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Abstract 

Initial clinical trials in cancer patients with vitamin D compounds have shown acceptable 

toxicity but low activity. A number of mechanisms responsible for resistance to their action in 

cancer cells have been recently reported. They include reduced intracellular availability of 

1 ,25-dihydroxyvitamin D3 (1,25(OH)2D3), loss of vitamin D receptor (VDR) expression and 

deregulation of transcription corepressors that modulate VDR action. Here, we summarize the 

data in the literature on the altered activity of the enzymes (CYP27B1, CYP24A1) that 

controls 1,25(OH)2D3 levels, the repression of VDR by the transcription factor Snail1 and the 

overexpression of several VDR corepressors (NCoR, SMRT) in cancer cells. A better 

understanding of these processes must contribute to improved protocols for the clinical use of 

vitamin D compounds. 
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The classical consideration of vitamin D as a regulator of calcium and phosphate metabolism 

and bone biology began to change in 1981, when David Feldman’s and Tatsuo Suda’s groups 

showed that the most active vitamin D metabolite 1 ,25-dihydroxyvitamin D3 (1,25(OH)2D3, 

calcitriol) inhibited the proliferation of melanoma cells and induced the differentiation of 

leukemic cells [1, 2]. These seminal, pioneer findings opened a new era in the study of 

1,25(OH)2D3, which is now seen as a hormone with pleiotropic effects in the organism. 

A large number of epidemiological and experimental studies performed in cultured cells and 

animal models over the last thee decades support a cancer preventive and, perhaps, a 

therapeutic role for 1,25(OH)2D3 and a series of synthetic vitamin D analogs [3, 4, reviews]. 

The initial phase I and phase II cancer clinical studies showed acceptable toxicity but low 

activity of these compounds [5, review]. As is usual in the development of new antitumoral 

drugs, patients enrolled in these trials were not responding to any other therapy, and they 

were unselected in terms of putative responsiveness to vitamin D compounds. Recent data on 

the physiology of the vitamin D system improve our understanding of the action of 

1,25(OH)2D3 at the molecular and cellular level, which may in turn help us to design future 

clinical trials more rationally. In this chapter, we summarize current knowledge on the 

mechanisms that dictate the response or resistance to 1,25(OH)2D3 in human cancer cells. The 

mechanisms have been grouped into three classes: a) the bioavailability of 1,25(OH)2D3 in 

the cell, b) the integrity and level of expression of the vitamin D receptor (VDR); and c) the 

pattern of expression of the transcription coregulators (coactivators and corepressors) that 

modulate VDR action. 

1,25(OH)2D3 action in human cancer cells. The anticancer action of 1,25(OH)2D3 relies on 

several mechanisms at the cell level: inhibition of proliferation, invasion and angiogenesis, 

sensitization to apoptotic stimuli, induction of differentiation, and modulation of the immune 
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system [3-5]. In each type of cancer, the combined effect of these mechanisms on tumor and 

stromal cells may determine 1,25(OH)2D3 action. 

1,25(OH)2D3 has two types of effect on target cells: the regulation of transcription rate of a 

large number of genes (genomic effects), and the rapid, transcription-independent modulation 

of the activity of membrane ion channels and cytosolic kinases, phosphatases and 

phospholipases (non-genomic effects). Most studies indicate that both types of effect are 

mediated by 1,25(OH)2D3 binding to, and activation of VDR. This is a member of the 

superfamily of nuclear receptors that is expressed in many cell types, and it acts as a ligand-

modulated transcription factor regulating gene expression. A few studies have proposed the 

existence of 1,25(OH)2D3 receptors other than VDR, but their confirmation as physiological 

mediators of 1,25(OH)2D3 action is pending [3, 5]. 

The current model for gene activation by 1,25(OH)2D3-VDR predicts that unliganded VDR 

bound (forming a heterodimer with RXR, the retinoid X receptor) to regulatory sequences 

(vitamin D response elements or VDRE) in target genes represses their transcription by 

recruiting corepressors (NCoR, SMRT…) and histone deacetylases. 1,25(OH)2D3 induces a 

conformational change in VDR that results in the replacement of corepressors by coactivators 

(SRC1, NCoA2…) and increased histone acetylase activity. This results in the opening of 

chromatin structure thus allowing entry of the basal RNA polymerase II transcription 

machinery (Fig. 1) [6, review]. The mechanism of gene repression by 1,25(OH)2D3 is less 

known, although this process is probably equally important for its action, as around one third 

of the target genes are inhibited. In addition to the direct blockade of RNA polymerase II 

activity by binding to VDREs located close to the transcription initiation site, gene repression 

may be due to competition for DNA binding with other transcription factors or to interference 

of their transcription regulatory function (by protein-protein interaction or modulation of their 

phosphorylation) [5]. 
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These considerations indicate that 1,25(OH)2D3 acts by modulating VDR action, and that 

such action is fine-tuned by its interaction with coregulators (coactivators and corepressors). 

1,25(OH)2D3 is the most active vitamin D metabolite because it has the highest affinity for 

VDR binding. 1,25(OH)2D3 is synthesized from 25-hydroxyvitamin D3 (25(OH)D3) by the 

action of the 25-hydroxyvitamin D3 1 -hydroxylase (CYP27B1). As discussed below, this 

has long been thought to take place only in the kidney, but it is now known to occur in 

several other cell types including colon, breast, and prostate normal and transformed 

epithelial cells. Intracellularly, 1,25(OH)2D3 is degraded by further hydroxylation at position 

24 by the ubiquitous enzyme 24-hydroxylase (CYP24A1) [3, 5]. 

In summary (Fig. 1), cell responsiveness to 1,25(OH)2D3 primarily relies on the expression of 

VDR. Second, VDR activity depends on cellular 1,25(OH)2D3 levels that result from the 

balance between the circulating concentrations of 25(OH)D3 and 1,25(OH)2D3, that cross the 

plasma membrane by either passive or facilitated (carrier-mediated) diffusion, and the 

cellular activity of CYP27B1 and CYP24A1 enzymes that control 25(OH)D3 conversion into 

1,25(OH)2D3 and subsequent degradation of this molecule. Third, the pattern of expression of 

coactivators and corepressors modulates VDR activity, thus establishing the precise mode 

and strength of the effects of 1,25(OH)2D3 on the transcription of target genes. An additional 

overimposed level of regulation comes from other signals that may trigger molecular 

pathways affecting the post-translational (phosphorylation) modification, intracellular 

location, or half-life (polyubiquitylation) of VDR or any of its coregulators. 

Resistance due to reduced bioavailability of 1,25(OH)2D3 within cancer cells. Ligand 

occupancy and activation of VDR depends on the levels of circulating 25(OH)D3 (nM range) 

and 1,25(OH)2D3 (pM range) that enter the cell from the bloodstream and on the cellular 

activity of CYP27B1 and CYP24A1 enzymes that regulate respectively the conversion of 

25(OH)D3 into 1,25(OH)2D3 and the degradation of this molecule. Obviously, vitamin D 
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deficiency due to insufficient vitamin D3 synthesis or diet contribution will determine low 

circulating 25(OH)2D3 levels. Decreased renal CYP27B1 expression or activity has the same 

consequence. Kidney CYP27B1 was long time considered the only source of 1,25(OH)2D3, 

which would then reach the bloodstream and act on target tissues in an endocrine fashion. 

The finding, however, of CYP27B1 expression and activity in normal and tumoral colon 

epithelial cells and later in other cell types (prostate, breast) demonstrated that 1,25(OH)2D3 

has paracrine and autocrine activity that may be involved in a defense mechanism against 

cancer progression [7, 8]. 1,25(OH)2D3 rapidly and strongly induces CYP24A1 expression, 

leading to an increase in the metabolism of 1,25(OH)2D3 [8]. 

Interestingly, a number of studies have reported differences in CYP27B1 and/or CYP24A1 

expression/activity between normal and tumoral cells. This has led to the currently accepted 

idea that, in cancer cells, attenuated CYP27B1 expression or activity or accelerated 

1,25(OH)2D3 elimination by CYP24A1 overexpression leads to reduced VDR activation and 

1,25(OH)2D3 resistance. Colon, prostate and breast cancer cells in culture show reduced 

CYP27B1 expression, which in some cases appears to be a consequence of epigenetic 

alteration of the genetic locus, as treatment of cells with methylation or deacetylation 

inhibitors increased CYP27B1 expression [9]. One study has proposed that the mechanism of 

decreased CYP27B1 activity in prostate cancer cell lines is via decreased gene expression 

while in primary cultures and tissues it is post-translational [10]. Moreover, the finding that 

CYP27B1 is also present in tumor infiltrating macrophages suggests an immunomodulatory 

component of 1,25(OH)2D3 production in some types of cancer [8]. 

CYP24A1 overexpression is commonly held responsible for the partial or total resistance of 

colon, breast and prostate cancer cells to 1,25(OH)2D3 effects. In line with this, combination 

of 1,25(OH)2D3 with inhibitors of vitamin D3 metabolizing enzymes or antisense inhibition of 

CYP24A1 caused a greater inhibition of proliferation of human prostate and breast cancer 
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cells than 1,25(OH)2D3 alone [11, 12]. In colon cancer cells, 1,25(OH)2D3 downregulates 

CYP27B1 and induces CYP24A1 in such a way that CYP27B1 is active only if CYP24A1 is 

not maximally functional, and that the malignancy of tumor cells determines the extent of 

1,25(OH)2D3 catabolism [13]. Additionally, CYP24A1 polymorphisms or splicing variants 

(modulated by 1,25(OH)2D3) may render different levels of constitutive and inducible 

CYP24A1 activity at least in prostate cancer cell lines [14]. The relevance of CYP24A1 

regulation has recently been extended by the finding that epigenetic silencing of CYP24A1 

contributes to the selective growth inhibition that 1,25(OH)2D3 induces in tumor-derived 

endothelial cells as compared to endothelial cells of non-tumor origin [15]. 

Taken together, these data indicate that enzymes involved in vitamin D metabolism may be 

important targets for cancer prevention and treatment. This is supported by in vitro studies 

that use epigenetic inhibitors or vitamin D analogs that prevent the increase of CYP24A1 

activity [16]. Furthermore, antineoplastic agents of clinical use such as daunorubicin 

hydrochloride, etoposide and vincristine sulphate increase the intracellular level of 

1,25(OH)2D3 by decreasing the stability of CYP24A1 mRNA [17]. This action would prolong 

the bioavailability of 1,25(OH)2D3 and may thus form the basis for putative additive or 

synergistic anticancer treatments. Importantly, during the aging the activity of CYP27B1 

decreases while that of CYP24A1 increases, which contributes to partial resistance to vitamin 

D in the elderly. 

Resistance to 1,25(OH)2D3 due to VDR repression. Cellular response to 1,25(OH)2D3 mainly 

depends on VDR expression levels. VDR is expressed in almost all cell types and tissues. 

Epithelial cells from gastrointestinal tract, breast, kidney, prostate, bladder and liver contain 

VDR. Moreover, VDR is expressed in bone, muscle and skin cells as well as some activated 

cells of the immune system [3]. Tumor cells derived from these tissues usually express VDR 

and maintain the capacity to respond to 1,25(OH)2D3. Remarkably, elevated VDR expression 
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is associated with high differentiation, absence of node involvement and favourable prognosis 

in colorectal cancer [18-20], and with late development of lymph node metastases and longer 

disease-free survival in breast cancer [21, 22]. However, downregulation of VDR expression 

has been found in several tumors (colon, breast, lung…) compared with their corresponding 

normal tissue [7, 23]. In colon cancer, VDR expression is induced in the early stages of 

tumorigenesis (polyps and adenomas) and decreases during colon cancer progression [7]. 

Clinical response to 1,25(OH)2D3 analogs requires the expression of VDR in tumoral cells. 

Therefore, the downregulation of VDR found in tumors will lead to 1,25(OH)2D3 

unresponsiveness and resistance not only to the therapy with 1,25(OH)2D3 analogs but also to 

the antitumoral effects of endogenous 1,25(OH)2D3. 

Deletions, rearrangements or point mutations affecting the coding region of the VDR gene 

have not been found in cancer. Several polymorphisms have been described in the VDR gene, 

some of which have been associated with increased risk of breast, prostate and colon cancer. 

However, their consequences for VDR expression or functionality, and therefore their 

implication in the development of 1,25(OH)2D3 resistance remain to be established [24]. 

A mechanism responsible for VDR downregulation, at least in colon cancer, has emerged in 

the last years. Our group has revealed that the transcription factor Snail1 binds to the human 

VDR gene promoter and represses its expression in human colon cancer cells. In addition, 

Snail1 also reduces VDR mRNA half-life [25]. Accordingly, overexpression of Snail1 in 

human colon cancer cells blocks the prodifferentiation action of 1,25(OH)2D3 and its 

inhibitory effect on cell proliferation and migration. Snail1 also represses VDR expression 

and abrogates the antitumoral effect of EB1089 (a 1,25(OH)2D3 analog) in xenografted mice 

(Fig. 2) [25, 26]. Upregulation of Snail1 has been found in approximately 60% of colon 

tumors and it has been significantly associated with diminished VDR expression [25, 27]. 

These data indicate that Snail1 induction is probably responsible for VDR downregulation 
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during colon cancer progression and indicate that tumors with high Snail1 expression would 

be resistant to treatment with 1,25(OH)2D3 or its analogs. Since Snail1 is up-regulated in 

advanced tumors (associated with acquisition of migratory and invasive properties), 

1,25(OH)2D3 and its analogs should preferentially be used as chemopreventive drugs, 

particularly for high risk patients, and as chemotherapeutic agents to be administered during 

the early stages of carcinogenesis [28]. In addition, as Snail1 up-regulation has been reported 

in cancers other than colon (synovial sarcoma and breast, gastric and hepatocellular 

carcinomas) [29, review] this mechanism could be responsible for VDR downregulation and 

vitamin D resistance in other tumors. It has also been shown that H-ras transformation of 

HC11 mammary cells or NIH 3T3 fibroblasts provokes a reduction of VDR mRNA levels 

leading to 1,25(OH)2D3 resistance. In these cases, transcriptional repression was ruled out and 

VDR downregulation seemed to be due to a decrease in VDR mRNA stability [30, 31]. As the 

Ras-Raf-MAPK pathway is one of the inducers of Snail1 [29], VDR downregulation by 

oncogenic H-ras is probably mediated by Snail1. Remarkably, ectopic VDR re-expression 

diminished H-ras-induced transformation in NIH 3T3 cells [31]. 

Several studies have identified compounds that increase VDR expression and/or 1,25(OH)2D3 

level in cancer and, therefore, could overcome the 1,25(OH)2D3 resistance of tumors. 

1,25(OH)2D3 synthesis and VDR expression can be regulated by estrogens in colon cancer. 

17 -estradiol and certain phytoestrogens induce VDR and CYP27B1 expression while they 

reduce that of CYP24A1. Therefore, the treatment of tumors with estrogens would increase 

VDR levels and overcome the resistance to 1,25(OH)2D3 analogs [32]. In addition, the 

transcription factor p53 and its family members p63 , p73  and p73  activate human VDR 

gene transcription. These transcription factors are activated in turn by genotoxic stresses such 

as certain chemotherapeutic drugs. It is therefore expected that combined treatment with 
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chemotherapy may enhance cell sensitivity to the antitumoral effects of 1,25(OH)2D3 because 

the increase in the levels of p53 family members by chemotherapy could induce VDR [32]. 

Resistance to 1,25(OH)2D3 due to altered expression of VDR coregulators. Interestingly, 

tumoral resistance to 1,25(OH)2D3 appears to be unrelated to VDR levels in several 

situations, because there is no clear relation between VDR expression and 1,25(OH)2D3 

action [24]. Therefore, various groups began to examine whether epigenetic mechanisms 

were disrupting VDR signalling, and they found that these mechanisms caused decreased 

responsiveness to 1,25(OH)2D3 in prostate and breast cancer [33]. This epigenetic corruption 

results from an abnormal pattern of expression of corepressors or coactivators. In addition, 

altered post-translational modifications of VDR or RXR may also diminish VDR 

transcriptional activity. 

Elevated expression of the corepressors SMRT and NCoR has been reported in prostate and 

breast cancer cell lines, respectively [34, 35]. Moreover, an increased ratio of 

corepressor/VDR RNA is also observed in matched primary tumor and normal breast cells, 

particularly associated with estrogen receptor negativity [35]. This alteration causes 

resistance to the antiproliferative effect of 1,25(OH)2D3, which can be restored with inhibitors 

of histone deacetylases (trichostatin) and DNA methyltransferases (5-aza-2’-deoxycytidine) 

[34-36]. This also explains the synergistic inhibitory effect of combined treatment with 

1,25(OH)2D3 and sodium butyrate or trichostatin on the proliferation of prostate cancer cells 

[37]. The abnormal expression of coregulators may explain why VDR content does not 

predict the antiproliferative effects of 1,25(OH)2D3 in some cancer cells [24]. Interestingly, in 

line with the increasing tendency to consider stroma as a critical regulator of tumor 

progression, altered VDR-mediated transcriptional activity due to abnormal VDR DNA 

binding and SMRT recruitment has been described in prostate cancer stroma [38]. 
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In contrast to what happens with corepressors, there is no report of alterations in the 

expression of VDR coactivators. The lack of such alterations in cancer cells may be a 

consequence of a dominant role of corepressor overexpression, which upsets the equilibrium 

between the two types of coregulators in normal cells. Bikle and collaborators hypothesized 

that the reason why squamous cell carcinoma cells fail to respond to the prodifferentiating 

action of 1,25(OH)2D3, in spite of having normal levels of VDR and normal binding of VDR 

to VDREs, is a failure of the sequential binding of coactivator complexes to VDR [39]. 

Finally, although data in the literature are scarce, deregulation of the translational 

modifications of VDR and RXR are believed to affect the gene regulatory activity of 

1,25(OH)2D3. In the transformed human keratinocyte cell line HPK1Aras, RXR  is 

phosphorylated at serine 260, which attenuates the transcriptional activity of VDR-RXR 

heterodimers and results in resistance to the growth inhibitory action of 1,25(OH)2D3 [40]. 

HPK1Aras cells overexpress the H-ras oncogene and consequently exhibit an activated Ras-

Raf-MAPK pathway. As this pathway is usually activated in many human cancer cells due to 

mutation or overexpression of membrane tyrosine kinase receptors (EGFR, MET) or 

downstream components such Ras or Raf, the importance of this type of alteration may be 

greater than suspected. VDR is known to be phosphorylated at several residues, although the 

significance of this remains to be assessed. 

Concluding remarks. 1,25(OH)2D3 is a pleiotropic hormone with a complex variety of actions 

in the organism which are mediated by its high affinity receptor VDR, present in most cell 

types. VDR is expressed by many tumor cells. However, partial-to-total resistance to the 

antitumoral effects of 1,25(OH)2D3 arises during tumor progression. This is due to the 

reduced levels of 1,25(OH)2D3 in cancer cells, loss of VDR expression or deregulation of 

VDR transcriptional activity. The molecular mechanisms responsible for these alterations are, 

respectively, the deregulation of the enzymes synthesizing and degrading 1,25(OH)2D3 
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intracellularly (CYP27B1 and CYP24A1), the upregulation of Snail1 and perhaps other 

transcriptional repressors of VDR, and alterations in the synthesis or post-translational 

modifications of VDR corepressors or partners. Better understanding of these mechanisms of 

resistance may allow us to improve the anticancer therapy with 1,25(OH)2D3 and its analogs. 
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Figure Legends 

Figure 1. Schematic representation of 1,25(OH)2D3 metabolism and action in human cancer 

cells and of the mechanisms of resistance to 1,25(OH)2D3. Cancer epithelial cells receive 

25(OH)D3 and 1,25(OH)2D3 (in the nM and pM range, respectively) from the bloodstream 

and synthesize 1,25(OH)2D3 from 25(OH)D3 by CYP27B1 action. 1,25(OH)2D3 binding to 

VDR induces a conformational change that leads to the replacement of corepressors (SMRT, 

NCoR) by coactivators (SRC1, NCoA2) and finally induces the transcriptional activation of 

many genes involved in different cellular functions related to 1,25(OH)2D3 antitumoral 

action. Alteration of the expression and activity of the enzymes regulating 1,25(OH)2D3 

synthesis (CYP27B1) and catabolism (CYP24A1) have been found in cancer, and they cause 

the reduction of intracellular 1,25(OH)2D3 levels. Similarly, VDR repression and aberrant 

expression of transcriptional coactivators or corepressors have been found in cancer and they 

lead to 1,25(OH)2D3 resistance. 

Figure 2. Immunohistochemistry analysis of the expression of VDR and Snail1 in 

xenografted tumors generated in immunodeficient mice by human SW480-ADH colon cancer 

cells that were infected with retroviruses coding for the hemmaglutinin (HA)-tagged mouse 

Snail1 cDNA or an empty virus (Mock). As shown by the use of anti-VDR and anti-HA 

antibodies, Snail1 overexpression downregulates VDR levels. 


