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ABSTRACT 183 
184 

In this work we give an overview of both morphological characteristics and physiological 185 

mechanisms responsible for the high adaptability of olive to harsh environments, and how 186 

this knowledge is currently used to design new sustainable and efficient crop management 187 

practices. We first describe the biennial vegetative and reproductive cycle of  olive, and 188 

how these are affected by environmental conditions. Then we address main morphological, 189 

functional and physiological traits of olive that may contribute to stress tolerance. We also 190 

summarize innovative crop management practices that have been developed from our 191 

understanding of the mechanisms of response to abiotic stresses.  192 

193 

Keywords: crop management, hydraulic functionality, irrigation, photosynthesis, stomata, 194 

transpiration, water uptake, water productivity 195 

196 

1. Introduction 197 

198 

Olive has become a major crop in wide arid and semi-arid areas due to both its 199 

capacity to grow and produce acceptable yields under harsh environmental conditions and 200 

the demand for olive products, especially olive oil, which is considered by an increasing 201 

number of consumers as a key ingredient for a healthy diet. In addition, olive has shown a 202 

marked response to improved crop management practices. Both circumstances explain the 203 

substantial increase, since the 1980’s, in the number of research groups focussed on 204 

understanding the biology of this species and its response to the environment, as well as in 205 

using the acquired knowledge to improve crop management practices and to design new 206 

cropping systems for more sustainable olive orchards. As a consequence, a substantial 207 

amount of information on olive biology and olive growing has been published in the last 208 

decades. Main findings have been summarized in comprehensive reviews on biology and 209 

physiology (Lavee, 1996; Connor and Fereres, 2005), response to environmental stimuli 210 

(Bongi and Palliotti, 1994; Sanzani et al., 2012), water use and irrigation (Fernández and 211 

Moreno, 1999; Gucci et al., 2012a; Carr, 2013). Other reviews focus on particular aspects, 212 

such as biology (Lavee, 1985, 1986; Fabbri and Benelli, 2000), drought stress (Xiloyannis 213 

et al., 1996), salinity stress (Gucci and Tattini, 1997; Ben-Gal, 2011), atmospheric 214 

pollutants and ultraviolet-B (UV-B) radiation (Sebastiani et al., 2002). The aim of this 215 

analysis is to highlight both the characteristics and the mechanisms responsible for the high 216 
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adaptation of olive to harsh Mediterranean environments, and how this knowledge is 217 

currently used to improve sustainable crop management practices. 218 

219 

2. The olive biennial cycle 220 

221 

Commercial olive belongs to Olea europaea L., subspecies sative. The growth and 222 

reproductive cycle is biennial because flower induction occurs at summer, at the time of 223 

endocarp sclerification (Fernández-Escobar et al. 1992), but flower initiation and 224 

differentiation occurs  during the next spring (Rallo and Cuevas, 2010). Following a period 225 

of winter dormancy, flower initiation occurs soon after bud burst, about two months before 226 

flowering (Fig. 1). Some buds are initiated and some of those differentiate to produce 227 

inflorescences. The crop load of the current year affects flower induction, by compounds 228 

released from developing fruits that are translocated back to the buds. The inhibition of 229 

floral induction by fruit and seed growth contributes to alternate bearing, a typical feature 230 

of olive. Years of intense fruiting (‘on’ years) tend to be followed by years of restricted 231 

flowering and reduced crop load (‘off’ years), causing the pattern of biennial flowering and 232 

yield. During the ‘on’ year, the developing fruits limit vegetative growth of the current 233 

year and flowering of the following year (Cuevas et al., 1994; Lavee, 1996). Results 234 

reported by Dag et al. (2010) suggest that flowering-site limitation, due to insufficient or 235 

immature vegetative growth during the ‘on’ years is the primary factor inducing alternate 236 

bearing in olive. Details on the phenological stages of olive are given in Sanz-Cortés et al. 237 

(2002).  238 

239 

2.1. Shoot growth  240 

241 

In winter, during dormancy, air temperature (Ta) values of -7  -8 ºC can cause 242 

damage to  olive, although resistance to temperatures as low as -18 ºC have been reported 243 

(Sanzani et al., 2012). The threshold temperature below which frost damage occurs mostly 244 

depends on cultivar, plant age, sanitary and nutritional status. In the spring, during active 245 

shoot growth, olive is very sensitive to frost injury, and can suffer damage even at 246 

temperatures just below freezing, especially in tissues with high water content, such as the 247 

apexes of young leaves. It has been reported that organ sensitivity to low temperatures is in 248 

the order drupes > roots > new leaves > older leaves > twigs > buds (Fiorino and Mancuso, 249 

2000; Graniti et al., 2011).  250 
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After a period of winter dormancy, and when Ta is above 12 ºC, shoot growth starts. 251 

In the northern hemisphere this occurs in early spring. Shoot growth rate and leaf size are 252 

cultivar-dependent and vary considerably according to plant age and vigour, and 253 

environmental conditions. A seasonal sequential change is apparent in current-year shoot 254 

(Lavee, 1996). In mid-summer, when Ta > 30 ºC, vegetative growth decreases and new 255 

leaves are progressively smaller. In autumn, following the reduction in Ta, a second period 256 

of rapid growth may occur, when soil water is newly available. Shoot growth is affected by 257 

crop load, since shoots and fruits compete for assimilates. In ‘off’ years, shoot growth rate 258 

is usually more constant than in ‘on’ years (Rallo and Cuevas, 2010). Shoot growth rate 259 

also depends on whether the bud from which the shoot originates is lateral or apical), and 260 

on the parent shoot age (Castillo-Llanque and Rapoport, 2011). 261 

262 

FIGURE 1 about here 263 

264 

2.2. Flowering 265 

266 

Olive blooms in spring, the exact date being related to the average daily Ta267 

experienced approximately two months before (Rallo and Cuevas, 2010). Flowers are born 268 

on paniculate inflorescences of up to �40 flowers each, which develop from buds in the 269 

leaf axis of the previous-season shoot (Lavee, 1996; De la Rosa et al., 2000). 270 

Consequently, flower number is determined by both auxiliary buds which differentiate into 271 

inflorescences and flower number per inflorescence. Subsequent changes from axillary bud 272 

to blooming inflorescence requires 2 to 3 months of growth and development, including 273 

elongation and branching of inflorescence axis, and formation and development of  274 

individual flowers (Rapoport et al., 2012). Olive inflorescences bear a mixture of 275 

hermaphrodite (perfect) and functionally staminate (imperfect) flowers due to pistil 276 

abortion (Reale et al., 2009). Imperfect flowers do not produce fruit. The proportion of 277 

imperfect flowers is cultivar-dependent (Rallo and Fernández-Escobar, 1985; Rosati et al., 278 

2011) and it is affected by water availability and nutritional status (Uriu, 1960). Perfect 279 

flowers contain four ovules, two in each of two locules and are short-living. Pollen is 280 

produced in abundance over 5 days and individual stigmas remain receptive for 2 days. 281 

Flowering in individual trees lasts 10 days and in orchards for 20 days. The transformation 282 

of an olive ovary into a fruit requires, apart from fertilization, the development of a seed 283 

from at least one of the four ovules present in the ovary. Fruit set at 2 to 3 weeks after 284 
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flowering may account for 10 to 15% of total flowers, but it decreases, to 7 to 10% in the 285 

following 4 to 5 weeks, i.e. 6 to 7 weeks after bloom (WAB). In years of heavy flowering, 286 

a fruit set of 1 to 2% can be adequate for a good commercial yield, 50% of flowers can be 287 

removed without affecting final fruit number (Lavee, 1996). Some ovaries develop 288 

parthenocarpically, i.e. without fertilization. The resulting fruits, named shotberries, are 289 

smaller and commercially unimportant because most abort quickly and few persist until 290 

harvest (Rapoport, 2010). Pollination is hindered by strong winds and rain, and may also 291 

suffer from high Ta or hot winds that desiccate pollen and stigmas (Connor and Fereres, 292 

2005; Koubouris et al., 2009). Flowering is also affected by endogenous conditions. Ulger 293 

et al. (2004) reported that high levels of gibberellic acid GA3 had an inhibitory effect on 294 

floral formation during the induction and initiation periods, and that high concentrations of 295 

gibberellic acid GA4, abscisic acid (ABA) and cytokinins may have a positive effect on 296 

flower formation during the induction and initiation periods.  297 

The effect of water deficit at different times from winter dormancy until flowering, 298 

and also at the time of flowering and initial fruit set, was studied in 3-year-old ‘Picual’ 299 

olive by Rapoport et al. (2012). Water deficit during winter dormancy had no effect on 300 

inflorescence and flower formation. During the period of inflorescence formation, water 301 

deficit caused significant reductions in flowering parameters. Water deficit during the 302 

floral development period caused lesser reductions in flowering parameters but hampered 303 

the pollination and fertilization processes. Water deficit during flowering and initial fruit 304 

set reduced pollination by hindering flower opening. Some compensation in fruit size 305 

occurred when the deficit treatments resulted in lower fruit number, but it was insufficient 306 

for maintaining full fruit production. Typical olive adaptive responses and detrimental 307 

effects of water deficit during the pre-flowering and flowering periods were described by 308 

Pierantozzi et al. (2013). Both flowering and fruit set are strongly affected by Ta (Sanzani 309 

et al., 2012), so that olive flowering date is a reliable indicator of climatic warming 310 

(Osborne et al., 2000; Bonofiglio et al., 2009). The effect of Ta on flowering, however, is 311 

not clear. Temperatures between 2-4 ºC and 15.5-19 ºC were reported by Denney and 312 

McEachern (1983) as providing an optimum balance between the chilling signal 313 

(vernalization) that releases induced buds for further development and the warm conditions 314 

that supports the associated growth, as higher temperatures reverse the chilling effect 315 

(devernalization). Chilling requirement is not absolute because olive flowers and produces 316 

fruits in various subtropical locations where vernalization conditions (as defined above), do 317 

not occur (Connor and Fereres, 2005; Searles et al., 2011). Yields are usually low in areas 318 
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with Ta above olive requirements. Ayerza and Sibbet (2001) evaluated the suitability of 319 

new sites for olive production in Argentina, where the maximum number of vernalizing 320 

days is 110, while in Spain or Italy 150 vernalizing days per year are common. They 321 

concluded that in Argentina and in other olive expanding areas, greater damage was 322 

produced due to high Ta at flowering more than by low Ta. A common practice in that 323 

region is indeed to suspend irrigation during the winter months, because water stress 324 

promotes flowering once irrigation resumes in spring. 325 

326 

2.3. Fruit development 327 

328 

Olive is a drupe consisting of fleshy pericarp (pulp) and woody endocarp (stone) 329 

that encloses a single seed. The pericarp has an outer epicarp composed of a layer of small 330 

cells rich in chloroplasts, and an inner mesocarp composed of parenchymatous cells rich in 331 

oil, the size of which increases radially from outside to inside (Sánchez, 1994). Olive oil is 332 

present in both mesocarp and seed. Part of the oil present in the mesocarp is imported from 333 

other plant organs, whereas the rest is formed in situ, due to fruit CO2 assimilation. Oil in 334 

the seed is imported, and used for nourishing the embryo during the initial stages of 335 

germination. The oil in the mesocarp is for attracting animals, which then contributes to 336 

seed dissemination (Sánchez 1994). Mesocarp volume is important for oil production, 337 

since this tissue is where up to 98% of the oil accumulates. The oil content of olives can 338 

reach over 30% fresh weight (f.w.) at the end of ripening period.  339 

Most of the endocarp and mesocarp cells are produced between 4 and 10 WAB 340 

period (Rallo and Rapoport, 2001; Rapoport, 2010). From that time until fruit maturity, 341 

considerable cell expansion occurs, and an additional 10% to 40% of mesocarp cells may 342 

still be produced, depending on cultivar. During the first half of the developmental period 343 

the fruits increase their weight at more or less linear rates, so that at � 25 WAB they reach 344 

final size (Fig. 1). Ninety per cent of the endocarp growth occurs by 8 WAB (Rapoport et 345 

al., 2004), and then cells become highly lignified in contrast to the basically parenchymatic 346 

oil-storing cells of the mesocarp. Water deficit at the period of 4 to 10 WAB might highly 347 

affect both cell number and cell size (Rapoport et al., 2004; Gucci et al., 2009). Hammami 348 

et al. (2011) reported that excessive water stress in the first 8 WAB may lead to reduce cell 349 

number in olive fruits. Thus the final fruit f.w. and volume can be reduced if water supplies 350 

are not enough at that period of high sensitivity of the olive fruit to water stress (Fig. 1). 351 

The effect of water availability on endocarp development was further investigated by 352 
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Hammami et al. (2013). Maximum mesocarp-to-endocarp ratio is an important feature for 353 

olive fruit quality for both table consumption and oil production. Irrigation increases the 354 

mesocarp-to-endocarp ratio when compared with rain-fed trees (d’Andria et al., 2004; 355 

Gómez-Rico et al., 2007; Lavee et al., 2007), but this ratio is not affected much at mild 356 

water stress (Gucci et al., 2009; Lavee et al., 2007). 357 

Oil accumulation begins from ca. 8 WAB. Oil accumulation in the seed is relatively 358 

fast and is completed in about 10 weeks. In the pulp the oil content increases more slowly 359 

and takes some 20 weeks or more to reach a plateau (Lavee and Wodner, 1991). The oil 360 

accumulation pattern changes considerably under stressing conditions. The mesocarp is 361 

more responsive to water deficit than the endocarp. Gucci et al. (2009) reported that both 362 

the fruit f.w. and dry weight (d.w.) responded to water status, but f.w. was more sensitive, 363 

for both endocarp and mesocarp. Both fruit size and oil content in the mesocarp were 364 

affected by crop load. High crop loads decreased  fruit f.w. at harvest in fully irrigated (FI) 365 

and deficit irrigated (DI) trees, but not in severely stressed olive trees (Gucci et al., 2007). 366 

This may explain why irrigation affects fruit size differently in ‘on’ and ‘off’ years 367 

(Moriana et al., 2003; Lavee and Wonder, 2004). The ripening process, characterized by a 368 

change in the colour of the fruit, starts ca. 30 WAB, when the rate of oil accumulation is 369 

reaching a plateau (Fig 1).  370 

The importance of sunlight irradiance for olive production is long known. Ortega-371 

Nieto (1962) reported greater oil content in illuminated than in shaded fruits. Recently, 372 

Gómez-del-Campo and García (2012) reported that fruits from the illuminated canopy 373 

areas produced stable oil, rich in phenols saturated fatty acids. Knowledge on the 374 

accumulation of photosynthates and their redistribution within the plant are crucial for 375 

developing good pruning practices in olive orchards (Gucci and Cantini, 2000), as well as 376 

for designing new olive growing systems such as hedgerow olive orchards with high plant 377 

densities, also called super-high-density (SHD) orchards (Rius and Lacarte, 2010).    378 

Early frosts in autumn, before harvesting, can dehydrate the drupes and cause skin 379 

shrivelling (-0.4 ºC), permanent fruit damage, fruit drop (-1.7 ºC), and fruit freezing (-3 ºC) 380 

(Sanzani et al., 2012). Damaged fruit parts are frequently colonized by pathogens, which 381 

penalizes oil quality. However, slight frost damage can increase oil extractability, because 382 

fruit water content decreases. Water stress during fruit development affects ripening date, 383 

thus favouring early harvesting and minimizing risk of frost damage. Contrasting results of 384 

the effect of water stress on ripening date, however, have been reported. Motilva et al. 385 

(2000), Berenguer et al. (2006) and Gucci et al. (2007) showed that ripening was delayed 386 
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by irrigation, whereas irrigation caused earlier ripening in other circumstances (Morales-387 

Sillero et al., 2013; García et al., 2013).  388 

389 

3. Morphological adaptations to abiotic stresses390 

391 

The high capacity of olive to grow under harsh conditions is due to morphological 392 

characteristics as well as to physiological mechanisms, related with escape, avoidance and 393 

tolerance components of stress resistance. In this section, we address the morphological 394 

adaptations olive has developed to survive and yield under ‘limiting’ conditions. Main 395 

physiological mechanisms related to stress resistance are detailed in the next section.  396 

397 

3.1. The root system 398 

399 

The olive root system is adapted to scarce and intermittent rainfall events typical of 400 

Mediterranean areas. A large root portion, in fact, grows, more or less, parallel to soil 401 

surface, thus exploring top soil layers (Fernández et al., 1991; Searles et al., 2009). In 402 

aerated soils of light texture, however, olive roots may reach depths of 6-7 m (Lavee, 403 

1996). Olive roots are sensitive to hypoxia, although olive root system can adapt to heavy, 404 

unaerated soils by developing a shallow and wide root system (Lavee, 1996). In dual soils, 405 

characterized by sandy top layer and clayey bottom layer of high resistance to penetration, 406 

roots may only explore top layer, and penetrate deeper layers due to soil cracks and 407 

favourable aeration when soil dries (Diaz-Espejo et al., 2012). For olive trees with 408 

localized irrigation, the greatest root length densities (Lv) of fine (Ø < 0.5 mm), active 409 

roots, are found in wetted soil volumes close to the drippers, with a favourable balance 410 

between air and water for root growing (Fernández et al., 1991; Searles et al., 2009). For 411 

rain-fed trees, the greatest Lv and root activity values are usually found at less than 0.5-0.6 412 

m from the trunk and between 0.15-1.0 m in depth (Abd-El-Rahman et al., 1966; 413 

Fernández et al., 1991). The high concentration of active roots in superficial soil volumes 414 

close to the trunk increases the efficiency of the olive tree in absorbing rainfall water that 415 

runs down the stem (Gómez et al., 2001). 416 

The capacity of olive to take up water and nutrients not only depends on root 417 

distribution, but also on root growth dynamics and activity. Sap flow methods are currently 418 

used to quantify both absolute values and the dynamics of water uptake by single roots 419 

(Moreno et al., 1996; Fernández et al., 2001; Nadezhdina et al., 2007) (Section 4.1.2). 420 
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Fernández et al. (1992) evaluated the effect of irrigation on olive root growth and activity. 421 

They showed that irrigation may shorten the period for orchard establishment, and deeply 422 

influences relations between the above-grown and the below-ground tissues. The growth 423 

dynamics of olive roots also depends on sink-source competition, which establishes 424 

between aerial and subterranean organs throughout the year (Celano et al., 1998). Water 425 

supply, tree age, plant density and soil characteristics greatly affect the root/canopy ratio. 426 

Rain-fed olive trees usually show greater root/canopy ratios than irrigated trees, since they 427 

have to explore larger soil volumes to collect similar water and nutrient amounts (Celano et 428 

al., 1999; Fernández et al., 1991, 1992). The capacity of the olive tree to explore big soil 429 

volumes can be markedly curtailed both by the soil and tree characteristics conditions and 430 

the orchard design and management (Fernández et al. 2008a; Diaz-Espejo et al., 2012).  431 

An example of root ‘plasticity’ in olive to adapt to soil conditions is given in 432 

Rewald et al. (2011a). They evaluated salt tolerance of ‘Barnea’, ‘Arbequina’ and 433 

‘Proline’, and reported that fine roots of ‘Barnea’ trees irrigated with saline water 434 

(electrical conductivity, EC = 7.5 dS m-1) increased specific conductivity due to the 435 

development of high conduit diameter and  root biomass. Additional results on sap flow 436 

and carbon allocation (Rewald et al. 2011b) show that under moderate salinity, the tolerant 437 

‘Barnea’ was to sustain higher fine root biomass and root sap flow density than ‘Proline’ 438 

trees. Soil temperature (Ts) also influences root functioning. In most olive growing areas, 439 

low Ts at winter may induce tree water deficit even at optimal water supply. In an 440 

experiment with FI ‘Picual’ potted saplings exposed to Ts < 10 ºC, both the leaf water 441 

potential (Ψl) and the stem water potential (Ψstem) decreased, and root hydraulic resistance 442 

increased. At Ts < 6.4 ºC, stomatal conductance (gs) also decreased. The authors speculated 443 

with these effects being due to temperature-driven changes in ABA, membrane 444 

permeability, enzymatic activity and water viscosity (Pavel and Fereres, 1998). 445 

446 

3.2. The stem 447 

448 

The bark and wood of olive stem may differ greatly depending on environmental 449 

conditions. Under dry conditions stem develops a thick cork layer covering the living bark 450 

tissues, thus protecting against sunburning. In mature, rain-fed ‘Manzanilla’ trees bark 451 

thickness 6-8 mm was detected, of which the outer 3-4 mm consisted of death tissues. 452 

Below the bark there is the phloem, the cambium, and the xylem. The sapwood, i.e. the  453 

outer part of the xylem through which water flows from roots to leaves, shows high 454 
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azimuthal variability, ranging from 12 mm to 53 mm in the same tree (Fernández et al., 455 

2006a, Giorio and Giorio, 2003; Nadezhdina et al., 2007). Radial sap flow profiles within 456 

the same tree have also been reported to change greatly depending on water stress. When 457 

the stress increases, greater flows are recorded deeper into the xylem (Fernández et al., 458 

2001). The authors hypothesized that both stomatal control in young leaves and embolism 459 

within the outer xylem vessels were responsible for the loss of flow in the xylem vessels of 460 

the outer annuli. Nadezhdina et al. (2007) also reported great radial changes on sap flow 461 

rate in olive trunks, and hypothesized that they reflects a vertical distribution of water 462 

uptake that varies with water availability at different soil layers. 463 

464 

3.3. The leaf 465 

466 

The olive leaf is hypostomatous, i.e. stomata occur on abaxial leaf surface. This is 467 

typical of plants growing in dry and hot areas (Hetherington and Woodward, 2003). Leaf is 468 

also homobaric, i.e. displays a uniform stomatal distribution (Marchi et al., 2008). In the 469 

adaxial surface the epidermis is covered by a waxy cuticle. Palisade parenchyma usually 470 

consists of two- three highly-packed layers of elongated cells, which are interspaced by 471 

tricosclereids (Fig. 2). Spongy mesophyll anatomy greatly depends on leaf water status 472 

(Ehrenberger et al., 2012). Leaves suffering from water deficit display palisade-like cells 473 

just below the abaxial epidermis (bifacial-like leaves) (Chartzoulakis et al., 1999; Bacelar 474 

et al., 2004).  475 

In the lower, abaxial surface of the leaf there are the stomata hidden by numerous 476 

trichomes, thus limiting water loss. Well-developed trichome layer may also increase 477 

water-use efficiency through the increase in leaf boundary-layer resistance (Pallioti et al., 478 

1994). Hairy abaxial surface limits sunlight absorption: absorption of incident 479 

photosynthetically active radiation (PAR) in ‘Manzanilla’ leaves is 97% or 63% for adaxial 480 

and abaxial surface, respectively (Diaz-Espejo, 2000). Olive leaves display 481 

paraheliotropism, i.e. leaf movements aimed reduce light interception and then 482 

photoinhibition (Schwabe and Lionakis, 1996; Natali et al., 1999; Werner et al., 2002). The 483 

small size of olive leaves also contributes to high adaptation to atmospheric demand, e.g., 484 

vapour pressure deficit of the air (Da) being the main driving variable for plant 485 

transpiration (Ep) (Tognetti et al., 2009; Diaz-Espejo et al., 2012) This explains the 486 

effective stomatal control on Ep usually detected in olive (Section 4.3). Leaf dehydration is 487 

also limited by a negligible cuticular conductance (gc). Our measurements of gc in leaves of 488 
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‘Arbequina’ showed that gc ranged from 1 to 3 μmol m-2 s-1, whereas gs was 300 μmol m-2489 

s-1. This confirmed negligible gc values due to waterproof capacity of olive leaf cuticle 490 

(Fernández and Moreno, 1999; Connor and Fereres, 2005).  491 

In olive leaves may be up to 3-year-old. Aging modifies leaf characteristics and 492 

response to environmental stimuli. Leaf thickness, total chlorophyll concentration, and 493 

photosynthetic capacity increases during leaf development (Marchi et al., 2008). Olive 494 

leaves become fully expanded usually in 3-4 weeks. A great proportion of stomata are not 495 

fully developed prior the leaf reaches 50% of final size (Lavee, 1996; Marchi et al., 2008). 496 

Bongi et al. (1987) reported an increase in  A over first two months of  leaf life, a plateau 497 

from 2 to11-13 months, and  decreases of �50% when the leaf was 2-year-old. Marchi at 498 

al. (2005) observed that net daily A was negative in young expanding leaves, and leaves 499 

became source leaves when the size was approximately at 30% of the size at full 500 

development.  501 

Environmental conditions during development also have marked influence on olive 502 

leaf features. Leaves developed under drought usually have more but smaller stomata than 503 

leaves under well-watered conditions (Larcher, 1995). They also have higher specific leaf 504 

weight (SLW), as a consequence of increased density and thickness (Centritto, 2002). The 505 

greater leaf tissue density may contribute to drought tolerance, because of greater 506 

resistance to physical damage driven by desiccation (Mediavilla et al., 2001). Similar 507 

results have been reported by Boughlleb and Hajlaoui (2011).  508 

509 

FIGURE 2 about here 510 

511 

4. Physiological adaptations to abiotic stresses 512 

513 

Main functional and physiological mechanisms of adaptation to environmental 514 

constrains of Mediterranean climate in olive have been summarised in Figure 3, which 515 

includes equations to estimate Ep. Equation 1 quantifies  Ep at  daily central hours, when 516 

the transpiration rate is relatively constant, i.e. from  09:00 to 15:00 Greenwich mean time 517 

(GMT) for olive growing in typical Mediterranean areas. In this equation,�s is the 518 

‘effective’ soil water potential at the root surface and �l is the ‘effective’ leaf water 519 

potential for the whole canopy (Jones, 1983).The equation shows that a minimum �s -�l520 

gradient (Δ� ) must be achieved for water to flow  from  roots to  leaves,  thus allowing 521 
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plant transpiration. During soil drying Δ� may reach a threshold value for inducing 522 

embolism (Tyree and Sperry 1989). We prefer refer as to threshold value for the loss of 523 

hydraulic conductance, since the increase in the plant hydraulic resistance (Rp) is not 524 

merely due to increased number of embolized xylem vessels. The effect of water stress on 525 

other features involved in plant hydraulic functionality, such as aquaporins, is also 526 

significant (Secchi et al., 2007). Estimating �s is difficult. When water is homogeneously 527 

distributed in the soil Ψs is assumed similar to pre-dawn water potential measured in basal 528 

leaves (Ψpd). This assumption, however, is not true when water is not heterogeneously 529 

distributed in the rhisozphere, e.g., in olive under localized irrigation: Ψpd values are 530 

usually biased towards the wettest part of the root zone (Jones, 1983). �l is determined by 531 

integrating leaf water potentials of sunlit and shaded leaves, following estimate of both 532 

types of leaves in the canopy (Moreshet et al., 1990; Diaz-Espejo et al., 2002).  533 

 Equation 2 shown in Fig. 3 links Ep with canopy conductance (Gc), leaf-to-air 534 

vapour pressure deficit (Dl-a) and atmospheric pressure (P). It can be used to estimate leaf 535 

transpiration, just replacing Gc with gs. Both conductances strongly depends on stomatal 536 

control, an effective mechanism to withstand drought operating in olive as well as in other 537 

plants inhabiting arid and semi-arid areas. Under water stress, plants minimize the loss of 538 

hydraulic conductivity by closing stomata. This helps the xylem water potential (�x) to 539 

remain above the safety threshold for loss of hydraulic conductance. Equations 1 and 2 540 

illustrate that gs, �x and Rp are mutually influenced and relate with Ep. The link between 541 

these variables, together with their feedback loops and feed-forward regulations is still 542 

matter of debate (Buckley 2005). Nonetheless, here we summarize main mechanisms that 543 

relate with these variables and that confer to olive a high capability to keep �x above safe 544 

limits. Comprehensive analyses of the effect of above mentioned mechanisms operating in 545 

olive have been given in Tognetti et al. (2009) and Diaz-Espejo et al. (2012).  546 

547 

FIGURE 3 about here 548 

549 

4.1. Water uptake from drying soils 550 

551 

The pressure-volume (p-v) curve relates Ψl vs. water volume in drying leaves. From 552 

the analysis of p-v curves we can derive six key leaf parameters related with stress 553 

tolerance (Barlett et al., 2012). One relevant parameter is leaf water potential at turgor loss, 554 
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or at bulk turgor loss point (Ψtlp, MPa), classically used to assess drought tolerance. Plants 555 

with low Ψtlp tend to maintain gs, hydraulic conductance, photosynthetic gas exchange and 556 

growth as the soil dries. Ψtlp defines the permanent wilting point. For many species the 557 

permanent wilting point occurs at � Ψs = -1.5 MPa (Veihmeyer and Hendrickson, 1928). In 558 

olive, however, this value ranges from � -2.5 MPa (Xiloyannis et al., 1996; Dichio et al., 559 

2003) to  � -3.5 MPa (Lo Gullo and Salleo, 1988; Dichio et al., 2005). However, olive may 560 

transpire and photosynthesize at Ψtlp of -5.3 MPa (Perez-Martin et al., 2009) and even of -561 

8.0 MPa (Moriana et al., 2003). This conforms to well-known capacity of olive to take up 562 

water from drying soils (Fernández and Moreno, 1999; Connor and Fereres, 2005, see 563 

below for details).  564 

565 

4.1.1. Osmotic adjustment and elastic module 566 

567 

The leaf water potential depends on the turgor (ΨP) and osmotic potentials (Ψπ), 568 

being Ψl = ΨP - Ψπ. Time course of Ψπ under increasing water stress shows that olive is 569 

capable of large osmotic adjustment, leading to high values of Δ�  (Eq. 1, Fig. 3). Osmotic 570 

adjustment must not be confused with the passive (i.e. driven by tissue dehydration) 571 

increase in solute concentrations under increasing water stress or salinization. Active 572 

osmotic adjustment occurs via net accumulation of solutes to decrease Ψπ (Section 4.5). In 573 

an experiment with 2-year-old ‘Coratina’ trees, Dichio et al. (2005) reported, for severely 574 

stressed trees (Ψpd = -5.35 MPa), that osmotic adjustment ranged from 2.4 MPa at 05.00 h 575 

to 3.8 MPa at 18.00 h. Previously, Dichio et al. (2003) had reported that leaf osmotic 576 

potentials at full turgor and at turgor loss decreased from -2.06 ± 0.01 MPa and -3.07 ± 577 

0.16 MPa in controls to -2.81 ± 0.03 MPa and -3.85 ± 0.12 MPa in the most stressed 578 

plants. Dell’Amico et al. (2012) evaluated the effect of increased water stress at mid-579 

summer (between HS2 and HS3 periods described in Fig. 1) in 43-year-old ‘Manzanilla’. 580 

They explored changes in water relations of fruit and leaves, including Ψπ, and suggested 581 

that a valued of Ψstem ≈ -1.8 MPa could be considered as a reference for DI in olive. 582 

At cellular level, turgor pressure is given as the difference between pressures inside 583 

and outside of cell wall. When cell wall is rigid, water potential and its components change 584 

rapidly following loss of water. The wall rigidity is described by the elastic modulus or 585 

modulus of elasticity (ε) of the cell. Wall rigidity measured in tissues is termed bulk 586 

modulus of elasticity of the cell (Jones 1983). In olive ε tends to increase with drought. 587 
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Bongi and Palliotti (1994) reported that elasticity in olive leaf tissues decreased with leaf 588 

ageing, in turn affecting ε. These authors reported that in olive leaves at 87.5% of maximal 589 

cell volume, ε was 8.4 MPa in young leaves and 22.5 MPa in mature leaves. Dichio et al 590 

(2003) reported ε to increase from 11.6 ± 0.95 MPa in fully irrigated to 18.6 ± 0.61 MPa in 591 

stressed plants. It is assumed ε contributes to maintain ΨP in water-stressed plants. The role 592 

of ε in drought tolerance has been recently examined in Barlett et al. (2012). Authors 593 

compared five hypotheses to clarify the relationship between high ε, Ψtlp and drought 594 

tolerance, to conclude that high ε allows cells to maintain high relative water content at 595 

loss point (RWCtlp), at very negative osmotic potential at full turgor. This confers to plants 596 

tolerance to low Ψs and prevents cell dehydration and shrinkage. Therefore, during water 597 

stress, osmotic adjustment-induced reduction in Ψtlp must be paralleled with changes in to 598 

maintain high RWCtlp. The work of Diaz-Espejo et al. (2012, 2013) illustrate the 599 

importance of considering Ψπ and ε for establishing water stress related behaviours in 600 

olive, as well as for simulating transpiration.  601 

602 

4.1.2. Hydraulic redistribution 603 

604 

The movement of water through plant roots from moist to dry soil layers, or 605 

hydraulic redistribution (HR) (Burgess et al., 1998) is crucial for the survival of species in 606 

arid environments. Hydraulic lift is the nocturnal uptake of water by roots from deep, 607 

wetter soil layers and the release of this water from shallow roots into drier, upper layers of 608 

soil. Lateral flows and downwards flows in the root system may also occur, depending on 609 

the soil water distribution at the root zone. These types of reverse flow are termed HR 610 

(Fernández and Clothier, 2002). The process is believed to be passive, driven by soil and 611 

root water potential gradients (Prieto et al., 2012). External features in and around roots, 612 

however, influence HR. Thus, resistance to water flow through roots depends partly on 613 

aquaporins (McElrone et al., 2007) and architectural- morphological root traits, as well as 614 

root history. For example, HR occurs in species with dimorphic root systems, as occurs in 615 

fruit tree species including olive, whereas monomorphic species do not usually exhibit HR 616 

(Grigg et al., 2010). HR contributes in maintaining root hydraulic conductivity in drying 617 

soils and in repairing embolized xylem vessels (Domec et al., 2006). HR allows root 618 

survival and root growth in dry soil layers, which are usually superficial layers rich in 619 

nutrients, microorganisms and organic matter as compared with deeper, wetter layers 620 

(Domec et al., 2010). 621 
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HR was recently found to operate in olive Nadezhdina et al. (2012) and Ferreira et 622 

al. (2013). Nocturnal reverse flow in shallow roots of the rain-fed tree started at the 623 

beginning of June, as soon as the top soil layer explored by the root dried up, and 624 

increased, both in magnitude and duration, along the summer. High night flows were 625 

recorded in the deep root. The authors concluded that olive trees under dry-farming 626 

conditions use deep water sources for transpiration as well as to water superficial roots in 627 

the dry top soil layers. Ferreira et al. (2013) explored the role of lignotubers in the same 628 

rain-fed ‘Cobrançosa’ orchard and its connections with root dynamics. They reported 629 

marked changes on the relative contribution of deep and shallow roots, including hydraulic 630 

lift in shallow roots before the arrival of the rainy season. 631 

FIGURE 4 about here 632 

633 

4.2. Vulnerability to embolism 634 

635 

During drought, leaf transpiration often exceeds the water transport capacity of the 636 

xylem. Then Ψx drops and the risk for cavitation within the xylem conduits increases. 637 

Cavitation or air-seeding in plants is caused by the aspiration of air into the transpiration 638 

stream through the pit membrane. The wall of olive xylem vessels has numerous pits from 639 

which water and air can flow between adjacent vessels (Fig. 5). Within each pit there is a 640 

porous membrane. When a vessel is embolized, air is prevented from moving into the 641 

neighbour vessel by the capillary force of the air-water meniscus in the pores of the pit 642 

membrane. Air will be aspirated into the adjacent, functional vessel when the pressure 643 

difference across the meniscus exceeds the force caused by the sap tension in the vessel 644 

(Sperry and Tyree, 1988). If the tension in the sap increases further, the air bubble expands 645 

and the conduit is simultaneously drained of water. Ultimately, a mixture of air and vapour 646 

fills the entire conduit to create embolism, which blocks water transport in the conduit. 647 

Because embolism reduces the number of functional conduits, Rp increases. Under drought 648 

conditions, therefore, higher tensions predispose the xylem to further cavitation events that 649 

can potentially lead to embolism and plant death (Tyree and Sperry, 1988; Pittermann, 650 

2010). However, not all cavitation events cause embolism, which explains the use of 651 

cavitation resistance and vulnerability to cavitation being currently replaced with embolism 652 

resistance and vulnerability to embolism. 653 

Vulnerability curves (VCs) are typically used to evaluate the vulnerability to 654 

embolism. These curves express the percentage loss of conductivity (PLC) due to 655 
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embolism in response to increasingly negative Ψx. Vulnerability curves can be generated 656 

from samples taken from any conductive organ of the plant, such as roots, stems and 657 

leaves. The VCs show the xylem pressure at which samples exhibits 50% loss of hydraulic 658 

conductivity. This is referred to as the P50 or cavitation pressure. The P50 value is used to 659 

compare embolism resistance between plant organs or species. Another parameter of 660 

interest that can be derived from VCs is the air entry pressure (Pe), which indicates the 661 

threshold xylem pressure at which loss of conductivity begins to increase rapidly (Meinzer 662 

et al., 2009). Torres-Ruiz et al. (2013a) worked with 41-year-old ‘Manzanilla’ olive trees 663 

under contrasting water treatments. Figure 6 shows the calculated VCs for rain-fed trees 664 

and for trees under localized irrigation, with daily supplies to replace 100% of the crop 665 

evapotranspiration (ETc). The VCs yielded a Pe value of ca. -1.3 MPa. Water treatments 666 

did not influence the vulnerability to embolism, which agree with anatomical observations 667 

showing no significant effects of water status on either vessel-diameter distribution or 668 

vessel density. Other authors, however, have shown that olive under different water 669 

regimes display differences in xylem structure and function (Bacelar et al., 2007a; Lopez-670 

Bernal et al., 2010; Rossi et al., 2013).  671 

Woody plants growing in Mediterranean-type ecosystems usually show a high 672 

resistance to drought-induced embolism (Maherali et al., 2004). Olive displays low 673 

hydraulic conductivity and is able to withstand water potentials below Ψtlp with minor 674 

seasonal xylem embolism (Salleo and Lo Gullo, 1983; Torres-Ruiz et al., 2013a). A trade-675 

off may exist between xylem vulnerability to embolism and xylem hydraulic conductance 676 

(or wood construction cost, Martinez-Vilalta et al., 2002; Hacke et al., 2006). It has been 677 

reported that the diameter of the xylem vessel, together with Ψx, highly determines the 678 

occurrence of embolism and, consequently, the value of Rp. The vulnerability to embolism 679 

is determined, however, by the diameter of the intervessel pit membrane pore, rather than 680 

by that of the xylem vessel (Tyree and Sperry, 1989). In fact, the pit area hypothesis 681 

(Wheeler et al., 2005) states that the Ψx value corresponding to P50 is determined by the 682 

largest pit pore in the total pit area of a vessel. Recent evidence shows that water in the 683 

xylem vessels under tension contain a large number of nanobubbles which size depends on 684 

the structure and porosity of the pit membrane, and that these nanobubbles can explode, 685 

leading to embolism, or can shrink, causing nocturnal embolism repair (Weijs et al., 2012; 686 

Brodersen et al., 2013). It seems that the origin and size of the nanobubbles depend on the 687 

structure of the pit membrane, rather than on absolute pore diameters (Jansen et al., 2009). 688 
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Equation 1 (Fig. 3) can be used to calculate Rp. Larsen et al. (1989) followed this 689 

approach and calculated Rp values, in MPa �g-1 cm2 s, of 0.182 for apple, 0.319 for peach, 690 

0.329 for grape, 0.465 for olive, and 0.511 for apricot. They stated that high value of Rp in 691 

olive, together with stomatal closing, may account for the low transpiration losses per unit 692 

leaf area (LA) measured in this species. Bongi and Pallioti (1994) mentioned that large 693 

water potential differences between leaves and roots usually found in olive might reflect a 694 

strong resistance to water movement. In field experiments with well-irrigated trees, in 695 

which Ψs ≈ Ψpd, we have observed that the drop in water potential from leaves to roots is 696 

usually  greater than 2 MPa, with a maximum difference of about 4 MPa (unpublished 697 

data).  698 

699 

FIGURE 5 about here 700 

701 

FIGURE 6 about here 702 

703 

4.3. Stomatal control of gas exchange 704 

705 

The role of stomata is to regulate the entry of sufficient CO2 for optimal 706 

photosynthesis while conserving water inside the plant. As in many other plants well 707 

adapted to dry areas, stomatal closure in olive limits transpiration and avoids risky Ψx for 708 

hydraulic functioning (Fernández et al., 1997; Tognetti et al., 2009; Boughalleb and 709 

Hajlaoui, 2011). As already mentioned, the relationships among Ψl, gs, Ep and Rp, and of 710 

these variables with environment, are still in the dark. There are feedback and feed-forward 711 

mechanisms involved (Chaves et al., 2003; Lovisolo et al., 2010), and differences between 712 

cultivars have been reported (Fernández et al., 2008b). It appears that stomatal guard cells 713 

respond by negative feedback to Ψp, which is related with Ψl and then with Ψx. Thus, the 714 

plant can operate near the embolism threshold, generating the required ΔΨ for transpiration 715 

and at the same time avoiding the risk of excessive Rp (Eq. 1, Fig. 3). However, is unclear 716 

whether this equilibrium is achieved by passive feedback, active feedback, feed forward, or 717 

some combination of these processes (Buckley 2005). A metabolically mediated feedback 718 

response of stomatal guard cells to water status in their immediate vicinity (‘hydro-active 719 

local feedback’) is likely the best explanation for many well-known features of 720 

hydraulically related stomatal behaviour. Both apparent feedforward response of stomata 721 

to Da and isohydric behaviour observed in many cases, may be explained through the 722 
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juxtaposition of hydro-active local feedback and hysteretic and threshold-like effect of Ψx723 

on Rp. The matter is further complicated by long-distance and short-distance signalling 724 

mechanisms acting on stomata (Sections 4.3.2 and 4.3.3). In other words, trees respond to 725 

drought by processing information from simultaneous, often conflicting, and sometimes 726 

rapidly changing signals, related with several mechanisms acting in a nested hierarchy and 727 

occurring at different time scales (Hetherington and Woodward, 2003; Limousin et al., 728 

2010). Below we give an overview of the most relevant stomatal responses to both 729 

exogenous and endogenous plant conditions. 730 

731 

4.3.1. Response of the stomata to soil water and atmospheric demand 732 

733 

The available soil water has great influence on stomatal closure. In FI ‘Manzanilla’ 734 

trees under localized irrigation, Cuevas et al. (2010) recorded a maximum stomatal 735 

conductance (gs-max) of 0.29 mol m-2 s-1, a value similar to that reported by Diaz-Espejo et 736 

al. (2006) for the same cultivar growing under non-limiting conditions. In trees under dry-737 

farming conditions, gs-max was only 0.13 mol m-2 s-1. Values of Ψl measured at midday (-738 

1.31 MPa for irrigated trees, -1.51 MPa for rain-fed trees) showed no significant 739 

differences in leaf water status in differentially irrigated trees. This implies that effective 740 

control of Ψl by stomatal closure operates in rain-fed trees. Torres et al. (2013a) observed 741 

stomatal control of transpiration in irrigated trees, such that Ψl did not change along the 742 

day, despite of two-fold increase in Da from morning to afternoon. In irrigated trees Ψl was 743 

maintained around 1.4-1.6 MPa, i.e. above critical values for losing xylem functionality 744 

(Fig. 6). These results illustrate the role of stomatal closure in avoiding marked decrease in 745 

Ψl, and consequently in Ψx, under conditions of low soil water and high evaporative 746 

demand. Stomatal closure is a key mechanism that operates in olive to minimize loss of 747 

xylem functionality during the dry season. However, the capacity of stomata to regulate 748 

transpiration is lost when soil water is severely depleted: severe water stress overrides 749 

olive functions, including the control of gas exchange driven by stomata (Moriana et al., 750 

2002). In their rain-fed trees, in fact, Torres et al. (2013a) found no effective regulation of 751 

Ψl by stomatal closure when Ψl was as low as -4.8 MPa.  752 

Available soil water as well as its distribution at the root zone affect stomatal 753 

closure. Cuevas et al. (2010) and Torres et al. (2013a) observed stomatal regulation of 754 

transpiration in plants under localized irrigation (LI treatment) which, despite of receiving 755 

daily water supplies to replace 100% of ETc, had a fraction of their roots under soil-drying 756 
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conditions. Morales-Sillero et al. (2013) worked in the same orchard and considered an 757 

additional treatment in which the whole root zone was kept under non-limiting soil water 758 

conditions all throughout the irrigation season (Pond treatment). They reported similar 759 

values of Ψl in both LI and Pond trees, but the LI trees usually showed lower values of gs. 760 

The authors agreed with Cuevas et al. (2010), who reported that olive showed a near-761 

isohydric behaviour, similar to that reported for other woody crops is the area such as 762 

grapevine (Schultz 2003).  763 

Main driving meteorological variable for stomatal opening in olive is photon flux 764 

density (IP) and Da (Fernández and Moreno, 1999). Upper-bound relationships between gs765 

and IP and Da have been analysed in Fernández et al. (1997) for ‘Manzanilla’. Authors 766 

found that relatively low levels of IP, �500 �mol m-2 s-1, were enough to achieve maximum 767 

potential values of gs. Decreasing gs values were observed from Da over the range 1 kPa to 768 

3.5 kPa. At greater Da stomata remained partially open. High values of gs were observed in 769 

the morning, during the opening phase, than in the afternoon at similar Da and IP. This may 770 

result from maximum IP occurring early in the day as compared with daily maxima in Da. 771 

The fact that Da is the main driving variable for stomatal closure in olive is true except in 772 

winter. In winter, soil temperature (Gimenez et al., 1996), and factors related to root 773 

functioning (Fereres et al., 1998), may depress Ψl and gs values, despite high Ψs and 774 

relatively low atmospheric demand. Moriana et al. (2002) derived relationships between Da775 

and gs at midday, for ‘Picual’ under different drought levels. Stomatal conductance 776 

decreased linearly as Da increased, for trees suffering from low (Ψl > -1.65 MPa) to high (-777 

2.5 MPa > Ψl > -4.0 MPa) water stress. For trees with Ψl < -4.0 MPa Da did not effect 778 

stomatal closure, and similar gs (< 25 mmol m-2 s-1) were found for Da in the range 2-7 kPa. 779 

Diaz-Espejo et al. (2006) reported t maximum gs in ‘Manzanilla’ growing in southwest 780 

Spain when soil was around field capacity and values of Ip, leaf temperature (Tl) and Da of 781 

1600 μmol m-2 s-1, 25 ºC, and 1 kPa, respectively.  782 

783 

4.3.2. Stomatal conductance, plant water status and transpiration 784 

785 

In experiments with olive saplings in pots, i.e. under highly uniform soil water 786 

distribution, robust Ψl vs. gs relationships have been observed: gs decreases progressively 787 

as Ψl becomes more negative (Guerfel et al., 2009; Boughalleb and Hajlaoui, 2011). In 788 

trees under field conditions, however, correlations between Ψl and gs are much weaker. 789 

This can be due to stomatal response to variable distribution of soil water, reported above. 790 
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Additionally, water potential of stomatal apparatus differs from the bulk Ψl (Fernández and 791 

Moreno, 1999). Correlations between Ψstem and gs are more robust as compared with Ψl vs 792 

gs, in several fruit tree species (Naor et al., 2004, 2006). For olive, significant, non-linear 793 

correlations between Ψstem and gs have been reported, in both potted (Di Vaio et al., 2012) 794 

and field-grown trees (Naor et al., 2013).  795 

The daily dynamics of gs differs from daily variation in Ep. In south Spain gs-max are 796 

usually achieved at 08:00-09:00 GMT, whereas maximum Ep is achieved from 09:00 GMT 797 

to 15:00 GMT, depending on atmospheric conditions (Fernández et al., 2011a). This is 798 

because Da, the main driving variable for Ep, increases in south Spain from early morning 799 

to late afternoon. Plants respond to increasing Da by closing stomata, such that decreasing 800 

gs counterbalances increasing Da until late afternoon (Eq. 2, Fig. 3). This may explain 801 

results of Moreno et al. (1996), who measured maximum sap flow rates in trunks of mature 802 

‘Manzanilla’ between 13:00 and 14:00 GMT. However, porometer measurements showed 803 

that stomatal closure began much earlier, at 10:00 GMT. Sap flow at night also occurs in 804 

olive, the rate depending on environmental water status and plant capacity for water 805 

storage capacitance (Moreno et al., 1996; Fernández et al., 2006b). This accounts for 806 

nocturnal water recovery, which occurs at great extent in olive (Fernández et al., 2008b). 807 

The seasonal trends of Ep in olive follow similar patterns than those of the potential 808 

evapotranspiration (ETo), i.e. maximum daily Ep values are recorded at mid-summer in 809 

most olive orchards of Mediterranean areas (Fernández et al., 2008a). But, as compared to 810 

the spring and the autumn, ETo values increase more in mid-summer than Ep values, 811 

contributing to lower crop coefficient (Kc) values in July and August than before and after 812 

this mid-summer period of great atmospheric demand (Fernández et al., 2006b; Testi et al., 813 

2006a). The seasonal dynamics of the water evaporated from the soil (Es) also affects 814 

markedly the Kc values, contributing to the low Kc values at mid-summer (Testi et al., 815 

2006a). 816 

817 

4.3.3. Root-to-shoot signalling 818 

819 

A great number of papers have been published on stomatal closure being mediated 820 

by chemical and hydraulic signals, which are generated in roots suffering from water 821 

deficit. These signals are transported via the xylem to the shoots, and may act before a 822 

decrease in Ψl occurs, thus regulating stomatal opening and shoot growth (Wilkinson and 823 

Davies, 2002; Chaves et al., 2010). Inorganic ions, hormones and ethylene are involved in 824 
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root-to-shoot signalling (Wilkinson and Davies, 2002; Dodd et al., 2006). Roots in drying 825 

soil synthesize ABA, part of which is transported through the xylem vessels, enters the leaf 826 

and reaches the apoplast of guard cells, thus affecting stomatal opening (Zhang and 827 

Outlaw, 2001). The fundamentals behind this long-distance signalling mechanism are 828 

complex, and seem to depend on xylem sap pH (Wilkinson, 2004) as well as on leaf 829 

microclimate (Davies et al., 2001). However, the source of drought-induced ABA remains 830 

under debate. Some authors argue that stomata mostly respond to ABA generated in the 831 

leaf, rather than in roots (Wilkinson and Hartung, 2009; Lobet et al., 2013). Recently the 832 

response of stomata to soil drying seems to depend mostly on hydraulic signals rather than 833 

on chemical signals in olive, especially under saturating light and high evaporative demand 834 

(e.g., at midday, Diaz-Espejo et al., 2012; Rodriguez-Dominguez, 2013). Fernández et al. 835 

(2003) reported restricted Ep in trees under localized irrigation, but they were unable to 836 

discriminate between ABA-induced or hydraulic signal-induced in response to decreasing 837 

soil hydraulic conductivity.  838 

839 

4.3.4. Leaf hydraulics 840 

841 

As mentioned above, different plant organs may have different vulnerability to 842 

embolism. This phenomenon, known as vulnerability segmentation (Zimmermann, 1983; 843 

Tyree et al., 1993), has been observed in a variety of species (Martinez-Vilalta et al., 844 

2002). When embolism occurring, stomatal closure can be influenced by hydraulic signals 845 

originated in different organs. In olive, estimations of leaf-specific conductivity (kl), i.e. 846 

leaf hydraulic conductivity normalised to unit leaf area, have been performed from 847 

hydraulic conductivity measurements at the whole-plant level (Dichio et al., 2013). Actual 848 

kl measurements in olive potted plants can be found in Torres-Ruiz et al. (2013b): gs and kl849 

showed considerable reductions at Ψl < -1.5MPa, thus suggesting a correlation between 850 

leaf hydraulic functioning and stomatal behaviour. Ψl and kl recovered faster than gs during 851 

re-watering, indicating other factors (possibly ABA) were involved in stomata opening 852 

(Section 4.6). Results on  vulnerability to embolism of the different organs also show the 853 

occurrence of hydraulic segmentation in olive, making leaves effective in reducing whole-854 

plant transpiration and, hence, in avoiding the spread of embolism in other plant organs 855 

(Torres-Ruiz et al., 2013b). 856 

857 

858 



27 

4.4. Leaf photosynthesis 859 

860 

The daily course of net CO2 assimilation rate (A) is similar to that of gs, such that 861 

maximum A values are achieved early in the morning (08:00-09:00 GMT), whereas gs862 

limits A in the remaining part of the day (Moriana et al., 2002; Fernández et al. 2006b). 863 

Olive is a C3 plant which, under non-limiting conditions, can reach maximum A of 25 864 

�mol CO2 m-2 s-1 (Moriana et al., 2002; Diaz-Espejo et al., 2006; Tognetti et al., 2007; 865 

Fernández et al., 2008b), a low values as compared with other fruit trees. However, under 866 

limiting conditions olive tree is able to maintain appreciable A. In olive saturation of A867 

occurs at Ip = 1000-1200 �mol m-2 s-1 (Natali et al., 1991). The dynamics of leaf water 868 

relations at the onset and as drought stress progresses greatly affect A. Jorba et al. (1985) 869 

found that reducing RWC from 96% to 65% depressed A by 85% in olive. Ennajeh et al. 870 

(2006) have shown steep decrease in gs and A, in leaves of ‘Chemlali’ and ‘Meski’, when 871 

RWC decreased from 75% to 60%. At 35% RWC, gs and A were < 50 mmol m-2 s-1 and < 872 

4 μmol m-2 s-1, respectively. In ‘Leccino’ Larcher et al. (1981) observed a decrease in A873 

when Ψl fell to -1.3 MPa, and 50% reduction in photosynthesis occurred at Ψl of –2.2 MPa. 874 

Detectable A at Ψl as low as -7.0 MPa (Dichio et al., 2005) and Ψstem of -8.0 MPa (Moriana 875 

et al., 2002) have been reported. 876 

Leaf photosynthesis depends on diffusional and non-diffusional limitations. The 877 

first limitation is due to diffusional resistances in the gas phase of CO2 transport pathway 878 

from ambient air to carboxylation sites: this relates with both gs and mesophyll 879 

conductance (gm). The second includes biochemical processes, namely carboxylation rate 880 

and photosynthesis efficiency, which greatly depends on photoinhibition in olive.  881 

882 

4.4.1. Diffusional limitations of photosynthesis  883 

884 

At the beginning of the olive growing period (Fig. 1) the available soil water is 885 

usually high and values of global solar radiation (Rs) and ETo are low. Under these 886 

conditions of low-to-moderate water stress, any decrease in A is mainly due to diffusional 887 

limitations, imposed by leaf resistances to ambient CO2 from reaching the chloroplast (Fig. 888 

2). Later in the season, increased water deficit and changes in leaf biomechanical and 889 

biochemical traits modify diffusional limitations to photosynthesis. Soil water depletion 890 

may increase diffusional limitation due to stomatal closure. In addition, gm usually 891 

decreases in summer, in both irrigated and non-irrigated trees, because of  increasing  Ta892 



28 

and Da. Diaz-Espejo et al. (2007) found in ‘Manzanilla’ a maximum gm of 0.224 mol m-2 s-893 
1 at Tl = 29.61 ºC, and gm of 0.14 mol m-2 s-1 at Tl = 40 ºC. Perez-Martin et al. (2009) 894 

showed a decrease in both gs and gm when soil water deficit and Da increased: water deficit 895 

actually affected gs more than gm. Centritto et al. (2003) had already noted of considering 896 

stress-induced depletion in gm to avoid overestimation of biochemical limitations to 897 

photosynthesis in olive. Changes in A due to leaf development in olive growing under 898 

harsh summer conditions have been reported as due to leaf age increasing the number of 899 

mesophyll cells and chloroplasts, as well as in CO2-uptake cell surface (Bosabalidis and 900 

Kofidis (2002). Marchi et al. (2007) also reported of photosynthetic capacity increasing as 901 

leaves approaching to full expansion: mesophyll thickness doubled from initial through 902 

final leaf developmental. Proietti et al. (2012) observed that current-season leaves had 903 

greater A levels than one-year-old leaves. Recently published evidence on the importance 904 

of anatomical traits in the limitation of CO2 diffusion from substomatal cavities to 905 

chloroplasts shows that gm is strongly correlated with chloroplast exposed surface to leaf 906 

area ratio and mesophyll cell wall thickness, tcw (Tomás et al., 2013).  907 

908 

4.4.2. Non-diffusional limitations of photosynthesis  909 

910 

During summer most Mediterranean species, including olive, likely suffer from 911 

photoinhibition due to soil water deficit and increasing atmospheric demand (Centritto et 912 

al., 2003, 2005; Denaxa et al., 2012). As summarized in Bacelar et al. (2007b) and in 913 

Boussadia et al. (2008), water stress-induced stomatal closure limits carbon availability at 914 

carboxylation sites. Therefore, absorbed light energy largely exceeds its use in 915 

photochemistry, thus leading to an excess of excitation in photosystem II (PSII). Under 916 

severe water stress, electron transport rate and quenching of excitation energy in PSII 917 

antennae are likely unable in dissipating excess excitation energy, leading to photodamage 918 

of PSII and net loss in D1 protein in PSII reaction centres. Photoinhibition may explain the 919 

lack of correlation between gs and A in severely stressed olive (Natali, et al., 1991; 920 

Angelopoulos et al., 1996). Photoinhibition curtails olive performance, irrespective of 921 

morphological and anatomical adjustments (see Section 3.3 for details). Water stress-922 

induced effects on leaf photochemistry have been reported in Bongi et a1. (1994), Bacelar 923 

et al. (2007b), Sofo et al. (2008), and Boughlleb and Hajlaoui (2011).  924 

Diaz-Espejo et al. (2006) showed the ability of olive to adjust the photosynthetic 925 

apparatus to changes in environmental conditions. After seeing that ‘Manzanilla’ leaves 926 
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had higher photosynthetic capacity in April than in August, the authors speculated that 927 

leaves with an inherently high potential in A conflicts with the highly-demanding summer 928 

conditions, when stomatal closure strongly limits CO2 uptake. Maximum carboxylation 929 

efficiency (Vc-max), maximum rate of electron transport at saturating irradiance (Jmax), and 930 

the capacity for triose phosphate utilization (TPU) were determined. Photosynthesis was 931 

limited by TPU and seasonal decrease in Vc-max compensated for the stomatal limitation to 932 

CO2 fixation, as the soil water deficit increased. This enables leaves to operate near to the 933 

transition point between photosynthetic limitation due to ribulose-1,5-bisphosphate (RuBp) 934 

carboxylation capacity and RuBP regeneration capacity, thus resulting in almost constant 935 

internal CO2 concentration from April to August. Main model parameters, Vc-max, TPU, 936 

Jmax and Rd (the rate of CO2 evolution in the light resulting from processes other than 937 

photorespiration) were markedly influenced by Tl. Further, Vc-max was positively correlated 938 

with leaf nitrogen content on area basis (Na) and with SLW. Diaz-Espejo et al. (2007) 939 

worked with mature ‘Manzanilla’ trees under dry-farming conditions. In the spring the 940 

authors observed a positive relationship between Vcmax and Na and daily integrated 941 

quantum flux density (Qint). This, however, was not observed in summer. The authors 942 

hypothesized that this was due to stomatal limitations during summer, but also to a Vcmax943 

down-regulation affected by gm.  944 

Bacelar et al (2007b) reported that the decline in daily A was largely due to 945 

stomatal limitations. However, Ci/Ca ratio increased markedly from morning to midday in 946 

non-irrigated plants, in spite of lower gs, suggesting that non-stomatal limitations of 947 

photosynthesis prevailed under severe stress. Perturbations at chloroplastic level in rain-fed 948 

plants followed depression in maximum photochemical efficiency of photosystem II in the 949 

afternoon. Chlorophyll fluorescence measurements also revealed the occurrence of 950 

dynamic photoinhibition in irrigated trees. Boughlleb and Hajlaoui (2011) reported that 951 

water stress caused a marked decline on photosynthetic capacity and chlorophyll 952 

fluorescence in ‘Chemlali’ and ‘Zalmati’. As water stress developed, A, gs, Ep, the maximal 953 

photochemical efficiency of PSII (Fv/Fm) and the intrinsic efficiency of open PSII reaction 954 

centres (F’v/F’m) decreased. Proietti et al. (2012) observed lower A at the end of July than 955 

before and after, and shared the thesis that the low olive A values in the summer are due to 956 

damage of the photosystem induced by high temperature and drought stress, rather than to 957 

the lower gs. 958 

959 

FIGURE 7 about here 960 
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4.4.3. WUE and water productivity 961 

962 

The plant water use efficiency (WUE) is evaluated from long-term measurements 963 

of cumulated dry matter and consumed water. When instantaneous gas exchange 964 

measurements are used, intrinsic water use efficiency (WUEi) is estimated, i.e. the rate of 965 

carbon assimilated per unit leaf area per unit time and per unit water cost. Values of WUEi966 

in olive have been reported by Angelopoulos et al. (1996), Moriana et al. (2002) and Diaz-967 

Espejo et al. (2006). Olive uses water more efficiently than other fruit trees. Bongi and 968 

Palliotti (1994) calculated that in southern Mediterranean area, the number of grams of 969 

fruit dry matter per kilogram of consumed water was 3.17 for olive, 2.46 for Citrus, and 970 

1.78 for Prunus. Xiloyannis et al. (1996) reported WUE values (g CO2 kg H2O-1) between 971 

5.5 and 9.6 for olive, between 3.2 and 4.4 for grape, and between 2.3 and 3.5 for peach.  972 

Although linear A vs. gs relationships have been reported for olive (Chartzoulakis et 973 

al., 1999: Moriana et al., 2002; Boughalleb and Hajlaoui, 2011), A is affected later than gs974 

under water stress. Figure 7 shows A vs. gs values collected in different Spanish- Italian 975 

locations and different cultivars (Fernández et al., 2008b). Constant A is estimated for 976 

decreasing gs, until gs ≈ 0.25 mol m-2 s-1. This is a key trait for the adaptation of olive to 977 

drought, and explains usually greater WUEi recorded in plants under rain-fed than in 978 

irrigated conditions.  979 

For agricultural purposes, achieving maximum WUE values is not necessarily the 980 

best option. Rather than WUE, most growers look at water productivity (WP). Water 981 

productivity as defined by Kijne et al. (2003) is the ratio of the amount of marketable 982 

product (per hectare) to unit of supplied water. In other words, WP is the net income per 983 

unit water used. A properly chosen irrigation strategy must increase both WP and the 984 

productive life of the orchard. Water productivity values, both for fresh fruits and oil, have 985 

been reported for different olive orchards (Table 1). Relationships between fruit yield and 986 

oil yield, and water consumed by the crop, have also been reported (Table 2). As expected, 987 

Tables 1 and 2 shows significant differences on WP depending on the cultivar, water 988 

regime and plant density. Additional details are given in Section 6.2.1. Other interesting 989 

relationships related to crop performance, such as the yield:LA ratio have been reported by 990 

Caruso et al. (2013), Proietti et al. (2012) and Fernández et al. (2013).  991 

992 

TABLE 1 about here 993 

994 
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TABLE 2 about here 995 

996 

4.5. Response to re-watering 997 

998 

After a period of drought, root water uptake in olive increases immediately  999 

after soil water is newly available (Fernández et al., 2001). The rapid water uptake can 1000 

explain the quick recovery in Ψl observed in olive after re-watering. The rate in Ψl recovery 1001 

depends on the severity of previous water stress. Recovery may last few hours up to 4 days 1002 

for plants with Ψl = -8.0 MPa at stress (Fereres et al., 1996; Fernández et al., 1997; Perez-1003 

Martin et al., 2011). Moreno et al. (1996) performed a recovery experiment with 25-year-1004 

old ‘Manzanilla’, by supplying water on September 12 to plants under dry-farming 1005 

conditions over the whole summer. Both Ψl and Ep only partially recovered: sap flow 1006 

measurements in main roots showed a significant increase in water uptake, but water flow 1007 

was not detected in the outer sapwood annuli. This means that hydraulic root capacity did 1008 

not fully recover, possibly due to cavitation of vessels.  1009 

In olive, gas exchange takes longer to recover than plant water status. As compared 1010 

with Ψl, the delay in gs and A recovery depends on the severity of the suffered water stress. 1011 

Fernández et al. (1997) reported full recovery in gs over two days re-watering in plants 1012 

displaying Ψl = -4.2 MPa at midday. In the experiment by Fereres et al. (1996), on which 1013 

trees reached midday Ψl = -8.0 MPa, gs took several weeks to recover. The amount of 1014 

water supplied during the recovery phase also conditions the speed of variables coming 1015 

back to normal values (Fernández et al., 2013). Torres-Ruiz et al. (2013a) did not find a 1016 

correlation between leaf hydraulic functioning and stomatal behaviour during recovery. 1017 

They suggested that, similarly to that found in grape by Lovisolo et al. (2008), ABA 1018 

accumulated in roots during drought was delivered to the rehydrated leaves, contributing to 1019 

the slow gs recovery. ABA-induced control in water transpiration may promote gradual 1020 

embolism repair (Lovisolo et al., 2008).  1021 

1022 

5. Improving crop performance and management 1023 

1024 

In this section we address how new knowledge on the response mechanisms adopted by 1025 

olive to cope with the environmental constraints imposed by the Mediterranean climate are 1026 

currently used to both improve crop management practices and  design more sustainable 1027 

and productive crop systems. First we give an overview of models that have been 1028 
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developed to simulate key processes of olive performance. Examples on the use of 1029 

modelling exercises as valuable tools to optimize orchard design and management are 1030 

included. Then we summarize main knowledge for the effect of water and salinity on tree 1031 

development and production. Then we consider new crop management practices for 1032 

improving production and quality, as well as for increasing the sustainability of olive 1033 

orchards, even in global change scenario.   1034 

1035 

5.1. Modelling 1036 

1037 

Moreno et al. (1996) used a transpiration model based on Penman–Monteith (P-M) 1038 

equation to get reliable results for olive, after evaluating the fractions of sunlit and shaded 1039 

leaves in the canopy. Mariscal et al. (2000a) formulated and evaluated a model to estimate 1040 

PAR interception by olive orchards, at both instantaneous and daily levels. Leaf reflectance 1041 

and transmittance, as well as the distribution of leaf inclination derived from field 1042 

measurements were included in the model for reliable predictions of diffuse and total 1043 

transmittance. Additional aspects related to radiation use efficiency (RUE) and dry matter 1044 

partitioning were modelled by Mariscal et al. (2000b). Moriana et al. (2002) evaluated, for 1045 

‘Picual’ trees, the models of leaf conductance proposed by Jarvis (1976) and Leuning 1046 

(1995). In addition, they proposed a third model to include the effect of water deficit into 1047 

the Leuning’s model. Diaz-Espejo et al. (2006) evaluated a photosynthesis model for 1048 

‘Manzanilla’ trees. They linked the photosynthesis model of Farquhar et al. (1980) with the 1049 

model of stomatal conductance of Jarvis (1976), in which an effect of soil water deficit was 1050 

included. Fernández et al. (2008b) used the model of Diaz-Espejo et al. (2006), together 1051 

with the RATP model, to simulate daily values of Ep and A for olive trees with different 1052 

leaf area density and canopy shapes. The RATP model was developed by Sinoquet et al. 1053 

(2001) to simulate radiation transfer through the canopy of fruit trees. Marchi et al. (2007) 1054 

built a model to simulate the rate of leaf development rate. The model allows simulate the 1055 

import and export of carbohydrates, i.e. the sink-source balance in growing leaves. Authors 1056 

estimated that the onset of carbohydrate export from olive leaves occurred at 28-29 days 1057 

from leaf emergence. Diaz-Espejo et al. (2012) used the mechanistic BMF model of 1058 

Buckley et al. (2003) to improve our understanding of the effect of limiting environmental 1059 

conditions on the transpiration of drip irrigated olive trees. 1060 

Villalobos et al. (2000) used the P-M approach to build a model on ETc for olive 1061 

orchards. After combination with a modified version of the Ritchie’s soil evaporation 1062 
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model (Bonachela et al., 1999), the model showed acceptable reliability and proved that 1063 

the Kc approach can led to substantial errors due to local and temporal variations of main 1064 

driving variables for transpiration, such as Da. The effect of soil evaporation (Es) on Kc1065 

estimations was further addressed by Testi et al. (2004), who used eddy covariance and 1066 

water balance measurements in  olive orchard to assess the relationships between  orchard 1067 

architecture and ETc, under both dry and wet soil conditions. Testi et al. (2006b) used 1068 

similar approaches to separate the two components of ETc, and derived Gc values by 1069 

inverting the P-M equation. Authors used the Jarvis model, calibrated for their orchard 1070 

conditions, to improve the reliability of Gc. Villalobos et al. (2006) proposed a growth 1071 

model for olive, based on the RUE concept. They showed that olive orchards have low 1072 

RUE but compensate low RUE through high Harvest Index and large fraction of 1073 

intercepted radiation. As a result, olive shows high oil productivity (ca. 3 t ha-1) when 1074 

compared to other oilseed crops. In addition, estimates of carbon sequestration by olive 1075 

orchards showed a much larger potential for capture in olive than in other agricultural 1076 

systems.  1077 

The model by Ritchie (1972) was used by Bonachela et al. (1999) to propose a soil 1078 

evaporation model for rain-fed olive orchards. Bonachela et al. (2001) proposed a model 1079 

for drip-irrigated orchards, which considered separately Es in dry and wet ground areas. 1080 

Lysimeter measurements were performed by Diaz-Espejo et al. (2008), who derived an 1081 

improved model to estimate Es in olive orchards. This allowed an accurate estimation of 1082 

surface resistance (rs) and Es. Their results were unexpected, as cumulative Es in drip-1083 

irrigated olive orchard were higher in ground areas with lower irradiance. Testi et al. 1084 

(2006a) proposed a model of olive water requirements which estimates Ep and Es1085 

separately. Values of Kc were calculated as the sum of three relevant coefficients related 1086 

with tree transpiration (Kp), evaporation from the dry soil (Ks1) and evaporation from the 1087 

areas wetted by the emitters (Ks2). The model offers the possibility of adding a fourth 1088 

component, accounting for evaporation of the water intercepted by the canopy (Kpd). The 1089 

model by Testi et al. (2006a) is a more mechanistic approach than that of the FAO crop 1090 

coefficient method (Allen et al., 1998), since it takes into account main soil, weather and 1091 

plant conditions.  1092 

1093 

5.2. Development and production as influenced by orchard conditions 1094 

1095 

5.2.1. Water 1096 
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1097 

Soil water favours the number of fruits per tree, fruit f.w., fruit volume and 1098 

pulp:stone ratio and, as a consequence, increases fruit and oil yields (Goldhamer et al., 1099 

1994; d’Andria et al., 2004; Gucci et al., 2007). It is known, however, that the water 1100 

supplies needed to achieve the greatest WP values are usually below 100% ETc. In fact, the 1101 

relationships between water consumed by olive trees and both fruit and oil yield are 1102 

curvilinear (Moriana et al., 2003; Grattan et al., 2006) (Table 2). This means that 1103 

maximum potential production can be achieved with DI strategies. Reduced water supplies 1104 

may have additional benefits in areas where local conditions lead to excessive vegetative 1105 

growth, such as in northern Argentina (Correa-Tedesco et al., 2010; Searles et al., 2011). 1106 

Deficit irrigation has greater impact on fresh fruit yield than on oil yield (Lavee et al., 1107 

2007). Fernández et al. (2013) carried out a 3-year study in an ‘Arbequina’ SHD olive 1108 

orchard with trees under FI and two regulated deficit irrigation (RDI) strategies supplying 1109 

60% and 30% of the irrigation needs, IN (60RDI and 30RDI, respectively). Reductions in 1110 

fruit and oil yields, as compared to FI, were 23% and 29% for 60RDI and 40% and 26% 1111 

for 30RDI, respectively. Results for different olive cultivars are quite consistent in showing 1112 

oil yield reductions of ca. 20% with ca. 50% DI strategies (Moriana et al., 2003; Iniesta et 1113 

al., 2009; Caruso et al., 2013). The lower differences, between FI and DI trees in oil yield 1114 

than in fruit yield, are partly due to the fact that irrigation increases the mesocarp water 1115 

content, which penalizes  physical oil extraction (Ramos and Santos, 2010; García et al., 1116 

2013; Gómez-del-Campo, 2013). 1117 

When the target is oil quality there are additional reasons for reducing irrigation. 1118 

Results from experiments carried out in areas where the length of rainy season and average 1119 

precipitation are high, have shown no clear effects of irrigation on oil quality (Tognetti et 1120 

al., 2007; d’Andria et al., 2008). Most olive orchards, however, are in arid and semi-arid 1121 

areas with dry seasons lasting for 5-6 months and average precipitation is lower than ~ 500 1122 

mm. Under these conditions, increasing irrigation s decreases total phenols content in olive 1123 

oil and affect phenolic composition, resulting in oils of lower stability and poorer sensory 1124 

attributes (d’Andria et al., 2004; Tovar et al., 2002; Servili et al., 2007; Machado et al., 1125 

2013). The bitterness, fruitiness and pungency are indeed less pronounced in oils from 1126 

irrigated than from rain-fed trees (Stefanoudaki et al., 2009; Fernandes-Silva et al., 2013). 1127 

Other attributes, such as colour, are also influenced by water supply (Pastor et al., 1998; 1128 

Gómez-Rico et al., 2006, 2007; Servili et al., 2007). Grattan et al. (2006) and Berenguer et 1129 

al. (2006) reported, for a SHD ‘Arbequina’ olive orchard, that production was maximized 1130 
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when irrigation water amounted to 70-75% of ETc, but a sustained deficit irrigation (SDI) 1131 

supplying 33-40% of ETc  resulted in excellent oil chemical parameters, flavour and 1132 

stability. García et al. (2013) explored the impact of low-frequency deficit irrigation 1133 

(LFDI) on the production and oil quality of ‘Arbequina’ olive trees. Severe water stress 1134 

occurred between consecutive irrigation events causing leaf curling and fruit shrivelling. 1135 

Oil quality is negatively affected when severe water stress episodes causing fruit 1136 

shrivelling occurs near or at harvest time (Greven et al. 2009). García et al. (2013), 1137 

however, found no negative effect on oil quality due to several periods of severe water 1138 

stress. These findings support general believing that DI favours oil quality. However, 1139 

physiological and productive responses under reduced irrigation depend on cultivar, local 1140 

conditions and management practices (Tognetti et al. 2007, 2008; Fernández et al., 2008b; 1141 

Ghandari et al., 2012). This may explain contrasting results in the pertinent literature 1142 

(Dabbou et al., 2010; Tognetti et al., 2007; Stefanoudaki et al., 2009). Fatty acid 1143 

composition was either unaffected (d'Andria et al., 2004, 2009; Motilva et al., 2000; 1144 

Patumi et al., 2002) or affected (Berenguer et al., 2006; Gómez-Rico et al., 2007; 1145 

Stefanoudaki et al., 2009) by irrigation treatments. 1146 

Other factors significantly influencing oil quality are harvesting date and fruit load. 1147 

Dag et al. (2011) observed contrasting effects of harvesting date on the amount and quality 1148 

of oil produced by ‘Barnea’ and ‘Souri’. ‘Barnea’ required late harvest and advanced fruit 1149 

maturity to get the maximum amount of good quality oil. In ‘Souri’, however, late harvest 1150 

and advanced maturation caused an increase in fatty acids combined with a decline in 1151 

polyphenol content resulting in loss of oil quality. García et al. (2013) reported that a late 1152 

harvesting in ‘Arbequina’ led to loss of sensory quality and lower tocopherol content. In 1153 

areas with early frosts it is recommended to harvest when the amount of oil expressed as % 1154 

d.w. peaks (Gracia et al., 2012). The impact of water stress on yield and quality increases 1155 

with crop load (Martín-Vertedor et al., 2011a; Naor et al., 2013). Concerning the 1156 

harvesting method, handpicking is advantageous to improved oil quality, as compared to 1157 

mechanical harvesting (Dag et al., 2008).    1158 

1159 

5.2.2. Nutrients  1160 

1161 

The response of olive to nutrient supplies has been addressed by Bongi and Palliotti 1162 

(1994), Connor and Fereres (2005) and Sanzani et al. (2012). Here we just want to address 1163 
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the N fertilization, which is too often made incorrectly in olive orchards, and that of K, B 1164 

and Fe, key elements for a correct olive fertilization.  1165 

The effect of N fertilization on growth, yield and oil accumulation in rain-fed 1166 

‘Picual’ olive trees was addressed by Fernández-Escobar et al. (2009, 2012). They 1167 

concluded that annual applications of N are not needed in olive orchards growing in fertile 1168 

soils, thanks to N mineralization of soil organic matter and the N supplied by rainwater. 1169 

Rather, N must be applied only when the previous season’s leaf analysis indicates that leaf 1170 

N concentration is below the standard deficiency threshold, i.e. 1.4% of N in dried leaf. 1171 

Reduced N fertilization was also recommended by Rodrigues et al. (2012), who made an 1172 

above-ground balance of the nutrients removed by ‘Cobrançosa’ trees in a rain-fed orchard 1173 

with 204 trees ha-1 and average fruit yield of 2500 kg ha-1. They reported that 15-18 kg N 1174 

ha-1 year-1 was adequate to balance the N annually exported. Morales-Sillero et al. (2007) 1175 

fertigated ‘Manzanilla’ trees with a 4N-1P-3K fertilizer and three treatments supplying 1176 

200, 400 and 600 g N tree-1 year-1, respectively. Fertilizing with 400 g N tree-1 year-1 led to 1177 

the best equilibrium among oil quality, fertilization costs and environmental impact. The 1178 

treatment supplying 600 g N tree-1 year-1 was considered the best for table olive 1179 

production, since increased fruit size. This amount, however, was found to increase the risk 1180 

for groundwater contamination (Morales-Sillero et al., 2009).  1181 

Potassium is a key element in the fertilization of olive orchards. Its concentration in 1182 

the fruit is highly correlated with oil accumulation (Deidda, 1968). Potassium starvation 1183 

has been reported to reduce shoot growth and WUE in ‘Chemlali de Sfax’ olive cuttings 1184 

(Arquero et al., 2006). Moderate K deficiency impaired the plant’s ability to regulate 1185 

stomatal closure, so gs increased. This effect was more evident in water-stressed plants 1186 

than in FI plants. Although results on B application in olive are controversial, it seems that 1187 

B deficiency affects negatively fruit set and development (Perica et al., 2001), and that 1188 

foliar B applications have positive effects on blooming rate and yield, especially on years 1189 

of low fruit set (Larbi et al., 2011). Foliar application of B, therefore, may be advisable in 1190 

‘off’ years following a year of high production. Another important element for olive 1191 

fertilization is Fe, especially for trees growing in calcareous soils. Iron chelates are widely 1192 

used, but they are expensive and can be easily lost by leaching. Poorly soluble, slow-1193 

release Fe fertilizers such as synthetic siderite (FeCO3) are effective on preventing Fe 1194 

chlorosis in ‘Picual’, ‘Picudo’ and Lechín de Sevilla’ trees (Sánchez-Alcalá et al., 2012). 1195 

Olive trees fertilized with FeCO3 showed greater leaf chlorophyll concentration, as well as 1196 

greater yields, although the effect on yield was significant in ‘Picual’ trees only.1197 
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5.2.3. Salinity1198 

1199 

The response of the olive tree to both salty soils and irrigation with saline water has 1200 

been widely studied, likely because of high number of olive orchards being affected by 1201 

salinity. Details have been summarized in several review papers (Bongi and Pallioti, 1994; 1202 

Gucci and Tattini, 1997; Chartzoulakis, 2005; Ben-Gal, 2011; Sanzani et al., 2012). Olive 1203 

is considered to have a moderate-to-high tolerance to the presence of salts in the soil 1204 

(Tattini et al., 1995). Crop performance decreases when water for irrigation has an EC 1205 

greater than 5.5 dS m-1 (Freeman et al., 1994), and the limit of salt content in irrigation 1206 

water for is 8 g L-1 of solid residue (Zarrouk and Cherif, 1981). Positive effects of salinity 1207 

on oil quality have been reported for irrigation at EC > 7.5 dS m-1 (Ben-Gal, 2011). For the 1208 

sodium adsorption ratio (SAR), values lower than 9 do not affect production (Freeman et 1209 

al., 1994), and a SAR value of 26 has been observed to be tolerated by mature olive trees 1210 

(Loreti and Natali, 1981).  1211 

A balanced presence of salts in the rhizosphere is required for plant growth, but 1212 

high concentrations of soluble salts in the rhizosphere lower Ψs. The energy required to 1213 

take up water then increases (Eq. 1, Fig. 3), such that growth and production markedly 1214 

decrease. In extreme cases, plant cannot compete for water vs. the soil and dies due to 1215 

dehydration. Most often, salt-induced decrease in Ψs just increases water stress in the tree, 1216 

such that salt stress depresses Ψl, RWC (Gucci et al., 1997) and gs (Tattini et al., 1995). It 1217 

is not surprising, therefore, that A is reduced with increasing salinity in olive (Bongi and 1218 

Loreto, 1989; Tattini et al. 1997; Loreto et al., 2003; Chartzoulakis et al., 2002; 1219 

Chartzoulakis 2005). Detailed experiments on the effect of irrigating several Greek 1220 

cultivars with salty water were conducted by Centritto et al. (2003) and Loreto et al. 1221 

(2003). They show that salt stress affected gs and gm but not the biochemical capacity to 1222 

assimilate CO2. Salt-induced reductions in A were mostly driven by low gs and gm. 1223 

Toxicity by specific ions can also affect olive growing in saline environments. Na+1224 

and Cl-, toxicity occurs when concentrations in leaves sampled in July are greater than 1225 

0.2% and 0.5%, respectively (López-Villalta, 1996). Olive is able to avoid ion toxicity by 1226 

salt exclusion as well as by compartmentalization of specific ions. Plants retain greater 1227 

concentrations of Na+ and Cl- in roots and basal parts of the trunk as compared with upper 1228 

parts of the canopy (Tattini et al., 1992; Gucci and Tattini, 1997; Chartzoulakis, 2005). Salt 1229 

exclusion by olive roots was reported by Benlloch et al. (1991) and Melgar et al. (2006). 1230 

Reductions in growth and yield due to salinity have been widely reported (Gucci and 1231 
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Tattini, 1997; Chartzolulakis et al., 2002; Chartzoulakis 2005; Bracci et al., 2008). Long-1232 

term studies with trees under field conditions by Aragües et al (2005) with ‘Arbequina’ 1233 

trees show that above 4 dS m-1 EC, reductions in yield ranging from 16 to 23% per 1 dS m-1234 
1 occurred. In contrast, Melgar et al (2009a) did not find significant effects on plant 1235 

performance of salinity in the range 0.5 - 10 dS m-1. The response of the olive tree to 1236 

salinity can change if combined with other environmental stresses, such as hypoxia 1237 

(Aragües et al., 2004) and high solar irradiance (Remorini et al., 2009; Melgar et al. 1238 

(2009b). Other examples of the salinity tolerance of olive trees when affected by other 1239 

stresses are given by Cimato et al. (2010) and Ben-Gal (2011).  1240 

1241 

5.3. Water management 1242 

1243 

The increasing understanding of the response of olive to environmental stresses has 1244 

allowed the development of water management practices which greatly contribute to the 1245 

sustainability and productivity of olive orchards in areas with harsh conditions. Bellow we 1246 

summarize those practices with a greater impact on the design and management of new 1247 

olive orchards. 1248 

1249 

5.3.1. Deficit irrigation strategies 1250 

1251 

The effective adaptation of olive to stressing conditions confers it both a high 1252 

capability for survival and a marked productive response to favourable conditions. This 1253 

explains that ca. 22% of the ca. 10.5 Mha global area cultivated with olive is under 1254 

irrigation (IOC www.internationaloliveoil.org). In Mediterranean regions with mean 1255 

annual ETo and precipitation values of ca. 1200 mm and ca. 500 mm, respectively, mature 1256 

drip-irrigated olive orchards with planting densities from 100 to 300 trees ha-1 require 1257 

about 7000 m3 ha-1 year-1 to replace ETc. Of these, between 3000 and 4000 m3 ha-1 are the 1258 

IN required for FI (Fernández and Moreno, 1999; Gucci et al., 2012a). For SHD olive 1259 

orchards with plant densities close to 2000 trees ha-1, IN may increase to 5000 m3 ha-11260 

(Fernández et al., 2013). As mentioned in Section 4.4.3, however, acceptable WP values 1261 

are achieved with irrigation amounts (IA) lower than IN, which explains the success of 1262 

several DI strategies applied to olive orchards.  1263 



39 

 On the first years after planting IA must be similar to IN, for the orchard to 1264 

establish as soon as possible. Later, a DI strategy is usually the best option. When water for 1265 

irrigation is really scarce, supplementary irrigation, also called complementary irrigation, 1266 

could be the only suitable DI strategy. Despite of consisting of just one or very few 1267 

irrigation events, it can lead to substantial increases in crop performance (Lavee et al., 1268 

1990; Proietti et al., 2012). Greater IA are supplied with LFDI (Lavee and Wodner, 1991), 1269 

SDI (Goldhamer et al., 1994), and RDI (Goldhamer, 1999). A comparison study between 1270 

SDI and LFDI in an ‘Arbequina’ orchard with led to no differences on main variables 1271 

related to oil production and quality were (García et al., 2013). Both SDI and RDI are 1272 

being widely used in olive orchards (Moriana et al., 2003; Iniesta et al., 2009; Ramos and 1273 

Santos, 2009). With SDI a fixed fraction of IN is supplied all throughout the irrigation 1274 

season. With RDI water supplies are equal or close to IN in the phases of the growing 1275 

cycle when the crop is more sensitive to water stress, and are markedly reduced for the rest 1276 

of the cycle (Chalmers et al., 1981). Significant water savings are achieved with both 1277 

strategies, with little impact on yield and marked improvements in oil quality (Fernández et 1278 

al., 2013; García et al., 2013). As compared to FI, SDI is particularly interesting in the ‘off’ 1279 

years, when the lower crop load makes the olive tree less sensitive to water deficit (Martín-1280 

Vertedor et al., 2011a,b). 1281 

Both tree density and root zone size condition the choice of the DI strategy. SDI 1282 

seems to be particularly interesting when the trees explore large soil volumes, i.e. in 1283 

orchards with medium to low densities and deep soils (Moriana et al., 2003; Iniesta et al., 1284 

2009; Ramos and Santos, 2010; Fernandes-Silva, 2010). In these cases, the soil water 1285 

stored during the rainy season may better compensate for the difference between IA and 1286 

IN. The literature provides examples of olive orchards with   400 to 600 trees ha-1 under FI 1287 

(Testi et al., 2006a; Pastor et al., 2007), SDI (Gucci et al., 2012b) and RDI conditions 1288 

(Patumi et al., 2002; d’Andria et al., 2004). Grattan et al. (2006) and Berenguer et al. 1289 

(2006) explored the convenience of applying SDI with different levels of irrigation 1290 

reduction in a SHD olive orchard in California. In these orchards, however, the reduced 1291 

root zone makes RDI more advisable than SDI, to limit the risk of excessive water 1292 

depletion on the most sensitive phenological stages. Examples of the application of RDI to 1293 

SHD olive orchards have been published by Gómez-del-Campo (2010, 2013) and 1294 

Fernández et al. (2013) (Fig. 8). When applied to SHD olive orchards, DI strategies can be 1295 

adequate not only to increase WP, but also to avoid problems derived from excessive 1296 

vigour (Connor, 2006; León et al., 2007) and to improve oil quality (Section 6.2.1). 1297 
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The partial root zone drying (PRD), first developed in Australia for vineyards, is a 1298 

DI strategy which relies on root-to-leaf signalling (Dry et al., 1996). When a fraction of the 1299 

root system remains in drying soil while the rest are kept well watered, a root-to-leaf 1300 

signalling mechanism is triggered, reducing stomatal aperture and leaf growth, preventing 1301 

water loss (Dry et al., 2001; Dodd et al., 2006). The wet portion of the root system 1302 

maintains a favourable plant water status such that yield is not compromised and quality 1303 

may improve (Dry et al., 2001). Wahbi et al. (2005) and Centritto et al. (2005) analysed the 1304 

effect of applying PRD (50% of ETc) to ‘Picholine marocaine’ olive trees. Wahbi et al. 1305 

(2005) reported a yield reduction of 15-20% only, and no reduction in yield quality, as 1306 

compared to control trees irrigated in both sides to 100% of ETc. Centritto et al. (2005) 1307 

found a significant decrease in Ψl measured in the PRD trees as compared to the FI trees, 1308 

although values of leaf RWC and A were similar. Unfortunately, they did not have a 1309 

companion RDI treatment. Fernández et al. (2006b) compared a PRD and a RDI treatment, 1310 

both supplying 50% of IN, in a ‘Manzanilla’ orchard, and found no differences on water 1311 

status, gas exchange and sap flow. In mature trees with localized irrigation roots are under 1312 

a wide range of soil water conditions, from well watered roots within the irrigation bulbs to 1313 

roots in dry soil far away from the bulbs and roots in the interface between the wet bulbs 1314 

and dry soil volumes, which have an intermediate water status. It seems that, in those 1315 

cases, there is no need to alternate irrigation for a root-to-shoot signalling mechanism to 1316 

occur.  1317 

1318 

FIGURE 8 about here 1319 

1320 

5.3.2. New methods for scheduling irrigation 1321 

1322 

Reliable monitoring of tree water stress is required for a correct management of any 1323 

DI strategy. This applies mainly to RDI, since the occurrence of severe water stress 1324 

episodes on sensitive phases of the growing period must be avoided (Fig. 8) to minimize 1325 

the risk of reducing both the current year yield and the productive life of the orchard 1326 

(Fernández et al., 2013). New water stress monitoring methods are being developed from 1327 

the increase on knowledge on crop physiology and improvements on monitoring and data 1328 

transmission systems. Most of these methods are based on plant measurements (Fig. 9), 1329 

including sap flow (SF) and trunk diameter variation (TDV) measurements (Fernández and 1330 

Cuevas, 2010; Ortuño et al., 2010). Conventional indicators such as Ψstem are also reliable 1331 
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and can be used for an effective control of irrigation in olive orchards (Moriana et al., 1332 

2012; Naor et al., 2013). Those indicators, however, do not have the advantages derived 1333 

from automatic and continuous recording and data transmission and storage systems of the 1334 

new methods. The works by Fernández et al. (2008c), Ramos and Santos (2009) and 1335 

Rousseaux et al. (2009) with SF measurements and those by Pérez-López et al. (2008), 1336 

Moriana et al. (2010) and Cuevas et al. (2010) with TDV measurements show the potential 1337 

and limitations of both methods for monitoring water stress and scheduling irrigation in 1338 

olive orchards. Fernández et al. (2011a) used concomitant SF and TDV measurements to 1339 

assess water needs in a mature ‘Manzanilla’ olive orchard. Their results, together with 1340 

those reported by Fernández et al. (2011b) and Cuevas et al. (2013) show that the daily 1341 

difference, both for tree water consumption (DEp) and maximum trunk diameter (DMXTD), 1342 

between deficit irrigated trees and trees growing under non-limiting soil water conditions 1343 

were reliable indicators of the onset and severity of water stress.  1344 

The leaf patch clamp pressure probe, or ZIM probe (Zimmermann et al., 2008) is a 1345 

relatively new device able to record automatically and continuously the so called leaf patch 1346 

output pressure (Pp), which is inversely correlated with the leaf turgor pressure, Pc (> ca. 1347 

50 kPa), a variables closely related to Ψl and gs (Ache et al., 2010). The ZIM probe have 1348 

been tested in olive by Ben-Gal et al. (2010), Fernández et al. (2011b), Ehrenberger et al. 1349 

(2012) and Rodriguez-Dominguez et al. (2012). Results show that this is a promising 1350 

method to monitor water stress and to schedule irrigation. Other plant-based method with a 1351 

potential for scheduling irrigation in olive is that based on measurements of stem electrical 1352 

conductivity with TDR probes (Nadler et al., 2008), although this method is less popular 1353 

than the previously mentioned. 1354 

  When combined with aerial or satellite imaging, the reported methods can be used 1355 

for precise irrigation in large orchards with high crop-water-stress variability. An example 1356 

on drought-induced changes in the spectral reflectance of olive leaves was given by Sun et 1357 

al. (2008). Examples on the use of field measurements in olive orchards combined with 1358 

airborne images are given in Zarco-Tejada et al. (2009) and Berni et al. (2009). Results 1359 

showed that combining airborne imagery with automated records of plant water stress is a 1360 

promising approach for monitoring water stress in large commercial olive orchards. 1361 

Thermal images of individual trees, such as those taken from a crane about 15 m above the 1362 

canopy by Ben-Gal et al. (2009), also shows a potential to schedule irrigation, although 1363 

difficulties arise form the need of normalizing the canopy temperature to remove the effect 1364 

of environmental conditions. 1365 
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FIGURE 9 about here 1366 

1367 

5.4. Facing global change 1368 

1369 

Climate scenarios foresee significant changes in atmospheric conditions of main 1370 

olive growing areas. The atmospheric demand is expected to increase, the rainfall to 1371 

decrease, and the concentration of several gases in the air, such as sulphur dioxide (SO2), 1372 

tropospheric ozone (O3) and carbon dioxide (CO2) to increase. In addition, the quality of 1373 

the incoming radiation is expected to change, with a possible increase in solar ultraviolet 1374 

radiation (Sebastiani et al., 2002). These changes can affect olive productivity. In a work 1375 

by Giorgelli et al. (1994), ‘Frantoio’ and ‘Moraiolo’ olive plants were exposed to 1376 

increasing [SO2] (0, 35, 70 and 100 ppb). After five months, ‘Frantoio’ plants showed 1377 

decreasing A and gs values with increasing [SO2]. These effects were not observed in 1378 

‘Moraiolo’ plants. Stomatal density (SD), stomatal opening and the percentage of 1379 

transpiring surface decreased progressively with [SO2], especially in ‘Frantoio’ but also in 1380 

‘Moraiolo’ plants. Minocci et al. (1999) studied the effect of O3 concentrations on the leaf 1381 

physiology and morphology of both cultivars. Both gs and A decreased significantly in 1382 

plants exposed to [O3] = 100 ppb, as compared to those exposed to [O3] < 3 ppb (control), 1383 

especially for ‘Frantoio’. Leaves developed under high [O3] showed greater SD than leaves 1384 

under natural, control conditions, but the actual transpiring stomatal surface decreased by 1385 

ca. 50% in both cultivars. The authors concluded that this can led to significant O3-induced 1386 

reduction in olive productivity in areas where [O3] is expected to increase. Also in 1387 

‘Frantoio’ and ‘Moraiolo’ plants, Tognetti et al. (2001) reported that exposure to elevated 1388 

560 μmol CO2 mol-1 enhanced A and decreased gs, leading to greater WUEi values. 1389 

Stomatal density decreased with elevated [CO2]. Differences in A were due to the stomata 1390 

limitation and not to differences in the capacity of the photosynthetic apparatus. Additional 1391 

details on the effects of air pollutants in the olive tree performance are given in the review 1392 

paper by Sebastiani et al. (2002). They also reported main effects of enhanced UV-B 1393 

radiation. The depletion of the ozone layer, a natural filter for UV-B radiation, is leading to 1394 

increasing crop UV-B irradiance. The authors summarized a number of papers on the 1395 

effect of UV-B radiation in olive, and outlined that the species shows high resistance to 1396 

increased levels of UV-B, thanks to the protective effect of trichomes and to the synthesis 1397 

of UV-B absorbing compounds at the leaf surface, such as flavonoids and anthocyanins.  1398 
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Other air pollutants are particles from industrial activities. The effect of dust 1399 

released from cement factories on olive leaf physiology was investigated by Nanos and 1400 

Ilias (2007). Cement kiln dust applied to developing ‘Knoservolea’ olive leaves caused the 1401 

chlrophyll a/chlorophyll b ratio to change and A to decrease. According to the authors, this 1402 

could have been due to changes both on the amount and quality of the light reaching the 1403 

chloroplasts. They also suggested a negative effect of the heavy metal toxicity of the dust 1404 

on the photosynthetic apparatus. 1405 

The influence of climate change on the olive flowering phenology was evaluated, 1406 

for Spanish and Italian cultivars, by García-Mozo et al. (2009). They reported that the olive 1407 

flowering phenology will be more affected by the late spring temperature than by the 1408 

winter or the early spring temperature, such thus that olive may be less affected by global 1409 

warming than other early-spring-flowering species. Even so, Avolio et al. (2012) estimated 1410 

that an advance of pollen season in Calabria (Italy) of about 9 days is expected for each 1411 

degree of Ta rise. The authors estimated, from phenological model results and climate 1412 

predictions, an anticipation of maximum olive flowering between 10 and 34 days, 1413 

depending on the area. Tunahoğlu and Durdu (2012) evaluated the vulnerability of several 1414 

Turkish olive cultivars to climate change. They reported that the expected increases in 1415 

moisture deficit, average temperature and the frequency of extreme events in the 1416 

Mediterranean Basin, will lead to significant decreases in olive oil yield. Recently, Orlandi 1417 

et al. (2013) implemented a regional phenological model derived through the growing 1418 

season index (GSI, developed for the prediction of plant phenology in response to climate). 1419 

The authors demonstrated that the GSI-phenologial model for olive predicted its intra-1420 

annual dynamics throughout Mediterranean cultivation areas. With the help of the model 1421 

and data on local climatic changes over the last two decades, the authors predicted the 1422 

possibility of a northward shift of olive cultivation areas, due to the enlargement of the 1423 

growing season in winter, as well as a failure to satisfy the minimum chilling requirements 1424 

in traditional southern cultivation areas. 1425 

Caution must be taken when extrapolating the abovementioned results to other 1426 

locations and conditions. Iglesias et al. (2010) evaluated the adaptation of several crops, 1427 

including olive, to changing climate. Results for the same crop were highly variable 1428 

depending on location. The authors concluded that not only crop-specific responses, but 1429 

also location-specific responses, including management and socio-economic conditions, 1430 

must be taken into account when assessing the effect of changing climate scenarios in 1431 

agriculture. 1432 
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Fig. 1.  Growing cycle of the olive tree in south Spain on a typical year. Shoot growth 2349 

normally stops in July, although it may resume from late August. Fruit growth does not 2350 

always show a double sigmoid curve as that depicted in the figure. Instead, a rather 2351 

constant fruit growth rate is often observed, all throughout the summer, especially in fully 2352 

irrigated trees. HS1 to 3 = periods of high sensitivity to water stress. WAB = weeks after 2353 

bloom. 2354 

2355 

Fig. 2.  Cross sections of the upper, or adaxial (A), and lower, or abaxial (B), surfaces of 2356 

an olive leaf. The conductances of the boundary layer (gb), stomata (gs) and mesophyll 2357 

(gm), related to changes from the CO2 concentration in the surrounding air (Ca) to that in 2358 

the chloroplast (Cc), are depicted. The CO2 concentrations next to the stomata (Cs) and in 2359 

the intercellular air spaces within the leaf (Ci) are also represented. The photos show 2360 

chloroplast within cells both of the palisade parenchyma (left) and spongy mesophyll 2361 

(right). Photos by Dr. A. Diaz-Espejo. After Flexas et al. (2008). 2362 

2363 

Fig. 3.  Main functional and physiological traits of the olive tree related to its adaptation to 2364 

drought. Equations 1 and 2 relate main variables related to tree transpiration (Ep). Ψs = 2365 

effective soil water potential; Ψl = effective leaf water potential; Ψx = xylem water 2366 

potential; Rp = plant hydraulic resistance; Gc = canopy conductance; Dl-a = leaf-to-air 2367 

vapour pressure deficit; P = atmospheric pressure; gs = stomatal conductance.  2368 

2369 

Fig. 4. Sap flow probes (Heat Field Deformation method) installed in roots of a 2370 

‘Cobrançosa’ olive tree to estimate ‘normal’ (from roots to leaves) and reverse flows. This 2371 

was part of an experiment run by the team of Prof. M.I. Ferreira (ISA, University of 2372 

Lisbon) with the collaboration of Prof. N. Nadezdhina (Mendel University, Brno), within 2373 

the frame of the WUSSIAAME project coordinated by the ISA team. Photos taken by Prof. 2374 

Ferreira at the experimental plot, in an olive orchard close to Beja (Portugal). 2375 

2376 

Fig. 5.  Cryo-scanning electron microscope images of frozen-hydrated samples of current-2377 

year ‘Manzanilla’ olive shoots. On the left, a longitudinal freeze-fracture showing several 2378 

pits along the xylem vessels. On the right, a transversal fracture of a single pit, showing the 2379 

inner membrane. The samples were analysed by Dr. A. Minnocci, (Inst. of Life Sciences, 2380 

Scuola Superiore Sant' Anna, Italy), in a Philips SEM 515 equipped with a SEM Cryo Unit 2381 

SCU 020. The work was made within the frame of a Bilateral Agreement MIUR-CSIC 2382 
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involving the author and Prof. L. Sebastiani (Inst. of Life Sciences, Scuola Superiore Sant' 2383 

Anna, Italy).  2384 

2385 

Fig. 6.  Xylem vulnerability curves built from samples of current-year shoots taken from 2386 

mature ‘Manzanilla’ olive trees growing close to Seville, southwest Spain. Both rain-fed 2387 

trees and fully irrigated trees were sampled. The curves show the percentage loss of 2388 

hydraulic conductivity (PLC) as a function of decreasing xylem water potential (Ψx). Data 2389 

points are the average of five to seven samples; vertical bars represent ± the standard error. 2390 

The doted grey lines indicate the Ψx value associated with a 50% loss of hydraulic 2391 

conductivity (P50). Data represented in the figure were recomputed considering PLC = 0 at 2392 

Ψx = 0, and the resulting vulnerability curve (in grey colour) fitted and plotted. The dashed 2393 

line represents the tangent through the midpoint of the vulnerability curve and its x-2394 

intercept represents the air entry pressure (Pe) following Meinzer et al. (2009). After 2395 

Torres-Ruiz et al. (2013a). 2396 

2397 

Fig. 7. Net CO2 assimilation (A) versus stomatal conductance (gs) values measured in five 2398 

different olive cultivars, irrigated and non-irrigated, at four locations in Spain and Italy. 2399 

Data points represent the average of single measurements averaged for 0.05 mol m-2 s-1 gs2400 

intervals. After Fernández et al. (2008b). 2401 

2402 

Fig. 8.  Regulated deficit irrigation strategy for hedgerow olive orchards with high plant 2403 

densities. The three periods on which the irrigation needs (IN) are equal or close to the 2404 

crop demand correspond to the three periods of high sensitivity to water stress depicted in 2405 

Fig. 1. ETc = crop evapotranspiration under non-limiting soil water conditions; Peff = 2406 

effective precipitation, or fraction of total precipitation that reaches the root zone; i.e. / w. 2407 

= irrigation events per week; WAB = weeks after bloom. After Fernández et al. (2013).  2408 

2409 

Fig. 9.  Plant-based methods used in olive trees to monitor water stress and to schedule 2410 

irrigation: heat-pulse velocity probes for sap flow estimations (a), a leaf patch clamp 2411 

pressure probe to estimate leaf turgor pressure (b), a radial dendrometer to record trunk 2412 

diameter variations (c) and a time domain reflectrometry sensor to measure the trunk 2413 

electrical conductivity (d).    2414 

2415 
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Table 1  Water productivity values, in terms of fresh fruit and oil, reported for different olive cultivars 
and growing conditions. FI = full irrigation; SDI= sustained deficit irrigation; RDI = regulated deficit 
irrigation. The number before SDI and RDI indicates the aimed water supply, expressed as percentage of 
that for the FI treatment (the actual amounts varied slightly). 

Crop characteristics 
Water productivity 

(kg ha-1 mm-1) 

Reference 
Cultivar & 
location Water regime 

Plant density 
(trees ha-1) Fresh fruits Oil 

Moriana et al. (2003)1 Picual
South Spain 

FI
Rainfed 

278 22.0 
        9.0 

5.0
      0.2 

Tognetti et al. (2007)2 Frantoio
Central Italy 

FI
60RDI 

555 56.0 
      68.0 

13.3
    16.0 

Iniesta et al. (2009)3 Arbequina 
South Spain

FI
25SDI 
25RDI 

408 33.0 
80.7 

      94.2 

4.5
13.2

    14.6 

Correa-Tedesco et al. (2010)4 Manzanilla 
Northwest
Argentina

FI
60SDI

312 18.0 
21.0 

Ramos and Santos (2010)3 Cordovil
South 
Portugal 

FI
50SDI 

69 2.6 
6.8 

0.5

1.4

Fernández et al. (2013)5 Arbequina 
South Spain

FI
60RDI
30RDI 

1666 40.6 
51.4 

      86.3 

2.5
2.8

      6.4 
1 Average of ‘on’ and ‘off’ years with no alternate bearing. 2 Sub-humid area with an average yearly rainfall of 722 mm.  
3 Average of ‘on’ and ‘off’ years with marked alternate bearing.    4 7-year-old, not fully productive trees. 
5 Average of 3 years, no alternate bearing. 

Table 1



Table 2  Relationships between fruit and oil yields and water consumed by the crop, for different olive 
cultivars and growing conditions. ETc = crop evapotranspiration IA = irrigation amount. Ep = plant 
transpiration. R2 = r2 = coefficient of determination. 

Reference Orchard type 
Relationship between yield and 

water consumed 

Moriana et al. (2003) Mature ‘Picual’
278 trees ha-1

South Spain 

Fruit yield = -16.84 + 0.063 ETc – 0.035 × 10-3 ETc
2 R2 = 0.71 

Oil yield = -2.78 + 0.011 ETc – 0.006 × 10-3 ETc
2 R2 = 0.59 

                                      (Yield in t ha-1; ETc in mm year-1)    

Grattan et al. (2006) Young1 ‘Arbequina’
1709 trees ha-1 

California

Fruit yield = 128.72 + 23.147 IA – 0.0215 IA2 R2 = 0.79 
Oil yield = – 98.243 + 2.5481 IA – 0.00215 IA2 R2 = 0.94 

(Yield in kg ha-1; IA in mm)    

Martín-Vertedor et al. (2011a) Young2 ‘Morisca’
417 trees ha-1

Southwest Spain

Fruit yield = 0.078Ep − 2.524          r2 = 0.63 
(Yield in kg tree-1; Ep in mm year-1)     

1 Relationships apply to the 2nd harvest (trees not fully productive yet). 
2 The relationship applies to 4 to 6 year old trees (not fully productive yet). 

Table 2


