although there are 528 

combinations of P and ETo in which sensitivity to one of these drivers is stronger than the 529 

other, this is due to the different mean and variance of the P and ETo series but the SPEI 530 

shows equal sensitivity to P and ETo. The SPEI shows different sensitivity to P and ETo as a 531 

function of the climatology. In semiarid regions the SPEI shows high contribution of ETo to 532 

drought severity. On the contrary, in humid areas, characterized by high P, drought variability 533 

is mostly determined by changes in P.  534 

 The SPEI is sensitive to the atmospheric water demand, which is not limited by precipitation 535 

and/or soil water content. Nevertheless, we would like to stress that any practical selection of 536 

a drought index for drought monitoring and drought early warning systems should be based 537 

on its ability to reproduce negative impacts of droughts following a specific sector or a multi-538 

sectorial approach. For studies determining future drought severity associated with warming 539 

processes and the increased evaporative demand of the atmosphere associated with an 540 

intensification of the hydrological cycle, we would recommend to use drought indices that 541 

not only take into account the supply of moisture, but also the demand of moisture. The four 542 

indices used in this study all use some balance between supply and demand of moisture, but 543 

each in its own unique way. This study shows that the resulting differences in the indices can 544 

be quite large and that the choice of drought index is relevant.  545 
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 720 

Figure 1. A) probability distribution functions (pdfs) of simulated monthly precipitation series with 721 

different averages and standard deviations (blue = 50% of the average, black = 25% of the average, 722 

red = 10% of the average). B) 100-years evolution of the simulated series of precipitation with 723 

average = 100 mm and standard deviation equal to 10%, 25% and 50% of the average.  724 
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Figure 2. Location of the 34 observatories with 107 years of data of precipitation and mean 728 

temperature used. 729 

  730 
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 731 

Figure 3. Pearson’s r correlations between the time series of the four different drought indices (PDSI, 732 
RDI, SPEI and SPDI) based on simulated P and ETo series of 100 years with different averages and 733 

standard deviations. PDSI and SPDI are obtained considering a soil water capacity equal to 1000 734 
mm. Each 9x9 matrix relates to a comparison between two drought indices, where each element 735 
within each matrix relates to a specified level of standard deviation of ETo and P. Each element 736 

consists of 441 simulations where series of P and ETo, with specified means, are combined to 737 
calculate drought index series. 738 
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OBSERVATORY PDSI vs. RDI PDSI vs. SPEI PDSI vs. SPDI RDI vs. SPEI RDI vs.SPDI SPEI vs. SPDI 

INDORE 0.82 0.84 0.92 0.98 0.91 0.91 

KIMBERLEY 0.76 0.79 0.82 0.96 0.97 0.96 

ALBUQUERQUE 0.66 0.68 0.82 0.83 0.89 0.84 

VALENCIA 0.77 0.80 0.89 0.93 0.93 0.92 

WIEN 0.83 0.85 0.94 1.00 0.88 0.90 

ABASHIRI 0.82 0.81 0.81 0.99 0.91 0.92 

TAMPA 0.81 0.81 0.88 1.00 0.90 0.91 

SAO PAULO 0.74 0.70 0.76 0.97 0.92 0.94 

LAHORE 0.76 0.79 0.84 0.97 0.95 0.95 

PUNTA_ARENAS 0.79 0.79 0.89 0.99 0.90 0.90 

HELSINKI 0.81 0.80 0.89 0.99 0.89 0.89 

TRIPOLI 0.81 0.80 0.91 0.95 0.90 0.87 

KHARTOUM 0.71 0.53 0.80 0.83 0.95 0.75 

LISBOA 0.79 0.80 0.92 0.99 0.89 0.89 

QUIXERAMOBIM 0.83 0.84 0.93 0.97 0.94 0.93 

ZURICH 0.76 0.76 0.77 0.98 0.95 0.96 

UCCLE 0.78 0.78 0.80 0.99 0.89 0.90 

CURITIBA 0.77 0.77 0.77 0.98 0.96 0.97 

REYKJAVIK 0.80 0.81 0.84 0.99 0.91 0.92 

TOCCOA 0.76 0.75 0.76 0.99 0.95 0.95 

CALCUTTA 0.70 0.70 0.78 1.00 0.92 0.92 

WINNEMUCCA 0.63 0.68 0.84 0.94 0.86 0.88 

SHANGHAI 0.76 0.76 0.80 1.00 0.92 0.92 

SAINT-LOUIS 0.78 0.68 0.87 0.93 0.96 0.85 

BANGKOK 0.81 0.81 0.88 1.00 0.90 0.89 

TRINCOMALEE 0.74 0.74 0.78 1.00 0.91 0.91 

PANBAM 0.71 0.72 0.84 0.99 0.91 0.90 

BANGALORE 0.76 0.75 0.84 1.00 0.88 0.88 

SEYCHELLES 0.74 0.74 0.79 0.99 0.95 0.95 

SALTA 0.72 0.72 0.91 1.00 0.87 0.87 

BUENOS AIRES 0.82 0.82 0.85 1.00 0.92 0.92 

SMITHFIELD 0.73 0.73 0.76 1.00 0.93 0.93 

OLGA 0.78 0.78 0.84 1.00 0.92 0.92 

MANAUS 0.85 0.85 0.85 1.00 0.96 0.96 

 740 

Table 1. Pearson’s r correlations between the different drought indices in the thirty-four 741 

observatories with 107 years of P and ETo. 742 

  743 



31 
 

 

Figure 4. Pearson’s r correlations between the four drought indices at the global scale from gridded datasets. 
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Figure 5. Pearson’s r correlation coefficients between best correlated 1-24-month time-scale P and 

best correlated 1-24-month time-scale ETo and PDSI from simulated series. Soil water capacity = 

1000 mm. 
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Figure 6. Pearson’s r correlation coefficients between 12-month P and 12- month ETo and the RDI 

from simulated series.  
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Figure 7. Pearson’s r correlation coefficients between 12-month P and 12- month ETo and the SPEI 

from simulated series.  
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Figure 8. Pearson’s r correlation coefficients between 12-month P and 12- month ETo and the SPDI 

from simulated series. Soil water capacity = 1000 mm. 
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Figure 9. Pearson’s r correlation between the gridded series of the PDSI, the RDI, the SPEI and the 

SPDI and the best correlated 1-24-month time-scale P and best correlated 1-24-month time-scale 

ETo for the PDSI and 12-month P and 12- month ETo for the rest of indices. 
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  PDSI vs. P PDSI vs. ETo RDI vs. P RDI vs. ETo SPEI vs. P SPEI vs. ETo SPDI vs. P SPDI vs. ETo 

O
b

se
rv

at
o

ri
es

 Avg. P 0.08 0.13 0.00 0.04 0.38 0.49 0.18 0.14 

Desv. P 0.14 0.20 0.01 0.16 0.29 0.46 0.25 0.23 

Avg. ETo 0.10 0.28 0.18 0.35 0.02 0.06 0.22 0.27 

Desv. ETo 0.10 0.12 0.23 0.03 0.29 0.10 0.12 0.05 

G
ri

d
d

ed
 d

at
a Avg. P 0.00 0.03 0.06 0.13 0.22 0.37 0.00 0.05 

Desv. P 0.00 0.00 0.11 0.12 0.23 0.25 0.00 0.01 

Avg. ETo 0.00 0.12 0.23 0.05 0.05 0.00 0.00 0.10 

Desv. ETo 0.08 0.13 0.00 0.04 0.38 0.49 0.18 0.14 

 

Table 2. Linear R
2
 coefficients between the four drought indices and P and ETo in each one of the 34 

observatories and the gridded datasets and the average and standard deviation of P and ETo. 
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Figure 10. Selected patterns of relationship between the average and standard deviation P and ETo recorded in the different meteorological 

observatories and gridded series and the temporal Pearson’s r correlations between the drought indices and P and ETo series. 
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OBSERVATORY Avg. P Desv. P Avg. ETo Desv. Eto 
PDSI vs. 
P 

PDSI vs. 
ETo 

RDI 
vs. P 

RDI vs. 
ETo 

SPEI vs. 
P 

SPEI vs. 
ETo SPDI vs. P 

SPDI vs. 
ETo 

INDORE 954.8 254.1 1481.1 108.4 0.77 -0.34 0.96 -0.27 0.91 -0.43 0.87 -0.3 

KIMBERLEY 417.9 119.8 1001.8 87.1 0.67 -0.59 0.95 -0.54 0.86 -0.73 0.9 -0.6 

ALBUQUERQUE 219.1 66.1 817.4 91.6 0.55 -0.45 0.93 -0.38 0.6 -0.82 0.78 -0.5 

VALENCIA 436.7 148.1 914.3 134.1 0.64 -0.5 0.89 -0.41 0.73 -0.69 0.79 -0.5 

WIEN 653.7 111.3 689.3 72.3 0.64 -0.76 0.89 -0.67 0.87 -0.7 0.69 -0.79 

ABASHIRI 832.2 133.1 564.8 50.7 0.72 -0.45 0.87 -0.54 0.93 -0.42 0.85 -0.42 

TAMPA 1206.2 253.7 1307 97.6 0.7 -0.46 0.93 -0.37 0.92 -0.39 0.81 -0.44 

SAO PAULO 1435.9 264.2 962.1 138.4 0.47 -0.38 0.7 -0.41 0.85 -0.19 0.78 -0.22 

LAHORE 543.7 188.2 1459.8 70.3 0.73 -0.26 0.97 -0.12 0.92 -0.34 0.92 -0.19 

PUNTA ARENAS 416.5 109.9 607.4 39.8 0.72 -0.34 0.96 -0.23 0.93 -0.34 0.84 -0.31 

HELSINKI 658.7 116.2 598.4 57 0.69 -0.49 0.89 -0.56 0.91 -0.53 0.81 -0.46 

TRIPOLI 325.2 109.7 1048.1 68.1 0.78 -0.44 0.97 -0.45 0.88 -0.7 0.87 -0.44 

KHARTOUM 151 77.3 1837.4 55.6 0.7 0.02 0.98 -0.13 0.8 -0.64 0.91 -0.07 

LISBOA 696.6 189.8 825.2 111.2 0.67 -0.39 0.92 -0.32 0.87 -0.43 0.8 -0.34 

QUIXERAMOBIM 742.2 279.2 1445.4 136.8 0.8 -0.4 0.97 -0.39 0.91 -0.56 0.9 -0.4 

ZURICH 1092.9 170.9 611.7 41.9 0.74 -0.31 0.92 -0.49 0.97 -0.35 0.92 -0.39 

UCCLE 810.7 131.4 650.6 41.1 0.72 -0.34 0.93 -0.4 0.95 -0.34 0.86 -0.28 

CURITIBA 1431.9 249.8 816.6 61.9 0.71 -0.11 0.89 -0.18 0.96 0 0.93 -0.04 

REYKJAVIK 871.6 168 535.1 39.9 0.81 -0.23 0.92 -0.37 0.95 -0.27 0.88 -0.26 

TOCCOA 1495.1 258 859.3 38 0.74 -0.3 0.97 -0.47 0.99 -0.39 0.94 -0.4 

CALCUTTA 1670.8 312.6 1610.7 45.3 0.69 -0.08 0.98 -0.17 0.98 -0.16 0.92 -0.13 

WINNEMUCCA 217.2 56.3 623 34.9 0.56 -0.43 0.97 -0.29 0.86 -0.59 0.8 -0.45 

SHANGHAI 1149.4 210.6 901.9 43.4 0.73 -0.26 0.97 -0.33 0.98 -0.29 0.91 -0.26 

SAINT-LOUIS 330.4 137.2 1372.7 66.2 0.79 0.05 0.98 -0.1 0.88 -0.45 0.94 0.01 

BANGKOK 1443.3 276.8 1820.2 53.6 0.82 0.08 0.98 -0.05 0.97 -0.1 0.91 0.09 

TRINCOMALEE 1639.4 353.8 1816.8 39.4 0.73 -0.22 0.99 -0.25 0.98 -0.27 0.91 -0.23 

PANBAM 908 252.1 1807.3 47 0.72 -0.06 0.99 -0.03 0.98 -0.13 0.9 -0.02 

BANGALORE 936.5 203.1 1296.4 48.5 0.77 -0.04 0.97 -0.22 0.96 -0.27 0.88 -0.15 

SEYCHELLES 2299.6 430.2 1654.7 70.9 0.75 0.07 0.97 -0.02 0.98 0.04 0.95 0.06 

SALTA 702.1 141.2 827.1 41.9 0.69 -0.25 0.97 -0.25 0.95 -0.29 0.83 -0.27 

BUENOS AIRES 1080.1 264.1 900.8 42 0.83 0.2 0.96 0.06 0.97 0.08 0.92 0.13 

SMITHFIELD 1215.1 198.4 836 39 0.69 -0.38 0.96 -0.44 0.98 -0.37 0.9 -0.4 

OLGA 730.3 118.1 628.2 33.8 0.75 -0.38 0.96 -0.51 0.96 -0.49 0.89 -0.44 

MANAUS 2100.5 373.3 1698.9 76.1 0.85 -0.28 0.97 -0.41 0.98 -0.36 0.94 -0.35 

 

Supplementary Table 1. Average and standard deviation of 12-month P and ETo in thirty-four 

observatories with 107 years of P and ETo; Correlation between the PDSI and best correlated 1-24-

month time-scale P and best correlated 1-24-month time-scale time-scale ETo; Correlation between 

the RDI, the SPEI and the SPDI with 12-month P and 12- month ETo. 

  



42 
 

 
 

Supplementary Figure 1. Example of the analysis used to select the best P and ETo time-scales to represent 

sc-PDSI variability. The presented PDSI series (red) is related to P series (blue) at 3- and 15-month time-

scales. The bottom panel shows the Pearson correlation coefficients calculated between the PDSI and the P 

(blue) and ETo (red) series on time-scales between 1- and 24-months. In this case maximum positive 

correlation between PDSI and P is recorded at 15-month time-scale (r = 0.57) and negative correlation 

between PDSI and ETo is found at 18-month time-scale (r = -0.53). 
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Supplementary Figure 2. Pearson’s r correlations between the time series of the four different 

drought indices (PDSI, RDI, SPEI and SPDI) based on simulated P and ETo series of 100 years with 

different averages and standard deviations. The PDSI and the SPDI are obtained considering a soil 

water capacity equal to 500 mm.  
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Supplementary Figure 3. Pearson’s r correlations between the time series of the four different 

drought indices (PDSI, RDI, SPEI and SPDI) based on simulated P and ETo series of 100 years with 

different averages and standard deviations. The PDSI and the SPDI are obtained considering a soil 

water capacity equal to 2000 mm. 
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Supplementary Figure 4. Pearson’s r correlation coefficients between best correlated 1-24-month 

time-scale P and best correlated 1-24-month time-scale time-scale ETo and the PDSI from simulated 

series. Soil water capacity = 500 mm. 
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Supplementary Figure 5. Pearson’s r correlation coefficients between best correlated 1-24-month 

time-scale P and best correlated 1-24-month time-scale time-scale ETo and the PDSI from simulated 

series. Soil water capacity = 2000 mm. 
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Supplementary Figure 6. Pearson’s r correlation coefficients between 12-month P and 12- month 

ETo and the SPDI from simulated series. Soil water capacity = 500 mm. 
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Supplementary Figure 7. Pearson’s r correlation coefficients between 12-month P and 12- month 

ETo and the SPDI from simulated series. Soil water capacity = 2000 mm. 
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Supplementary Figure 8. Difference (in Pearson’s r units) between correlation coefficients obtained 

with the SPEI vs. 12-month P and 12- month ETo and the PDSI vs. best correlated 1-24-month time-

scale P and best correlated 1-24-month time-scale ETo. The PDSI is obtained using a soil water 

capacity = 1000 mm. 
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Supplementary Figure 9. Difference (in Pearson’s r units) between correlation coefficients obtained 

with the SPEI vs. 12-month P and 12- month ETo and the SPDI vs. 12-month P and 12- month ETo. 

The SPDI is obtained using a soil water capacity = 1000 mm. 
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Supplementary Figure 10. Difference (in Pearson’s r units) between correlation coefficients obtained 

with the SPDI vs. 12-month P and 12- month ETo and the PDSI vs. best correlated 1-24-month time-

scale P and best correlated 1-24-month time-scale ETo. The PDSI and the SPDI are obtained using a 

soil water capacity = 1000 mm. 
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Supplementary Figure 11. Spatial distribution of 12-month average and standard deviation P and ETo at the global scale from the gridded CRU 

TS3.10.01 dataset. 
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Supplementary Figure 12. Difference (in Pearson’s r units) between correlation coefficients obtained with the four indices and P (12-month for 

SPEI, RDI and SPDI and best correlated 1-24-month time-scale P). 
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Supplementary Figure 13. Difference (in Pearson’s r units) between correlation coefficients obtained with the four indices and ETo (12-month 

for SPEI, RDI and SPDI and best correlated 1-24-month time-scale ETo). 


