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ABSTRACT 

 

Gravity is a key factor for life on Earth. It is the only environmental factor that has remained 

constant throughout evolution, and plants use it to modulate important physiological 

activities; gravity removal or alteration produces substantial changes in essential functions. 

For root gravitropism, gravity is sensed in specialised cells, which are capable of detecting 

magnitudes of the g vector lower than 10
-3

. Then, the mechanosignal is transduced to upper 

zones of the root, resulting in changes in the lateral distribution of auxin and in the rate of 

auxin polar transport. Gravity alteration has consequences for cell growth and proliferation 

rates in root meristems, which are the basis of the developmental programme of a plant, in 

which regulation via auxin is involved. The effect is disruption of meristematic competence, 

i.e. the strict coordination between cell proliferation and growth, which characterises 

meristematic cells. This effect can be related to changes in the transport and distribution of 

auxin throughout the root. However, similar effects of gravity alteration have been found in 

plant cell cultures in vitro, in which neither specialised structures for gravity sensing and 

signal transduction, nor apparent gravitropism have been described. We postulate that 

gravity resistance, a general mechanism of cellular origin for developing rigid structures in 

plants capable of resisting the gravity force, could also be responsible for the changes in cell 

growth and proliferation parameters detected in non-specialised cells. The mechanisms of 

gravitropism and graviresistance are complementary, the first being mostly sensitive to the 

direction of the gravity vector, and the second to its magnitude. At a global molecular level, 

the consequence of gravity alteration is that the genome should be finely tuned to counteract 

a type of stress that plants have never encountered before throughout evolution. Multigene 

families and redundant genes present an advantage in that they can experience changes 

without the risk of being deleterious and, for this reason, they should play a key role in the 

response to gravitational stress.    

Page 2 of 23Manuscript submitted to editorial office



For Peer Review

3 

 

THE ROLE OF GRAVITY IN PLANT EVOLUTION AND PHYSIOLOGY 

 

Living systems have been evolving on Earth for over a billion years in the presence of a 

wide range of environmental conditions, and some of their individuals or groups have been 

able to adapt to extreme environments, including suboptimal temperatures (from polar 

plants to hyperthermophilic bacteria), hydration/salinity, illumination or nutrient 

availability. Consequently, organisms have evolved collections of genes and stress pathways 

able to control the early response, i.e. acclimation and adaptation to a wide range of 

environmental conditions, from suboptimal to adverse. 

In contrast, one parameter has remained constant on Earth since life appeared on the 

surface of our planet, and this parameter is gravity. Certainly, the perception of gravity is 

not the same depending on the medium in which an organism is placed, e.g. it is not the 

same for an aquatic organism as for a terrestrial organism. With regard to the influence of 

gravity on biological evolution, a crucial step was the transition from living in the sea milieu 

to the aerial life, above the Earth’s surface. This step comprised the need to develop specific 

mechanisms of response to resist the new magnitudes of the gravity vector, without the 

compensation of Archimedes forces. In the case of plants, this step in evolution was 

decisive to allow the appearance of vascular tissues, and of seeds and flowers as 

reproductive organs.  However, once this challenge was overcome, gravity has become a 

constant environmental factor, with regard to the direction and magnitude of the vector, 

which has permanently affected terrestrial living systems and, particularly, plants.  

Consequently, terrestrial organisms have not experienced the need to produce specific 

mechanisms to respond or adapt to an ambient altered gravity. Actually, the strategy 

followed by plants with respect to this environmental factor has consisted of using it to 

modulate important physiological activities, such as nutrition and growth. In fact, plants 

have acquired specific organs, tissues and molecular systems capable of detecting the 

gravity vector, with the objective of orienting their growth according to it (gravitropism), 

with the final purpose of obtaining valuable or useful environmental resources. For 

example, plants use root gravitropism to facilitate access to soil nutrients, and shoot 

gravitropism to place leaves in the most favourable position to capture sunlight for efficient 

performance of photosynthesis. 
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GRAVITY ALTERATION INFLUENCES PLANT RESPONSES TO BIOTIC AND 

ABIOTIC STRESSES 

 

A consequence of the constant and permanent presence of the gravity vector as a component 

of the Earth environment is that all biological functions and mechanisms of terrestrial 

organisms have been developed under its influence, and they proceed taking into account 

the presence of this mechanical force. Obviously, this includes the strategies and 

mechanisms of perception, response and adaptation to a wide range of biotic and abiotic 

environmental stresses in plants. Therefore, loss or alteration of the gravitational cue is not 

only a stressful event by itself, but will also alter the way in which organisms detect and 

respond to other environmental factors. Under suboptimal environmental conditions 

produced by biotic and/or abiotic factors, the result of gravity alteration is a synergistic 

effect that promotes a complex environmental stress response, combining both abiotic and 

biotic stress elements (Beckingham 2010; Herranz et al. 2010). On the one hand, even the 

environmental factor itself can be modified through the alteration or loss of gravity 

(alteration in the distribution, availability or concentration of nutrients in the atmosphere or 

in the soil); on the other hand, environmental data can be detected differentially by the plant 

receptors. A nice example of the influence of altered gravity on the perception of other 

environmental factors is the phototropic response to certain red light wavelengths shown by 

Arabidopsis hypocotyls under microgravity conditions (Millar et al. 2010). Interestingly, 

ancient plant lineages (moss and ferns) show this red light phototropism on Earth, but 

flowering plants have lost this feature during evolution (obviously, under 1g gravity). It is 

only removal of the gravity factor that unmasks the capacity for directional red light sensing 

for phototropism in higher plants. 

 

In addition, both space flight and ground-based simulations of microgravity 

conditions impose a number of constraints, some of them of a technical character, but more 

importantly, some others affecting environmental factors. Actually, it is practically 

impossible to find a scenario of ‘pure’ gravitational alteration, either in space or in ground 

simulation conditions. Real weightlessness, as it occurs in space flight, is intimately 

associated with radiation, confinement and other factors present in the cabin of the 

spaceship, which are quite different from the typical Earth environment; furthermore, the 

preparation of material for space flight and its preservation until recovery often require 

exposure to suboptimal conditions. On the other hand, ground-based alteration of gravity (or 
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of gravity perception by the experimental subject) is only made possible by certain 

mechanisms that involve physical factors, such as shearing forces, centrifugation, magnetic 

fields and others, which are inseparable from the gravity alteration. The consequence is a 

serious impairment to the advancement of gravitational and space biology, which proceeds 

at a pace slower than ideal. 

 

GRAVITY ALTERATION PRODUCES CHANGES IN ROOT MERISTEMATIC 

CELL GROWTH AND PROLIFERATION THAT CAN BE RELATED TO 

GRAVITROPISM  

 

It was established long time ago in the ‘starch–statolith theory’ that gravity is sensed in 

plant roots by means of the movement of specialised amyloplasts called statoliths, which are 

present in certain cells of the columella (a region of the root tip) called statocytes (Perbal 

1974). This is corroborated by results showing defective gravitropism in mutant plants 

lacking starch or having low levels of it (Kiss et al. 1998).  

Statolith movement is driven by the direction of the gravity vector. Under normal 

gravity conditions (1g), statoliths sediment in the bottom of the statocytes, indicating the 

direction of root growth. If the direction of the root axis changes with respect to the gravity 

vector, statoliths move accordingly and the result is bending of the root to adopt the new 

direction of the gravity vector. In conditions of absence of gravity, statoliths move towards 

central regions of the cell (Perbal et al. 1987). In order to estimate the minimum threshold 

values capable of triggering the mechanisms of graviperception in the root, two parameters 

have been defined, namely the threshold acceleration, which is the minimum value of g 

capable of inducing a gravitropic response, and the threshold presentation dose, defined as 

the minimum product of gravity acceleration g by time in seconds that stimulates the 

graviperception mechanisms and induces a response (Perbal et al. 2002; Driss-Ecole et al. 

2008). It has been demonstrated that the quantitative gravitropic response, estimated as the 

angle of curvature of the root, varies as a hyperbolic function of the dose of stimulation 

(Perbal et al. 2002). In general, it has been demonstrated that roots grown in microgravity 

before stimulation are more sensitive than roots grown in 1g. In an experiment carried out in 

the International Space Station (ISS), comprising seedling growth in microgravity followed 

by stimulation in a centrifuge, it was shown that the threshold acceleration was between 0 

and 2.0 × 10
-3
g, although it was estimated at 1.4 × 10

-5
g, whereas the threshold presentation 

dose was 0.67 g × s (Driss-Ecole et al. 2008).   
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The physical information derived from statolith sedimentation should be converted 

into a chemical signal, capable of being transduced to the site where the gravity response is 

expressed (Fig. 1). The mechanism of this process of conversion and transduction is not 

totally elucidated at this moment. The actin cytoskeleton was proposed to be a major 

regulator of plant gravitropism (Volkmann et al. 1999; Kiss 2000); however, more recent 

reports showing that actin inhibitors enhance the gravitropic response have introduced 

controversy into such statements. Genetic and cell biological studies indicate that the 

protein degradation machinery is probably involved in the regulation of statolith–actin 

interactions, and that a ligand–receptor mechanism, similar to that described for the 

unicellular green alga Chara (Limbach et al. 2005), might operate in the gravity signal 

transduction mechanism of higher plants, regulated by actin (Blancaflor 2013). 

Furthermore, mechanosensitive ion channels in the plasma membrane or 

endoplasmic reticulum (ER) were also proposed to contribute to sensing and transduction of 

the gravity signal. Sedimenting amyloplasts in columella cells could distort membranes 

(with or without the participation of actin microfilaments) and open these channels, 

resulting in a change in the concentration of ions, especially Ca
2+

, in that region of the cell 

(Blancaflor & Masson 2003). The existence of interactions between statoliths and ER, 

producing membrane distortions capable of opening ion channels, has been experimentally 

visualised (Leitz et al. 2009). Nevertheless, recent experiments, involving treatments with 

channel inhibitors, attempting detection of changes in Ca
2+

 levels in response to 

gravistimulation or evaluating the effects of direct and indirect inhibitors of transduction of 

cytosolic Ca
2+

 signals, have produced ambiguous results. Otherwise, it has not been possible 

to attribute a precise role in gravity signal transduction to specific Ca
2+

 channels previously 

identified (Baldwin et al. 2013). 

Whatever the mechanism, the consequence of transduction of the mechanosignal is 

the reorientation of auxin efflux carriers and subsequent redistribution of auxin streams in 

the distal regions of the root. This is in agreement with the classical theory of Cholodny-

Went, who stated for the first time in 1928 that root bending induced by a change in the root 

axis with respect to the gravity vector was caused by asymmetric growth of some parts of 

the root, which in turn was due to the asymmetric lateral distribution of auxin. 

In roots growing vertically, auxin polar transport follows the pattern of a ‘reverse 

fountain’: auxin is transported acropetally throughout the centre of the root until the root tip, 

where the flow is divided and redirected basipetally throughout the outer layers of the root 

(Swarup & Bennett 2003). Subsequent to the gravitropic stimulus, a change in auxin flow is 
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established in the columella and transmitted through the lateral cap and epidermal 

meristematic cells. This change is due to the relocation (in columella cells) of two auxin 

efflux carrier proteins, namely PIN3 and PIN7, to the new bottom side of the cell (Friml et 

al. 2002; Kleine-Vehn et al. 2010). Therefore, polarised PIN localisation is critical for 

establishing and transmitting the auxin gradient in the root. In this process, PIN 

phosphorylation is important for localisation and activity of these proteins (Baldwin et al. 

2013). 

In addition to the changes in distribution of auxin, growth in microgravity (real or 

simulated) produces a substantial inhibition of auxin polar transport, as reported in several 

studies (Oka et al. 1995; Ueda et al. 1999), with the consequent inhibition of growth and 

development (Miyamoto et al. 1999). In turn, gravitropic response was suppressed when 

auxin transport was experimentally inhibited (Muday & Haworth 1994). Moreover, in a 

study on root morphogenesis carried out on a slowly rotating clinostat, meristematic activity 

and changes in auxin levels were measured in the root tips of rapeseed seedlings. Under 

these conditions, secondary roots were initiated earlier than in the vertical control. Analysis 

of meristematic activity and determination of the levels of auxin showed that, after few days 

of growth on the clinostat, the increased length of the primary root was due to higher cell 

proliferation and coincided with an increase in auxin content (Aarrouf et al. 1999a, b). 

The ‘Root’ experiment was carried out in the ISS during the course of the 

‘Cervantes’ Spanish Soyuz mission. Samples grown in space were analysed by quantitative 

estimations of seedling length and the number and size of root meristematic cells in order to 

estimate the cell proliferation rate, and morphometric, ultrastructural and 

immunocytochemical study of the nucleolus, in order to examine the rate of ribosome 

biogenesis. The results showed an enhanced rate of cell proliferation accompanied by a 

reduction in ribosome biogenesis per cell in samples grown in real microgravity, compared 

to ground 1g controls. This suggests that weightlessness is a serious stress for the plant cell, 

capable of uncoupling cell proliferation and ribosome biogenesis, two processes that are 

closely interrelated in ground physiological conditions (Matía et al. 2010). Then, on the 

basis of these space results, a new experiment, sequential and dynamic, was designed using 

simulated microgravity provided by the random positioning machine (RPM; for an 

explanation of the term ‘simulated microgravity’, see Herranz et al. 2013). This experiment 

paid special attention to two proteins, cyclin B1 and nucleolin, implicated in cell 

proliferation/cell cycle and in cell growth/ribosome biogenesis, respectively (see Matía et 

al. 2009 for a preliminary report). In the study, samples obtained from seeds germinated in 
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the RPM were sequentially taken at 2, 4 and 8 days after sowing in order to allow dynamic 

analysis of the effects of simulated microgravity.  

The evaluation of cell number and size in the root meristem showed enhanced 

proliferation with shortened cell size in samples taken on day 2, but these parameters 

stabilised at similar levels as seedling growth proceeded. Therefore, it appears that the 

phenotypic differences shown by 4- and 8-day-old seedlings have their origin in cellular 

events occurring in younger plants. The existence of alterations in cell proliferation and cell 

cycle regulation was confirmed with the data on cyclin B1 expression, which was lower in 

simulated microgravity-grown samples compared to 1g controls at the three time points, 

although the differences were much higher in the 2-day-old sample. Regarding parameters 

related to the rate of ribosome biogenesis, taken as an indirect evaluation of cell growth, 

they appeared depleted in the RPM samples with respect to the 1g control. In particular, 

analysis of nucleolar ultrastructure revealed that, in all cases, nucleoli from RPM samples 

showed typical features of low nucleolar activity. 

More recently, a similar experiment has been performed in the Magnetic Levitation 

Instrument (Manzano et al. 2009); this instrument has the additional advantage that samples 

can be studied simultaneously at 0g*, 1g* and 2g* (g* = effective gravity; Berry & Geim 

1997). With these experiments, we have completed a comparative study on seedlings grown 

in real and simulated microgravity, which, to our knowledge, has not been performed earlier 

with such an extension. In the Magnetic Levitation Instrument, the results were similar to 

those obtained with the RPM, but less pronounced, mostly concerning cell proliferation rate 

and seedling length. Interestingly, even the 1g* samples in the magnet showed some effects 

on ribosome production compared to controls outside the magnet. These data, together with 

the estimation of cyclin B1 expression, suggest that the high magnetic field itself affects 

cellular activities. 

Taken together, these results show that the weightlessness environment is a stress 

condition for plant proliferating cells, expressed as the uncoupling of cell proliferation and 

ribosome biogenesis, two cellular events that are closely associated in ground gravity. The 

effects of the gravitational stress are detected from the very beginning of germination: in 2-

day-old seedlings. The enhanced cell proliferation rate is not accompanied by an increase in 

levels of cyclin B1, as would be normal in ground gravity, but, on the contrary, these levels 

appear depleted. At the same time, lower cellular growth was observed, since ribosomes, the 

cellular factories for proteins, were produced at a lower rate. This depletion had already 

been detected in previous studies (Sobol et al. 2006), but it was not put in relation to other 
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cellular processes. Since cyclin B1 is synthesised in the G2 phase of the cell cycle, and also 

this period is the most active in ribosome production, a shortening of the G2 phase is 

compatible with the above-mentioned observed uncoupling. The causes of this shortening 

could be found in a failure or malfunction of the cell size checkpoint that immediately 

precedes mitosis (De Schutter et al. 2007; González et al. 2007). 

The most reasonable interpretation of these effects of gravity alteration on specific 

fundamental features of meristematic cells puts them in relation to the mechanisms of 

gravity sensing and response in the root, which is responsible for root gravitropism. As 

indicated in preceding paragraphs, the final effect of the gravitropic response in roots is a 

change in transport and distribution of auxin. In the specific case of plant reorientation 

within the gravity field, the visual result is differential cell elongation in the distal 

elongation zone, producing root bending and readjusting the direction of root growth (Fig. 

1). However, the root meristem is an intermediate step in the asymmetric auxin flux 

between root cap and elongation zone (Heisler & Jönsson 2007), and the role of auxin in 

regulation of the cell proliferation rate and cell cycle progression in the root meristem can 

now be considered unquestionable, since it has been demonstrated in many different 

experiments (Jiang & Feldman 2005; Magyar et al. 2005; Jurado et al. 2010; Dudits et al. 

2011). In a previous paper, we already discussed the role of auxin in mediating the effects of 

gravity alteration between gravity sensing and root meristematic cell proliferation (Medina 

& Herranz 2010). 

 

GRAVITY ALTERATION IN CELL CULTURES IN VITRO PRODUCES SIMILAR 

EFFECTS AS IN MERISTEMS: THE SYSTEM OF GRAVITY SENSING, 

TRANSDUCTION AND RESPONSE IN NON-SPECIALISED CELLS   

 

Experiments on the effects of altered gravity on cell growth and proliferation have recently 

been extended to the use of in vitro plant cell cultures. Similar to root meristematic cells in 

seedlings, cultures are composed of a population of actively proliferating cells; however, 

these cultured cells are not integrated in an organism possessing specialised mechanisms for 

gravity sensing, whereas the response to gravistimulus in them is autonomous in each cell, 

not being the result of transduction of a signal from a more-or-less distant receptor organ. 

An important advantage of cell cultures is that they produce abundant biomass of 

proliferating cells, suitable for biochemical, genomic and proteomic methods, which is not 

usually possible with root meristems, where (specifically in Arabidopsis) the number of 
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proliferating cells is very limited. The study carried out on plant cell cultures grown for a 

short period under simulated microgravity (in an RPM), and analysing similar parameters as 

previously measured in root meristematic cells, gave comparable results to those obtained 

with seedlings. Therefore, we could conclude that meristematic competence is lost in 

proliferating cells as a consequence of gravity alteration, both in root meristems and in cell 

cultures in vitro. 

As previously indicated, no specialised mechanisms for gravity perception have been 

described in cell cultures in vitro, unlike those present in statocytes of the columella cells of 

the plant root. Therefore, changes observed in the physiology of these cells as a 

consequence of gravity alterations cannot be attributed to the transduction of 

mechanosignals, as occurs in root cells. Thus, what is the graviperception mechanism acting 

in this kind of cell? There is a mechanism for gravity perception and response that differs 

from gravitropism and which, unlike gravitropism, is not based on the existence of 

specialised plant organs for gravisensing. This mechanism is gravity resistance, or 

graviresistance, a capacity acquired by plants during evolution at the time of the transition 

from an aquatic environment to a terrestrial environment, more than 400 million years ago, 

with the purpose of developing rigid structures capable of resisting the gravity force 

attracting them towards the centre of the Earth in order to keep them in their proper place.  

Gravity resistance need not occur in specialised cells, but may operate in several 

different (if not all) cell types (Hoson et al. 2005). The perception of gravity in this 

mechanism is carried out through mechanoreceptors located on the plasma membrane, 

consisting of mechanosensitive ion channels. Actually, this type of mechanosensitivity can 

be put in relation to the gravitational pressure model of gravity sensing, an alternative 

mechanism of gravitropism that was shown to operate in intermodal cells of the green alga 

Chara, and also postulated to function in higher plant roots to account for experimental 

results in which cells of the distal elongation zone, lacking statoliths, are capable of sensing 

gravity (Staves et al. 1997). In this model, the entire protoplast is the gravity receptor, 

because it is based on detection of the total weight of the protoplast on its cell wall. This 

results in differential tension and compression between the plasma membrane and the cell 

wall at the top and bottom of the cell, activating the mechanosensitive ion channels located 

in these positions, which are recognised as triggering the cellular mechanism of 

graviresistance (Hoson et al. 2005). 

The gravity signal sensed in this way is then transduced in order to generate a 

response. Unlike gravitropism, signal transduction in graviresistance does not involve 
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different tissues or organs of the plant, but instead is intracellular. The first transduction step 

is the reorientation of cortical microtubules, which are responsible for the structural stability 

of the cytoplasm and sustain various functions of the cell wall (Hoson et al. 2010). Since 

there is physiological continuity between the plasma membrane, cortical microtubules and 

the cell wall, the signal transduction leads to an alteration in cell wall rigidity as the final 

response. This alteration is modulated by the magnitude of the gravity vector, since, under 

hypergravity conditions, the rigidity of the cell wall increases, whereas under microgravity, 

tubulin mutants that show low capacity for gravity resistance and a disordered growth 

pattern on Earth are rescued and can grow and develop normally. In parallel, signal 

transduction reaches the nucleus and induces the expression of different genes, influencing 

the structure and function of various membrane components (Hoson et al. 2005, 2010).      

Although there is no experimental supporting evidence that the mechanisms of 

gravity resistance are responsible for the alterations in cell growth and proliferation 

parameters detected in cell cultures in vitro, it is true that they are compatible with the 

results obtained. Actually, gravity resistance is a unique mechanism that is experimentally 

supported and provides an explanation for the detection, transduction and response to 

gravity signals of general application to all kinds of plant cells. Therefore, similar effects 

recorded in both root meristematic and in vitro cultured cells could be obtained via different 

mechanisms (Fig. 1). Certainly, if gravity resistance is a mechanism of general occurrence, 

it should also be present in meristematic cells.   

 

DIFFERENTIAL EFFECT OF THE TWO COMPONENTS OF THE GRAVITY 

VECTOR ON RESPONSE TO GRAVISTIMULATION 

 

The alteration of two components of the gravity vector (direction and magnitude) may have 

different effects on the plant developmental programme (Morita 2010). It is reasonable to 

argue that, once a threshold value of residual gravity is achieved, sensor organs of 

gravitropism could promote a response to the direction of the gravity vector and produce 

similar phenotypes, independently of the magnitude of the gravity vector. In fact, the 

gravitropic response has been modelled using a hyperbolic function, in which the maximum 

response is indicated by the asymptotic behaviour of the curve α = a · d / (b + d), where α is 

the gravitropic response, expressed as the angle of curvature of the root, d is the dose of 

stimulation, which is directly proportional to the acceleration of gravity, and a and b are 

constants (Perbal et al. 2002). In opposition, other graviresistance mechanisms that involve 
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tensions on cellular scaffold structures (cytoskeleton, cell wall or membranes) show 

logarithmic behaviour (Soga et al. 2001), i.e. producing an effect that is proportional to the 

magnitude of the gravity vector (Fig. 2). These arguments provide an explanation for the 

differential, complementary or additive effects driven mainly by the direction of the g vector 

in specific organs (gravitropism) and the effects driven by the magnitude of the g vector 

(graviresistance), which are detectable in specialised (statocytes containing statoliths) and 

non-specialised cells.  

It is because of the prevalence of gravity acceleration on the Earth surface that the 

only way to study the effect of gravity on organisms, and to unravel the different 

contributions of the specific/non-specific or g vector direction/quantity effects, is to perform 

experiments in free-fall conditions (in space orbital trajectories, parabolic flights, sounding 

rockets or drop towers), through magnetic levitation compensation or mechanical 

randomisation of the g vector amount or direction, respectively (Herranz et al. 2013). Under 

real or simulated microgravity, both effects should be removed so that we cannot determine 

which of the two components is more important except by using cell cultures that do not 

contain specialised organelles to detect gravitropism. In contrast, using partial g levels (like 

those of the Moon or Mars), the contribution of the two components could be quite 

different, especially if seedlings are able to detect the gravity vector direction (gravitropism 

threshold is achieved), but the quantity of gravity is low enough to avoid most of the 

graviresistance mechanisms (Fig. 2). Hypergravity environments should therefore become a 

very interesting research field for similar reasons. 

 

GLOBAL STRATEGIES TO COUNTERACT GRAVITY ALTERATION AND 

GRAVITATIONAL STRESS 

 

The question is how can organisms adapt themselves to an environment without this 

essential clue for their existence and survival on our planet. What happens at the molecular 

level in terms of transcriptional profile? This problem has been addressed in both 

spaceflight and ground-based simulated microgravity facilities using multiple model 

systems. In particular, A. thaliana seedling and cell culture transcriptomes have been 

analysed after space flight exposure (Paul et al. 2012). In both cases, some fundamental 

environmental parameters (including absence of lighting, containment and temperature 

constraints from launch site delivery and spaceflight until arrival at the ISS) have been 

added to the absence of the gravity signal. The consequence has been that hundreds of genes 
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have shown gene expression variations, reaching values above seven-fold. This dramatic 

effect should be related to phenotypic alterations, such as the decoupling of cell 

proliferation and cell growth observed in early Arabidopsis seedlings grown in space (Matía 

et al. 2010). In the case of Arabidopsis, space flight transcriptional effects have also been 

evaluated from two different biological sources – seedlings and cell cultures – thus also 

obtaining unique transcriptional responses (Paul et al. 2012). Our own transcriptomic work 

using in vitro cell cultures in simulated microgravity facilities, carefully designed to 

maintain optimal culture environmental conditions, produced a less evident gravitational 

effect, which was significantly enhanced when gravitational and magnetic field 

environmental stresses were maximised (Manzano et al. 2012). In addition, a static 

magnetic field has an effect on seedlings that is stronger than the effect of a magnetic field 

of similar intensity, but higher gradient, that we used in cell cultures (Paul et al. 2006). 

In fact, our hypothesis is that the entire transcriptome needs to be finely tuned in a 

global way that counteracts multiple gravity-related parameters but, since microgravity is a 

novel and extremely unusual environment for organisms, the genome lacks particular gene 

sets evolved to do it. Consequently, genes with fewer limitations in their functions can be 

up- or down-regulated in certain organs, tissues or cellular compartments in order to 

respond to the new environmental challenge. For experiments involving the use of whole 

genome microarray platforms, not only plants (Manzano et al. 2012; Paul et al. 2012) but 

also different populations of small animals (Leandro et al. 2007; Herranz et al. 2009, 2012) 

have been exposed to microgravity, starting the experiment under different environmental or 

developmental conditions (reflecting different transcriptional states). Thus, these different 

systems promoted different final transcriptomic profiles that appeared as unique 

transcriptional responses to microgravity. Nevertheless, even in different organisms, the 

groups of genes affected by the treatment belonged to similar gene ontology domains, 

specifically, those related to biotic and abiotic stress genes. Likewise, when analysing 

results from the literature obtained using proteomic techniques, similar stress-related 

proteins appear to be involved in the response of Arabidopsis to microgravity or 

hypergravity conditions (Martzivanou et al. 2006; Barjaktarovic et al. 2009).  

An interesting result of the microarray studies on the global response of the genome 

to gravitational stress is that redundant genes or multigene families were often found among 

the differentially expressed genes (Herranz et al. 2012; Manzano et al. 2012). This is a clear 

indication that they are the best candidates to play a major role in adaptation to new 

ecological situations. Redundancy in plants is more important than in animals, due to their 
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sessile condition: plants cannot escape from suboptimal or adverse environments, so 

adaptation strategies are mandatory. It is known that plants have undergone extensive 

duplications (up to four times) of large genomic regions, producing a large amount of 

duplicated genes, and that during evolution, plants have taken advantage of the existence of 

these duplications for the benefit of adaptation through multiple mechanisms. 

Since we are interested in the cell proliferation and cell growth system, we have 

focused our attention on two gene families. In the first case, nucleolin, as the major protein 

of the nucleolus, is a marker of cell growth in actively proliferating cells, and precisely two 

genes code for this protein in A. thaliana. Do these genes have compensating effects, or do 

they tune their expression in unusual environmental conditions? Moreover, we know than 

multiple cyclins and CDKs are involved in cell proliferation control. A detailed analysis of 

our Arabidopsis transcriptomic data from simulated microgravity in ground-based facilities 

leads to the conclusion that multiple genes tune their expression in a concerted way, 

depending on the gravity change direction (Manzano et al. 2012; Table 1).  

We think this is an exciting and very promising research line. Mechanisms of 

gravisensing and graviresponse in non-specialised cells must be experimentally 

demonstrated, and the differences and similarities with mechanisms supporting 

gravitropism, as well as the existence of possible synergies and crosstalk between the 

different pathways, should be investigated. At the level of molecular global strategies to 

counteract the gravitational stress, our results with cyclins and nucleolin genes, as 

representative elements of multigene families and redundant genes, should first be 

completely understood, and second extended to other examples of high functional 

relevance. In addition to providing answers to fundamental questions of plant biology, this 

research will make possible the most efficient use of plants in future space exploration 

missions and in sustainable agriculture on Earth. 
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Table 1.  Cell cycle (cyclin) genes, as an example of adaptability of expression to unusual 

environmental conditions in a multigene family. Relative changes (%) in expression of cell 

cycle regulation genes under altered gravity.A mMore than 30% change in gene expression 

versus  1g* or 1g are shaded (in bold when statistically meaningful versus 1g, pval- Limma 

< 0.01). The first four columns correspond to different positions in the magnet in an 

experiment with magnetic levitation (g* = effective gravity within the magnet; LDC: large 

diameter centrifuge; RPM: random positioning machine). 

 0g* 0.1g* 1.9g* 2g* LDC 

(2g) 

RPM 

(simulated µg) 

CKS1 -51% -37% -22% 4% -7% -12% 

CKS2 -32% -18% 18% 17% 45% -13% 

CYCA1;1 -40% -12% -57% 30% 64% -5% 

CYCA1;2 -8% -21% 20% -1% -12% -8% 

CYCB1;2 -52% -57% -7% 52% 12% -22% 

CYCB1;3 -47% -51% -17% 43% 72% -12% 

CYCB1;4 -49% -42% -28% 58% 74% -21% 

CYCB1;5 -54% -45% -15% 46% 20% -30% 
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FIGURE LEGENDS 
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Guidelines) to the Production Editor (plb@wiley.com) 

 

Figure 1. Comparison of the processes of gravity sensing, transduction and response in the 

plant root and in an in vitro plant cell culture. In the root, the mechanical gravity signal is 

sensed by statolith movements in statocytes. Mechanical signal is converted into chemical 

signal through a mechanism not totally understood at present, in which actin and Ca
2+

 

channels probably take part, which results in the modulation of auxin polar transport and 

lateral distribution throughout the root. Alterations in these parameters produce effects on 

the growth of cells in the elongation (transition) zone, which are the immediate precursors 

of differentiated cells of the root. Effects of gravity alteration on cell proliferation and 

growth have also been observed in the root meristem, most probably related to changes in 

auxin transport and distribution, since auxin is an essential regulator of cell proliferation and 

cell cycle progression. In turn, cultured cells lack statoliths, and no specific mechanism of 

gravity sensing has been described in these cells, other than the gravity resistance 

mechanism. Since tensions in peripheral microtubules and the cell wall have been reported 

to be an effect of gravity alteration in non-differentiated cells of hypocotyls (as part of the 

mechanism of gravity resistance), it is reasonable to assume that these changes might also 

occur in proliferating in vitro cultured cells. The mechanosignal, sensed by this or another 

unknown mechanism, can be converted into a chemical signal by Ca
2+

 channels, also 

present in this kind of cells and transduced intracellularly and probably also through cell–

cell interactions. Interestingly, the effects of gravity alteration on the two biological 

systems, at the level of cell growth, proliferation and differentiation, are quite similar.  

Author: Please change ‘mechanic’ to ‘mechanical’ in this figure. 

 

Figure 2. There are two processes triggered by gravity sensing and response in plants, 

namely gravitropism and graviresistance. The first uses gravity to spatially orient the growth 

of the plant; the second allows the survival and development of aerial parts of the plant, 

producing rigid structures capable of adopting positions not necessarily imposed by the 

gravity force. The two components of the gravity vector, namely direction and magnitude, 

are differentially involved in these two processes: gravitropism mostly uses direction, 
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although magnitude also plays a role, particularly in the determination of thresholds; 

graviresistance is essentially triggered by the magnitude of the vector, with an almost 

negligible influence of the vector direction. Consequently, the response curves for both 

processes in relation to the stimulus are quite different: gravitropism is characterised by a 

hyperbolic curve (continuous line; 1), whereas the response for graviresistance is 

logarithmic (dashed line; 2). The two curves must cross each other in a point, which 

corresponds to the g level at which the differential contribution of gravitropism and 

graviresistance to graviresponse are the same. Since the curves plotted in the figure are only 

theoretical (i.e. they have not been plotted with real experimental data), we do not know 

exactly where (at what g level) this point is located. For this reason, this point has been 

marked with a question mark. An additional interesting consequence of these models, when 

exploration is becoming a chief objective of space research, could be determination of the 

differential contribution of gravitropism and graviresistance to the gravity response in 

conditions of fractional gravity, such as those existing on the Moon (0.17g) or Mars (0.37g).     
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Figure 1. Comparison of the process of gravity sensing, transduction and response in the plant root and in 
an in vitro plant cell culture. In the root, the mechanic gravity signal is sensed by the statoliths movements 
in statocytes. Mechanic signal is converted into chemical signal by a mechanism not totally understood at 
present, in which actin and calcium channels probably take a part, which results in the modulation of auxin 
polar transport and lateral distribution throughout the root. Alterations in these parameters, produce effects 

on the growth of cells of the elongation (transition) zone, which are the immediate precursors of 
differentiated cells of the root. Effects of gravity alteration on cell proliferation and growth have also been 
observed in the root meristem, most probably related to changes in the auxin transport and distribution, 

since auxin has been demonstrated to be an essential regulator of cell proliferation and cell cycle 
progression. In turn, cultured cells lack statoliths and no specific mechanism of gravity sensing has been 

described in these cells, other than the gravity resistance mechanism. Since tensions in peripheral 
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cells, and transduced intracellularly and probably also by cell-cell interactions. Interestingly, the effects of 
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Figure 2. There are two processes triggered by gravity sensing and response in plants, namely gravitropism 
and graviresistance. The first of them uses gravity to spatially orient the growth of the plant; the second one 

allows the survival and development of aerial parts of the plant, producing rigid structures capable of 

adopting positions not necessarily imposed by the gravity force. The two components of the gravity vector, 
namely direction and magnitude, are differentially involved in these two processes: gravitropism mostly uses 

direction, although magnitude also plays a role, particularly in the determination of thresholds; 
graviresistance is essentially triggered by the magnitude of the vector, with an almost negligible influence of 
the vector direction. Consequently, the response curves for both processes in relation to the stimulus are 

quite different: gravitropism is characterized by a hyperbolic curve (continuous line; 1), whereas the 
response for graviresistance is logarithmic (dashed line; 2). The two curves must cross each other in a 

point, which corresponds to the g level at which the differential contribution of gravitropism and 
graviresistance to graviresponse are the same. Since the curves plotted in the figure are only theoretical 
(i.e., they have not been plotted with real experimental data), we don’t know exactly where (at what g 

level) this point is located. For this reason, this point has been marked with a question mark. An additional 

interesting consequence of these models, when exploration is becoming a chief objective of space research, 
could be the determination of the differential contribution of gravitropism and graviresistance to the gravity 
response in conditions of fractional gravity, such as those existing on the Moon (0.17g) or Mars (0.37g).      
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