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Abstract 

Improving knowledge on the apportionment of airborne particulate matter will be useful to handle and 

fulfill the legislation regarding this pollutant. The main aim of this work was to assess the influence of 

markers in the source apportionment of airborne PM10, in particular, whether the use of particle PAH and 

ions provided similar results to the ones obtained by using not only the mentioned markers but also gas 

phase PAH and trace elements. In order to reach this aim, two receptor models: UNMIX and positive 

matrix factorization were applied to two sets of data in Zaragoza city from airborne PM10: a previously 

reported campaign: 2003-2004 (Callén et al., 2009), where polycyclic aromatic hydrocarbons (PAH) 

associated to the gas and particle phases, ions and trace elements were used as markers and a long 

sampling campaign: 2001-2009, where only PAH in the particle phase and ions were analyzed.  

For both campaigns, PMF was able to explain a higher number of sources than the UNMIX model. 

Independently of the sampling campaign and the receptor model used, soil resuspension was the main 

PM10 source, especially in the warm period (21st March-21st September), where most of the PM10 

exceedances were produced. Despite some of the markers of anthropogenic sources were different for 

both campaigns, common sources associated to different combustion sources (coal, light-oil, heavier-oil, 

biomass, traffic) were found and PAH in particle phase and ions seemed to be good markers for the 

airborne PM10 apportionment.  

Keywords: PM10; PAH; ions; receptor model; UNMIX; PMF; air pollution; source apportionment  
 
Introduction  

Air monitoring is a complex task involving not only direct measurement but also quality assurance to 

confirm the adequacy of the methods used to quantify air pollutants. These measurements can be 

transformed into important tools to preserve and to improve air quality by upgrading the current 

legislation regarding air pollutants. Meteorological factors are also important in order to interpret air 
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monitoring results because they primarily help to quantify atmospheric characteristics, like pollutant 

transport and diffusion. The main concern of preserving air quality is related to health and environmental 

problems, being particulate matter one of these pollutants with proven negative impact on human health 

(Samoli et al. 2005). At European level, Directive 2008/50/EC on ambient air quality and cleaner air for 

Europe requires Member States to limit the exposure of citizens to the airborne particles known as PM10. 

The legislation sets limit values for exposure, which had to be met by 2005 covering both an annual 

concentration value (40 μg/m3), and a daily concentration value (50 μg/m3) that must not be exceeded 

more than 35 times in any calendar year. Despite the commitment of the European countries to comply 

with EU air quality limit values for airborne particles PM10, some Member States located at the 

Mediterranean Sea like Italy, Spain, Portugal, Cyprus have so far failed to effectively tackle excess PM10 

emissions due to important contribution of North-African intrusions, which increase remarkably the 

PM10 natural concentrations. Therefore, it is necessary a deep characterization of the main PM10 

pollution sources to handle these exceedances.  

With this aim, receptor models based on multivariate statistical methods are widely applied to identify 

and to quantify air pollutants at a receptor location. Two of the models developed by the United States 

Environmental Protection Agency (U.S.EPA) are the UNMIX (Henry 2000; Henry 2003) and the Positive 

Matrix Factorization (PMF) (Paatero and Tapper 1994; Paatero 1997) methods for use in air quality 

management. These receptor models have been widely used to apportion particulate matter sources by 

characterizing the inorganic component of the particulate matter (Ramadan et al. 2000; Qin et al. 2002; 

Song et al. 2006; Viana et al. 2008; Oanh et al. 2009; Vedal et al. 2009; Mooibroek et al. 2011; Sahu et al. 

2011; Yubero et al. 2011; Pant and Harrison, 2012) although their application to organic compounds like 

polycyclic aromatic hydrocarbons is more limited and recent (Lee et al. 2004; Park and Kim 2005; 

Shrivastava et al. 2007; Callén et al. 2009; Dutton et al. 2010; Okuda et al. 2010; Wingfors et al., 2011) 

due to the more complex nature of PAH and the low concentrations at which these pollutants are found in 

the atmosphere (EU, 2001; Ravindra et al., 2008) in comparison to other classical pollutants like SO2, 

NO2. 

In this paper, the airborne PM10 of an urban area located in a Mediterranean country (Zaragoza, Spain) 

was apportioned by two receptor models (UNMIX and PMF). This work was focused to provide a better 

understanding of the sources affecting the PM10 and to assess the influence of organic and inorganic 

markers on the PM10 apportionment by comparing two sampling campaigns: a) The 2001-2009 campaign 



in which the PM10 was characterized regarding polycyclic aromatic hydrocarbons (PAH) contained in the 

particle phase and water-soluble ions. b) The 2003-2004 campaign in which the PM10 composition was 

apportioned concerning PAH in gas+particle phases, trace elements and water soluble ions as mentioned 

in a previous article (Callén et al. 2009).  

Experimental 

Study area and sampling description  

The study was performed in Rio Ebro Campus located in a medium-size city, Zaragoza in the North-East 

of Spain (41°39′49.38″N; 0°53′16.68″W). The sampling site is close to a heavy traffic motorway 

(approximately 50 m), several industrial parks, four paper factories and two waste water treatment plants 

located (Callén et al. 2008a) in the surroundings of the city (Figure 1). In addition to these local pollution 

sources, domestic heating systems, agricultural burning, wood combustion and the influence of  thermal 

power stations could also contribute to PAH emissions. 

Regarding the climate, Zaragoza is located in a wide basin surrounded by mountains and affected by a 

typical cold and dry wind called Cierzo blowing from the NW.  Zaragoza is often characterized by a 

“continental” climate with warm, dry summers reaching up to 40ºC and cold winters (usually 0 to 10ºC) 

showing high thermal contrasts. The rainfall is scarce and centres in spring.  

Samples were collected by using a Graseby Andersen high-volume air sampler (1.13 m3/min) provided 

with a PM10 cut off inlet to collect particulate phase on a Teflon-coated, fibre-glass filter (0.6 m pore 

size; 20.5 cm × 25.5 cm) (Callén et al. 2008a, 2008b). Samples of 24 hours were collected during four 

sampling periods: every two weeks from July 12, 2001 to July 26, 2002, every week from April 7, 2003 

to July 5, 2004, during consecutive days from May 23 to June 6, 2008 and from January 13 to 27, 2009 

collecting a total of 112 samples covering the seasonal variations over several years. The meteorological 

conditions were provided by the AULA-DEI (CSIC). The PM10 was determined by gravimetric method 

after conditioning the filter according to EN12341:1998. More details regarding the sampling site and 

procedure were given in previous articles (López et al. 2005; Callén et al. 2008b). 

Analyses of water soluble ions 

Sample extraction 

One-eighth of the filter was cut in small pieces and extracted by ultrasonic bath for 30 minutes in 15 mL 

of Milli-Q water. The extract was filtered through a cellulose acetate membrane filter (0.22 m pore size 



and 30 mm filter diameter) and rinsed up to a final volume of 15 ml for further ion analysis (Callén et al. 

2012). 

Analytical technique 

Analyses of anions (Cl-, NO3
-, SO4

2-, PO4
3-) and cations (Na+, K+, Mg2+, Ca2+) were carried out by a 

Dionex ICS2000 ion chromatography system and a conductivity detector with Chromeleon version 

6.60SP2 software (Callén et al. 2009). The anion and cation methods used the AS17 analytical column ( 2 

mm x 250 mm) and the CS17 analytical column (3 mm x 250 mm), respectively. An eluent suppressor 

working at 19 mA (anions) and 62 mA (cations) was placed before the detector in order to prevent 

saturation by the background signal. The sulphate concentration of marine origin, mSO4
2- was determined 

indirectly by considering the Na+ soluble concentration according to the ratio: mSO4
2-/Na+= 0.25 in 

weight (Duce et al. 1983). The non-sea-salt-sulphate, nmSO4
2-, generally of anthropogenic origin, was 

obtained by subtracting the mSO4
2- concentration from the totalSO4

2- concentration value. The ions 

quantification was carried out by using standards mixtures from respective ions at different 

concentrations. 

PAH analysis  

The following PAH: phenanthrene (Phe), anthracene (An), 2+2/4-methylphenanthrene (2+2/4MePhe), 9-

methylphenanthrene (9MePhe), 1-methylphenanthrene (1MePhe), 2,5-/2,7-/4,5-dimethylphenanthrene 

(Dimephe), fluoranthene (Flt), pyrene (Py), benzaanthracene (BaA), chrysene (Chry), 

benzobfluoranthene (BbF), benzokfluoranthene (BkF), benzoepyrene (BeP), benzoapyrene (BaP), 

indeno1,2,3-cdpyrene (IcdP), dibenzoa,hanthracene (DahA), benzoghiperylene (BghiP) and 

coronene (Cor) were quantified by gas chromatography mass-spectrometry mass-spectrometry detection 

(GC-MS-MS) according to a previous publication (Callén et al. 2008b). Briefly, samples were extracted 

by Soxhlet for 24 hours with dicloromethane (DCM) after the addition of a surrogate deuterated solution 

(An-d10, BaP-d12, BghiP-d12) to account for any losses of analytes during sample treatment. Samples were 

eluted through a silica gel column with DCM to finally exchange the solvent to hexane. P-terphenyl 

native was added as internal standard previous to GC-MS-MS quantification as it is absent in air samples 

and shows a physical and chemical behavior similar to PAH in pretreatment and chromatographic 

separation. For quantitative determinations a set of standard mixtures of PAH were spiked with the same 

surrogate deuterated solution used for samples and average response factors were calculated for all 

analytes with respect to the closest deuterated standard eluted in the chromatogram.  



Quality control and quality assurance  

Field blank determinations were used for background correction on the sampled filters and the detection 

and quantification limits were determined according to three and ten times the blank standard deviation 

(ions: the lowest detection limit for SO4
2-: 0.074 mg L-1, the highest detection limit for Na+: 0.530 mg L-1; 

PAH: the lowest detection limit for BaA and Chry: 6 pg m-3 the highest detection limit for Phe:110 pg m-

3). Analyses of standard reference materials, SRM1944 and SRM1649a provided by the National Institute 

of Standards and Technology (NIST), were carried out in order to check the analytical accuracy and 

precision of ions and PAH quantification. Measured values were satisfactorily comparable to certified 

values with deviations lower than 20% for PAH (with the exception of Chry, probably due to the 

interference of triphenylene (40%)) and lower than 16% for ions.  

Models 

Table 1 shows a summary of the mean concentrations of the different chemical species analysed, the 

standard deviation, and the minimum and maximum concentrations along the sampling as well as the 

meteorological conditions used as input data for the two models. Each model has its advantages and 

disadvantages but basically, both models are based on the mass balance principles although they use two 

different mathematical approaches to provide a solution. UNMIX determines the edges in the dataset, 

whose number and direction depend on the number of species chosen for the model. UNMIX incorporates 

the algorithm “NUMFACT” that estimates the number of factors in the data using principal component 

analysis on randomly sampled subsets of the original data (Henry, 2003). PMF derives a solution that 

minimizes an object function, Q, which is determined based on the uncertainties associated with 

individual measured data subject to non-negative constraints (Polissar et al., 2001), frequently resulting in 

a more physically interpretable result. These features make that PMF model has been widely used for 

source apportionment of airborne particulate matter and total PAH in the last years (Moon et al., 2008; 

Viana et al., 2008; Callén et al., 2009; Okuda et al., 2010; Ma et al., 2010; Sofowote et al., 2011; 

Vestenius et al., 2011; Wingfors et al., 2011) . 

In this work, the same version of the models (UNMIX 6.0 and PMF 1.1 available at United States 

Environmental Protection Agency (US-EPA) and the same considerations than in the previously reported 

article (Callén et al. 2009) were taken into account in order to compare results.  

Input data for the UNMIX model:  



In the UNMIX model, values equal to one half the analytic detection limits were used in source 

apportionment modeling for species with concentrations below the detection limit. All monitoring data 

were included in the model. The fitting species were chosen using the select initial species function and 

the suggesting more species function. Species having a signal/noise ratio greater than 2 and a minimum 

R2 of 0.8 were used to discern the sources. Good edge species obtained by plotting the PM10 mass versus 

species concentration were also chosen to find minimum possible solution (Henry, 2003; Hu et al., 2006). 

Numerous attempts were made in order to resolve the number of sources using various sets of fitting 

species. Additional species were included to test the stability of the solution and determine if this measure 

could enhance the number and resolution of sources. Specific variances (SV>0.5) allowed rejecting three 

variables: Cl-, Na+ and Phe. In general, model inputs of four and five sources were obtained. Models 

identifying five sources were discarded due to negative factors obtaining as “optimal solution” four 

sources by including 17 species (PM10, nmSO4
2-, K+, Ca2+, 2+2/4MePhe, 9MePhe, 1MePhe, DiMePhe, 

Flt, Py, Chry, BbjkF, BeP, BaP, IcdP+DahA, BghiP, Cor) with the highest correlation between predicted 

and measured concentrations of PM10. The model was set to consider PM10 as the total mass. The 

optimal solution showed a correlation coefficient (R2) of 0.87 with a minimum signal to noise ratio of 

3.94, fulfilling the requirements of the model. The uncertainties were calculated by Unmix using a 

bootstrap procedure re-sampling the data 100 times.  

Input data for the PMF model 

The PMF model used additionally the uncertainties matrix which was calculated by considering the 

detection limit for each variable and the error after comparing results with certified values from SRM. 

The PMF was run in robust mode and different runs were performed in order to obtain the optimal 

solution by modifying the species category: strong, weak according to signal/noise ratios and the factors 

chosen (3 and 10 factors). The election of variables and the optimal number of factors was conditioned by 

the signal to noise ratio (S/N), the convergence of results between the Q robust and Q true, the 

distribution of residuals for individual compounds and the scatterplots of predicted mass versus the actual 

mass. An optimal solution with 8 factors was obtained by including a weak (Phe) and 22 strong variables 

(PM10, Cl-, NO3
-, nmSO4

2-, Na+, K+, Ca2+, 2+2/4MePhe, 9MePhe, 1MePhe, DiMePhe, An, Flt, Py, BaA, 

Chry, BbjkF, BeP, BaP, IcdP+DahA, BghiP, Cor). All samples were included in the model and 7% of the 

extra modelling uncertainty was considered. The theoretical Q value was 1392, the robust Q was 1481.34 

and the true Q was 1486.50. The PMF was run with 8 factors, 50 random starting points and with random 



seed equal to rand as well as with different random seed values. Across the 6 runs with different initial 

seeds the Q value had a coefficient of variation (CV) less than 0.0005% for the eight-factor solution with 

minimum variations in the factor profiles suggesting a stable solution. The statistical uncertainties in the 

modelled solution were estimated by a bootstrapping technique running a total of 200 bootstrap, with a 

minimum R-value for base-boot factor mapping of 0.6, finding that all runs converged. Residuals were 

also checked to be between -3 and 3 for all species for at least 84% of the observations. 

Conditional probability function. 

More information regarding the source contribution from a given wind direction was obtained by the 

conditional probability function (CPF) (Kim and Hopke 2004).  

        (1)  

The CPF is defined with the above equation where m is the number of occurrence from wind sector  

that exceeded the threshold criterion (75th percentile), and n is the total number of data from the same 

wind sector. In this study, 12 sectors were used (=30º). 

Results and discussion 

Comparison between UNMIX and PMF models for the 2001-2009 sampling 

UNMIX identified four sources: heavier-oil combustion traced by IcdP+DahA, BghiP and Cor 

(representing 6.2% (2.05g/m3) of the experimental PM10) (Lee et al. 2004), coal combustion traced by 

2+2/4MePhe, 1MePhe, DiMePhe, Flt, Py, Chry (13.1%; 4.3 g/m3), industrial emissions related to light-

oil combustion traced by BbjkF, Chry, BeP and BaP (2.5%; 0.83 g/m3) (Bari et al. 2009) and soil 

resuspension traced by nmSO4
2- and Ca2+ (63.5%; 20.9 g/m3) .  

PMF allowed distinguishing eight factors: marine factor (Na+ and Cl-) (6.9%; 2.2 g/m3), heavier-oil 

combustion (0.4%; 0.12 g/m3), light-oil combustion (5.4%; 1.77 g/m3), coal combustion (0.8%; 0.25 

g/m3), soil resuspension (57.0%; 18.5 g/m3), traffic emissions (BbjkF, IcdP+DahA, Phe, 9MePhe) 

(Bari et al. 2009) (18.5%; 6.1 g/m3), biomass combustion (NO3
-, K+ and nmSO4

2-)(Jeong et al. 

2008)(3.2%; 1.07 g/m3) and natural gas combustion (BaA, Chry, IcdP+DahA) (Bourotte et al. 2005; 

Khalili et al. 1995) (2.9%; 0.94g/m3).  

Four common sources were identified by the two models: resuspension, light-oil combustion, coal 

combustion and heavier-oil combustion. For both models, the soil resuspension factor was the main 

source contributing to the PM10 followed by the coal combustion factor in the UNMIX model and by the 



traffic emissions factor in the PMF model. Figure 2 shows the percentage of species apportioned to each 

PM10 source identified by the UNMIX and the PMF models.  

Both models provided good results to reproduce experimental PM10 concentrations (Figure 1S, 

Supplementary Information) with similar slopes and the highest correlation coefficient for the PMF model 

(UNMIX (R2= 0.85, slope=1.00, intercept=4798 ng/m3), PMF (R2=0.93, slope=1.00, intercept=1622 

ng/m3). Both models underestimated the PM10 but PMF was able to explain 94% of the experimental 

PM10 (31.05 g m-3) whereas UNMIX explained the 85% (28.06 g m-3) (Table 1S, Supplementary 

Information). The correlation coefficients for the different species were quite good for both models, 

although the PMF showed two exceptions: Phe (R2=0.32), which was considered as a weak variable and 

Na+ (R2=0.36). 

The temporal contribution of each source and the conditional probability function (CPF) according to the 

season: cold (winter and autumn) and warm (summer and spring) are showed in Figure 3 for both receptor 

models. The soil resuspension factor presented higher concentrations during the warm season with a 

seasonal trend statistically significant at 99% level with the PMF model indicating a typical profile of 

Mediterranean countries, which are affected by a combination of local soil and episodes of North-African 

intrusions favoured by arid weather, high temperature, scarce rain and stable atmospheric pressure. These 

results corroborated results previously reported by other authors (Bogo et al. 2003; Artiñano et al. 2009), 

suggesting that the higher values of particulate matter found in summer with respect to winter are in 

agreement with the abundance of resuspended material during the warm season due to the effect of 

meteorological conditions. In fact, a positive correlation coefficient was found between the soil 

resuspension factor obtained by the PMF model and the average temperature for each sampling date 

(R2=0.62). The CPF indicated that the soil resuspension factor was highly affected by the SW winds, 

indicating more atmospheric transport from that direction (Figure 3). By considering the markers used to 

identify this source, Ca is a marker for cement dust (Kim et al. 2004) and the SW direction was mainly 

influenced by quarries and an important cement plant. Moreover, different mountains of limestone and 

dolomite are located along the SW and SE directions. Therefore, construction activities, unpaved road, 

soil resuspension produced by traffic and long-range transport from African dust during the warm season 

could favour this factor. In addition, the ageing of anthropogenic SO2 emissions from combustion 

processes, enhanced by atmospheric photochemical activity, also could contribute to this factor showing a 

double origin: natural and anthropogenic. A total of five dates, three of them produced during summer 



season and corresponding to PM10 exceedances associated with North-African intrusions and regional 

episodes, were remarked on Figure 3.  

The other three common factors obtained by both models and the other four additional factors identified 

by the PMF model, presented higher concentrations during the cold season with a seasonal behaviour 

statistically significant at 99% level favoured by meteorological conditions such as low ambient 

temperature, low mixing layer and low photochemical degradation and also favoured by the consume of 

fossil fuels used for domestic heating. This was reflected in most of the highlighted dates of Figure 3 

coinciding with high PAH concentrations and indicating the most negative impact of anthropogenic 

pollution sources during the cold season. These factors showed the NE and N directions as prevailing 

directions (Figure 3). Whereas in the case of the marine factor, its origin was mostly natural due to the 

influence of the Mediterranean and Cantabrian Seas and to different salt mines located in Monzón (NE), 

Huesca province (N) and Remolinos (NW), in the case of the other factors, the influence of anthropogenic 

sources was reflected with special relevance of the paper industry emissions, the industrial parks, the 

highway, the roads, the airport and the different power stations located in the N, S and SE directions, one 

of them with 1050 MW placed in Teruel and using coal as fuel. In the case of the natural gas factor, its 

contribution was due not only to industrial emissions but also to domestic heating systems because 

natural gas is the main fuel used for this purpose in Zaragoza.  

Comparison of receptor models between 2001-2009 and 2003-3004 sampling campaigns 

Before the comparison, a brief summary was reported in order to remind the reader on the PM10 

apportionment for the 2003-2004 campaign (Callén et al. 2009): 1) The UNMIX model discerned a total 

of five sources: industry+traffic (traced by Cu, Cr, Pb, Mn, Fe and Zn; 9%), evaporative emissions 

(1MePhe, DiMePhe, 2+2/4MePhe, 9MePhe; <1%), heavy-duty vehicles (IcdP+DahA, BghiP, Cor; 15%) 

named as heavier-oil combustion in this paper, marine (Na+, Mg2+, Cl; 10%) and crustal 1 (Ca2+, nmSO4
2-,  

Mg2+; 65%) named as soil resuspension in this paper. 2) A total of eight sources were distinguished by the 

PMF model: traffic (Ba), industry+traffic (2%), heavy-duty vehicles (7%), biomass combustion (NO3
-, 

NH4
+, K+; 6%), evaporative emissions (18%), fossil fuel combustion (6%), marine (7%), crustal 1 (39%) 

and crustal 2 (Sr and Al; 1%).  

It is worthy explaining that the main differences between the two campaigns were: 1) a higher number of 

samples was considered in this work (2001-2009 campaign)(n=112 samples) versus the previously 

reported (2003-2004 campaign)(n=50 samples). 2) PAH and ions in the particle phase were analysed in 



this sampling campaign whereas in the previous one, PAH in both (gas and particle) phases were 

considered as well as ions and trace elements in particle phase.  By considering a different number of 

samples and different markers could affect not only the source contributions due to the weight of the 

different pollution sources for both sets of data but also the identification of individual or blending of 

sources. Therefore, rather than the comparability in the contribution of the pollution sources, this section 

was focused on the similarity of identified sources by using organic and inorganic markers.  

For both models and campaigns, partial natural sources related to soil resuspension were the main factor 

contributing to the PM10 (Table 2). It is worth saying that the PMF model showed a slight advantage for 

the 2003-2004 campaign so that the introduction of trace metals allowed distinguishing two crustal 

sources: one associated with soil resuspension and African intrusions and the other one related to clay 

minerals, which are very frequent in Aragón. Good correlations were obtained for the soil resuspension 

factor among the different models and set of samples, with the highest correlation between the UNMIX 

2001-2009 and the 2001-2009 PMF models (R2=0.93) (Figure 2Se), Supplementary information). 

Concerning the other natural source: the marine component, similar mean concentrations were obtained 

by the different models and sets of data, and the best correlation (R2=0.90) (Figure 2Sh), Supplementary 

information) was obtained between the 2001-2009 PMF and the 2003-2004 UNMIX models.  

Regarding the anthropogenic sources for both sets of samples, the heavier-oil combustion factor, called as 

heavy-duty vehicles in the 2003-2004 campaign was the anthropogenic pollution source showing the 

highest correlation between the two sampling campaigns for the UNMIX model (R2=0.92) and between 

the two models for the 2001-2009 campaign (R2=0.96) (Figure 2Sj) 2Sk), Supplementary information). 

This factor associated with the higher molecular weight PAH, IcdP+DahA, BghiP and Cor and mainly 

collected in the particle phase seemed not to be affected neither by the receptor model nor by the 

sampling campaign.  

One of the advantages of collecting PAH in the gas and the particle phases was that, an additional 

anthropogenic pollution source was estimated for the 2003-2004 campaign. This source was the 

evaporative emissions associated with Phe and ∑MePhe and mainly captured in the gas phase. In the 

2001-2009 campaign, this source could be partially included in the coal combustion factor where the 

contribution of different MePhe was considerable. However and because PAH in the gas phase were not 

collected, the contribution of this factor was not representative for the 2001-2009 campaign. Therefore, a 

possible limitation of sampling PAH, only in the particle phase, is that it could lead to PAH 



underestimation, especially the most volatile PAH, not being discerned the evaporative emissions as an 

individual source for the 2001-2009 campaign due to the lower impact of this source and/or blending of 

pollution sources. 

One of the most important differences between the two sampling sets was related to the industry+traffic 

and the fossil fuel factors. The industry+traffic source was associated with trace metals for the 2003-2004 

campaign whereas for the 2001-2009, both models identified a light-oil combustion factor mainly 

associated with specific PAH. The lowest correlations obtained among these factors for the different 

campaigns confirmed the non-comparability of sources due to the use of different markers and not 

including gas phase PAH in the 2001-2009 campaign. Nevertheless, a good agreement was obtained by 

regressing the different models for the same campaigns (Figure 2Sq), Supplementary 

information)(R2=0.91). With regard to the fossil fuel combustion factor and by checking the different 

chemical compounds involved on this source, it seemed to be that the natural gas source was included in 

this factor in the 2003-2004 PMF model, whereas in the 2001-2009 PMF model, the coal combustion 

factor and the natural gas were considered separately. Nevertheless, a very low correlation was found 

when the coal+gas natural source was plotted against the fossil fuel combustion factor for the different 

campaigns indicating consequent differences and non-comparability between the chemical profiles for 

these sources. This lack of comparability could be attributed to the different number of samples 

considered for both campaigns, which could have different impact on the source contribution. The main 

advantage of the PMF model for the 2001-2009 campaign was the remarkable influence of traffic in the 

sampling point reflected by the traffic emissions factor (organic markers), whereas in the 2003-2004 

campaign, the model could discern two components related to traffic: tyre and industry+traffic favoured 

by the introduction in the model of inorganic tracers, which allowed a higher specificity in the source 

apportionment. In any case, the PMF model allowed discerning a higher number of anthropogenic 

pollution sources than the UNMIX model independently of the campaign so that this last model could be 

used as a first estimation of pollution sources in the PM10 apportionment. This higher capacity of 

resolving sources for the PMF model could be also explained by how the PMF and UNMIX analyses 

were conducted because most of the chemical constituents were included for the PMF model while some 

of them were excluded in the UNMIX modelling.  

Finally, an inter-comparison was also performed between the different models and campaigns with regard 

to the total PM10 modelled (Figure 3S, Supplementary information). It was observed that good 



correlations (R2=0.82-0.85) were obtained, confirming a satisfactory characterization of the sources 

affecting to the PM10 of Zaragoza despite the use of different markers.  

Conclusions 

The particulate matter of Zaragoza city was apportioned by two multivariate receptor models: UNMIX 

and PMF during two sampling periods (2001-2009 and 2003-2004, previously reported) in order to 

improve knowledge regarding receptor models and to compare the influence of organic and inorganic 

markers on the PM10 pollution sources.  

The similarities between both sampling campaigns were: 1) both models were able to identify the main 

pollution sources contributing to the PM10 in accordance to the sampling location. 2) Partial natural 

sources associated with soil resuspension contributed majority to the PM10 with high concentrations 

during the warm season independently of the model and campaign. 3) The PMF model proved to be more 

specific in the source identification discerning a higher number of identified sources than the UNMIX 

model. 4) Despite different organic and inorganic markers were used for both campaigns, similar 

anthropogenic pollution sources related to combustion were identified including coal, industry, traffic.  

The main differences between both campaigns were: 1) evaporative emissions were not identified during 

the 2001-2009 campaign due to only PAH in the particle phase were collected. This was a possible 

limitation of sampling PAH only in the particle phase. 2) The use of trace metals as markers allowed 

distinguishing another crustal component not identified during the 2001-2009 campaign. 3) The industry 

and traffic factors were associated to inorganic markers in the 2003-2004 campaign and the PMF model 

discerned an additional component related to traffic (brake abrasion factor) whereas in the 2001-2009 

sampling, the main markers for sources related to light-oil combustion and traffic emissions were organic 

markers, in particular PAH. However, it was confirmed that PAH in the particle phase and ions were 

good organic and inorganic markers, respectively to apportion most of the anthropogenic pollution 

sources in the airborne PM10 of Zaragoza. 

Concerning the two models, UNMIX and PMF, the UNMIX model could be used as a first approximation 

to identify the main pollution sources of the PM10 whereas the PMF model seemed to be more adequate, 

specific and successful in order to discern a higher number of sources in the apportionment of airborne 

PM10 in Zaragoza city. It was probably due to one of the strengths of this model, which weights species 

concentrations by their analytical precisions, corroborating the better adequacy of the PMF model versus 

the UNMIX model, as reported previously in the short campaign. The differences in how the PMF and 



UNMIX analyses were conducted could also explain the different number of sources identified by each 

model because the number of chemical constituents introduced by the PMF was higher than the ones 

introduced by the UNMIX modelling.  
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Table 1. 

Average PM10, ions, PAH concentrations and meteorological parameters during 2001-

2009 sampling in Zaragoza (N=112). 

 Average 
Standard 
deviation Minimum Maximum 

PM10 (g/m3) 32.86 15.18 6.64 74.85 
Cl- (g/m3) 0.73 0.77 <l.d. 4.21 
NO3

- (g/m3) 2.86 2.75 0.17 15.38 
nmSO4 

2-(g/m3) 3.58 2.49 0.17 10.28 
Na+ (g/m3) 0.65 0.41 0.04 2.99 
K+ (g/m3) 0.29 0.21 <l.d. 1.30 
Ca2+ (g/m3) 1.18 0.64 0.13 3.52 
Phe (ng/m3) 0.14 0.16 0.03 1.27 
An (ng/m3) 0.02 0.04 0.01 0.32 
MePhe24 (ng/m3) 0.04 0.06 <l.d. 0.38 
MePhe9 (ng/m3) 0.04 0.04 0.01 0.30 
MePhe1 (ng/m3) 0.04 0.04 <l.d. 0.19 
DiMePhe (ng/m3) 0.08 0.09 <l.d. 0.43 
Flt (ng/m3) 0.30 0.34 0.01 1.57 
Py (ng/m3) 0.36 0.35 0.02 1.64 
BaA (ng/m3) 0.37 0.53 <l.d. 3.03 
Chry (ng/m3) 0.47 0.60 <l.d. 3.32 
BbjkF (ng/m3) 0.76 0.99 0.01 5.87 
BeP (ng/m3) 0.33 0.40 <l.d. 2.71 
BaP (ng/m3) 0.33 0.40 <l.d. 1.94 
IP+DahA (ng/m3)  1.00 1.14 <l.d. 6.49 
BghiP (ng/m3) 0.84 0.88 <l.d. 4.61 
Cor (ng/m3) 1.03 1.31 <l.d. 7.57 
Precipitation 
(mm/day) 1.26 4.20 <l.d. 25.6 
Temperature (ºC) 14.6 7.44 0.49 29.3 
Relative humidity (%) 65.4 13.0 37.2 97.1 
Solar radiation (W/m2) 210 105 20.5 365 
Wind velocity (m/s) 3.11 1.88 0.70 9.70 
Wind direction (º) 232 89 12 357 
l.d. = detection limit 
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Table 2 

Source contributions expressed in g/m3 and percentage (between brackets) calculated by 

the two receptor models, Unmix and PMF, for the two sampling campaigns carried out in 

Zaragoza. (2003-2004, n=50 samples, 2001-2009, n=112 samples). 

 
 

 Unmix0304 PMF0304 PMF0109 Unmix0109 
Industry+traffic 2.90 (9%) 0.57 a (1.8%)   
Light-oil comb.   1.77 (5.4%) 0.83 (2.5%) 
Heavier-oil comb.b 4.84 (15%) 2.25(7.0%) 0.12(0.36%) 2.05 (6.2%) 
Marine component 3.22 (10%) 2.20 (7.0%) 2.25 (6.9%)  
Evaporative emissions 0.32 (<1%) 5.65 (18%)   
Soil resuspensionc 20.95 (65%) 12.56 (39.0%) 18.49 (57.0%) 20.90 (63.5%) 
Fossil fuel comb.d  1.80 (6%) 0.25 (0.8%) 4.30 (13.1%) 
Crustal 2  0.45(1%)   
Biomass combustion  2.10 (6%) 1.07 (3.2%)  
Traffic emissions   6.07 (18.5%)  
Natural gas   0.94 (2.8%)  
PM10 modelled 33.11 (103%) 27.60 (86%) 31.05 (94%) 28.06 (85%) 
PM10 experimental 32.24 32.24 32.86 32.86 
a The traffic factor associated with Ba in the PMF0304 model was added to the 

industry+traffic factor. 
b. Heavier-oil combustion factor was named as heavy-duty vehicles in the Unmix0304 

and PMF0304 

c. Soil resuspension factor was named as crustal 1 in the Unmix0304 and PMF0304 
d. Fossil fuel combustion factor was compared to the coal combustion factor obtained by 

the Unmix0109 and PMF0109 models. To consider that in the Unmix0304, PMF0304 
and Unmix0109, the natural gas source was also included in this factor. 
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Figure 1. Location of the sampling point in Zaragoza (ZGZ= sampling point) 
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Figure 2. Percentage of species apportioned to each source obtained by both 
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receptor models. For a) the Unmix, b) and c) the PMF model in the 2001-
2009 campaign carried out in Zaragoza.  
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Figure 3. Source contribution time series and wind direction using CPF. Results are shown by each factor obtained by the PMF and Unmix models 

for the 2001-2009 campaign carried out in ZGZ during the warm and cold seasons. 
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SUPPLEMENTARY DATA 

 

Table 1S. Concentration of each chemical component in ng/m3 (g/m3 for the PM10, 
nmSO4

2-, K+, Ca2+ and Na+) obtained experimentally and by the 
corresponding model: Unmix and PMF for the 2001-2009 sampling 
campaign carried out in Zaragoza (R2= correlation coefficient). 

. 
    Unmix     PMF     
 Experimental Modelled   Modelled   

      R2 % Error   R2 % Error 
PM10 32.86 28.06 0.85 -14.6 31.05 0.93 -5.8 

nmSO4
2- 3.58 4.24 0.82 18.5 3.90 0.89 8.2 

K+ 0.29 0.31 0.68 8.3 0.32 0.70 9.1 

Ca2+ 1.18 1.14 0.71 -3.5 1.14 0.82 -3.5 
2+2/4 MePhe 0.05 0.08 0.75 69.8 0.06 0.52 23.5 

9 MePhe 0.04 0.04 0.74 -8.3 0.08 0.67 45.3 
1 MePhe 0.04 0.04 0.87 14.7 0.04 0.82 6.3 
DiMePhe 0.08 0.08 0.80 -8.6 0.07 0.75 -22.8 

Flt 0.30 0.33 0.87 9.4 0.38 0.91 19.1 
Py 0.36 0.24 0.88 -33.2 0.37 0.98 2.4 

Chry 0.47 0.48 0.82 2.1 0.49 0.89 3.9 
BbjkF 0.76 0.74 0.94 -2.6 0.80 0.98 4.0 
BeP 0.33 0.33 0.92 0.2 0.33 0.99 -2.1 
BaP 0.33 0.37 0.94 11.2 0.39 0.95 13.2 

IcdP+DahA 1.00 1.14 0.88 14.4 1.07 0.94 6.9 
BghiP 0.84 0.86 0.93 2 0.79 0.99 -5.9 

Cor 1.03 1.16 0.94 12.4 1.12 0.95 7.3 
BaA 0.37    0.40 0.99 7.0 

Cl- 0.73    0.81 0.98 10.2 

NO3
- 2.86    2.87 0.97 0.3 

Phe 0.14    0.13 0.32 -1.5 
An 0.02    0.03 0.62 20.3 

Na+ 0.65       0.42 0.36 -56.8 
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Figure 1S. Plot between the experimental and the modelled PM10 (ng/m3) 

obtained by the Unmix and the PMF models for the 2001-2009 
sampling campaign carried out in Zaragoza.  
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q) r) 
 
Figure 2S. Plot between the common sources (ng/m3) obtained by the two receptor models: Unmix and PMF and by the two sampling 

campaigns: 2003-2004 and 2001-2009 carried out in Zaragoza.  
 

 
 

  



 33

 

y = 1.01x + 3619
R2 = 0.82

0

10000

20000

30000

40000

50000

60000

70000

0 20000 40000 60000 80000

PMF2003-2004

P
M

F
20

01
-2

00
9

 

y = 0.80x + 376.8
R2 = 0.85

0

10000

20000

30000

40000

50000

60000

0 20000 40000 60000 80000

Unmix2003-2004

U
nm

ix
20

01
-2

00
9

 

y = 0.89x + 2684
R2 = 0.82

0

10000

20000

30000

40000

50000

60000

0 20000 40000 60000 80000

PMF2003-2004

U
nm

ix
20

01
-2

00
9

 



 34

y = 0.89x + 1997
R2 = 0.83

0

10000

20000

30000

40000

50000

60000

70000

0 20000 40000 60000 80000

Unmix2003-2004

P
M

F
20

01
-2

00
9

 
 

Figure 3S. Plot between the modelled PM10 (ng/m3) obtained by the different 
models: Unmix and PMF and by the sampling campaigns: 2003-

2004 and 2001-2009 carried out in Zaragoza. 
 

 
 


