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Abstract 19 

Clay-polymer composites were designed for use in filtration processes for disinfection 20 

during the course of water purification. The composites were formed by sorption of 21 

polymers based on starch modified with quaternary ammonium ethers onto the 22 

negatively charged clay mineral bentonite. The performance of the clay-polymer 23 

complexes in removal of bacteria was strongly dependent on the conformation adopted 24 

by the polycation on the clay surface, the charge density of the polycation itself and the 25 

ratio between the concentrations of clay and polymer used during the sorption process. 26 

The antimicrobial effect exerted by the clay-polymer system was due to the cationic 27 

monomers adsorbed on the clay surface, which resulted in a positive surface potential of 28 

the complexes and charge reversal. Clay-polymer complexes were more toxic to 29 

bacteria than the polymers alone. Filtration employing our optimal clay-polymer 30 

composite yielded 100 % removal of bacteria after the passage of 3 L, whereas an 31 

equivalent filter with granular activated carbon (GAC) hardly yielded removal of 32 

bacteria after 0.5 L. Regeneration of clay-polymer complexes saturated with bacteria 33 

was demonstrated. Modeling of the filtration processes permitted to optimize the design 34 

of filters and estimation of experimental conditions for purifying large water volumes in 35 

short periods.  36 

 37 
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 41 

1. Introduction 42 

Disinfection processes are crucial in water treatment utilities. Disinfection is 43 

traditionally performed in drinking water treatment plants (WTPs) by chlorination, 44 

which reduces significantly pathogens in water but may pose a serious risk to human 45 

health due to formation of disinfection by-products (DBPs) [1]. The presence of a 46 

minute amount of natural organic matter in chlorinated waters can induce the formation 47 

of trihalomethanes (THMS) and haloacetic acids (HAAS), which are carcinogenic. The 48 

use of chloramination instead reduces the formation of these chemicals but leads to the 49 

formation of nitrosamines [2].  50 

Ozone is also a very powerful disinfectant able to remove a wide range of 51 

microorganisms including those resistant to other oxidative means, such as chlorination. 52 

However, it is a very unstable molecule, which decomposes very quickly. Studies have 53 

shown undesired effects after ozonation, such as formation of nitrosamines [3] and 54 

cyanogen halides [4]. Advanced oxidation processes based on the attack of the target 55 

molecules by hydroxyl radicals generated by UV irradiation in the presence of oxidants, 56 

such as ozone, H2O2 or TiO2, are capable of degrading very efficiently numerous prions 57 

[5].  58 

Disinfection processes are greatly improved in combination with other water treatment 59 

processes such as filtration technologies [6-8]. Depth filtration is incorporated in the 60 

vast majority of WTPs, and helps to reduce the loading of waterborne pathogens by 61 

physical sorption or entrapment in addition to removal of particles to which they are 62 

associated. Moreover, it may be effective for removal of DBP precursors. Membrane 63 
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filtration processes are mostly advantageous for very stringent water quality standards 64 

because of their high operational costs [9]. 65 

One of the most widely-used materials in column filtration is GAC; however, this 66 

material has very poor performance for removal of pathogens. Therefore, present 67 

research is focusing on GAC modification and the synthesis of new composite materials 68 

to be used as media for microorganism [10-14]. An alternative is the use of polymer-69 

based composites due to the antimicrobial properties exerted by cationic polymers [15]. 70 

These composites are of particular interest when dealing with water soluble polymers, 71 

where surface anchorage is needed for their preparation. Tashiro et al. [16] prepared 72 

polymers based on polystyrene supported in alumina granules, which presented high 73 

adsorption rate constants in Escherichia coli’s removal. Madkour et al. [17] eliminated 74 

E. coli and Staphylococcus aureus from water by using glass surfaces grafted with 75 

poly(butylmethacrylate)-co-poly(boc-aminoethyl methacrylate). However, only few 76 

studies showing the potential use of polymer based composites in water filtration 77 

processes for removal of microorganisms are scarce [18]. 78 

Clay-polymer composites can be designed by adsorption of cationic polymers onto 79 

negatively charged clay mineral platelets. The driving forces for polymer sorption are 80 

the translational entropic gain due to removal of water molecules and counter ions from 81 

the clay surface, and the electrostatic attraction between the polymer and the clay 82 

surface [19]. Adsorption of certain polycations on clay minerals was considered 83 

irreversible [20]. The use of clay-polymer composites in the removal of microorganisms 84 

from water by filtration has not been thoroughly studied yet. In the current study, we 85 

aimed at (i) designing clay-polymer composites with antibacterial properties based on 86 

the sorption of cationic starches onto a commercial bentonite; (ii) elucidating the 87 

mechanisms and factors involved in the development of toxicity of the new composites; 88 
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(iii) testing their efficiency in the removal of the pathogenic enteroindicator E. coli by 89 

filtration; and (iv) analysis of the kinetics of filtration for generating estimates for a 90 

variety of situations, e.g., upscaling. The polymers used were cationic starches which 91 

are widely used as additives in paper-making, textile and cosmetic industry. 92 

 93 

2. Materials and Methods.  94 

2.1.  Materials.  95 

The cationic starches employed were a gift from Penford Co. (Centennial, CO) and are 96 

based on the reaction of hydroxyl groups of pristine starch with 3-chloro-2-97 

hydroxypropyltrimethylammonium (chemical structure in Fig. 1). Three types of 98 

polymers were studied differing in their degree of substitution (DS). All of them are 99 

commercial: Topcat L-98 (DS=0.22) (denoted hereafter as P1); Topcat L-95 (DS=0.15) 100 

(denoted as P2) and Penbond 1000 (DS=0.05) (P3). Their charge densities (CD) were 101 

determined to be respectively, 1.19 meq/g for P1, 0.846 meq/g for P2, and 0.29 meq/g 102 

for P3. A commercial Na-bentonite (Bentonil A, CEC 0.8 mmolc/g) was kindly supplied 103 

from Süd-Chemie Spain. Granular activated carbon (GAC) (NUSORB GC60, 12x30 104 

mesh) was purchased from NUCON International, Inc. (Columbus, OH). 105 

The bacterial strain E. coli was purchased from the Spanish Type Culture Collection 106 

(CECT): The Luria-Bertani growth medium and the Agar for the microbial assays were 107 

supplied by Merck (Darmstadt, Germany). The LIVE/DEAD BacLight Bacterial 108 

Viability kits were obtained from Life Technologies (Carlsbad, CA, USA). 109 

 110 

2.2 Sorption of polymers onto the clay.  111 

Sorption isotherms of the polymers onto the commercial bentonite were carried out by 112 

mixing 15 mL of polymer solutions (0-40 g/L) with 24 mg of clay. The clay 113 
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concentration was 1.6 g/L. After shaking for 24 h at 20ºC, the suspensions were 114 

centrifuged at 12000 g for 10 min, the supernatants were discarded and the pellets were 115 

dry-frozen. The sorbed amount of polymer was determined by elemental C analysis. 116 

 The zeta potential (ξ) of the polymer-clay complexes obtained after sorption was 117 

measured by redispersing with distilled water at a concentration of 1.6 g/L. The samples 118 

were allowed to equilibrate for 1h and few milliliters of dispersion were measured using 119 

a Zetasizer Nanosystem (Malvern Instruments, Southborough, MA). 120 

X-ray diffraction of oriented samples on glass slides was also measured using a Philips 121 

X’Pert diffractometer (model Anton Paar HTK) at low and higher angles on a Siemens 122 

diffractometer (model D5000). The samples were prepared from the paste obtained after 123 

centrifugation of the polymer-clay suspensions of the adsorption experiments.  124 

Several clay polymer complexes were prepared for their study in the next sections. In 125 

general, clay powder was added to a polymer solution; the suspension was shaken for 126 

24 h and centrifuged; the pellet was dry-frozen yielding the clay-polymer composite. A 127 

nomenclature for the different clay-polymer composites was introduced where the first 128 

two characters indicate the type of polymer, the following number denotes the polymer 129 

concentration added in g/L and the last number the clay concentration used in g/L.   130 

 131 

2.3  Determination of bactericidal effects of clay-polymer composites. 132 

Escherichia coli were incubated for 24h at 37ºC in Luria-Bertani nutrient broth, and a 133 

bacteria suspension with a 10
5
 CFU/mL concentration was prepared. Clay-polymer 134 

complexes were added to this suspension in centrifuge tubes at a 1.5:100 solid: water 135 

ratio. This ratio was chosen after preliminary trials to see differences in the bactericidal 136 

activity of the prepared clay-polymer complexes. After 1 h incubation at 25ºC, the 137 

suspensions were centrifuged at 1000 rpm for 10 min at 4ºC, and 0.1 mL of the 138 
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suspensions were removed and mixed with 0.9 mL of sterile distilled water, and then 139 

successive decimal serial dilutions were prepared. From the suspensions and successive 140 

dilutions, the surviving bacteria were counted on nutrient media by the spread-plate 141 

method and expressed as colony forming units (CFU) per milliliter of sample. The 142 

plates were incubated at 37ºC and the colonies were counted after 24 h. The counting 143 

was done in four replicates every time. The limit of quantification (LOQ) for bacteria 144 

analysis with the spread-plate method is 10 CFU/mL. If no colonies are recovered, the 145 

limit of detection (LOD) is reported to be <10 CFU/ml for a 1:10 dilution according to 146 

the ASTM International.  147 

In a parallel experiment, the deactivation of the cells after interaction with the clay 148 

complexes was examined by using a LIVE/DEAD stain methodology. Briefly, 1 mL of 149 

the suspension was incubated in darkness for 15 min with 4 L of a mixture of 150 

propidium iodide and the SYTO 9 dye. After centrifugation, the pellets were mounted 151 

on slides and examined with a Zeiss Axioskop epifluorescence microscope at 40x 152 

magnification counting the dead and live cells on the clay-polymer surfaces by emission 153 

of red and green light, respectively. Three sections were examined for each slide and the 154 

results were expressed as percent of dead cells over the total counted. Preliminary 155 

experiments showed no difference in the counting after replacing the supernatant with 156 

distilled water, vortexed for 1 min and centrifuged again.  157 

 158 

2.4. Removal of microorganisms by filtration. 159 

In Experiment 1, column filter experiments were performed with 50/1 (w/w) mixture of 160 

quartz sand and clay-polymer complexes or GAC. Glass columns of 21 cm in length 161 

and 2 cm in diameter and with a porous plate at the bottom were filled with 73.5 g of 162 

thin quartz sand mixed with 1.5 g of clay-polymer complexes or GAC. The active 163 
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sorbent layer was 13 cm length. Glass wool (0.35 g) was placed on both ends of the 164 

column to prevent exit of the sand from the column. The pore volume of the column 165 

was 12.9 mL. The column was connected to a peristaltic pump and saturated at a 166 

constant flow rate of 7 mL/min with distilled water (equivalent to a flow velocity of 1.3 167 

m/h). Then, an E. coli suspension of 10
5
 CFU/mL prepared freshly from a stock 168 

solution, under continuous stirring started to pass-by. Preliminary experiments showed 169 

that the suspension was stable when staying 3 d at room temperature. Experiment 2 was 170 

analogously performed but only with the active material P1/10/4.25 at a flow rate of 4 171 

mL/min (or 0.76 m/h). In another set of experiments (Experiment 3), two columns were 172 

connected in series and aliquots were taken at the exit of each column. The flow rate 173 

was constant at 7 mL/min (or 1.3 m/h).  174 

 175 

2.4.1 Regeneration 176 

In Experiment 1, after the columns were saturated by passing a suspension containing 177 

10
5 

CFU/mL of E.coli, two procedures were assayed for regeneration: (i) 1L of a 0.1 M 178 

HCl solution was passed through the column at a flow rate of 0.6 mL/min, and washed 179 

after that with 1 L of distilled water; (ii) idem but a commercial solution of sodium 180 

hypochlorite (2% w:v) was used instead of the acid. A new similar suspension including 181 

10
5
 CFU/mL E. coli was passed through the filters. The choice of these reagents was to 182 

examine the competitive effect of protons to detach the negatively-charged bacteria 183 

interacting with the positively charged clay-polymer composites; and the use of a 184 

common reagent used in WWT for regeneration of membranes through oxidation of 185 

pollutants.  186 

 187 

2.5. Analysis of the kinetics of filtration. 188 
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In this analysis, the adsorption and convection phenomena occurring in the filter are 189 

modeled as in Nir et al. [21] (details in Supporting Information). The parameters 190 

employed in the calculation are: molar concentration of adsorbing sites is Ro, C1 (M
-1

 191 

min
-1

), rate constant of forward adsorption), and D1 (min
-1

), rate constant of desorption) 192 

 193 

2.6. Statistical analysis 194 

Statistical analyses were carried out using the JMP IN software package (SAS Institute 195 

Inc., NC, USA). One way analysis of variance (F-test ANOVA, p = 0.05) was used to 196 

check the influence of each factor. All experiments were done at least three times, each 197 

treatment with four replicates. 198 

The statistical criteria employed for simulation and prediction of certain experimental 199 

results of filtration by the calculations according to Eq(1) were the values of R
2 
and 200 

RMSE, the Root Mean Square Error, defined by  201 

RMSE= (∑(YCi - Yexpi ) 
2
/(n-2))

0.5      
(2) 202 

in which n is the number of data points (we used averages of triplicates), and  YCi  and 203 

Yexpi are the calculated and experimental values of percent removal. The term (n- 2) in 204 

Eq(2) is due to using 2 adjustable parameters.  205 

 206 

3. Results and Discussion. 207 

3.1. Clay-polymer composites.  208 

Fig. 2 shows the sorption isotherms of the polymers and zeta potential of the composites 209 

formed. The sorption behavior of the polymers showed an initial steep increase as 210 

expected from strong Coulombic interactions with the negatively charged clay surface. 211 

Further sorption yielded positive values of the zeta potential, reaching higher values for 212 

P1 (about +30 mV), followed by P2 (~+25 mV) and P3 (~+15 mV).  213 
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Based on the degree of substitution, the calculated charge density (CD) was 1.19 meq/g 214 

of polymer for P1; 0.846 meq/g of polymer for P2 and 0.29 meq/g of polymer for P3.  215 

Charge neutralization at the external surface was observed at a loading of 0.3 g of 216 

polymer/g clay for P1 and P2, and 0.8 g of polymer/g clay for P3; thus accounting for 217 

0.36, 0.25 and 0.23 meq/g clay for P1, P2 and P3, respectively. These lower values for 218 

the point of zero charge (p.z.c.) than the CEC of the clay can be explained by the 219 

extending positive segments, or by the high screening of the clay surface by non-220 

charged segments of the polycation after sorption [22].  221 

The loading of polymer on the clay was highest for P3 reaching a sorption plateau at 222 

1.73 g polymer/g clay, whereas lower amounts were observed for P2 and P1. The 223 

polymer loading on the clay can be rationalized on the basis of CD, which determines 224 

the strength of the polyelectrolyte-surface interactions. For low CD polyelectrolytes 225 

such as P3, the lower amount of strong electrostatic interaction with the clay surface 226 

increases the importance of the steric repulsion of the uncharged portion of the polymer 227 

backbone between adjoining charged segments neutralized by the clay surface [23]. 228 

Therefore, these uncharged portions are extending into solution in the form of loops and 229 

tails, resulting in both thicker adsorbed layer and higher loadings. In contrast, the 230 

stronger interactions with the clay surface for polycations with high CD as would be for 231 

P1 and P2, result in a flat conformation of the polymer molecule on the clay surface, 232 

i.e., the area occupied by one single molecule is higher, yielding lower adsorbed 233 

amounts.  234 

Evidence for these conformations of the polycation molecules on the clay surface was 235 

supported by XRD (Fig. 3). The clay itself showed the typical diffraction of 236 

montmorillonite (M), but some impurities were detected due to illite (I), kaolinite (K), 237 

quartz (Q), and feldspars (F). The peak at 1.37 nm is typical of montmorillonite in its 238 
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sodium form with two layers of water of hydration. Sorption of polymers P1 and P2 at 239 

high loading showed in both cases an increase in the basal spacing up to 1.42 nm (Fig. 240 

3b). This value is in agreement with polymer sorption by forming a flat layer, because 241 

the thickness of dextran polymers which are analogous to starch polymers (mainly 242 

constituted by glucopyranose molecules) is about 0.5 nm [19], which by addition of the 243 

thickness of a clay platelet (0.96 nm) gives a basal spacing around 1.46 nm. Similarly, 244 

basal spacings of about 1.5 nm have been reported for other polymers adsorbing on clay 245 

minerals as flat layers [24]. 246 

With P3, the XRD analysis of the clay-polymer complexes showed the absence of the 247 

diffraction peak associated to montmorillonite (Fig. 3c) even at low diffraction angles 248 

(not shown), indicating a loop-and-train conformation on the clay surface that yielded 249 

basal spacing out of the range of XRD detection. This is also taken as evidence of 250 

exfoliation of the clay platelets after interaction with the polycation molecules [25]. 251 

Clay-composites were prepared at lower polymer/clay ratios aiming at increasing the 252 

amount of polymer adsorbed. A clay concentration of 4.25 g/L was used; the amounts 253 

of polymer added were 10 g/L for P1 and P3, and 5 g/L for P2. The estimated sorbed 254 

amounts for these ratios were quite close for P2 and P1 (0.40 and 0.45 g polymer/g clay, 255 

respectively), and 1.12 g polymer/ g clay for P3. These values are in accord with the 256 

predictions by theoretical sorption models where the total adsorbed amount of the solute 257 

should increase when raising the clay concentration but the amount adsorbed per clay 258 

platelet decreases [26]. However, polymer sorption increased instead of decreasing as 259 

expected, from 0.57 to 0.80 g polymer/g clay for P1 and from 0.35 to 0.68 g polymer/g 260 

clay for P2. The total adsorbed amount for P3 slightly decreased (from 1.78 to 1.72 g 261 

polymer/g clay).Our tentative explanation for the above pattern is that increasing the 262 



12 
 

clay concentration decreases the polymer fraction available for self-aggregation and 263 

enhances the polymer sorption onto the clay.  264 

 265 

3.2. Determination of bactericidal effects of clay-polymer composites.  266 

The bactericidal effects of the clay-polymer complexes on bacteria in suspension was 267 

examined as a function of the amount of polymer sorbed by the clay, the conformation 268 

of the polymer on the clay platelets, and the surface charge characteristics of the 269 

complex. (Table 1).  270 

Initially, 10
5
 CFU/mL of E. coli were present in solution in the bactericidal tests. As a 271 

control, raw clay was used and no bactericidal effect was noticed (data not shown); 272 

whereas no free bacteria were observed when using the complexes P1/10/4.25 and 273 

P2/5/4.25. This was not only a function of the positive external surface potential which 274 

is needed for adhesion of the bacteria, because the sorption of bacteria by the complex 275 

P1/5/1.6 was less efficient despite its identical zeta potential.  276 

The concentration of cationic monomers of the polymer over that needed for inducing 277 

charge reversal was a critical parameter. The P1/5/1.6 complex reduced only two orders 278 

of magnitude the initial amount of added bacteria, whereas an increase by +0.33 279 

mmolc/g polymer in the case of P2/5/4.25 (lines 3,4 in Table 1), enabled to reach the 280 

critical concentration needed for complete removal.  281 

The influence of the conformation adopted by the polycation on the removal of bacteria 282 

was also examined. The activity of the complex P2/1.5/1.6 with a layer flat 283 

conformation of the polycation on the clay surface, was one order of magnitude larger 284 

than that of the complex P3/10/4.25, where the polymer molecules had a loop-and-train 285 

conformation. Both complexes exhibited the same z-potential, but the amount of 286 

adsorbed polymer and the corresponding monomer concentration exceeding that needed 287 
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for reaching the zero zeta potential of the clay was about 5-fold larger for the complex 288 

P3/10/4.25. In accord, its capacity for removal of bacteria from water was lower, which 289 

was due to the fact that in a loop-and-train conformation the positive charges of polymer 290 

segments extending into the solution are also partly screened by hydrophobic segments 291 

impeding a closer interaction of the cationic groups with the bacterial cell surface.  292 

The target site of quaternary ammonium polymers was reported to be the cytoplasmic 293 

membrane [27]. The positive charge of the polycation apparently impairs the stability of 294 

the cell wall of negatively charged bacteria, and also the outer membrane in the Gram 295 

negative type. After penetration through the cell wall, the polycation is attracted to the 296 

cytoplasmic membrane, increasing its permeability, and yielding bactericidal effect by 297 

cell lysis [28]. Similarly to the bactericidal effect exhibited by the free polymers, it 298 

might be also interpreted that the polymer -clay composites have bactericidal effect on 299 

bacteria. The results in Table 1, which demonstrate a reduction in the number of 300 

bacteria in suspension by the presence of a polymer –clay composite can also be simply 301 

interpreted by adsorption of the bacteria (which are characterized by a negative external 302 

surface) on the positively charged composites. However, Table 1 demonstrates different 303 

removal efficiency of bacteria by composites with the same zeta potential. In addition to 304 

removal of bacteria from water, the results in Table 1 also indicate that cell death rates 305 

on the clay-polymer complexes were high (approximately 90%) with the exception of 306 

the P3/10/4.25 complex. These data demonstrate the high sorption efficiency and 307 

bactericidal effect of the clay-polymer complexes based on polymers P1 and P2; as 308 

opposed to the P3-clay complexes, in which case both extent of bacteria adsorption and 309 

killing are about 10%.  310 

In the other cases the percent of adsorbed bacteria exceeded 93% and the percent of 311 

dead cells exceeded 85% of the total.  312 
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The clay-polymer complexes were more bioactive than the polymers alone (Table S1, 313 

Supporting Information). The bactericidal effect was much lower from polymer 314 

solutions which included equivalent amounts to those of polymers sorbed in the clay-315 

polymer complexes (Table 1). The larger concentration of cationic monomers onto the 316 

clay surface was high enough to reach lethal levels for the bacteria. 317 

The explanation of the bactericidal mechanism caused by polymer-clay composites is 318 

still under discussion [29, 30]. Our results may point to a combined bactericidal effect 319 

of the surface potential and the corresponding amount of cationic monomers of the 320 

polymer exceeding that for inducing charge reversal of the clay. A positive surface 321 

potential on the clay complex promotes adherence of the bacteria followed by direct 322 

strong electrostatic interactions that would cause a segregation of negatively charged 323 

phospholipids from the cell membranes. A high cationic monomer concentration in the 324 

vicinity of phospholipid bilayers will introduce large number of disrupting contact 325 

points in the bilayer continuity by intercalation of the hydrated bactericide groups 326 

between the negatively charged phospholipid headgroups, impeding their isolating 327 

function and further restoration, and yielding cell lysis.  328 

 329 

3.3. Filtration of E. coli.  330 

Fig. 4 shows a poor removal of bacteria by filters containing GAC relative to the clay-331 

polymer based-filters, especially those containing the polymers P1 and P2. After 0.5 L, 332 

the GAC based-filter did not retain E. coli, whereas approximately 80% was retained 333 

with the filters containing P3-clay complex and no elution was detected with the other 334 

clay-polymer complexes. The bacteria retention in the filters containing the complex 335 

P3/10/4.25 was lower than in those based on P1- and P2-clay complexes, in agreement 336 

with its poor removal of bacteria in suspension (Table 1). The use of the P1/10/4.25 337 
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complex in the filter improved greatly retention of bacteria compared to P2/5/4.25, 338 

which is in agreement with its larger amount of cationic monomers exceeding the CEC 339 

on the clay surface, as revealed in the batch experiments. The emergence of minute 340 

amounts of bacteria was not detected after the passage of 3 L, i.e., 155 pore volumes 341 

larger than with the complex P2/5/4.25. Therefore, the filters based on the complex 342 

P1/10/4.25 were the optimal ones for microorganism removal. The performance of 343 

filters under different operational parameters, such as the flow rate, and concentration of 344 

bacteria added, was investigated and modeled (Tables 2, 3). A comparison of the results 345 

in Table 2 (Experiment 3) with those in Table 3 (Experiment 2) demonstrates that a 346 

larger volume (5.3 L) could be purified (below the LOD) from bacteria in Experiment 2 347 

than in the former (2.5 L) despite the larger number of bacteria per unit volume, (5x10
5
 348 

vs 1.2 10
5
 per mL) in the latter case, corresponding to the condition that filtration was 349 

carried out at a smaller flow rate in Experiment 2.  350 

 351 

3.3.1 Regeneration 352 

A preliminary study of the feasibility of regeneration of the filter containing P1/10/4.25 353 

showed complete regeneration by using either HCl or NaClO. At the end of filtration 354 

(Table 2) the fraction of removed bacteria was 70%, whereas after regeneration bacteria 355 

were only detected after passing 3L. At that stage the fractions of removed bacteria 356 

were 99.8 and 99.9% for the filters regenerated with HCl and NaClO respectively, 357 

versus an initial value of 99.7%. These regenerated filters followed the same pattern of 358 

bacterial removal as that of the newly used filters; for example, the removal percents 359 

were 96.5 and 98.0% after passing 3.4 L when using HCl- and NaClO-regenerated 360 

filters, respectively, whereas a similar value (95.6%) was obtained initially.  361 

 362 
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3.3.2. Modeling and capacity estimates 363 

The fitting of the kinetics of filtration to the adsorption-convection model was adequate; 364 

therefore, the calculated parameters can be used for prediction under different 365 

operational parameters. It is of interest to note that the second filter in series in 366 

Experiment 3 (Table 2) enabled to purify the water completely (i.e, below the LOD) 367 

from bacteria after 8.4 L, i.e., at a 3-fold larger volume than that by the first filter alone. 368 

In Table 3 complete removal of bacteria was achieved after the passage of 5.3 L through 369 

the filter which included 1.5 g of complex. If the capacity of the filter is defined by the 370 

volume which can be purified from bacteria to less than one particle per 100 mL (from 371 

an initial value 5.2 x10
5
 /ml in this case), then this result amounts to a capacity of 3.5 m

3
 372 

/ kg of composite. Using the same parameters as in Table 3 we calculated the kinetics of 373 

filtration for the case of a filter of length 1.6 m, at a flow velocity of 4.9 m/h , and filled 374 

with a composite at a 1:5 w/w ratio between the composite and sand. The outcome for 375 

the capacity in this case was 12 m
3 
/kg of composite. For a filter filled exclusively with 376 

the composite in a granular form no sand would be needed, and the calculated capacity 377 

was 20 m
3
/kg of composite. Furthermore, the success of regeneration implies that the 378 

effective capacity can be significantly larger. The filtration results presented suggest 379 

that it may be of interest to test the use of clay-polymer composites in removal of other 380 

microorganisms and on a larger scale.  381 

In view of the fact that the chosen polymer is relatively inexpensive (€ 9.7/kg) and the 382 

clay is rather cheap (€ 0.16/kg), it can follow that the cost of materials of large scale 383 

purification of drinking water which includes 100,000. bacteria per mL to less than 1 384 

per 100 mL can be less than 0.5 € per cubic meter. In this calculation we tentatively 385 

assumed that the preparation of a granulated composite will double the price of raw 386 

materials. The success of regeneration by washing the filter with rather inexpensive 387 
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solutions (in particular HCl) will reduce this cost further. The next needed steps will be 388 

granulation and test of upscaling. 389 

 390 

4.  Conclusions 391 

The results indicate: (i) the most efficient removal of bacteria by filtration occurred 392 

when the columns included the complex P1/10/4.25 as shown in Tables 2 and 3, in 393 

agreement with Table 1 which gives bacterial removal and killing in batch experiments 394 

and in accord with its larger amount of cationic monomers exceeding the CEC on the 395 

clay surface in this complex; (ii) destabilization of bacterial membranes was more 396 

efficient in the presence of the polymer-clay complexes than by the polymers alone; (iii) 397 

calculations of filtration kinetics yielded adequate simulations and predictions and 398 

estimates for upscale; (iv) preliminary experiments showed complete regeneration of 399 

filters loaded by bacteria by using either HCl or NaClO. The outcome of the current 400 

studies suggests that filtration by engineered polymer-clay composites can be a valid 401 

technology for purification of water from bacteria, and perhaps from other 402 

microorganisms.  403 
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Figure captions 413 

Fig.1. Chemical basic structure of the cationic starches. 414 

Fig. 2. Polymer adsorption (open symbols) and z-potential (full symbols) of the 415 

complexes formed after sorption on bentonite of P1 (a), P2 (b) and P3 (c), as a function 416 

of the added amount of the polymer. 417 

Fig. 3. Fig. 3. X-ray diffraction of the bentonite (a) and polymer-clay complexes at the 418 

maximal loading from the sorption isotherms: 0.9 and 0.6 g/ g clay for P1 and P2 419 

respectively (b) and 1.73 g/g clay for P3 (c).  420 

Fig. 4. Removal of E. coli by filtration with columns including GAC, or polymer-clay 421 

complexes mixed with sand (1:100 w/w) (Experiment 1). 422 

423 
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Table 1. Effect of polymer loading and surface charge of clay-polymer complexes on 446 

bacterial adsorption in suspension, and toxicity to E.coli expressed as viable bacterial 447 

cells (in brackets as log removal) and the percent of dead cells on the clay-polymer 448 

surface after incubation. The initial E. coli concentration was 10
5
 CFU/mL. 449 

Clay-

polymer 

complex
1
 

Polymer 

sorbed  

(g/g clay) 

Charge
3
  

(meqc/g 

clay)  

Z-

Potential 

(mV) 

E. coli,
2
 

CFU/mL 

Dead cells 

(% of the 

total)
2
 

P1/5/1.6 0.40±0.04 +0.12 31.01.3 6.4x10
3
 (1.2) b 90.9a 

P1/10/4.25 0.80±0.01 +0.60 28.74.8 0 (5)c 85.5a 

P2/5/4.25 0.68±0.01 +0.32 26.74.1 0 (5)c 90.6a 

P2/1.5/1.6 0.35±0.01 +0.04 13.60.7 2.8x10
3
 (1.6) b 89.4a 

P3/10/4.25 1.72±0.03 +0.27 12.70.3 1.4x10
4
 (0.9) a 12.9b 

1. Notation: polymer name/polymer concentration/clay concentration.  450 

2. Means followed by the same letter indicate that either the toxicity exhibited by 451 

the composite or the death rates were not significantly different according to 452 

Student´s test at P=0.05. 453 

3. Charge of sorbed polymer beyond the zero point of zeta potential. 454 

 455 

 456 

457 
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Table 2. E. coli removal (%) from water after filtration using P1/10/4.25 complex 458 

(Experiment 3). Experimental (Exp.) and calculated (Calc.) values. The initial E. coli 459 

concentration was 1.2x10
5
 CFU/mL.

1,2
 460 

 Removal (%) 

 Column 1 Column 2 

Volume (L) Exp. Calc. Exp. Calc. 

0.4 100 99.5 100 100 

0.8 100 99.2 100 100 

2.5 100 97.1 100 99.9 

2.9 99.7 96.4 100 99.9 

3.4 98.2 95.3 100 99.8 

4.2 95.6 93.5 100 99.7 

5.5 94.7 89.8 100 99.5 

6.3 85.5 86.9 100 99.4 

7.1 85.7 83.6 100 99.2 

8.4 72.7 78.1 100 98.7 

 461 

1. The parameters used were R0  =1.4x10
-12

 M , in which R0  indicates the total molar 462 

concentration for binding sites for the bacteria in the filter. C1= 2.5x10
12

 M
-1

min
-1 

, where C1 is 463 

the forward rate constant of binding of bacteria to the polymer clay composite, and D1=0.0026 464 

min
-1

 , where D1 is the rate constant of dissociation of bound bacteria.  465 

2. The statistical analysis of the results gave RMSE= 2.2 and R
2
= 0.881. 466 

 467 

 468 

 469 

470 
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 471 

Table 3. E. coli removal (%) from water after filtration using P1/10/4.25 complex 472 

(Experiment 2). Experimental (Exp.) and calculated (Calc.) values. The initial E. coli 473 

concentration was 5.2x10
5
 CFU/mL. 

1 
474 

Volume (L) Exp. Calc. 

5.3 100 99.9 

5.8 99.7 99.7 

6.2 99.6 99.4 

7.2 97.2 98.8 

8.2 96.4 97.8 

9.6 94.9 95.0 

11.5 87.1 86.3 

   

1. The parameters used in the calculations were R0  =1.4x10
-12

 M; C1= 3x10
12

 M
-1

min
-1 

, 475 

and D1=0.0012. min
-1

. The RMSE was 1.0 and R
2 
was 0.925. 476 

 477 

478 
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 498 

Analysis of the kinetics of filtration. 499 

In this analysis, the adsorption and convection phenomena occurring in the filter are 500 

described by Eq (1) as in Nir et al. [21]. A column of length L is filled with material 501 

whose initial molar concentration of adsorbing sites is Ro, whose concentration changes 502 

later to R(X,t). The beginning and end of the filter are at the coordinates X = 0 and X = 503 

L, respectively. We consider that the pollutant concentration at the inlet, Co, is constant, 504 

i.e., C(X,t) = Co, X  0, where t denotes time.  505 

The kinetic parameters are C1 (M
-1

 min
-1

, rate constant of forward adsorption), D1 (min
-

506 

1
, rate constant of desorption), v (flow velocity);  (≤ 1) denotes the degree of 507 

hysteresis, which was not considered in this case.  508 

dC(X,t)/dt = -v C/ X – C1 ∙ C(X,t) R(X,t)+  D1 (Ro - R(X, t))  (1) 509 

510 
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 511 

 512 

Table S1. Zeta potential and toxicity of polymer solutions equivalent to the polymer 513 

loading on the clay complexes used as in Table 1. Added E. coli concentration were 10
5
 514 

CFU/mL. 515 

Polymer used Conc. 

equivalent to 

complex 

Z-potential 

(mV) 

E. coli,
1
 

CFU/mL 

P1 P1/5/1.6 29.3±1.0 1.1x10
5
(0)a 

P1 P1/10/4.25 25.6±2.9 7.7x10
4
 (0.1)b 

P2 P2/5/4.25 26.1±1.2 1.6x10
5
(0)a 

P2 P2/1.5/1.6 14.5±2.3 2.8x10
5
(0)a 

P3 P3/10/1.6 13.5±2.5 3.5x10
5
(0)a 

1. In brackets as log removal. Means followed by the same letter indicate that the 516 

toxicity exhibited by the composite was not significantly different according to 517 

Student´s test at P=0.05. 518 

 519 
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