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ABSTRACT: 32 

Tremor in essential tremor (ET) is generated by pathological oscillations at 4 to 12 Hz, 33 

likely originating at cerebello-thalamo-cortical pathways. However, the way in which 34 

tremor is represented in the output of the spinal cord circuitries is largely unknown 35 

because of the difficulties in identifying the behavior of individual motor units from 36 

tremulous muscles. By using novel methods for the decomposition of multichannel 37 

surface EMG, we provide a systematic analysis of the discharge properties of motor 38 

units in 9 ET patients, with concurrent recordings of EEG activity. This analysis 39 

allowed inferring the contribution of common synaptic inputs to motor neurons in ET. 40 

Motor unit short-term synchronization was significantly greater in ET patients than in 41 

healthy subjects. Further, the strong association between the degree of synchronization 42 

and the peak in coherence between motor unit spike trains at the tremor frequency 43 

indicated that the high synchronization levels were generated mainly by common 44 

synaptic inputs specifically at the tremor frequency. The coherence between EEG and 45 

motor unit spike trains demonstrated the presence of common cortical input to the motor 46 

neurons at the tremor frequency. Nonetheless, the strength of this input was 47 

uncorrelated to the net common synaptic input at the tremor frequency, suggesting a 48 

contribution of spinal afferents or secondary supraspinal pathways in projecting 49 

common input at the tremor frequency. These results provide the first systematic 50 

analysis of the neural drive to the muscle in ET and elucidate some of its characteristics 51 

that determine the pathological tremulous muscle activity.  52 

 53 

KEYWORDS: pathological tremor, motor unit, motor neuron, coherence, EMG, EEG. 54 

 55 
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Introduction 57 

Essential tremor (ET) is characterized by 4–12 Hz upper limb tremor during posture and 58 

movement (Benito-León and Louis. 2006). Tremor in ET is ultimately generated by the 59 

abnormal rhythmic entrainment of motor neurons innervating the affected muscles 60 

(Elble and Deuschl, 2009), which results from the combination of central oscillatory 61 

activity (at cerebello-thalamo-cortical pathways and possibly other structures; Benito-62 

León and Louis, 2006), reflex loops with different arc length, and limb properties 63 

(McAuley and Marsden, 2000; Deuschl et al., 2001). The manner in which these 64 

mechanisms interact to generate the abnormal neural activity is not fully understood 65 

(Louis et al., 2013), partly because of the difficulty in directly recording the output of 66 

spinal motor neurons activating the tremulous muscles (neural drive to muscles). 67 

Motor unit spike trains have been traditionally analyzed using intramuscular electrodes, 68 

a technique that suffers from several limitations, especially when applied in 69 

pathological conditions such as tremor. One of these limitations is the small number of 70 

identified motor units, which often does not comprise a representative sample of the 71 

active population (Merletti and Farina, 2009). Moreover, the invasiveness of the 72 

technique and the sensitivity to small electrode movements strongly limit its 73 

applicability in the investigation of tremor. Indeed, only one study, to our knowledge, 74 

has reported motor neuron discharge properties in ET using this technique (Elek et al., 75 

1991), focusing on the tendency of individual motor neurons to fire paired or tripled 76 

discharges with short interspike epochs (ISI; ~10–90 ms). These paired discharges 77 

likely occur due to the presence of a large excitatory drive (Kudina and Andreeva, 78 

2013) and are thus etiologically different to double discharges or doublets, which arise 79 
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during delayed depolarization (Kudina and Andreeva, 2013) and have briefer ISIs (< 10 80 

ms; Heckman and Enoka, 2012). 81 

Despite the lack of direct measurements of motor unit behavior in tremor, there are 82 

long-standing assumptions on some of the motor unit properties in ET. For example, it 83 

is generally assumed that motor units in ET patients are highly synchronized (Elble and 84 

Deuschl, 2009), although this assumption has never been experimentally verified. If 85 

confirmed, the presence of high synchronization among motor units would imply high 86 

levels of common synaptic inputs to motor neurons, which may have cortical (Farmer et 87 

al., 1993), subcortical (Boonstra et al., 2008), or afferent origin (Dartnall et al., 2008).  88 

In this study, we provide a systematic analysis of the discharge properties of motor units 89 

in ET patients, with concurrent recordings of EEG activity. Spike trains of individual 90 

motor units were identified using a novel algorithm for decomposing multi-channel 91 

surface EMG (Holobar et al., 2012), which permitted to reliably detect several motor 92 

units accurately and non-invasively. The availability of this technique provides the 93 

unique possibility to precisely assess for the first time the neural drive to muscle in ET. 94 

With this approach we aimed to first directly measure the levels of motor neuron 95 

synchronization in ET and to further investigate the strength and source of common 96 

synaptic inputs to the motor neuron pool using coherence analysis, both between motor 97 

unit spike trains and between EEG and motor unit spike trains. These analyses provide a 98 

systematic insight into the properties of the neural drive to the muscle in ET, and 99 

elucidate the causes of specific components of common input determining the 100 

pathological tremulous muscle activity.  101 

 102 

 103 
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Materials and methods 104 

Subjects 105 

We present results for nine patients (5 female, 4 male; age, mean ± SD: 71.0 ± 5.6 106 

years, range 64–80 years) with a diagnosis of definite ET according to the criteria of the 107 

Tremor Investigation Group and the consensus of the Movement Disorder Society 108 

Group (Deuschl et al., 1998). All patients showed visible and persistent postural and 109 

kinetic tremor of the arms (unilateral or bilateral), and in some cases also at rest. No 110 

patient exhibited head or trunk tremor during the examination, or had a history of 111 

neurological diseases other than ET. None had features of parkinsonism (bradykinesia, 112 

rigidity) aside from isolated rest tremor. The mean disease duration was 22.7 ± 10.0 113 

years (range 8–36 years). Tremor severity ranged from mild to severe, with a mean 114 

score in the most affected limb of 24.7 ± 7.0 (range 14–32), according to the Fahn-115 

Tolosa-Marin scale. Four patients were taking anti-tremor drugs (propranolol 120 mg, 1 116 

patient; propranolol sporadically, 1 patient; propranolol 60 mg and clonazepam 0.5 mg, 117 

1 patient; propranolol 80 mg, 1 patient; all values indicate daily dosage), which in all 118 

cases were withheld for at least 12 h before the recordings. Patients were selected for 119 

enrolment by neurologists at two locations (3 at Hospital General Universitario, 120 

Valencia, Spain, and 6 at Hospital Universitario “12 de Octubre,” Madrid, Spain), 121 

starting 3 months before the experiments. They were identified from the database of 122 

patients from both hospitals after in-patient examination. No patient declined to 123 

participate in the study. 124 

 125 

 126 
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Ethical approval 127 

The local ethical committees at Hospital 12 de Octubre, Madrid, Spain, and Universidad 128 

Politécnica de Valencia, Valencia, Spain, gave approval to the study, and warranted its 129 

accordance with the Declaration of Helsinki. All patients were informed beforehand, 130 

and signed a written informed consent to participate. 131 

Recordings 132 

Hand tremor at the most affected side (defined in situ after examination by a trained 133 

practitioner) was concurrently recorded with surface EMG and solid-state gyroscopes. 134 

Surface EMG was recorded with a 13 x 5 electrode grid with an inter-electrode distance 135 

of 8 mm (LISiN–OT Bioelettronica, Torino, Italy). The grid was placed over the 136 

extensors of the wrist, centered laterally above the extensor digitorum communis, and 137 

longitudinally above the muscle belly; a wrist bracelet soaked in water served as 138 

common reference. The signal was amplified (EMGUSB, OT Bioelettronica, Torino, 139 

Italy), band-pass filtered (10–750 Hz), and sampled at 2,048 Hz by a 12-bit A/D 140 

converter. Hand movement was measured with a pair of solid-state gyroscopes 141 

(Technaid S.L., Madrid, Spain) placed on the dorsum of the hand and the distal third of 142 

the forearm, by computing their difference (Rocon et al., 2006; Gallego et al., 2010). 143 

The raw gyroscope signals were sampled at 50 Hz by a 12-bit A/D converter, and low 144 

pass filtered (< 20 Hz). At the same time, EEG signals were recorded from 32 positions 145 

of the scalp, following the International 10-20 system (AFz, F3, F1, Fz, F2, F4, FC5, 146 

FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, 147 

CP2, CP4, CP6, P3, P1, Pz, P2, and P4), with passive Au electrodes. The reference was 148 

set to the common potential of the two earlobes, and Az was used as ground. The signal 149 

was amplified (gUSBamp, g.Tec gmbh, Graz, Austria), band-pass (0.1–60 Hz) and 150 
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notch (50 Hz) filtered, and sampled at 256 Hz by a 16 bit A/D converter. The recording 151 

systems were synchronized using a common clock signal generated by the computer 152 

acquiring the gyroscope data. The experiments were performed at Instituto de 153 

Biomecánica de Valencia, Valencia, Spain (patients 01–03), and Hospital 12 de 154 

Octubre, Madrid, Spain (patients 04–09). The data were stored and analyzed offline 155 

using Matlab (The Mathworks Inc., Natick MA, USA). Figures 1A to 1C show 156 

representative EEG, surface EMG and gyroscope signals.  157 

[Figure 1 around here] 158 

Procedure 159 

The recordings were performed while patients were seated in a comfortable armchair, in 160 

a dimly illuminated room. Postural or rest tremor (depending on the patient) was 161 

elicited by asking the patients to keep the hands outstretched with palms down, parallel 162 

to the ground, while the forearms were fully supported on an armrest, or by asking them 163 

to relax with the hands hanging freely. The patients were instructed to stay relaxed and 164 

keep their gaze fixed on a wall at about 2 m distance, and those with mild tremor 165 

severity were asked to mentally count backwards during the recordings to enhance their 166 

tremor (Hellwig et al., 2001). 167 

Patients performed a series of 4 min trials (between 1 and 3, depending on how they 168 

tolerated the setup, and on the quality of the recordings) of the task(s) that elicited their 169 

tremor. This ensured that we recorded at least one trial with tremor being present during 170 

most of the trial. For each patient, we present results for the trial during which tremor 171 

was most persistent. 172 

 173 



Neural Drive to Muscle in Essential Tremor  9/23/2014 

Page 8 of 34 

Surface EMG Decomposition 174 

Motor unit spike trains were identified from the multichannel surface EMG with the 175 

convolution kernel compensation (CKC) technique (Holobar and Zazula, 2007; Holobar 176 

et al., 2009), and manually verified by an experienced operator. The CKC technique has 177 

been validated with the decomposition of motor neuron activities in more than 15 178 

muscles and 500 healthy subjects performing voluntary contractions (e.g. Holobar et al., 179 

2009, 2010), and has been recently shown to work accurately also for EMG signals of 180 

tremor patients (Holobar et al., 2012). Specifically, the decomposition method has been 181 

shown to accurately decompose signals with paired and tripled discharges, i.e., firings 182 

with an ISI in the ~10–90 ms range, as observed in pathological tremor (Das Gupta, 183 

1963; Dietz et al., 1974; Elek et al., 1991; Baker et al., 1992; Christakos et al., 2009). 184 

This technique is also the only one that was proved to be accurate for extremely high 185 

levels of motor unit synchronization (Holobar et al., 2012), as it may be expected in 186 

tremor.   187 

Since the EMG decomposition accuracy was fundamental for assessing the properties of 188 

the neural drive to muscle and common synaptic inputs in ET patients, we defined two 189 

inclusion criteria for the identified single motor unit spike trains. First, given that the 190 

estimation of the characteristics of common inputs to motor neurons and the 191 

computation of corticospinal coherence typically require a sufficiently large number of 192 

epochs, we excluded those motor units that were not firing during more than 65 % of 193 

the trial. In addition, to ensure that only motor units whose spike trains were identified 194 

with great accuracy were considered in the analysis, we computed for each of them the 195 

signal-to-interference metric proposed in (Holobar et al., 2014). This metric assessed 196 

the quality of the decomposition by comparing the height of the spike trains identified 197 

to the baseline jitter of the CKC algorithm. A threshold of 28 dB was applied to this 198 
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metric for the exclusion of motor units whose discharge patterns were not identified 199 

with high reliability (Holobar et al., 2014). Fig. 1 shows an example of decomposition 200 

of the surface EMG. 201 

 Data Processing and Analysis 202 

This section presents the methodology employed to investigate motor unit 203 

synchronization, the characteristics of the common synaptic inputs to the motor neuron 204 

pool, and how the discharge pattern of individual and groups of motor neurons related 205 

to the tremor-related cortical activity. In some analyses several motor unit spike trains 206 

were pooled to build a so-called composite spike train (CST; Negro and Farina, 2011, 207 

2012; Farina et al., 2013). The CST constitutes the best representation of the common 208 

synaptic input to motor neurons (Farina et al., 2013, 2014a), which is the neural drive to 209 

the muscle (Farina et al., 2014b), and is strongly correlated with muscle force (Negro et 210 

al., 2009). EEG channels were spatially filtered using the Hjorth transform (Hjorth, 211 

1975) (16 electrodes: Fz, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2, C4, CP3, CP1, 212 

CPz, CP2, and CP4), and artefacts were carefully removed. Manual inspection, in 213 

combination with a threshold (defined as the mean ± 3 SD of a signal composed by 20 214 

high-quality 1 -s epochs chosen from different parts of the trial) served to ensure that 215 

the resultant EEG signal did not contain significant artefacts.  216 

Motor unit synchronization was estimated using a commonly employed technique 217 

(Nordstrom et al., 1992), which is based on the computation of cross-correlograms 218 

between pairs of motor unit spike trains (Kirkwood and Sears, 1978; Nordstrom et al., 219 

1992). To this end, for each trial, we calculated the cross-correlation histogram and its 220 

correspondent cumulative sum (± 100 ms relative to the reference motor neuron 221 

discharge, in 1 ms bins; normalized by dividing each bin by the mean of the cross-222 

correlation histogram) for all pairs of motor units. The position and duration of the 223 
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synchronous peak in the cross-correlation histogram considered to be significant was 224 

calculated from the cumulative sum (Ellaway, 1978), by finding the first relative 225 

minimum moving backwards from the reference motor neuron discharge, and the first 226 

relative maximum moving forward (Dideriksen et al., 2009). We then considered this 227 

cross-correlation peak significant if the relative extrema of the cumulative sum function 228 

that identified it were above the mean of the baseline of the cross-correlogram by more 229 

than 3 SDs of the first 50 bins (Davey et al., 1986). Finally, the common input strength 230 

(CIS) index was computed for all pairs of motor neurons exhibiting significant 231 

synchronization, as the number of counts within the synchronous peak in excess of that 232 

expected by chance, divided by the time during which the motor units were active 233 

(Nordstrom et al., 1992). The last 2 min of the trial with stable motor unit firings were 234 

considered for these calculations, to enable comparison with the literature. 235 

The frequency analysis of the common synaptic inputs to the motor neuron pool was 236 

performed by computing, for each trial, the mean coherence between all possible 237 

combinations of pairs of CSTs comprising the maximum possible number of different 238 

motor units (Negro and Farina, 2012). For example, if 7 motor units were identified 239 

from a muscle, we calculated the coherence function for each possible pair of CSTs 240 

comprising 4 and 3 different motor unit spike trains, and then averaged the coherence 241 

for all pairs. This has recently been shown to be the most effective means of 242 

characterizing the frequency content and strength of the common inputs to motor 243 

neurons (Negro and Farina, 2012). Furthermore, we investigated the relationship 244 

between motor unit synchronization as computed with the CIS and the common input 245 

strength as estimated from the coherence between pairs of CSTs by computing the CIS 246 

for the same data windows. 247 
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Finally, corticospinal coherence was computed to assess the cortical contribution to the 248 

neural drive to muscle, i.e. the CST. This allowed verifying the hypothesis that the 249 

central oscillations of ET are a common cortical projection to the motor neuron pool, 250 

and investigating their role as causative factors of the observed strength of common 251 

synaptic input. We calculated the corticospinal coherence between the 16 processed, 252 

artefact-free EEG channels and all the possible combinations of CSTs comprising 253 

between 1 and the total number of motor units identified during the trial. To test the 254 

hypothesis of common cortical projection to the motor neuron pool, we assessed, for the 255 

channel exhibiting the largest corticospinal coherence at the tremor frequency, how the 256 

coherence varied with the number of motor units considered: if the projection were 257 

common to the entire motor neuron pool, the coherence should increase monotonically, 258 

reaching a plateau, as more motor neurons were considered in the CST (Negro and 259 

Farina, 2011; Gallego et al., 2011). 260 

The coherence functions between motor units and between motor units and EEG were 261 

calculated following the method proposed in Halliday et al. (1995). First, the CSTs 262 

and/or EEG signals were divided into epochs of 1-s duration, from which the individual 263 

power spectra and the cross-spectrum (1-s Hann window, 0.125 Hz resolution, achieved 264 

with zero-padding) were computed. Then, coherence was calculated as the ratio of the 265 

magnitude squared cross-spectrum to the product of their individual power spectra (e.g. 266 

Halliday et al., 1995; Hellwig et al., 2001). The confidence limit was obtained as 267 

proposed in Rosenberg et al. (1989).  268 

Throughout the paper, results are given as mean ± SD. Statistical tests were considered 269 

significant if P < 0.05. Correlation between pairs of variables were investigated either 270 

using Pearson’s or Spearman’s correlation; the latter was employed when the data did 271 

not conform to normality (Lilliefor’s test, P < 0.05). Differences in the strength of 272 
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common input at different frequency bands were assessed using a Student’s paired t-273 

test. We tested whether motor unit synchronization as estimated with the CIS was 274 

significantly greater than for controls using a Wilcoxon signed rank test. To calculate 275 

the minimum number of motor neurons that most accurately transmitted the tremor-276 

related cortical activity, we compared the magnitude of the coherence at the tremor 277 

frequency for the pooled data of all the patients with a Student’s unpaired t-test. Pairs of 278 

corticospinal coherence estimates obtained for CSTs comprising n and n + 1 motor units 279 

were compared for increasing values of n until a non-significant difference was found.  280 

 281 

Results 282 

The total number of identified motor unit spike trains was 56 (6.2 ± 2.4 motor units per 283 

trial; see Table 1 for details). The average motor unit discharge rate over all patients had 284 

large variability, ranging from 9.0 ± 2.9 to 18.1 ± 3.9 pps (Table 1). There was no 285 

consistent relationship between motor unit firing rate and tremor frequency across 286 

patients (Fig. 2A). However, mean discharge rate was a poor indicator of motor unit 287 

properties since the ISI distributions varied among patients and included bimodal 288 

distributions. Therefore, we further analyzed the individual ISI histograms for each 289 

motor unit. The ISI histogram of the motor units discharges (Fig. 2B) followed either 290 

(1) a bimodal distribution (patients 01 to 04), with the first peak corresponding to paired 291 

or tripled discharges (average position of the peak, 34.6 ± 9.1 ms) and a second peak 292 

associated to the tremor frequency (average position, 190.5 ± 45.0 ms; see the 293 

representative examples in Fig. 1F, and Fig. 2B); or (2) a unimodal distribution (patients 294 

05 to 09; average position of the peak, 67.3 ± 26.2 ms), with a peak not significantly 295 

correlated with the tremor frequency (P = 0.100, Spearman’s correlation). The ISI 296 



Neural Drive to Muscle in Essential Tremor  9/23/2014 

Page 13 of 34 

histograms in Fig. 2 were built with all motor units together for each patient since all the 297 

units within a patient showed the same distribution of ISI. From Fig. 2A it is evident 298 

that there was no difference between the tremor frequency of the patients showing the 299 

two types of ISI distributions (range 4.8–6.1 Hz vs. 4.9–6.6 Hz, respectively). Finally, 300 

the relative proportion of paired and tripled discharges (range 37.43–68.15 % for those 301 

patients with a bimodal ISI histogram) varied considerably among motor units and 302 

patients, as reported for patients with Parkinson’s disease (Dietz et al., 1974; Christakos 303 

et al., 2009).  304 

[Table 1 and Figure 2 around here] 305 

Motor unit synchronization 306 

The analysis of cross-histograms of motor unit spike trains pairs indicated that the 307 

activities of 132 out of 169 motor unit pairs (78.1 %) were significantly synchronized. 308 

The average CIS over all motor units of all patients was 1.44 ± 1.44 pps (see values per 309 

patient in Table 1), an average value significantly greater (P < 0.001, Wilcoxon signed 310 

rank test) than that reported for healthy subjects for the same muscle group during 311 

voluntary contractions (mean value ≤ 0.7 pps; Keen and Fuglevand, 2004; Schmied et 312 

al., 1993). The CIS value was not associated to the tremor frequency (P = 0.472, 313 

Pearson’s correlation). 314 

Sources of Common Inputs to Motor Neurons 315 

Fig. 3 shows the coherence analysis between populations of motor units for each 316 

patient. In all cases there were two large peaks in the coherence spectrum, which 317 

indicated the presence of two main sources of common input to the motor neuron pool: 318 

one at low frequency (< 2–3 Hz), presumably related to the voluntary common drive to 319 

muscle (De Luca and Erim, 1994; Negro and Farina, 2009, 2012), and a second peak at 320 
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the tremor frequency (mean frequency 5.5 ± 0.9 Hz, indicated with black arrows in Fig. 321 

3). This suggests that, in addition to the common drive that reflected the neural control 322 

of voluntary contractions (8 out of 9 patients were holding their hands outstretched), the 323 

motor neuron pool received common input at the tremor frequency. The extent to which 324 

both common synaptic inputs were shared across the motor neurons (i.e., coherence 325 

values at the two frequencies) were independent of each other (P = 0.795, Pearson’s 326 

correlation), being the coherence at the tremor frequency significantly greater (P = 327 

0.002, Student’s paired t-test). These common inputs may not only reflect the 328 

descending drive to muscle, but also the contribution of spinal afferents (Farina et al., 329 

2010; Dartnall et al., 2008). The coherence spectra of patients 01, 02 and 08 also 330 

exhibited clear peaks at frequencies that were harmonics of that of the tremor (Fig. 3). 331 

Because two of these patients (01 and 02) had a bimodal ISI histogram contrary to 08 332 

(Fig. 2), these coherence peaks were not associated to the type of ISI distribution.  333 

Direct examination of the motor unit spike trains explains the high coherence at the 334 

tremor frequency. Fig. 4 shows the filtered motor unit spike trains (band-pass, 3–10 Hz, 335 

zero phase), which in the tremor band are oscillations at the same frequency and phase 336 

as the tremor oscillations. The similarity of these oscillations among motor units 337 

indicates the common nature of the generating input.  338 

[Figure 3 and Figure 4 around here] 339 

Finally, the mean coherence value between CSTs at the tremor frequency was 340 

significantly correlated with the mean CIS (calculated using the same data windows; see 341 

Fig. 3) across patients (P = 0.005, r = 0.840, Pearson’s correlation).  342 

Corticospinal Coupling 343 
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The average number of 1-s epochs per subject not influenced by EEG artefacts, and 344 

with stable discharges of the identified motor neurons, was 97.4 ± 50.6 (range 36-182). 345 

These were the data used in the calculations of corticospinal coupling. 346 

Fig. 5 displays an example of corticospinal coherence as estimated from the motor unit 347 

activities and the processed EEG signal recorded at the contralateral sensorimotor 348 

cortex (where the largest coherence was found, as expected). The plots of coherence 349 

correspond to the functions obtained when varying the number of motor unit spike 350 

trains used for the calculation (from 1 to 11, in this example). The coherence peak at the 351 

tremor frequency (~4.75 Hz, indicated with the red arrow in Fig. 5A) was above 352 

confidence level for any number of motor units, even when using only one unit, 353 

indicating a strong tremor-related cortical projection. Moreover, the magnitude of the 354 

corticospinal coherence at the tremor frequency increased monotonically with the 355 

number of motor neurons considered, until a plateau was reached when ~5 motor 356 

neurons were included in the CST (Fig. 5B). Considering more than five motor units for 357 

the estimate increased negligibly the amount of coherence (for example, the increase 358 

when considering 6 motor units was 0.5 % with respect to 5, and when considering 11, 359 

it was 1.5 % with respect to 5). The estimation of corticospinal coherence was relatively 360 

invariant to which motor units were chosen to build the CST, as shown by the small SD 361 

of the values in Fig. 5B. These observations verify the hypothesis that the descending 362 

tremor-related cortical activity was common to the entire motor neuron pool (Negro and 363 

Farina, 2011; Gallego et al., 2011). The coherence spectra also showed a significant 364 

peak at the beta band (indicated with a blue arrow in Fig. 5A), which is related to 365 

voluntary descending commands (e.g., Conway et al., 1995; Negro and Farina, 2011). 366 

The coherence in this band also increased monotonically as more motor units were 367 

considered, but the trend was slower and the values had greater SD than for the 368 
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coherence at the tremor band (Fig. 5B). Therefore, for this patient differences existed in 369 

the manner in which both descending drives were projected to the output of the motor 370 

neuron pool. As expected, the frequency of the hand oscillations corresponded to the 371 

tremor frequency peak of the corticospinal coherence (indicated with a red arrow in Fig. 372 

5A and Fig. 5C). 373 

[Figure 5 around here] 374 

Similar results were obtained for all the patients analyzed (Table 1). In all cases, the 375 

corticospinal coherence function showed a significant peak at the tremor frequency and, 376 

in 8 patients, another peak in the beta band. Significant coherence at the beta band was 377 

found even in the patient who performed the rest task (patient 02, see Table 1), which 378 

implies that also in this case there was a certain amount of voluntary descending 379 

command. The only patient who did not show significant corticospinal coherence in the 380 

beta band was the one with the greatest number of signal epochs excluded due to 381 

artefacts. The relatively small number of epochs (49) used for the computation of 382 

coherence may have been not sufficient to identify a significant coherence level at high 383 

frequencies. Finally, it is worth observing that, although always above the confidence 384 

level, the corticospinal coherence values at the tremor frequency were relatively small 385 

(Fig. 5 and Table 1). 386 

As observed for patient 03 (Fig. 5B), in all the patients the corticospinal coherence at 387 

the tremor frequency increased monotonically as more motor units were included in the 388 

CST, and concurrently the variability of the estimate decreased (Fig. 6A). Moreover, in 389 

all patients, the coherence values tended to a maximum when using a relatively small 390 

number of units (Fig. 6A). The statistical analysis of the pooled data of all patients 391 

indicated that 5 motor units (P < 0.05, Student’s unpaired t-test) resulted in an accurate 392 

transmission of the corticospinal input, i.e. the increase in corticospinal coherence was 393 
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negligible after using 5 motor units for the estimate. As mentioned above, this indicates 394 

that tremor was a common cortical projection to the motor neuron pool (Negro and 395 

Farina, 2011). Interestingly, for seven patients (all except patients 02 and 08) the 396 

estimation of corticospinal coherence with only 1 motor unit showed a peak at the 397 

tremor frequency above the confidence level, as for the representative case of Fig. 5. 398 

This indicated that in most cases the descending cortical tremor input was sufficiently 399 

strong that it could even be observed in the output of a single motor neuron.  400 

The magnitude of the coherence in the beta band increased monotonically with the 401 

number of units for all patients, as for the tremor frequency, but did not reach a constant 402 

value using the maximum number of detected units.  403 

[Figure 6 around here] 404 

Finally, we found no significant relation between the magnitude of the corticospinal 405 

coherence at the tremor frequency and the corresponding peak in the coherence between 406 

CSTs (P = 0.445, Pearson’s correlation).  407 

 408 

Discussion 409 

We have systematically investigated the characteristics of the motor unit spike trains in 410 

ET patients, and the sources of common synaptic input that the motor neurons receive. 411 

This analysis was possible due to a recently developed method of decomposition of 412 

multichannel surface EMG recordings (Holobar et al., 2012) that circumvents the 413 

methodological limitations of traditional approaches using intramuscular electrodes 414 

(Merletti and Farina, 2009). This study demonstrates, for the first time, that the motor 415 

units in ET patients exhibit greater degree of synchronization than in healthy 416 
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individuals, which implies the existence of strong common synaptic inputs to the motor 417 

neuron pool. The high level of common input to motor neurons was confirmed by the 418 

analysis of coherence between CSTs, which showed that the increase in synchronization 419 

occurs mainly due to a common input at the tremor frequency. Corticospinal coupling, 420 

studied between EEG and CSTs, indicated that the tremor-related cortical activity is a 421 

common projection to the motor neuron pool. 422 

Despite the relative similarity in the mechanical manifestation of tremor among 423 

patients, the underlying motor unit discharges had different statistical distributions (see 424 

Fig. 2). Nonetheless, the properties of the common input were consistent across patients 425 

as revealed by the analysis of coherence between CSTs that showed two main inputs for 426 

all patients. Since the degree of motor unit synchronization was correlated to the 427 

coherence value at the tremor frequency, synchronization among motor units was 428 

increased by the common synaptic input at the tremor frequency (Sears and Stagg, 429 

1976; Kirkwood and Sears, 1978; Nordstrom et al., 1992). Indeed, motor unit 430 

synchronization provides an estimate of the global strength of synaptic input for the 431 

entire frequency bandwidth whereas coherence shows synchronization for each 432 

frequency (Negro and Farina, 2012). The data presented provide the first experimental 433 

proof of high synchronization levels among motor units in ET patients, and show that 434 

high synchronization occurs specifically with an oscillation at the tremor frequency, 435 

thus causing rhythmic entrainment that contributes to the generation of tremor. This 436 

association has been previously hypothesized (e.g., Elek et al., 1991; McAuley and 437 

Marsden, 2000; Elble and Deuschl, 2009) but never directly proven. Based on evidence 438 

that motor unit synchronization does not differ between young and old adults (Kamen 439 

and Roy, 2000; Semmler et al., 2000), we conclude that this greater than normal 440 
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synchronization was caused by the tremor input to motor neurons, and was not an effect 441 

of age. 442 

Previous studies reported that the cortical oscillations causing ET are projected to 443 

tremulous muscles through the corticospinal tract, based on the observation of 444 

significant coherence at the tremor frequency between EEG and EMG recordings 445 

(Hellwig et al., 2001, 2003; Raethjen et al., 2007; Muthuraman et al., 2012). We re-446 

analyzed these observations by computing the coherence between EEG and motor unit 447 

spike trains. With our analysis at the single motor unit level, we also found significant 448 

corticospinal coherence between the contralateral sensorimotor cortex and motor unit 449 

cumulative spike train (CST; see Table 1), confirming the studies based on the 450 

interference EMG. Despite the agreement in conclusions based on EEG-EMG 451 

coherence and our EEG-motor unit coherence data, we showed the association between 452 

EEG and motor neuron output directly, which is a stronger evidence of a direct 453 

influence of the corticospinal tract in tremor generation (Negro and Farina, 2011). 454 

Furthermore, we also studied the behavior of coherence with EEG when the number of 455 

motor unit spike trains considered was progressively increased. This analysis showed 456 

that as more motor unit spike trains were analyzed, the coherence at the tremor 457 

frequency increased monotonically, up to a constant value reached for ~5 motor units, 458 

and the variability of coherence estimates decreased (Fig. 6A). These observations 459 

indicate not only the presence of corticomuscular coupling but also that the central 460 

oscillations causing ET are a common projection to the entire motor neuron pool (Negro 461 

and Farina, 2011; Gallego et al., 2011). On the basis of the present results, it is unlikely 462 

that intermittent nonlinear corticomuscular interaction participates in the transmission of 463 

the central oscillations that cause ET, as proposed by Raethjen et al. (2007). 464 
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Concurrently with the presence of significant corticospinal coupling at the tremor 465 

frequency, we also observed significant coherence between the EEG and motor unit 466 

spike trains in the beta band. This is assumed to represent the voluntary drive sent to 467 

motor neurons by the corticospinal tract (e.g. Conway et al., 1995; Negro and Farina, 468 

2011). Therefore, in ET patients the motor neuron pool concurrently samples two strong 469 

common inputs with different frequency content, which likely facilitates the occurrence 470 

of tremor during the performance of voluntary movements (e.g. Deuschl et al., 2000; 471 

Benito-León and Louis, 2006). Notably, both common synaptic inputs are also observed 472 

directly from the analysis of coherence between CSTs at the spinal level (see Fig. 3).  473 

Since the strength corticospinal coupling at the tremor frequency was uncorrelated with 474 

the magnitude of the coherence between CSTs (that represents the net common synaptic 475 

input) at the same frequency, it is unlikely that the cortical input was the only source of 476 

common input to motor neurons at the tremor frequency. Accordingly, the corticospinal 477 

coherence values were very low, as in previous work (Raethjen et al., 2007), which 478 

indicates the presence of additional sources of common input at the tremor frequency 479 

that may decrease the correlation with the common cortical input (Negro and Farina, 480 

2011b). We therefore hypothesize that the afferent component, which is projected to the 481 

entire motor neuron pool by Ia fibres (Mendell and Henneman, 1971), or additional 482 

supraspinal descending drives, provide a substantial contribution to the common input 483 

received by motor neurons at the tremor frequency. The potential role of the afferent 484 

input, in particular, is in agreement with evidence showing that the modification of the 485 

mechanical properties of the tremulous limb alters the tremor in ET (e.g., Héroux et al., 486 

2009; Elble et al., 1987). Moreover, the observation that in some cases there were 487 

significant peaks at the first tremor frequency harmonic in the coherence between CSTs 488 

(Fig. 3) while these peaks were never observed in the EEG-CST coherence (see 489 
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example in Fig. 5), indicates that they were likely generated by common projections of 490 

afferent pathways due to their resonant behavior. The hypothesis that muscle spindles 491 

contribute significantly to the generation of the tremor in ET could be further 492 

investigated by experiments manipulating the level of afferent activity. For example, 493 

reduction of Ia activity by means of localized ischemia (Allum and Mauritz, 1984; 494 

Sinkjaer and Hayashi, 1989) or by the restriction of limb movement (isometric 495 

conditions) could be applied and the effect on the neural drive to the muscle and the 496 

corticospinal coherence could be assessed. 497 

In conclusion, this study systematically analyses for the first time the neural drive to 498 

muscle in ET patients using a novel non-invasive approach that offers a unique view 499 

into the output of the spinal cord circuitries in vivo. We demonstrated that motor units 500 

in ET are highly synchronized because of the presence of strong common synaptic input 501 

to motor neurons at the tremor frequency. This common input is partly corticospinal, as 502 

shown by the analysis of coherence between EEG and motor unit spike trains. However, 503 

it is weakly associated with the net common input at the tremor frequency (coherence 504 

between CSTs), which indicates a contribution of common input from spinal or 505 

secondary supraspinal sources. These data are the first that provide a complete 506 

description of the characteristics of motor unit spike trains in ET. 507 
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Figure 1 Example of EEG, surface EMG, and gyroscope signals recorded, and of a few 687 

motor units identified through the decomposition of the multichannel surface EMG. The 688 

data corresponds to patient 03. (A) shows recordings from 3 EEG channels, (B) displays 689 

signals from all the channels of the fourth column of the surface EMG electrode array 690 

(rows 1 to 12), and (C) represents hand tremor as recorded with a pair of gyroscopes. 691 

The rest of the plots are related to motor unit discharges: (D) shows the shape of the 692 

motor unit action potential of one of the motor neurons identified, for all the channels of 693 

the fourth and fifth columns of the electrode array (rows 1 to 12), (E) displays the spike 694 

trains discharged by 5 of the motor units identified for this patient, and (F) depicts the 695 

ISI histogram of two of these motor neurons, exhibiting a clear bimodal pattern caused 696 

by the occurrence of paired (or tripled) discharges and the subsequent firings to 697 

complete a tremor burst. 698 

  699 
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Figure 2 Relationship between the statistical properties of the discharges of the detected 716 

motor units and the frequency of tremor. (A) Mean + SD (circles and whiskers 717 

respectively) of the average motor unit discharge rate of all of the motor units detected 718 

for each patient. The number besides each circle represents the patient code. SDs are 719 

scaled by 1/2 to facilitate visualization. (B) Cumulative ISI histograms for the motor 720 

units detected for each patient. The number again represents the patient code. In each 721 

histogram n indicates the number of motor units. The mean discharge rate was 722 

computed excluding firings with ISI < 10 ms or > 3·median(ISI). DR = discharge rate. 723 
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Figure 3 Estimation of common synaptic inputs to the motor neurons identified, for all 741 

the patients. The plots show the coherence spectra for all possible pairs of CSTs 742 

comprising each the largest possible amount of motor unit spike trains (in grey), with 743 

their mean (solid black trace) ± SD (dashed black trace). Each panel represents a single 744 

patient. The frequency bands that correspond to the common voluntary drive and the 745 

common input at the tremor frequency are shaded in blue and red respectively. The 746 

mean ± SD CIS for the same data window that were employed to compute the 747 

coherence between pairs of CSTs is displayed on top of each plot. 748 
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Figure 4 Examples of motor unit spike trains for 3 patients. The figure shows, for each 766 

of them, the firings of 5 motor units randomly chosen among those identified, and their 767 

filtered version (band-pass, 3–10 Hz, zero phase) at the top and the bottom of each 768 

panel (displayed in the same color), respectively. Both are compared to the hand motion 769 

(light grey traces in the background) to emphasize how the motor units encode the 770 

tremor. Paired discharges are marked with a dot on top of the discharge. The plot 771 

illustrates the observed large motor unit synchronization, and how motor unit firing 772 

patterns sometimes fluctuate (see patient 05).  773 
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Figure 5 Example of coherence between EEG signals recorded at the contralateral 790 

sensorimotor cortex (FC4, given that we recorded the left hand) and the CSTs. The data 791 

are from patient 03. (A) Average coherence for all possible CSTs comprising from 1 to 792 

11 motor neurons (black, solid lines). These coherence spectra always exhibited a 793 

significant peak at tremor frequency (black arrow), whose height increased 794 

monotonically with the number of motor units considered. Coherence at the beta band 795 

(gray arrow), corresponding to the voluntary drive to muscle, which became significant 796 

when 7 motor units were included in the CST. The confidence level (P < 0.05) is 797 

represented as a dashed black line. (B) Mean ± SD (the circle and the length of the 798 

whiskers respectively) of the coherence at tremor frequency (in black; it corresponds to 799 

the peak indicated with the black arrow in A) and the beta band (in gray; it corresponds 800 

to the peak indicated with the gray arrow in A) as function of the number of motor units 801 

in the CST. (C) Amplitude spectrum of the hand tremor as recorded with the solid-state 802 

gyroscopes, showing a clear peak at tremor frequency (red arrow), which appeared very 803 

close to that observed in the coherence plots depicted in (A). (D) Hand oscillations 804 

during a portion of the trial.  805 
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Figure 6 Estimation of corticospinal coherence at the tremor frequency (left) and the 823 

beta band  (right) as function of the number of motor units considered, for all patients. 824 

The circles and their whiskers represent the mean ± SD of the coherence peak at the 825 

selected frequency, obtained for all the possible combinations of motor units to form a 826 

CST. Results are shown as function of the number of motor units included in the 827 

calculations, and each patient is represented in a different color. Patients are codified as 828 

follows: data from patient 01 are displayed in black, from patient 02 in red, from patient 829 

03 in blue, from patient 04 in green, from patient 05 in cyan, from patient 06 in yellow, 830 

from patient 07 in magenta, from patient 08 in brown, and from patient 09 in orange. A 831 

series of grand means are also displayed (thick black lines) to represent the general 832 

trend of the data: for all the patients (diamonds), for all the patients with 5 or more 833 

motor units detected (circles), for all the patients with 6 or more motor units detected 834 

(squares), for all patients with 7 or more motor units detected (crosses), and for all 835 

patients with 9 or more motor units detected (triangles).  836 

  837 
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 838 
 839 
 840 
 841 
 842 
 843 
 844 
 845 
 846 
 847 
 848 
 849 
 850 
 851 
 852 
 853 
 854 

 855 

Patient 01 02 03 04 05 06 07 08 09 
Type of 
tremor 

PO RE PO PO PO PO PO PO PO 

Num. MUs. 5 5 11 4 5 4 9 7 6 
Avg. disch. 
rate (pps) 

10.0 ± 
2.6 

12. 7 
± 4.9 

18.1 ± 
3.9 

13.1 ± 
2.4 

17.7 ± 
1.4 

16.3 ± 
1.1 

16.2 ± 
3.4 

9.00 ± 
2.9 

14.70 
± 2.2 

CIS [2 min] 
(pps) 

1.45 ± 
0.22 

0.98 ± 
1.47 

2.32 ± 
1.96 

0.95 ± 
0.76 

1.61 ± 
0.48 

1.63 ± 
1.00 

1.46 ± 
1.27 

0.36 ± 
0.53 

0.96 ± 
0.92 

EEG channel C3 C1 FC4 FC3 CP3 CP4 FC2 CP3 CP2 
Coh. tremor 0.029 0.027 0.046 0.090 0.060 0.045 0.156 0.083 0.119 
Freq. tremor 

(Hz) 
5.5 4.9 4.7 6.1 5.7 4.9 5.9 6.6 6.2 

Coh. Beta 0.034 0.025 0.031 0.063 0.054 0.034 n.s. 0.064 0.185 
Freq. beta 

(Hz) 
27.3 12.4 29.3 12.4 26.9 15.3 n.s. 20.1 17.6 

 856 
[Table 1] 857 

 858 

  859 
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 860 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

Table 1. Summary of motor neuron synchronization and corticospinal coherence. 876 

The table shows, for each patient, the type of tremor elicited (postural, PO or rest, RE), 877 

the number of motor units identified through the decomposition of the surface EMG, the 878 

grand mean (± SD) of their discharge rate, the degree of motor unit synchronization 879 

according to the CIS (the last 2 variables were computed in 2 min windows), the EEG 880 

channel that exhibited the largest coherence at the tremor frequency, and the magnitude 881 

and frequency at which the coherence peaks at the tremor frequency and the beta band 882 

were found. All coherence values reported were statistically significant (P < 0.05), 883 

except where noted otherwise (n.s.).  884 

 885 
 886 
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