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Abstract 

 

This work presents the experimental results obtained during auto-thermal chemical 

looping reforming (CLRa) in a semicontinuous pressurized fluidized bed reactor 

working with two Ni-based oxygen carriers and using methane as fuel. During operation 

the effect of the total pressure, reduction reaction temperature, and oxygen carrier-to-

fuel molar ratio on CH4 conversion, gas outlet concentrations, and carbon formation was 

analyzed. In the range of pressures analyzed (up to 10 bars), it was found that an 

increase in the total operating pressure did not produce a negative effect on the gas 
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product distribution obtained in the process. At all operating pressures the CH4 

conversion was very high (>98%) and no carbon formation was detected. The most 

important variable affecting the gas product distribution was the solid circulation rate, 

that is, the oxygen carrier-to-fuel molar ratio (NiO/CH4).  

 

The oxygen carriers were physically and chemically characterized by several techniques 

before and after using in the pressurized fluidized bed reactor. Important changes in the 

surface texture and the solid structure of the oxygen carrier particles were not detected. 

These results suggest that these oxygen carriers could have a high durability, being 

suitable for use in a pressurized CLRa system. 

 

Keywords: Hydrogen, Chemical looping, Oxygen carrier, Nickel oxide, Pressurized 

Fluidized bed 

 

 

1. Introduction 

  

The stabilization of atmospheric greenhouse gas concentrations can not be reached 

without the CO2 capture and storage (CCS). There are different CCS technologies 

available for the emissions produced in power plants. Some of these technologies are 

based on H2 production with CO2 capture (pre-combustion process). On the other hand, 

CO2 capture technology applied to transport sector is more complex, being the use of H2 

as fuel one possible option to reduce the CO2 emissions. 
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Hydrogen can be produced from renewable energy sources through water electrolysis, 

from solid fossil fuels via gasification, or from gaseous fossil fuels via reforming, 

mainly from natural gas. In this last option, CO2 is produced as by-product and must be 

captured and stored to avoid its emission, but today the reforming processes also have 

advantages as the technology has been practiced for decades and the H2 cost is less than 

H2 produced from renewable energy sources or from solid fossil fuels via gasification. 

 

CO2 capture technology integrated with H2 production is available today with is high 

cost being the main barrier to its use. In the CACHET project the integration of CO2 

capture technologies with H2 production systems for power generation and fuel 

applications are being studied (CACHET project, FP6-019972). The overall goal of the 

CACHET project is to develop innovative technologies which will substantially reduce 

the cost of CO2 capture whilst simultaneously producing H2 from natural gas. Some of 

the technologies investigated are based on Chemical-Looping Combustion (CLC) 

process (Rydén and Lyngfelt (2006b), Chiesa et al. (2008)). 

 

CLC is a novel combustion technology with inherent separation of the greenhouse gas 

CO2 that involves the use of an oxygen carrier, which transfers oxygen from air to the 

fuel avoiding the direct contact between them. CLC system is made of two 

interconnected reactors, designated as air and fuel reactors. In the fuel reactor, the fuel 

gas (CnHm) is oxidized to CO2 and H2O by a metal oxide (MeO) that is reduced to a 

metal (Me) or a reduced form of MeO. The metal or reduced oxide is further transferred 

into the air reactor where it is oxidized with air, and the material regenerated is ready to 

start a new cycle. The flue gas leaving the air reactor contains N2 and unreacted O2. The 
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exit gas from the fuel reactor contains only CO2 and H2O. After water condensation, 

almost pure CO2 can be obtained with little energy lost for component separation.  

 

Chemical-Looping auto-thermal Reforming (CLRa) (Mattisson and Lyngfelt, 2001) also 

uses a metal oxide to transfer oxygen to the fuel (Figure 1), the main difference being 

that the desired product is syngas (H2 + CO). In the CLRa process the air to fuel ratio is 

kept low to prevent the complete oxidation of the fuel to CO2 and H2O. The major 

advantage of this process is that the heat needed for converting CH4 to H2 is supplied 

without costly oxygen production, without mixing of air with carbon containing fuel 

gases or without using part of the H2 produced in the process. An important aspect to be 

considered in a CLRa system is the heat balance. The oxidation reaction of the metal 

oxide is very exothermic, however, the reduction reactions are endothermic. So, the heat 

for the endothermic reduction reactions is given by the circulating solids coming from 

the air reactor at higher temperature. The heat generated in the air reactor must be high 

enough to fulfil the heat balance in the system. 

 

A key issue for the CLRa technology development is the selection of an oxygen carrier 

with suitable properties: enough reactivity through cycles to reduce solids inventory; 

high resistance to attrition to minimize losses of elutriated solid; complete fuel 

conversion to CO and H2; negligible carbon deposition what would release CO2 in the 

air reactor and good properties for fluidization (no presence of agglomeration). In 

addition, other characteristics such as simple preparation method would be desirable to 

reduce costs. Fe-, Ni-, Cu-, Ce- and Mn-based oxygen carriers supported on different 

inert materials, such as Al2O3, SiO2, Mg-ZrO2 and prepared by different methods, have 
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been studied to be used in a CLRa system (Zafar et al. (2005), Johansson et al. (2008), 

de Diego et al. (2008), He et al. (2009)), but Ni-based oxygen carriers appears the most 

interesting due to its strong catalytic properties. In fact, metallic Ni is used in most 

commercial steam reforming catalyst’s. Rydén et al. (2008b) also tested in a fixed bed 

reactor LaxSr1-xFeO3-δ perovskites as oxygen carriers for CLRa. They found that 

perovskites provided very high selectivity towards CO/H2 and should be well suited for 

CLRa but the long-term chemical and mechanical properties of the perovskite particles 

are largely unknown. 

 

Atmospheric continuous auto-thermal chemical-looping reforming working with Ni-

based oxygen carriers has been demonstrated by Rydén et al. (2006a, 2008a) and by de 

Diego et al. (2009) in small laboratory units, and by Bolhàr-Nordnkampf et al. (2009) in 

a 120 kWth pilot plant. Rydén and Lyngfelt (2004) carried out a thermodynamic analysis 

to investigate the characteristics of some processes that utilize chemical-looping 

technology for production of H2. These authors found that the atmospheric processes 

have large H2 production but the electricity needed to compress the product is 

considerable, and concluded that a pressurized CLRa system is less straightforward but 

would have potential to achieve much higher overall efficiency. Siriwardane et al. 

(2007) and García-Labiano et al. (2006) studied, in a packed reactor and in a 

thermogravimetric analyzer (TGA), the effect of the pressure on the behaviour of 

several oxygen carriers for CLC. In both works it was showed that the pressure had a 

positive effect on the reaction rates, although the reactivity increase was not as high as 

expected. There are no studies in the literature about the effect of the operating pressure 

in a CLRa system. So, it is needed to study this effect working with continuous units. 
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In this work the effect of total pressure on CH4 conversion, gas outlet concentrations, 

and carbon formation was studied in a semicontinuous pressurized fluidized bed reactor 

working with two Ni-based oxygen carriers. The effect of different operating variables, 

like reduction reaction temperature and oxygen carrier to fuel ratio (NiO/CH4), was also 

analyzed at pressures up to 10 bars. 

 

2. Experimental Section 

 

2.1. Materials 

 

The behaviour of two oxygen carriers based on nickel was analyzed in this work. In 

both of them, Al2O3 was selected as support to increase the mechanical strength of the 

material. NiO21-γAl2O3 was prepared by incipient wetness impregnation over 

commercial γAl2O3 (Puralox NWa-155, Sasol Germany GmbH) and NiO18-αAl2O3 was 

prepared by incipient wetness impregnation over αAl2O3 (obtained by calcination of 

γAl2O3 at 1150 ºC during 2 hours). The details of the preparation of both oxygen 

carriers have been described elsewhere (Gayán et al. (2008)). The oxygen carriers are 

designated with the metal oxide followed by its weight content and the inert used as 

support. 

 

2.2. Oxygen carrier characterization 

 



 7

The oxygen carriers were physically and chemically characterized by several 

techniques. The bulk density of the oxygen carrier particles was calculated weighting a 

known volume of solid and assuming that the void was 0.45 corresponding to loosely 

packed bed. The force needed to fracture a particle was determined using a Shimpo 

FGN-5X crushing strength apparatus. The mechanical strength was taken as the average 

value of at least 20 measurements. The porosity was measured by Hg intrusion in a 

Quantachrome PoreMaster 33. The identification of crystalline chemical species was 

carried out by powder X-ray diffraction (XRD) patterns acquired in an X-ray 

diffractometer Bruker AXS D8ADVANCE using Ni-filtered Cu K radiation equipped 

with a graphite monochromator. The oxygen carriers were also analyzed in a scanning 

electron microscope (SEM) ISI DS-130 coupled to an ultra thin window PGT Prism 

detector for energy-dispersive X-ray (EDX) analysis.  

 

2.3. Thermodynamic calculations 

 

Thermodynamic calculations about the effect of total pressure in a CLRa system were 

carried out using HSC Chemistry 6.1 (2008) software. The program obtains the 

equilibrium gas composition by using the method of minimitation of the Gibbs free 

energy of the system. The effect of  pressure was analyzed in the range of 1 to 25 bars 

for a reaction temperature of 900ºC, a H2O/CH4 molar ratio of 0.3 and an oxygen carrier 

to fuel ratio (NiO/CH4) of 1.25, which is the optimum value for the fulfilment of the 

heat balance in a CLRa process (de Diego et al. (2009)).  
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Figure 2 shows the results of the thermodynamic calculation. It can be observed that the 

thermodynamic equilibrium for the reforming reactions is less favourable to the 

production of syngas (CO + H2) at elevated pressure. An increase in the operating 

pressure produced a decrease in the CH4 conversion, an increase in the CO2 and H2O 

concentrations and a decrease in the H2 and CO concentrations. In this way, to achieve 

at high pressure the same CH4 conversion as at atmospheric pressure an increase in the 

fuel reactor temperature is needed, as it can be observed in the figure 2.  

 

2.4. Reactivity tests in thermogravimetric analyzer 

 

Reactivity tests of the oxygen carriers were carried out in an atmospheric 

thermogravimetric analyzer (TGA), CI Electronics type, described elsewhere (de Diego 

et al. (2004)). For the experiments, the oxygen carrier was loaded in a platinum basket 

and heated to the operating temperature (900ºC) in air atmosphere. After weight 

stabilization, the experiment was started by exposing the oxygen carrier to alternating 

reducing and oxidizing conditions. The reducing gas was saturated in water by bubbling 

it through a water containing saturator at the selected temperature to reach the desired 

water concentration. The gas selected for the reducing experiments was composed by 15 

vol.% CH4, and 20 vol.% H2O (N2 balance) and the gas used for oxidation was 100 

vol.% air. To avoid mixing of combustible gas and air, nitrogen was introduced for 2 

min after each reducing and oxidizing period.  

 

2.5. Experimental Facility 
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A semicontinuous fluidized bed reactor was built to analyze the effect of the total 

pressure on the H2 yield, selectivity, carbon formation, gas outlet concentrations and 

oxygen carrier integrity, in a CLRa process. Figure 3 shows the schematic diagram of 

the experimental setup, which was basically composed of a system for gas feeding, a 

continuous system for solids feeding, a pressurized reactor and a gas analysis system. 

The gas feeding system (1) had different mass flow controllers for different gases and 

water. The fluidized bed, with a bed height of 0.15 m, was placed inside a Kanthal 

reactor of 0.038 m D.I. and 0.58 m height (2), with a preheating zone just under the 

distributor. The reactor was inside an electrically heated furnace (3). A pressure valve 

(9) located at the gas exit line controlled the reactor pressure. There was a hot filter (8) 

downstream from the fluidized bed reactor to recover the solids elutriated from the bed. 

Both gas feeding line and gas exit line were heated to avoid water condensation.  

 

The oxygen carrier was fed to the reactor from a heated lock hopper (4), located in the 

upper part of the system, using a screw feeder (5). The flow rate of solids entering the 

reactor was controlled by regulating the velocity (6) of the screw feeder. The reacted 

oxygen carrier overflowed into a collecting hopper (7) keeping constant the solid 

inventory in the system. Different gas analyzers continuously measured the gas 

composition at each time. The CO, CO2, H2O, and CH4 gas concentrations were 

measured in FTIR (Fourier transform infrared spectroscopy) and  NDIR (non dispersive 

infrared sensor) analyzers, the O2 concentration was measured in a paramagnetic 

analyzer, and the H2 concentration was measured by thermal conductivity.  
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After construction of the prototype, initial tests of solids feeding were carried out to 

learn about the control of the system. In those first tests, the mass balances showed very 

high water content at the gas outlet stream because the oxygen carriers adsorbed water 

during handling (Figure 4). To avoid this problem, it was necessary to dry the oxygen 

carriers before feeding to the reactor. For that, it was set up a furnace (3) around the 

solid feed hopper, and the solid was dried flowing N2 through it. This allowed to keep 

the oxygen carrier hot and free of water. As can be seen in the test showed in Figure 4, 

after drying the solid, no H2O concentration was measured along the test. Only a small 

H2O concentration coming from the solid that was in the screwfeeder, which was not 

well dried, was measured at the beginning of the test.  

 

2.6. Experimental procedure 

 

The experimental facility used in this work was a semicontinuous system. So, the 

experiments were divided in two tests, the reduction test and the oxidation test. Figure 5 

shows a typical reduction test in the semicontinuous fluidized bed for the NiO21-Al2O3 

oxygen carrier at an operating pressure of 5 bars. During the reduction test, the oxidized 

oxygen carrier was loaded in the solid feed hopper and, after drying, the whole system 

was locked and pressurized in nitrogen atmosphere until the desired pressure. Then, the 

steam was fed to the reactor and after flow stabilization, the oxygen carrier and CH4 

were fed to start the reduction test. The steady-state was reached after 20-40 minutes 

depending of the operating conditions, and it was maintained for at least 60 minutes. 

The reduced oxygen carrier overflowed into the solid collecting hopper. When the 

reduction test was finished, the system was depressurized and the oxygen carrier was 



 11

recovered. The oxidation of the oxygen carrier was carried out at atmospheric pressure 

in a similar way.  

 

3. Results and discussion 

 

Reforming tests under different operation conditions were conducted in the facility with 

the two oxygen carriers using CH4 as fuel. The selected range of operating conditions 

(with the exception of the solid feeding rate) was the same for the two oxygen carriers. 

The effect of the total pressure was studied in the range of 1-10 bars. To analyze the 

effect of the total pressure for a constant gas velocity and NiO/CH4 molar ratio, two 

kinds of experiments can be carried out. The first option is to perform experiments with 

a constant concentration of CH4 at the different total pressures. This involves an 

increase in the CH4 flow rate with increasing the pressure. For a constant NiO/CH4 

molar ratio an increase in the CH4 flow rate produces an increase in the oxygen carrier 

feed flow rate and as a consequence a decrease in the mean residence time of the 

oxygen carrier in the fluidized bed reactor. The second option is to perform experiments 

with a constant CH4 partial pressure at the different total pressures. In this case, the CH4 

concentration decreases with increasing the pressure but the CH4 flow rate is kept 

constant at the different total pressures. So, the solid feed flow rate and the mean 

residence time of the oxygen carrier in the fluidized bed reactor are kept constants for 

the same NiO/CH4 molar ratio at different total pressures. 

 

In this work, the second option was used to carry out the experimental tests. The 

reduction tests were carried out with a CH4 partial pressure of 0.5 bars (38.2 Nl/h), an 
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inlet superficial gas velocity into the reactor of 0.08 m/s, and a H2O/CH4 molar ratio of 

0.3. Table 1 shows the CH4 concentrations used at the different total pressures. 

 

To study the effect of the reduction reaction temperature at different operating 

pressures, the temperature in the reactor was varied over a range of 800-900 ºC. The 

effect of oxygen carrier to fuel ratio (NiO/CH4) on the CH4 conversion and gas product 

distribution was analyzed by controlling the solid feeding flow rate by means of the 

velocity of the screw feeder, and took values from 0.8 to 2.6 kg/h. The mean residence 

time of solids varied from 3 to 9 min for NiO21-Al2O3 and from 4 to 13 min for 

NiO18-Al2O3 as a function of the NiO/CH4 molar ratio used. 

 

The oxidation of the oxygen carrier was carried out at atmospheric pressure and a 

temperature of 950ºC with an inlet superficial gas velocity into the reactor of 0.08 m/s 

and a gas composition of 15 vol% O2 in N2.  

 

The steady-state for the different operating conditions was maintained for at least 1 hour 

in each test. A total of more than 50 hours of operation with each oxygen carrier, taking 

into account only the reduction tests, were carried out. 

 

3.1. Evaluation of the data 

 

The gas product concentrations were measured by on line analyzers. The main reactions 

happening with different contribution in the reactor during the oxygen carrier reduction 

test are: 
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Oxidation 

CH4 + 4 NiO  ↔   4 Ni + CO2 + 2 H2O (R1) 

H2 + NiO  ↔   Ni + H2O (R2) 

CO + NiO  ↔  Ni + CO2 (R3) 

 

Partial oxidation 

CH4 + NiO  ↔   Ni + CO + 2 H2 (R4) 

 

Steam reforming catalyzed by Ni 

CH4 + H2O  ↔   CO + 3 H2 (R5) 

 

Methane decomposition catalyzed by Ni 

CH4  ↔   C + 2 H2 (R6) 

 

Carbon gasification 

C + H2O  ↔   CO + H2 (R7) 

C + CO2  ↔   2 CO 

 (R8) 

Water gas shift 

CO + H2O  ↔   CO2 + H2 (R9) 

 

And during the oxidation test: 
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Ni + ½ O2  ↔   NiO (R10) 

C + O2  ↔   CO2 (R11) 

C + 1/2O2  ↔   CO (R12) 

 

Taking into account these reactions, the conversions of the oxygen carriers during the 

reduction and oxidation periods were calculated from the gas outlet concentrations by 

the equations: 

 

Reduction 
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Oxidation 
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where X is the conversion of the oxygen carrier, Qin is the molar flow of the gas coming 

into the reactor, Qout is the molar flow of the gas leaving the reactor, Ptot is the total 

pressure, Pi,in is the partial pressure of gas i coming into the reactor, Pi,out is the partial 

pressure of gas i exiting the reactor, n0 are the moles of oxygen which can be removed 

from fully oxidized oxygen carrier. The last terms in equation 3 take into account the 

formation of CO and CO2 during the oxidation test due to the oxidation of C (reactions 

R11 and R12) coming from the decomposition of CH4 (reaction R6). 

 

For better comparison, the results showed in this work are presented in N2 free basis 

and/or dry N2 free basis. 

 

3.2. Effect of Total Pressure 

 

The effect of the total pressure was studied in the range of 1-10 bars. Under all 

operating conditions, the inlet molar flow of methane was maintained constant. Figure 6 

shows the effect of the total pressure on the gas product concentrations for both oxygen 

carriers working at 900ºC and a NiO/CH4 molar ratio of 3.2 for the NiO21-Al2O3 

oxygen carrier and 2.2 for the NiO18-Al2O3 oxygen carrier. As it can be observed in 

the figure, the CH4 conversion was very high in all the range of pressures tested and an 

increase in the operating pressure did not produce any important change in the gas 

product distribution of the CLRa process for both oxygen carriers.  

 

The oxygen carrier conversions reached during the reduction reaction were calculated 

with the equations 1 and 2. It was found that the conversions reached by each oxygen 
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carrier were very similar at all operating pressures, about 55% for the NiO21-Al2O3 

oxygen carrier and about 80% for the NiO18-Al2O3 oxygen carrier. The conversions 

reached by the NiO18-Al2O3 oxygen carrier were higher than the conversions reached 

by the NiO21-Al2O3 oxygen carrier because of its higher reactivity, in good agreement 

with the reactivity observed in the TGA. Figure 7 shows the reduction reactivity 

measured in the TGA for both oxygen carriers using as reacting gases 15 vol.% CH4 and 

20 vol.% H2O (N2 balance). As it can be seen, the NiO18-Al2O3 oxygen carrier 

showed higher reactivity than the NiO21-Al2O3 oxygen carrier during the reduction 

reaction. The low reduction reactivity of the oxygen carrier of NiO on Al2O3 was due 

to the solid state reaction between the NiO and the Al2O3 to form NiAl2O4, as it is 

shown in the XRD patterns (see Table 2). It must be taken into account that the reaction 

rate of CH4 with NiAl2O4 is lower than with free NiO (de Diego et al. (2008)). On the 

contrary, the high reactivity of the carrier of NiO on Al2O3 was because the interaction 

between the NiO and the support was reduced using the Al2O3. As can be seen in 

Table 2, free NiO was observed in this oxygen carrier.  

 

Taking into account the conversions reached by both oxygen carriers for the operating 

conditions used in Figure 6 (a temperature of 900ºC and a NiO/CH4 molar ratio of 3.2 

for the NiO21-Al2O3 oxygen carrier and 2.2 for the NiO18-Al2O3 oxygen carrier), the 

NiOreacted/CH4 molar ratio was 1.8 for both oxygen carriers. Figure 8 shows the gas 

product compositions at different operating pressures given by the thermodynamic 

equilibrium for a NiOreacted/CH4 molar ratio of 1.8, and the experimental gas 

compositions obtained working with both oxygen carriers. It can be observed very 

similar gas compositions working at the same NiOreacted/CH4 molar ratio with both 
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oxygen carriers at all operating pressures. In addition, it was found that these gas 

product compositions were close to thermodynamic equilibrium.  

 

An important obstacle in a pressurized CLRa process could possibly be the carbon 

formation because the reactions R11-R12 are favoured at elevated pressures. However, 

no carbon formation was detected at all operating pressures tested. 

 

3.3. Effect of Reduction Reaction Temperature 

 

From a thermodynamic point of view, the reduction reaction temperature at elevated 

pressure must be higher than at atmospheric pressure to achieve the same CH4 

conversion. So, it is important to analyze the effect of the reduction reaction 

temperature on the gas product compositions at elevated pressures. The effect of 

reduction reaction temperature was tested in the range of 800-900ºC. At all reduction 

reaction temperatures, the inlet molar flow of methane was maintained constant. Figure 

9 shows the effect of reduction reaction temperature on the gas product compositions at 

operating pressures of 1 and 10 bars for the oxygen carrier NiO18-Al2O3. It can be 

observed the same effect of the reduction reaction temperature on the gas product 

composition at both operating pressures. The CH4 conversion was very high (>98%) in 

the range of temperature tested, and for the same oxygen carrier-to-fuel ratio, an 

increase in the reduction reaction temperature produced a small increase in the CH4 

conversion, a slight increase in the CO2 and H2O concentrations and a slight decrease in 

the H2 and CO concentrations. The increase in the CH4 conversion with an increase in 

the reduction reaction temperature could be due to the increase of R1, R4, and R5 
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reaction rates, and the increase in the CO2 and H2O concentrations and decrease in the 

H2 and CO concentrations due to the increase of R1, R2, and R3 reaction rates. It must 

be taken into account that an increase in the reduction reaction temperature increased 

the oxygen carrier conversion and as a consequence more oxygen was available for 

oxidation. 

 

3.4. Effect of Oxygen Carrier-to-Fuel Ratio 

 

As it was previously commented, in the CLRa process the metal oxide is used to 

transfer oxygen to the fuel. In addition, because the oxidation reaction of the metal 

oxide is very exothermic and the reduction reactions are endothermic, the heat for the 

endothermic reduction reactions is given by the circulating solids coming from the air 

reactor at higher temperature. The heat generated in the air reactor must be high enough 

to fulfil the heat balance in the system. So, a basic operating variable for the CLRa 

process is the oxygen carrier-to-fuel molar ratio which, for a given fuel flow rate fed to 

the reactor, depends on the solid feeding flow rate. In this experimental setup the solid 

feeding flow rates were controlled by means of the velocity of the screw feeder, and 

took values from 0.8 to 2.6 kg/h.  

 

Figures 10 and 11 show the effect of oxygen carrier-to-fuel ratio on the gas product 

composition for both oxygen carriers working at different pressures and at a temperature 

of 900 ºC. It can be observed that at all operating pressures the gas product distributions 

obtained working with both oxygen carriers were similar. As expected, it was found that 

an increase in the oxygen carrier-to-fuel ratio produced an increase in the CO2 and H2O 



 19

concentrations and a decrease in the H2, CO and CH4 concentrations at all operating 

pressures. This was obviously due to the different contribution of the different reactions 

(R1 to R9) to the overall global process, but specially increasing the oxygen carrier 

circulation flow rate increased the contribution of the oxidation reactions (reactions R1-

R3). Finally, it can be seen in these figures that the gas product compositions were close 

to thermodynamic equilibrium. 

 

3.5. Behaviour of the oxygen carrier particles 

 

The oxygen carriers were physically and chemically characterized before and after 

operation in the pressurized fluidized bed reactor. Table 2 shows the main properties of 

the oxygen carriers. As can be seen, no important changes in the density, porosity, and 

mechanical strength were observed in the oxygen carrier particles after being used under 

pressurized conditions. The BET surface area of the NiO21-Al2O3 oxygen carrier 

decreased, suggesting that some accumulative thermal sintering was occurring in the 

oxygen carrier particles along the time during operation in the prototype. However, this 

thermal sintering did not deactivate the oxygen carrier reactivity. Figure 7 shows the 

reactivities measured in the TGA for the fresh and used oxygen carriers. The reduction 

reactivity of the NiO18-Al2O3 oxygen carrier were hardly affected by the operation, 

however, the reduction reactivity of NiO21-Al2O3 oxygen carrier was higher in the 

used particles. The powder XRD patterns of the used oxygen carriers revealed no new 

crystalline phases for both oxygen carriers. In addition, the oxygen carrier particles 

never showed agglomeration or defluidization problems. 
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The surface texture and the solid structure of the oxygen carries were analyzed by SEM-

EDX. Figure 12 shows the pictures of the oxygen carrier particles, both fresh and used 

under pressurized conditions. No major differences can be observed between them. The 

nickel distribution inside the particles was analyzed by EDX in some particles 

embedded in resin epoxy, cut, and polished. In both oxygen carriers, the Ni was 

uniformly distributed through the particles and there was not evidence of redistribution 

or migration of Ni sites during the redox cycles. 

 

The behaviour of the oxygen carriers at high pressure was very similar to that the 

observed by these oxygen carriers working for more than 50 h operation at atmospheric 

pressure in a 900 Wth continuous circulating fluidized bed reactor using CH4 as fuel (de 

Diego et al. (2009)). So, it can be concluded that the pressure did not produce any 

negative effect in the behaviour of the oxygen carrier particles. These results suggest 

that these oxygen carriers could have a high durability, being suitable oxygen carriers 

for a pressurized CLRa system. 

 

4. Conclusions 

 

Two Ni-based oxygen carriers, NiO21-γAl2O3 and NiO18-αAl2O3, prepared by incipient 

wetness impregnation, have been tested in a semicontinuous pressurized fluidized bed 

reactor to analyze the effect of the total pressure on the CLRa process. During operation 

the effect of different operating variables, like reduction reaction temperature and 

oxygen carrier-to-fuel molar ratio, on CH4 conversion and gas product distribution was 

analyzed at pressures up to 10 bars.  
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It was observed that in all operating pressures tested the CH4 conversion was very high 

(>98%) for both oxygen carriers. An increase in the operating pressure did not produce 

any important change in the gas product distribution of the CLRa process and no carbon 

formation was detected. 

 

At all operating pressures, an increase in the reduction reaction temperature produced a 

slight increase in the CH4 conversion and CO2 and H2O concentrations and a slight 

decrease in the H2 and CO concentrations.  

 

An increase in the oxygen carrier-to-fuel ratio produced an increase in the CO2 and H2O 

concentrations and a decrease in the H2, CO and CH4 concentrations, very similar at all 

operating pressures. The measured gas concentrations were near to that given by the 

thermodynamic equilibrium.  

 

Important changes in the surface texture and the solid structure of the oxygen carrier 

particles were not detected after operation in the semicontinuous pressurized fluidized 

bed reactor. In addition, the oxygen carriers did not show agglomeration or 

defluidization problems. These results suggest that these oxygen carriers could have a 

high durability, being suitable as oxygen carriers for a pressurized CLRa system. 
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Figure 1: Chemical-Looping Reforming. 
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Figure 2: Thermodynamic equilibrium gas composition for different operating pressures and 

temperatures. 
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Figure 3:  Schematic diagram of the semicontinuous pressurized fluidized bed facility for CLRa 
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Figure 4: H2O concentration in the gas outlet stream before and after installation of the furnace around 

the solid feed hopper. Fluidizing gas: N2. T = 900ºC 
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Figure 5: Typical reduction test in the semicontinuos fluidized bed facility. 

NiO21-Al2O3,  P = 5 bars, T= 900ºC 
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Figure 6: Effect of total pressure on the gas product composition working with both oxygen carriers. T = 

900ºC. (a) NiO21-Al2O3, NiO/CH4 = 3.2, (b) NiO18-Al2O3, NiO/CH4 = 2.2 
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Figure 7: Reactivity in TGA of both oxygen carriers. T = 900ºC 
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Figure 8: Effect of total pressure on the gas product composition for both oxygen carriers. T = 900ºC, 

NiOreacted/CH4 = 1.8. Filled dots: NiO18-Al2O3. Empty dots:  NiO21-Al2O3. Lines: thermodynamic 

equilibrium data. 
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Figure 9: Effect of reduction reaction temperature on the gas product composition working with the 

oxygen carrier NiO18-Al2O3  . NiO/CH4 = 1.4. Empty dots: P =1 bar. Filled dots: P = 10 bars.  
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Figure 10: Effect of oxygen carrier-to-fuel ratio on the gas product compositions at different operating 

pressures for the NiO18-Al2O3 oxygen carrier. T = 900ºC. Filled dots: P = 1 bar. Semi-filled dots: P = 5 

bars. Empty dots: P = 10 bars. Lines: thermodynamic equilibrium data. 
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Figure 11: Effect of oxygen carrier-to-fuel ratio on the gas product concentrations at different operating 

pressures for the NiO21-Al2O3 oxygen carrier. T = 900ºC. Filled dots: P = 1 bar. Semi-filled dots: P = 5 

bars. Empty dots: P = 10 bars. Lines: thermodynamic equilibrium data. 
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Figure 12: SEM images of the NiO18-Al2O3 oxygen carrier, (a) fresh particles, (b) used particles, and 

EDX analysis for Ni distribution in the cross section of the particle. 
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Captions for the Figures 

Figure 1: Chemical-Looping Reforming. 

Figure 2: Thermodynamic equilibrium gas composition for different operating 

pressures and temperatures. 

Figure 3:  Schematic diagram of the semicontinuous pressurized fluidized bed facility 

for CLRa 

Figure 4: H2O concentration in the gas outlet stream before and after installation of the 

furnace around the solid feed hopper. Fluidizing gas: N2. T = 900ºC 

Figure 5: Typical reduction test in the semicontinuos fluidized bed facility.   

NiO21-Al2O3,  P = 5 bars, T= 900ºC 

Figure 6: Effect of total pressure on the gas product composition working with both 

oxygen carriers. T = 900ºC. (a) NiO21-Al2O3, NiO/CH4 = 3.2, (b) NiO18-Al2O3, 

NiO/CH4 = 2.2 

Figure 7: Reactivity in TGA of both oxygen carriers. T = 900ºC 

Figure 8: Effect of total pressure on the gas product composition for both oxygen 

carriers. T = 900ºC, NiOreacted/CH4 = 1.8. Filled dots: NiO18-Al2O3. Empty dots:  

NiO21-Al2O3. Lines: thermodynamic equilibrium data. 

Figure 9: Effect of reduction reaction temperature on the gas product composition 

working with the oxygen carrier NiO18-Al2O3. NiO/CH4 = 1.4. Empty dots: P =1 bar. 

Filled dots: P = 10 bars.  

Figure 10: Effect of oxygen carrier-to-fuel ratio on the gas product compositions at 

different operating pressures for the NiO18-Al2O3 oxygen carrier. T = 900ºC. Filled 
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dots: P = 1 bar. Semi-filled dots: P = 5 bars. Empty dots: P = 10 bars. Lines: 

thermodynamic equilibrium data. 

Figure 11: Effect of oxygen carrier-to-fuel ratio on the gas product concentrations at 

different operating pressures for the NiO21-Al2O3 oxygen carrier. T = 900ºC. Filled 

dots: P = 1 bar. Semi-filled dots: P = 5 bars. Empty dots: P = 10 bars. Lines: 

thermodynamic equilibrium data. 

Figure 12: SEM images of the NiO18-Al2O3 oxygen carrier, (a) fresh particles, (b) 

used particles, and EDX analysis for Ni distribution in the cross section of the particle 
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Table 1.  CH4 concentrations at different total pressures for a constant CH4 partial pressure 

 

Total Pressure 

(bars) 
1 3 5 8 10 

CH4 (vol. %) 50 16.7 10 6.25 5 

 

 

Table 2. Physical properties and solid composition of the oxygen carriers 

 

Oxygen carrier 
Density 

(g /cm3) 

Crushing 

strength (N) 

BET 

(m2/g) 

Porosity

(%) 
XRD 

 

NiO21-Al2O3 Fresh 

 

 

1.7 

 

2.6 

 

83.4 

 

50.7 



Al2O3, NiAl2O4 

 

NiO21-Al2O3   Used 

 

1.8 

 

2.4 

 

29.5 

 

50.6 



Al2O3, NiAl2O4 

NiO18-Al2O3  Fresh 2.4 4.1 7.0 42.5 Al2O3, NiO, NiAl2O4

 

NiO18-Al2O3  Used 

 

 

2.5 

 

4.0 

 

7.7 

 

42.1 



Al2O3, NiO, NiAl2O4

 

 


