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Abstract 

Catalysts based on functionalised carbon nanofibers (FCNF) coated with Ni-decorated 

MoS2 nanosheets were obtained by direct decomposition of ammonium thiomolybdate 

and nickel nitrate impregnated on the FCNF under controlled temperature conditions in 

inert atmosphere. The catalysts were characterised by X-ray Diffraction (XRD), N2 

adsorption, Raman spectroscopy, temperature programmed reduction of sulfur species 

(TPR-S), NH3 temperature programmed desorption (NH3-TPD) and transmission 

electron microscopy (TEM). Decomposition temperature was found to have a 

paramount importance in the formation of uniform MoS2 slabs, as revealed by the TEM 

study: at 600 °C, non-uniform covering of the carbon nanofiber (CNF) was observed 

                                                 
 
*
 
 
Corresponding authors:  

(I.S.) Tel. +34976733977; Fax: +34 976733318; e-mail address: isuelves@icb.csic.es 

(M.M.) Tel. +44(0)2075941633; Fax: +44(0)2075945638; e-mail address: marcos.millan@imperial.ac.uk 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36153602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.apcatb.2013.11.019
mailto:isuelves@icb.csic.es
mailto:marcos.millan@imperial.ac.uk


2 

 

together with the presence of small round-shaped metal particles (ca. 20 nm). On the 

other hand, at 450 °C CNF appeared homogeneously covered by amorphous MoS2 slabs 

decorated with Ni, resulting in higher amount of coordinated unsaturated sites (CUS), as 

determined by TPR-S. Catalysts were tested in the hydroprocessing of a vacuum residue 

and the results were compared against a benchmark alumina-supported NiMo catalyst. 

Higher asphaltene conversions were obtained for the CNF-supported catalysts prepared 

at 450 °C, which overperformed the Al2O3-supported benchmark catalyst. However, the 

catalytic performance in hydrodesulfurisation and hydrodemetallisation of the CNF-

based catalysts was slightly lower than that of the benchmark catalyst.  

Keywords: Carbon nanofibers, MoS2, vacuum residue, hydroprocessing. 

1. Introduction 

Carbon materials have been extensively studied as catalytic support due to their 

outstanding textural properties and tunable chemical nature [1, 2]. The discovery of 

carbon nanotubes (CNT) in 1991 by Ijima [3] increased the interest in carbon 

nanofilaments, including CNT and carbon nanofibers (CNF). These structures of ca. 10-

100 nm in diameter and several micrometres in length are formed by graphitic planes 

(graphenes) disposed with different arrangements. CNT and CNF are typically produced 

by the decomposition of various fossil hydrocarbons [4] or renewable sources such as 

biogas [5, 6] on catalysts based on transition metals (Ni, Fe and Co) supported on 

different metal oxides [4]. Different chemical structures of CNT (single wall and multi 

wall) and CNF (platelet, fishbone and ribbon) can be obtained [7, 8]. The carbon 

nanofilament morphology depends on variables such as the metal used in the catalyst, 

metal crystal size, carbon gas source and synthesis conditions [4]. 



3 

 

Carbon nanofilament aggregates are characterised by having extremely open 

morphology with minimal or no microporosity, relatively large pore volumes generated 

by the empty space between the tubular structures, as well as significantly high surface 

area, mainly derived from the external wall surface area of the nanofilaments. These 

characteristics make them promising catalyst supports for liquid phase reactions, since 

mass transfer limitations are prevented due to the availability of the active sites on the 

outer section of the carbon nanofilaments [9]. In addition, some studies indicated higher 

hydrodesulfurisation (HDS), hydrodenitrogenation (HDN) and hydrodemetallisation 

(HDM) activity of carbon–supported catalysts compared to those supported on Al2O3, 

as reviewed in [10]. This higher activity was attributed to a more efficient activation of 

metal sites and transfer of hydrogen to reactant molecules [11, 12]. Additionally, the 

lower metal-support interaction compared to typical acid supports such as alumina and 

zeolites makes a larger fraction of active phase available to the reactants. This fact 

allows an easier and deeper metal oxide reduction and sulfidation [13-15]. 

Catalysts supported on CNF have been used in fuel cell applications [16], chemical 

synthesis such as hydrogenation [17], higher alcohol synthesis [18] and Fischer-Tropsch 

reactions [19]. Some examples that show the potential of these materials in 

hydroprocessing reactions of both model compounds and real feeds can be found in the 

literature. Multi-walled CNT (MWCNT) supported catalysts were studied in the HDS of 

thiophene [14] and dibenzothiophene [20] and in the HDN of pyrrole [14]. Fishbone 

and platelet CNF were studied in the HDS of thiophene [15]. However, studies with real 

feeds using catalysts supported on nanostructured carbon (NC) are scarce. CNT 

impregnated with Co and Mo were used as catalysts for vacuum residue (VR) 

hydrocracking [21]. NiMo supported on acid-treated MWCNT were tested with a light 

gas oil (LGO) derived from Athabasca bitumen [13]. It was observed that CNT or CNF-
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supported catalysts yielded significantly less amount of coke than an Al2O3-supported 

catalyst under the same reaction conditions. This is commonly attributed to the lower 

acidity of the carbon-nanofilament-based catalysts. However, their performance may 

also depend upon factors such as the feed and type of reactor used. To the best of our 

knowledge, asphaltene upgrading and HDM activity using CNF- or CNT-based 

catalysts towards real feeds have not been addressed in the literature.  

In this work, fishbone CNF were coated with MoS2 nanosheets decorated with Ni. This 

was achieved by thermally decomposing the CNF impregnated with ammonium 

thiomolybdate (ATM) and nickel nitrate in an inert atmosphere. The effect of the 

decomposition temperature on the uniformity and homogeneity of the MoS2 slabs was 

evaluated. These catalysts were characterised by a number of techniques such as N2 

adsorption, X-ray diffraction, Raman spectroscopy, temperature programmed reduction 

of sulfur species and transmission electron microscopy. Catalyst performance in heavy 

oil hydroprocessing was investigated using a real oil-derived feed, a vacuum residue 

from a Maya oil. Results in terms of liquid product upgrading (asphaltenes and fraction 

with boiling point above 450 °C), HDM (nickel and vanadium) and HDS conversions 

are presented and compared against a benchmark NiMo/Al2O3 catalyst. 

 

2. Experimental 

2.1. Catalyst support synthesis 

a) CNF synthesis and functionalisation 

Fishbone-like CNFs were produced at large scale in a rotary bed reactor described 

elsewhere [22] using a Ni/Al2O3 catalyst. The as-prepared CNF will be referred to as 
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CNF in this work.  Hydrocarbon feedstock was composed by a mixture of CH4:CO2 

(1:1). Synthesis conditions used were 700 °C and a weight hourly space velocity of 30 

L·(gcat·h)
-1

. More details about the catalyst properties and process conditions can be 

found elsewhere [6]. CNF functionalisation was performed by reflux in concentrated 

HNO3 (Panreac, 65%) during 30 min. Finally, functionalised CNF (FCNF) were 

filtered, washed with distilled water until the pH was above 6 and dried at 100 ºC 

overnight.  

b) Mesoporous alumina synthesis 

An alumina support with large surface area and pore volume was synthesized according 

to a procedure [23] modified from the literature [24]. 

2.2 Catalyst synthesis 

Carbon-based catalysts were prepared by the incipient wetness impregnation method. 

Successive impregnations of the precursor salts, (NH4)2MoS4 and Ni(NO3)2 were 

performed with intermediate drying steps at 80 °C for 12 hours. The dilution 

calculations were based on the wettability of the supports for the following 

concentrations: 9.3% wt Mo and 2.4% wt Ni. After impregnation, catalysts were 

tempered either at 450 °C or 600 °C in a tubular reactor electrically heated under 

flowing N2 at 50 mL·min
-1

 for 4 hours, in order to allow the decomposition of the metal 

precursors and simultaneously avoid the oxidation of the CNF that would take place 

during the typical calcination step in air. Catalysts are denoted as NiMo/FCNF-T 

hereafter, where T refers to the decomposition temperature.  

The alumina-supported catalyst used as a benchmark was prepared following the same 

procedure described for the carbon-based catalysts. The metal loading for this catalyst 



6 

 

was the same as for the carbon-supported ones. After impregnation, the catalyst was 

calcined in a muffle furnace at 500 °C for 4 hours under air flowing at 200 mL·min
-1

. 

This catalyst is denoted as NiMo/Al2O3. 

 

2.3. Characterisation techniques 

The textural properties of the carbonaceous support and NiMo catalysts were measured 

by N2 adsorption at -196 °C in a Micromeritics Tristar apparatus. The specific surface 

areas and pore volumes were calculated by applying the BET method to the respective 

N2 adsorption isotherms and the pore size distribution was calculated by the BHJ 

method based on the desorption branch of the isotherm. 

The determination of the amount of surface oxygen created during the functionalisation 

treatments was carried out by temperature programmed desorption (TPD) in an 

AutoChem II 2920 apparatus. The profiles of released CO and CO2 were obtained in a 

quartz reactor heated under a constant flow of Ar (50 mL∙min
-1

) at a heating rate of 

10 °C∙min
-1

, up to a temperature of 1000 °C. The eluted gas was analysed by mass 

spectroscopy. The total amount of CO and CO2 released was calculated by integrating 

the area under of the concentration curve versus volume.  

The remaining content of the Ni/Al2O3 used to grow the CNF was analysed in the CNF 

and FCNF by temperature programmed oxidation (TPO).  This was obtained in a 

Setaram Thermogravimetric Analyzer by heating the sample under air flow at a rate of 

10 °C∙min
-1

. Ni oxidation was taken into account to calculate the catalyst content in the 

as-prepared carbon nanofibers. 
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Powder X-ray diffraction patterns of fresh and tempered catalysts were acquired in a 

PANalytical diffractometer equipped with a Ni-filtered Cu K  radiation and a 

secondary graphite monochromator, using a -2  configuration.  

Raman spectra of the carbonaceous materials were obtained with a Horiba Jobin Yvon 

HR800 UV microspectrometre using the green line of an argon laser (λ = 532 nm) as the 

excitation source.  

Temperature programmed reduction of sulfided samples (TPR-S) was performed in a 

PulseChemisorb 2700 apparatus equipped with a thermal conductivity detector (TCD). 

The amount of sample used was approximately 200 mg. Temperature was increased 

from room temperature to 600 °C at a rate of 10 °C∙min
-1

 under a flow rate of 

50 mL∙min
-1

 of a H2 (10%)/Ar mixture.  

NH3- temperature programmed desorption of the fresh catalysts was carried out in the 

same apparatus used for the TPR-S analysis. The catalyst (200 mg) was outgassed in 

argon flow, heated to 600 °C at a rate of 10 °C∙min
-1

, and kept at 600 °C for 1 h. The 

sample was cooled down to 50 °C and allowed to adsorb ammonia. After purging the 

physically adsorbed ammonia, the system was heated to 600 °C under Ar flow. The 

amount of chemisorbed ammonia was detected with a TCD. 

Transmission Electron Microscopy was carried out on a Jeol 2011 microscope equipped 

with a LaB6 gun and operating at 200 kV. The samples were first finely grounded, 

dispersed in ethanol and a drop of solution was then deposited on a standard TEM 

copper grid, previously covered by a lacey amorphous carbon film. 

Carbonaceous deposits on the spent catalysts were determined with a Pyris TGA1 

thermogravimetric analyser. Samples of approximately 3 mg were combusted from 50 
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to 900 °C at a rate of 10°C·min
-1

 with an air flow of 40 mL·min
-1

.  The samples were 

held at isothermal conditions for the initial and final temperatures to allow the weight to 

stabilise. Coke deposits were determined as the difference in weight loss between the 

fresh and spent carbon-supported catalysts in the region where coke deposits occurred 

(300-500 °C). The carbonaceous deposits on the NiMo/Al2O3 catalyst were calculated 

as the difference between the initial stabilised weight and the final stabilised weight. In 

both cases, oxidation of MoS2 and NiS2 species was taken into account to calculate the 

coke content on the spent catalysts. 

 

2.4. Vacuum residue hydroprocessing tests 

A batch microbomb reactor described elsewhere [25] was used for the 

hydroprocessing reactions. A diagram of the reactor is shown in Figure 1. Briefly, the 

reactor consisted in a ½ in. bored-through Swagelok union tee with both ends plugged 

and connected to a pressurising line. During operation the reactor was placed inside a 

heated fluidised sand bath and connected to a reactor shaker assembly for stirring. The 

feed consisted in 0.5 g of a vacuum residue (VR), which was used in a 4:1 wt/wt ratio 

with the catalyst. 0.1 mL of CS2 was added in order to keep the catalysts in the sulfided 

state during the runs. Reactions were carried out at 15 MPa of H2 cold pressure and 425 

°C with contact time of one hour, defined as the holding time at the desired reaction 

temperature. At the end of the run, the reactor was first quickly quenched with cold 

water to ambient temperature to stop reactions and then depressurised. 

Samples were carefully recovered from the reactor with a solvent mixture of 

CHCl3/CH3OH 4:1 vol/vol and the catalysts were separated from the products by 

filtration. The liquid products were dried to constant weight. The solids were washed 
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with solvent to ensure all soluble materials were removed and they were afterwards 

dried in vacuum at 60 °C for 3 hours. 

 

2.5 VR and product characterisation techniques 

The VR sample utilised was obtained from Maya crude oil, a heavy oil with a large 

heteroatom content. The main physicochemical properties of the VR are described in 

Table 1. VR presents high asphaltene, sulfur and metal contents. It is solid at ambient 

conditions and was used as received without dilution. 

Liquid products were recovered after each reaction and fractioned into maltenes 

(heptane soluble) and asphaltenes (heptane insoluble, toluene soluble) following a 

procedure previously described [23]. Afterwards, the maltene fraction was analyzed by 

Gas Chromatography (GC). A Perkin Elmer Clarus 500 Chromatographer fitted with a 

flame ionisation detector (FID) was used to quantify the boiling point distribution below 

450°C in the maltene fraction. The GC was equipped with a SGE capillary column (HT-

5, 25 m long, 0.1 μm film thickness) and was operated in split mode (split ratio 1:20) 

with helium as a carrier gas using the ASTM 2887 method. A calibration using Standard 

Gas Oil (Sigma Aldrich) was performed to evaluate the percentage of elution of the 

material. 

The conversion of materials boiling above 450 °C, C>450°C, and the conversion of the 

asphaltene fraction, CAsphaltenes, were calculated with Equation 1 and 2, respectively. 

These conversion definitions take into account carbonaceous deposits on the catalysts as 

unconverted feed. This allows for a distinction between active catalysts and catalysts 

that merely lead to large carbon deposits [26]. 
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where mF, mLP, and mSP are the weight of the feed, liquid products and solid products, 

respectively; 
F

Cx 450  and  
LP

Cx 450  are the mass fraction boiling above 450 °C in the feed 

(with a value of 1.0) and liquid products, correspondingly. 
LP

Cx 450  was calculated by 

adding the maltene fraction that did not elute in GC measurements, i.e. with a boiling 

point above 450 °C, to the asphaltene fraction of the sample. 
SP

carbonx
is the amount of 

carbonaceous material deposited on the catalyst determined by TGA measurements in 

grams of carbon per gram of catalyst units. 
F

sAsphaltenex
 and 

LP

sAsphaltenex
 are the asphaltene 

mass fractions in the feed and liquid products, respectively.  

Gas yield was calculated by difference according to Equation 3. 
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Product samples were analysed with energy dispersive XRF to determine sulfur content. 

Measurements were performed using a Bruker S4 Pioneer with a Cu source. The sulfur 

content was used to calculate the HDS conversion through Equation 4. 
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where 
F

Sx
 and 

LP

Sx
 are the mass fraction of S in the feed and liquid products, 

respectively.  

The determination of Ni and V content in the VR and reaction products was performed 

with a Perkin Elmer inductively coupled plasma optical emission spectrometer (Optima 

2000 DV). The analytical emission lines for Ni and V were 231.6 and 292.5 nm, 

respectively. This technique was utilised to determine the hydrodemetallisation activity 

of the catalyst. Ni and V conversions were calculated using Equation 5 and 6, 

respectively. HDM conversion was calculated from Equation 7. 
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where 
F

Nix
, 

LP

Nix
, 

F

Vx
 and 

LP

Vx
are the mass fraction of Ni and V in the feed (F) and liquid 

products (LP), respectively. 

 

3. Results and discussion 

3.1. Support characterisation 
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In order to employ CNF as catalyst supports, their surface properties need to be 

modified to remove catalyst particles remaining from the CNF production step and to 

create the necessary functionalities (oxygen surface groups) that allow the active metal 

particles to be anchored onto the support with good dispersion. Different treatments 

have been developed [27]. Acid treatments enhance the surface wettability by polar 

solvents, thus enabling a better contact between the support and the metallic precursor 

solution during the impregnation step [2]. To this end, the CNF were subjected to HNO3 

acid treatment. A comparative study of the textural, surface and morphological 

characteristics of CNF and FCNF is presented in this section. 

Figure 2 shows the XRD pattern of the CNF, functionalised CNF, and FCNF-supported 

catalysts. All materials showed a prominent reflexion at ca. 26º and a weak peak at ca. 

43º assigned to graphitic carbon (planes 002 and 100, respectively). The CNF revealed 

the presence of metallic nickel (reflexions at 44.6º, 52º and 76.6º), the active phase in 

the Ni/Al2O3 catalyst used to grow the carbonaceous structures. No significative 

changes in reflexions assigned to C were observed after the functionalisation treatment 

used. Conversely, Ni reflexions disappeared after the functionalisation treatments, 

revealing the effectiveness of the method employed for the removal of the metal 

particles originally present in the CNF structure. This fact was further confirmed using 

TPO experiments, presented in Table 2, which revealed that the amount of catalyst 

(Ni/Al2O3) originally in the CNF (11.2%) was significantly reduced after the oxidation 

treatment down to values of 1.6%. Besides, TPD experiments showed a large number of 

oxygen surface groups created after the functionalisation treatment, as inferred from the 

desorption of CO2 and CO shown in Table 2. Acidic groups are known to decompose 

into CO2, assigned mainly to carboxylic acids, carboxylic anhydrides and lactones 

surface groups. Basic and neutral groups are decomposed into CO, corresponding to 
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phenols, ethers, quinines and carbonyls oxygen surface groups [28]. A three-fold 

increase in total acidity after the functionalisation treatment was determined by NH3-

TPD (Table 2).  

The CNF presented a Type IV N2 adsorption-desorption isotherm (Figure 3) typically 

assigned to mesoporous materials with hysteresis loop H3, corresponding to 

condensation taking place in mesopores and plate-like particles in parallel with slit-

shaped pores [29]. The shape of the isotherm did not change after the functionalisation 

treatment, although a slight increment in surface area was observed (Table 2). The CNF 

showed a specific surface area (SBET ) of 88 m
2·g-1

 and a pore volume of 0.24 cm
3·g-1

. 

The functionalisation treatment carried out with HNO3 caused a slight increment in both 

SBET and pore volume (ca. 10%). The removal of the metal particles from the tip of the 

carbon filaments can account for the slight increment in surface area of the FCNF 

observed in Table 2. However, the average pore diameter was not affected by the 

functionalisation treatment. Pore size distribution curves are shown in the inset of 

Figure 3. 

In order to reveal the effect of the functionalisation treatment on the morphology of the 

CNF, a TEM study was carried out. Figure 4 shows some representative micrographs of 

the CNF (Figure 4 a-c). A low magnification micrograph (Figure 4a) shows the 

presence of long filaments emerging from the metal particles. CNF growth mechanism 

is known to occur upon a series of different stages involving: hydrocarbon 

decomposition on the leading face of the catalyst particle, carbon production and 

migration to the opposite side of the catalyst particle, and further precipitation in form 

of tubular structures [30-32]. Higher magnification (Figure 4b) revealed the typical 

diamond-shaped particle located at the tip of the growing filaments. The morphology of 
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the nickel particle is of paramount importance in determining the growth type of the 

tubular structures [4]. Thus, fishbone-like CNF, which are characterised by an 

arrangement of the graphene planes with a certain inclination with respect to the fibre 

axis, are obtained.  This is clearly shown in Figure 4c, as a result of the diamond-shaped 

nickel particle. FCNF appear more disentangled compared to CNF, as the low 

magnification pictures of FCNF revealed (Figure 4d). The HNO3 functionalisation 

treatment removed the metal particles from the tip of the CNF (Figure 4e), although it 

did not modify the morphology of the CNF and the fishbone-like arrangement of the 

graphitic planes, as shown in Figure 4f.  

 

3.2. NiMo supported catalysts characterisation 

FCNF was sequentially impregnated with solutions containing ATM and Ni(NO3)2. 

After impregnation and drying of the precursor salts, a step at two different 

temperatures (450 and 600 ºC) under  N2 flow was carried out in order to decompose the 

salts and obtain the metal active phase, i.e. MoS2 decorated with Ni.  

Figure 5 shows some representative TEM micrographs of the NiMo/FCNF-450 (a-c) 

and NiMo/FCNF-600 (d-e) catalysts. In both samples, carbon nanofilaments were 

partially covered by long nanosheets with different stacking degrees. Distinct features 

were observed as a function of the treatment temperature. Carbon filaments in 

NiMo/FCNF-450 were homogeneously covered by long slabs, as observed in Figure 5a. 

Higher magnification TEM micrographs (Figure 5b, 5c) revealed slab-like structures 

coating the FCNF with a stacking degree ranging from 2 to 5. On the other hand, 

NiMo/FCNF-600 had a less homogenous covering of the FCNF, where some coated 

nanofilaments coexisted with uncovered FCNF, as shown in Figure 5d. The presence of 
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small round-shaped metal particles (ca 20 nm) inserted into the tubular structures was 

also observed (Figure 5e). These metal particles were not observed in sample 

NiMo/FCNF-450. A detail of a partially covered FCNF can be seen in Figure 5f, with a 

stacking degree of ca 2-3 slabs. In both samples, the interlayer spacing between the 

slabs that coated the FCNF was 0.61 nm, similar to the d-spacing observed in MoS2-

coated MWCNT [33, 34], and higher than the typical interlayer spacing observed for the 

graphitic planes that formed the FCNF (0.34 nm) (Figure 4c).  

The chemical nature of the coating layers was further confirmed by XRD and Raman, 

revealing the formation of MoS2. XRD diffractograms of the NiMo/FCNF catalysts 

(Figure 2) showed the presence of reflections assigned to graphitic carbon, as observed 

for CNF and FCNF. However, the appearance of a diffraction peak at 2 θ: 14.1°, 

characteristic of the (002) basal plane of crystalline MoS2, was also observed. The 

intensity of this peak was higher in the sample tempered at 600 °C. ATM is known to 

decompose under inert atmosphere into MoS3 at 260 °C and into amorphous MoS2 at 

higher temperatures (300-500 °C) [35]. The formation of crystalline MoS2 by a re-

stacking of the sulfide at temperatures above 500 °C has been reported [36], thus 

explaining the formation of larger crystallites for NiMo/FCNF-600. This sample also 

shows MoS2 diffraction peaks at 33.1º, which correspond to the (100) plane. 

Additionally, weak reflections that can be assigned to MoO2 and NiO were observed in 

the NiMo/FCNF-600 diffractogram. No evidence of nickel sulfide crystalline phases 

was observed by XRD.  

Representative Raman spectra of the FCNF and FCNF-supported catalysts are presented 

in Figure 6. All samples showed two well-resolved bands: the D band (at ~ 1340 nm), 

related to graphite imperfections, and the G band (at ~ 1570 nm), associated with the in-

plane carbon–carbon stretching vibrations of graphite layers. The D′ band also appears 
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close to the main graphitic band (∼1600 cm
−1

). The intensity ratio ID/IG did not vary to a 

great extent between the FCNF and FCNF-supported catalysts (results not shown). In 

the Raman spectrum of NiMo/FCNF-600 two new bands, occurring at ca. 380 and 405 

cm
-1

, were observed, which are assigned to the E2g
1
 and A1g vibrational modes of 

crystalline MoS2, respectively [37]. Some low intensity bands in the molybdenum-

oxygen stretching fundamental region (800-1000 cm
-1

) [38] appeared, which can be 

tentatively assigned to oxidation of MoS2 by exposure to ambient oxygen and possibly 

also by the heat generated in-situ by the laser [39]. The bands assigned to MoS2 and 

MoO3 were also present in the NiMo/FCNF-450 sample, although the intensity of these 

signals was much lower in comparison with those in NiMo/FCNF-600. 

Figure 3 shows the N2 isotherm of the catalysts, which indicated that the mesoporous 

nature of the FCNF was maintained after metal impregnation and further decomposition 

of the materials, independently of the decomposition temperature used. In both cases, 

isotherms of Type IV with hysteresis loop H3 were observed, as for CNF and FCNF. 

However, impregnation of the supports resulted in a reduction in specific surface area 

and pore volume, as shown in Table 2. SBET of NiMo/FCNF-450 and NiMo/FCNF-600 

were 65.2 and 73.8 m
2
∙g

-1
, respectively, representing a reduction of ca. 30% in 

comparison with the original FCNF. The average pore diameter of NiMo/FCNF-600 did 

not change after impregnation of the metals while the average pore diameter of 

NiMo/FCNF-450 showed a slight increase. The pore size distribution shown in the inset 

of Figure 3 revealed that the variation in the textural parameters in FCNF-supported 

catalysts was mainly due to the reduction of the pores with size ranging from ca. 2-6 

nm, while the pores larger than 6 nm did not vary to a great extent. The reduction in 

pore volume at lower pore diameter sizes was more marked in the NiMo/FCNF-450 

catalyst, possibly related to a better covering of MoS2 slabs in this sample.  
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The total acidity measured by NH3-TPD in the FCNF-based catalysts (Table 2) showed 

a drastic reduction compared to the values of the FCNF. Since acidity is attributed to the 

support itself and not to the metal phase, the lack of acidity can be related to the 

impossibility of the NH3 molecules to be adsorbed on the MoS2 surface. However, the 

removal of acid sites due to the heat treatment in inert atmosphere during the catalyst 

preparation cannot be ruled out. No discernible differences between the two carbon-

supported catalysts were observed.  

Catalysts in the sulfided form were subjected to TPR-S studies. This technique has been 

used previously for sulfided NiMo catalysts and it provides a measure of chemical 

reactivity [40]. H2 consumption is assigned to transition metal species on the surface 

involved in reactions leading to the formation of a surface anion vacancy, which is 

subsequently correlated to a catalytic active site [41, 42]. Figure 7 shows the TPR-S 

profiles, in which a prominent peak centered at ca. 300 ºC can be observed for both 

catalysts, as previously reported for NiMo catalysts supported on active carbon (AC) 

[43]. The chemical nature of the reactant sulfur in this region can probably be assigned 

to two different contributions: (i) non-stequiometric sulfur atoms (Sx) weakly adsorbed 

on coordinated unsaturated edge/corner sites (CUS) [44, 45], and (ii) recombination of –

SH groups and/or reaction of –SH groups with H2 [46]. Additionally, a shoulder at 

temperatures between 350 and 500 ºC was observed, assigned to the hydrogenation of S 

species more labile than stochiometric sulfides, probably consisting of surface anions 

located at the edges of the crystallites [47]. The reduction of MoS2-like species in 

supported catalysts occurs at high temperatures (700-900ºC) [40, 45] and could not be 

determined with these samples due to the carbonaceous nature of the support, which 

would lead to its hydrogasification.  



18 

 

The amount of H2 consumed in the low temperature region was much higher for 

NiMo/FCNF-450 than for NiMo/FCNF-600. This fact is indicative of different amounts 

of weakly bonded sulfur species on the catalyst surface, implying that the sample 

tempered at low temperature has a larger number of CUS. This observation is in 

complete agreement with the XRD and Raman results, which showed that less 

crystalline MoS2 species were obtained with the sample treated at low temperature, 

implying larger amount of defects and vacancies that may act as active sites for 

hydroprocessing reactions. 

 

3.3. Catalysts performance in heavy oil hydroprocessing  

FCNF-supported NiMo catalysts were tested in a batch reactor in the hydroprocessing 

of a vacuum residue, whose properties are described in Table 1. In order to assess the 

catalyst performance, asphaltene conversion and C>450ºC, as well as sulfur and metal (Ni 

and V) removal were determined. In all cases, catalyst performance was benchmarked 

against a mesoporous alumina-supported NiMo catalyst, NiMo/Al2O3. The metal 

content of both catalysts was calculated to have the same metal oxide loading of 3 wt % 

NiO and 14 wt % MoO3. 

 

3.3.1. C>450°C and asphaltene conversion. 

The conversions of the fraction boiling above 450 °C (C>450°C) and asphaltenes 

(CAsphaltenes) are shown in Table 3. Values for C>450°C were similar for both FCNF-

supported catalysts (ca. 0.50), and slightly lower than that obtained for NiMo/Al2O3 

(0.55). It has been reported that the upgrading of the >450 °C fraction in VR can be 
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mainly considered as a thermally driven process [23, 48] thus explaining the small 

differences observed between catalysts. 

A different behaviour was observed in CAsphaltenes for the three catalysts tested. CAsphaltenes 

was significantly higher for NiMo/FCNF-450 (0.73) compared to NiMo/FCNF-600 

(0.57). The Al2O3-supported catalyst underperformed NiMo/FCNF-450 in terms of 

asphaltene conversion and yielded a similar conversion to NiMo/FCNF-600. Therefore, 

it can be concluded that the decomposition temperature had a strong effect on catalyst 

performance. This can be attributed to the larger amount of CUS available in the FCNF 

catalyst subjected to decomposition at low temperature, as deduced from the TPR-S 

study shown in Figure 7. This fact can also be the reason for the better performance of 

the NiMo/FCNF-450 catalyst compared to NiMo/Al2O3, since the latter presents a much 

higher support-metal interaction that may prevent the complete sulfidation of the metal 

active phase. However, better hydrogen transfer properties of the carbon-based catalyst 

cannot be ruled out.  A metal-free AC was shown to be effective in hydrogen transfer 

to anthracene [11], which is indicative of the fact that carbon supports may promote 

monoatomic hydrogen transfer, as stated in [12]. The amount of coke deposited on the 

catalysts was significantly lower for the FCNF-supported ones (0.047 and 0.081 

gcoke∙gcat
-1

, compared to 0.284 gcoke∙gcat
-1

 for NiMo/Al2O3, as observed in Table 3). This 

can be clearly associated to the higher acidity of Al2O3 as a catalyst support (Table 2) 

and may also help explain the better performance of the FCNF-based catalysts.  

There is scarce information about the performance of CNF-supported catalysts on 

asphaltene upgrading, although ACs have been successfully used as catalytic support in 

the hydroprocessing of heavy feeds. Moreover, it has been suggested that an AC-

supported catalyst limited the condensation reactions of asphaltenes that led to coke 
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formation by providing adsorption sites to the free radicals, thus avoiding 

polymerisation reactions [49].  

 

3.3.2. Heteroatom removal 

HDS and HDM conversions for both NiMo/FCNF and NiMo/Al2O3 are presented in 

Table 3. Ni and V removal data are also included.  

The comparison between the two FCNF-supported catalysts in terms of HDS and HDM 

conversions  revealed the same trend observed for VR upgrading in terms of C>450°C and 

CAsphaltenes. The catalyst tempered at 450 °C performed better that the one tempered at 

600 °C. From the data reported in Table 3, it was observed that the CNF-supported 

catalysts were more effective in V removal than in Ni removal. However, HDM and 

HDS conversions obtained with NiMo/Al2O3 were higher than the CNF-supported 

catalysts. It is known that the tendency to form coke is highly related to the HDS and 

HDM activity [50]. The higher coke deposits obtained with NiMo/Al2O3 would allow 

for the removal of a larger fraction of heteroatoms present in coke precursor molecules 

in the VR. It is known that coke deposition on hydrotreating catalysts predominantly 

occurs at early stages of reaction, and it is followed by a steady state in which coke does 

not affect catalyst stability [51]. In this work, 1 h reaction tests were performed in a 

batch reactor and the amount of coke deposited can be considered relatively large as a 

proportion of the feed. Longer reaction times or tests in a continuous flow reactor would 

be necessary to evaluate the long term activity of the FCNF-supported catalysts.  

Similar HDS activities were reported for NiMo supported on conventional alumina and 

on CNT using a LGO as feedstock [13]. However, CoMo/CNT catalysts tested in the 
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HDS of VR showed slightly lower activities than a CoMo/Al2O3 catalyst [21]. No 

studies on the HDM properties of CNT- or CNF-supported catalysts were found for 

comparison, although it has been reported that the use of a CoMo catalyst supported  on 

AC led to lower HDM and HDS activity than the corresponding catalyst supported on 

Al2O3 [52]. Overall, good results were obtained in this work when processing a VR with 

high metal content, compared to the quoted literature which used LGO or a Maya crude 

with lower heteroatom content. 

 

4. Conclusions 

NiMo catalysts supported on functionalised CNF were synthesised. Catalysts were 

prepared by the direct formation of MoS2 on the FCNF due to the utilisation of a Mo 

precursor based on a thiomolybdate complex. The synthesis of fishbone CNF coated 

with MoS2 nanosheets decorated with Ni was achieved. The decomposition temperature 

had a strong effect on the uniformity and homogeneity of the MoS2 slabs. For the 

catalyst tempered at 450 °C, long MoS2 slabs covered the FCNF homogeneously 

whereas when a tempering temperature of 600 °C was employed, a less homogenous 

covering of the FCNF was observed. The presence of MoS2 was confirmed for both 

catalysts. The number of CUS present in the samples was dependent on the 

decomposition temperature. This correlated well with the activity of these materials in 

the hydroprocessing of a VR at 425 °C. The conversion of asphaltenes was higher for 

the catalyst tempered at 450 °C. This catalyst also outperformed a benchmark 

NiMo/Al2O3 that was used in the same reaction conditions. It is thought that the lower 

metal-support interaction of the carbon-supported catalyst allowed a more complete 

sulfidation of the active phase in comparison to NiMo/Al2O3.  The amount of coke 

deposited was lower on the carbon-supported catalysts, which may also explain their 
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better performance. On the other hand, higher HDM and HDS conversions were 

obtained with NiMo/Al2O3 than with the CNF-supported catalysts. This can be related 

to the larger carbon deposits on the former catalyst which would be predominantly 

formed by asphaltenic structures possibly containing high concentrations of heteroatoms 

and metals.  This study shows that catalysts supported on functionalised CNF have a 

high potential in heavy feed hydroprocessing. 
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FIGURE CAPTIONS 

Figure 1. Microbomb reactor diagram. Where: PT – pressure transducer, TI – 

temperature indicator, PSV – relief valve, PV01 – ball valve, PV02 – needle valve, C01 

– ½ in. to ¼ in. reducing port connector, C02 – ¼ in. straight union, C03 – ¼ in. to ½ in. 

reducer, C04 - ¼ in. union cross, C05 - ¼ in. union tee, C06 - ¼ in. union elbow, C07 - 

¼ in. to thermocouple reducer, C08 - ¼ in. cap. 

Figure 2. Powder XRD patterns of CN, FCNF and NiMo catalysts supported on FCNF 

after decomposition at 450 ºC and 600 ºC. 

Figure 3. N2 adsorption-desorption isotherms and pore size distribution curves (inset) 

for CN, FCNF and NiMo catalysts supported on FCNF after decomposition at 450 ºC 

and 600 ºC. 

Figure 4. Representative TEM micrographs at different magnifications of as produced 

CNF (a-c) and FCNF (d-f). 

Figure 5. Representative TEM micrographs at different magnifications of FCNF 

supported catalysts: NiMo/FCNF-450 (a-c); NiMo/FCNF-600 (d-e). 

Figure 6. Raman spectra of (1) FCNF (2) NiMo/FCNF-450 and (3) NiMo/FCNF-600. 

Figure 7. TPR-S of NiMo/FCNF-450 and NiMo/FCNF-600. 
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Table 1. VR properties 

Boiling point interval, °C 450+ 

Specific gravity at 15°C 1.08 

°API gravity -0.34 

Viscosity at 100°C, cSt 265546 

Sulfur content, % wt  7.02 

Conradson carbon, % wt 25.54 

Asphaltenes, % wt 33.63
a
 

Ni, ppm w/w 93
a
 

V, ppm w/w 227
a
 

a
Determined with the same method as reaction products. 

  



27 

 

Table 2. Surface chemistry measured by TPD and metal content determined by TPO in 

as prepared CNF and FCNF. Textural properties determined by N2 adsorption, and 

acidity calculated from NH3-TPD of as prepared CNF, FCNF and supported catalysts 

(NiMo/FCNF-450NiMo/FCNF-600). Data of a benchmark catalyst (NiMo/Al2O3) are 

also included for comparison purposes.  

Sample 

Metal 

content (%) 

SBET  

 (m
2
∙g

-1
) 

Vp 

 (cm
3
∙g

-1
) 

APD* 

(nm) 

Acidity 

 (µmol NH3∙g
-1

) 

CO  

(mmol∙g
-1

) 

CO2 

 (mmol∙g
-1

) 

CNF 11,2 87.7 0.24 14.3 414.1 0.331 0.079 

FCNF 1,6 98.8 0.26 14.4 1146.9 0.796 0.336 

NiMo/FCNF-450 - 65.2 0.20 15.6 77.2 - - 

NiMo/FCNF-600 - 73.8 0.20 14.4 66.1 - - 

NiMo/Al2O3 - 342.5 0.56 10.4 1574 - - 
*BJH model applied to the adsorption branch of the 

isotherms. 
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Table 3. Conversion values for the >450 °C fraction (C>450°C), asphaltenes (CAsphaltenes), 

HDS and HDM with NiMo/FCNF-T and NiMo/Al2O3. All reactions lasted 60 minutes 

at 425 °C with an initial 185 bar H2 pressure. Coke content was determined by TGA. 

Data of a benchmark catalyst (NiMo/Al2O3) are also included for comparison purposes.  

Sample C>450°C CAsphaltenes HDS HDM CNi CV Coke (gcoke∙gcat
-1

) 

NiMo/FCNF-450 0.51 0.73 0.83 0.86 0.67 0.94 0.047 

NiMo/FCNF-600 0.49 0.57 0.78 0.74 0.46 0.85 0.081 

NiMo/Al2O3 0.55 0.59 0.9 0.97 0.95 0.98 0.284 
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Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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