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ABSTRACT

An adverse outcome pathway (AOP) is a sequence of key events from a molecular-level 

initiating event and an ensuing cascade of steps to an adverse outcome with population level 

significance.  To implement a predictive strategy for ecotoxicology, the multiscale nature of an 

AOP requires computational models to link salient processes (e.g., in chemical uptake, 

toxicokinetics, toxicodynamics, and population dynamics).  A case study with domoic acid was 

used to demonstrate strategies and enable generic recommendations for developing 

computational models in an effort to move toward a toxicity testing paradigm focused on toxicity 

pathway perturbations applicable to ecological risk assessment.  Domoic acid, an algal toxin with 

adverse effects on both wildlife and humans, is a potent agonist for kainate receptors (ionotropic 

glutamate receptors whose activation leads to the influx of Na
+
 and Ca

2+
).  Increased Ca

2+

concentrations result in neuronal excitotoxicity and cell death primarily in the hippocampus, 

which produces seizures, impairs learning and memory, and alters behavior in some species.  

Altered neuronal Ca
2+

 is a key process in domoic acid toxicity which can be evaluated in vitro.  

Further, results of these assays would be amenable to mechanistic modeling for identifying 

domoic acid concentrations and Ca
2+

 perturbations that are normal, adaptive, or clearly toxic.  In 

vitro assays with outputs amenable to measurement in exposed populations can link in vitro to in 

vivo conditions, and toxicokinetic information will aid in linking in vitro results to the individual 

organism. Development of an AOP required an iterative process with three important outcomes: 

a critically reviewed, stressor-specific AOP; identification of key processes suitable for 

evaluation with in vitro assays; and strategies for model development.   

Key words: Hippocampus, Neurobehavioral Algal Toxin Calcium 
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INTRODUCTION

Regulatory toxicology has relied largely upon whole-animal studies and measures of apical 

endpoints to quantify chemical exposure concentrations that result in different levels of effect 

[1].  In addition, classic toxicity studies have been used to assess dose-response relationships and 

estimate chemical concentrations that are unlikely to produce adverse outcomes.  Human health 

risk assessment focuses on minimizing individual-level adverse effects, whereas ecological risk 

assessments focus on population-level effects, and only in the case of threatened and endangered 

species are individual-level effects of concern.  Thus, adverse outcomes relevant for ecological 

risk assessment focus more frequently on development, survival, growth, and/or reproduction 

[2].  With thousands of manmade chemicals that need to be evaluated for regulatory purposes 

[3], obtaining whole-animal or population-level data is impractical, and a predictive strategy has 

been recommended by the National Research Council (NRC) based on in vitro toxicity assays 

which predict cellular level effects that can be extrapolated to effects on individuals [1].   

To implement a predictive strategy for ecological risk assessment, results from in vitro 

toxicity assays focused on cellular responses to molecular initiating events will need to be 

extrapolated to effects upon organisms and ultimately to populations.  A conceptual framework 

that links a molecular-level initiating event with adverse effects relevant for risk assessment has 

been called an adverse outcome pathway (AOP) [2,4].  The first step is to evaluate organism 

exposure to a chemical(s) in the environment.  This includes anthropogenic introduction of a 

chemical toxicant, or the natural formation of a toxin in the environment, and subsequent 

distribution (i.e., fate and transport) to individual organisms.  Once a chemical enters an 

organism, disposition of the toxic moiety to target cells must be understood as a chemical may be 

metabolized, resulting in metabolites that are more toxic than the original chemical.  After a toxic 
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chemical reaches a target tissue, a molecular initiating event occurs that results in a cellular 

response, which has been called a toxicity pathway (TP) [1].  Finally, the sequence of events 

between cellular response and adverse outcome upon an individual organism or population of 

organisms is an AOP.  Each of the steps described above requires review of the existing 

literature, articulation of what is known, and the identification of data necessary to inform 

regulatory management decisions. 

At the core of the NRC vision and predictive ecotoxicology lies the use of in vitro assays.

These assays will need to be developed to detect perturbations of normal functioning in a target 

cell/tissue.  They should be sensitive for testing a wide dose range, including low doses below a 

threshold for perturbation; doses with adaptive responses; and doses with adverse responses.  In 

order to provide a mechanistically sound basis for extrapolating in vitro assay results to in vivo 

responses, computational models will be needed that connect pathway perturbations with 

biological processes that occur at higher levels of organization (tissue, organism, and 

population).  This type of computational modeling in predictive ecotoxicology is still relatively 

limited and new models will be needed to fill specific gaps. 

Toxicology has a rich history of the use of AOP models, also known as exposure-dose-

response models and mode-of-action models, for improving risk assessment.  These are mostly 

chemical-specific and entail detailed descriptions of chemical disposition, i.e., toxicokinetics and 

toxicodynamics.  For example, a cancer risk assessment for vinyl chloride used a physiologically 

based toxicokinetic model to relate outcomes across various mammalian species with the rate of 

formation of the reactive epoxide metabolite in liver [5,6].  Computational models useful for 

ecological risk assessment include models developed to predict reproductive endpoints such as 

basal oocyte maturation in salmon (Oncorhynchus kisutch) [7]; and changes in the production of 
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vitellogenin (Vtg, a precursor to a major egg yolk protein) [8-10].  To predict the effect of 

hypoxia on Atlantic croaker (Micropogonias undulatus) fecundity, Murphy et al. [11] used model 

predictions of cumulative Vtg production and an assumption that cumulative Vtg production in 

Atlantic croaker is directly related to fecundity based on a statistical model relating fathead 

minnow plasma Vtg concentrations with changes in fecundity [12].  Fecundity can then be used 

as input into a population dynamic model to predict effects upon a population of fish [13].  

Models such as these will be needed to relate in vitro assay results to relevant environmental 

conditions and ecological endpoints in an AOP. 

As an extension of the toxicity testing principles described by the NRC [1] for ecological risk 

assessment, Workgroup 1 was asked to recommend strategies for how computational models of 

AOPs can be developed from the extant literature, and to anchor these strategies by developing a 

case study. The case study focused upon excitatory neurotoxicity mediated through chemical 

interactions with GABA ( -aminobutyric acid) and glutamate neurotransmitter systems  (Figure 

1).  In particular, we chose to use the algal toxin domoic acid because of its adverse effects on 

both wildlife and humans.  Recognition of the domoic acid environmental problem and extensive 

scientific study has been both recent and intense involving diverse scientific disciplines (e.g., 

oceanography, public health, toxicology, medicinal chemistry and ecology).  A rich peer-

reviewed literature base exists that can be mined for the development of an AOP for domoic acid, 

and the molecular initiating event and relevant ecological risk endpoints are known.  Throughout 

the case study, the following questions were kept in mind.  At what concentration will biologic 

perturbation(s) be likely to alter normal processes beyond adaptive capacities and lead to an 

adverse outcome?  What in vitro tests can be developed to evaluate pathway perturbations?  How 

can these in vitro test systems be described by computational modeling to better assess 
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perturbations across a wide range of concentrations?  What kinds of data are needed to connect 

TPs to an AOP? 

The ultimate goal of the case study was to demonstrate strategies that support 

recommendations for developing computational models of known AOPs that facilitate moving 

beyond the current toxicity testing paradigm focused on chemical-specific toxicity to a focus on 

biological system perturbations relevant for ecological risk assessment.  A nine-member 

workgroup was convened from disciplines of neurotoxicology, wildlife biology, ecotoxicology, 

and engineering to develop strategies for computational model development in support of 

predictive ecotoxicology.  The workgroup specifically developed: a strategy for systematically 

mining the literature for relevant information; strategies for constructing a conceptual framework 

for a multi-scale AOP model with integration of data/information from disparate sources; an 

approach to identify critical data needs for transforming a conceptual model framework into a 

dynamic, computational model; and a tractable research strategy for evaluating predictive 

capabilities of a model and refining it for utility in ecological risk assessment.  The purpose of 

the case study was to guide members through the process of developing practical strategies and 

recommendations.   

CASE STUDY 

Domoic acid is an amino acid originally isolated from the marine red alga (Chondria armata

Kutz.) in 1958 [14].  Domoic acid was later confirmed to be the causative agent in an accidental 

poisoning in 1987 on Prince Edward Island, Canada, when more than 100 people became ill and 

three people died after ingesting contaminated blue mussels, Mytilus edulis, [15].  The clinical 

symptoms of domoic acid poisoning included confusion and selective short-term memory loss.  

Thus, the term amnesic shellfish poisoning (ASP) was introduced [16].   The source of domoic 
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acid was traced to a bloom of marine diatoms from the genus Pseudo-nitzschia (PN) [17], and up 

to nine species of PN are potential domoic acid producers [18].  The 1987 poisoning on Prince 

Edward Island received considerable international attention in part because of the widespread 

occurrence of PN in temperate ocean regions and the recognition that domoic acid poisoning is 

likely a worldwide problem. In recent years, outbreaks of domoic acid have been documented in 

New Zealand [19], Japan [20], Denmark [21], Scotland [22,23], France [24], Spain [25,26], 

Portugal [27] and Ireland [28].  In North America, reoccurring outbreaks of domoic acid have 

occurred on the U.S. West Coast since 1991.  Outbreaks of domoic acid near Monterey Bay, 

California,USA, killed hundreds of brown pelicans (Pelecanus occidentalis), cormorants 

(Phalacrocorus penicillatus) and several species of marine mammals including California sea 

lions (Zalophus californianus) [29].

Toxicokinetics

The seabird and marine mammal deaths in addition to the human poisonings have focused 

attention on the penetration and persistence of domoic acid in marine food webs and the diverse 

chemical dosimetry that exists among organisms both within similar and different trophic levels.  

Among filter feeding invertebrates such as bivalves, most species appear to readily absorb 

domoic acid during ingestion of PN. However, profound interspecies differences exist in the 

elimination of domoic acid with some species such as mussels (Mytilus sp) and oysters 

(Crassostrea gigas) exhibiting elimination half-lives on the order of hours to a few days while 

other species such as scallops (P. magellanicus, P. maximus) and razor clams (Siliqua patula)

exhibit elimination half-lives of several months to years [30-34].  In other invertebrates such as 

decapod crustaceans and cephalopods, exposure occurs through predation on contaminated 

bivalves or crustaceans such as krill, with highest tissue levels of domoic acid typically occurring 
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in the hepatopancreas or digestive gland [35,36].  Because of the biological persistence of 

domoic acid in many invertebrate species, they serve to provide a source of domoic acid well 

beyond the time period of a PN outbreak, creating the potential for prolonged or repetitive 

exposures in higher trophic level species.  Interestingly, despite clear evidence for 

bioaccumulation, there have been no documented adverse effects of domoic acid on invertebrates 

[37].

A thorough understanding of domoic acid toxicokinetics within vertebrate species is lacking.  

Among vertebrate groups such as birds and mammals, there is little evidence to indicate domoic 

acid is metabolized to any significant extent.  Excretion is typically rapid and appears to occur 

primarily through urinary elimination [38,39].  In fish and shellfish, there is evidence to suggest 

domoic acid is metabolized to several different isomers – epi-domoic acid and isodomoic acid A 

and B [40,41].  However, these domoic acid derivatives are also naturally produced [42] and it 

remains to be definitely established whether biotransformation of domoic acid occurs. There are 

few detailed studies on the gastrointestinal absorption of domoic acid.  Indirect evidence based 

on the induction of neurological effects after oral dosing suggests that for most species domoic 

acid is at least partially absorbed from the gastrointestinal tract [43]. However, urinary 

elimination data for domoic acid during repeated dosing in rats indicated less than 5 % of the 

oral dose was being absorbed [44].  In naturally exposed fish such as the northern anchovy 

(Engraulis mordax), domoic acid accumulates in the liver with much lower levels found in 

muscle and brain tissue [45].  Northern anchovy and Pacific sardines (Sardinops sagax) collected 

simultaneously in Monterey Bay, California, weekly for one year revealed similar occurrence 

patterns of domoic acid in the viscera, however, anchovies consistently accumulated higher 

levels than the sardines [46].  The presence of domoic acid in the viscera was closely correlated 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t
to the presence of toxic diatom species in the water, suggesting that the toxin is not retained for 

long periods of time in the viscera following feeding on toxic cells (toxin levels in the viscera of 

fish were 250-1800 times higher than those found in body muscle tissue).  In Coho salmon 

(Oncorhynchus kisutch) administered an oral gavage dose of domoic acid (10 mg/Kg) the toxin 

was well absorbed from the gastrointestinal tract with the kidney having the highest peak tissue 

concentration of 9000 ng/g [47].  The bile:liver concentration ratio was 10:1 after 24 h dosing, 

suggesting biliary excretion may be an important elimination route in fish [47].  This latter 

finding may help explain earlier studies in mammals, which did not consider this elimination 

route and the possibility of significant first pass elimination by the liver via biliary elimination.  

In salmon, the brain and plasma concentrations of domoic acid were both very low after oral 

dosing and never exceeded 250 ng/g [47].  Intracoelomic injections of various doses of domoic 

acid to salmon indicated the fish were susceptible to excitatory neurotoxic effects, with a 

sensitivity comparable to mammals (EC50 = 2.6 to 5.6 µg/g fish weight) [47].  These findings 

suggest that the lack of evidence for large scale fish mortalities associated with PN outbreaks is 

more closely linked to toxicokinetic differences between fish and mammals than toxicodynamic 

differences.   

Toxicology

Individuals that were severely intoxicated during the 1987 poisoning incident presented 

clinical symptoms indicating the gastrointestinal tract and the cardiovascular and nervous 

systems were compromised. The primary neurological symptoms observed were seizures and 

loss of memory indicating neuronal hyperexcitability and excitotoxicity as the most probable TP 

for domoic acid. Histopathological hallmarks for deceased patients were neuronal death in 

several brain regions, among them the hippocampus, nucleus accumbus, thalamus, olfactory, 
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septal and subfrontal cortical areas. In the hippocampus, which plays major roles in learning and 

spatial memory, the CA1, CA3 and CA4 but not CA2 regions were seriously affected (reviewed 

in Pulido [48]). Sea lions intoxicated with domoic acid were subsequently found to have 

persistent seizures and their brain histopathology showed cell death in hippocampus (CA1, CA3 

and CA4 regions) and other limbic structures [49]. Experimental rodent studies also showed 

similar histopathological findings [50,51]. 

Domoic acid is an agonist for presynaptic and postsynaptic kainate receptors (Figure 1). 

Kainate receptors together with NMDA (N-methyl D-aspartate) and AMPA ( -amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid) receptors belong to the family of ionotropic glutamate 

receptors whose activation leads to the influx of Na
+
 and Ca

2+
 [52]. Glutamate is the main 

excitatory neurotransmitter in vertebrates and invertebrates. In combination with the inhibitory 

GABA neurotransmitter, glutamate contributes to the control of neural excitability. Kainate 

receptors are localized both at pre- and postsynaptic sites.  At presynaptic sites, they directly 

affect transmitter release from both excitatory and inhibitory neuron terminals. At postsynaptic 

sites, kainate receptors lead to cell depolarization, which would bring the neuron closer to its 

spike firing threshold. By having this dual localization, kainate receptors help in the control of 

neuronal excitability. However, sustained activation of postsynaptic kainate receptors by domoic 

acid results in massive ion flux, and excessive release of glutamate from excitatory terminals. 

The released glutamate may in turn activate NMDA receptors, which have lost their physiologic 

Mg
2+

 block due to domoic acid-induced depolarization. The final event is an increase of NMDA-

mediated Ca
2+

 flux and subsequent activation of intracellular prooxidative cascades and ion 

imbalances eventually leading to excitotoxicity-mediated neuronal death [53,54]. 

Kainate receptors are widely expressed in the hippocampus. Glutamatergic granule cells in 
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the hippocampus express these receptors, suggesting that cell death found after domoic acid 

intoxication may be produced by hyper-stimulation of NMDA receptor after glutamate is 

released in excess. In agreement with this hypothesis, the seriously damaged CA3 area of the 

hippocampus receives projections from hippocampal granule cells. Qiu and Curras-Collazo [55] 

elegantly demonstrated that domoic acid first targets kainate receptors in the hippocampus by 

blocking its effects in vivo with a kainate receptor antagonist.  The sequential involvement of 

distinct glutamate receptors was confirmed and further elucidated in rat mixed cortical cell and 

hippocampal slice cultures [56,57].  

The progression of the neurotoxicity pathway for domoic acid from merely activating kainate 

receptors to the activation of both kainate and NMDA receptors might determine different neural 

AOPs manifested as seizures and neuronal death.  These events in vivo were reproduced in vitro 

in a series of studies using primary cultures of rodent cerebellar granule cells, an in vitro model 

mainly constituted by glutamatergic neurons that express both NMDA and kainate receptors 

[53,58,59]. In this system, domoic acid increased glutamate release, intracellular calcium and 

cell death that were prevented by kainate and NMDA receptor antagonists [54,60,61]. Whether 

cell death was necrotic or apoptotic depended on domoic acid concentration [62].  The parallel 

responses observed  in vivo and in vitro support the NRC notion that in vitro toxicity assays can 

have useful predictive value for extrapolating effects to individuals [1]. 

Conceptual framework for excitatory neurotoxin AOP

An AOP spans multiple levels of biological organization to link molecular initiating events 

(i.e., target cell perturbations) with adverse outcomes relevant for ecological risk assessment. 

The core of any AOP model is the TP, which by definition extends only to the cellular level 

(Figure 2). The TP model must be developed with sufficient detail to adequately describe key 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t
cellular responses such that, when sufficiently perturbed, loss of function and eventual cell death 

can be accurately predicted [1].  During TP development it is important to remember that key 

cellular functions must be measureable via in vitro testing, since the majority of testing and data 

generation in the future is expected to be in vitro in nature.  For domoic acid toxicity, the most 

consistent and prominent adverse outcome is memory loss, with the underlying etiology 

reasonably well defined as: domoic acid exposure  excitatory neurotoxicity  hippocampal 

lesions  memory loss and neurobehavioral changes.  This relationship between exposure and 

outcome provides a foundation for a conceptual AOP framework that links a key molecular 

initiating event (domoic acid-induced excitatory toxicity) with adverse outcomes that are 

relevant for individual health (loss of memory and/or critical behavioral responses to 

environmental stimuli) and ultimately ecological risk assessment (survival, growth, and 

reproduction) (Figure 2). 

To construct the AOP, it will be important to consider and integrate the weight of evidence 

from diverse studies (acute/chronic; lab/field; lab animals/marine mammals) that support causal, 

mechanistic, inferential, and correlational relationships across these multiple levels of biological 

organization.  The core of an AOP for the neurotoxicity of domoic acid is the proposed excitatory 

toxicity pathway for hippocampal neurons.  A challenge in developing this excitatory 

neurotoxicity AOP is the diversity of structures, functions and interactions of the various cell 

types found in vertebrate and invertebrate nervous systems.  The central nervous system (CNS, 

the brain and spinal cord) is composed of four major cell types that interact in dynamic structural 

and biochemical contexts to generate organ function: neurons (cells that generate action 

potentials); astrocytes (cells that maintain metabolic and ionic organ homeostasis); 

oligodendrocytes (myelinating cells); and microglia (monocyte-derived cells).  Neurons are 
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responsible for the perception of sensory stimuli and the coordination of cellular, tissue, and 

organismal responses to stimuli from the environment. Neurotoxic processes encompass more 

than cytotoxic effects, as toxicants usually produce sub-lethal, functional impairments at low or 

moderate exposure levels. Various cells may demonstrate different sensitivities to toxicants, as 

well as present different developmental windows of vulnerability. Furthermore, a neurotoxicant 

that alters the activities of a particular cell type also induces secondary changes in the 

interactions between that responsive cell and other cell types [63].

The cellular response pathway perturbed by domoic acid is glutamatergic neurotransmission 

within excitatory neurons.  Activation of kainate-receptors by glutamate opens ion channels in 

the glutamatergic neuron, and allows a flux of Na
+
 and Ca

2+
 from the extracellular to the 

intracellular spaces. In normal function, the intake of sufficient amounts of Ca
2+

 (and Na
+
) causes 

membrane depolarization and propagation of an impulse along the neuron.  With glutamate-

induced hyperstimulation of neurons, excitatory neurons accumulate excess Ca
2+

, initiating 

second messenger cascades, and at high enough levels of excitation and cellular Ca
2+

 this leads 

to cell death.  With high-level exposures to domoic acid, the enhancement of Ca
2+

 intake occurs 

through an initial stimulation of the kainate receptors.  While excess Ca
2+

 is toxic, Ca
2+

 is an 

essential component of excitatory CNS-signaling.  In assessing likely adversity of intracellular 

Ca
2+

, it becomes important to distinguish required levels of Ca
2+

 from that combination of 

increased intracellular Ca
2+

 and time of exposure that are expected to have adverse consequences 

for glutamatergic cell function.  

In the new toxicity testing paradigm [1], appropriate cellular systems need to be developed 

that are amenable to computational modeling to predict expected dose-response behaviors for 

adaptive (low level changes in Ca
2+

) and excessive, prolonged perturbations of Ca
2+

.  The in 
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vitro assays may include receptor-binding assays (e.g., determining whether a toxin inhibits 

[
3
H]kainate binding), fluorimetric assays quantifying intracellular Ca

2+
 during treatment with 

domoic acid; and cell viability assays. In contrast to the NRC report [1], in vitro assay systems 

for ecological risk assessment may need to be simultaneously developed using cells/cell lines for 

a variety of environmental species.  The design of an assay system would rely heavily on the 

current understanding of the biology of Ca
2+

 signaling in neuronal cells and the state-of-the-art in 

evaluating cellular Ca
2+

 dynamics in vitro (see Figure 3).

Dose-response models for glutamatergic neuronal function 

The in vitro pathway assays will provide quantitative results over a broad range of in vitro 

exposure concentrations. These data sets will be amenable to more extensive dose response 

modeling than data sets from most in vivo assays.  The detailed dose-response curves from in 

vitro assays would also be more amenable to statistical analysis for evaluating effective 

thresholds and possible non-linear characteristics of responses at low levels of response.  More 

importantly, the breadth of data from the studies and the careful control of experimental 

conditions in a well-defined assay at an appropriate level of cellular detail provide the grist for 

developing dose-response models with much greater fidelity to the biology, in this case the 

biology of glutamatergic neurons and the consequences of excessive Ca
2+

 loads on these cells.

What level of biological detail will be required to have confidence in quantitative predictions 

from these models?  The first challenge is to include in the pathway model sufficient detail to 

account for the major contributors to the outcome and of the biological system itself.  With nerve 

impulse transmission, an electrochemical description was provided by Hodgkin and Huxley [64] 

and has been elaborated extensively [65,66]. Activation of an action potential by glutamate 

brings a burst of calcium into the cell.  Technically, it should be possible to build a description 
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around the core elements of a Hodgkin-Huxley model to include the incremental changes in 

calcium with the successive activations of the Ca-channels.  In addition, the dynamics of the 

description of the electrochemical processes would still need to link to a description of the 

control of intracellular calcium that drives the adverse responses in these neurons.  The model 

developed to describe calcium fluxes in vascular smooth muscle cells [67], included several sub-

compartments for calcium sequestration within the cells – mitochondria, sarcoplasmic reticulum, 

and bound cytosolic forms (see Figure 3).  The kinetics of movement of calcium among these 

pools was partially derived from studies with radio-labeled calcium.  An alternative to a full 

description would likely focus on calcium control in the neurons, with an uptake component 

determined from specific studies of calcium fluxes after glutamate stimulation in cells similar to 

those used for the proposed in vitro toxicity assay. Some computational studies of calcium fluxes 

in neurons are available [68], and have been simulated using neuronal cell models made 

available through academic programs at Duke and Yale.  A tutorial at the Neuron web-site 

(http://neuron.duke.edu) discusses modeling of calcium in presynaptic compartments.  Another 

excellent tutorial for modeling Ca
2+

 in cells has been developed by Blackwell 

(http://www.brains-minds-media.org/archive/224).  Actual development of the TP model 

structure for calcium transients in response to domoic acid stimulation of glutamatergic receptors 

was considered to be outside the scope of this workshop. 

The overall structure of the computational model of the glutamatergic neuronal signaling 

pathway is likely to have some key elements.  Once developed, this model structure should be 

useful for a variety of toxicants with glutamatergic neuronal targets, not only domoic acid, and 

will lay the foundation for toxicity pathways that affect other neuronal signaling pathways 

related to ion-channel function and neuronal viability with persistent stimulation.  The process of 
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validating these pathway assays includes coordinated development of the tools to look at the 

normal Ca
2+

 signaling.  Outputs of the in vitro pathway model include: concentrations of the test 

compound below which changes are indistinguishable from normal cell behaviors; 

concentrations causing alterations within the bounds of normal variation; adaptive changes with 

some changes in Ca
2+

, but below levels causing adverse responses at the cellular level; and 

concentrations causing overtly adverse responses, i.e., cytotoxicity, apoptosis, etc.   

Predictive in vitro assays for excitatory neurotoxins 

When in vitro systems are designed for neurotoxicity testing relevant to an AOP, appropriate 

endpoints must be selected (see Supplemental Data).  Three major classes of endpoints can be 

measured in culture: cell viability and cell death on either an individual cell or cell population 

level; generic cell functions that are not specific to neurons or glia, such as respiration, plasma 

membrane function, Ca
2+

 homeostasis, and oxidative stress responses; and differentiated cell 

functions, such as axonal transport, synapse function, myelination, neurotransmitter uptake and 

metabolism.  With respect to domoic acid-like neurotoxicity, three components that must be 

present are: kainate receptors, NMDA receptors and a glutamate-releasing system. Furthermore, 

the culture system has to be easy to prepare and maintain, and amenable to use in high-

throughput platforms. Methods to prepare primary cultures of rodent cerebral or cerebellar 

granule cells are currently available that fulfill these requirements.  These cultures are prepared 

from 16 to 18-d old embryos or from 8-d old rat pups [57,58].  These culture systems are 

enriched in glutamatergic, cholinergic and GABAergic neurons. The neurons mature at 6 to 10 

days in culture expressing functional receptors for NMDA and kainate [54,57,59,61,69] and 

releasing glutamate under depolarization [53]. When glutamate surpasses a concentration 

threshold, cell death occurs by a mechanism including NMDA receptors [53] or oxidative stress 
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[54]. The cultures can be kept in vitro for up to two weeks. Future development of immortalized 

cell lines is needed to increase reliability and decrease reliance on animals. 

Increases in intracellular Ca
2+

 concentration and cell membrane depolarization due to 

activation of NMDA and kainate receptors can be measured by fluorescent probes.  Cell viability 

can be determined by measuring the incorporation of a fluorescent probe through damaged 

membranes or by determining the reduced activity of mitochondria (MTT assay), which 

correlates with cell death. All these assays can be performed in 96-well plate cultures with 

spectrophotometer or fluorimeter plate readers [59,70]. Compounds found to be positive in this 

system can be challenged with specific kainate receptor antagonists to verify whether they can be 

catalogued as domoic acid-like toxicants. If so, a prediction could be made that they might share 

the domoic acid AOP. The quantitative data obtained from this type of system (e.g., binding 

coefficients, effective concentrations, and time course of effect) could provide a quantitative 

approach to predicting relative toxicity of chemicals and differentiating sub-threshold, adaptive 

and adverse levels of stimulation.   

Additional considerations in the development of assays for neurotoxicity pathways are their 

usefulness for extrapolation to other toxicants (see Supplemental Data) and for other target 

species. Whether the assay incorporates the types of measurements likely to be made in the field 

will be important for in vitro – in vivo calibration of the AOP model and ultimately improve 

extension to population-level modeling.  In this regard, in vitro toxicity pathway assays should 

ideally measure neurochemical parameters that are hardy in field situations and thus potentially 

useful as biomarkers.  The calibrating and anchoring of in vitro data with field data should be 

approached with two goals in mind:  designing in vitro test strategies with end points that are 

practical in field situations and identifying biomarkers that are applicable to multiple species.  In 
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the field, brain tissue may be subject to postmortem degradation from factors such as 

temperature and time.  For example, hours or days may elapse before tissue can be collected 

from a beached organism in hot summer and then frozen at -80 °C.  In a series of recent 

ecological studies concerned with methylmercury neurotoxicity, several neurochemical 

biomarkers were shown to be hardy in field situations and measurable in brain tissues obtained 

from carcasses of mammalian [71-73], marine [74,75], and avian [76] wildlife.  For domoic acid 

neurotoxicity, recommended neurochemical biomarkers that have been shown to resist 

postmortem degradation include NMDA (3H-MK801 radioligand receptor binding [77]); 

glutamic acid decarboxylase (GAD) activity (
14

C enzymatic assay [78]); and glutamine 

synthetase activity [78].  Key neurochemicals such as GABA(A) receptors and GABA-T activity 

are not stable postmortem [78], while others such as the kainic acid receptor and glutamate 

transporters to our knowledge have not yet been extensively evaluated for postmortem stability. 

Cellular Response to Adverse Outcome: Establishing Empirical Relationships

Several studies have established that the hippocampus is a major target for domoic acid. 

Laboratory studies on domoic acid exposed mice [50,79,80], monkeys [81,82], and rats [83], 

field studies on domoic acid poisoned marine mammals [49,84,85], and autopsies on domoic 

acid poisoned humans [86] consistently revealed dense degeneration of hippocampal cells (both 

neurons and glia), particularly within the CA3 and dentate gyrus regions.  The cells in these 

hippocampal regions undergo atrophy, cytoplasmic vacuolization, edema, and swelling.  The 

magnitude of these effects is dose-dependent. A review of hippocampal damage was presented 

earlier and highlighted the finding that domoic acid induced neurotoxicity across species, 

exposure scenarios, and study conditions is rather consistent [48].  Perhaps it is not surprising 

that hippocampal damage (and resultant impacts on memory and learning) are consistent across 
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species given that this brain region is conserved and comparable (anatomically, neurochemically, 

physiologically) across mammals, birds, and fish.    

The hippocampus is part of the brain limbic system and plays a critical role in long term 

memory and navigation.  Damage to the hippocampus in humans, rats, monkeys [87], birds [88], 

and fish [89] results in learning and memory impairments that tend to be either visual or spatial 

in nature.  For example, lesions to the fish hippocampal zone (i.e., pallium) impairs temporal 

learning (active avoidance conditioning test) by approximately 60% and spatial learning (spatial-

maze) by approximately 35% [89].  In studies on pigeons [90] and chickadees [91], aspiration of 

the hippocampus impaired homing performance and ability to relocate well-known places by 

approximately 25 to 46%.  Using localized kainic acid injections to kill hippocampus cells in the 

rat, Stubley-Weatherly et al. [92] showed that animals had impaired ability in the acquisition of 

the water maze task and memory impairment on a passive avoidance task.  These experimental 

results, collectively, provide correlative links between hippocampal function and loss of memory 

and spatial navigation, and support observations listed below that show domoic acid intoxication 

impacts memory and spatial navigation in diverse organisms.  To help complete the AOP, such 

results (mainly focused on behavioral outcomes) can be used as nodes that can link to higher-

level organismal effects (i.e., survival, growth, reproduction) and ultimately population level 

effects by use of empirical model calculations. 

High doses of domoic acid cause seizures and memory loss in humans. Doses of domoic acid 

below that which causes seizure can have dramatic influence on behavior. These are presumably 

a direct result of domoic acid induced glutamatergic cell death in the hippocampus or 

orthologous structures. Behavioral effects are consistent across diverse groups of vertebrates and 

include locomotor behaviors, uncontrolled repetitive behaviors, and learning and memory 
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deficits. Tasker et al. [93] produced a semi-quantitative toxicity index for mice in which animals 

were scored for hypoactivity, sedation, rigidity, stereotypy, loss of postural control, and tremors 

which respectively represent increasing severity of domoic acid effects on the nervous system. 

Using this index, the acute effects of domoic acid at low doses can be quantified regardless of 

whether the domoic acid was from PN extracts, contaminated mussel extracts, or purified 

domoic acid [93]. 

At higher doses, domoic acid causes problems with locomotion in fishes and sea lions. 

Erratic swimming behaviors have been described in zebrafish and Coho salmon as circle  

swimming and spiral swimming [47,94]. Circle swimming has also been described in sea lions 

that received large doses of domoic acid [84]. Domoic acid does not cause problems with general 

locomotion at lower concentrations; however, hypoactivity is one of the most common endpoints 

described in the literature [93,95-99]. Goldstein et al. [84] describe lethargy as one symptom of 

domoic acid in sea lions. In rats, Levin et al. [96] describe a reduction in activity of nearly 20% 

that is attributed to rapid habituation of exploration of the novel environment in a figure-8 maze.  

Tasker et al. [93] originally described stereotypic behaviors in mice following acute exposure 

to domoic acid from Pseudo-nitzschia extracts, contaminated mussel extracts, and purified 

domoic acid.  Other rodent studies have described animals exhibiting stereotypic scratching, 

circling, head weaving and repetitive flexion-extension of the hindlimbs directed toward the head 

and neck as a result of developmental exposure to domoic acid [100] or acute PI exposure [98]. 

Zebrafish embryos and larvae exposed to domoic acid exhibit constant non-locomotory pectoral 

fin movements [101].  

Hippocampal degeneration from domoic acid exposure results in both learning and memory 

deficits in exposed humans and experimental animals [86,102-105]. The severity of deficit 
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appears to be dose-dependent but integrating complex data across the several species and 

numerous learning and memory tasks does not lend itself to a quantitative mechanistic 

evaluation. Levin and Rose [97] described learning and memory deficits using a radial arm maze 

and spontaneous alternation T-maze tests, reflecting some of the long-term memory and spatial 

memory problems seen in humans [86].  Developmental exposure to low levels of domoic acid 

results in low grade seizures in response to novel environments during spatial cognition tasks 

[106,107]. Developmental exposure to domoic acid also alters nicotine-induced position place 

preference resulting in substantially more time being spent in the area associated with the 

chemical [95,108]. These studies support the idea that early, low-level activation of kainate 

receptors during a critical period of development results in alterations in behaviors that are 

related to the functional integrity of the mesocorticolimbic dopamine pathway [108].  If these 

behavioral phenotypes associated with low dose domoic acid exposure extend to wildlife species, 

one could imagine a significant impact on fitness.  

A suggested approach for identifying neurochemical markers that can be compared between 

in vitro systems and field samples is as follows.  First, candidate neurochemical biomarkers in 

tissues of wild-caught animals should be assayed in case control studies (controls versus animals 

killed by algal blooms) and associative/ecologic approaches should be used to correlate 

neurochemical biomarkers with tissue/brain levels of domoic acid.  Second, these results should 

be amalgamated with results from the same assays carried out with in vitro models, lab animals, 

and wild animals of other species.  The use of ecological animal studies of other species will be 

further considered below.  

A complementary approach to identifying and validating neurochemical biomarkers that are 

meaningful in vitro and in field samples is to conduct laboratory studies of key sentinel species.
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In this case, fish (e.g., zebrafish, trout, goldfish, and fathead minnows), birds (e.g., chickens, 

quail, and zebrafinch), and mammals (mink) would be fed controlled levels of domoic acid in the 

laboratory.  Tissues would be obtained and preserved in an optimal manner so that molecular-

level events (e.g., mRNA levels, protein levels, and DNA) might be further examined.  

Laboratory studies have already been performed in captive bony fish and one shark species for 

domoic acid toxicity, but the inclusion of additional species may enable ecotoxicologists to better 

predict species sensitivity.  It may be particularly helpful to characterize kainic acid receptor 

binding and function in response to domoic acid in a series of organisms in order to explore 

species sensitivity, based on the assumption that kainic acid receptor binding is the key initiating 

event in domoic acid toxicity.  Several ecotoxicology cases in which species sensitivity has been 

explored by studying differences in receptor ligand binding [109] or changes in receptor amino 

acid composition [110] provide a roadmap and rationale for this type of research. 

DISCUSSION

In the preceding section, we have identified many challenges and needs faced by a predictive 

ecotoxicology paradigm using domoic acid as a case study.  The NRC's [1] strategy for 

predictive toxicology recommends four phases of research: toxicity pathway elucidation; in vitro 

assay development; assay relevance; data assembly and validation.  Extension of this strategy for 

predictive ecotoxicology requires AOP elucidation and the data to support development of 

quantitative AOP models as illustrated for domoic acid in Figure 4.  Though we did not develop 

an actual computational model for domoic acid, we worked through the early steps in the process 

by reviewing the extant literature and developing conceptual models that help to identify data 

gaps which need to be filled prior to transforming a conceptual model to a computational one.  In 

the following, we generalize what we have learned from the domoic acid case study to 
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environmental toxins and toxicants. 

Mining the extant literature for relevant information

The traditional approach to mining the scientific literature for information relies upon manual 

searching of centralized literature repositories such as PubMed or Web of Science to identify 

relevant documents.  The process of searching for information can be arbitrarily divided into at 

least three separate phases: exploratory, targeted, and manual evaluation [111,112].  Exploratory 

searching is initially used to acquire some perspective on the topic and perhaps identify a few 

review papers that summarize and interpret previous publications.  For the initial development of 

the domoic acid AOP, exploratory searching quickly identified the Pulido [48] and Bejarano et al. 

[37] papers as the two most useful publications for developing the initial conceptual model.  

Once the initial model was developed, more focused questions could be asked for targeted 

searching on specific topics.  For example, extending the domoic acid TP to an AOP required 

information on how hippocampal cell death leads to changes in behavior, which was obtained 

through a supervised literature search.  Finally, most searches return numerous results and 

required time consuming manual evaluation of the publications to determine relevancy and 

usefulness in developing the AOP. 

An alternative to manual searching is to use automated literature mining tools.  There are 

now many approaches to automated searching such as Arrowsmith 

(http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html), which primarily searches titles for 

meaningful links between two different papers to the development of more advanced tools that 

can analyze grammatical structure of sentences [113, 

(http://biomedicalcomputationreview.org/4/3/6.pdf)]. We tried several automated literature 

searching tools including Arrowsmith, carrot2 (http://www.carrot2.org/) and FACTA 
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(http://text0.mib.man.ac.uk/software/facta/) for comparison with the manual approach.  

However, we found that manual searching was still the most practical approach in developing an 

AOP. 

Although automated search tools did not provide advantages for domoic acid, there is a clear 

need for their application in the future.  Our experience in developing the domoic acid AOP 

suggests the most difficult challenge in literature mining will be to identify sources that contain 

valuable information for extending cellular pathway models to models of tissue function and 

whole organism health.  Here, the data mining requirements become significantly broader and 

thus more demanding.  The potential sources of useful information may draw upon more diverse 

scientific disciplines than those encountered at the cellular level.  For example, studies of disease 

or environmental stress and nutrition may provide useful information on compromised tissue 

function, behavior and fitness. A relatively narrow search strategy that focuses only on the 

ecotoxicology / toxicology literature might overlook useful information.  Thus, some type of 

automated or semi-automated text mining tool would be helpful during the initial literature 

interrogation to identify useful sources of information that might otherwise be ignored and also 

to reduce the number of sources that need manual evaluation.  However, it was apparent that a 

hindrance to the use of automated searching is the complexity of data types encountered and the 

relative lack of uniform or structured terminology across scientific disciplines.  This problem has 

been acknowledged in ecology, where the need for the development of ontologies associated 

with ecological processes has been advocated to help establish a set of well defined terms and 

more formal descriptions of how they interrelate [114,115].  This would seem to be equally 

important for ecotoxicology and should be encouraged. In the interim, approaches developed for 

phenotype clustering (phenoclustering) based on automated literature searching using semantic 
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(text) clustering tools [116] may have some value for assisting in AOP development.   

Strategy for constructing a conceptual framework 

The development of a conceptual framework for an AOP is an iterative process that results in 

two important outcomes.  The first outcome is a critically reviewed pathway from exposure to 

adverse outcome that is stressor specific.  The second is the identification of a key cellular 

process (or processes) that is not chemical specific and may be the nucleus for the development 

of testing methods (described earlier in the present study).  Critically important to success is the 

inclusion of an interdisciplinary team of researchers who span the breadth of science from 

exposure to adverse outcome.  The process begins with a clear statement of a problem.  The next 

step is developing a list of possible AOPs based on rough correlations between exposure and 

outcome. In the case of domoic acid, both behavioral and reproductive effects were considered as 

important AOPs.  However, after a review of the extant literature, we determined that domoic 

acid effects upon the hypothalamus and subsequent reproductive impairment were subordinate to 

effects upon the hippocampus and behavioral changes.  We recommend that when more than one 

AOP is identified, each should be analyzed separately with an objective to identify the key rate-

limiting events in the pathway from exposure to adverse outcome.  The goal is to establish 

confidence in the AOP based on a weight-of-evidence for causality.  Use of the Bradford Hill 

Criteria for causality can be especially useful [117-119].   

Our proposed AOP facilitates discussion between risk assessors, basic ecologists and applied 

ecotoxicologists.  Discussions lead to important outcomes, first of which is the identification of 

data gaps in the causative links of the AOP that allow prioritization of targeted research in critical 

areas.  New information, as it becomes available through discussion or research, can easily be 

added to this process to improve the analysis.  Secondarily, this approach identifies the key 
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cellular process(es) that when perturbed lead to adverse outcomes in the individual (Figure 4).  

This latter step is critically important to development of a new paradigm for toxicity testing [1]. 

Strategy for developing a dynamic, computational model 

In general, construction of a conceptual TP or AOP will involve extensive review of the 

extant literature and in the process a suitable computational model may be found.  Further, once 

a TP or AOP has been defined, the actual biological processes that require computational 

modeling may have been modeled by scientists in a discipline that had not been reviewed for the 

construction of the TP or AOP.  In the case of domoic acid, a key process in the TP is Ca
2+

regulation in excitatory neurons.  Once we identified this key process, a literature search for 

computational models of calcium regulation revealed models that had been developed for normal 

Ca
2+

 signaling in various types of cells [67,68,120].  To adapt an existing computational model 

or to develop one from a conceptual model requires data that may be obtained from the extant 

literature, or measured experimentally (see Predictive in vitro assays for excitatory neurotoxins).

Transforming a conceptual AOP to a quantitative model is likely to be less mechanistic than a 

TP model because of data limitations.  For domoic acid, a literature review produced numerous 

studies that measured changes in behavior, learning, and memory loss due to hippocampal cell 

damage (see Supplemental Table S1).  These data allow establishment of causative relationships 

between the key events in the AOP [119].  However, few studies contained data that could be 

used to develop a quantitative model.  Furthermore, only a relatively small number of species are 

studied, thus interspecies extrapolations [121] may be needed depending on the species of 

interest (e.g., mammal to fish).  To develop a quantitative AOP model based upon the extant 

literature, we recommend statistical models based upon regression analysis.  Ideally, these 

models will enable predictions of an adverse impact (e.g., upon individual fitness, reproduction, 
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or mortality) that can be used as input into a population dynamic model [122]. 

Evaluating model predictive capabilities 

Testing or validating the TP/AOP model will require a multi-step approach. The model is 

likely to be built using data from studies of only a few mammalian model species, and much of 

the data may come from in vitro assays. Data from non-mammalian vertebrates are likely to be 

rare and data from ecologically relevant species may be non-existent. The model's quantifiable 

attributes from the molecular initiating events to cellular level dysregulation, organ system 

dysfunction, and behavioral abnormalities will need to be compared to measured data in order to 

evaluate its goodness-of-fit.

To test a TP model, a suite of neurochemical and molecular markers from the published 

literature needs to be identified that span the molecular to cellular level effects. Primary cultures 

have been established in a number of ecotoxicology model animals and a series of in vitro assays 

as described earlier can be used to validate the conservation of these markers across multiple 

species (fishes: zebrafish, trout; birds: quail, zebrafinch; mammals: mink, common vole). The 

first test of the TP/AOP model will be made at the molecular and cellular level using primary 

cultures from ecotoxicology's model organisms and the suite of identified neurochemical and 

molecular markers.  

To date, in vitro neurotoxicology has been useful for understanding major and alternative 

mechanisms of toxicity, but it must refine its focus on outcomes relevant to AOPs in order to be 

of value to predictive ecotoxiology.  Decades of in vitro neurotoxicity research support certain 

common principles for neurotoxicity testing: test the active compound/metabolite(s), test over 

ranges of concentration that include toxicologically relevant concentrations, use cell models that 

possess appropriate toxicant targets (if known), test functional endpoints in addition to 
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cytotoxicity, and calibrate or validate results with in vivo results.  Furthermore, in vitro systems 

have taught us that neurotoxicants may act through multiple mechanisms, cell types demonstrate 

different functional sensitivities to toxicants, and cells may be direct or secondary targets for 

functional impairment.  Established goals of in vitro neurotoxicity testing are to develop model 

systems that respond in a toxicologically relevant manner to exposure, identify and elucidate 

mechanisms that underlie the adverse neurotoxic outcome and serve as rapid and discriminating 

systems for screening  the potential toxicity of new or unknown potential neurotoxicants [63]. 

These broader criteria are important in a general manner; the test assay for a TP does have a 

single clearly definable goal - to create cellular based assays that measure perturbations of the TP 

and to support development of an interpretive, biologically based computational model to 

calculate expected degree of perturbation as a function of the toxicant concentration.  As 

discussed previously, it is important that assays and outputs measured in the assay system are 

carefully designed to be amenable to mechanistic, predictive, quantitative dose-response 

modeling that will eventually serve as one of the cornerstones of predictive ecotoxicology. 

The complete AOP model must also be evaluated for its ability to predict effects at the whole 

organism level. The most striking effects of domoic acid are those that influence neurological 

function and behavior. Standard neurobehavioral assays have been developed in birds and 

mammals and similar assays can be developed for other organisms. Hypoactivity assays are 

fairly routine using new software programs that track movements during a defined trial period 

and this approach has been used successfully in a number of different terrestrial and aquatic 

species. Repetitive movements can also be assayed using the same software systems. Learning 

and memory can be assessed by modifying many of the assays developed for small laboratory 

birds and mammals. A modified t-maze has been used successfully in fishes to assess learning 
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and memory [123].  

The next level of validation involves a comparison between the neurochemical and molecular 

markers in laboratory organisms and tissues of wild-caught animals both unexposed and exposed 

to the chemical of interest ( domoic acid in algal blooms). Associative/ecologic approaches 

should be used to correlate neurochemical biomarkers with tissue/brain levels of domoic acid.  

The predictive capabilities of the model can also be assessed by studying other 

environmental chemicals that act on the key event in the TP/AOP.  Data may be obtained using 

the in vitro strategies discussed earlier or from data mining exercises.  While the TP/AOP 

described here is highly specific for domoic acid there are several chemicals that may interact 

with its key initiating event.  For example, tributyltin causes hippocampal loss, but since this 

may not be realized via the NMDA receptor [124] it may be used to assess the latter portion of 

the AOP.  In contrast, one of the mechanisms by which methylmercury causes neurotoxicity is 

via glutamate-induced excitotoxicity, which has been observed in several types of animals (e.g., 

terrestrial mammals, fish-eating birds, marine mammals) as compensatory decreases in NMDA 

receptor binding [73,74,76].  Although our TP/AOP has focused on excitotoxicity, many 

chemicals specifically disrupt inhibitory pathways which will have consequences for the 

TP/AOP. For example, Babot et al. [69] found that reduction of GABA(A) receptor function by 

dieldrin, an organochlorine insecticide, was followed by a decrease in NMDA receptor function 

as a compensatory response; and RDX, an explosive compound that causes seizures, has been 

shown to disrupt GABAergic signaling [125].  Application of the TP/AOP will not only enable 

us to better resolve the pathway/mechanisms/risks for domoic acid, but similar assessments can 

be carried out for other chemicals that impact different points in the TP. 

Testing of the AOP may lead to the realization that the published data used to build the model 
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may not be sufficiently predicative in all cases. After all, the vast majority of published scientific 

literature is on a very small number of mammalian species and ecotoxicology must deal with a 

large number of species that may have dramatically different sensitivities to perturbation of a 

given TP/AOP.  Regulatory agencies that will use these TP/AOP models must be willing to adopt 

a very nimble and focused approach to generating information that will fill whatever data gaps 

are weakening the model.  This may require a very different, though complementary, extramural 

funding mechanism than what is currently being employed.  
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FIGURE CAPTIONS

Figure 1: Glutamate neurotransmitter system and excitatory neurotoxicity. 

Figure 2: Flow chart for developing a domoic acid adverse outcome pathway (AOP) model. 

Figure 3:  Normal Ca
2+

 signaling adapted from Fayazi et al. [67].  Arrows represent flows of 

Ca
2+

 between different pools which can vary in magnitude. 

Figure 4: The Exposure-Dose-Response Continuum Perspective for Domoic Acid. The toxicity 

pathway focuses on maintenance of normal neuronal function, which is balanced by excitatory 

glutmate (GLU) and inhibitory -aminobutyric acid (GABA) inputs – excess excitation leads to 

prolonged intracellular calcium, cell injury, apoptosis / cell death. Excessive cell death leads to 

tissue damage and eventual morbidity / mortality. 
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