| 1 | | |----|--| | 2 | HOLOCENE CLIMATE VARIABILITY, VEGETATION DYNAMICS AND | | 3 | FIRE REGIME IN THE CENTRAL PYRENEES: THE BASA DE LA MORA | | 4 | SEQUENCE (NE SPAIN) | | 5 | | | 6 | | | 7 | A. Pérez-Sanz (1), P. González-Sampériz (1), A. Moreno (1), B. Valero-Garcés (1), | | 8 | G. Gil-Romera (1), M. Rieradevall (3), P. Tarrats (3), L. Lasheras-Álvarez (1), M. | | 9 | Morellón (2), A. Belmonte (4), C. Sancho (4), M. Sevilla-Callejo (1), A. Navas (5) | | 10 | | | 11 | | | 12 | 1) Instituto Pirenaico de Ecología (IPE)-CSIC. Avda. Montañana 1005, 50059 Zaragoza, Spain | | 13 | 2) Instituto de Geociencias, CSIC,UCM. José Antonio Nováis, 2, 3ª planta, 3b. Facultad de Ciencias | | 14 | Geológicas, Univ. Complutense. 28040 Madrid, Spain. | | 15 | 3) Grup de Recerca F.E.M. (Freshwater Ecology and Management) and IRBio (Institut de Recerca de | | 16 | Biodiversitat) Departament d'Ecologia. Fac de Biologia. Univ. de Barcelona Av. Diagonal 643, 08028 | | 17 | Barcelona, Spain. | | 18 | 4) Departamento de Ciencias de la Tierra. Univ. de Zaragoza. C/ Pedro Cerbuna s/n. 50009 Zaragoza, | | 19 | Spain | | 20 | 5) Estación Experimental de Aula Dei (EEAD)-CSIC. Avda. Montañana 1005, 50059 Zaragoza, Spain | | | | ## **ABSTRACT** 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 High resolution multiproxy data (pollen, sedimentology, geochemistry, chironomids and charcoal) from the Basa de la Mora (BSM) lake sequence (42° 32' N, 0° 19' E, 1914 m a.s.l.) show marked climate variability in the central southern Pyrenees throughout the Holocene. A robust age model based on 15 AMS radiocarbon dates underpins the first precise reconstruction of rapid climate changes during the Holocene from this area. During the Early Holocene, increased winter snowpack and high snowmelt during summer, as a consequence of high seasonality, led to higher lake levels, a chironomid community dominated by non-lacustrine taxa (Orthocladiinae) related to higher inlet streams, and a forested landscape with intense run-off processes in the watershed. From 9.8 to 8.1 cal ka BP, climate instability is inferred from rapid and intense forest shifts and high fluctuation in surface run-off. Shifts among conifers and mesophytes reveal at least four short-lived dry events at 9.7, 9.3, 8.8 and 8.3 cal ka BP. Between 8.1 and 5.7 cal ka BP a stable climate with higher precipitation favoured highest lake levels and forest expansion, with spread of mesophytes, withdrawal of conifers and intensification of fires, coinciding with the Holocene Climate Optimum. At 5.7 cal ka BP a major change leading to drier conditions contributed to a regional decline in mesophytes, expansion of pines and junipers, and a significant lake level drop. Despite drier conditions, fire activity dropped as consequence of biomass reduction. Two arid intervals occurred between 2.9-2.4 cal ka BP and at 1.2-0.7 cal ka BP (800-1300 AD). The latter coincides with the Medieval Climate Anomaly and is one of the most arid phases of the Holocene in BSM sequence. Anthropogenic disturbances were small until 700 AD, when human pressure over landscape intensified, with Olea cultivation in the lowlands and significant deforestation in highlands. Colder and unfavourable weather conditions during the second part of the Little Ice Age caused a temporary cease of high-land management. The most intense anthropogenic disturbances occurred during the second half of 19th century. Last decades are characterized by recovery of the vegetation cover as a result of land abandonment, and lowered lake levels, probably due to higher temperatures. Key words: Holocene; central Pyrenees; climate evolution; vegetation history; palaeohydrology; fire; abrupt changes. #### 1.- INTRODUCTION 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Long-term climate evolution during the Holocene has been strongly modulated by orbitally-forced insolation trends which determine heat distribution throughout the planet. In the northern Hemisphere, summer insolation sets limits on the position and strength of the Inter Tropical Convergence Zone (ITCZ), which controls the position of the north-hemisphere cell atmospheric system (Wanner and Brönnimann et al. 2012). In particular, the location of the Azores High and the Iceland Low pressure centres determines the latitudinal position and intensity of the North Atlantic westerlies and the storm tracks, which largely govern rainfall distribution in the Western Mediterranean area (Greatbatch, 2000, Marhsall et al. 2002). During the Early Holocene, the maximum summer insolation in the Northern Hemisphere led to a rapid northward displacement in the ITCZ and its associated rain belt (Fleitmann et al., 2007). This northern position of the ITCZ was responsible for bringing moisture to the current world-largest desert in North Africa (Sahara and Sahel) (deMenocal et al., 2000). As the summer insolation decreased the ITCZ displaced southward, the monsoon system weakened and in southwestern Europe the climate followed a general trend to an increasingly aridity since the Mid Holocene that led to decreased lake levels (Magny et al., 2007, 2011; Valero-Garcés and Moreno, 2011) and major shifts in the vegetation composition (Fletcher and Zielhofer, 2011; Roberts et al., 2011). However, beyond this general climate trend, many recent studies have documented the existence of rapid climate variability during the Holocene (Bond et al., 1997, 2001; Mayewski et al., 2004). Although the nature and mechanisms of these abrupt climate changes still remain unclear, weakening in the thermohaline circulation as consequence of meltwater inputs in the North Atlantic has been recognised as one of the most important triggers (Renssen et al., 2007; Wanner et al., 2008). Furthermore, fluctuations in solar activity have also been responsible for climate shifts (Wanner et al., 2011). These short-living episodes of climate variability had a large impact over most of Europe, as it has been recorded in many continental palaeoclimate archives as lacustrine sediments (Magny et al., 2007), glacial deposits (Davis et al., 2009), and pollen records (Bordon et al., 2009; Magyari et al., 2012). Holocene climate reconstructions for the North Atlantic region involve mainly changes in temperature (Brooks and Birks, 2001). However, in the Mediterranean area Holocene variability is mostly related to changes in water availability as it is documented in vegetation distribution (Jalut et al., 2009; Sadori et al., 2011), lake levels (Magny et al., 2011) and stalagmite growth (Fleitmann et al., 2007; Spötl et al., 2010). The Iberian Peninsula climate integrates subtropical, Mediterranean and Atlantic influences due to its geographical location between the Mediterranean Sea and the Atlantic Ocean (Lionello et al., 2006). Moreover, the Iberian Peninsula has proven to be particularly sensitive to short-term climate shifts during the Holocene (Moreno et al., 2012a). Lakes experienced noteworthy variations in response to precipitation and evaporation shifts during the Holocene (Valero-Garcés et al., 2000; González-Sampériz et al., 2008; Martín-Puertas et al., 2008; Morellón et al., 2009). Changes in sea surface temperatures (Cacho et al., 2001) and deepwater formation (Frigola et al., 2007) in the Western Mediterranean show a fast response to changes in the North Atlantic. Other Iberian continental records highlight a large Holocene variability. For example, the isotope record in the Kaite Cave stalagmite (Domínguez-Villar et al., 2008) reflects variations in the amount of precipitation related to North Atlantic dynamics and fluctuations in palaeoflood activity of Tagus River, in Central Spain have been related to changes in prevailing atmospheric circulation patterns (Benito et al., 2003). Although vegetation is a very good indicator of past climate variability, there are only a few highresolution pollen studies from the Iberian Peninsula (e.g. Fletcher et al., 2013a, Jiménez-Moreno and Anderson, 2012), documenting the fast response of vegetation to abrupt climate changes (decadal- to centennial-scale) during the Holocene. A recent study has proved the high-sensitivity of middle-latitude high mountain ranges in general, and the Pyrenees in particular, to current global warming, documenting an speeding up of replacement of cold-adapted plants by thermophilic species (Gottfried et al., 2012). Past climate changes during the Holocene should have also affected the flora and landscape of the Pyrenees. Furthermore, the southern slopes of the Pyrenees are not affected by Foehn winds, and the present climate is rather complex, influenced by a progressive west-to-east decrease in precipitation, due to weakening of the Atlantic humid fronts inland. Thus, the southern Pyrenees experience both Atlantic and Mediterranean climate regimes within a relatively short distance of less than 450 Km. The Pyrenean vegetation reflects these climate conditions, varying from humid-Atlantic forests, dominated by oak and beech, in the west, to Mediterranean forests, dominated by pine and drought-resistant taxa, in the central and eastern regions. Due to these particular geographical features the Central Pyrenees play a key role in providing information about past E-W shifts of the boundary between both regimes as a result of shifts in the atmospheric components and, particularly, shifts in the westerlies strength. In Western Europe, human disturbances in the landscape can be traced back to the Neolithic period and the climate signal is often masked by anthropogenic activities during the most recent times (Oldfield, 2005; Carrión et al., 2007). Discriminating anthropogenic from natural forcings in landscape evolution has been subject of much debate during recent years. High-altitude sites are more
useful than low-altitude sites for detecting climate signals, since more inhospitable climate conditions limit intense human landscape intervention. Here we present a paleo-environmental reconstruction of climate, vegetation and fire dynamics from a lacustrine sequence located in the central part of the southern Pyrenees: the Basa de la Mora sequence. This record stands out as one of the best climate archives to tackle questions concerning: i) how the Atlantic and Mediterranean regimes have progressed along the Holocene, ii) identification of rapid episodes of climate change, and iii) elucidation of high mountain land-use system during recent times. #### 2.- STUDY AREA ## 2.1 Geological and geomorphological setting Lake Basa de la Mora (BSM) (42° 32' N, 0° 19' E, 1914 m a.s.l.) is a small, shallow glacial lake located on the north-facing slope of the Cotiella Peak (2912 m a.s.l.), the highest summit of the Cotiella Massif in the central southern Pyrenees (Fig.1a). The Cotiella Massif belongs to the homonymous nappe, located in the western part of the South Pyrenean Central Unit (Seguret, 1972). The landscape surrounding the lake results from intense karstic and glacial activity. Lake Basa de la Mora occupies a glacial over-deepened basin enclosed by a frontal moraine (Belmonte, 2004) and surrounded by steep limestone walls. The catchment consists of Mesozoic limestones and sandy limestones affected by several thrust sheets (reverse faults). Triassic marl and evaporite formations crop out at the base of the thrust sheets, providing a hydrological seal for the lake and favouring localized surface drainage into the lake along some creeks. Triassic ophite formations in the watershed are the source of highly characteristic sediments (hematite and other Fe- mineral with high magnetic susceptibility) within the lake deposits. The Basa de la Mora basin belongs to the watershed of the Cinca River, one of the main tributaries of the Ebro River. The lake has smooth margins, a relatively small watershed (209 ha) and a total lake surface of ca. 3 ha. It is characterized by large seasonal water-level fluctuations: the maximum depth varies from ca. 2.5 to 4.5 m seasonally. The lake is fed by precipitation, surface runoff, ephemeral creeks and several small springs located on the southern margin. Water losses take place through a surface outlet to the north and evaporation. The substrate, made up of non-permeable Triassic material, greatly restricts groundwater losses. ## 2.2.- Climate and vegetation The Pyrenees is a mountain range in south-western Europe that extends from the Atlantic Ocean in the west to the Mediterranean Sea in the east, leading to a diverse climate and plant community along a W-E transect. The precipitation in the Pyrenees results from two different mechanisms: precipitation in the east is linked to cold fronts, while precipitation in the west comes from Atlantic frontal systems (Millán et al., 2005). The Atlantic influence extends as far as the Ordesa Valley (García-Ruiz et al., 2001), ca. 150 km from the Atlantic coast and 22 km west of the BSM. Both systems are directly related to the North Atlantic Oscillation (NAO) that principally determines precipitation in western Europe (Trigo et al., 2002). The climate of the study area is sub-Mediterranean with continental features. Rainfall (annual average = 1360 mm) peaks during spring and autumn, following the Mediterranean pattern (García-Ruiz et al., 1985). However, summers are not as dry as is typical of the Mediterranean because of frontal and convective precipitation which affects the mountainous areas in July and August. Mean air temperatures range from 0.5 to 15°C between the coldest (January) and warmest (July) months, respectively. The vegetation cover shows a characteristic contrast between south and north facing slopes: the southern slopes are characterised by mediterranean-type components with sclerophyllous shrubland and evergreen *Quercus* communities, while the northern slopes have mixed conifer/deciduous taxa forests, including *Pinus sylvestris*, *Pinus uncinata*, *Abies alba*, *Betula alba*, *Corylus avellana*, *Fagus sylvatica*, *Quercus faginea* and *Quercus petraea* (Fig. 1b). The elevational gradient between the valley bottoms and the Cotiella Peak, from 550 to 2900 m a.s.l., gives rise to an altitudinal distribution of vegetation, typical of mountain environments. Lowlands are occupied by crops and valley bottoms by riparian corridors (*Fraxinus excelsior*, *Populus* spp., and *Salix* spp.). Forests occur from the base of the foothills up to ~ 2000 m a.s.l. Below 1700 m a.s.l., the dominant species are determined by moisture availability and temperature range, mostly controlled by the slope orientation. From 1700 to 2000 m a.s.l. the forest is mainly composed of *Pinus uncinata* mixed with *Juniperus communis* shrubland and *Rhododendron ferrugineum* at the treeline. Above 2000 m a.s.l., steep rock formations and harsh climate prevent forest development, leading to a scrub-dominated landscape formed by dwarf junipers (*Juniperus communis sbsp. nana*), and alpine grassland (*Nardus stricta, Festuca eskiae, Caricion davallianae* and *Cynosurus cristatus*). Lake Basa de la Mora (BSM) is located in the subalpine belt, near the treeline, so the vegetation surrounding the lake is alpine grassland, *Pinus uncinata* forest and *Juniperus communis-Rhododendron ferugineum* shrublands. #### 3.- METHODOLOGY 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 The composite sequence of Basa de la Mora (BSM08-1A-1U) is based on two parallel cores retrieved from the deepest part of the lake in summer 2008. The longest core was taken with an Uwitec coring system and platform from the Pyrenean Institute of Ecology (IPE-CSIC). Two gravity cores were taken to recover the uppermost part of the sequence and the sediment/water interface. One of the short cores (BSM08-1A-1G) was sub-sampled every 1 cm in the field for ²¹⁰Pb and ¹³⁷Cs analyses and the other core (BSM08-1B-1G) was used to complete the upper part of the sequence. The cores were correlated applying sedimentological and geochemical criteria. The total length of the composite sequence is 12.10 meters. An additional littoral core (BSM-2A-1U) was taken in order to compare lacustrine depositional environments. The cores were split lengthwise into two halves, imaged with a DMT Core Scanner and analyzed with a Geotek Multi-Sensor Core Logger (MSCL) at 5 mm intervals to characterise the sediment physical properties at the Limnological Research Center at the University of Minnesota (USA). Elemental geochemical composition was analyzed using the Itrax XRF Core Scanner at the Large Lakes Observatory (LLO) at the University of Minnesota (USA) at 0.5 cm resolution using 30-s count times, 30 kV Xray voltage, and an X-ray current of 20 mA. These measurements provide estimates of relative element concentrations. The cores were sub-sampled at 2 cm resolution for Total Organic Carbon (TOC) and Total Inorganic Carbon (TIC) and analysed with a LECO144DR elemental analyser at the IPE-CSIC laboratory of Zaragoza (Spain). Sedimentary facies were defined by macroscopic characteristics including colour, grainsize, sedimentary structures, fossil content and by microscopic smear slide observations (Schnurrenberger et al., 2003) (Fig. 3). The sedimentological descriptions are supported by Scanning Electronic Microscopic (SEM) observations of selected samples made at the University of Zaragoza (Spain). Up to 11 samples representing the main facies were analysed for grain size distributions using a Malvern Laser Sizer (Mastersizer 2000) after removing the organics by H₂O₂ and using a dispersant agent to disaggregate the samples. Additionally, 36 samples were analysed for their mineralogical content by X-Ray Diffraction using an automatic Siemens D-500 X-ray diffractometer: Cu ka, 40 kV, 30mA and graphite monochromator. Identification and quantification of the different mineralogical species present in the crystalline fraction were carried out following a standard procedure (Chung, 1974). Sedimentary facies and physical properties (density, magnetic susceptibility) were also obtained for the littoral core (BSM-2A-1U). Samples for pollen analyses were obtained every 5 cm on both the BSM08-1A-1U and BSM08-1B-1G cores. This record covers the whole sedimentary record, except the base of the sequence (1209 - 1165.5 cm depth) which was samples at higher resolution (1 cm) since the sedimentation rate was extremely low (see below). Sediment samples were prepared following the standard protocol described by Faegri and Iversen (1964) or Moore and Webb (1978), with some modifications (Dupré, 1988) includeg HCl, and KOH and HF digestion, mineral-organic particles separation with Thoulet solution (2.0 gr/cm³ density) and sieving with 212 and 10µm mesh. *Lycopodium* spores in a known concentration were added in order to calculate the pollen concentration in the sediment and to test the laboratory procedures (Stockmarr, 1971). Pollen was identified using an optical microscope, with help of the reference collection of the IPE-CSIC and identification keys (Moore et al., 1991; Reille and Lowe, 1995). Counts were made to obtain a pollen sum, excluding aquatics and exotics, of at least 300 grains from a minimum of 20 taxa. The results have been plotted using PSIMPOLL 4.27 (Bennett, 2009). Correlation analyses were made on smoothed data, after testing for normality (Shapiro-Wilk), using Pearson or Spearman correlation tests. Analysis have been performed by the R software package (Venables et al., 2008), Pairwise comparison was performed between MS and geochemical parameters, to help in the facies description, and then between MS (as a high-resolution sedimentological proxy) and the pollen data, to assess possible links between sedimentary changes and vegetation.
Sedimentary micro-charcoal particles were identified on pollen slides by optical microscopy. Only charcoal particles over 10 µm were counted and these were easily identified as black, angular and opaque particles (Clark, 1988). Charcoal influx (mm²/cm³) was estimated after Tinner and Hu (2003). No *Lycopodium* spores were found in some of the slides, so charcoal influx values were obtained by linear interpolation between the adjacent samples. Chironomid samples were collected every 20 cm along the entire core, except at the top of the sequence (2.5-50 cm depth) where the sample interval was increased to 5 cm. The samples were processed following the standard procedure (Hofmann, 1986): 10% KOH digestion at 70° and 300 rpm for 20 minutes, followed by sediment sieving (90 µm). *Chironomidae* larvae head capsules were examined under stereo microscope using a Bolgorov tray, picked out manually and dehydrated in 96% ethanol, before being mounted ventral side upwards in Euparal® as permanent slides. Taxonomic 268 identification was carried out using an optical microscope (Olympus CX41) at 40x 269 magnification and Cell B Imaging Software for Life Science Microscopy (Olympus). 270 The larval head capsules were identified to the lowest taxonomic level possible using 271 several specialized guides (Wiederholm, 1983; Rieradevall and Brooks, 2001; Brooks et 272 al., 2007). 273 The chronology of the sequence is based on 15 calibrated AMS radiocarbon dates from the long core BSM08-1A-1U and ¹³⁷Cs and ²¹⁰Pb dating from the short core BSM08-274 1B-1G (Fig. 2). Most of radiocarbon dates are based on terrestrial macrofossils and 275 276 charcoal (Table 1). Bulk sediment and pollen concentrates were dated in the lowermost 277 part of the sequence because of the paucity of organic remains. Dates have been 278 calibrated using CALIB 6.0 software and the INTCAL09 curve (Reimer et al., 2009). 279 The 2 σ probability distribution interval was chosen. The age model was constructed by 280 linear interpolation between the median ages of the probability distribution of adjacent calibrated dates. The ²¹⁰Pb_{ex} and ¹³⁷Cs activity in the upper samples was measured by 281 282 gamma-ray spectrometry, using a high-resolution low-energy coaxial HPGe detector coupled to an amplifier. The chronology based on ²¹⁰Pb_{ex} was estimated by applying the 283 constant rate of supply (CRS) model by Appleby (2001). The resulting age model 284 285 provides a robust chronological framework for the high resolution paleo-environmental 286 reconstruction presented in this work. 287 # 4.- RESULTS 288 289 310 311 312 313 314 315 316 317 318 319 320 321 ## 4.1.- Chronology 290 According to the age-depth model, the BSM sequence spans the last ca. 16 cal ka 291 BP (Table 1, Fig. 2). The two lowermost dates (at 11.98 and 12.06 m depth) are the only 292 ones not based on terrestrial macrofossils (Table 1). When these two dates are included 293 in the age model (12628 ± 100 and 15828 ± 600 cal yr BP), they result in a change from 294 consistently high sedimentation rates (1.2 mm/yr) between 0-11.67 m depth to 295 extremely low rates (0.064 mm/yr) at the base (11.67-12.09 m depth). Given that these 296 dates point out to the Late Glacial period, we attempted to characterize this zone by 297 increasing the pollen sampling. However, the pollen record did not show changes 298 indicative of the last glacial-interglacial transition (LGIT, see section 4.3, zone BSM-0). 299 Since there is no sedimentary evidence for a depositional hiatus, and no major change in 300 the vegetation composition has been recorded, these two dates were not used in the final 301 age model. It is possible that a reservoir effect is responsible for these samples being too 302 old. The age model excluding the two basal dates indicates that the 11.67 m long record 303 spans the last ca. 9.8 cal yr BP (Fig. 2). The final age-depth model is based on 13 304 calibrated AMS radiocarbon dates, 11 on macrofossils and two on charcoal. The short core, that includes the most recent period, has been dated by ²¹⁰Pb and ¹³⁷Cs activities. 305 Two well-defined ¹³⁷Cs peaks are recorded at the uppermost part of the sequence 306 providing markers for the 1954-1959 and the 1963 maximum atmospheric nuclear bomb 307 testing. The chronology based on ²¹⁰Pb_{ex} compares fairly well with the ¹³⁷Cs peaks (Fig. 308 309 2). ## 4.2.- Sedimentary facies, geochemistry and lithological units Six sedimentary facies were identified based on visual description, microscopic observations, grain-size data and mineralogical and geochemical composition (Table 2). The sediments consist of either: i) carbonate – poor (< 2 % TIC), with lower TOC and high MS, organized in laminated or banded intervals, or ii) carbonate-rich (2 - 7 % TIC) with variable, but higher organic matter content (1-3 %) and low magnetic susceptibility, arranged in massive to banded deposits. The grain-size data indicates finer (mode at 6-7 μ m) and better-sorted sediments in the silicate-rich, carbonate- poor facies, and coarser and more poorly sorted material in the carbonate-rich sediments. The first group of sediments (Facies 1, 2 and 3) are banded to laminated silicate and carbonate fine silts dominated by clay minerals (20-30 %) and quartz (5-15 %) with minor amounts of calcite (< 25 %) and with presence of hematite, pyrite and clinochlorite. Facies 3 has the highest MS, and relatively high carbonate content. Facies 1 and 2 are more silicate-rich, but Facies 2 is finer, with lower MS, better-defined lamination and higher TOC content than Facies 1. The second group (Facies 4, 5 and 6) is dominated by massive carbonates (ca. 6% TIC; 60-80% calcite). Facies 5 and 6 have mottled textures and abundant gastropods, indicating littoral deposition. These facies dominate the littoral core (BSM-2A) almost entirely. Facies 4 has a higher TOC content (up to 3%) dominated by macrophyte and terrestrial remains. Facies 5 contains authigenic crystals of carbonate and gypsum, partially dissolved, pointing to deposition in ephemeral lake conditions with rapid fluctuations of lake level and salinity. Diatoms (pennate, benthic) only occur in the carbonate-rich Facies 5. Facies 6 has a slightly banded texture and lower TOC content than the other carbonate facies. The BSM sequence has been divided into three main sedimentary units according to sedimentary facies, MS, TIC and TOC percentages and the mineralogical and geochemical composition (XRF) (Fig. 3). - i) Unit 3 (1168-491 cm depth; 9800-5700 cal yr BP) corresponds to the lowermost part of the sequence and it is characterized by banded carbonate – poor sediments with high values of MS and relatively low TOC percentages (Facies 1, 2 and 3). TIC percentages and Ca, Sr and S values are low throughout Unit 3 while Si, K, Ti values (and particularly Fe and Mn) are high. The lowermost Sub-unit 3b (1168-690 cm depth, 9800-7450 cal vr BP) is composed of laminated Facies 1 and a thin interval of Facies 3. Magnetic Susceptibility (MS) reach the highest values of the sequence and are positively correlation with Mn (Table 3a). The high MS values are related to the presence of paramagnetic minerals eroded from ophite outcrops. Values of Ca and TIC are relatively low, but also display a strong positive correlation with MS. TOC percentages are the lowest in the sequence while TOC/N ratios are the highest. Sub-unit 3a (690-491 cm depth, 7450-5700 cal yr BP) is composed of Facies 2 and has finer lamination, lower MS and higher TIC and TOC values. Sub-unit 3a MS values are still high but decrease progressively. MS is significantly positively correlated with Mn and Fe (Table 3a). Ca values are very low and not significantly correlated with MS. TOC percentages increase, showing a significant negative correlation with MS, while TOC/N ratios decreases. - ii) Unit 2 (491-93 cm depth; 5700-680 cal yr BP) is made up of carbonate-rich Facies 5 and 6 with intercalations of organic-rich Facies 4. Thus, Unit 2, although highly variable, is characterized by the lowest values of MS and the highest content in TIC of the whole sequence. The high values of TIC in Unit 2 (up to 8%) are related to precipitation of authigenic carbonates. Sr and S elements increase considerably in this unit. TOC percentages also vary greatly during this period but, in general, they are relatively high and increase upwards. Relatively low TOC/TN values (< 12) indicate the dominance of lacustrine organic matter (Meyers, 2003). Si, Ti, Fe and Mn show parallel trends to MS (Table 3a). Unit 2 can be subdivided into three sub-units, following the facies association. Thus, BSM 2c (491-350 cm depth; 5700-3540 cal yr BP) is constituted by the alternation of cm-thick intervals of Facies 4 and 6 and displays an upward TIC increase (up to 8%). TOC percentages are highly variable but generally low (1-2 %). BSM 2b (350-240 cm depth; 3540-2200 cal yr BP) represents a 1 m-thick interval of Facies 5 with the highest TIC, Ca and calcite values and the lowest TOC and MS of the sequence (Fig. 3). Higher Sr values occur as a result of more abundant biogenic aragonite. Finally, BSM 2a (240-93 cm depth; 2200-700 cal yr BP) comprises rhythmic sequences of about 20 cm-thick composed of thin layers of Facies 1->, Facies 4 -> Facies 5 (detrital- organic-carbonate). iii) Unit 1 (93-0 cm depth; 698 cal yr BP-2007 AD) comprises carbonate – poor Facies 1 and organic-rich Facies 4. As a consequence, all geochemical indicators show high variability. Facies 1 lamination is less well defined than in Unit 3. MS values increase again and show strong positive correlation with Si, Ti, Mn and Fe, while the correlation with Ca and TIC and TOC is strongly negative (Table 3a). TOC/N ratios increase at the base of the unit and decrease towards the top: TOC percentages show the opposite pattern. ## 4.3. Pollen and charcoal data The pollen record can be divided into six zones (BSM-0 to BSM-V: Fig. 4). In BSM-I
to BSM-V (9.8 ka cal BP-present), the 5 cm-resolution pollen analyses provide a temporal resolution of 22 to 150 years per sample.. Statistical results for pairwise comparison between vegetation and geochemical parameters are shown in Table 3b. The maximum number of charcoal particles counted was 3098, with a mean of 307 and a SD of 453. The patterns of charcoal influx are consistent with the pollen zones. This zone is characterised by scarce representation of the herbaceous component (NAP) and particularly the steppe taxa group (*Artemisia*, *Chenopodiaceae*, *Helianthemum*, *Plantago*, *Rumex*, which rarely exceed 5-10 %), and abundanbt representation of arboreal pollen (AP), dominated by conifers (mainly *Pinus*) and deciduous forest taxa (*Betula*, *Corylus*, *Alnus*, *Salix*, *Ulmus*, *Populus*, *Acer*, *Fraxinus*, *Fagus*, *Tilia* and deciduous *Quercus*), with values around 25-30 % (Fig. 4)., Representation of Poaceae and aquatics (Cyperaceae, *Ranunculus*, *Myriophyllum* and *Potamogeton*) in this zone is not significantly different to the rest of the sequence. This pollen spectrum is not consistent with a pre-Holocene deposit as would be inferred from the two dates (15.8 cal ka BP and 12.6 cal ka BP) from this interval. These spectra, together with the lack of sedimentological evidences for a hiatus, indicate that these dates are too old. Both pollen and sedimentological data suggest these are Holocene sediments, but given the absence of chronological control the record from this zone is not considered further in this study. # BSM-I (1167.5-815 cm depth; 9800-8200 cal yr BP) Arboreal pollen varies between 60 and 80% of the total pollen abundance, and in some cases it exceeds 85%. Pinus is the main arboreal taxon, but deciduous taxa are well represented by Betula, Corylus and deciduous Quercus, with some significant fluctuations in *Betula*. *Juniperus* is also present with percentages above 6%. Evergreen Quercus and Mediterranean shrubs (Pistacia, Rhamnus, Phillyrea, Buxus, Sambucus, Ephedra fragilis and E. distachya) are present in relatively low but continuous percentages. The first *Tilia* is recorded at 870 cm depth (8500 cal yr BP); this timing is consistent with other records from the region (Montserrat-Martí 1992; González-Sampériz et al., 2006; Miras et al., 2007; Pèlachs et al., 2007). Poaceae dominates the herbaceous stratum, while the abundance of Helianthemum significantly declines and Artemisia decreases in importance. Myriophyllum is the dominant aquatic. A significant change is found towards at the end of the zone (860 - 815 cm depth; 8400-8200 cal yr BP) characterized by a sharp decline in Betula, Corylus and deciduous Quercus, the virtual disappearance of Other Mesophytes (Fig. 4) and the total absence of *Tilia*. *Pinus* increases to its maximum in the whole sequence, reaching 75%, and Helianthemum reappears at this time. This is a phase of high variability in fire activity, although charcoal counts are very low. *Pinus* and *Juniperus* show apositive correlation with MS within this zone, while Betula, Corylus, Ouercus faginea, evergreen Ouercus and *Myriophyllum* are negatively correlated with MS (Table 3b). Thus, MS is correlated negatively with moisture-adapted and temperate taxa, but positively with more drought-resistant taxa such as *Pinus* and *Juniperus*. # BSM-II (815-491 cm depth; 8200-5700 cal yr BP) After the short, abrupt vegetation change previously described, forest contracts slightly but there is considerable compositional variability. *Pinus* decreases to 35% and *Juniperus* is also highly reduced in abundance. Deciduous taxa, mainly *Betula*, *Corylus* and deciduous *Quercus*, show large and more continuous expansion reaching their maximum values in the sequence. *Tilia* reappears and is constantly present at moderate levels throughout the zone. Evergreen *Quercus* declines to its minimum values, while Mediterranean Shrubs fluctuate in abundance. The first isolated appearance of *Abies* occurs at 646 cm (7200 cal yr BP). The NAP is mainly composed by *Poaceae*, *Artemisia* and Lamiaceae, as in the rest of the record. Aquatic plants are well represented by Cyperaceae, *Pedicularis*, *Ranunculus* and *Potamogeton*, although *Myriophyllum* is dominant and reaches its highest values in the sequence. Deciduous *Quercus* and *Tilia* abundances show a strong negative correlation with MS (Table 3b). There is an increasing trend of fire activity, although the variability is high. ## BSM-III (491-389 cm depth; 5700-3900 cal yr BP) The beginning of this zone is characterized by a steep decline in deciduous forest taxa, mainly *Betula* (abruptly reduced by nearly 60%) and deciduous *Quercus*. In contrast, *Pinus* expands rapidly and *Juniperus* and evergreen *Quercus* increase slightly. *Fagus* appears for the first time, chronologically fitting the regional expansion (Montserrat-Martí, 1992; Pla and Catalán, 2005). The base of the zone is characterised by the permanent presence of *Abies* in the area, after its initial appearance shortly before. Poaceae, *Artemisia*, Lamiaceae and Chenopodiaceae are still the main NAP taxa and *Rumex* rises. No significant changes are recorded on the aquatic component except a decrease in *Myriophyllum* and a short-term disappearance of *Potamogeton* at the base of the zone. The conifer/mesophyte ratio is inverted at the top of the zone, just before the transition from Sub-unit 2c into Sub-unit 2b. Fire activity reaches a maximum towards the end of this zone. The beginning of this zone is characterized by a change in forest composition. *Pinus* recovers and becomes the dominant arboreal taxon, Abies reaches its maximum abundance and Betula exhibits its minimum values. Juniperus and evergreen Quercus increase, but Corylus and Other Mesophytes only experience a slight increase. Tilia decreases progressively and disappears at top of the zone. In contrast, Fagus reaches its highest levels, at a time consistent with other records from the region (Pla and Catalán, 2005; Pérez-Obiol et al., 2012). A sudden and abrupt rise of Artemisia and further decrease in mesophyte taxa accompany the Pinus-dominant landscape. The NAP, of which Poaceae and Artemisia constitute the main elements, accounts for 40% of the pollen sum. There are two peaks of Artemisia in this zone, the youngest of which (when Artemisia reaches its maximum value in the whole sequence) coincides with the disappearance of Abies and Tilia. The aquatic component is markedly reduced in abundance, with low values of Myriophyllum and the absence of Potamogeton during the most of the zone contrasting with an increase in Cyperaceae. Cultivated taxa like Olea, Vitis, Castanea and Cerealia type appear more continuously. Although there are some marked peaks of *Pinus* in this zone, the general trend is for relatively stable pine forest during the last phase of sedimentary Sub-units 2b and 2a. An abrupt decrease in charcoal concentration lasting several centuries was followed by a new abrupt increase in fire activity at the end of the zone. # BSM-V (93-0 cm depth; 700 cal yr BP-present, 1250-2008 cal AD) This zone is characterized by important changes in both pollen and sedimentological records (Unit 1). The most relevant feature is the increase in *Olea* and *Fraxinus*. *Pinus* increases up to the 70%, but with very short episodes of were abundance is much lower (40%). The expansion of pine is coincident with the decline of *Abies*, *Betula*, *Corylus* and Other Mesophytes. Deciduous *Quercus* and, especially evergreen *Quercus* increase in abundance in the topmost part of the sequence. The NAP is still dominated by Poaceae, but *Artemisia* drops dramatically while Asteraceae and Chenopodiaceae reach their maximum values. *Myriophyllum* becomes less important and Cyperaceae dominates the aquatic assemblage. Variations in MS at this time are not correlated with vegetation composition changes. Fire activity is very high during most of the zone, but ceases in the top part of the record. #### 4.5. Chironomids A total of 6422 chironomid head capsules were picked up, individually mounted and identified from 71 samples of the core BSM08-1A. Total chironomid biodiversity was represented by 18 taxa (up to 9 taxa per sample), belonging to three chironomid subfamilies: *Tanypodinae, Orthocladiinae* and *Chironominae. Tanytarsus* gr. *lugens* was the most abundant all through the core, followed by *Procladius, Chironomus* and *Paratanytarsus*, *Chironomus* or *Paratanytarsus* are not shown in the diagram (Fig. 5) because they are present through the entire sequence and show no clear pattern of changes through the Holocene. The chironomid assemblage indicates that the lake has been always relatively shallow and oligotrophic, although relatively rich in organic matter. Quantitative analysis of the *Chironomidae* allows the sequence to be divided into 4 zones: # CHZ-1: Chironomid Zone 1 (1168.5-491 cm depth; 9895 - 5700 cal yr BP) Low densities characterize this zone. *Tanytarsus* gr. *lugens* abundance is relatively low although with some fluctuations. *Procladius* reaches its maximum relative abundance within the core (30-60%), whereas *Pentaneurini* tribe appears through the entire zone although with a highly fluctuating distribution. The *Orthocladiinae* tribe is quite diverse, with an early representation of *Psectrocladius* gr. *limbatellus* and *Corynoneura* and a moderate representation of *Orthocladiinae* indet. (5-7%), which include several taxa related to water runoff and seepages (e.g. *Smittia*). CHZ-2: Chironomid Zone 2 (491-357 cm depth; 5700 - 3600 cal yr BP) The *Tanypodinae* subfamily taxa (*Procladius* and *Pentaneurini*) is reduced in abundance, whereas the abundance of *Tanytarsus* gr. *lugens* increase and remains relatively high values throughout the zone (50-60%). Density values increase, although 3 samples from the base of the zone were almost sterile. CHZ-3: Chironomid Zone 3 (357-56 cm
depth; 3600 - 350 cal yr BP) High densities occur, although they decrease towards the top of the zone. The main difference from the previous zone is the presence of *Psectrocladius* gr. *limbatellus* throughout the zone with relatively high abundances (up to 20%). *Procladius* reaches relatively high abundance (10-20%), although it does not reach previous values. 520 CHZ-4: Chironomid Zone 4 (56-0 cm depth; 350 cal yr BP - present; 1600 - 2008 521 AD) The uppermost zone is characterized by a strong increase of *Psectrocladius* gr. *limbatellus*, together with *Pentaneurini* and *Corynoneura*, and a reduction in *Tanytarsus* - 524 gr. lugens. Density values particularly of Procladius, fluctuate, although its abundance - is similar to the previous zone. 526 # **5. DISCUSSION** 5.1. The Early Holocene: Strong Mediterranean influence and high climate variability (Sub-unit 3b, BSM-I, CHZ 1, 9800-8150 cal yr BP) During the Early Holocene, the Atlantic regions of Iberia were dominated by deciduous broadleaf trees (Muñoz-Sobrino et al., 2005, 2007; Moreno et al., 2011) while the Mediterranean, mountain and inland areas were covered mainly by dense pine forest (Carrión et al., 2010; Franco-Múgica et al., 2000; Rubiales et al., 2010 Morales-Molino et al., 2012). The southern Pyrenees record both climate regimes in a relative small area: the Atlantic climate to the west and the Mediterranean climate to the east. These particular geographical features led to some marked differences in plant communities between the two regions at the onset of the Holocene. Increasing humidity was much pronounced in the Atlantic-influenced area, with a large expansion of mesophytes (Montserrat-Martí 1992; González-Sampériz et al., 2006), while pine was the main tree taxon in the Mediterranean-influenced region (Miras et al., 2007; Pérez-Obiol et al., 2012). This suggests a stronger W-E precipitation gradient in the southern Pyrenees at the onset of the Holocene, with stronger influence of humid fronts in the west and persistent summer drought in the east. In the BSM sequence, located at the modern transition between the Atlantic and Mediterranean climate regimes, the Early Holocene is characterized by the dominance of conifers over mesophytes (BSM-I) (Fig. 5). High values of pines and Juniperus reflect a continental Mediterranean-climate influence during this period. The fire regime is not characterised by either frequent or virulent fires, probably because of fuel limitation as pine-dominated forests are less flammable than broadleaf woodlands. The dominance of *Pinus* over deciduous taxa suggests the existence of extreme seasonal temperatures and marked summer drought during the Early Holocene. However, deposition of carbonate-poor laminated Facies 1 and 3 indicates permanent and relatively high lake levels with abundant sediment delivery by run-off. High values of MS are related to the presence of paramagnetic minerals eroded from ophite outcrops and are consistent with high-energy transport to the lake. High correlation between MS and Ca and TIC is indicative of the detrital origin of carbonate minerals and supports high erosion rates during this period. The high abundance of non-lacustrine Orthocladiinae taxa, related to inlet streams, in this zone supports the idea of increased runoff due to high rainfall. The *Procladius* genus has been reported to be important in the Early Holocene in other European regions (Heiri et al., 2003) and its high abundance is consistent with higher lake levels because it inhabits fine sediments in the profundal zones of lakes (Saether, 1979; Prat et al., 1992). The Early Holocene maximum in seasonality in the Northern Hemisphere may have been responsible for particularly cold winters and hot summers. In the southern Pyrenees, this would have led to increased snow accumulation in winter and subsequent large snowpack melt during the warmer summer months leading to higher run-off. Evapotranspiration and low precipitation during summer drought periods would be largely compensated by increased melting water, leading to higher lake levels. The negative correlation between moisture-adapted taxa and MS supports the idea that run-off would be likely linked to melt processes rather than direct precipitation. Furthermore, positive correlation between MS and drought-resistant taxa such as *Juniperus* and *Pinus* confirms that run-off is related to increased continentality during this period. The relatively dry and cold Early-Holocene climate of the Basa de la Mora (BSM) is in agreement with many studies from western Europe (Leira and Santos, 2002; Bjune et al., 2005;) and North America (Shuman et al., 2001; Zhao et al., 2010), which have inferred a cooler and drier climate probably related to weakened ocean conveyor circulation as the rapid, global increase in temperature provoked large input of freshwater from the Laurentide sheet into the North Atlantic, weakening Labrador Sea deep convection (Kaplan and Wolfe, 2006; Renssen et al., 2009, 2012). Superimposed on the long-term insolation-driven climate trend, the BSM sequence shows significant short-term (submillennial) shifts in pollen percentages and sedimentological features during the Early Holocene. Such shifts occurred at 9.7, 9.3, 8.8 and 8.3 cal ka BP and are mainly characterized by short-term expansion of pine, accompanied by large reductions in all deciduous taxa but most particularly in *Betula*, implying a substantial reduction in humidity. The highest MS values of the whole sequence are also recorded during these events, indicating that these periods are characterised by particularly intense run-off and sediment delivery from the catchment (Fig. 5). Cold and relatively humid winters with large amount of snow accumulation, and the subsequent snowpack melt and runoff, could be responsible for increased erosion in the catchment. This interpretation is supported by the sharp and discontinuous presence of rheophilous and non-strictly lacustrine chironomid taxa during these short-events. Low percentages of TOC and low TOC/N ratio also point to reduced vegetation in the catchment (Fig. 5). Phases of reduced forest may be due to a downward displacement of the treeline, supporting the occurrence of cooler temperatures. These events were as short-lived periods of drier and cooler conditions. Sedimentary phases with particularly high sedimentation rates associated with arid conditions have been recognised in the Central Ebro Basin complex during this period (Sancho et al., 2008; Gómez-Paccard et al., 2013). The strong response of the vegetation and hydrology at BSM indicates that climate instability was characteristic of the Early Holocene. Similar evidences for Early Holocene climatic oscillations have been widely recognised throughout the North Atlantic region (O'Brien et al., 1995; Alley et al., 1997; Mayewski et al., 2004; Bond et al 1997, 2001; Frigola et al., 2007). The first Early Holocene cold event is recorded just at the beginning of the BSM sequence at 9.8-9.7 cal ka BP. Since the BSM record starts at 9.8 cal yr BP, we suggest that this may be coincident with the short-lived 9.95 ka cold anomaly detected in the NGRIP record (Rasmussen et al., 2007). The impact of this anomaly has been previously noted in the western Mediterranean as a phase of forest decline (Fletcher et al., 2010b), as in BSM sequence. A global event centred in 9.3 ka cal BP has been widely recorded in many sequences from the North Atlantic and Europe (Haas et al., 1998; Rasmussen et al., 2007; Fletcher et al., 2013b). In the BSM sequence, this interval coincides with an expansion of pine forest and decline in mesophyte taxa but there is no sedimentological change. The next cold and arid event occurs at 8.8 ka cal BP. In BSM sequence, this event is resulted in major shifts in vegetation and sediment deposition and the apparent disappearance of chironomids. This phase coincides with the only occurrence of Facies 3 and the high TOC/TN ratios characteristic of this unit suggest a well-vegetated watershed, dominated by Pinus. The 8.8 ka cal BP cool event is reported in the Artic by Ebbesen et al., (2007) but has not previously been reported in southern Europe. The next event is recorded at 8.3 ka cal BP. This is the most remarkable vegetation shift in the BSM record, with *Pinus* reaching its highest values and *Betula* dropping to its minimum. Taking into account the age-depth model uncertainties for this period $(8300 \pm 100 \text{ cal yr BP})$, this event could be synchronous with the 8.2 ka cool event (Alley and Agustsdottir, 2005; Rasmussen et al., 2007), triggered by a large freshwater discharge from former glacial Lake Agassiz into the North Atlantic Ocean, causing a reduction the Atlantic Meridional Overturnign Circulation (AMOC) (Hoffman et al. 2012). The high-resolution study carried out in BSM sequence for this period indicates a minimum timing of 150 years and maximum of 200 years for the 8.2 ka event. This timing agrees with the precise characterization of the 8.2 ka event obtained from trapped air in a Greenland ice core (GISP2) (Kobashi et al. 2007). The abrupt increase in pine in BSM matches the spread of *Pinus* recorded in the Alps (Blarquez et al., 2009), Switzerland (Tinner and Lotter, 2001) and northern Spain (Muñoz Sobrino et al., 2007), suggesting a widespread impact in mountain/alpine regions. The 8.2 event is widely recorded in the north-eastern of the Iberian Peninsula, where human settlements located in a particular harsh region of the Central Ebro basin moved towards more humid areas during this interval (González-Sampériz et al., 2009). The rapid response of the vegetation to these short climate shifts, related to changes in the North Atlantic, seems to be amplified in the BSM sequence because of its ecotonal location for some species. The highly responsive nature of the vegetation record highlights the climate sensitivity of high altitude transitional areas
to environmental changes, as previously demonstrated for the central Pyrenees during the Lateglacial period in El Portalet sequence (González-Sampériz et al., 2006). # 5.2. The Mediterranean "Climatic Optimum" (Sub-unit 3a, BSM-II, CHZ-I, 8100-5700 cal yr BP) The Mid-Holocene is the period with the greatest forest development in Europe, when treeline moved upward and reached its maximum elevation in most mountain regions (David 1993; Ali et al.2003; Ortu et al., 2008; Carnelli et al., 2004; Favilli et al., 2010; Talon et al., 2010; Cunil et al., 2011; Magyari et al., 2012). In northern Europe, forest expansion is related to higher summer temperature (Davis et al., 2003; Bjune et al., 2005; Nesje et al., 2006), while in southern Europe this is an interval of increased humidity (Carrión et al., 2010; Colonese et al., 2010; Spötl et al., 2010; Stoll et al., submitted). There is a marked shift in the vegetation composition after ca 8.2 ka BP in the BSM sequence, (Fig. 5). *Betula*, *Corylus* and deciduous *Quercus* became the dominant AP elements, *Tilia* and other mesophytes were present, and conifers declined to their minimum values, with pine oscillating between 20-30 % and juniper between 2-3% (Fig. 5). This assemblage is very different from that of a dense conifer community near the lake (Court-Picon et al., 2005). The high values of *Betula* (up to 26%) in the BSM sequence compare fairly well with similar high values recorded in the Pyrenean sequence of El Portalet peatbog (González-Sampériz et al., 2006), located at 1802 m a.s.l, Lake Burg (Pèlachs et al., 2007), located at 1821 m a.s.l. or Tramacastilla lake, at 1682 m a.s.l., where birch accounted for 40% of the total pollen (Montserrat-Martí, 1992). The similarity between these sequences indicates that Betula grew at higher altitude, in the upper part of the montane belt and probably reaching the subalpine belt. The rise of birch and the consequent drop of pine at BSM could result from either an increase in annual precipitation or reduced evaporation, as a consequence of decreased continentality, favouring water-demanding taxa. High charcoal values indicate increased regional fire activity. An increase in moisture does not necessarily imply reduced fire activity; the expansion of mesophytes, which are more flammable than most mountain pines (Blarquez and Carcaillet, 2010), provides high amounts of fuel at an altitudinal zone normally devoid of large forest to be burnt. Only minimal changes in summer climate or lightning would be required to promote large and virulent fires, leaving a sizeable imprint in the charcoal record. In addition *Betula* is a pioneer taxa that spreads well after fire disturbances (Blanco, 1997; Morales-Molino et al., 2012). This pattern has been also found in El Portalet sequence (Gil-Romera et al., submitted) and in many other Holocene records from the European mountains (Tinner et al., 1999; Colombaroli et al., 2008; Vannière et al., 2008) as well as in current patterns of fire occurrence (Pausas and Paula, 2012). 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 The interval from 8100-5700 cal yr BP was characterized by stable environmental conditions in the BSM catchment, as inferred from the stable vegetation composition and the lack of marked decreases in any tree taxon despite the high fire activity. Sedimentological and geochemical indicators indicate a stable, relatively deep lacustrine environment. The laminated nature of Facies 2 is consistent with high lake level and the activity of several inflow streams. The finer grain size of Facies 2, in comparison to laminated Facies 1 and 3, indicates even higher lake levels. Low values of TIC and Ca suggest dilute water, and the lack of a significant correlation between Ca and MS indicates that delivery of carbonates from the catchment through run-off was negligible. Moreover, the decrease in MS and TOC/N along with the increase in TOC suggests a more vegetated environment that would limit the erosive effect of precipitation. High and constant Myriophyllum values and the chironomid association also reflect a wellestablished, deeper lacustrine environment; as genus *Procladius* presents its highest abundances along the sequence and Tanytarsus gr. lugens is also important in the chironomid assemblage. Moreover, the increase of littoral and macrophyte-related taxa such as Corynoneura or Pentaneurini tribe (e.g. Brodersen et al., 2001) during this period, reflects the greater development of aquatic vegetation in the lake favored by milder climate conditions. The Mid-Holocene warmer conditions occurred when the flux of meltwater from the Laurentide ice sheet stopped and deep convection in the Labrador Sea led to enhanced transport heat over the Atlantic-influenced area (Renssen et al., 2009, 2012). Increased meridional circulation in the North Atlantic as the Laurentide sheet waned could bring warmer condition to the Iberian Peninsula. Changes in the SST and shifts in insolation triggered reorganization of the atmosphere circulation and strengthened meridional atmosphere circulation. A northward shift of the monsoon system and its associated rainfall belt gave rise to particularly humid conditions in the Sahara and Sahel (deMenocal et al., 2000; Hély et al., 2009). Enhanced westerlies could bring increased summer humidity over the Iberian Peninsula, as inferred from the spread of broad-leaf taxa in this region (Pantaleón-Cano et al., 2003; Carrión et al., 2001, Carrión, 2002). Although this interval (8.2-5.7 cal ka BP) is the most humid period recorded at BSM,, high MS and a slight expansion of *Pinus* indicates a short-lived arid event around 7.5 cal ka BP. However, mesophytes only decrease slightly suggesting this interval was less pronounced than in previous arid intervals. This event is broadly coincident with the arid 7.4 event detected in southern Spain (Jalut et al., 2000) that has been related to the emergence of the Neolithic in southern Iberia (Cortés Sánchez et al., 2012), and also correlates with a phase of forest decline detected in the western Mediterranean (Fletcher et al., 2010a). In the central southern Pyrenees, this phase does not represent a dramatic change in moisture supply and vegetation recovers rapidly. # 5.3. The end of the Middle Holocene: transitional phase (Sub-unit 2c, BSM-IV, CHZ-II, 5700-3900 cal yr BP) The evolution of the landscape in southern Europe from 6 ka (or even earlier) onwards has been widely assumed to be influenced by both climate and human forcings (Oldfield and Dearing, 2003; Vannière et al., 2008; Roberts et al., 2011, Sadori et al., 2011). Many palynological studies show a clear increase of anthropogenic indicators from the Middle Holocene, pointing to an intensification of human activities and a subsequent change in the vegetation composition related to forest clearance for pastures and agriculture fields (Jalut et al., 2009). However, some of these taxa are naturally found in xeric Mediterranean ecosystems (De Beaulieu et al., 2005) and this makes it difficult to discriminate between climate and anthropogenic forcings. The spread of xeric vegetation across the Mediterranean region during Middle-Holocene does not necessarily imply anthropogenic degradation of the landscape (Collins et al., 2012). In addition, fire activity in Mediterranean areas increased significantly at this time and its impact on vegetation composition has to be taken into consideration (Colombaroli et al., 2007, 2008, 2009; Vannière et al., 2008, 2011). Increased fire activity can result from anthropogenic activities but also reflects the climatic shift towards arid conditions (Carrión et al., 2001a, 2010; Fernández et al., 2007; Fletcher and Sánchez-Goñi 2007; González-Sampériz et al., 2008; Morellón et al., 2008; Jalut et al., 2009; Corella et al., 2010; Anderson et al., 2011). The expansion of heliophytes (like Artemisia, Chenopodiaceae, Asteraceae, Rumex, Plantago, Poaceae, and Mediterranean taxa similar to Cerealia.) observed during this period is favoured by increased fire, increased aridity, and anthropogenic activity. Overall, the complex changes found in Mediterranean areas at the end of the Mid-Holocene are not necessarily related to intense human pressure, but could equally well be explained by the trend towards drier conditions. 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 There is a sharp change in the vegetation cover and sedimentological features in the BSM sequences at 5.7 cal yr BP. The pollen record in BSM-IV is characterized by a pronounced increase in pine and decrease in mesophytes, mainly *Betula*, in combination with a rise in Juniperus, deciduous and evergreen Quercus and heliophytes (Artemisia and Chenopodiaceae). The replacement of mesophytes by conifers suggests a change from humid to drier conditions or, at least, a significant shift in the seasonal distribution of the precipitation since reduced summer rainfall is unfavourable to the broad-leaf taxa. The sedimentary shift is defined by an increase in carbonates, indicating lower lake levels (Sub-unit 2c). Lower values of MS suggested reduced sediment transport as consequence of lower run-off and inflow streams, which in turn indicates reduced precipitation or meltwater inputs. The decrease in allochthonous sediments is reflected in lowered sedimentation rates and deposition of carbonate Facies 6, which reflects high carbonate productivity in a littoral setting with low and fluctuating water level. The decline in *Myriophyllum* is consistent with a reduction in water level (Figs. 4 and 5). Moreover, the sharp decrease in Procladius and the near disappearance of nonlacustrine Orthocladiinae taxa also indicates reduced runoff and stream inflow during this period. The increase in chironomid abundances, mainly
Tanytarsus, could indicate increased decomposition rates in the sediments. 763 764 791 792 793 794 795 796 765 Both biological and sedimentological indicators are consistent with a trend to 766 increased aridity and a persistent arid phase between 5.6 to 4.6 cal ka PB (Fig. 5). 767 Similar vegetation changes have been recognised in other Pyrenean sequences (Pelachs 768 et al., 2007), in southern Spain (Jiménez-Moreno and Anderson, 2012) and in 769 Mediterranean records (Carrión et al., 2010). Fletcher et al., (2013b) have identified a 770 major phase of deforestation in the Western Mediterranean during this period. The 771 coincidence between lowered lake levels and forest decline supports the idea of climate 772 as the main forcing. A major climate shift has been recognised in many other regions at 773 this time, including the end of wet conditions in the Sahara between 6 and 5.5 cal ka BP 774 (deMenocal et al., 2000; Kröpelin et al., 2008), and lake-level and vegetation changes 775 indictaing drier conditions in eastern North America (Shuman et al., 2001; Zhao et al., 776 2012; Menking et al., 2012). The similarities in climate changes between such different 777 geographic areas during the Mid-Holocene suggest broad-scale changes in the coupled 778 ocean-atmosphere circulation. This large-scale and synchronous climate shift may be 779 related to changes in global atmospheric circulation. The weakened summer insolation 780 in North Hemisphere led to a southward shift in the Inter Tropical Convergence Zone 781 (ITCZ) and thus, the summer Asian monsoon also weakened considerably (Wanner and 782 Brönnimann, 2012). Readjustment of these two main climatic system drivers led to the 783 establishment of similar conditions to present atmospheric teleconections (ENSO) since 784 ca 5.5 ka (Wanner et al., 2008; Carré et al., 2012; Fletcher and Moreno 2012). 785 Southward movement of the ITCZ favoured southward shift of the sub-tropical North 786 Atlantic high pressure and led to increased summer aridity in the Iberian Peninsula 787 (González-Sampériz et al., 2008; Morellón et al., 2009; Corella et al., 2010; Valero-Garcés et al., 2011; Carrión et al., 2010; Valero-Garcés and Moreno, 2011). As the 788 789 North Atlantic high-low pressure system moved away, westerlies became weaker and 790 lost their capacity to penetrate inland. ,A change towards wetter conditions is observed in the BSM sequence between 4.5 and 3.9 cal ka BP, marked by increased abundance of mesophytes, and the recovery of *Betula* and deciduous *Quercus* values (Fig. 5). This humid period corresponds well with a phase of increased storm activity recorded in the Gulf of Lion (Sabatier et al., 2012), suggesting stronger and southward migration of the westerlies. However, the total AP decreases during this phase. This reduction of the arboreal pollen in the BSM sequence occurs at the same time as the first deforestation phase recognised in the Pyrenean sequence of Tramacastilla at ca. 4000 BP (Montserrat-Martí, 1992). However, no other indicator of anthropogenic pressure was found during this period in the BSM sequence suggesting that the vegetation shift was mainly climate driven. The high regional fire activity detected during this period is the culmination of a previous trend. Although there was an initial dry phase when fire occurrence was linked to the presence of pine forest, higher charcoal influx values during this subsequent humid phase are linked with the spread of mesophyte forest. The fact that fire is high during both humid and arid spells, reflects on the one hand more permanent drying conditions than any time before in the Holocene leading to frequent fire-conducive conditions coupled with relatively high fuel availability from mesophyte vegetation, and on the other hand, the strengthening of fire activity during any interval of mesophyte forest expansion when fire-conducive conditions occur. # 5.4. The Late Holocene: Aridity Crisis (Sub-units 2b-2a, BSM-VI, CHZ-III, 3700-700 cal yr BP) Complex societies developed across the Mediterranean during the Late Holocene and human pressure on the landscape intensified and expanded (Carrión et al., 2007, Bal et al., 2011; Finné et al., 2011; Magyari et al., 2012). High altitude palaeoenvironmental records, where anthropogenic activities would have been limited due to both severe weather and difficult access, provide an opportunity to isolate the climate signal influencing vegetation evolution in recent times (Pérez-Sanz et al., 2011). The BSM sequence reveals a well forested landscape during most of the late Holocene (AP abundance around 70%, BSM-IV), indicating negligible anthropogenic pressure until ca 1150 cal yr BP, when the first evidence of forest management is found. The trend towards increased aridity that started during the Mid-Holocene transition intensified considerably at 3700 cal yr BP. The pollen record (BSM-V) is characterized by a sharp fall of *Betula* and the disappearance of birch from this area. The expansion of conifers (*Pinus* and *Juniperus*, which reaches its maximum proportions of the whole record), indicates a either a reduction in annual mean precipitation or a significant change in the seasonal distribution of precipitation (Franco-Mugica et al., 2000). The *Pinus* expansion in BSM is coeval with an expansion in other high altitude Pyrenean sites (Pèlachs et al., 2011), which suggests it is more likely to be controlled by changed climate than by human action. At ca. 2900 cal yr BP, *Artemisia* starts to spread rapidly and *Myriophyllum* decreases strongly (BSM-V). Traditionally, the *Artemisia* expansion has been explained by an increase in pastoral activity during the Late Holocene. However, modern values of *Artemisia* rarely reach 2% even though there is moderate pastoral activity in the BSM area. Given that there is no evidence for major deforestation at the time of the *Artemisia* expansion, it seems unlikely that this represents an interval of more intense anthropogenic activity than today. Nor is the *Artemisia* expansion synchronous with the presence of coprophilous fungi, indicative of intensive pastoral land use (López-Merino et al., 2010). This suggests the *Artemisia* expansion at the Basa de la Mora site indicates a climatically-induced expansion of dry steppe. There is evidences for a period of intensified aridity across the Mediterranean at around 2900-2400 cal yr BP (Jalut et al., 2000). 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 The deposition of carbonate-rich massive Facies 5, characterized by the presence of authigenic calcite crystals, gastropods, pennate diatoms and mottling textures, indicative of bioturbation, provides evidence for lowered lake levels and the development of a larger palustrine area (Fig. 5) at the time of the expansion of dry steppe. Facies 5 characterises most of littoral core BSM-2A-1U, supporting our interpretation of the depositional environment. The presence of partially dissolved authigenic crystals of calcite and gypsum in Facies 5 suggests the lake was ephemeral and may have desiccated at times. The strong negative correlation between MS and TIC indicates that decreased runoff, and thus reduced external water supply into the lake, led to increased concentration of the lake water and authigenic carbonate precipitation. Furthermore, the negative correlation between MS and drought-resistant taxa such us Pinus and evergreen Quercus and the positive correlation between MS and Betula strengthen the link between lack of run-off and precipiation deficit. Intercalation of organic Facies 4 supports the development of a palustrine area with high accumulation of organic matter. In addition, the high percentages of TOC and low TOC/N ratio indicate increased lacustrine productivity, consistent with shallower conditions. This expansion of littoral areas is consistent with the very high abundance of Cyperaceae while Myriophyllum values remain relatively unchanged. The higher percentages (up to 20%) of *Psectrocladius* gr. *Limbatellus* than in previous zones also indicates an increase lacustrine productivity, as this genus is associated with productive environments and/or littoral areas with abundance of biofilm primary production on stones or macrophytes (Rieradevall et al., 1999; Brodersen et al., 2001). There is no charcoal in the BSM between 3.2-1.5 cal ka BP. An interval of two millennia without fire is highly unusual as fire activity is registered in most southern European sequences during this time (Colombaroli et al., 2010; Tinner et al., 2005: Vescovi et al., 2007; Vannière et al., 2008). Arid pulses could prevent forest development at high altitudes and, therefore, limiting charcoal production through fires but, considering the absence of any other clear biotic or abiotic indicators, it seems more likely that the lack of microcharcoal is linked to taphonomical issues affecting charcoal preservation during oxic periods and/or short sub-aerial exposure events (Facies 5). There is a common pattern to the evolution of vegetation across the Western Mediterranean (including southern Iberia, northern Africa and Italy) during this interval. A general phase of forest decline has been recorded in marine record MD95-2043 from the Alborán Sea between 3.7 and 2.9 cal ka BP (Fletcher et al., 2013b). In Zoñar sequence, low values of AP (< 10%) and an expansion of steppe taxa occurred between 4 – 2.9 cal ka BP (Martín-Puertas et al., 2008). At Sierra de Gádor (Carrión et al., 2003), *Pinus* and evergreen oak expand at the expense of deciduous *Quercus* after 3940 cal yr BP. In Sierra de Baza, there was a replacement of mesophytic by more xeric taxa around 3800 cal yr BP (Carrión et al., 2007), while in El Cañizar de Villarquemado, mesophytes and deciduous *Quercus* decreased and steppe herbs increased between 4000-3800 cal yr BP. A similar pattern has
been recorded in Italian sequences, with an expansion of sclerophyllous taxa between 3.9-3.4 ka (Sadori et al., 2010). These changes can all be attributed to both drier climate conditions and human activities, especially considering that several civilizations collapsed at ca. 4000 cal yr BP (i.e., Akkadians: Cullen et al., 2000; or Harappeans: An et al., 2005). Peaks in *Artemisia* and high TIC percentages in BSM record mark two periods of increased aridity at 2.9-2.4, and at 1.2-0.7 cal ka BP (800-1300 AD). Both episodes are characterized by high TIC and TOC percentages and low TOC/TN ratios suggesting high precipitation of carbonates and high bioproductivity and content of autochthonous organic matter. These episodes are separated by a relative humid period between 2.1 and 1.5 cal ka BP. The arid phase between 2.9-2.4 ka cal BP is synchronous with a dry episode recorded in both western (Ferrio et al., 2006; Aguilera et al., 2012) and eastern Iberia, that led to a prominent decline in deciduous *Quercus* pollen in the Amposta sequence (Pérez-Obiol et al., 2011). Increased water level can be inferred from the significant reduction of TIC percentages between 2.1 and 1.5 cal ka BP. An episode of more humid conditions has been recognized in Iberia (Corella et al., 2010; Martín- Puertas et al., 2008, 2009; Currás et al., 2012), coinciding with the Iberian civilization and the Roman occupation and thus is called the Iberian-Roman Humid Period (IRHP). The NW Mediterranean region also registers an intensification of rainfall reflected by higher storm activity in the Gulf of Lion (Sabatier et al., 2012). However Fletcher et al., (2013b) report another phase of forest decline in Western Mediterranean at this time (Fig. 5). Since wetter conditions should have positively affected forest development in the Mediterranean, where water is the greatest limiting factor, it is possible that depletion in tree mass could be related in some areas of Iberia to higher land use by the Romans (García-Bellido, 1985). However, we do not observe great exploitation of the subalpine belt at BSM suggesting that the vegetation composition, which runs in parallel with sedimentological features, is still primarily controlled by climate. The second arid period recorded in BSM sequence matches the well-known Medieval Climate Anomaly (MCA: 900-1300 AD), a period of aridity recognized in most of south-western Europe (Seager et al., 2007; Mann et al., 2009) which led to notable agro-economic crisis in medieval societies. In Spain, it resulted in a major water deficit leading to lower lake levels and expansion of thermophytes and steppe taxa (Moreno et al., 2012b). In the BSM sequence, this phase coincides with the first signal of deforestation, indicated by abrupt decreases in pine percentages. Charcoal influx increased ca. 1700 cal BP, most likely because of either warmer conditions or strengthened regional fire activity in the lowlands. Both episodes of depleted water availability correspond with maxima in reconstructed North Atlantic Oscillation (NAO) indexes (Fig. 5). This indicates that there is a fast response of palaeoenvironmental changes in the BSM record to changes in the North Atlantic. The persistence of a positive NAO index during 2.9-2.4, and at 1.2-0.7 cal ka BP, led to maximum winter precipitation in Scandinavia and to minimum winter precipitation in the Iberian Peninsula (Trouet et al., 2009). # 5.5. The last 8 centuries (Unit 1, BSM-V, CHZ-IV, 700 cal yr BP-present) In contrast to most Pyrenean studies that indicate intensified human disturbance during at least the last two millennia (Riera et al., 2004; Pèlach et al., 2011; Guiter et al., 2005), the effects of anthropogenic pressure are only detected in the BSM sequence during the last 700 cal yr BP (Pérez-Sanz et al., 2011) (Fig, 6, BSM-V-A). As seen in Figures 4, 5 and 6, the increase in *Olea* marks an expansion of agricultural practises in the lowlands (Cañellas-Boltà et al., 2009) whereas large, short-term reductions in *Pine* indicate phases of deforestation and expansion of grazing lands at higher altitudes (Fig. 6, BSM-V-B). Parallel to *Olea*, *Fraxinus* also spreads. *Fraxinus* has traditionally been used in the region for hedgerows (Gómez and Fillat, 1981). Its parallel expansion to *Olea* marks the regional establishment of modern and intense agro-pastoral activities. The drop in *Artemisia* synchronous with clear evidence of increasing anthropogenic pressure in the highlands supports the idea that *Artemisia* is not an indicator of human activities in the BSM sequence. 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 The expansion of Olea and Fraxinus ceased, and deforestation temporarily stopped, between 1600 and 1850 AD coinciding with the second half of the Little Ice Age. This interval is characterized by the coldest conditions in the southern Pyrenees (González-Trueba et al., 2008; Morellón et al., 2012). A sharp decrease in evergreen Quercus coincides with these colder conditions. The rapid recovery of pine after intervals of deforestation emphasizes the fact that human disturbance at high altitudes was not strong and climatic conditions were the main determinant of vegetation changes. High values of MS and strong negative correlation with TIC during this period (Fig. 6; BSM-V-C) indicate increased sediment delivery to the lake and decreased carbonate productivity, both indicative of higher lake levels and increased runoff. The abundance of allocthonous organic matter, shown by low TOC and high TOC/N ratios, also supports the inference of high sediment delivery from the catchment. Fire activity was high for most of this period, confirming the occurrence of either regional fires linked to husbandry or local fires correlated with the occasional pine deforestation (Lasheras-Álvarez et al., in press). Although it is difficult to distinguish between human and climate-induced fires in this period, all other records indicate an intensification of anthropogenic activities after 700 yrs BP. A general decrease in temperature coinciding with the Little Ice Age (LIA i.e. 1300-1850 AD) has been recorded throghout Europe. Higher storm activity occurred in the NW Mediterranean, (Sabatier et al., 2012) (Fig. 5) while stronger climatic variability has been recognised in Iberia, although generally cold and humid conditions dominated (Benito et al., 2003; Valero-Garcés et al., 2008; Morellón et al., 2012; Moreno et al, 2008, 2012b). A significant expansion of *Olea* associated with a marked phase of deforestation of the pine forest occurred right after the LIA (1880 AD) (Fig. 6, BSM-V-D). The Industrial Revolution in the 17th century brought major advances in agricultural techniques that resulted in increased efficiency and production and led to increased supply of food and raw materials. As result of the improvement of the agricultural sector the population rose and demographic pressure in the southern Pyrenees increased up to its maximum at the end of 19th and the early 20th century (García-Ruiz and Valero-Garcés, 1998). After 1960 AD pine forest recovered, AP increased up to 65% and there was a reduction in trees (Olea, Fraxinus) related to anthropogenic activities (Fig. 6, BSM-V-E). During the mid-20th century, social and economic changes in Spain forced population to migrate from villages into cities as the industrial sector developed. In Spain, and more specifically in the southern Pyrenees, mass migration took place in the last third of the 20th century, resulting in abandonment of the rural lands and gradual recovery of forests (Lasanta-Martínez et al., 2005). We observe a steep drop in fire activity during this phase, most likely as consequence of rural abandonment (Fig.6, BSM-V-E). Geochemical proxies suggest a decrease of average lake level during the last 50 years. TIC percentages reach the highest values of the entire sequence, exceeding the values recorded during the MCA. Particularly high bioproductivity is shown by high TOC values, along with TOC/TN ratios and an increase of macrophyterelated taxa, such as Corynoneura and Pentaneurini, and especially Psectrocladius gr. limbatellus. Increases in bioproductivity in the recent period may be linked to the presence of cow stockbreeding near the lake. However, stockbreeding has taken place in this area at least since the last century (Lucio, 1982) but the increase in bioproductivity only occurs during the last 30 years. One possible explanation is that enhanced bioproductivity during the last decades reflects increased water temperatures. A global warming trend has been widely recognised over recent decades (IPCC, 2007) and an increase in temperature is also evident in the Mediterranean area (Brunetti et al., 2004; Vargas-Yáñez et al., 2008; Camuffo et al., 2010) and in north-eastern Spain (El Kenawy et al., 2012). Climate change in the Mediterranean area involves not only increased temperature but often decreased precipitation. A decrease in snowpack depth, snow cover and direct precipitation has been detected in the southern Pyrenees during the most recent period (López-Moreno 2005; López-Moreno and Stähli, 2008). The recent drop in level at Basa de la Mora could be linked to the reduction in water availability in the southern Pyrenees, while the increase in bioproductivity could be related to the occurrence of warmer waters. The impact of the recent climate conditions on the lake sediments confirms the high sensitivity and rapid response of Basa de la Mora record to short-term climate shifts. 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 ## 6.- CONCLUSIONS The multi-proxy sequence of Basa de la Mora (BSM) has recorded significant climate variability during the last ca. 10 cal ka BP. Consistent shifts in vegetation, fire activity, depositional
environments and aquatic communities throughout the sequence can be correlated with other regional and global reconstructions. Higher seasonality between 10 and 8.2 cal ka BP caused high snow accumulation in winter and subsequent melt during warmer summers resulted in high lake levels. As a consequence of this high seasonal contrast, *Pinus* spread while mesophytes were restricted to watercourses. High climate instability during this period is illustrated by the occurrence of four short arid intervals at 9.7, 9.3, 8.8 and 8.3 cal ka BP, each characterized by a decrease in mesophytes and increased runoff. The most intense event occurred at 8.3 ± 0.1 cal ka BP, when vegetation diversity and abundance dropped to a minimum. The most humid period in BSM sequence occurred between 8.2 and 5.7 cal ka BP. During this period, mesophytes expanded, conifers retreated and the highest lake level was recorded. As a consequence of increasing biomass, fire activity also intensified. The end of the Mid-Holocene marks the transition from a significant Atlantic influence (before ca. 5.7 cal ka BP) into a typical Mediterranean climate with summer drought. A long-term trend towards increasing aridity, with decreasing lake levels and decreasing abundance of mesophytes started at 5.7 cal ka BP and intensified after ca. 3.9 cal ka BP. During this period and until 700 cal yr BP human exploitation of the subalpine belt was minor and the vegetation composition was primarily controlled by climate. The BSM record shows that the Central Pyrenees are particularly sensitive to climate changes due to its geographical position between the Mediterranean and the Atlantic climate regimes. ### 7.- ACKNOWLEDGEMENTS Financial support for research was provided by the former Spanish Inter-Ministry Commission of Science and Technology (CICIYT) through the projects DINAMO (CGL2009-07992), DINAMO2 (CGL2012-33063), GRACCIE-CONSOLIDER (CSD2007-00067) and HORDA (83/2008), from Parques Nacionales. Additional funding support has been provided by the Aragon Government through the project PM073/2007 and by Geoparque del Sobrarbe through the project "High resolution chronological control of Basa de la Mora". Ana Pérez-Sanz has been supported by a PhD Fellowship provided by the Aragon Government. Ana Moreno, Graciela Gil-Romera and Mario Morellón hold post-doctoral contracts funded by the "Ramón y Cajal", "Juan de la Cierva" and "JAE-DOC CSIC" programs, respectively. We thank to Santiago Giralt, Alberto Sáez, Armand Hernández, Carlos Martí, Mª Teresa Rico, Juan Pablo Corella and Antonio Vallejo for coring assistance in 2008. We also thank Beatriz Bueno and Aída Adsuar for their help in lab procedures. We are indebted to Prof. Sandy Harrison for her assistance with the English review that has led to a noticeable improvement of the manuscript. #### 1044 References - Aguilera, M., Ferrio, J.P., Pérez, G., Araus, J.L., Voltas, J., 2012. Holocene changes in precipitation seasonality in the western Mediterranean Basin: a multi-species approach using δ13C of archaeobotanical remains. Journal of Quaternary Science 27, 192–202. - Ali, A.A., Carcaillet, C., Guendon, J., Quinif, Y., Roiron, P., Terral, J., 2003. The Early Holocene treeline in the southern French Alps: new evidence from travertine formations. Global Ecology and Biogeography 12, 411–419. - Alley, R., Agustsdottir, A., 2005. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, 1123–1149. - Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., 1997. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology 25, 483-486. - Anderson, R.S., Jiménez-Moreno, G., Carrión, J.S., Pérez-Martínez, C., 2011. Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quaternary Science Reviews 30, 1615–1629. - Appley P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments volume 1: basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 171–203 - Bal, M.-C., Pelachs, A., Perez-Obiol, R., Julia, R., Cunill, R., 2011. Fire history and human activities during the last 3300cal yr BP in Spain's Central Pyrenees: The case of the Estany de Burg. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 179–190. - Belmonte, A., 2004. La extensión máxima del glaciarismo en el Macizo de Cotiella (Pirineo Oscense). Boletín Glaciológico Aragonés 4, 69–90. - Benito, G., Sopeña, A., Sánchez-Moya, Y., Machado, M.J., Pérez-González, A., 2003. Palaeoflood record of the Tagus River (Central Spain) during the Late Pleistocene and Holocene. Quaternary Science Reviews 22, 1737–1756. - Bennett, K.D., 2009. Documentation for psimpoll 4.27 and pscomb 1.03. C programs for plotting and analyzing pollen data. The 14Chrono Centre, Archaeology and Palaeoecology, Queen's University of Belfast, Belfast, UK. - Bjune, A.E., Bakke, J., Nesje, A., Birks, H.J.B., 2005. Holocene mean July temperature and winter precipitation in western Norway inferred from palynological and glaciological lake-sediment proxies. The Holocene 15, 177–189. - Blarquez, O., Carcaillet, C., 2010. Fire, Fuel Composition and Resilience Threshold in Subalpine Ecosystem. PLoS ONE 5, e12480. - Blarquez, O., Carcaillet, C., Bremond, L., Mourier, B., Radakovitch, O., 2009. Trees in the subalpine belt since 11 700 cal. BP: origin, expansion and alteration of the modern forest. The Holocene 20, 139–146. - Bond, G., 1997. A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science 278, 1257–1266. - Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., 2001. Persistent Solar Influence on North Atlantic Climate During the Holocene. Science 294, 2130 –2136. - Bordon, A., Peyron, O., Lézine, A.-M., Brewer, S., Fouache, E., 2009. Pollen-inferred Late-Glacial and Holocene climate in southern Balkans (Lake Maliq). Quaternary International 200, 19–30. - Brodersen, K.P., Odgaard, B.V., Vestergaard, O., Anderson, N.J., 2001. Chironomid stratigraphy in the shallow and eutrophic Lake Sobygaard, Denmark: chironomid-macrophyte co-occurrence. Freshwater Biology 46, 253–267. - Brooks, S.J., Birks, H.J.., 2001. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews 20, 1723–1741. - Brooks, S.J., Langdon, P.G., Heiri, O., Quaternary Research Association (Great Britain), 2007. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. DRA Technical Guide No 10, Quaternary Research Association, London. - Brunetti, M., Buffoni, L., Mangianti, F., Maugeri, M., Nanni, T., 2004. Temperature, precipitation and extreme events during the last century in Italy. Global and Planetary Change 40, 141–149. - Cacho, I., Grimalt, J.O., Canals, M., Sbaffi, L., Shackleton, N.J., Schönfeld, J., Zahn, R., 2001. Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 16, 40-52. - Camuffo, D., Bertolin, C., Barriendos, M., Dominguez-Castro, F., Cocheo, C., Enzi, S., Sghedoni, M., Valle, A., Garnier, E., Alcoforado, M.-J., Xoplaki, E., Luterbacher, J., Diodato, N., Maugeri, M., Nunes, M.F., Rodriguez, R., 2010. 500-year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Climatic Change 101, 169–199. - Cañellas-Boltà, N., Rull, V., Vigo, J., Mercadé, A., 2009. Modern pollen-vegetation relationships along an altitudinal transect in the central Pyrenees (southwestern Europe). The Holocene 19, 1185–1200. - Carnelli, A.L., Theurillat, J.-P., Thinon, M., Vadi, G., Talon, B., 2004. Past uppermost tree limit in the Central European Alps (Switzerland) based on soil and soil charcoal. The Holocene 14, 393–405. - Carré, M., Azzoug, M., Bentaleb, I., Chase, B.M., Fontugne, M., Jackson, D., Ledru, M.-P., Maldonado, A., Sachs, J.P., Schauer, A.J., 2012. Mid-Holocene mean climate in the south eastern Pacific and its influence on South America. Quaternary International 253, 55–66. - 1119 Carrión, J.S., 2002. Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quaternary Science Reviews 21, 2047–2066. - Carrión, J.S., Andrade, A., Bennett, K.D., Navarro, C., Munuera, M., 2001a. Crossing forest thresholds: inertia and collapse in a Holocene sequence from south-central Spain. The Holocene 11, 635–653. - 1124 Carrión, J.S., Fernández, S., Jiménez-Moreno, G., Fauquette, S., Gil-Romera, G., González-1125 Sampériz, P., Finlayson, C., 2010. The historical origins of aridity and vegetation 1126 degradation in southeastern Spain. Journal of Arid Environments 74, 731–736. - 1127 Carrión, J.S., Fuentes, N., González-Sampériz, P., Sánchez Quirante, L., Finlayson, J.C., Fernández, S., Andrade, A., 2007. Holocene environmental change in a montane region of southern Europe with a long history of human settlement. Quaternary Science Reviews 26, 1455–1475. - 1131 Carrión, J.S., Munuera, M., Dupre, M., Andrade, A., 2001b. Abrupt vegetation changes in the 1132 Segura Mountains of southern Spain throughout the Holocene. Journal of Ecology 89, 1133 783–797. - Carrión, J.S., Sánchez-Gómez, P., Mota, J.F., Yll, R., Chaín, C., 2003. Holocene vegetation dynamics, fire and grazing in the Sierra de Gádor, southern Spain. The Holocene 13, 839–849. - 1137 Chung, F.H., 1974. Quantitative interpretation of X-ray diffraction patterns of mixtures. II. 1138 Adiabatic principle of X-ray diffraction analysis of mixtures. Journal of Applied 1139 Crystallography 7, 526–531. - Clark, J.S., 1988. Particle motion and the theory of charcoal analysis: source area, transport,
deposition and sampling. Quaternary Research 30, 67–80. - 1142 Collins, P.M., Davis, B.A.S., Kaplan, J.O., 2012. The mid-Holocene vegetation of the 1143 Mediterranean region and southern Europe, and comparison with the present day. Journal 1144 of Biogeography 39, 1848–1861. - 1145 Colombaroli, D., Henne, P.D., Kaltenrieder, P., Gobet, E., Tinner, W., 2010. Species responses 1146 to fire, climate and human impact at tree line in the Alps as evidenced by palaeo-1147 environmental records and a dynamic simulation model. Journal of Ecology 98, 1346– 1357. - 1149 Colombaroli, D., Vanniere, B., Emmanuel, C., Magny, M., Tinner, W., 2008. Fire--vegetation 1150 interactions during the Mesolithic--Neolithic transition at Lago dell'Accesa, Tuscany, 1151 Italy. The Holocene 18, 679–692. - Colonese, A.C., Zanchetta, G., Fallick, A.E., Martini, F., Manganelli, G., Drysdale, R.N., 2010. Stable isotope composition of Helix ligata (Müller, 1774) from Late Pleistocene— Holocene archaeological record from Grotta della Serratura (Southern Italy): Palaeoclimatic implications. Global and Planetary Change 71, 249–257. - Corella, J.P., Moreno, A., Morellón, M., Rull, V., Giralt, S., Rico, M.T., Pérez-Sanz, A., Valero-Garcés, B.L., 2010. Climate and human impact on a meromictic lake during the last 6,000 years (Montcortès Lake, Central Pyrenees, Spain). Journal of Paleolimnology 46, 351–367. - Cortés Sánchez, M., Jiménez Espejo, F.J., Simón Vallejo, M.D., Gibaja Bao, J.F., Carvalho, A.F., Martinez-Ruiz, F., Gamiz, M.R., Flores, J.-A., Paytan, A., López Sáez, J.A., Peña-Chocarro, L., Carrión, J.S., Morales Muñiz, A., Roselló Izquierdo, E., Riquelme Cantal, J.A., Dean, R.M., Salgueiro, E., Martínez Sánchez, R.M., De la Rubia de Gracia, J.J., Lozano Francisco, M.C., Vera Peláez, J.L., Rodríguez, L.L., Bicho, N.F., 2012. The Mesolithic–Neolithic transition in southern Iberia. Quaternary Research 77, 221–234. - 1166 Court-Picon, M., Buttler, A., Debeaulieu, J., 2005. Modern pollen-vegetation relationships in 1167 the Champsaur valley (French Alps) and their potential in the interpretation of fossil 1168 pollen records of past cultural landscapes. Review of Palaeobotany and Palynology 135, 13–39. - 1170 Cullen, H.M., deMenocal, P.B., Hemming, S., Brown, F.H., Guilderson, T., Sirocko, F., 2000. 1171 Climate change and the collapse of the Akkadian empire: Evidence from the deep sea. 1172 Geology 28, 379–382. - Cunill, R., Soriano, J.-M., Bal, M.-C., Pèlachs, A., Pérez-Obiol, R., 2011. Holocene treeline changes on the south slope of the Pyrenees: a pedoanthracological analysis. Vegetation History and Archaeobotany 21, 373-384. - Currás, A., Zamora, L., Reed, J.M., García-Soto, E., Ferrero, S., Armengol, X., Mezquita-Joanes, F., Marqués, M.A., Riera, S., Julià, R., 2012. Climate change and human impact in central Spain during Roman times: High-resolution multi-proxy analysis of a tufa lake record (Somolinos, 1280m asl). Catena 89, 31–53. - David, F., 1993. Evolutions de la limite spérieure des arbres dans les Alpes française du nord depuis la fin des temps glaciaires. Université d'Aix-Marseille III, 94p. - Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22, 1701–1716. - Davis, P.T., Menounos, B., Osborn, G., 2009. Holocene and latest Pleistocene alpine glacier fluctuations: a global perspective. Quaternary Science Reviews 28, 2021–2033. - De Beaulieu, J.-L., Miras, Y., Andrieu-Ponel, V., Guiter, F., 2005. Vegetation dynamics in north-western Mediterranean regions: Instability of the Mediterranean bioclimate. Plant - Biosystems An International Journal Dealing with all Aspects of Plant Biology 139, 114–126. - deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M., 2000. Abrupt onset and termination of the African Humid Period: Quaternary Science Reviews 19, 347–361. - Domínguez-Villar, D., Wang, X., Cheng, H., Martín-Chivelet, J., Edwards, R.L., 2008. A highresolution late Holocene speleothem record from Kaite Cave, northern Spain: δ180 variability and possible causes. Quaternary International 187, 40–51. - Dupré, M., 1988. Palinología y paleoambiente. Nuevos datos españoles. Referencias. Serie de trabajos varios, S.I.P.,84. - Ebbesen, H., Hald, M., Eplet, T.H., 2007. Lateglacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic. Quaternary Science Reviews 26, 1999– 2011. - El Kenawy, A., López-Moreno, J.I., Vicente-Serrano, S.M., 2012. Trend and variability of surface air temperature in northeastern Spain (1920–2006): Linkage to atmospheric circulation. Atmospheric Research 106, 159–180. - Favilli, F., Cherubini, P., Collenberg, M., Egli, M., Sartori, G., Schoch, W., Haeberli, W., 2009. Charcoal fragments of Alpine soils as an indicator of landscape evolution during the Holocene in Val di Sole (Trentino, Italy). The Holocene 20, 67–79. - 1208 Fernández, S., Fuentes, N., Carrión, J.S., González-Sampériz, P., Montoya, E., Gil, G., Vega-1209 Toscano, G., Riquelme, J.A., 2007. The Holocene and Upper Pleistocene pollen sequence 1210 of Carihuela Cave, southern Spain. Geobios 40, 75–90. - Ferrio, J.P., Alonso, N., Lopez, J.B., Araus, J.L., Voltas, J., 2006. Carbon isotope composition of fossil charcoal reveals aridity changes in the NW Mediterranean Basin. Global Change Biology 12, 1253–1266. - Finné, M., Holmgren, K., Sundqvist, H.S., Weiberg, E., Lindblom, M., 2011. Climate in the eastern Mediterranean, and adjacent regions, during the past 6000 years – A review. Journal of Archaeological Science 38, 3153–3173. - Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A.A., Buettner, A., Hippler, D., Matter, A., 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170–188. - Fletcher, M.S., Moreno, P., 2012. Have the Southern Westerlies changed in a zonally symmetric manner over the last 14,000 years? A hemisphere-wide take on a controversial problem. Quaternary International 253, 32–46. - Fletcher, W.J., Debret, M., Sanchez Goni, M.F., 2013b. Mid-Holocene emergence of a lowfrequency millennial oscillation in western Mediterranean climate: Implications for past dynamics of the North Atlantic atmospheric westerlies. The Holocene 23, 153-166. - Fletcher, W.J., Goñi, M.F.S., 2007. Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research 70, 451–464. - Fletcher, W.J., Sánchez Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., Müller, U.C., Naughton, F., - Novenko, E., Roucoux, K., Tzedakis, P.C., 2010a. Millennial-scale variability during the - last glacial in vegetation records from Europe. Quaternary Science Reviews 29, 2839–2864. - Fletcher, W.J., Sanchez Goñi, M.F., Peyron, O., Dormoy, I., 2010b. Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record. Climate of the Past 6, 245–264. - Fletcher, W.J., Zielhofer, C., 2013a. Fragility of Western Mediterranean landscapes during Holocene Rapid Climate Changes. Catena 103, 16-29. - Franco Múgica, F., García Antón, M., Maldonado Ruiz, J., Morla Juaristi, C., Sainz Ollero, H., 2001. The Holocene history of Pinus forests in the Spanish Northern Meseta. The Holocene 11, 343–358. - Franco-Mugica, F., Gómez-Manza, F., Maldonado, J., Morla, C., Postigo, J.M., 2000. El papel de los pinares en la vegetación holocnena de la Península Ibérica. Ecología 14, 61–67. - Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F.J., Flores, J.A., Grimalt, J.O., Hodell, D.A., Curtis, J.H., 2007. Holocene climate variability in the western Mediterranean region from a deepwater sediment record. Paleoceanography 22. PA2209, doi:10.1029/2006PA001307 - García-Bellido, A., 1985. La Península Ibérica en los comienzos de su historia. Colegio universitario Ediciones Istmo, Madrid. - García-Ruiz, J.M., Beguería, S., López-Moreno, J.I., Lorente, A., Seeger, M., 2001. Los recursos hídricos superficiales del Pirineo aragonés y su evolución reciente. (Surface wáter resources in the Aragonese Pyrenees and their recent evolution. Geoforma, Logroño, 191p. - 1255 García-Ruiz, J.M., Puigdefábregas, J., Creus, J., 1985. Los recursos hídricos superficiales del Alto Aragón. Instituto de Estudios Altoaragoneses. - García-Ruiz, J.M., Valero-Garcés, B.L., 1998. Historical geomorphic processes and human activites in the Central Spanis Pyrenees. Mountain Research and Development 18, 3009–320. - Gil-Romera, G., González-Sampériz, P., Lasheras-Álvarez, L., Sevilla-Callejo, M., Moreno, A., Valero-Garcés, B., López-Merino, L., Pérez-Sanz, A., Aranbarri, J., García-Prieto Fronce, E., Submitted. Long-term biomass-modulated fire dynamics at the Southern Pyrenees. Quaternary Research - 1264 Gómez, D., Fillat, F., 1981. La cultura ganadera del fresno. Pastos 11, 295–302 - Gómez-Paccard, M., Larrasoaña, J.C., Sancho, C., Muñoz, A., McDonald, E., Rhodes, E.J., Osácar, M.C., Costa, E., Beamud, E., 2013. Environmental response of a fragile, semiarid landscape (Bardenas Reales Natural Park, NE Spain) to Early Holocene climate variability: A paleo- and environmental-magnetic approach. Catena. 103, 30-43. - González-Sampériz, P., Utrilla, P., Mazo, C., Valero-Garcés, B., Sopena, M., Morellón, M., Sebastián, M., Moreno, A., Martínez-Bea, M., 2009. Patterns of human occupation during the early Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event. Quaternary Research 71, 121–132. - González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Jalut, G., García-Ruiz, J.M., Martí-Bono, C., Delgado-Huertas, A., Navas, A., Otto, T., Dedoubat, J.J., 2006. Climate variability in the Spanish Pyrenees during the last 30,000 yr
revealed by the El Portalet sequence. Quaternary Research 66, 38–52. - González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Morellón, M., Navas, A., Machín, J., Delgado-Huertas, A., 2008. Vegetation changes and hydrological fluctuations in the Central Ebro Basin (NE Spain) since the Late Glacial period: Saline lake records. Palaeogeography, Palaeoclimatology, Palaeoecology 259, 157–181. - González-Trueba, J.J., Moreno, R.M., Martinez de Pison, E., Serrano, E., 2008. 'Little Ice Age' glaciation and current glaciers in the Iberian Peninsula. The Holocene 18, 551–568. - Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, J.L., - 1284 Coldea, G., Dick, J., Erschbamer, B., Fernández Calzado, M.R., Kazakis, G., Krajči, J., - Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, - 1286 A., Nagy, L., Nakhutsrishvili, G., Pedersen, B., Pelino, G., Puscas, M., Rossi, G., Stanisci, - 1287 A., Theurillat, J.-P., Tomaselli, M., Villar, L., Vittoz, P., Vogiatzakis, I., Grabherr, G., - 1288 2012. Continent-wide response of mountain vegetation to climate change. Nature Climate 1289 Change 2, 111–115. - 1290 Greatbatch, R. J., 2000. The North Atlantic Oscillation. Stochastic Environmental Research and Risk Assessment 14, 213-242. - Guiter, F., Andrieu-Ponel, V., Digerfeldt, G., Reille, M., Beaulieu, J.-L., Ponel, P., 2005. Vegetation history and lake-level changes from the Younger Dryas to the present in Eastern Pyrenees (France): pollen, plant macrofossils and lithostratigraphy from Lake Racou (2000 m a.s.l.). Vegetation History and Archaeobotany 14, 99–118. - Haas, J.N., Richoz, I., Tinner, W., Wick, L., 1998. Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. The Holocene 8, 301–309. - Heiri, O., Wick, L., Van Leeuwen, J.F.., Van der Knaap, W.O., Lotter, A.F., 2003. Holocene tree immigration and the chironomid fauna of a small Swiss subalpine lake (Hinterburgsee, 1515 m asl). Palaeogeography, Palaeoclimatology, Palaeoecology 189, 35–53. - Hély, C., Braconnot, P., Watrin, J., Zheng, W., 2009. Climate and vegetation: Simulating the African humid period. Comptes Rendus Geoscience 341, 671–688. - Hofmann, W., 1986. Chironomid analysis, in: Handbook of Holocene Paleoecology and Paleohydrology. Wiley and Sons, Chichester, pp. 715–727. - Hoffman, J.S, Carlson, E., Winsor, K., Klinkhammer, G.P., LeGrande, A.N., Andrews, J.T., Strasser, J.C., 2012. Linking the 8.2 ka event and its freshwater forcing in the Labrador Sea. Geophysical Research Letters, 39, L18703, doi:10.1029/2012GL053047. - 1309 IPCC, 2007. Climate Change 2007: impacts, adaptation and vulnerability., Contribution of working group II to the fourth assessment report of the intergovernmental panel on cliamte change. ed. Cambridge University Press, Reino Unido. - Jalut, G., Dedoubat, J.J., Fontugne, M., Otto, T., 2009. Holocene circum-Mediterranean vegetation changes: Climate forcing and human impact. Quaternary International 200, 4–18. - Jalut, G., Esteban Amat, A., Bonnet, L., Gauquelin, T., Fontugne, M., 2000. Holocene climatic changes in the Western Mediterranean, from south-east France to south-east Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 255–290. - Jiménez-Moreno, G., Anderson, R. S., 2012. Holocene vegetation and climate change recorded in alpine bog sediments from the Borreguilles de la Virgen, Sierra Nevada, southern Spain. Quaternary Research 77, 44–53. - Kaplan, M.R., Wolfe, A.P., 2006. Spatial and temporal variability of Holocene temperature in the North Atlantic region. Quaternary Research 65, 223–231. - Kobashi, T., Severinghaus, J.P., Brook, E.J., Barnola, J.M., Grachev, A.M., 2007. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quaternary Science Reviews 26, 1212–1222. - Kröpelin, S., Verschuren, D., Lézine, A.-M., Eggermont, H., Cocquyt, C., Francus, P., Cazet, J.-P., Fagot, M., Rumes, B., Russell, J.M., Darius, F., Conley, D.J., Schuster, M., Von - Suchodoletz, H., Engstrom, D.R., 2008. Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years. Science 320, 765 –768. - Lasanta-Martínez, T., Vicente-Serrano, S.M., Cuadrat-Prats, J.M., 2005. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: a study of the Spanish Central Pyrenees. Applied Geography 25, 47–65. - Lasheras-Álvarez, L., Pérez-Sanz, A., Gil-Romera, G., González-Sampériz, P., Sevilla-Callejo, M., Valero-Garcés, B.L., in press. Historia del fuego y la vegetación en una secuenica holocena del Pirineo Central: La Basa de la Mora. Cuadernos de Investigación Geográfica - Leira, M., Santos, L., 2002. An early Holocene short climatic event in the northwest Iberian Peninsula inferred from pollen and diatoms. Quaternary International 93-94, 3–12. - Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., Xoplaki, E., 2006. The Mediterranean climate: An overview of the main characteristics and issues, in: Developments in Earth and Environmental Sciences. Elsevier, pp. 1–26. - López-Merino, L., Cortizas, A.M., López-Sáez, J.A., 2010. Early agriculture and palaeoenvironmental history in the North of the Iberian Peninsula: a multi-proxy analysis of the Monte Areo mire (Asturias, Spain). Journal of Archaeological Science 37, 1978–1988. - López-Moreno, J.I., 2005. Recent variations of snowpack depth in the Central Spanish Pyrenees. Artic, Antartic, and Alpine Research 37, 253–260. - López-Moreno, J.I., Stähli, M., 2008. Statistical analysis of the snow cover variability in a subalpine watershed: Assessing the role of topography and forest interactions. Journal of Hydrology 348, 379–394. - Lucio, J.V., 1982. Estudio del Medio Físico del Sobrarbe. Aprovechamiento de los pastos estivales en el Valle de Gistain. Explotación actual y capacidad potencial. ICONA, Huesca. - Magny, M., De Beaulieu, J.-L., Drescher-Schneider, R., Vannière, B., Walter-Simonnet, A.-V., Miras, Y., Millet, L., Bossuet, G., Peyron, O., Brugiapaglia, E., Leroux, A., 2007. Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quaternary Science Reviews 26, 1736– 1758. - Magny, M., Vannière, B., Calo, C., Millet, L., Leroux, A., Peyron, O., Zanchetta, G., La Mantia, T., Tinner, W., 2011. Holocene hydrological changes in south-western Mediterranean as recorded by lake-level fluctuations at Lago Preola, a coastal lake in southern Sicily, Italy. Quaternary Science Reviews 30, 2459–2475. - Magyari, E.K., Chapman, J., Fairbairn, A.S., Francis, M., Guzman, M., 2012. Neolithic human impact on the landscapes of North-East Hungary inferred from pollen and settlement records. Vegetation History and Archaeobotany 21, 279–302. - Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260. - Marshall, J., Kushnir, Y., Battisti, D., Chang, P., Czaja, A., Dickons, R., Hurrell, J., McCartney, M., Saravanan, R., Visbeck, M., 2002. North Atlantic climate variability: phenomena, impacts and mechanisms. International Journal of Climatology 21, 1863–1898. - Martín-Puertas, C., Valero-Garcés, B.L., Brauer, A., Mata, M.P., Delgado-Huertas, A., Dulski, P., 2009. The Iberian–Roman Humid Period (2600–1600 cal yr BP) in the Zoñar Lake varve record (Andalucía, southern Spain). Quaternary Research 71, 108–120. - Martín-Puertas, C., Valero-Garces, B.L., Pilar Mata, M., Gonzalez-Samperiz, P., Bao, R., Moreno, A., Stefanova, V., 2008. Arid and humid phases in southern Spain during the last 4000 years: the Zonar Lake record, Cordoba. The Holocene 18, 907–921. - 1378 Mayewski, P.A., 2004. Holocene climate variability. Quaternary Research 62, 243–255. - Menking, K.M., Peteet, D.M., Anderson, R.Y., 2012. Late-glacial and Holocene vegetation and climate variability, including major droughts, in the Sky Lakes region of southeastern New York State. Palaeogeography, Palaeoclimatology, Palaeoecology 353-355, 45–59. - Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34, 261–289. - Millán, M.M., Estrela, M.J., Miró, J., 2005. Rainfall Components: Variability and Spatial Distribution in a Mediterranean Area (Valencia Region). Journal of Climate 18, 2682–2705. - Miras, Y., Ejarque, A., Riera, S., Palet, J.M., Orengo, H., Eubab, I., 2007. Dynamique holocène de la végétation et occupation des Pyrénées andorranes depuis le Néolithique ancien, d'après l'analyse pollinique de la tourbière de Bosc dels Estanyons (2180 m, Vall del Madriu, Andorre). Comptes Rendus Palevol 6, 291–300. - Montserrat-Martí, J., 1992. Evolución glaciar y postglaciar del clima y la vegetación en la vertiente sur del Pirineo: estudio palinológico., Monografías del Instituto Pirenaico de Ecología-CSIC. Zaragoza. - Moore, P.D., Webb, J.A., 1978. An illustrated guide to pollen analysis. Hodder and Stoughton, London. - Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pollen Analysis, Second. ed. Blackwell Scientifc Publications. Oxford. - Morales-Molino, C., Postigo-Mijarra, J.M., Morla, C., Garcia-Anton, M., 2012. Long-term persistence of Mediterranean pine forests in the Duero Basin (central Spain) during the Holocene: The case of Pinus pinaster Aiton. The Holocene 22, 561–570. - Morellón, M., Pérez-Sanz, A., Corella, J.P., Büntgen, U., Catalán, J., González-Sampériz, P., González-Trueba, J.J., López-Sáez, J.A., Moreno, A., Pla-Rabes, S., Saz-Sánchez, M. á., Scussolini, P., Serrano, E., Steinhilber, F., Stefanova, V., Vegas-Vilarrúbia, T., Valero-Garcés, B., 2012. A multi-proxy perspective on
millennium-long climate variability in the Southern Pyrenees. Climate of the Past 8, 683–700. - Morellón, M., Valero-Garcés, B., Moreno, A., González-Sampériz, P., Mata, P., Romero, O., Melchor Maestro, Navas, A., 2008. Holocene palaeohydrology and climate variability in northeastern Spain: The sedimentary record of Lake Estanya (Pre-Pyrenean range). Quaternary International 181, 15–31. - Morellón, M., Valero-Garcés, B., Vegas-Vilarrúbia, T., González-Sampériz, P., Romero, Ó., Delgado-Huertas, A., Mata, P., Moreno, A., Rico, M., Corella, J.P., 2009. Lateglacial and Holocene palaeohydrology in the western Mediterranean region: The Lake Estanya record (NE Spain). Quaternary Science Reviews 28, 2582–2599. - Moreno, A., López-Merino, L., Leira, M., Marco-Barba, J., González-Sampériz, P., Valero-Garcés, B.L., López-Sáez, J.A., Santos, L., Mata, P., Ito, E., 2011. Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). Journal of Paleolimnology 46, 327–349. - Moreno, A., González-Sampériz, P., Morellón, M., Valero-Garcés, B.L., Fletcher, W.J., 2012. Northern Iberian abrupt climate change dynamics during the last glacial cycle: A view - from lacustrine sediments. Quaternary Science Reviews 36, 139–153. - 1422 Moreno, A., Pérez, A., Frigola, J., Nieto-Moreno, V., Rodrigo-Gámiz, M., Martrat, B., - González-Sampériz, P., Morellón, M., Martín-Puertas, C., Corella, J.P., Belmonte, Á., - Sancho, C., Cacho, I., Herrera, G., Canals, M., Grimalt, J.O., Jiménez-Espejo, F., - Martínez-Ruiz, F., Vegas-Vilarrúbia, T., Valero-Garcés, B.L., 2012b. The Medieval - 1426 Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake records. - 1427 Quaternary Science Reviews 43, 16–32. - Moreno, A., Valero-Garcés, B.L., González-Sampériz, P., Rico, M., 2008. Flood response to - rainfall variability during the last 2000 years inferred from the Taravilla Lake record - 1430 (Central Iberian Range, Spain). Journal of Paleolimnology 40, 943–961. - 1431 Muñoz Sobrino, C., Ramil-Rego, P., Gómez-Orellana, L., 2007. Late Würm and early Holocene - in the mountains of northwest Iberia: biostratigraphy, chronology and tree colonization. - 1433 Vegetation History and Archaeobotany 16, 223–240. - 1434 Muñoz Sobrino, C., Ramil□rego, P., Gómez-Orellana, L., Varela, R.A.D., 2005. Palynological - data on major Holocene climatic events in NW Iberia. Boreas 34, 381–400. - 1436 Nesje, A., Bjune, A.E., Bakke, J., Dahl, S.O., Lie, Ø., Birks, H.J.B., 2006. Holocene - palaeoclimate reconstructions at Vanndalsvatnet, western Norway, with particular - reference to the 8200 cal. yr BP event. The Holocene 16, 717–729. - 1439 O'Brien, S.R., Mayewski, P.A., Meeker, L.D., Meese, D.A., Twickler, M.S., Whitlow, S.I., - 1440 1995. Complexity of Holocene Climate as Reconstructed from a Greenland Ice Core. - 1441 Science 270, 1962–1964. - Oldfield, F., 2005. Environmental change: key issues and alternative perspectives. Cambridge - 1443 University Press, Cambridge, UK; New York. - Oldfield, F., Dearing, J.A., 2003. The role of human activities in past environmental change, in: - Paleoclimate, Global Change and the Future, IGBP. Berlin, pp. 143–162. - 1446 Ortu, E., Peyron, O., Bordon, A., De Beaulieu, J.L., Siniscalco, C., Caramiello, R., 2008. - Lateglacial and Holocene climate oscillations in the South-western Alps: An attempt at - quantitative reconstruction. Quaternary International 190, 71–88. - Pantaleón-Cano, J., Yll, E.-I., Pérez-Obiol, R., Roure, J.M., 2003. Palynological evidence for - vegetational history in semi-arid areas of the western Mediterranean (Almería, Spain). - 1451 The Holocene 13, 109–119. - Pausas, J.G., Paula, S., 2012. Fuel shapes the fire-climate relationship: evidence from - Mediterranean ecosystems. Global Ecology and Biogeography 21, 1074–1082. - Pèlachs, A., Julià, R., Pérez-Obiol, R., Soriano, J.M., Bal, M.-C., Cunill, R., Catalan, J., 2011. - Potential influence of Bond events on mid-Holocene climate and vegetation in southern - Pyrenees as assessed from Burg lake LOI and pollen records. The Holocene 21, 95 –104. - Pèlachs, A., Soriano, J.M., Nadal, J., Esteban, A., 2007. Holocene environmental history and - human impact in the Pyrenees. Contributions to Science 3, 421–429. - Pérez-Obiol, R., Bal, M.-C., Pèlachs, A., Cunill, R., Soriano, J.M., 2012. Vegetation dynamics - and anthropogenically forced changes in the Estanilles peat bog (southern Pyrenees) - during the last seven millennia. Vegetation History and Archaeobotany 21, 385–396. - Pérez-Obiol, R., Jalut, G., Julia, R., Pelachs, A., Iriarte, M.J., Otto, T., Hernandez-Beloqui, B., - 1463 2011. Mid-Holocene vegetation and climatic history of the Iberian Peninsula. The - 1464 Holocene 21, 75–93. - Pérez-Sanz, A., González-Sampériz, P., Valero-Garcés, B., Moreno, A., Morellón, M., Sancho, - 1466 C., Belmonte, A., Gil-Romera, G., Sevilla, M., Navas, A., 2011. Clima y actividades - humanas en la dinámica de la vegetación durante los últimos 2000 años en el Pirineo - 1468 central: el registro palinológico de la Basa de la Mora (Macizo de Cotiella). Zubía 23, 17– - 1469 38. - Pla, S., Catalán, J., 2005. Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Climate dynamics 24, 263–278. - 1473 Prat, N., Real, M., Rieradevall, M., 1992. Benthos of Spanish lakes and reservoirs. Limnetica 8, 221–229. - Rasmussen, S.O., Vinther, B.M., Clausen, H.B., Andersen, K.K., 2007. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26, 1907–1914. - Reille, M., Lowe, J.L., 1995. Atlas. Pollen et spores d'Europe et d'Afrique du nord. Éditions du Laboratorie de botanique historique et palynologie, Marselle. 530p. - Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.V., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., Van der Plicht, J., Weyhenmeyer, C.E., 2009. INTCAL09 and MARINE09 radiocarbon age calibration curves, 0-50,000 years cal. BP. - 1486 Radiocarbon 51, 1111–1150. - Renssen, H., Goosse, H., Fichefet, T., 2007. Simulation of Holocene cooling events in a coupled climate model. Quaternary Science Reviews 26, 2019–2029. - Renssen, H., Seppä, H., Crosta, X., Goosse, H., Roche, D.M., 2012. Global characterization of the Holocene Thermal Maximum. Quaternary Science Reviews 48, 7–19. - Renssen, H., Seppä, H., Heiri, O., Roche, D.M., Goosse, H., Fichefet, T., 2009. The spatial and temporal complexity of the Holocene thermal maximum. Nature Geoscience 2, 411–414. - Riera, S., Wansard, G., Julià, R., 2004. 2000-year environmental history of a karstic lake in the Mediterranean Pre-Pyrenees: the Estanya lakes (Spain). Catena 55, 293–324. - Rieradevall, M., Bonada, N., Prat, N., 1999. Community structure and water quality in the Mediterranean streams of a natural park (St. Llorenc del Munt, NE Spain). Limnetica 17, 45–56. - Rieradevall, M., Brooks, S.J., 2001. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chironomidae) based on cephalic setation. Journal of Paleolimnology 25, 81–99. - Roberts, N., Eastwood, W.J., Kuzucuoglu, C., Fiorentino, G., Caracuta, V., 2011. Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. The Holocene 21, 147–162. - Rubiales, J.M., García-Amorena, I., Hernández, L., Génova, M., Martínez, F., Manzaneque, F.G., Morla, C., 2010. Late Quaternary dynamics of pinewoods in the Iberian Mountains. Review of Palaeobotany and Palynology 162, 476–491. - Sabatier, P., Dezileau, L., Colin, C., Briqueu, L., Bouchette, F., Martinez, P., Siani, G., Raynal, O., Von Grafenstein, U., 2012. 7000years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events. Quaternary Research 77, 1–1510 - Sadori, L., Jahns, S., Peyron, O., 2011. Mid-Holocene vegetation history of the central Mediterranean. The Holocene 21, 117–129. - Sadori, L., Mercuri, A.M., Mariotti Lippi, M., 2010. Reconstructing past cultural landscape and human impact using pollen and plant macroremains. Plant Biosystems An International Journal Dealing with all Aspects of Plant Biology 144, 940–951. - 1516 Saether, O.A., 1979. Chironomid communities as water quality indicators. Holartic Ecology 2, 1517 65-74. - 1518 Sancho, C., Peña, J.L., Muñoz, A., Benito, G., McDonald, E., Rhodes, E.J., Longares, L.A., - 1519 2008. Holocene alluvial morphopedosedimentary record and environmental changes in - 1520 the Bardenas Reales Natural Park (NE Spain). Catena 73, 225-238. - Schnurrenberger, D., Russell, J., Kelts, K., 2003. Classification of lacustrine sediments based on 1521 1522 sedimentary components. Journal of Paleolimnology 29, 141–154. - 1523 Seager, R., Graham, N., Herweijer, C., Gordon, A.L., Kushnir, Y., Cook, E., 2007. Blueprints 1524 for Medieval hydroclimate. Quaternary Science Reviews 26, 2322–2336. - 1525 Seguret, M., 1972. Etude tectonique des nappes et seris décollées de la partie centrale du versant 1526 sud des Pyrénees. Caractère synsédimentaire, rôle de la compression et de lagravité, 1527 Publications USTELA. Série Géologie Structurale nº 2, Montpellier, 155 p. - 1528 Shuman, B., Bravo, J., Kaye, J., Lynch, J.A., Newby, P., Webb, T., 2001. Late Quaternary 1529 Water-Level Variations and Vegetation History at Crooked Pond, Southeastern 1530 Massachusetts. Quaternary Research 56, 401–410. - 1531 Spötl, C., Nicolussi, K., Patzelt, G., Boch, R., 2010. Humid climate during deposition of 1532 sapropel 1 in the Mediterranean Sea: Assessing the influence on the Alps. Global and 1533 Planetary
Change 71, 242–248. - 1534 Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 1535 614–621. - 1536 Stoll, H.M., Moreno, A., Mendez-Vicente, A., Gonzalez-Lemos, S., Jimenez-Sanchez, M., - 1537 Dominguez-Cuesta, M.J., Edwards, R.L., Cheng, H., Wang, X., submitted. Growth rates - 1538 of speleothems in NW Iberian Peninsula over the last two glacial cycles and relationship - 1539 with climate. Quaternary Research - 1540 Talon, B., 2010, Reconstruction of Holocene high-altitude vegetation cover in the French 1541 southern Alps: evidence from soil charcoal. The Holocene 20, 35–44. - 1542 Tinner, W., Conedera, M., Ammann, B., Lotter, A.F., 2005. Fire ecology north and south of the 1543 Alps since the last ice age. The Holocene 15, 1214–1226. - 1544 Tinner, W., Hu, F.S., 2003. Size parameters, size-class distribution and area-number 1545 relationship of microscopic charcoal: relevance for fire reconstruction. The Holocene 13, 1546 499-505. - 1547 Tinner, W., Hubschmid, P., Wehrli, M., Ammann, B., Conedera, M., 1999. Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology 87, 273–289. 1548 - 1549 Tinner, W., Lotter, A., 2001. Central European vegetation response to abrupt climate change at 1550 8.2 ka. Geology 29, 551-554. - 1551 Trigo, R., Osborn, T., Corte-Real, J., 2002. The North Atlantic Oscillation influence on Europe: 1552 climate impacts and associated physical mechanisms. Climate Research 20, 9–17. - 1553 Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., Frank, D.C., 2009. Persistent 1554 Positive North Atlantic Oscillation Mode Dominated the Medieval Climate Anomaly. 1555 Science 324, 78-80. - 1556 Valero-Garcés, B.L., González-Sampériz, P., Delgado-Huertas, A., Navas, A., Machín, J., Kelts, 1557 K., 2000. Lateglacial and Late Holocene environmental and vegetational change in Salada 1558 Mediana, central Ebro Basin, Spain. Quaternary International 73/74, 29–46. - 1559 Valero-Garcés, B.L., Moreno, A., 2011. Iberian lacustrine sediment records: responses to past 1560 and recent global changes in the Mediterranean region. Journal of Paleolimnology 46, 1561 319-325. - Valero-Garcés, B.L., Moreno, A., Navas, A., Mata, P., Machín, J., Delgado Huertas, A., González Sampériz, P., Schwalb, A., Morellón, M., Cheng, H., Edwards, R.L., 2008. The Taravilla lake and tufa deposits (Central Iberian Range, Spain) as palaeohydrological and palaeoclimatic indicators. Palaeogeography, Palaeoclimatology, Palaeoecology 259, 136–156. - Vannière, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., Magny, M., 2008. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell'Accesa (Tuscany, Italy). Quaternary Science Reviews 27, 1181–1196. - Vargas-Yáñez, M., Jesús García, M., Salat, J., García-Martínez, M.C., Pascual, J., Moya, F., 2008. Warming trends and decadal variability in the Western Mediterranean shelf. Global and Planetary Change 63, 177–184. - Venables, W.N., Smith, D.M., R Development Core Team, 2008. An introduction to R notes on R, a programming environment for data analysis and graphics. Dept. of Statistics and Mathematics, Wirtschaftsuniversität Wien, Wien, Austria. - Vescovi, E., Ravazzi, C., Arpenti, E., Finsinger, W., Pini, R., Valsecchi, V., Wick, L., Ammann, B., Tinner, W., 2007. Interactions between climate and vegetation during the Lateglacial period as recorded by lake and mire sediment archives in Northern Italy and Southern Switzerland. Quaternary Science Reviews 26, 1650–1669. - Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J.O., Küttel, M., Müller, S.A., Prentice, I.C., Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M., Widmann, M., 2008. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, 1791–1828. - Wanner, H., Brönnimann, S., 2012. Is there a global Holocene climate mode? PAGES news 20, 44-45. - Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., Jetel, M., 2011. Structure and origin of Holocene cold events. Quaternary Science Reviews 30, 3109–3123. - Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part I. Larvae, Wiederholm. ed. Museum of Zoology and Entomology, Lund University. - Zhao, C., Yu, Z., Ito, E., Zhao, Y., 2010. Holocene climate trend, variability, and shift documented by lacustrine stable-isotope record in the northeastern United States. Quaternary Science Reviews 29, 1831–1843. 1593 | 1594 | FIGURES AND TABLES | |------|--| | 1595 | | | 1596 | Figure 1. a) Location map of Basa de la Mora Lake in central Pyrenees (Spain). | | 1597 | b) 3D regional vegetation map. In order to better discern the topography, the | | 1598 | North is plotted at the bottom of the figure. | | 1599 | | | 1600 | Figure 2. a) Age-depth model for the composite sequence of Basa de la Mora Lake | | 1601 | based on 15 AMS ¹⁴ C dates and ²¹⁰ Pb and ¹³⁷ Cs activity at top. | | 1602 | b) 210Pb-based age model and 137Cs profile obtained for the top 50 cm. | | 1603 | | | 1604 | Figure 3. Main sedimentological features, geochemical and physical properties of the | | 1605 | Basa de la Mora sequence plotted in depth, indicating the location and results of | | 1606 | radiocarbon dates, Facies 1 to 6 (see Table 2), identification and description of the | | 1607 | Sedimentary units. | | 1608 | | | 1609 | Figure 4. Pollen diagram of selected taxa from Basa de la Mora sequence, plotted in | | 1610 | depth. Other Mesophytes curve groups Alnus, Salix, Ulmus, Populus and Juglans pollen | | 1611 | types; Mediterranean shrubs groups Pistacia, Rhamnus, Phillyrea, Buxus, Sambucus, | | 1612 | Ephedra fragilis and E. distachya pollen types; and Deciduous forest curve groups | | 1613 | Betula, Corylus, Fagus, Tilia, deciduous Quercus and Other Mesophytes pollen types. | | 1614 | As usually, AP includes all the arboreal taxa (trees and shrubs) and NAP the herbaceous | | 1615 | component excluding aquatics and ferns. | | 1616 | | | 1617 | Figure 5. Diagram plotted in age, including selected pollen taxa, geochemical | | 1618 | parameters, chironomid taxa and microcharcoal influx curves of Basa de la Mora | | 1619 | sequence compared to NAO summer insolation curve for latitude 24°N, regional phases | | 1620 | of deforestation (Fletcher et al., 2013b) and phases of increased storm activity (Sabatier | | 1621 | et al., 2012) in the Western Mediterranean. Note: Orhocladiinae (s.t.) means sum of | | 1622 | rheophilous (see page taxa). Blue horizontal bars represent humid phases whereas | | 1623 | yellow and orange bands represent arid phases and further arid events respectively. | | 1624 | | | 1625 | Figure 6. Comparison of selected curves (pollen -Pinus, Evergreen Quercus, Fraxinus, | | 1626 | Olea, Artemisia, Potamogeton-, geochemical proxies-MS, TIC, TOC, TOC/N- and | | 1627 | chironomids -Psectrocladius gr. limbatellus-) from Basa de la Mora sequence with | | 1628 | global and regional records (Estanya salinity (Morellon et al., 2011); NH temperature | |------|--| | 1629 | reconstruction (Mann et al., 2003) and Solar Irradiance (Sthinhiber et al., 2008)) for the | | 1630 | last 750 years, indicating the main climate and historical periods and the interpretation | | 1631 | of local land use. Bands in rose mark the intense periods of anthropogenic activities. | | 1632 | | | 1633 | | | 1634 | Table 1. AMS radiocarbon dates from core BSM08-1A-1U. Rejected dates are shown in | | 1635 | italics. | | 1636 | | | 1637 | Table 2. Facies description and interpreted depositional environment of BSM sequence. | | 1638 | | | 1639 | Table 3. a) Correlation values between Magnetic Susceptibility and other geochemical | | 1640 | parameters in the different sedimentary units. | | 1641 | b) Correlation between MS and pollen taxa in the different pollen zones. | | 1642 | | | | | Table 1. AMS radiocarbon dates from core BSM08-1A-1U. Rejected dates are shown in italics. | 1645 |) | |------|---| | 1645 |) | | (b) Lab Code | Depth | Sample type | ¹⁴ C | Calibrated | Median | | |--------------|-------|-----------------------|-----------------|-----------------|-------------|-----| | | (cm) | | age (yr BP) | age, 2σ (yr cal | probability | (yr | | | | | | BP) | cal BP) | | | Poz-29744 | 60 | Terrestrial macrorest | 385 ± 30 | 426-507 | 456 | | | Poz-35854 | 172 | Terrestrial macrorest | 1335 ± 30 | 1231-1304 | 1276 | | | Poz-29745 | 230 | Terrestrial macrorest | 2100 ± 30 | 1995-2146 | 2072 | | | Poz-35853 | 269 | Terrestrial macrorest | 2615 ± 30 | 2718-2777 | 2749 | | | Poz-35852 | 337 | Terrestrial macrorest | 3200 ± 30 | 3368-3469 | 3419 | | | Poz-35804 | 422 | Terrestrial macrorest | 3815 ± 35 | 4089-4299 | 4206 | | | Poz-29743 | 502 | Terrestrial macrorest | 5185 ± 35 | 5893-6002 | 5942 | | | Poz-35803 | 562 | Terrestrial macrorest | 5840 ± 40 | 6533-6745 | 6657 | | | Poz-35802 | 677 | Terrestrial macrorest | 6450 ± 40 | 7288-7430 | 7367 | | | Poz-29746 | 795 | charcoal | 7330 ± 50 | 8014-8214 | 8125 | | | Poz-35801 | 943 | Terrestrial macrorest | 7930 ± 50 | 8628-8983 | 8778 | | | Poz-29747 | 1011 | charcoal | 7950 ± 50 | 8640-8990 | 8817 | | | Poz-29779 | 1167 | Terrestrial macrorest | 8780 ± 50 | 9581-9941 | 9798 | | | Poz-35856 | 1198 | Bulk sediment | 10710 ± 60 | 12547-12743 | 12627 | | | 152235 | 1206 | Pollen concentrates | 13080 ± 100 | 15181-16476 | 15828 | | | Facies | Facies description | | | | | | | |-----------------
--|--|--|--|--|--|--| | Clastic, lamina | Clastic, laminated facies | | | | | | | | 1 | Gray banded to laminated quartz and carbonate silts. Mostly composed by clay minerals (45 %), calcite (17 %) and, quartz (7 %) and low organic matter (<1%). High MS (100 SI). Laminated intervals are composed of up to 1 cm thick couplets of (1) black, carbonate silty-sands with high quartz content, abundant hematites, chlorite and maphic minerals and occasional terrestrial and macrophyte remains and (2) gray carbonate silts with lower silicate minerals content and rare organic matter. | | | | | | | | 2 | Dark gray laminated carbonate silts. Mineralogical composition similar to Facies 1, but better laminated higher organic content (1-2 %) and lower MS (average 40 SI). Couplets composed of mm- thick laminae of (1) black, carbonate silty-sands with abundant terrestrial and macrophyte remains and (2) brown carbonate silts with less siliciclastic minerals and lower organic matter. | | | | | | | | 3 | Light gray banded carbonate silts. Dominant carbonate content (TIC, X %; calcite, 40 %); quartz (6 %) and significant amounts of hematites, pyrite, clinochlorite, other maphic. Low organic matter (1%). Very high MS (>150 SI). | | | | | | | | Interpretation | Clastic dominated deposition in distal, deeper setting. Laminated facies reflect flooding episodes reaching the centre of the lake. More abundant carbonate (Facies 3) or organic matter (Facies 2) reflects changes in watershed and littoral environments. | | | | | | | | Carbonate and | organic-rich facies | | | | | | | | 4 | Black, massive, carbonate silts. Composition is dominated by calcite (45 %), quartz (10 %), clay minerals (10 %) and organic matter (>2%) of terrestrial and macrophyte origin. Abundant pyrite and rare hematites. Low MS (25 SI). Occasional presence of pennate diatoms. | | | | | | | | 5 | Light gray, massive, carbonate silts. Composition is dominated by calcite (70 %), with relatively low quartz and clay minerals (7 %) and organic matter (<2%); occasional pyrite and rare hematites. Low MS (25 SI). Organic matter is terrestrial, macrophyte and lacustrine origin. Mottling is common. Abundant gastropods and presence of pennate diatoms. | | | | | | | | 6 | Light brown, banded, carbonate silts. Composition is dominated by calcite (30 %), clay minerals (15 %) and relatively low quartz (9 %) and organic matter (<2%) mostly terrestrial and macrophyte remains. | | | | | | | | Interpretation | Carbonate dominated deposition in littoral environments with higher carbonate and organic productivity (Facies 5) deeper, with more frequent anoxic conditions (Facies 4) and transitional (Facies 6). | | | | | | | Table 3. a) Correlation values between Magnetic Susceptibility and other geochemical parameters in the different sedimentary units. | | Unit 1 (0-93 cm) | | Unit 2 (93-491 cm) | | Sub-unit 3a (491-
690 cm) | | Sub-unite 3b (690-
1168) | | |-----|------------------|---------|--------------------|---------|------------------------------|---------|-----------------------------|---------| | | MS | | MS | | MS | | MS | | | | r | p | r | p | r | p | r | p | | Si | 0.726 | < 0.001 | 0.546 | < 0.001 | 0.146 | 0.148 | -0.346 | < 0.001 | | Ti | 0.699 | < 0.001 | 0.688 | < 0.001 | 0.280 | 0.005 | -0.388 | < 0.001 | | Mn | 0.688 | < 0.001 | 0.545 | < 0.001 | 0.543 | < 0.001 | 0.451 | < 0.001 | | Fe | 0.806 | < 0.001 | 0.582 | < 0.001 | 0.643 | < 0.001 | 0.162 | 0.013 | | Ca | -0.660 | < 0.001 | -0.564 | < 0.001 | 0.179 | 0.075 | 0.671 | < 0.001 | | TIC | -0.700 | < 0.001 | -0.591 | < 0.000 | 0.404 | < 0.001 | 0.689 | < 0.001 | | TOC | -0.746 | < 0.001 | -0.409 | < 0.001 | -0.609 | < 0.001 | -0.494 | < 0.001 | 16541655 b) Correlation between MS and pollen taxa in the different pollen zones. | | BSM III a | and BSM | BSM II(491-815 cm) | | BSM I (815-1168 | | |---------------|-----------|---------|--------------------|-------|-----------------|---------| | | IV (93-4 | 491 cm) | | | cm) | | | | MS r p | | MS | | MS | | | | | | r p | | r | p | | Pinus | 0.453 | 0.003 | 0.444 | 0.006 | 0.464 | 0.001 | | Juniperus | 0.351 | 0.023 | l – | _ | 0.339 | 0.021 | | Betula | -0.573 | < 0.001 | _ | _ | -0.517 | < 0.001 | | Corylus | _ | _ | _ | _ | -0.292 | 0.049 | | Tilia | _ | _ | -0.537 | 0.002 | _ | _ | | Dec. Quercus | _ | _ | -0.528 | 0.001 | _ | _ | | Quercus fag. | -0.401 | 0.009 | _ | _ | -0.373 | 0.018 | | Ever. Quercus | -0.378 | 0.014 | _ | _ | -0.505 | < 0.001 | | Artemisia | _ | _ | -0.433 | 0.007 | _ | _ | | Cyperaceae | _ | _ | 0.414 | 0.017 | _ | _ | | Myriophyllum | _ | _ | _ | _ | -0.592 | < 0.001 | Figure 1. a) Location map of Basa de la Mora Lake in central Pyrenees (Spain). b) 3D regional vegetation map. In order to better discern the topography, the North is plotted at the bottom of the figure. Figure 2. a) Age-depth model for the composite sequence of Basa de la Mora Lake based on 15 AMS ¹⁴C dates and ²¹⁰Pb and ¹³⁷Cs activity at top. b) 210Pb-based age model and 137Cs profile obtained for the top 50 cm. Figure 3. Main sedimentological features, geochemical and physical properties of the Basa de la Mora sequence plotted in depth, indicating the location and results of radiocarbon dates, Facies 1 to 6 (see Table 2), identification and description of the Sedimentary units. Figure 4. Pollen diagram of selected taxa from Basa de la Mora sequence, plotted in depth. Other Mesophytes curve groups *Alnus*, *Salix*, *Ulmus*, *Populus* and *Juglans* pollen types; Mediterranean shrubs groups *Pistacia*, *Rhamnus*, *Phillyrea*, *Buxus*, *Sambucus*, *Ephedra fragilis* and *E. distachya* pollen types; and Deciduous forest curve groups *Betula*, *Corylus*, *Fagus*, *Tilia*, deciduous *Quercus* and *Other Mesophytes* pollen types. As usually, AP includes all the arboreal taxa (trees and shrubs) and NAP the herbaceous component excluding aquatics and ferns. 96 Figure 5. Diagram plotted in age, including selected pollen taxa, geochemical parameters, chironomid taxa and microcharcoal influx curves of Basa de la Mora sequence compared to NAO summer insolation curve for latitude 24°N, regional phases of deforestation (Fletcher et al., 2013b) and phases of increased storm activity (Sabatier et al., 2012) in the Western Mediterranean. Note: Orhocladiinae (s.t.) means sum of rheophilous (see page taxa). Blue horizontal bars represent humid phases whereas yellow and orange bands represent arid phases and further arid events respectively. Figure 6. Comparison of selected curves (pollen *–Pinus*, Evergreen *Quercus, Fraxinus, Olea, Artemisia, Potamogeton*-, geochemical proxies-MS, TIC, TOC, TOC/N- and chironomids *–Psectrocladius* gr. *limbatellus*-) from Basa de la Mora sequence with global and regional records (Estanya salinity (Morellón et al., 2011); NH temperature reconstruction (Mann et al., 2003) and Solar Irradiance (Sthinhiber et al., 2008)) for the last 750 years, indicating the main climate and historical periods and the interpretation of local land use. Bands in rose mark the intense periods of anthropogenic activities.