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Abstract

Citrus tristeza virus (CTV) outbreaks were detected in Sicily island, Italy for the first time in 2002. To gain insight into the
evolutionary forces driving the emergence and phylogeography of these CTV populations, we determined and analyzed the
nucleotide sequences of the p20 gene from 108 CTV isolates collected from 2002 to 2009. Bayesian phylogenetic analysis
revealed that mild and severe CTV isolates belonging to five different clades (lineages) were introduced in Sicily in 2002.
Phylogeographic analysis showed that four lineages co-circulated in the main citrus growing area located in Eastern Sicily.
However, only one lineage (composed of mild isolates) spread to distant areas of Sicily and was detected after 2007. No
correlation was found between genetic variation and citrus host, indicating that citrus cultivars did not exert differential
selective pressures on the virus. The genetic variation of CTV was not structured according to geographical location or
sampling time, likely due to the multiple introduction events and a complex migration pattern with intense co- and re-
circulation of different lineages in the same area. The phylogenetic structure, statistical tests of neutrality and comparison of
synonymous and nonsynonymous substitution rates suggest that weak negative selection and genetic drift following a
rapid expansion may be the main causes of the CTV variability observed today in Sicily. Nonetheless, three adjacent amino
acids at the p20 N-terminal region were found to be under positive selection, likely resulting from adaptation events.
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Introduction

Viruses, in particular those with RNA genomes, are the most

abundant parasites infecting animals, plants, and bacteria. They

have a high socio-economic impact on welfare of humans and on

productivity of livestock and agriculture. RNA viruses also have a

great potential for rapid evolution due to the high mutation rates,

large population sizes and short generation times [1]. This rapid

evolution means that epidemiological and evolutionary processes

occur on a similar time scale of a few years and that they may

interact conditioning the spatiotemporal incidence and phyloge-

netic patterns. Phylodynamics, the synthesis between epidemiology

and evolutionary biology, can provide relevant information to

understand the evolution of virulence, the emergence of new viral

diseases and to design more efficient strategies for disease control

[2,3]. Many studies on the phylogeography or phylodynamics of

human and animal viruses on different geographical scales have

been performed [4–9] but these studies are still scarce for plant

viruses and are mostly restricted to viruses infecting annual crops

[10–13]. Epidemiology and evolution of plant viruses infecting

perennial hosts may differ from those of plant viruses infecting

annual crops, in which the host is replaced each year, and from

those of animal/human viruses that are mobile hosts. Also, to our

knowledge, phylodynamics associated with the colonization of a

new geographical area by a plant virus has not been addressed.

Here, we studied the colonization of citrus growing areas of Sicily,

Italy by Citrus tristeza virus (CTV; genus Closterovirus, family

Closteroviridae) and evaluated the temporal and spatial patterns of

CTV spread, the potential effect of different host species, and the

evolution of CTV isolates differing in virulence.

CTV has long flexuous virions consisting of two coat proteins,

the major (CP), covering most of the genomic RNA, and the minor

(CPm) located to one of the virion ends [14]. CTV genome is a

positive-sense, single-stranced RNA of 19.3 kb with 12 open

reading frames (ORFs) and two untranslated regions (UTRs) of

about 107 and 273 nt at its 59 and 39end, respectively. ORFs 1a

and 1b are directly translated from the genomic RNA and encode

proteins involved in RNA replication. The other ORFs are

expressed via 39-coterminal subgenomic RNAs and encode

proteins p6, p65, p61, p27, p25, p18, p13, p20, and p23, required

for virion assembly and cell-to-cell movement (p6, p65, p61, p27,

and p25), asymmetrical accumulation of positive and negative

strands during RNA replication (p23), suppression of post-

transcriptional gene silencing (p25, p20 and p23), invasion of

some host species (p33, p18 and p13), or superinfection exclusion

between genetically related CTV isolates (p33) [15–17].

CTV is the causal agent of some of the most economical

important diseases in citrus worldwide [15]. This virus has a

narrow natural host range essentially restricted to some species of
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the genera Citrus and Fortunella in the family Rutaceae and infects

only phloem-associated cells. Depending on virus strains and on

host species or scion–rootstock combination, CTV may cause

three distinct syndromes [15,18]: (i) tristeza, a decline syndrome

affecting citrus species grafted on sour orange or lemon rootstocks;

(ii) stem-pitting, stunting, reduced yield and low fruit quality

regardless of the rootstock used; and (iii) seedling yellows,

characterized by stunting, small yellow leaves, reduced root

system and sometimes a complete cessation of growth of sour

orange, grapefruit or lemon seedlings.

CTV has been disseminated to almost all citrus-growing

countries through the infected budwood propagation and subse-

quent local spread by aphid vectors [15]. The most destructive

epidemics occurred in Argentina (1930), Brazil (1937), California,

USA (1939), Florida, USA (1951), Spain (1957), Israel (1970), and

Venezuela (1980); but important outbreaks have also been

reported from Cyprus (1989), Cuba (1992), México (1995),

Dominican Republic (1996), and, more recently, in Italy (2002).

Here, two foci of mild CTV isolates were identified in Apulia

(Southeastern part of the Italian peninsula) and in Cassibile

(Eastern part of Sicily), and a third focus of severe CTV isolates in

Belpasso, also in Eastern Sicily about 80 Km away from Cassibile

[19]. Severe CTV isolates induce seedling yellows in sour orange

and vein corking in Mexican lime, whereas mild CTV isolates are

symptomless in sour orange and produce only a slight vein clearing

in Mexican lime.

Genetic and evolutionary studies on CTV have revealed

important features such as conservation of genomes in distant

geographical regions with slow evolutionary rates [20–22]; uneven

distribution of variation along the genome [23,24]; and frequent

recombination between divergent genomic variants [21,25,26].

Population genetics studies showed that intense gene flow and

negative selection shaped the genetic structure of the long-

established CTV populations in California and Spain [21,27].

However, a complete understanding of the dynamics of CTV

evolution and epidemiology in spatial and temporal scales remains

an important goal. Also, the emergence and the evolutionary

processes of CTV in new colonized areas have never been

examined. In this regard, recent CTV outbreaks in Sicily after

introduction of mild and severe genetically distinct isolates in two

nearby foci offered an opportunity to analyze the emergence and

dynamics of CTV colonization.

In this study, we report the results from an exhaustive CTV

survey carried out in all citrus-growing areas of Sicily since the first

outbreaks in 2002 until 2009 and the analysis of the p20 gene

(549 nt) nucleotide sequences of 108 representative CTV isolates.

The spatial and temporal genetic variation of CTV in Sicily was

investigated using a phylodynamic-based approach to gain insight

in the processes involved in the emergence, spatial-temporal

spread and evolutionary dynamics of CTV.

Results

Spatio-temporal Prevalence of CTV in Sicily
Samples were collected randomly from the main citrus areas of

different Sicilian provinces since 2002, when the first outbreaks of

CTV occurred, until 2009. The analyses of samples from 67,922

citrus trees revealed that about half of them were infected by CTV

(Table S1 in Tables S1). Most were concentrated in an intensive

citrus-growing region of about 3000 km2 around the first outbreak

foci detected [19] which included parts of the Catania, Syracuse

and Enna provinces (Fig. 1). The prevalence of CTV increased

from 2002 reaching a maximum peak of about 50% in Syracuse in

2005 and in Catania in 2007, followed by a moderate decrease in

Catania until 37.4% whereas in Syracuse plummeted to about

10% (Fig. 1). In Enna, CTV was found in 2006 and 2007 with a

prevalence of about 20% and in 2009 with a prevalence of about

10%. In the Northwest, CTV was detected in Palermo in 2005

with a steady prevalence of about 10% and sporadically in the

Northeast, Messina, in 2007. In the South, CTV was only found in

Ragusa in 2006 and 2007 with a prevalence around 10% whereas

it was never detected in the western provinces of Trapani,

Agrigento and Caltanissetta.

Phylogenetic Relationships between CTV Isolates from
Sicily

First, the within-isolate CTV population structure was prelim-

inarily estimated by RT-PCR of the p20 gene and single strand

conformation polymorphism (SSCP) analysis of 1,789 randomly

selected CTV-infected trees (Table S1 in Tables S1). All samples

showed simple patterns, composed of two bands corresponding to

the two DNA strands (data not shown), which indicated

homogeneous within-isolate populations composed of a predom-

inant genetic variant or haplotype [28]. Thus, mixed infections of

isolates with divergent haplotypes were not detected among the

samples. Next, the consensus nucleotide sequences of the p20 gene

of 108 randomly-selected CTV isolates from Sicily were deter-

mined and analyzed. No recombination event was detected for this

gene, therefore, all sequences were directly used to infer a

Maximum Likelihood (ML) phylogenetic tree (Fig. 2). This

analysis showed three well supported clades: I comprised only

one CTV isolate from Catania, II composed of severe CTV

isolates from neighboring provinces (57 isolates from Catania, six

from Syracuse and two from Enna) and III which had a wider

distribution and included mild CTV isolates from five provinces

(20 isolates from Catania, 14 from Syracuse, six from Palermo, one

from Messina, and two from Ragusa). The maximum nucleotide

distances between isolates were 0.056 and 0.037 within clade II

and III, respectively and ranged from 0.083 to 0.114 between

isolates from different clades.

Factors Shaping the Population Genetic Structure of CTV
in Sicily

To evaluate how different factors contribute to the genetic

variation of CTV, ML trees were constructed based on different

hypotheses: H1, the original tree had the same structure as the

previously estimated ML tree (Fig. 2); H2, the tree topology is

determined by the host species from which isolates were obtained;

H3, the tree topology is determined by the geographic origin of

isolates; H4, isolates are grouped in the tree according to their

sampling date; and H5, virulence (mild vs severe isolates)

determines clustering of isolates in the phylogenetic tree. These

trees were used to conduct three statistical tests by comparing the

polytomic trees H2, H3, H4, and H5 to the reference tree H1

(Table 1). The three tests gave concordant results and showed that

the hypothesis H2, H3 and H4 were significantly worse than the

null hypothesis H1, whereas H5 was statistically undistinguishable

from H1, thus suggesting that the virulence can explain the genetic

relationships of the CTV isolates. Indeed, all isolates belonging to

clade II were severe whereas isolates of clade III were mild.

This analysis also revealed that the citrus cultivars did not have

a significant influence on the genetic structure of the CTV

population neither was this geographically structured (i.e., genetic

distances were uncorrelated to the geographic distances). Diver-

gence between CTV isolates was neither correlated to the

sampling date. This latter conclusion was confirmed when the

clocklikeness of the phylogeny was investigated with the program

CTV Phylodynamics
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PATH-O-GEN which gave a very low correlation coefficient

between time and tip-to-root distance (0.066), meaning that the

number of nucleotide substitution respect to the most recent

common ancestor (MRCA) did not increase in a linear manner

with time. Nonetheless, the slope of the regression line indicated

an average evolution rate of 1.4561024 substitutions per site and

year, a value which is strikingly similar to that estimated from

worldwide CTV isolates using a similar Bayesian coalescent

approach but covering an interval of 20 years [22].

Phylogenetic Analysis of Worldwide CTV Isolates Reveals
Multiple Introductions of CTV in Sicily

The phylogenetic analysis of 110 CTV Sicilian isolates (108

determined in this work and two from GenBank) and 116

worldwide isolates gave eleven main clades with a high statistical

support (Fig. S1). Rather than being monophyletic, as it would be

expected from a single introduction event, CTV Sicilian isolates

were distributed in five different clades along with isolates from

other countries: A, B, C, D and E (Fig. 3) which correlated with

the three main clades obtained in Fig. 1 (Clade I corresponded to

Clade A, II to C, D and E; and III to B).

Each clade (lineage) is likely to represent a separate introduction

of the virus into Sicily, although given the close genetic

relationship between CTV isolates within each clade, it cannot

be ruled out that some clades might represent multiple introduc-

tion events. Clade A had a unique isolate from Sicily and several

isolates from Argentina, New Zealand, Spain and Puerto Rico.

Clade B contained 44 mild Sicilian isolates which clustered with

six isolates from Apulia collected from 2006 to 2008 [29], the

region of peninsular Italy where another outbreak occurred in

2002 [19], and one from California. Clade C was composed of

nine severe Sicilian isolates which clustered with isolates from

Argentina, New Zealand, Pakistan, Brazil, Syria and Israel. Clade

D comprised 26 severe Sicilian isolates, one from California and

other from Argentina. Finally, Clade E included 30 severe Sicilian

and five Argentinean isolates.

Isolates collected early in the outbreaks (2002 and 2003) were

from Belpasso, Catania province (clades A, C, D and E), and

Cassibile, Syracuse province (clades B and D), which are separated

by 80 km in Eastern Sicily. This indicated that all introductions of

CTV in Sicily occurred in this region, but it cannot be established

whether the virus was introduced independently in both locations

in a very short period of time or just in one of them and then it

spread out very rapidly to the second location.

Interestingly, the phylogenetic patterns of the Sicilian and the

Apulian isolates were clearly different. Thus, within each clade,

the Sicilian isolates formed a star-like (unresolved) phylogeny

which included also geographically distant CTV isolates with low

statistical support for the bifurcating nodes, whereas all isolates

from Apulia formed a well-supported and differentiated subclade

(within clade B). This latter subclade did not include any isolate

from outside Apulia.

The average nucleotide diversity of isolates from the different

virus introductions in the island were compared among them and

with isolates from the introduction occurred in Apulia, peninsular

Italy (Table 2). Nucleotide diversity was very low between isolates

from the same introduction in Sicily (,0.010) and in Apulia

(0.013). whereas diversity between isolates from different intro-

ductions ranged from 0.009 between D and E isolates and 0.127

between C and the Apulian isolates (Table 2).

Dispersion of CTV in Sicily
The migration patterns of CTV within Sicily Island were

estimated from the Bayesian phylogenetic tree and represented in

maps (Fig. 4). Each introduction or invasion of CTV deduced from

the phylogenetic tree of worldwide CTV isolates (Fig. 3) was

considered separately. Clade A had a unique Sicilian CTV isolate

from Belpasso indicating that this lineage had a very limited

dispersal and was no longer detected. Mild isolates in clade B were

first found in several locations of Syracuse province and after a few

years spread to neighbouring locations in the Catania province

being the only lineage detected after 2007. From 2005 on, this

lineage moved to distant locations in the provinces of Palermo

(Northwest), where the virus maintained a low prevalence during

these years, and in the provinces of Ragusa (South) and Messina

(Northeast) but the virus was not detected after 2007 in these

provinces. Severe isolates in clade C showed a limited spread of

40 km in the Catania province but they were not found after 2007.

Clade D isolates apparently were introduced in Catania and

Syracuse occupying an area of ca. 3000 km2; but they were not

detected after 2007. Finally isolates in clade E also spread from

Belpasso in Catania to other locations across the provinces of

Catania, Syracuse and Enna, yet restricted to an area of about

2000 km2. Also, this lineage was no longer found after 2007.

Population Genetics of CTV
The three neutrality tests gave negative values, showing a

significant deviation from neutrality in the five introductions of

CTV in Sicily, except for the Tajima’s D test of the clade D

introduction (Table 3). This indicates either a decrease of the

genetic variation by elimination of deleterious mutations by

purifying selection or a rapid population size increase following a

bottleneck or founder event. By contrast, the three statistics did not

deviate from the neutral evolution expectation for the isolates from

continental Italy (Apulia).

The strength of the selective constraints for amino acid changes

was estimated by computing separately dN and dS rates. The values

were dN = 0.02260.005 and dS = 0.10960.020, which translates

Figure 1. Incidence (percentage of CTV-infected citrus trees) per year in each of the eight Sicilian provinces from 2002 to 2009.
doi:10.1371/journal.pone.0066700.g001
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into a ratio dN/dS = 0.202. This value is similar to those obtained

for other CTV populations from Spain and California, where

CTV has been endemic for long time [21], indicating moderate

negative selection for amino acid changes. The statistical

estimation of dN and dS at each codon site with the FEL method

showed that, out of the 154 codons that encode the p20 protein,

three adjacent amino acids were under significant positive

selection (positions 12, 13 and 14) and 20 were under negative

selection (positions 24, 40, 44, 69, 70, 76, 86, 92, 96, 100, 101,

102, 106, 119, 122, 130, 134, 137, 150, and 156). Interestingly, all

negatively selected sites are within the p21-like conserved domain

of RNA silencing suppressor activity, which corresponds to a

computer-predicted alpha-helix [30]. This is a large family of

putative suppressors of RNA silencing proteins, P20–P25, from

ssRNA positive-stranded viruses in the genera Closterovirus, Potyvirus

and Cucumovirus. The three positively selected sites were outside

this domain.

Figure 2. Phylogenetic tree inferred for 108 CTV Sicilian isolates using the p20 gene. The ML tree was constructed using RAxML with the
GTR+C4 nucleotide substitution model, introducing three partitions (one for each codon position). Support .40% after 1000 bootstrap replicates is
given.
doi:10.1371/journal.pone.0066700.g002
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Genetic differentiation between CTV populations of Sicily or

Italy (including Apulia) and those from other world areas were

evaluated by pairwise Fst and the Ks*, Z*, and Snn tests (Table 4).

CTV from Sicily formed a differentiated population with respect

to others from Apulia (Italy), Spain, California, New Zealand,

Pakistan, and Argentina. Indeed population differentiation

between geographically separate CTV populations was the rule,

except for those from Spain and California which formed a

genetically undifferentiated population. Overall, these results

indicate a limited gene flow (migration) between these geographic

regions, with the exception of Spain and California.

Discussion

We studied the emergence and temporal and spatial evolution

of CTV in Sicily with a phylodynamics approach. The Bayesian

phylogenetic analysis showed five CTV clades, which included

isolates from Sicily and other geographical regions, suggesting that

CTV was introduced in Sicily in at least five independent events or

several divergent isolates were introduced simultaneously. These

introductions occurred in a very short period, probably in 2002,

and in two locations, Belpasso and Cassibile (separated 80 km).

The geographic origins for these CTV isolates are difficult to track

back based on a phylogenetic analysis, due to the lack of a

worldwide geographical structure of CTV populations as a result

Table 1. Results of statistical tests of different evolutionary
and ecological hypotheses that produce alternative tree
topologies for the CTV p20 gene.

Hypotheses Statistics*

SH{

Likelihood
K-treedist
K-score`

TOPD/FMTS
Split distance1

H1 (original tree) 21859.71 0 0

H2 (hosts) 22394.82* 0.066 0.87

H3 (geographical locations) 24155.41* 0.067 0.97

H4 (collection years) 23266.35* 0.066 0.96

H5 (virulence) 21859.34 0.005 0.70

*These statistical tests compare maximum likelihood trees based on different
hypothesis in which the phylogenetic relationships are correlated to the host
species (H2), geographical location (H3), collection year (H4) and virulence (H5)
with respect to the reference tree (H1).
{Log likelihood for each tree based on the Shimodaira-Hasegawa test.
Significant values (P,0.01) are indicated by asterisks.
`The K-score, the minimum branch length distance from the original tree, was
estimated with the program Ktreedist.
1The split distance, the smallest number of transformations required to obtain
one topology from the other, was estimated with the program TOPD/FMTS.
doi:10.1371/journal.pone.0066700.t001

Figure 3. Parts of a Bayesian phylogenetic tree indicating the five clades (A, B, C, D, and E) containing CTV isolates from Sicily.
Figure S1 shows all the clades; including also those without the Sicilian isolates. The sequences determined in this work are highlighted in grey
background. Node significances are indicated by Bayesian posterior probabilities.
doi:10.1371/journal.pone.0066700.g003
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of the international traffic of CTV-infected citrus propagative

material [15] and the low evolutionary rate of some CTV

genotypes [20–22]. Our inquiries revealed that CTV-infected

mandarin plants were imported from Spain to Cassibile and that

two farmers brought CTV-infected citrus cultivars from California

to Belpasso. These events agree with the phylogenetic tree

obtained.

The Sicilian CTV isolates within each clade showed an

unresolved phylogenetic structure (a star-likestructure with short

branches). This is is consistent with a model of recent epidemic,

with rapid expansion shortly after virus introduction and minimal

selection following a founder event [2,31]. This interpretation is

also consistent with the significant deviations from the neutral

evolution model found for the different lineages, which maintained

low frequency polymorphism. This result could also result from a

very strong negative selection. However, comparison of synony-

mous and nonsynonymous substitutions suggested a moderate

negative selection acting on p20 amino acid sequence similar to

that found with CTV isolates from other countries [21]. Twenty

(,13%) of the amino acids were under negative selection whereas

only three (,2%) were under positive selection, which may

contribute little to the observed patterns of genetic variation. Thus,

Table 2. Nucleotide diversity of p20 gene of CTV isolates from Italy corresponding to different introductions.

Sicily A Sicily B Sicily C Sicily D Sicily E Apulia

Sicily A NA*

Sicily B 0.08860.017 0.00860.001

Sicily C 0.09760.017 0.10960.015 0.00660.002

Sicily D 0.09060.018 0.08860.013 0.03360.008 0.00860.002

Sicily E 0.08960.017 0.08960.014 0.03260.008 0.00960.002 0.00960.002

Apulia 0.09960.019 0.02060.005 0.12760.018 0.10460.015 0.10460.015 0.01360.004

*NA = non-applicable as there is only one CTV isolate.
{Nucleotide diversities and standard errors of CTV isolates proceeding from a possible introduction (in italics) or between CTV isolates from different introductions.
doi:10.1371/journal.pone.0066700.t002

Figure 4. Inferred migration graph for the different introductions of CTV in Sicily associated to clades B, C, D and E reconstructed
from the MCC tree. The branches are colored according to the node height values to the colors between the specified maximal (red) and minimal
boundary (black). Only introductions associated to clades B, C, D and E are shown since clade A has only a single Sicilian isolate.
doi:10.1371/journal.pone.0066700.g004

CTV Phylodynamics
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while selection seems to affect only a small fraction of the p20 gene

the demographic forces derived from genetic drift and from rapid

and intense migration are posibly the main factor shaping the

CTV population structure. The situation in Sicily was very

different to that found in Apulia, the other Italian region analyzed

(separated from Sicily ,450 km, including a three-km sea

transect) where CTV was also detected in 2002. CTV isolates

from Apulia grouped in a well-differentiated subclade with well

resolved nodes and fitting to the neutral evolution model, which

suggests a unique introduction in Apulia with a limited migration

and most genetic variation being mainly governed by genetic drift

after one or several founder events.

No mixed infection with divergent genotypes was detected in

spite of (i) the geographic proximity of genetically divergent

isolates and the possibility of citrus trees being superinfected by

aphid inoculation, and (ii) the lack of known mechanisms for

superinfection exclusion between divergent virus strains [32]. A

similar analysis in Spain and California showed that mixed

infections are rare and probably transient [27,33]. Co-inoculation

of different virulent and avirulent isolates showed that the former

usually had higher fitness and became predominant, even if the

mild isolate persisted at low frequency [28,34,35]. Also, a Spanish

CTV isolate containing a predominant mild genotype and a

virulent genotype at very low proportion, was found to increase

the frequency of the latter after host switch [36–38]. Thus it seems

plausible that some citrus trees in Sicily experienced different

infection events with genetically and biologically divergent isolates,

but later one of them became predominant after outcompeting the

others.

We found a poor correlation between genetic divergence and

time and geographic distance. This could be due to several factors:

i) the occurrence of different introductions of genetically similar

CTV isolates (as those detected here by phylogenetic analysis) and

the predominance of CTV isolates from one of these introductions

after 2007; ii) the perennial nature of citrus trees makes it possible

that some CTV isolates migrated to other areas and hosts vectored

by aphids or humans and, after accumulation of mutations,

returned to the original area; and iii) the low evolutionary rate of

some CTV genotypes [20–22]. In spite of these constraints,

phylogeographic analyses provided valuable information on the

dispersion patterns following each CTV introduction in Sicily.

Except one CTV lineage with only one isolate found, the other

four lineages spread out rapidly to neighboring areas in Eastern

Sicily, probably vectored by aphids [39]. Although several clades

were co-circulating in the same area, only one lineage from a mild

CTV isolate persisted after 2007 in Eastern Sicily. This lineage

moved with infected buds to distant Northwestern and Southeast-

ern areas of Sicily, but was not detected after 2007 in these areas.

After a rapid increase of CTV prevalence, this decreased in the last

years, probably because farmers removed symptomatic citrus

plants. Interestingly, this case mimics the overall situation in Spain

where despite the introduction of virulent isolates, only one lineage

corresponding to mild isolates seems to have persisted. The

Spanish mild lineage is, nonetheless, distinct from that surviving in

Sicily. This contrasts with other geographic regions where virulent

isolates are frequent [15] or are increasing in abundance [40].

This is one of the few reports that have used phylogeographical

and phylodynamics methods to study the evolution and epidemi-

ology of a plant virus since its emergence. Our study showed the

occurrence of multiple introductions of CTV in Sicily followed by

a rapid and complex spread pattern with founder effects shaping

the CTV population genetic structure. Reconstruction of the

migratory routes together with determination of the geographical

regions in which the virus become persistent is central to the

Table 3. Neutrality tests of p20 gene of CTV isolates from
Italy corresponding to different introductions.

Introductions No. isolates Fu & Li’s D Fu & Li’s F Tajima’s D

Sicily A 1 NA* NA NA

Sicily B 44 22.850{ 23.033{ 22.001{

Sicily C 9 21.896` 22.081` 21.745{

Sicily D 26 2.341` 22.446` 21.524

Sicily E 30 2.524` 22.782{ 22.018{

Apulia 7 20.269 20.430 20.771

NA = non-applicable as there is only one CTV isolate.
{P,0.05,
`P,0.10,
doi:10.1371/journal.pone.0066700.t003

Table 4. Fst values and Ks*, Z* and Snn tests between pairs o CTV populations for the p20 gene.

Populations* N{ Argentina California N. Zealand Pakistan Spain Apulia

Argentina 25

California 20 0.359`

N. Zealand 7 0.226 0.342

Pakistan 14 0.129 0.537 0.480

Spain 18 0.302 0.01831 0.216 0.503

Italy 116 0.217 0.155 0.316 0.421 0.123

Apulia 6 0.652 0.258 0.791 0.321 0.650

Sicily 110 0.204 0.182 0.317 0.791 0.321 0.532

*Geographical regions: Argentina, California (USA), New Zealand, Pakistan, Spain, and Italy. Italy has been subdivided between the Sicily island and Apulia (peninsular
Italy). The Italian sequences are: 110 from Sicily (108 determined in this work and two from GenBank), six from Apulia (Southeastern of Italian peninsula) and one from
Calabria (Southwestern of Italian peninsula).
{N = number of CTV isolates.
`Fst provides an estimate of the extent of gene flow between populations. A value of zero corresponds to genetically undifferentiate populations, whereas a value of
one indicates genetically isolated populations.
1No significant genetic differentiation (P.0.05) evaluated with the Ks*, Z* and Snn tests.
doi:10.1371/journal.pone.0066700.t004
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establishment of effective disease control policies based on

surveillance systems.

Material and Methods

Virus Isolates
A survey was conducted in all citrus growing areas of the nine

provinces of Sicily since the first CTV outbreak in Sicily in 2002

[19,41] until 2009 (Table S1 in Tables S1). Randomly selected

samples of young leaves were collected from 67,922 trees of sweet

orange, sour orange, mandarin, and grapefruit cultivars regardless

of symptoms. CTV infection was determined by double-antibody-

sandwich indirect (DASI) ELISA analysis with the monoclonal

antibodies DF1 and 3CA5 (Ingenasa, Madrid, Spain) that

recognize all CTV isolates. Each CTV-infected tree was consid-

ered as an isolate.

RNA Purification
Total RNA from young leaves was extracted from 1,789

randomly selected CTV-infected trees (Table S1 in Tables S1).

For each sample, approximately 100 mg of leaf tissue was ground

in an Eppendorf tube in the presence of 500 ml extraction buffer

(200 mM Tris pH 8.5; 1.5% SDS; 300 mM LiCl; 1% sodium

deoxycholate; 1% Igepal CA-630; 10 mM EDTA), the mixture

was incubated at 65uC for 10 min and then 500 ml of potassium

acetate pH 6.5 was added and incubated on ice for 10 min. After

a 10-min centrifugation at 13000 rpm, 650 ml of supernatant was

transferred into a new tube, mixed with an equal volume of cold

isopropanol and incubated for 1 hour at –80uC. After a 10-min

centrifugation at 13000 rpm the pellet was washed with 70%

ethanol and resuspended in 50 ml of diethylpyrocarbonate-treated

distilled water.

RT-PCR
The p20 gene of CTV isolates was amplified by RT-PCR in

one-step reaction in a 25 ml final volume containing 2 ml of total

RNAs (template), 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 3 mM

MgCl2, 0.4 mM dNTPs, 1 mM of primers P20F ad P20R (Vives

et al. 1999), 4U of RNaseOut, 20 U of SuperScript II reverse

transcriptase-RNaseH and 2U of Taq DNA polymerase (Invitro-

gen, Carlsbad, CA, USA). RT-PCR was under the following

conditions: 42uC for 30 min, 94uC for 2 min, 35 cycles of 30 s at

94uC, 30 s at 50uC, and 30 s at 72uC with a final elongation of

4 min at 72uC.

Genotyping and Biotyping
Within-isolate CTV population structure was assessed by single-

strand conformation polymorphism (SSCP) analysis of the RT-

PCR products [42]. The consensus nucleotide sequences of the

p20 gene of 108 randomly selected CTV isolates were determined

from the RT-PCR products in both directions with an ABI

PRISM 3100 DNA sequence analyzer (Applied Biosystems). These

108 CTV isolates were biologically characterized by inoculation in

sour orange (Citrus aurantium) and Mexican lime (Citrus aurantiifolia).

Based on this, these isolates were classified into two biotypes: i)

severe, causing seedling yellows in sour orange and vein corking in

Mexican lime, and ii) mild, symptomless in sour orange and a

slight vein clearing in Mexican lime (Table S2 in Tables S1).

Nucleotide Sequence Analysis
Multiple sequence alignment was performed with CLUSTAL

W [43]. The nucleotide substitution model which best fits the

sequence and nucleotide diversity, assuming that sites have

heterogeneous substitution rates described by a gamma distribu-

tion with four classes, was inferred with MEGA version 5.05 [44].

Recombination was analyzed with the GARD program available

at the Datamonkey Server (www.datamonkey.org) [45] and the

RDP3 package [46].

Population Demography and Selection Analysis
The program DNASP 5.10 [47] was used to estimate Tajima’s

D [48], Fu & Li’s D and F [49] statistics to test the mutation

neutrality hypothesis [50]. Tajima’s D test is based on the

differences between the number of segregating sites and the

average number of nucleotide differences. Fu & Li’s D test is based

on the differences between the number of singletons (mutations

appearing only once among the sequences) and the total number

of mutations. Fu & Li’s F test is based on the differences between

the number of singletons and the average number of nucleotide

differences between every pair of sequences.

DNASP 5.10 was also used to assess genetic differentiation and

the gene flow level between Sicily and other geographic regions by

using three permutation-based statistical tests: Ks*, Z* and Snn

[51,52] and the statistic Fst [53].

To study the role of natural selection at the molecular level, the

rate of synonymous substitutions per synonymous site (dS) and the

rate of nonsynonymous substitutions per nonsynonymous site (dN)

were analyzed separately. It is assumed that, generally, in a

protein, only nonsynonymous changes (producing amino acid

changes) are subjected to selection, as they can alter the protein

function or structure. The difference between dN and dS provides

information on the sign and intensity of selection. dN and dS were

estimated for the whole p20 gene by the Pamilo-Bianchi-Li

method [54], implemented in the program MEGA 5.05 [44]. Also,

selection across the p20 coding region was studied by estimation of

the rates of dN and dS at each codon using the Fixed Effects

Likelihood (FEL) method [55] available at the Datamonkey

Server.

Phylogenetic Analyses
Maximum Likelihood (ML) phylogenetic analysis was perfomed

with the Sicilian CTV sequences using RAxML Pthreads-based

version 7.4.2 [58,59], under the GTR+C4 substitution model

introducing three partitions (one for each codon position) and

1000 bootstrap cycles. Based on this ML tree, polytomic trees were

constructed representing four different hypotheses: (i) host linked

structure, (ii) geography driven structure, (iii) sample date linked

structure and (iv) virulence linked structure. The branch lengths of

these polytomic trees were optimized and the likelihoods were

compared to the best ML tree with a Shimodaira-Hasegawa test

[60] implemented in RAxML. Also KTREEDIST [61] was used

to calculate the minimun branch lenght distance (or K tree score)

from one phylogenetic tree to another. Finally, TOPD/FMTS

[62] was used to compare the trees regarding their topological

congruence using the split distance method. The distance given is

the smallest number of transformations required to obtain one

topology from the other. PATH-O-GEN version 1.3 (tree.bio.e-

d.ac.uk/software/pathogen/) was used to investigate the temporal

structure of the collected data by using the ML tree as an input

together with the sampling dates. PATH-O-GEN performs a

linear regression between the genetic distance from the root to the

tips and the corresponding collection dates. Temporal structrure

was not significant in our data set.

Bayesian phylogenetic analyses were performed with the Sicilian

CTV sequences using BEAST v1.6.2 [56] with the GTR+C4

model, introducing three partitions (one for each codon position).

The sampling years were introduced and two independent Monte

Carlo Markov Chains (MCMCs) were completed with a chain
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length of 40,000,000 sampling every 1000 trees to establish

convergence of all parameters. The BEAST outputs were analyzed

using TRACER v1.5 (tree.bio.ed.ac.uk/software/tracer) and the

two outputs were combined for increasing the effective sample size

(ESS; posterior = 212.1757, likelihood = 997.3781). The sample of

the trees was summarized into the maximum clade credibility

(MCC) phylogeny using TREEANNOTATOR v1.7.0 (beast.-

bio.ed.ac.uk/TreeAnnotator), discarding the first 10% of sampled

trees as burn-in. This Bayesian tree confirms the structure of the

constructed ML tree.

A discrete phylogeographic analysis was done using a contin-

uous-time Markov chain (CTMC) introducing the location

attributes and sampling years. The standard phylogeographic

model input file for BEAST was modified to set up Bayesian

stochastic search variable selection (BSSVS) according to the

number of locations. The location states were annotated on an

MCC tree using TREEANNOTATOR and visualized using

FIGTREE version 1.3.1 (tree.bio.ed.ac.uk/software/figtree/). The

location-annotated MCC was converted with SPREAD [57]. The

branches are colored according to the node height values with red

specified as the maximal and black as the minimal boundary.

The same Bayesian approach was used to construct a phyloge-

netic tree from sequences of worldwide CTV isolates using BEAST

v1.7.4 [56]. Sampling years were not specified, as this information is

unknown for many sequences obtained from GenBank. Substitution

rates were estimated using the relaxed uncorrelated exponential

clock and the strict clock model. For both methods one MCMC was

sufficient to obtain an ESS of a good size (relaxed clock:

posterior = 640.8366, likelihood = 1099.5541 and strict clock:

posterior = 804.5703, likelihood = 1560.6579). The Bayes

factor was calculated using TRACER with the likelihood and

1000 bootstrap replicates (P(Mrelaxed|D) = 23903.49360.288, and

P(Mstrict|D) = 23946.27160.238), and gave a value of P(Mrelaxed|D)/

P(Mstrict|D) = 0.989, suggesting the strict clock model to be the best

one.

The tree figures in this article were produced with FIGTREE

v1.4.0.

The GenBank accession numbers for the Citrus tristeza virus

sequences reported in this paper are JQ422278 to JQ422385.

Supporting Information

Figure S1 Bayesian phylogenetic tree drawn for the p20
gene from 108 CTV isolates from Sicily (sequenced in
this work; highlighted in gray) plus 116 worldwide CTV
isolates (from GenBank). Node significances are indicated by

Bayesian posterior probabilities. Phylogenetic clades with Sicilian

isolates are indicated as A, B, C, D and E.

(TIF)

Tables S1 This file includes Table S1 and Table S2.

(DOC)
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