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ABSTRACT 

To mimic non-toxic and fully biodegradable biopolymers like the plant cutin, polyester films 

from a natural occurring fatty polyhydroxyacid like aleuritic (9,10,16-trihydroxyhexadecanoic) 

acid have been prepared by non-catalyzed melt-polycondensation at moderate temperature 

(150°C) directly in air. The course of the reaction has been followed by Infrared (IR) 

spectroscopy, 13C Magic Angle Spinning Nuclear Magnetic Resonance (13C-MAS NMR) 

spectroscopy, Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) and well 

differentiated stages are observed. First, a high conversion esterification reaction leads to an 

amorphous rubbery, infusible and insoluble material whose structure is made out of ester 
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linkages mostly involving primary hydroxyls and partially branched by minor esterification with 

secondary ones. Following the esterification stage, the cleavage of vicinal secondary hydroxyls 

and further oxidation to carboxylic acid is observed at the near surface region of films. New 

carboxylic groups created also undergo esterification and generate cross-linking points within 

the polymer structure. Additionally, and despite the harsh preparation conditions used, very 

little additional side reaction like per-oxidation and dehydration are observed. Results 

demonstrate the feasibility of polyester films fabrication from a reference fatty polyhydroxyacid 

like aleuritic acid by non-catalyzed melt-polycondensation directly in air. The methodology can 

potentially be extended to similar natural occurring hydroxyacids to obtain films and coatings to 

be used, for instance, as non-toxic and biodegradable food packaging material. 

 

INTRODUCTION 

 Petrochemical derived plastics are commonly used in the packaging industry but they 

have raised serious concerns in the society due to their ecological impact. Particularly, in the 

case of metal food containers, the toxicity associated to the release of additives like bisphenol A 

from the internal protective coating is becoming a notorious health issue [1]. Polyesters 

constitute an important group of bioplastics intended to become an alternative. Thus, short chain 

polyesters like polylactic acid (PLA) and polyhydroxybutyrates (PHB) have received great 

attention in the past years. On the contrary, research on long-chain (fatty) 

polyhydroxyalcanoates is much more limited, mostly because the lack of effective routes to 

monomer synthesis. However, fatty polyhydroxyalcanoates are abundantly present in nature, for 

instance, as “cutin”, the polyester skeleton of many plant cuticles (the skin of fruits, leaves and 

green stems) [2,3]. Cutin is an amorphous, non-toxic and fully biodegradable barrier biopolymer 

whose role is to protect plant tissues from the environment [4]. Precisely, good barrier 

capabilities as well as non-toxicity, availability and biodegradability are key features in the 

development of new food packaging materials. Consequently, the design and obtaining of 

polymers inspired in cutin is proposed as an option assuming that the synthetic product will 

retain the inherent characteristics of its natural counterpart [5,6]. 
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 Singularly, the biopolymer cutin is made out of a very limited series of esterified C16 

and C18 hydroxyacids [7,8,9]. In this study, we have used a relatively abundant natural occurring 

C16 polyhydroxyacid like aleuritic (9,10,16-trihydroxyhexadecanoic) acid [10] as a model 

monomer because of its chemical similarity to others hydroxyacids present in natural cutins 

[11]. Also because of the potential that extra secondary hydroxyls acting as cross-linking points 

may add in a future development of the polymeric material. In any case, the ultimate purpose o 

this research is to extend the conclusions to other natural occurring hydroxyacids or 

hydroxyacid mixtures that can be obtained, for instance, from the considerable amount of peel 

residues generated by the fruit processing industry. 

 On the other side, the polycondensation between carboxylic acids and alcohols or 

hydroxyacids is carried out in synthetic conditions using an organometallic catalyst and 

facilitating the removal of the water by-product (i.e. high temperature, reduced pressure, or 

adding an acidic hydrophilic agent) [12,13,14]. In this article, and to avoid the use of organic 

solvents, as well as heavy metal catalysts jeopardizing the non-toxicity of the final product, we 

propose the direct, non-catalyzed synthesis from molten monomers at moderate temperature. To 

our knowledge, there is only one literature reference reporting such a direct synthesis of a 

polyester from an C16 polyhydroxylated fatty acid under reduced pressure, though product 

characterization is limited [15]. Moreover, and to explore the potential of this methodology to 

the fabrication of low-cost and uniform films or coatings, we have carried out the synthesis 

directly in air without resorting to a reduced or inert atmosphere. The study will focus on the 

chemical monitoring of the reaction and in the characterization of the products obtained. 

 

EXPERIMENTAL 

Materials 

 Aleuritic (DL-threo-9,10,16-trihydroxyhexadecanoic, C16H32O5) acid (93.8% by NaOH 

titration) was purchased from Fluka. The commercial product contains a significant amount of 

NaCl (~ 6% w/w) that was removed after washing with cold water. The absence of salt in the 

purified samples was checked by XRD. 
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 Polymer synthesis 

 Polyhydroxyesters were prepared by placing about 130 mg of purified aleuritic acid in 

an open carbon doped Teflon mould (35 mm x 10 mm and 0.5 mm deep) and heated in air 

inside an oven at 150 ºC for different periods of time (from 2 h up to 24 h). After cooling at 

room temperature, rubbery films were pale yellow/green progressively turning into to light 

brown as heating time was increased. Their thickness was about 300 µm, as measured with a 

digital micrometer. Films used for XRD analysis were prepared from the original NaCl 

containing aleuritic acid to have an internal reference for quantification. 

 

Polymer characterization  

Transmission and Attenuated Total Reflected (ATR) Infrared Spectroscopy 

 Infrared data were collected in a FTIR spectrometer (FT/IR-6200, JASCO, Spain). For 

transmission measurements, 2 mg of sample and 150 mg of dry KBr were placed in an agate 

mortar with few drops of methanol. The mixture was grinded until homogenization and dried 

for 2 h at 50 °C to remove the methanol residue. A 10 mm diameter pellet was made using the 

whole mixture and spectra were acquired by accumulating 32 scans using a TGS detector 

operated at 4 cm-1 resolution.     

 ATR-FTIR infrared spectra were directly obtained from both sides of the films using a 

single reflection ATR accessory (MIRacle ATR, PIKE Technologies, USA) coupled to a liquid 

nitrogen cooled MCT detector. All spectra were recorded in the 4000 to 600 cm-1 range at 4 cm-

1
 resolution and accumulating 50 scans. 

 
13
C Magic Angle Spinning Nuclear Magnetic Resonance (

13
C MAS-NMR) 

  
13C Magic Angle Spinning Nuclear Magnetic Resonance (13C MAS-NMR) proton 

decoupling single-pulse spectra of polymers were obtained with a Bruker DRX400 spectrometer 

using a magnetic field of 9.36 T and equipped with a multinuclear probe. Due to sample 

insolubility, solid samples had to be used. Specimen were cut into small as possible pieces using 

a razor blade knife and packed in 4 mm zirconia rotors. Magic angle spinning was operated at 

10 kHz. The spectra were acquired at a frequency of 100.61 MHz, using a π/6 pulse width of 2.5 
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µs and a pulse space of 10 s, which ensures nuclei full relaxation. In each run, 8500 spectra 

were accumulated. Compared to Cross Polarization Nuclear Magnetic Resonance (CP- NMR), 

the single-pulse method request much longer acquisition times (typically 24 hours) to register a 

spectrum with an acceptable signal-to-noise ratio but allows composition quantitative 

measurements from peak areas [16]. Chemical shifts are reported in ppm using 

tetramethylsilane as reference. 

 

X-ray Diffraction (XRD) 

 XRD diffraction patterns were obtained with an X’Pert Pro (PANalytical) 

diffractometer using monochromated CuKα radiation and an X’Celerator detector with a 1/4° 

fixed slit. The diffractograms were recorded between 3º and 70º (2θ) in 0.0501º steps at 45 kV 

and 40 mA and 200 s counting time. The films were placed on a zero background silicon single 

crystal plate adapting them to the goniometer in a θ-2θ configuration.  

 

Differential Scanning Calorimetry (DSC) 

 DSC thermograms of polymers were acquired with a DSC Q20 (TA Instruments) from -

70 °C to 150 °C under nitrogen flow (50 mL/min) at 10 °C/min using non-hermetic aluminum 

pans. Square pieces of the films were cut and accurately weighted (between 3.5 and 4.0 mg) and 

placed in good contact with the bottom of the pan. They were first cooled to -70 °C and heated 

to 150°C and kept at this temperature for 2 minutes to eliminate residual moisture. Then, a 

cooling-heating cycle from -70°C to 150°C was performed. The glass transition temperature 

(Tg) was obtained from the second heating using the inflection method. 

 

Tensile Tests 

 Tensile tests of films were measured using an MTS Criterion 42 machine equipped with 

a 10 N load cell and applying a 0.02 N preload. Rectangular uniform pieces (7 mm x 20 mm) 

and typically 300 µm thick were cut and brought to rupture at a constant deformation rate of 0.2 
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mm/min at room environmental conditions. Stress values were calculated using the specimen 

cross-section under no applied load. The Young´s modulus was obtained from the slope of the 

stress-strain curve within the first 1-4% relative elongation range using the built-in software. 

Experiments were repeated at least for 6 samples and parameters averaged to ensure 

reproducibility. After rupture, the bridge was returned to the starting position to check for 

macroscopic permanent deformations of samples. 

 

RESULTS 

Reaction progression 

 Time evolution of the non-catalyzed melt-condensation polymerization of aleuritic acid 

at 150 °C in air has been monitored by transmission IR, Figure 1. Esterification is clearly stated 

by the progressive transformation of the νC=O of the acid at 1703 cm
-1

 into the characteristic 

band of esters at 1732 cm
-1

 and by the development of (C-O) stretchings in esters (OC-O-C) at 

1176 cm-1 and 1245 cm-1 [17]. The reaction progression is also reflected in the modification and 

reduction of both the broad νOH band around 3300-3450 cm
-1

 and the ν(C-O) of primary and 

secondary alcohols at 1052 cm
-1

 and 1071 cm
-1

, respectively . The stoichiometric excess of non-

reacted hydroxyl groups causes the shoulder at 1715 cm-1 resulting from the perturbation of 

carbonyl groups of either acid or ester by hydrogen bonding. 

 The progression of the self-condensation of aleuritic acid has been analyzed by 

comparing the IR band areas of functional groups involved in the reaction (AνC=O/AνOH), Figure 

2. If band areas (Ai) are considered as the product between concentration of the active specie 

(Xi) and a sensitivity factor (Si), at any time: 

  AνC=O = SCO(XA+XE)       [1] 

  AνOH = 2SOH(XA+1)       [2] 

Where XA and XE are the actual molar fractions of acid and ester, respectively. The area ratio 

can be related to the extent of reaction (p): 

  AνC=O/AνOH = SCO/2SOH(2-p)      [3] 

At the beginning of the reaction (t=0): 
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  (AνC=O/AνOH)0 = SCO/4SOH      [4] 

And combining with Equation 3 

  AνC=O/AνOH = 2(AνC=O/AνOH)0/(2-p)     [5]  

 Thus, the reaction progress (p) can be calculated from the experimental (AνC=O/AνOH) 

ratios and values are plotted as an inset in Figure 2. 

 The evolution of the (AνC=O/AνOH) ratio suggests the occurrence of several stages. The 

first one is characterized by the growth and achievement of a steady value between 8-11 hours 

that is assigned to the condensation polymerization itself. Both, the low intensity of the free acid 

contribution (~1700 cm-1) to the νC=O band in the plateau (Figure 1) and the achievement of the 

(AνC=O/AνOH) value corresponding to a polyester obtained in vacuum for 8h at 150°C (0.29)  

suggests its completion, Figure 2. After the plateau, and in a second stage, the sudden increment 

of the AνC=O/AνOH ratio and a progressive increase after then are indications of additional 

reactions. 

 To better detect the chemical modifications involved in each stage, IR spectra have been 

subtracted between specific reaction times (Figure 2 (right)). Between 0 and 4 hours, negative 

bands at 1702 cm
-1

 and 3275 cm
-1

, as well as a positive peak at 1732 cm
-1

, are characteristic for 

the esterification between the carboxylic acid and the hydroxyl groups. The same modifications 

are observed between 4h and 8 h (plateau), though the intensity has decreased appreciably as 

expected from the proximity to the reaction completion. 

 In the second stage, when IR spectra at the plateau and after 13 h reaction are compared, 

both: a strong increment of the νC=O absorption at 1743 cm
-1

 and an intense hydroxyl loss are 

observed. As the nominal esterification reaction is almost completed after 8 h at 150°C, we 

ascribe these modifications to a vicinal diol cleavage and oxidation reaction in air forming new 

acid groups undergoing further esterification with surplus hydroxyls. Such vicinal diol cleavage 

reaction slows down as deduced from the difference after heating for additional 11 hours (from 

13 h to 24 h), Figure 2 (right) . Additionally, minor amounts of other oxidation products can be 

detected after extended heating periods, among them peroxides (doublet around 1806 cm
-1

 and 

1778 cm-1) and peroxyesters (R-CO-O-O-R´, 1760-1770 cm-1) [18] contributing to the 
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broadening on the high wavenumber side of the νC=O peak, Figure 1. Also, minor alcohol 

dehydration is detected by the ν(C=C) around 1630 cm-1. 

 The formation of the polyester within the first stage is corroborated by 13C MAS-NMR, 

Figure 3. Evidences are the progressive transformation of the acid (-COOH) 178.1 ppm signal 

into the corresponding (-CO-OR) at 174.3 ppm and the appearance of aliphatic carbon signals at 

33.7 ppm (-CH2-CO-OR) and 27.0 ppm (-CH2-CO-O-CH2-CH2-). Moreover, primary hydroxyl 

esterification is confirmed by the transformation of the 62.7 ppm peak (HO-CH2-) into the one 

at 65.3 ppm (-CH2-CO-O-CH2-) [19,20,21,22,23]. Once the polyester is formed (11 h), 13C 

MAS-NMR reveals the presence of both free (62.7 ppm) and esterified (65.3 ppm) primary 

hydroxyls and their band area ratio indicate that most of them have reacted (about 75 to 80%). 

Consequently, esterification of secondary hydroxyls has to be much more reduced. Indeed, 

minor secondary hydroxyl esterification can be postulated from the weak component around 82-

83 ppm (-CHOR-CHOH-) in the 
13

C MAS-NMR spectra. 

 The vicinal diol cleavage and oxidation reaction in air is also detected by 13C MAS-

NMR. As observed above 11 h in Figure 3, there is a slight enhancement of the intensity of the 

carbonyl (~175 ppm) signal accompanied by a decrease of the secondary hydroxyl peak (~75 

ppm). Additionally, such formation of new carboxylic groups is detected by means of a residual 

non-esterified fraction causing the small sharp peak at 176.8 ppm. 

 

 Structural Characterization 

 XRD patterns of polyester films prepared by non-catalyzed melt-polycondensation of 

aleuritic acid at 150 °C in air at different reaction times are shown in Figure 4A. Solids obtained 

at the plateau and above display a single broad peak at 19.7° characterizing amorphous aliphatic 

polymers. Earlier peaks at 8.4°, 19.5° and 22.6° are assigned to the non-reacted aleuritic acid 

phase. Their disappearance after 12-13 hours reaction agrees with the reaction completion 

indicated by the plateau defined from IR data in Figure 2. 

 The initial first heating DSC thermogram (not shown) of the polymeric films contains 

an endothermic peak around 46 °C whose intensity continuously decreases until disappearance 
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above 12 h reaction. In good agreement with IR and XRD data, this endothermic event is 

associated to the melting of a metastable phase of the non-reacted aleuritic acid fraction 

(aleuritic acid m.p. 94°C). Figure 4B (inset) displays the DSC second heating cycle of the series 

showing the crystallization-melting event of the metastable acid phase as well as the glass 

transition (Tg) assigned to the amorphous polyester phase created. The glass transition is 

observed to linearly shift to higher temperature as the esterification reaction proceeds and up to 

the acid phase depletion after 12-13 h reaction at 150 °C, Figure 4B. 

 The polyesters obtained show a good thermal stability as indicated by maximum 

thermal degradation rate peaks (Td(max)) around 450°C. 

 Tensile tests data of the series of polyhydroxyesteres prepared are compiled in Figure 5. 

In every case, the curves correspond to a viscoelastic behavior showing no strain softening. 

After rupture, no appreciable macroscopic permanent deformation are observed. The Young´s 

modulus displays two patterns within the series. First (below 11 h preparation), there is a 

continuous decrease that is related to the consumption of the crystalline aleuritic acid phase. In 

this stage, the polymer can be elongated up to 30 % before breaking. Full elimination of the acid 

is characterized by a sudden elastic modulus fall and a notorious increment of the strain at break 

(up to 70 %). The second stage (above 11 h reaction) shows a very smooth elastic modulus 

increment accompanied by a strong reduction of the elongation at break. 

 

DISCUSSION 

 The kinetics of the thermal self-polymerization of aleuritic acid has been previously 

studied by determination of acid and saponification values by titration [15]. In this article we 

monitor the process by the analysis of the IR absorptions of the functional groups (-C=O and –

OH) involved in the esterification reaction. AνC=O/AνOH  ratios indicate that despite the atypical 

synthesis conditions used, i.e. no catalyst and no hydrophilic phase or reduced pressure to trap 

water molecules, the self-polycondensation of aleuritic acid in air at 150 °C reaches a final 

conversion of about 94 % in 7-8 hours. As a reference, a similar conversion (98 %) has been 

calculated by thermogravimetry from the water evolved after heating aleuritic acid under N2 for 
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8 h at 150 °C. Moreover, spectroscopic IR and 
13

C MAS-NMR data (Figures 1 and 3), as well as 

the similarity with the IR spectrum of samples prepared under vacuum (Figure S1), confirm the 

high purity and the absence of side oxidation reactions within this first esterification stage. 

Furthermore, the elemental analysis (w/w) of the polymer obtained after 8 h reaction is 67.4 % 

(C), 9.9 % (H) and 22.7 % (O) in quite good agreement with the theoretical values 67.1 % (C), 

10.5 % (H) and 22.4 % (O). 

 In this esterification stage, XRD and DSC data show the progressive consumption of the 

crystalline acid phase but discard the formation of a fusible polyhydroxyester from aleuritic acid 

as observed for alike ω-hydroxyacids [14,23]. The same conclusion is obtained from the 

absence of the characteristic series of bands in the 1300-700 cm
-1

 range in crystalline polyesters 

[24], Figure 1. The elimination of the acid phase is also reflected in the tensile properties of the 

polycondensation product. Thus, Figure 5 shows a continuous increment of elasticity that is 

correlated (upper inset) with the reduction of the acid phase as determined from XRD. Here, 

aleuritic acid crystallites are proposed to act as rigid fillers in the amorphous rubbery phase 

increasing the Young´s modulus and reducing the strain at break. 

 As deduced from the ratio between primary (1051 cm-1) and secondary (1072 cm-1) 

hydroxyl IR intensities, Figure 1, and the quantification of the carbonyl and hydroxyl 13C MAS-

NMR signals, Figure 3, and despite secondary hydroxyl excess, esterification is more extended 

with primary hydroxyl groups. Minor esterification of secondary hydroxyls gives rise to 

branching but no covalent cross-linking is possible at the esterification stage. 

 On the other side, the polyhydroxyester formed is infusible and quite insoluble in a wide 

series of pure and mixed solvents, among them chloroform, toluene, light alcohols, THF, DMF 

and DMSO, which, in turn, impeded molecular weight determination. However, DSC reveals a 

linear increment of Tg with heating time within the esterification stage, Figure 4B. Assuming a 

Flory-Fox type relationship between Tg and the number-average molecular weight (M): 

  Tg = Tg,∞ - K/M      [6] 

The molecular number-average molecular weight can be related to the heating time (t) by the 

equation: 
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  M = K/(Tg,∞ - Tg,0 - αt)     [7] 

Where K is an empirical constant, Tg,∞ and Tg,0 the glass transition temperature at reaction times 

t=∞ and t=0, respectively, and α the slope of the linear part of Tg vs t relationship observed in 

Figure 4B. Unfortunately, the value of K cannot be determined and therefore not even an 

estimation of the number-average molecular weight of the polyesters obtained can be provided. 

However, Equation 7 predicts an asymptotic molecular weight increase with heating time as 

interpreted from a successive aggregation of partially branched moieties into larger structures up 

to tentative gelation. Thus, the structure of the final polyhydroxyester could be described as a 

three dimensional primary ester-bonded network with partial branching arising from the 

esterification of secondary hydroxyls. This primary structure is completed by a secondary 

network of hydrogen bonded hydroxyls but no covalent cross-linking at this stage can be stated 

from our experimental data. 

 In a second stage, and following the esterification, IR and 13C MAS-NMR data reveal 

the reduction of secondary hydroxyls and the simultaneous increment of carbonyl species. This 

is interpreted as the occurrence of a thermal diol cleavage and oxidation reaction in air: 

 R-CH2(OH)-(OH)H2C-R´ + 2 O2 → R-COOH  +  HOOC-R´  + 2 H2O 

From the AνC=O/AνOH values in Figure 2, about 13 % of monomers are calculated to undergo this 

cleavage reaction by heating from 10 h to 13 h. Surprisingly, such reaction is not evidenced 

until full consumption of the acid phase and infusibility are achieved. Therefore, we postulate a 

gas-solid reaction at the near surface of the polyhydroxyester as deduced from ATR-FTIR data 

of the air-exposed side of the film (Figure S2). The fact that the reaction slows down as heating 

continues, Figure 2, indicates that its progression is controlled by the slow oxygen diffusion into 

the film bulk. 

 Spectroscopic data also reveals that new carboxylic acid groups generated in the diol 

cleavage and oxidation reaction also undergo esterification with the excess of secondary 

hydroxyls giving rise to a small amount of cross-linking (two new ester linkages per C-C 

cleaved). An experimental indication of such cross-linking is the enhancement of the 82 ppm 
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13
C MAS-NMR signal corresponding to esterified secondary hydroxyls, Figure 3. Cross-linking 

is then associated to the diol cleavage and oxidation reaction that has been proved to be 

restricted to the near surface region of the air exposed side of the film. For this reason, bulk 

parameters such as the Tg and the Young´s modulus grow slightly in the second stage. However, 

strain at break is strongly affected, Figure 5. Our hypothesis is that fracture is better initiated 

and propagated in the altered face of the films leading to appreciably smaller rupture 

elongations. 

 Tensile parameters of poly(aleuritate) are well below of those of others polyesters like 

poly(ε-caprolactone) and medium and long-chain poly (ω-hydroxyfatty acids)[14, 25,26]. Thus, 

the Young´s modulus and the stress at break can be up to 100 and 10 times smaller, 

respectively. This is an important feature conditioning the final uses of this polymer. However, 

the availability of free hydroxyls in the structure of the polyhydroxyester is considered as 

centers for the action of cross-linkers improving the mechanical behavior of the base polymer. 

Moreover, and compared to such poly (ω-hydroxyfatty acids), poly(aleuritate) has two 

important features: infusibility and insolubility, which in turn makes processing more complex. 

However, they are of great interest, for instance, in designing coating resins for metal food 

containers. The formation of coatings few micron thick will undoubtedly reduce the synthesis 

time reported here of few hundred micron thick films making the process to be more efficient.  

 As potential food preserving coating, the barrier properties of poly(aleuritate) films are 

currently being investigated by our group. They are proven to be hydrophobic displaying high 

water contact angle (95-100°) and low water absorption (~3% w/w) and permeance (~ 2 x 10-5 

m s-1).  

 Another important aspect launching the obtaining of polyesters from natural occurring 

fatty acids is their presumable non-toxicity and biodegradability based on the chemical 

similarity with biopolyesters like cutin. Our preliminary results show that poly(aleuritate) is 

slowly degraded in contact with soil by both chemical hydrolysis and by the action of 

microorganism like fusarium fungi.   
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CONCLUSIONS 

 Experimental data presented in this article show that few hundred micron thick 

polyhydroxyester films can be directly prepared by non-catalyzed melt-condensation 

polymerization in air from a natural occurring fatty hydroxyacid like aleuritic (9,10,16-

trihydroxyhexadecanoic) acid. The esterification reaction has been clearly stated from 

spectroscopic data and it is characterized by the high conversion obtaining of an amorphous, 

insoluble and infusible rubbery elastic material showing a quite low Young´s modulus and a 

considerable elongation with no permanent deformation after tensile rupture. The structure of 

the polymer consists of a primary ester-bonded framework, mostly involving primary 

hydroxyls, and partially branched by esterification with secondary ones. The main network is 

completed by hydrogen bonding interactions between free secondary surplus hydroxyls. 

 After the polyhydroxyester is formed and upon further heating, oxidation and 

dehydration side reactions have been observed at the near surface region. Oxidative degradation 

forms additional carboxylic acid groups undergoing esterification and causing a small amount 

of covalent cross-linking having little influence on bulk parameters such as the glass transition 

temperature and the Young´s modulus. 

 Results obtained in this study can be extended to the design of non-toxic and 

biodegradable films or coatings for food packaging from similar natural occurring fatty 

hydroxyacids that can be extracted, for instance, from peel residues in the fruit processing 

industry.  
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Infrared transmission spectra of the products resulting from the non-catalyzed melt-polycondensation of 
aleuritic acid at 150 °C in air after reacting for the indicated times. Spectra are normalized to the area of ν(-

CH2-) peaks between 2800-2900 cm-1.  
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(left) Evolution of the area ratio between carbonyl and hydroxyl IR stretching bands vs reaction time 
(circles) in the non-catalyzed melt-polycondensation of aleuritic acid at 150 °C in air. As a reference, the 

(AνC=O/AνOH) obtained for a sample prepared under vacuum is included. The inset in the lower part shows 
the extent of reaction (p) vs reaction time as calculated from the (AνC=O/AνOH) values. (right) IR spectra 

differences highlighting the chemical modifications occurred between specific reaction times.  
72x51mm (300 x 300 DPI)  
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13C MAS-NMR proton decoupling single-pulse spectra of samples obtained after indicated reaction times in 
the non-catalyzed melt-polycondensation of aleuritic acid at 150 °C. For clarity, the 50-200 ppm region 

intensity is expanded by a factor of 2.5. Area ratio between (C=O) and (C-O) signals are indicated between 

parentheses.  
93x82mm (300 x 300 DPI)  
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(A) XRD patterns of samples prepared by non-catalyzed melt-polycondensation of aleuritic acid at 150 °C in 
air after reacting for (down to up) 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 20 and 24 hours, respectively. 
(B) Glass transition temperature (Tg) evolution vs reaction time, (inset) DSC thermograms (second heating) 

of samples indicated in (A).  
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Tensile parameters of films prepared by non-catalyzed melt-polycondensation of aleuritic acid at 150 °C in 
air at different reaction times. The upper inset shows the relationship between the Young´s modulus and the 
presence of non-reacted aleuritic acid phase. The lower inset displays typical stress-strain curves at selected 

reaction times.  
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