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Abstract 

 

 We realize a biochemical filtering process based on the introduction of a small quantity 

of a buffer in a biocatalytic signal-transduction logic system based on the function of an 

enzyme, esterase. The input, ethyl butyrate, is converted into butyric acid—the output signal, 

which in turn is measured by the drop in the pH value. The developed approach offers a 

versatile "network element" for increasing the complexity of biochemical information 

processing systems. Evaluation of an optimal regime for quality filtering is accomplished in the 

framework of a kinetic rate-equation model. 
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1. Introduction 

 

 As silicon technology is approaching its limits,
1
 unconventional approaches to the next 

generation computing systems are being researched with the hope of offering new 

functionalities and advances in information processing.
2,3

 Molecular (chemical) computing
4-10

 

has been considered among the approaches to miniaturizing computing elements, as well as 

novel applications. Biomolecular computing
11-13

 can offer an additional advantage of the 

biochemical specificity of catalytic and recognition processes, ultimately aiming at mimicking 

and developing systems compatible with the natural information processing mechanisms. 

Biochemical systems designed for information processing range from various biomolecules, 

such as proteins,
14,15

 DNA,
16

 RNA,
17

 DNAzymes,
18,19

 to whole biological cells operating as 

computing devices.
20

 Enzyme-based biocatalytic systems realizing binary logic gates
11,21-24

 and 

their small networks
25,26

 have been recently extensively studied in biomolecular computing. 

 

 Despite great expectations for biomolecular computing (biocomputing) systems,
27

 the 

present level of their complexity does not allow any real computing device based on 

biomolecules. Indeed, only networks performing a few logic operations on a time-scale of 

minutes have thus far been realized in the lab. However, another application for (bio)molecular 

information processing has been within reach for the available technology level: extension of 

capabilities of multi-signal digital biosensors with built-in logic.
28

 Such biosensors processing 

information at the biochemical level are of interest in biomedical applications,
29-32

 since 

biomolecules are capable of operating in a biological environment.
33

 Within the general 

program of the digital biosensor development, several systems of various complexity have 

recently been designed to analyze pathophysiological conditions corresponding to different 

injuries.
34-38

  

 

 Another promising application of biomolecular logic systems has been for controlling 

multi-signal responsive materials aiming at chemical actuators with built-in logic.
39

 Coupling of 

the signal-processing enzyme logic systems with switchable "smart" materials can be achieved 

through redox transformations
40

 or pH changes
41-45

 driven by the enzyme reactions, offering 

new "Sense/Act" sensor/actuator functionalities. Specifically, pH changes generated by the 
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enzyme logic systems, causing polymer materials to switch between different states, have been 

successfully used to trigger reconfiguration of various nanostructured systems such as 

membranes,
41

 emulsions
42

 and nanoparticle assemblies,
43

 as well as modified electrodes
46

 and 

bioelectronic devices (biofuel cells).
47

 

 

 One of the main challenges for biocomputing has been the design of logic gates that can 

be combined, with the help of other, enabling non-binary elements, to allow interconnection in 

fault-tolerant networks with control of noise buildup, for information processing of increasing 

size and complexity.
48-50

 There is ample experimental evidence
48-50

 that the level of noise in 

(bio)chemical computing systems is quite high compared to their electronic counterparts: This 

includes noise in both the inputs/outputs chemical and the enzyme concentrations which 

typically vary at least several percent. Thus, the problem of noise amplification and its control 

becomes an important issue in the design of even small biocomputing networks.
51,52

  

 

 One of the possible approaches to noise reduction and control could be the use of filters 

as network elements converting a convex-shape concentration-response typical of 

(bio)chemical reactions to a sigmoidal function, thus suppressing noise at the binary 0 and 1 

logic points. This could be achieved, for example, by using enzymes with substrates that have 

self-promoter properties, as biocatalytic elements in logic gates/networks.
53,54

 However, this 

approach requires very specific (e.g., certain allosteric) enzymes and thus cannot be considered 

as a versatile solution. We have recently reported a general approach to biochemical filter 

systems based on redox transformations.
55

 Since many enzyme logic systems use pH changes 

as output signals to control pH-responsive materials
41-44

 and switchable electrode interfaces,
46,47

 

an alternative approach devised specifically for pH-change signal filtering would be desirable. 

The present paper reports the first experimental realization and theoretical modeling of a 

versatile pH-filter mechanism based on buffering, for enzyme-catalyzed reactions, aiming at 

noise reduction upon transduction of biochemical signals. 

 

 Our system is illustrated in Figure 1. The "logic function" considered is the simplest 

possible one, that of signal tranmsmission/transduction/conversion: an enzyme-catalyzed 

reaction converts the concentration of the input chemical into the output signal quantified by 
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the drop in the pH value. An effect of a small amount of buffer, if added, is to change the 

system response from convex, as typical for most (bio)chemical processes, to sigmoidal, as 

desired for filters. Details of our experimental system are presented in Sections 2-3. Careful 

selection of the system parameters by modeling, is crucial for obtaining a reasonable filtering 

effect for suppression of noise buildup, as explained in Sections 4-5. Section 6 is devoted to 

conclusions. 

 

 

2. Experimental 

 

 Esterase from porcine liver (EC 3.1.1.1), ethyl butyrate, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES buffer), and other inorganic reagents were purchased 

from Sigma-Aldrich and were used as supplied without any pretreatment or purification. 

Ultrapure water (18.2 MΩ∙cm) from NANOpure Diamond (Barnstead) source was used in all of 

the experiments.  

 

The enzymatic reactions were carried out in aqueous solutions containing 0 mM, 50 

mM and 100 mM of HEPES buffer with ethyl butyrate concentration ranging from 0.1 mM to 

100 mM for a fixed amount (4 U∙mL
–1

) of esterase. Prior to starting each reaction, the pH of the 

buffer was adjusted to 7.0 by using 0.1 M NaOH. Once the pH was stable, the reaction was 

started by adding esterase and monitoring the decrease in the pH value. The experiments were 

performed under vigorous stirring in a final solution volume of 5 mL. The pH measurements 

were performed with Mettler Toledo
®
 SevenEasy pH-meter. Using Lab-pH software, the 

readout of the pH was performed every second. The decrease of pH was measured for the time 

period of 130 min. Additionally control experiments with butyric acid varied from 0.1 mM to 

100 mM, with 0 mM, 50 mM, 100 mM of HEPES buffer were also performed. All experiments 

were performed at an ambient temperature of 23±2 C. 
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3. Biochemical pH-Signal Filter 

 

 Our enzymatic biochemical "signal processing" is based on the hydrolysis of ethyl 

butyrate (substrate, S, serving as the logic input) catalyzed by esterase (enzyme, E) with the 

butyric acid as the logic output product (P), causing the drop in the pH value. Schematically, we 

write 

    
 
      

 
          

where R and r are the forward rates at which the intermediate complex, C, and the final product 

are formed (the first step can be reversible: we comment on this later). While the output product 

is the acid molecule,
56,57

 we assume that the equilibrium dissociation of butyric acid (A) in 

solution, with the dissociation constant   , is instantaneous: we use the self-explanatory 

notation 

[ ]  [ ]  [  ]

   [  ][  ] [ ]⁄
    

It is well known
58-60

 that the reaction rates R and r for esterase strongly depend on pH of the 

system: The reaction (1) is fastest at      and it virtually stops at     . To account for the 

slowing down of the reaction with decreasing pH, in our parameter range we can assume
58

 

acidic ionization of the active sites in both the enzyme and intermediate complex, by adding 

instantaneous dissociation equilibria
 

   [ ][  ] [   ]⁄

   [ ][  ] [   ]⁄
        

for the ionized enzyme and complex, respectively. We monitor the pH value of the solution as a 

function of time,  , starting from the reaction's on-set (   ). This yields kinetic data for the 

reaction which will be used in the theoretical model to determine the reaction constants and 

perform system optimization. 

 

 We could consider zero initial concentrations of the input substrate and the output 

product as the logic-0 values, while the case of the maximum initial substrate concentration and 

the output product measured at a specific reaction time t — which in practice are set by an 

application — as corresponding to logic-1 points. Another option, favored in our present study 

and used from now on, is to set the logic values for the output at the appropriate pH values. The 
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"logic range" variables x and y (inset in Figure 1) that vary between 0 and 1, will be defined in 

the next section. It is important to note that beyond such a "binary" description, in general the 

plot of the output vs. the initial substrate concentration (viewed as the response curve in terms 

of the logic-range variable of the type shown in Figure 1) is convex, which is typical for 

enzymatic reactions; such response amplifies input analog noise.
48-50

 Instead, it is desirable to 

have a sigmoidal response, i.e., the curve should be "flat" around both logic points and with 

inflection in between. Indeed, such a response curve offers the filtering effect by decreasing 

analog noise at each logic point.
55 

 

 While such a sigmoidal response is observed in nature,
50,61-63

 it is generally not easy to 

realize in biochemical reactions.
52,55

 In this work, we attempt to artificially create sigmoidal 

response of the pH variation in an enzyme-catalyzed reaction: We introduce, see Figure 1, a 

buffer (B), here HEPES. The latter is a weak acid with the dissociation constant satisfying 

         , 

       [  ][  ] [ ]⁄     

Usually HEPES is used in large enough quantities as a buffer
64,65

 for biological systems to 

maintain constant pH during experiments. In our case, however, the largest amounts of HEPES 

are comparable to the maximum initial substrate concentration. This means that in the 

beginning of reaction or for small substrate concentrations, i.e., close to the logic-0, HEPES 

will operate as a buffer and keep the pH of the solution at a constant, initially titrated level. 

When more acid is produced in the enzymatic reaction (1), the buffering capacity of HEPES 

will eventually be overwhelmed, and the pH will rapidly decrease and stay constant at the level 

determined by    and the final amount of the produced butyric acid. As a result an inflection 

region appears on the curve of pH vs. the initial substrate concentration which thus becomes 

sigmoidal. Note that the presence of a small quantity of the buffer significantly modifies the 

system's response only near logic-0 of the input, whereas the response curve near logic-1 is 

typically sufficiently "flat" anyway, as described earlier.
50,55 

  

 However, additional challenges arise in this approach. Ideally, we would like to have 

such an amount of HEPES that the "flat" low-noise regions extent far around both logic 

points.
52,55

 However, if there is too little HEPES, then it will be quickly overwhelmed even by 
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small amounts of butyric acid so that the small-slope region at logic-0 will be very narrow. On 

the other hand, when the amount of HEPES is large, it will act as a buffer throughout the entire 

range of input concentrations so that the pH at logic-1 will be close to that at logic-0, and it may 

become difficult to distinguish between the outputs at those two logic points. Furthermore, too 

much HEPES can increase the slope at logic-1, because the reaction will be slowed down and 

away from saturation. Thus, the problem of establishing the optimal concentration of the buffer 

for adequate suppression of the analog noise over the broad range of the logic input 

concentrations around each logic point requires numerical optimization based on the initial data 

fits. This is illustrated in Section 5. 

 

 Figure 2 exemplifies the filtering effect by showing sets of data taken for increasing 

amounts of HEPES. While the onset of the sigmoidal behavior is clearly seen, the plots also 

illustrate that the data are noisy, as typical for such enzymatic systems. Figure 3 shows the pH 

dependence on the reaction time t and initial substrate concentration, for 100 mM of HEPES. 

For later times (        ) and large enough ethyl butyrate concentrations (over 

approximately      ), the pH decrease slows down, resulting in a flat region, which illustrates 

the saturation mentioned earlier, typical of enzymatic processes. Similar trends in the pH 

dependence were observed also for other studied concentrations of HEPES. We note that the 

experimental data here are also noisy, which underscores the importance of parameter selection 

for the filtering effect in such a way that good separation is maintained between the "logic" 

reference values. 

 

 

4. Kinetic Equations and Noise Analysis 

 

 In order to analyze our data, exemplified in Figures 2 and 3, we use a kinetic rate-

equation description of the processes involved. We already noted the complexity of the process 

steps involved. For a realistic description, we therefore have to limit the number of fitted rate 

constants utilized. This has been a standard practice in such applications because we seek a 

semi-quantative overall description of the response surface of the process, with the detailed 

behavior relevant for signal handling only near the logic-point values. Thus, we use a simplified 
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kinetic description of reaction (1) assuming no reversibility in the formation of the intermediate 

complex. Indeed, the available kinetic data
60

 for this type of reaction suggest that, in our regime 

of the parameters, for most of our pH range (except perhaps in the far saturation regime), for 

the reactant concentrations used, the rate of the reverse reaction will be negligibly small. 

Furthermore, we use a description whereby the rate equations for hydrolysis process (1), are 

written in terms of the total (active and acidified) enzyme and complex concentrations, whereas 

the reduction in the process rates due to the acidification equilibria is lumped in the effective 

rate parameters       and      , which replace R and r in (1). We have 

 [ ]

  
       [ ]{   [ ]}

 [ ]

  
      [ ]{   [ ]}       [ ]

 [ ]

  
      [ ]

    

where    is the total initial amount of the enzyme, and, as mentioned, we ignore the 

acidification shown in (3), instead using the effective rate parameters 

      
  

[  ]      
 

      
  

[  ]      
 

    

 

 The concentration [  ]    in (6), which yields the pH value, is determined from the 

charge balance equation. Since the enzyme and complex concentrations are very small 

compared to other chemicals, we can neglect their contributions. The resulting equation is 

[  ]    [  ]  
  

   [  ]   
[ ]    

      

       [  ]   
[     ]  [  ]     

where [  ]         is the concentration corresponding to the initial titration of the system 

to      ; [  ]  denotes the initial concentration of the HEPES anions after its instantaneous 

dissociation equilibration (at      ), whereas the total amount of HEPES introduced has 

been, as a concentration, denoted by [HEPES] already in the captions Figures 1–3. As a result 

of a numerical solution of the various coupled equations introduced, we can obtain the 

dependence of the pH(t) on the reaction time. 
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 As alluded to earlier, there are several sources of noise
11,52,55

 in biochemical information 

processing at the level of network elements, as well as at the level of the network as a whole. 

The buildup of noise must be avoided to allow scalability and fault tolerance. The former, 

single-element (gate) noise results, for instance, from the inaccuracy of the logic function itself, 

as seen in Figures 2 and 3, and reflects fluctuations in the chemical concentrations and other 

experimental conditions and parameters. Our aim is to design network elements that will 

minimize such analog noise amplification as the signal is processed. Other types of noise, 

specifically, digital noise, are handled at the network-design level, not addressed here. Filtering 

is the primary tool for avoiding amplification of analog noise. This property of a filter can be 

quantified as follows. 

 

 We define dimensionless logic-range input (x) and output (y) variables, encountered 

earlier (see the inset in Figure 1): 

  
[ ]     

[ ]        
    

  
         

      [ ]   
   

         

where [ ]         is the maximum initial concentration (here 100 mM) of the input substrate 

in our experiments, selected as logic-1; pH0 was defined earlier (=7); and   [ ]   
    is the 

output value at the reference time t for the logic-1 input, i.e., for [ ]        , which thus 

defines the logic-1 of the output. Thus, the gate-response function       , for our trivial, 

"identity" gate connects the logic points at                       ; see Figure 1 inset. 

 

 The response function (9) can be calculated from the presented solution once four 

adjustable parameters,           are first determined from a least-squares fit of the 

experimentally measured pH data, as reported in the next section. Other quantities and 

parameters are known or were taken from the literature; the latter were the tabulated values for  

         and             , which were validated by performing control experiments in 

which butyric acid and HEPES were mixed directly. 
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 With the response function      calculated, we perform numerical analysis
48,50

 of our 

logic filter to gauge its noise amplification/suppression properties in the vicinity of the two 

logic points, 0 and 1. We define the noise amplification factor as the ratio of the maximum of 

the two output noise distribution spreads,   
    (computed for each logic point,        and the 

input noise spread,       
        . Here the spread of the output distribution is defined as the 

root-mean-square width, for instance,  

  
    [〈  〉  〈 〉 

 ]        

with the averages 〈 〉 at each logic point are computed with respect to the input noise 

distribution function which is assumed to be Gaussian with the same variance,    , at both 

     . (Actually, half-Gaussian for a logic point with only positive signal values physically 

possible, such as our logic-0 input, [S] = 0.) This ratio allows us to determine how large are the 

deviations in the output signal as compared to the assumed spread in the input signal. For a 

good filter,       
         should be less than 1 (means, noise suppression) for typical input 

signal spread values in biochemical systems, which have     at least a couple of percent on the 

scale of the logic-interval range of 1. 

 

 

5. Results 

 

 Experimentally measured dependence of the pH on the reaction time t and initial ethyl 

butyrate (substrate) concentration is illustrated in Figures 2 and 3. Our data fitting included all 

the recorded time-dependent data, for several HEPES concentrations and varying input 

substrate values, similar to Figure 3. This yielded the estimates:                    , 

              ,                      , and                  . The quality of 

the least-squares fits was quite good. Note that      , similar to the results found earlier 

with methyl-n-butyrate as the substrate for esterase.
58

 

 

 The onset of the sigmoidal profile in the response curves can be seen in Figure 2, and is 

also clearly present in the data shown in Figure 3. Specifically, Figure 2 shows how pH of the 

system depends on the substrate concentration at a fixed reaction time, 120 min experimental 

section says 130 min, for increasing amounts of HEPES: 0, 50, 100 mM. As expected, with 
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larger concentrations of HEPES the response curves around logic-0 point become more "flat" 

whereas the slopes at logic-1 slightly increase. This is also seen in the inset in Figure 1, where 

the same data and fitted curves are shown in terms of the logic-range variables, y vs. x. A 

tradeoff involved in getting the filtering effect is the trend, clearly visible in Figure 2, of 

decreasing the difference between the pH values at the two logic points,                

This occurs because the pH-drop signal buildup is delayed by the filtering effect. Without 

HEPES we have          , but this difference drops to      for [HEPES] = 100 mM. This 

property may make it more difficult to distinguish between the outputs (pH values) at logic-0 

and 1 in real life applications, due to another source of noise, obvious in Figure 2 and 3: the 

intrinsic noise in the logic-element functioning itself (whereas filtering is aimed at reducing 

noise amplification from input to output). 

 

 The numerically evaluated dependence of the maximum (over the two logic-point 

values) noise amplification factor,       
        , vs. reaction time t and HEPES 

concentration is shown in Figure 4, assuming a rather large input noise spread,         

(30%). The dots correspond to the experimental conditions at which data shown in Figure 2 

were obtained. With increasing time and HEPES concentration,       
         decreases until 

it reaches its minimum, for at     –        , [     ]         (this region is marked in 

the figure). Note that in this region we have       
              , which does indicate 

noise suppression. However, this value is still not vanishingly small because at         there 

is a noticeable contribution to the output signal from the parts of the response curve with large 

slope (close to the inflection). For smaller noise spread (than the assumed 30%) the filtering 

effect will actually be somewhat better, but the overall results and trends are qualitatively 

similar. 

 

 The region of the optimal noise suppression marked in Figure 4, is particularly 

interesting for potential applications because in addition to a small noise amplification factor 

(~ 0.7), the pH variation between the two logic points is not much reduced:       is ~ 2 or 

larger; see Figure 5. We point out that, in Figure 4 there is another range of the reaction times 

and HEPES concentrations for which       
          . It is located at          and 

[     ]        . However, as can be seen from Figure 5, in this region       is 
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somewhat smaller than ~ 1, which makes this range of parameters less favorable for filter 

operation. 

 

 Around logic-0 point, when pH deviates only a little from its initial titration value,    , 

we can expand (7) in Taylor series and obtain analytical expression for the slope of the response 

curve. This yields additional information on which of the system parameters influence noise 

characteristics the most. Since [  ]  [ ] , we get for the response curve slope 

 
   

 [ ]
|
 

 [     ]  (√
      

[  ] 
 √

[  ] 
      

)

 

     

From this expression we see not only that the increasing buffer concentration leads to a smaller 

slope and consequently, stronger noise suppression, as expected, but also that the initial pH and 

the buffer dissociation constant also affect filter performance. In particular, in order to keep 

analog noise in check, one cannot indiscriminately vary    . Indeed, for different pH another 

buffer would be preferable, with its dissociation constant compatible with the new pH value. 

Then the optimal analog noise suppression at logic-0 will be possible. Note that this condition 

is relatively well met by our system:                   . 

 

 

6. Conclusion 

 

 In this work we experimentally demonstrated a biochemical logic filter with artificially 

induced sigmoid pH-drop response. We used esterase-catalyzed hydrolysis of ethyl butyrate as 

the substrate. By performing this reaction in the HEPES buffer supplied in limited amounts, we 

were able to suppress the change in the pH at small initial concentrations of the substrate. As a 

result, the response curve of the filter (dependence of the pH on substrate concentration) 

changes to the sigmoid one for which analog noise can in principle be suppressed around both 

logic points provided that we have the correct amount of HEPES in our system and properly 

select other system parameters as discussed in Section 4.  
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 We performed kinetic modeling of the system and determined the optimal required 

amount of HEPES and reaction times at which maximum noise suppression occurs. For this, we 

first numerically fitted the experimental response surfaces to the solution of the system of 

kinetic and charge balance equations, thus fixing the unknown reaction parameters. With these 

quantities known, we were able to study general noise properties of this system as functions of 

the HEPES concentration and reaction time. We found that the optimal amount of HEPES at 

which maximum suppression of noise occurs is        , with reaction times  

  –       . We also found that in general, optimum performance of the filter is possible only 

provided one works with systems such that the initial pH is close to the (minus decimal 

logarithm of the) dissociation constant of the selected weak-acid buffer. The method as 

described, is easy to realize in practice and shows promise for use in information processing 

networks, because no cross-reactions are introduced: the buffer acid is typically not a part of the 

(bio)chemical processes in the system. 
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Figure Captions 

  

Figure 1. Schematic presentation of the buffering-based pH-signal "logic filter." The reaction 

biocatalyzed by an enzyme, here esterase, results in the hydrolysis of ethyl butyrate (the logic 

Input) to yield butyric acid which releases H
+
 ions upon dissociation. A limited quantity of a 

buffer, here HEPES, if introduced, consumes most of the biocatalytically produced H
+
 ions 

when the input is applied at a low concentration. The pH change (the logic Output, measured by 

the pH drop, as indicated by an arrow) sets in when the biocatalytically produced H
+
 ions 

overwhelm the buffer. The biocatalytic process and buffering combined, yield a sigmoidal 

dependence of the pH change as a function of the input concentration. The inset illustrates the 

onset of the sigmoidal response in our experimental system. The solid curves show the output, 

y, vs. the input, x, properly redefined/rescaled to vary in the "binary-logic ranges" from 0 to 1, 

as explained in the text. Experimental data were fitted by using rate equations appropriate for 

the processes involved, and the results are shown, here for the reaction time 120 min 

experimental section says 130 min, for increasing buffer (HEPES) concentrations. The top (red) 

curve corresponds to [HEPES] = 0; middle (blue): [HEPES] = 50 mM, bottom (green): 

[HEPES] = 100 mM. The dashed black curve does not correspond to experimental data but 

rather illustrates a desirable, "ideal" filter response with small slopes at both binary logic points 

0 and 1, and with a steep, symmetrically positioned inflection region in the middle. 

  

Figure 2. Measured pH values at the reaction time           i12                ,  is it 120 

or 130? shown vs. the initial substrate concentration, for different amounts of HEPES. Red 

(bottom) symbols/curve correspond to [HEPES] = 0, blue (middle): [HEPES] =50 mM, green 

(top): [HEPES] = 100 mM. The circular symbols are the actual pH values, whereas the solid 

curves are the theoretical model fits. (These curves were shown in the inset in Figure 1, rescaled 

in terms of the logic-range variables). 

  

Figure 3. Top: Experimental dependence of pH on the initial substrate concentration (ethyl 

butyrate) and reaction time, for [HEPES] = 100 mM. Bottom: Numerically computed 

dependence for this system, based on the kinetic model. 
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Figure 4. Color-coded contour plots of the noise amplification factor       
         as a 

function of the concentration [HEPES] and reaction time t. The dots mark the conditions 

corresponding to the curves in Figure 2. The broken-line ellipse encircles the optimal-parameter 

region of filter operation, i.e., times and HEPES concentrations for which the strongest 

suppression of analog noise is possible. 

 

Figure 5. Color-coded contour plots of      . All axes, notation, and markings are the same 

as in Figure 4. 
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